1. Using the given conversion factors, we find
(a) the distance d in rods to be

$$
d=4.0 \text { furlongs }=\frac{(4.0 \text { furlongs })(201.168 \mathrm{~m} / \text { furlong })}{5.0292 \mathrm{~m} / \mathrm{rod}}=160 \text { rods },
$$

(b) and that distance in chains to be

$$
d=\frac{(4.0 \text { furlongs })(201.168 \mathrm{~m} / \text { furlong })}{20.117 \mathrm{~m} / \text { chain }}=40 \text { chains. }
$$

2. The conversion factors 1 gry $=1 / 10$ line, 1 line $=1 / 12$ inch and 1 point $=1 / 72$ inch imply that 1 gry $=(1 / 10)(1 / 12)(72$ points $)=0.60$ point. Thus, 1 gry $^{2}=(0.60 \text { point })^{2}=$ 0.36 point 2, which means that 0.50 gry $^{2}=0.18$ point 2.
3. The metric prefixes (micro, pico, nano, ...) are given for ready reference on the inside front cover of the textbook (see also Table 1-2).
(a) Since $1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m}$ and $1 \mathrm{~m}=1 \times 10^{6} \mu \mathrm{~m}$,

$$
1 \mathrm{~km}=10^{3} \mathrm{~m}=\left(10^{3} \mathrm{~m}\right)\left(10^{6} \mu \mathrm{~m} / \mathrm{m}\right)=10^{9} \mu \mathrm{~m} .
$$

The given measurement is 1.0 km (two significant figures), which implies our result should be written as $1.0 \times 10^{9} \mu \mathrm{~m}$.
(b) We calculate the number of microns in 1 centimeter. Since $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$,

$$
1 \mathrm{~cm}=10^{-2} \mathrm{~m}=\left(10^{-2} \mathrm{~m}\right)\left(10^{6} \mu \mathrm{~m} / \mathrm{m}\right)=10^{4} \mu \mathrm{~m}
$$

We conclude that the fraction of one centimeter equal to $1.0 \mu \mathrm{~m}$ is 1.0×10^{-4}.
(c) Since $1 \mathrm{yd}=(3 \mathrm{ft})(0.3048 \mathrm{~m} / \mathrm{ft})=0.9144 \mathrm{~m}$,

$$
1.0 \mathrm{yd}=(0.91 \mathrm{~m})\left(10^{6} \mu \mathrm{~m} / \mathrm{m}\right)=9.1 \times 10^{5} \mu \mathrm{~m} .
$$

4. (a) Using the conversion factors 1 inch $=2.54 \mathrm{~cm}$ exactly and 6 picas $=1$ inch, we obtain

$$
0.80 \mathrm{~cm}=(0.80 \mathrm{~cm})\left(\frac{1 \text { inch }}{2.54 \mathrm{~cm}}\right)\left(\frac{6 \text { picas }}{1 \text { inch }}\right) \approx 1.9 \text { picas. }
$$

(b) With 12 points $=1$ pica, we have

$$
0.80 \mathrm{~cm}=(0.80 \mathrm{~cm})\left(\frac{1 \text { inch }}{2.54 \mathrm{~cm}}\right)\left(\frac{6 \text { picas }}{1 \text { inch }}\right)\left(\frac{12 \text { points }}{1 \text { pica }}\right) \approx 23 \text { points. }
$$

5. Various geometric formulas are given in Appendix E.
(a) Substituting

$$
R=\left(6.37 \times 10^{6} \mathrm{~m}\right)\left(10^{-3} \mathrm{~km} / \mathrm{m}\right)=6.37 \times 10^{3} \mathrm{~km}
$$

into circumference $=2 \pi R$, we obtain $4.00 \times 10^{4} \mathrm{~km}$.
(b) The surface area of Earth is

$$
A=4 \pi R^{2}=4 \pi\left(6.37 \times 10^{3} \mathrm{~km}\right)^{2}=5.10 \times 10^{8} \mathrm{~km}^{2}
$$

(c) The volume of Earth is

$$
V=\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3}\left(6.37 \times 10^{3} \mathrm{~km}\right)^{3}=1.08 \times 10^{12} \mathrm{~km}^{3} .
$$

6. We make use of Table 1-6.
(a) We look at the first ("cahiz") column: 1 fanega is equivalent to what amount of cahiz? We note from the already completed part of the table that 1 cahiz equals a dozen fanega. Thus, 1 fanega $=\frac{1}{12}$ cahiz, or 8.33×10^{-2} cahiz. Similarly, " 1 cahiz $=48$ cuartilla" (in the already completed part) implies that 1 cuartilla $=\frac{1}{48}$ cahiz, or 2.08×10^{-2} cahiz. Continuing in this way, the remaining entries in the first column are 6.94×10^{-3} and 3.47×10^{-3}.
(b) In the second ("fanega") column, we similarly find $0.250,8.33 \times 10^{-2}$, and 4.17×10^{-2} for the last three entries.
(c) In the third ("cuartilla") column, we obtain 0.333 and 0.167 for the last two entries.
(d) Finally, in the fourth ("almude") column, we get $\frac{1}{2}=0.500$ for the last entry.
(e) Since the conversion table indicates that 1 almude is equivalent to 2 medios, our amount of 7.00 almudes must be equal to 14.0 medios.
(f) Using the value (1 almude $=6.94 \times 10^{-3}$ cahiz) found in part (a), we conclude that 7.00 almudes is equivalent to 4.86×10^{-2} cahiz.
(g) Since each decimeter is 0.1 meter, then 55.501 cubic decimeters is equal to 0.055501 m^{3} or $55501 \mathrm{~cm}^{3}$. Thus, 7.00 almudes $=\frac{7.00}{12}$ fanega $=\frac{7.00}{12}\left(55501 \mathrm{~cm}^{3}\right)=3.24 \times 10^{4} \mathrm{~cm}^{3}$.
7. The volume of ice is given by the product of the semicircular surface area and the thickness. The are of the semicircle is $A=\pi r^{2} / 2$, where r is the radius. Therefore, the volume is

$$
V=\frac{\pi}{2} r^{2} z
$$

where z is the ice thickness. Since there are $10^{3} \mathrm{~m}$ in 1 km and $10^{2} \mathrm{~cm}$ in 1 m , we have

$$
r=(2000 \mathrm{~km})\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)=2000 \times 10^{5} \mathrm{~cm} .
$$

In these units, the thickness becomes

$$
z=3000 \mathrm{~m}=(3000 \mathrm{~m})\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)=3000 \times 10^{2} \mathrm{~cm}
$$

which yields,

$$
V=\frac{\pi}{2}\left(2000 \times 10^{5} \mathrm{~cm}\right)^{2}\left(3000 \times 10^{2} \mathrm{~cm}\right)=1.9 \times 10^{22} \mathrm{~cm}^{3} .
$$

8. From Figure 1.6, we see that 212 S is equivalent to 258 W and $212-32=180 \mathrm{~S}$ is equivalent to $216-60=156 \mathrm{Z}$. The information allows us to convert S to W or Z .
(a) In units of W,

$$
50.0 \mathrm{~S}=(50.0 \mathrm{~S})\left(\frac{258 \mathrm{~W}}{212 \mathrm{~S}}\right)=60.8 \mathrm{~W}
$$

(b) In units of Z,

$$
50.0 \mathrm{~S}=(50.0 \mathrm{~S})\left(\frac{156 \mathrm{Z}}{180 \mathrm{~S}}\right)=43.3 \mathrm{Z}
$$

9. We use the conversion factors found in Appendix D.

$$
1 \text { acre } \cdot \mathrm{ft}=\left(43,560 \mathrm{ft}^{2}\right) \cdot \mathrm{ft}=43,560 \mathrm{ft}^{3}
$$

Since $2 \mathrm{in} .=(1 / 6) \mathrm{ft}$, the volume of water that fell during the storm is

$$
V=\left(26 \mathrm{~km}^{2}\right)(1 / 6 \mathrm{ft})=\left(26 \mathrm{~km}^{2}\right)(3281 \mathrm{ft} / \mathrm{km})^{2}(1 / 6 \mathrm{ft})=4.66 \times 10^{7} \mathrm{ft}^{3}
$$

Thus,

$$
V=\frac{4.66 \times 10^{7} \mathrm{ft}^{3}}{4.3560 \times 10^{4} \mathrm{ft}^{3} / \mathrm{acre} \cdot \mathrm{ft}}=1.1 \times 10^{3} \mathrm{acre} \cdot \mathrm{ft}
$$

10. The metric prefixes (micro (μ), pico, nano, ...) are given for ready reference on the inside front cover of the textbook (also, Table 1-2).
(a)

$$
1 \mu \text { century }=\left(10^{-6} \text { century }\right)\left(\frac{100 \mathrm{y}}{1 \text { century }}\right)\left(\frac{365 \text { day }}{1 \mathrm{y}}\right)\left(\frac{24 \mathrm{~h}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=52.6 \mathrm{~min} .
$$

(b) The percent difference is therefore

$$
\frac{52.6 \mathrm{~min}-50 \mathrm{~min}}{52.6 \mathrm{~min}}=4.9 \%
$$

11. A week is 7 days, each of which has 24 hours, and an hour is equivalent to 3600 seconds. Thus, two weeks (a fortnight) is 1209600 s . By definition of the micro prefix, this is roughly $1.21 \times 10^{12} \mu \mathrm{~s}$.
12. A day is equivalent to 86400 seconds and a meter is equivalent to a million micrometers, so

$$
\frac{(3.7 \mathrm{~m})\left(10^{6} \mu \mathrm{~m} / \mathrm{m}\right)}{(14 \text { day })(86400 \mathrm{~s} / \text { day })}=3.1 \mu \mathrm{~m} / \mathrm{s}
$$

13. None of the clocks advance by exactly 24 h in a 24 -h period but this is not the most important criterion for judging their quality for measuring time intervals. What is important is that the clock advance by the same amount in each 24 -h period. The clock reading can then easily be adjusted to give the correct interval. If the clock reading jumps around from one 24-h period to another, it cannot be corrected since it would impossible to tell what the correction should be. The following gives the corrections (in seconds) that must be applied to the reading on each clock for each $24-\mathrm{h}$ period. The entries were determined by subtracting the clock reading at the end of the interval from the clock reading at the beginning.

CLOCK	Sun. -Mon.	Mon. -Tues.	Tues. -Wed.	Wed. -Thurs.	Thurs. -Fri.	Fri. -Sat.
A	-16	-16	-15	-17	-15	-15
B	-3	+5	-10	+5	+6	-7
C	-58	-58	-58	-58	-58	-58
D	+67	+67	+67	+67	+67	+67
E	+70	+55	+2	+20	+10	+10

Clocks C and D are both good timekeepers in the sense that each is consistent in its daily drift (relative to WWF time); thus, C and D are easily made "perfect" with simple and predictable corrections. The correction for clock C is less than the correction for clock D , so we judge clock C to be the best and clock D to be the next best. The correction that must be applied to clock A is in the range from 15 s to 17 s . For clock B it is the range from -5 s to +10 s , for clock E it is in the range from -70 s to -2 s . After C and D , A has the smallest range of correction, B has the next smallest range, and E has the greatest range. From best to worst, the ranking of the clocks is C, D, A, B, E.
14. Since a change of longitude equal to 360° corresponds to a 24 hour change, then one expects to change longitude by $360^{\circ} / 24=15^{\circ}$ before resetting one's watch by 1.0 h .
15. (a) Presuming that a French decimal day is equivalent to a regular day, then the ratio of weeks is simply 10/7 or (to 3 significant figures) 1.43.
(b) In a regular day, there are 86400 seconds, but in the French system described in the problem, there would be 10^{5} seconds. The ratio is therefore 0.864 .
16. We denote the pulsar rotation rate f (for frequency).

$$
f=\frac{1 \text { rotation }}{1.55780644887275 \times 10^{-3} \mathrm{~s}}
$$

(a) Multiplying f by the time-interval $t=7.00$ days (which is equivalent to 604800 s , if we ignore significant figure considerations for a moment), we obtain the number of rotations:

$$
N=\left(\frac{1 \text { rotation }}{1.55780644887275 \times 10^{-3} \mathrm{~s}}\right)(604800 \mathrm{~s})=388238218.4
$$

which should now be rounded to 3.88×10^{8} rotations since the time-interval was specified in the problem to three significant figures.
(b) We note that the problem specifies the exact number of pulsar revolutions (one million). In this case, our unknown is t, and an equation similar to the one we set up in part (a) takes the form $N=f t$, or

$$
1 \times 10^{6}=\left(\frac{1 \text { rotation }}{1.55780644887275 \times 10^{-3} \mathrm{~s}}\right) t
$$

which yields the result $t=1557.80644887275 \mathrm{~s}$ (though students who do this calculation on their calculator might not obtain those last several digits).
(c) Careful reading of the problem shows that the time-uncertainty per revolution is $\pm 3 \times 10^{-17} \mathrm{~s}$. We therefore expect that as a result of one million revolutions, the uncertainty should be $\left(\pm 3 \times 10^{-17}\right)\left(1 \times 10^{6}\right)= \pm 3 \times 10^{-11} \mathrm{~s}$.
17. The time on any of these clocks is a straight-line function of that on another, with slopes $\neq 1$ and y-intercepts $\neq 0$. From the data in the figure we deduce

$$
\begin{aligned}
& t_{C}=\frac{2}{7} t_{B}+\frac{594}{7} \\
& t_{B}=\frac{33}{40} t_{A}-\frac{662}{5} .
\end{aligned}
$$

These are used in obtaining the following results.
(a) We find

$$
t_{B}^{\prime}-t_{B}=\frac{33}{40}\left(t_{A}^{\prime}-t_{A}\right)=495 \mathrm{~s}
$$

when $t_{A}^{\prime}-t_{A}=600 \mathrm{~s}$.
(b) We obtain

$$
t_{C}^{\prime}-t_{C}=\frac{2}{7}\left(t_{B}^{\prime}-t_{B}\right)=\frac{2}{7}(495)=141 \mathrm{~s} .
$$

(c) Clock B reads $t_{B}=(33 / 40)(400)-(662 / 5) \approx 198 \mathrm{~s}$ when clock A reads $t_{A}=400 \mathrm{~s}$.
(d) From $t_{C}=15=(2 / 7) t_{B}+(594 / 7)$, we get $t_{B} \approx-245 \mathrm{~s}$.
18. The last day of the 20 centuries is longer than the first day by

$$
(20 \text { century })(0.001 \mathrm{~s} / \text { century })=0.02 \mathrm{~s} .
$$

The average day during the 20 centuries is $(0+0.02) / 2=0.01 \mathrm{~s}$ longer than the first day. Since the increase occurs uniformly, the cumulative effect T is

$$
\begin{aligned}
T & =(\text { average increase in length of a day })(\text { number of days }) \\
& =\left(\frac{0.01 \mathrm{~s}}{\text { day }}\right)\left(\frac{365.25 \text { day }}{\mathrm{y}}\right)(2000 \mathrm{y}) \\
& =7305 \mathrm{~s}
\end{aligned}
$$

or roughly two hours.
19. We introduce the notion of density:

$$
\rho=\frac{m}{V}
$$

and convert to SI units: $1 \mathrm{~g}=1 \times 10^{-3} \mathrm{~kg}$.
(a) For volume conversion, we find $1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3}$. Thus, the density in $\mathrm{kg} / \mathrm{m}^{3}$ is

$$
1 \mathrm{~g} / \mathrm{cm}^{3}=\left(\frac{1 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{10^{-3} \mathrm{~kg}}{\mathrm{~g}}\right)\left(\frac{\mathrm{cm}^{3}}{10^{-6} \mathrm{~m}^{3}}\right)=1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

Thus, the mass of a cubic meter of water is 1000 kg .
(b) We divide the mass of the water by the time taken to drain it. The mass is found from $M=\rho V$ (the product of the volume of water and its density):

$$
M=\left(5700 \mathrm{~m}^{3}\right)\left(1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)=5.70 \times 10^{6} \mathrm{~kg} .
$$

The time is $t=(10 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})=3.6 \times 10^{4} \mathrm{~s}$, so the mass flow rate R is

$$
R=\frac{M}{t}=\frac{5.70 \times 10^{6} \mathrm{~kg}}{3.6 \times 10^{4} \mathrm{~s}}=158 \mathrm{~kg} / \mathrm{s}
$$

20. To organize the calculation, we introduce the notion of density:

$$
\rho=\frac{m}{V}
$$

(a) We take the volume of the leaf to be its area A multiplied by its thickness z. With density $\rho=19.32 \mathrm{~g} / \mathrm{cm}^{3}$ and mass $m=27.63 \mathrm{~g}$, the volume of the leaf is found to be

$$
V=\frac{m}{\rho}=1.430 \mathrm{~cm}^{3} .
$$

We convert the volume to SI units:

$$
V=\left(1.430 \mathrm{~cm}^{3}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3}=1.430 \times 10^{-6} \mathrm{~m}^{3}
$$

Since $V=A z$ with $z=1 \times 10^{-6} \mathrm{~m}$ (metric prefixes can be found in Table 1-2), we obtain

$$
A=\frac{1.430 \times 10^{-6} \mathrm{~m}^{3}}{1 \times 10^{-6} \mathrm{~m}}=1.430 \mathrm{~m}^{2} .
$$

(b) The volume of a cylinder of length ℓ is $V=A \ell$ where the cross-section area is that of a circle: $A=\pi r^{2}$. Therefore, with $r=2.500 \times 10^{-6} \mathrm{~m}$ and $V=1.430 \times 10^{-6} \mathrm{~m}^{3}$, we obtain

$$
\ell=\frac{V}{\pi r^{2}}=7.284 \times 10^{4} \mathrm{~m} .
$$

21. If M_{E} is the mass of Earth, m is the average mass of an atom in Earth, and N is the number of atoms, then $M_{E}=N m$ or $N=M_{E} / m$. We convert mass m to kilograms using Appendix $D\left(1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}\right)$. Thus,

$$
N=\frac{M_{E}}{m}=\frac{5.98 \times 10^{24} \mathrm{~kg}}{(40 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}=9.0 \times 10^{49}
$$

22. (a) We find the volume in cubic centimeters

$$
193 \mathrm{gal}=(193 \mathrm{gal})\left(\frac{231 \mathrm{in}^{3}}{1 \mathrm{gal}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}=7.31 \times 10^{5} \mathrm{~cm}^{3}
$$

and subtract this from $1 \times 10^{6} \mathrm{~cm}^{3}$ to obtain $2.69 \times 10^{5} \mathrm{~cm}^{3}$. The conversion gal $\rightarrow \mathrm{in}^{3}$ is given in Appendix D (immediately below the table of Volume conversions).
(b) The volume found in part (a) is converted (by dividing by $(100 \mathrm{~cm} / \mathrm{m})^{3}$) to $0.731 \mathrm{~m}^{3}$, which corresponds to a mass of

$$
\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.731 \mathrm{~m}^{2}\right)=731 \mathrm{~kg}
$$

using the density given in the problem statement. At a rate of $0.0018 \mathrm{~kg} / \mathrm{min}$, this can be filled in

$$
\frac{731 \mathrm{~kg}}{0.0018 \mathrm{~kg} / \mathrm{min}}=4.06 \times 10^{5} \mathrm{~min}=0.77 \mathrm{y}
$$

after dividing by the number of minutes in a year (365 days)($24 \mathrm{~h} /$ day) ($60 \mathrm{~min} / \mathrm{h}$).
23. We introduce the notion of density, $\rho=m / V$, and convert to SI units: $1000 \mathrm{~g}=1 \mathrm{~kg}$, and $100 \mathrm{~cm}=1 \mathrm{~m}$.
(a) The density ρ of a sample of iron is therefore

$$
\rho=\left(7.87 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}
$$

which yields $\rho=7870 \mathrm{~kg} / \mathrm{m}^{3}$. If we ignore the empty spaces between the close-packed spheres, then the density of an individual iron atom will be the same as the density of any iron sample. That is, if M is the mass and V is the volume of an atom, then

$$
V=\frac{M}{\rho}=\frac{9.27 \times 10^{-26} \mathrm{~kg}}{7.87 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}=1.18 \times 10^{-29} \mathrm{~m}^{3}
$$

(b) We set $V=4 \pi R^{3} / 3$, where R is the radius of an atom (Appendix E contains several geometry formulas). Solving for R, we find

$$
R=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}=\left(\frac{3\left(1.18 \times 10^{-29} \mathrm{~m}^{3}\right)}{4 \pi}\right)^{1 / 3}=1.41 \times 10^{-10} \mathrm{~m}
$$

The center-to-center distance between atoms is twice the radius, or $2.82 \times 10^{-10} \mathrm{~m}$.
24. (a) The volume of the cloud is $(3000 \mathrm{~m}) \pi(1000 \mathrm{~m})^{2}=9.4 \times 10^{9} \mathrm{~m}^{3}$. Since each cubic meter of the cloud contains from 50×10^{6} to 500×10^{6} water drops, then we conclude that the entire cloud contains from 4.7×10^{18} to 4.7×10^{19} drops. Since the volume of each drop is $\frac{4}{3} \pi\left(10 \times 10^{-6} \mathrm{~m}\right)^{3}=4.2 \times 10^{-15} \mathrm{~m}^{3}$, then the total volume of water in a cloud is from 2×10^{3} to $2 \times 10^{4} \mathrm{~m}^{3}$.
(b) Using the fact that $1 \mathrm{~L}=1 \times 10^{3} \mathrm{~cm}^{3}=1 \times 10^{-3} \mathrm{~m}^{3}$, the amount of water estimated in part (a) would fill from 2×10^{6} to 2×10^{7} bottles.
(c) At 1000 kg for every cubic meter, the mass of water is from two million to twenty million kilograms. The coincidence in numbers between the results of parts (b) and (c) of this problem is due to the fact that each liter has a mass of one kilogram when water is at its normal density (under standard conditions).
25. The first two conversions are easy enough that a formal conversion is not especially called for, but in the interest of practice makes perfect we go ahead and proceed formally:
(a)

$$
11 \text { tuffets }=(11 \text { tuffets })\left(\frac{2 \text { peck }}{1 \text { tuffet }}\right)=22 \text { pecks }
$$

(b)

$$
11 \text { tuffets }=(11 \text { tuffets })\left(\frac{0.50 \text { Imperial bushel }}{1 \text { tuffet }}\right)=5.5 \text { Imperial bushels }
$$

(c)

$$
11 \text { tuffets }=(5.5 \text { Imperial bushel })\left(\frac{36.3687 \mathrm{~L}}{1 \text { Imperial bushel }}\right) \approx 200 \mathrm{~L}
$$

26. If we estimate the "typical" large domestic cat mass as 10 kg , and the "typical" atom (in the cat) as $10 \mathrm{u} \approx 2 \times 10^{-26} \mathrm{~kg}$, then there are roughly $(10 \mathrm{~kg}) /\left(2 \times 10^{-26} \mathrm{~kg}\right) \approx 5 \times$ 10^{26} atoms. This is close to being a factor of a thousand greater than Avogradro's number. Thus this is roughly a kilomole of atoms.
27. Abbreviating wapentake as "wp" and assuming a hide to be 110 acres, we set up the ratio $25 \mathrm{wp} / 11$ barn along with appropriate conversion factors:

$$
\frac{(25 \mathrm{wp})\left(\frac{100 \text { hide }}{1 \mathrm{wp}}\right)\left(\frac{110 \text { acre }}{1 \text { hide }}\right)\left(\frac{4047 \mathrm{~m}^{2}}{1 \text { acre }}\right)}{(11 \text { barn })\left(\frac{1 \times 10^{-28} \mathrm{~m}^{2}}{1 \text { barn }}\right)} \approx 1 \times 10^{36} .
$$

28. Table 7 can be completed as follows:
(a) It should be clear that the first column (under "wey") is the reciprocal of the first row - so that $\frac{9}{10}=0.900, \frac{3}{40}=7.50 \times 10^{-2}$, and so forth. Thus, 1 pottle $=1.56 \times 10^{-3}$ wey and 1 gill $=8.32 \times 10^{-6}$ wey are the last two entries in the first column.
(b) In the second column (under "chaldron"), clearly we have 1 chaldron $=1$ caldron (that is, the entries along the "diagonal" in the table must be 1 's). To find out how many chaldron are equal to one bag, we note that 1 wey $=10 / 9$ chaldron $=40 / 3$ bag so that $\frac{1}{12}$ chaldron $=1$ bag. Thus, the next entry in that second column is $\frac{1}{12}=8.33 \times 10^{-2}$. Similarly, 1 pottle $=1.74 \times 10^{-3}$ chaldron and 1 gill $=9.24 \times 10^{-6}$ chaldron .
(c) In the third column (under "bag"), we have 1 chaldron $=12.0 \mathrm{bag}, 1 \mathrm{bag}=1 \mathrm{bag}, 1$ pottle $=2.08 \times 10^{-2} \mathrm{bag}$, and 1 gill $=1.11 \times 10^{-4} \mathrm{bag}$.
(d) In the fourth column (under "pottle"), we find 1 chaldron $=576$ pottle, 1 bag $=48$ pottle, 1 pottle $=1$ pottle, and 1 gill $=5.32 \times 10^{-3}$ pottle .
(e) In the last column (under "gill"), we obtain 1 chaldron $=1.08 \times 10^{5}$ gill, 1 bag $=9.02$ $\times 10^{3}$ gill, 1 pottle $=188$ gill, and, of course, 1 gill $=1$ gill.
(f) Using the information from part (c), 1.5 chaldron $=(1.5)(12.0)=18.0$ bag. And since each bag is $0.1091 \mathrm{~m}^{3}$ we conclude 1.5 chaldron $=(18.0)(0.1091)=1.96 \mathrm{~m}^{3}$.
29. (a) Dividing 750 miles by the expected " 40 miles per gallon" leads the tourist to believe that the car should need 18.8 gallons (in the U.S.) for the trip.
(b) Dividing the two numbers given (to high precision) in the problem (and rounding off) gives the conversion between U.K. and U.S. gallons. The U.K. gallon is larger than the U.S gallon by a factor of 1.2. Applying this to the result of part (a), we find the answer for part (b) is 22.5 gallons.
30. (a) We reduce the stock amount to British teaspoons:

$$
\begin{aligned}
1 \text { breakfastcup } & =2 \times 8 \times 2 \times 2=64 \text { teaspoons } \\
1 \text { teacup } & =8 \times 2 \times 2=32 \text { teaspoons } \\
6 \text { tablespoons } & =6 \times 2 \times 2=24 \text { teaspoons } \\
1 \text { dessertspoon } & =2 \text { teaspoons }
\end{aligned}
$$

which totals to 122 British teaspoons, or 122 U.S. teaspoons since liquid measure is being used. Now with one U.S cup equal to 48 teaspoons, upon dividing $122 / 48 \approx 2.54$, we find this amount corresponds to 2.5 U.S. cups plus a remainder of precisely 2 teaspoons. In other words,

$$
122 \text { U.S. teaspoons }=2.5 \text { U.S. cups }+2 \text { U.S. teaspoons. }
$$

(b) For the nettle tops, one-half quart is still one-half quart.
(c) For the rice, one British tablespoon is 4 British teaspoons which (since dry-goods measure is being used) corresponds to 2 U.S. teaspoons.
(d) A British saltspoon is $\frac{1}{2}$ British teaspoon which corresponds (since dry-goods measure is again being used) to 1 U.S. teaspoon.
31. (a) Using the fact that the area A of a rectangle is (width) \times (length), we find

$$
\begin{aligned}
A_{\text {total }} & =(3.00 \text { acre })+(25.0 \text { perch })(4.00 \text { perch }) \\
& =(3.00 \text { acre })\left(\frac{(40 \text { perch })(4 \text { perch })}{1 \text { acre }}\right)+100 \text { perch }^{2} \\
& =580 \text { perch }^{2} .
\end{aligned}
$$

We multiply this by the perch ${ }^{2} \rightarrow$ rood conversion factor ($1 \mathrm{rood} / 40 \mathrm{perch}^{2}$) to obtain the answer: $A_{\text {total }}=14.5$ roods.
(b) We convert our intermediate result in part (a):

$$
A_{\text {total }}=\left(580 \operatorname{perch}^{2}\right)\left(\frac{16.5 \mathrm{ft}}{1 \text { perch }}\right)^{2}=1.58 \times 10^{5} \mathrm{ft}^{2} .
$$

Now, we use the feet \rightarrow meters conversion given in Appendix D to obtain

$$
A_{\text {total }}=\left(1.58 \times 10^{5} \mathrm{ft}^{2}\right)\left(\frac{1 \mathrm{~m}}{3.281 \mathrm{ft}}\right)^{2}=1.47 \times 10^{4} \mathrm{~m}^{2} .
$$

32. The customer expects a volume $V_{1}=20 \times 7056 \mathrm{in}^{3}$ and receives $V_{2}=20 \times 5826 \mathrm{in}^{3}$, the difference being $\Delta V=V_{1}-V_{2}=24600 \mathrm{in}^{3}$, or

$$
\Delta V=\left(24600 \mathrm{in}^{3}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \text { inch }}\right)^{3}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}\right)=403 \mathrm{~L}
$$

where Appendix D has been used.
33. The metric prefixes (micro (μ), pico, nano, ...) are given for ready reference on the inside front cover of the textbook (see also Table 1-2). The surface area A of each grain of sand of radius $r=50 \mu \mathrm{~m}=50 \times 10^{-6} \mathrm{~m}$ is given by $A=4 \pi\left(50 \times 10^{-6}\right)^{2}=3.14 \times 10^{-8}$ m^{2} (Appendix E contains a variety of geometry formulas). We introduce the notion of density, $\rho=m / V$, so that the mass can be found from $m=\rho V$, where $\rho=2600 \mathrm{~kg} / \mathrm{m}^{3}$. Thus, using $V=4 \pi r^{3} / 3$, the mass of each grain is

$$
m=\left(\frac{4 \pi\left(50 \times 10^{-6} \mathrm{~m}\right)^{3}}{3}\right)\left(2600 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)=1.36 \times 10^{-9} \mathrm{~kg} .
$$

We observe that (because a cube has six equal faces) the indicated surface area is $6 \mathrm{~m}^{2}$. The number of spheres (the grains of sand) N which have a total surface area of $6 \mathrm{~m}^{2}$ is given by

$$
N=\frac{6 \mathrm{~m}^{2}}{3.14 \times 10^{-8} \mathrm{~m}^{2}}=1.91 \times 10^{8} .
$$

Therefore, the total mass M is given by

$$
M=N m=\left(1.91 \times 10^{8}\right)\left(1.36 \times 10^{-9} \mathrm{~kg}\right)=0.260 \mathrm{~kg} .
$$

34. The total volume V of the real house is that of a triangular prism (of height $h=3.0 \mathrm{~m}$ and base area $A=20 \times 12=240 \mathrm{~m}^{2}$) in addition to a rectangular box (height $h^{\prime}=6.0 \mathrm{~m}$ and same base). Therefore,

$$
V=\frac{1}{2} h A+h^{\prime} A=\left(\frac{h}{2}+h^{\prime}\right) A=1800 \mathrm{~m}^{3} .
$$

(a) Each dimension is reduced by a factor of $1 / 12$, and we find

$$
V_{\mathrm{doll}}=\left(1800 \mathrm{~m}^{3}\right)\left(\frac{1}{12}\right)^{3} \approx 1.0 \mathrm{~m}^{3}
$$

(b) In this case, each dimension (relative to the real house) is reduced by a factor of $1 / 144$. Therefore,

$$
V_{\text {miniature }}=\left(1800 \mathrm{~m}^{3}\right)\left(\frac{1}{144}\right)^{3} \approx 6.0 \times 10^{-4} \mathrm{~m}^{3} .
$$

35. (a) Using Appendix D, we have $1 \mathrm{ft}=0.3048 \mathrm{~m}, 1 \mathrm{gal}=231 \mathrm{in} .^{3}$, and $1 \mathrm{in}^{3}=1.639 \times$ $10^{-2} \mathrm{~L}$. From the latter two items, we find that $1 \mathrm{gal}=3.79 \mathrm{~L}$. Thus, the quantity 460 $\mathrm{ft}^{2} / \mathrm{gal}$ becomes

$$
460 \mathrm{ft}^{2} / \mathrm{gal}=\left(\frac{460 \mathrm{ft}^{2}}{\mathrm{gal}}\right)\left(\frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}\right)^{2}\left(\frac{1 \mathrm{gal}}{3.79 \mathrm{~L}}\right)=11.3 \mathrm{~m}^{2} / \mathrm{L} .
$$

(b) Also, since $1 \mathrm{~m}^{3}$ is equivalent to 1000 L , our result from part (a) becomes

$$
11.3 \mathrm{~m}^{2} / \mathrm{L}=\left(\frac{11.3 \mathrm{~m}^{2}}{\mathrm{~L}}\right)\left(\frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)=1.13 \times 10^{4} \mathrm{~m}^{-1}
$$

(c) The inverse of the original quantity is $\left(460 \mathrm{ft}^{2} / \mathrm{gal}\right)^{-1}=2.17 \times 10^{-3} \mathrm{gal} / \mathrm{ft}^{2}$.
(d) The answer in (c) represents the volume of the paint (in gallons) needed to cover a square foot of area. From this, we could also figure the paint thickness [it turns out to be about a tenth of a millimeter, as one sees by taking the reciprocal of the answer in part (b)].
36. When the Sun first disappears while lying down, your line of sight to the top of the Sun is tangent to the Earth's surface at point A shown in the figure. As you stand, elevating your eyes by a height h, the line of sight to the Sun is tangent to the Earth's surface at point B.

Let d be the distance from point B to your eyes. From Pythagorean theorem, we have

$$
d^{2}+r^{2}=(r+h)^{2}=r^{2}+2 r h+h^{2}
$$

or $d^{2}=2 r h+h^{2}$, where r is the radius of the Earth. Since $r \square h$, the second term can be dropped, leading to $d^{2} \approx 2 r h$. Now the angle between the two radii to the two tangent points A and B is θ, which is also the angle through which the Sun moves about Earth during the time interval $t=11.1 \mathrm{~s}$. The value of θ can be obtained by using

$$
\frac{\theta}{360^{\circ}}=\frac{t}{24 \mathrm{~h}}
$$

This yields

$$
\theta=\frac{\left(360^{\circ}\right)(11.1 \mathrm{~s})}{(24 \mathrm{~h})(60 \mathrm{~min} / \mathrm{h})(60 \mathrm{~s} / \mathrm{min})}=0.04625^{\circ} .
$$

Using $d=r \tan \theta$, we have $d^{2}=r^{2} \tan ^{2} \theta=2 r h$, or

$$
r=\frac{2 h}{\tan ^{2} \theta}
$$

Using the above value for θ and $h=1.7 \mathrm{~m}$, we have $r=5.2 \times 10^{6} \mathrm{~m}$.
37. Using the (exact) conversion $2.54 \mathrm{~cm}=1 \mathrm{in}$. we find that $1 \mathrm{ft}=(12)(2.54) / 100=$ 0.3048 m (which also can be found in Appendix D). The volume of a cord of wood is $8 \times$ $4 \times 4=128 \mathrm{ft}^{3}$, which we convert (multiplying by 0.3048^{3}) to $3.6 \mathrm{~m}^{3}$. Therefore, one cubic meter of wood corresponds to $1 / 3.6 \approx 0.3$ cord.
38. (a) Squaring the relation 1 ken $=1.97 \mathrm{~m}$, and setting up the ratio, we obtain

$$
\frac{1 \mathrm{ken}^{2}}{1 \mathrm{~m}^{2}}=\frac{1.97^{2} \mathrm{~m}^{2}}{1 \mathrm{~m}^{2}}=3.88
$$

(b) Similarly, we find

$$
\frac{1 \mathrm{ken}^{3}}{1 \mathrm{~m}^{3}}=\frac{1.97^{3} \mathrm{~m}^{3}}{1 \mathrm{~m}^{3}}=7.65
$$

(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus,

$$
\pi r^{2} h=\pi(3.00)^{2}(5.50)=156 \mathrm{ken}^{3} .
$$

(d) If we multiply this by the result of part (b), we determine the volume in cubic meters: $(155.5)(7.65)=1.19 \times 10^{3} \mathrm{~m}^{3}$.
39. (a) For the minimum (43 cm) case, 9 cubit converts as follows:

$$
9 \text { cubit }=(9 \text { cubit })\left(\frac{0.43 \mathrm{~m}}{1 \text { cubit }}\right)=3.9 \mathrm{~m} .
$$

And for the maximum (43 cm) case we obtain

$$
9 \text { cubit }=(9 \text { cubit })\left(\frac{0.53 \mathrm{~m}}{1 \text { cubit }}\right)=4.8 \mathrm{~m} .
$$

(b) Similarly, with $0.43 \mathrm{~m} \rightarrow 430 \mathrm{~mm}$ and $0.53 \mathrm{~m} \rightarrow 530 \mathrm{~mm}$, we find $3.9 \times 10^{3} \mathrm{~mm}$ and $4.8 \times 10^{3} \mathrm{~mm}$, respectively.
(c) We can convert length and diameter first and then compute the volume, or first compute the volume and then convert. We proceed using the latter approach (where d is diameter and ℓ is length).

$$
V_{\text {cylinder, } \min }=\frac{\pi}{4} \ell d^{2}=28 \text { cubit }^{3}=\left(28 \text { cubit }^{3}\right)\left(\frac{0.43 \mathrm{~m}}{1 \text { cubit }}\right)^{3}=2.2 \mathrm{~m}^{3} .
$$

Similarly, with 0.43 m replaced by 0.53 m , we obtain $V_{\text {cylinder, } \max }=4.2 \mathrm{~m}^{3}$.
40. (a) In atomic mass units, the mass of one molecule is $16+1+1=18 \mathrm{u}$. Using Eq. $1-$ 9 , we find

$$
18 \mathrm{u}=(18 \mathrm{u})\left(\frac{1.6605402 \times 10^{-27} \mathrm{~kg}}{1 \mathrm{u}}\right)=3.0 \times 10^{-26} \mathrm{~kg} .
$$

(b) We divide the total mass by the mass of each molecule and obtain the (approximate) number of water molecules:

$$
N \approx \frac{1.4 \times 10^{21}}{3.0 \times 10^{-26}} \approx 5 \times 10^{46} .
$$

41. (a) The difference between the total amounts in "freight" and "displacement" tons, $(8-7)(73)=73$ barrels bulk, represents the extra M\&M's that are shipped. Using the conversions in the problem, this is equivalent to $(73)(0.1415)(28.378)=293$ U.S. bushels.
(b) The difference between the total amounts in "register" and "displacement" tons, $(20-7)(73)=949$ barrels bulk, represents the extra M\&M's are shipped. Using the conversions in the problem, this is equivalent to $(949)(0.1415)(28.378)=3.81 \times 10^{3}$ U.S. bushels.
42. The mass in kilograms is

$$
(28.9 \text { piculs })\left(\frac{100 \text { gin }}{1 \text { picul }}\right)\left(\frac{16 \text { tahil }}{1 \text { gin }}\right)\left(\frac{10 \text { chee }}{1 \text { tahil }}\right)\left(\frac{10 \text { hoon }}{1 \text { chee }}\right)\left(\frac{0.3779 \mathrm{~g}}{1 \text { hoon }}\right)
$$

which yields $1.747 \times 10^{6} \mathrm{~g}$ or roughly $1.75 \times 10^{3} \mathrm{~kg}$.
43. There are 86400 seconds in a day, and if we estimate somewhere between 2 and 4 seconds between exhaled breaths, then the answer (for the number of dbugs in a day) is 2×10^{4} to 4×10^{4}.
44. According to Appendix D, a nautical mile is 1.852 km , so 24.5 nautical miles would be 45.374 km . Also, according to Appendix D, a mile is 1.609 km , so 24.5 miles is 39.4205 km . The difference is 5.95 km .
45. (a) The receptacle is a volume of $(40)(40)(30)=48000 \mathrm{~cm}^{3}=48 \mathrm{~L}=(48)(16) / 11.356$ $=67.63$ standard bottles, which is a little more than 3 nebuchadnezzars (the largest bottle indicated). The remainder, 7.63 standard bottles, is just a little less than 1 methuselah. Thus, the answer to part (a) is 3 nebuchadnezzars and 1 methuselah.
(b) Since 1 methuselah. $=8$ standard bottles, then the extra amount is $8-7.63=0.37$ standard bottle.
(c) Using the conversion factor 16 standard bottles $=11.356 \mathrm{~L}$, we have

$$
0.37 \text { standard bottle }=(0.37 \text { standard bottle })\left(\frac{11.356 \mathrm{~L}}{16 \text { standard bottles }}\right)=0.26 \mathrm{~L}
$$

46. The volume of the filled container is $24000 \mathrm{~cm}^{3}=24$ liters, which (using the conversion given in the problem) is equivalent to 50.7 pints (U.S). The expected number is therefore in the range from 1317 to 1927 Atlantic oysters. Instead, the number received is in the range from 406 to 609 Pacific oysters. This represents a shortage in the range of roughly 700 to 1500 oysters (the answer to the problem). Note that the minimum value in our answer corresponds to the minimum Atlantic minus the maximum Pacific, and the maximum value corresponds to the maximum Atlantic minus the minimum Pacific.
47. We convert meters to astronomical units, and seconds to minutes, using

$$
\begin{aligned}
1000 \mathrm{~m} & =1 \mathrm{~km} \\
1 \mathrm{AU} & =1.50 \times 10^{8} \mathrm{~km} \\
60 \mathrm{~s} & =1 \mathrm{~min} .
\end{aligned}
$$

Thus, $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ becomes

$$
\left(\frac{3.0 \times 10^{8} \mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)\left(\frac{\mathrm{AU}}{1.50 \times 10^{8} \mathrm{~km}}\right)\left(\frac{60 \mathrm{~s}}{\min }\right)=0.12 \mathrm{AU} / \mathrm{min} .
$$

48. The volume of the water that fell is

$$
\begin{aligned}
V & =\left(26 \mathrm{~km}^{2}\right)(2.0 \mathrm{in} .)=\left(26 \mathrm{~km}^{2}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}(2.0 \mathrm{in} .)\left(\frac{0.0254 \mathrm{~m}}{1 \mathrm{in} .}\right) \\
& =\left(26 \times 10^{6} \mathrm{~m}^{2}\right)(0.0508 \mathrm{~m}) \\
& =1.3 \times 10^{6} \mathrm{~m}^{3} .
\end{aligned}
$$

We write the mass-per-unit-volume (density) of the water as:

$$
\rho=\frac{m}{V}=1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} .
$$

The mass of the water that fell is therefore given by $m=\rho V$:

$$
m=\left(1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.3 \times 10^{6} \mathrm{~m}^{3}\right)=1.3 \times 10^{9} \mathrm{~kg} .
$$

49. Equation 1-9 gives (to very high precision!) the conversion from atomic mass units to kilograms. Since this problem deals with the ratio of total mass (1.0 kg) divided by the mass of one atom (1.0 u , but converted to kilograms), then the computation reduces to simply taking the reciprocal of the number given in Eq. 1-9 and rounding off appropriately. Thus, the answer is 6.0×10^{26}.
50. The volume of one unit is $1 \mathrm{~cm}^{3}=1 \times 10^{-6} \mathrm{~m}^{3}$, so the volume of a mole of them is $6.02 \times 10^{23} \mathrm{~cm}^{3}=6.02 \times 10^{17} \mathrm{~m}^{3}$. The cube root of this number gives the edge length: $8.4 \times 10^{5} \mathrm{~m}^{3}$. This is equivalent to roughly 8×10^{2} kilometers.
51. A million milligrams comprise a kilogram, so $2.3 \mathrm{~kg} /$ week is $2.3 \times 10^{6} \mathrm{mg} /$ week. Figuring 7 days a week, 24 hours per day, 3600 second per hour, we find 604800 seconds are equivalent to one week. Thus, $\left(2.3 \times 10^{6}\right) /(604800)=3.8 \mathrm{mg} / \mathrm{s}$.
52. 1460 slugs is equivalent to $(1460)(14.6)=21316 \mathrm{~kg}$. Referring now to the corn, a U.S. bushel is 35.238 liters. Thus, a value of 1 for the corn-hog ratio would be equivalent to $35.238 / 21316=0.00165$ in the indicated metric units. Therefore, a value of 5.7 for the ratio corresponds to 0.0094 in the indicated metric units.
53. In the simplest approach, we set up a ratio for the total increase in horizontal depth x (where $\Delta x=0.05 \mathrm{~m}$ is the increase in horizontal depth per step)

$$
x=N_{\text {steps }} \Delta x=\left(\frac{4.57}{0.19}\right)(0.05)=1.2 \mathrm{~m} .
$$

However, we can approach this more carefully by noting that if there are $N=4.57 / .19 \approx$ 24 rises then under normal circumstances we would expect $N-1=23$ runs (horizontal pieces) in that staircase. This would yield $(23)(0.05)=1.15 \mathrm{~m}$, which - to two significant figures - agrees with our first result.
54. The volume of the section is $(2500 \mathrm{~m})(800 \mathrm{~m})(2.0 \mathrm{~m})=4.0 \times 10^{6} \mathrm{~m}^{3}$. Letting " d " stand for the thickness of the mud after it has (uniformly) distributed in the valley, then its volume there would be $(400 \mathrm{~m})(400 \mathrm{~m}) d$. Requiring these two volumes to be equal, we can solve for d. Thus, $d=25 \mathrm{~m}$. The volume of a small part of the mud over a patch of area of $4.0 \mathrm{~m}^{2}$ is (4.0) $d=100 \mathrm{~m}^{3}$. Since each cubic meter corresponds to a mass of 1900 kg (stated in the problem), then the mass of that small part of the mud is $1.9 \times 10^{5} \mathrm{~kg}$.
55. Two jalapeño peppers have spiciness $=8000 \mathrm{SHU}$, and this amount multiplied by 400 (the number of people) is $3.2 \times 10^{6} \mathrm{SHU}$, which is roughly ten times the SHU value for a single habanero pepper. More precisely, 10.7 habanero peppers will provide that total required SHU value.
56. The volume removed in one year is

$$
V=\left(75 \times 10^{4} \mathrm{~m}^{2}\right)(26 \mathrm{~m}) \approx 2 \times 10^{7} \mathrm{~m}^{3}
$$

which we convert to cubic kilometers:

$$
V=\left(2 \times 10^{7} \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)^{3}=0.020 \mathrm{~km}^{3}
$$

57. (a) When θ is measured in radians, it is equal to the arc length s divided by the radius R. For a very large radius circle and small value of θ, such as we deal with in Fig. 1-9, the arc may be approximated as the straight line-segment of length 1 AU. First, we convert $\theta=1$ arcsecond to radians:

$$
(1 \text { arcsecond })\left(\frac{1 \text { arcminute }}{60 \text { arcsecond }}\right)\left(\frac{1^{\circ}}{60 \text { arcminute }}\right)\left(\frac{2 \pi \text { radian }}{360^{\circ}}\right)
$$

which yields $\theta=4.85 \times 10^{-6} \mathrm{rad}$. Therefore, one parsec is

$$
R_{\mathrm{o}}=\frac{s}{\theta}=\frac{1 \mathrm{AU}}{4.85 \times 10^{-6}}=2.06 \times 10^{5} \mathrm{AU}
$$

Now we use this to convert $R=1 \mathrm{AU}$ to parsecs:

$$
R=(1 \mathrm{AU})\left(\frac{1 \mathrm{pc}}{2.06 \times 10^{5} \mathrm{AU}}\right)=4.9 \times 10^{-6} \mathrm{pc}
$$

(b) Also, since it is straightforward to figure the number of seconds in a year (about 3.16 $\times 10^{7} \mathrm{~s}$), and (for constant speeds) distance $=$ speed \times time, we have

$$
11 \mathrm{y}=(186,000 \mathrm{mi} / \mathrm{s})\left(3.16 \times 10^{7} \mathrm{~s}\right) 5.9 \times 10^{12} \mathrm{mi}
$$

which we convert to AU by dividing by 92.6×10^{6} (given in the problem statement), obtaining $6.3 \times 10^{4} \mathrm{AU}$. Inverting, the result is $1 \mathrm{AU}=1 / 6.3 \times 10^{4}=1.6 \times 10^{-5} \mathrm{ly}$.
58. The number of seconds in a year is 3.156×10^{7}. This is listed in Appendix D and results from the product
(365.25 day/y) ($24 \mathrm{~h} /$ day) ($60 \mathrm{~min} / \mathrm{h}$) ($60 \mathrm{~s} / \mathrm{min}$).
(a) The number of shakes in a second is 10^{8}; therefore, there are indeed more shakes per second than there are seconds per year.
(b) Denoting the age of the universe as 1 u-day (or $86400 \mathrm{u}-\mathrm{sec}$), then the time during which humans have existed is given by

$$
\frac{10^{6}}{10^{10}}=10^{-4} u-\text { day }
$$

which may also be expressed as

$$
\left(10^{-4} \mathrm{u}-\text { day }\right)\left(\frac{86400 \mathrm{u}-\mathrm{sec}}{1 \mathrm{u}-\text { day }}\right)=8.6 \mathrm{u}-\mathrm{sec} .
$$

59. (a) When θ is measured in radians, it is equal to the arc length divided by the radius. For very large radius circles and small values of θ, such as we deal with in this problem, the arcs may be approximated as straight lines - which for our purposes correspond to the diameters d and D of the Moon and Sun, respectively. Thus,

which yields $D / d=400$.
(b) Various geometric formulas are given in Appendix E. Using r_{s} and r_{m} for the radius of the Sun and Moon, respectively (noting that their ratio is the same as D / d), then the Sun's volume divided by that of the Moon is

$$
\frac{\frac{4}{3} \pi r_{s}^{3}}{\frac{4}{3} \pi r_{m}^{3}}=\left(\frac{r_{s}}{r_{m}}\right)^{3}=400^{3}=6.4 \times 10^{7}
$$

(c) The angle should turn out to be roughly 0.009 rad (or about half a degree). Putting this into the equation above, we get

$$
d=\theta R_{\text {Moon }}=(0.009)\left(3.8 \times 10^{5}\right) \approx 3.4 \times 10^{3} \mathrm{~km} .
$$

1. The speed (assumed constant) is $(90 \mathrm{~km} / \mathrm{h})(1000 \mathrm{~m} / \mathrm{km}) /(3600 \mathrm{~s} / \mathrm{h})=25 \mathrm{~m} / \mathrm{s}$. Thus, during 0.50 s , the car travels $(0.50)(25) \approx 13 \mathrm{~m}$.
2. Huber's speed is

$$
v_{0}=(200 \mathrm{~m}) /(6.509 \mathrm{~s})=30.72 \mathrm{~m} / \mathrm{s}=110.6 \mathrm{~km} / \mathrm{h},
$$

where we have used the conversion factor $1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$. Since Whittingham beat Huber by $19.0 \mathrm{~km} / \mathrm{h}$, his speed is $v_{1}=(110.6+19.0)=129.6 \mathrm{~km} / \mathrm{h}$, or $36 \mathrm{~m} / \mathrm{s}(1 \mathrm{~km} / \mathrm{h}=$ $0.2778 \mathrm{~m} / \mathrm{s})$. Thus, the time through a distance of 200 m for Whittingham is

$$
\Delta t=\frac{\Delta x}{v_{1}}=\frac{200 \mathrm{~m}}{36 \mathrm{~m} / \mathrm{s}}=5.554 \mathrm{~s} .
$$

3. We use Eq. 2-2 and Eq. 2-3. During a time t_{c} when the velocity remains a positive constant, speed is equivalent to velocity, and distance is equivalent to displacement, with $\Delta x=v t_{c}$.
(a) During the first part of the motion, the displacement is $\Delta x_{1}=40 \mathrm{~km}$ and the time interval is

$$
t_{1}=\frac{(40 \mathrm{~km})}{(30 \mathrm{~km} / \mathrm{h})}=1.33 \mathrm{~h} .
$$

During the second part the displacement is $\Delta x_{2}=40 \mathrm{~km}$ and the time interval is

$$
t_{2}=\frac{(40 \mathrm{~km})}{(60 \mathrm{~km} / \mathrm{h})}=0.67 \mathrm{~h} .
$$

Both displacements are in the same direction, so the total displacement is

$$
\Delta x=\Delta x_{1}+\Delta x_{2}=40 \mathrm{~km}+40 \mathrm{~km}=80 \mathrm{~km} .
$$

The total time for the trip is $t=t_{1}+t_{2}=2.00 \mathrm{~h}$. Consequently, the average velocity is

$$
v_{\text {avg }}=\frac{(80 \mathrm{~km})}{(2.0 \mathrm{~h})}=40 \mathrm{~km} / \mathrm{h} .
$$

(b) In this example, the numerical result for the average speed is the same as the average velocity $40 \mathrm{~km} / \mathrm{h}$.
(c) As shown below, the graph consists of two contiguous line segments, the first having a slope of $30 \mathrm{~km} / \mathrm{h}$ and connecting the origin to $\left(t_{1}, x_{1}\right)=(1.33 \mathrm{~h}, 40 \mathrm{~km})$ and the second having a slope of $60 \mathrm{~km} / \mathrm{h}$ and connecting $\left(t_{1}, x_{1}\right)$ to $(t, x)=(2.00 \mathrm{~h}, 80 \mathrm{~km})$. From the graphical point of view, the slope of the dashed line drawn from the origin to (t, x) represents the average velocity.

4. Average speed, as opposed to average velocity, relates to the total distance, as opposed to the net displacement. The distance D up the hill is, of course, the same as the distance down the hill, and since the speed is constant (during each stage of the motion) we have speed $=D / t$. Thus, the average speed is

$$
\frac{D_{\mathrm{up}}+D_{\mathrm{down}}}{t_{\mathrm{up}}+t_{\mathrm{down}}}=\frac{2 D}{\frac{D}{v_{\mathrm{up}}}+\frac{D}{v_{\mathrm{down}}}}
$$

which, after canceling D and plugging in $v_{\mathrm{up}}=40 \mathrm{~km} / \mathrm{h}$ and $v_{\text {down }}=60 \mathrm{~km} / \mathrm{h}$, yields 48 km / h for the average speed.
5. Using $x=3 t-4 t^{2}+t^{3}$ with SI units understood is efficient (and is the approach we will use), but if we wished to make the units explicit we would write $x=(3 \mathrm{~m} / \mathrm{s}) t-(4$ $\left.\mathrm{m} / \mathrm{s}^{2}\right) t^{2}+\left(1 \mathrm{~m} / \mathrm{s}^{3}\right) t^{3}$. We will quote our answers to one or two significant figures, and not try to follow the significant figure rules rigorously.
(a) Plugging in $t=1 \mathrm{~s}$ yields $x=3-4+1=0$.
(b) With $t=2 \mathrm{~s}$ we get $x=3(2)-4(2)^{2}+(2)^{3}=-2 \mathrm{~m}$.
(c) With $t=3 \mathrm{~s}$ we have $x=0 \mathrm{~m}$.
(d) Plugging in $t=4 \mathrm{~s}$ gives $x=12 \mathrm{~m}$.

For later reference, we also note that the position at $t=0$ is $x=0$.
(e) The position at $t=0$ is subtracted from the position at $t=4 \mathrm{~s}$ to find the displacement $\Delta x=12 \mathrm{~m}$.
(f) The position at $t=2 \mathrm{~s}$ is subtracted from the position at $t=4 \mathrm{~s}$ to give the displacement $\Delta x=14 \mathrm{~m}$. Eq. 2-2, then, leads to

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{14}{2}=7 \mathrm{~m} / \mathrm{s} .
$$

(g) The horizontal axis is $0 \leq t \leq 4$ with SI units understood.

Not shown is a straight line drawn from the point at $(t, x)=(2,-2)$ to the highest point shown (at $t=4 \mathrm{~s}$) which would represent the answer for part (f).

6. (a) Using the fact that time $=$ distance/velocity while the velocity is constant, we find

$$
v_{\text {avg }}=\frac{73.2 \mathrm{~m}+73.2 \mathrm{~m}}{\frac{73.2 \mathrm{~m}}{1.22 \mathrm{~m} / \mathrm{s}}+\frac{73.2 \mathrm{~m}}{3.05 \mathrm{~m}}}=1.74 \mathrm{~m} / \mathrm{s} .
$$

(b) Using the fact that distance $=v t$ while the velocity v is constant, we find

$$
v_{\text {avg }}=\frac{(1.22 \mathrm{~m} / \mathrm{s})(60 \mathrm{~s})+(3.05 \mathrm{~m} / \mathrm{s})(60 \mathrm{~s})}{120 \mathrm{~s}}=2.14 \mathrm{~m} / \mathrm{s} .
$$

(c) The graphs are shown below (with meters and seconds understood). The first consists of two (solid) line segments, the first having a slope of 1.22 and the second having a slope of 3.05 . The slope of the dashed line represents the average velocity (in both graphs). The second graph also consists of two (solid) line segments, having the same slopes as before - the main difference (compared to the first graph) being that the stage involving higher-speed motion lasts much longer.

7. We use the functional notation $x(t), v(t)$ and $a(t)$ in this solution, where the latter two quantities are obtained by differentiation:

$$
v(t)=\frac{d x(t)}{d t}=-12 t \text { and } a(t)=\frac{d v(t)}{d t}=-12
$$

with SI units understood.
(a) From $v(t)=0$ we find it is (momentarily) at rest at $t=0$.
(b) We obtain $x(0)=4.0 \mathrm{~m}$
(c) and (d) Requiring $x(t)=0$ in the expression $x(t)=4.0-6.0 t^{2}$ leads to $t= \pm 0.82 \mathrm{~s}$ for the times when the particle can be found passing through the origin.
(e) We show both the asked-for graph (on the left) as well as the "shifted" graph which is relevant to part (f). In both cases, the time axis is given by $-3 \leq t \leq 3$ (SI units understood).

(f) We arrived at the graph on the right (shown above) by adding $20 t$ to the $x(t)$ expression.
(g) Examining where the slopes of the graphs become zero, it is clear that the shift causes the $v=0$ point to correspond to a larger value of x (the top of the second curve shown in part (e) is higher than that of the first).
8. The values used in the problem statement make it easy to see that the first part of the trip (at $100 \mathrm{~km} / \mathrm{h}$) takes 1 hour, and the second part (at $40 \mathrm{~km} / \mathrm{h}$) also takes 1 hour. Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 160 km . Thus, a speed of $160 / 1.25=128 \mathrm{~km} / \mathrm{h}$ is needed.
9. Converting to seconds, the running times are $t_{1}=147.95 \mathrm{~s}$ and $t_{2}=148.15 \mathrm{~s}$, respectively. If the runners were equally fast, then

$$
s_{\text {avg }_{1}}=s_{\text {avg }_{2}} \Rightarrow \frac{L_{1}}{t_{1}}=\frac{L_{2}}{t_{2}} .
$$

From this we obtain

$$
L_{2}-L_{1}=\left(\frac{t_{2}}{t_{1}}-1\right) L_{1}=\left(\frac{148.15}{147.95}-1\right) L_{1}=0.00135 L_{1} \approx 1.4 \mathrm{~m}
$$

where we set $L_{1} \approx 1000 \mathrm{~m}$ in the last step. Thus, if L_{1} and L_{2} are no different than about 1.4 m , then runner 1 is indeed faster than runner 2. However, if L_{1} is shorter than L_{2} by more than 1.4 m , then runner 2 would actually be faster.
10. Recognizing that the gap between the trains is closing at a constant rate of 60 km / h, the total time which elapses before they crash is $t=(60 \mathrm{~km}) /(60 \mathrm{~km} / \mathrm{h})=1.0 \mathrm{~h}$. During this time, the bird travels a distance of $x=v t=(60 \mathrm{~km} / \mathrm{h})(1.0 \mathrm{~h})=60 \mathrm{~km}$.
11. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, respectively, the average speed is

$$
s_{\mathrm{avg}_{1}}=\frac{D}{T}=\frac{(55 \mathrm{~km} / \mathrm{h}) \frac{T}{2}+(90 \mathrm{~km} / \mathrm{h}) \frac{T}{2}}{T}=72.5 \mathrm{~km} / \mathrm{h}
$$

which should be rounded to $73 \mathrm{~km} / \mathrm{h}$.
(b) Using the fact that time $=$ distance/speed while the speed is constant, we find

$$
s_{\mathrm{avg} 2}=\frac{D}{T}=\frac{D}{\frac{D / 2}{55 \mathrm{~km} / \mathrm{h}}+\frac{D / 2}{90 \mathrm{~km} / \mathrm{h}}}=68.3 \mathrm{~km} / \mathrm{h}
$$

which should be rounded to $68 \mathrm{~km} / \mathrm{h}$.
(c) The total distance traveled (2D) must not be confused with the net displacement (zero). We obtain for the two-way trip

$$
s_{\text {avg }}=\frac{2 D}{\frac{D}{72.5 \mathrm{~km} / \mathrm{h}}+\frac{D}{68.3 \mathrm{~km} / \mathrm{h}}}=70 \mathrm{~km} / \mathrm{h} \text {. }
$$

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety is zero.
(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the distance D (the intent is not to make the student go to an Atlas to look it up); the student can just as easily arbitrarily set T instead of D, as will be clear in the following discussion. In the interest of saving space, we briefly describe the graph (with kilometers-per-hour understood for the slopes): two contiguous line segments, the first having a slope of 55 and connecting the origin to $\left(t_{1}, x_{1}\right)=(T / 2,55 T / 2)$ and the second having a slope of 90 and connecting $\left(t_{1}, x_{1}\right)$ to (T, D) where $D=(55+90) T / 2$. The average velocity, from the graphical point of view, is the slope of a line drawn from the origin to (T, D). The graph (not drawn to scale) is depicted below:

12. We use Eq. 2-4. to solve the problem.
(a) The velocity of the particle is

$$
v=\frac{d x}{d t}=\frac{d}{d t}\left(4-12 t+3 t^{2}\right)=-12+6 t .
$$

Thus, at $t=1 \mathrm{~s}$, the velocity is $v=(-12+(6)(1))=-6 \mathrm{~m} / \mathrm{s}$.
(b) Since $v<0$, it is moving in the negative x direction at $t=1 \mathrm{~s}$.
(c) At $t=1 \mathrm{~s}$, the speed is $|v|=6 \mathrm{~m} / \mathrm{s}$.
(d) For $0<t<2 \mathrm{~s}$, $|v|$ decreases until it vanishes. For $2<t<3 \mathrm{~s}$, $|v|$ increases from zero to the value it had in part (c). Then, $|v|$ is larger than that value for $t>3 \mathrm{~s}$.
(e) Yes, since v smoothly changes from negative values (consider the $t=1$ result) to positive (note that as $t \rightarrow+\infty$, we have $v \rightarrow+\infty$). One can check that $v=0$ when $t=2 \mathrm{~s}$.
(f) No. In fact, from $v=-12+6 t$, we know that $v>0$ for $t>2 \mathrm{~s}$.
13. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and work with distances in centimeters and times in seconds.
(a) We plug into the given equation for x for $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$ and obtain $x_{2}=$ 21.75 cm and $x_{3}=50.25 \mathrm{~cm}$, respectively. The average velocity during the time interval $2.00 \leq t \leq 3.00 \mathrm{~s}$ is

$$
v_{\mathrm{avg}}=\frac{\Delta x}{\Delta t}=\frac{50.25 \mathrm{~cm}-21.75 \mathrm{~cm}}{3.00 \mathrm{~s}-2.00 \mathrm{~s}}
$$

which yields $v_{\text {avg }}=28.5 \mathrm{~cm} / \mathrm{s}$.
(b) The instantaneous velocity is $v=\frac{d x}{d t}=4.5 t^{2}$, which, at time $t=2.00 \mathrm{~s}$, yields $v=$ $(4.5)(2.00)^{2}=18.0 \mathrm{~cm} / \mathrm{s}$.
(c) At $t=3.00 \mathrm{~s}$, the instantaneous velocity is $v=(4.5)(3.00)^{2}=40.5 \mathrm{~cm} / \mathrm{s}$.
(d) At $t=2.50 \mathrm{~s}$, the instantaneous velocity is $v=(4.5)(2.50)^{2}=28.1 \mathrm{~cm} / \mathrm{s}$.
(e) Let t_{m} stand for the moment when the particle is midway between x_{2} and x_{3} (that is, when the particle is at $\left.x_{m}=\left(x_{2}+x_{3}\right) / 2=36 \mathrm{~cm}\right)$. Therefore,

$$
x_{m}=9.75+1.5 t_{m}^{3} \Rightarrow t_{m}=2.596
$$

in seconds. Thus, the instantaneous speed at this time is $v=4.5(2.596)^{2}=30.3 \mathrm{~cm} / \mathrm{s}$.
(f) The answer to part (a) is given by the slope of the straight line between $t=2$ and t $=3$ in this x-vs-t plot. The answers to parts (b), (c), (d) and (e) correspond to the slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate points.

14. We use the functional notation $x(t), v(t)$ and $a(t)$ and find the latter two quantities by differentiating:

$$
v(t)=\frac{d x(t)}{t}=-15 t^{2}+20 \quad \text { and } \quad a(t)=\frac{d v(t)}{d t}=-30 t
$$

with SI units understood. These expressions are used in the parts that follow.
(a) From $0=-15 t^{2}+20$, we see that the only positive value of t for which the particle is (momentarily) stopped is $t=\sqrt{20 / 15}=1.2 \mathrm{~s}$.
(b) From $0=-30 t$, we find $a(0)=0$ (that is, it vanishes at $t=0$).
(c) It is clear that $a(t)=-30 t$ is negative for $t>0$
(d) The acceleration $a(t)=-30 t$ is positive for $t<0$.
(e) The graphs are shown below. SI units are understood.

15. We represent its initial direction of motion as the $+x$ direction, so that $v_{0}=+18 \mathrm{~m} / \mathrm{s}$ and $v=-30 \mathrm{~m} / \mathrm{s}$ (when $t=2.4 \mathrm{~s}$). Using Eq. 2-7 (or Eq. 2-11, suitably interpreted) we find

$$
a_{\mathrm{avg}}=\frac{(-30)-(+18)}{2.4}=-20 \mathrm{~m} / \mathrm{s}^{2}
$$

which indicates that the average acceleration has magnitude $20 \mathrm{~m} / \mathrm{s}^{2}$ and is in the opposite direction to the particle's initial velocity.
16. Using the general property $\frac{d}{d x} \exp (b x)=b \exp (b x)$, we write

$$
v=\frac{d x}{d t}=\left(\frac{d(19 t)}{d t}\right) \cdot e^{-t}+(19 t) \cdot\left(\frac{d e^{-t}}{d t}\right) .
$$

If a concern develops about the appearance of an argument of the exponential ($-t$) apparently having units, then an explicit factor of $1 / T$ where $T=1$ second can be inserted and carried through the computation (which does not change our answer). The result of this differentiation is

$$
v=16(1-t) e^{-t}
$$

with t and v in SI units (s and m / s, respectively). We see that this function is zero when $t=1 \mathrm{~s}$. Now that we know when it stops, we find out where it stops by plugging our result $t=1$ into the given function $x=16 t e^{-t}$ with x in meters. Therefore, we find $x=5.9 \mathrm{~m}$.
17. (a) Taking derivatives of $x(t)=12 t^{2}-2 t^{3}$ we obtain the velocity and the acceleration functions:

$$
v(t)=24 t-6 t^{2} \quad \text { and } \quad a(t)=24-12 t
$$

with length in meters and time in seconds. Plugging in the value $t=3$ yields $x(3)=54 \mathrm{~m}$.
(b) Similarly, plugging in the value $t=3$ yields $v(3)=18 \mathrm{~m} / \mathrm{s}$.
(c) For $t=3, a(3)=-12 \mathrm{~m} / \mathrm{s}^{2}$.
(d) At the maximum x, we must have $v=0$; eliminating the $t=0$ root, the velocity equation reveals $t=24 / 6=4 \mathrm{~s}$ for the time of maximum x. Plugging $t=4$ into the equation for x leads to $x=64 \mathrm{~m}$ for the largest x value reached by the particle.
(e) From (d), we see that the x reaches its maximum at $t=4.0 \mathrm{~s}$.
(f) A maximum v requires $a=0$, which occurs when $t=24 / 12=2.0 \mathrm{~s}$. This, inserted into the velocity equation, gives $v_{\text {max }}=24 \mathrm{~m} / \mathrm{s}$.
(g) From (f), we see that the maximum of v occurs at $t=24 / 12=2.0 \mathrm{~s}$.
(h) In part (e), the particle was (momentarily) motionless at $t=4 \mathrm{~s}$. The acceleration at that time is readily found to be $24-12(4)=-24 \mathrm{~m} / \mathrm{s}^{2}$.
(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at $t=0$ and $t=3 \mathrm{~s}$ are needed; these are, respectively, $x=0$ and $x=54 \mathrm{~m}$ (found in part (a)). Thus,

$$
v_{\text {avg }}=\frac{54-0}{3-0}=18 \mathrm{~m} / \mathrm{s} \text {. }
$$

18. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding our coordinate choices, the initial position of the man is taken as the origin and his direction of motion during $5 \mathrm{~min} \leq t \leq 10 \mathrm{~min}$ is taken to be the positive x direction. We also use the fact that $\Delta x=v \Delta t^{\prime}$ when the velocity is constant during a time interval Δt^{\prime}.
(a) The entire interval considered is $\Delta t=8-2=6 \mathrm{~min}$ which is equivalent to 360 s , whereas the sub-interval in which he is moving is only $\Delta t^{\prime}=8-5=3 \mathrm{~min}=180 \mathrm{~s}$. His position at $t=2 \mathrm{~min}$ is $x=0$ and his position at $t=8 \mathrm{~min}$ is $x=v \Delta t^{\prime}=$ $(2.2)(180)=396 \mathrm{~m}$. Therefore,

$$
v_{\text {avg }}=\frac{396 \mathrm{~m}-0}{360 \mathrm{~s}}=1.10 \mathrm{~m} / \mathrm{s} .
$$

(b) The man is at rest at $t=2 \mathrm{~min}$ and has velocity $v=+2.2 \mathrm{~m} / \mathrm{s}$ at $t=8 \mathrm{~min}$. Thus, keeping the answer to 3 significant figures,

$$
a_{\mathrm{avg}}=\frac{2.2 \mathrm{~m} / \mathrm{s}-0}{360 \mathrm{~s}}=0.00611 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) Now, the entire interval considered is $\Delta t=9-3=6 \mathrm{~min}$ (360 s again), whereas the sub-interval in which he is moving is $\left.\Delta t^{\prime}=9-5=4 \mathrm{~min}=240 \mathrm{~s}\right)$. His position at $t=3 \mathrm{~min}$ is $x=0$ and his position at $t=9 \mathrm{~min}$ is $x=v \Delta t^{\prime}=(2.2)(240)=528 \mathrm{~m}$. Therefore,

$$
v_{\mathrm{avg}}=\frac{528 \mathrm{~m}-0}{360 \mathrm{~s}}=1.47 \mathrm{~m} / \mathrm{s} .
$$

(d) The man is at rest at $t=3 \mathrm{~min}$ and has velocity $v=+2.2 \mathrm{~m} / \mathrm{s}$ at $t=9 \mathrm{~min}$. Consequently, $a_{\text {avg }}=2.2 / 360=0.00611 \mathrm{~m} / \mathrm{s}^{2}$ just as in part (b).
(e) The horizontal line near the bottom of this x-vs- t graph represents the man standing at $x=0$ for $0 \leq t<300 \mathrm{~s}$ and the linearly rising line for $300 \leq t \leq 600 \mathrm{~s}$ represents his constant-velocity motion. The dotted lines represent the answers to part (a) and (c) in the sense that their slopes yield those results.

The graph of v-vs- t is not shown here, but would consist of two horizontal "steps" (one at $v=0$ for $0 \leq t<300 \mathrm{~s}$ and the next at $v=2.2 \mathrm{~m} / \mathrm{s}$ for $300 \leq t \leq 600 \mathrm{~s}$). The indications of the average accelerations found in parts (b) and (d) would be dotted lines connecting the "steps" at the appropriate t values (the slopes of the dotted lines representing the values of $a_{\text {avg }}$).
19. In this solution, we make use of the notation $x(t)$ for the value of x at a particular t. The notations $v(t)$ and $a(t)$ have similar meanings.
(a) Since the unit of $c t^{2}$ is that of length, the unit of c must be that of length/time ${ }^{2}$, or $\mathrm{m} / \mathrm{s}^{2}$ in the SI system.
(b) Since $b t^{3}$ has a unit of length, b must have a unit of length/time ${ }^{3}$, or $\mathrm{m} / \mathrm{s}^{3}$.
(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is zero. Since the velocity is given by $v=d x / d t=2 c t-3 b t^{2}, v=0$ occurs for $t=0$ and for

$$
t=\frac{2 c}{3 b}=\frac{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)}{3\left(2.0 \mathrm{~m} / \mathrm{s}^{3}\right)}=1.0 \mathrm{~s} .
$$

For $t=0, x=x_{0}=0$ and for $t=1.0 \mathrm{~s}, x=1.0 \mathrm{~m}>x_{0}$. Since we seek the maximum, we reject the first root $(t=0)$ and accept the second $(t=1 \mathrm{~s})$.
(d) In the first 4 s the particle moves from the origin to $x=1.0 \mathrm{~m}$, turns around, and goes back to

$$
x(4 \mathrm{~s})=\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)(4.0 \mathrm{~s})^{2}-\left(2.0 \mathrm{~m} / \mathrm{s}^{3}\right)(4.0 \mathrm{~s})^{3}=-80 \mathrm{~m} .
$$

The total path length it travels is $1.0 \mathrm{~m}+1.0 \mathrm{~m}+80 \mathrm{~m}=82 \mathrm{~m}$.
(e) Its displacement is $\Delta x=x_{2}-x_{1}$, where $x_{1}=0$ and $x_{2}=-80 \mathrm{~m}$. Thus, $\Delta x=-80 \mathrm{~m}$.

The velocity is given by $v=2 c t-3 b t^{2}=\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right) t-\left(6.0 \mathrm{~m} / \mathrm{s}^{3}\right) t^{2}$.
(f) Plugging in $t=1 \mathrm{~s}$, we obtain

$$
v(1 \mathrm{~s})=\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right)(1.0 \mathrm{~s})-\left(6.0 \mathrm{~m} / \mathrm{s}^{3}\right)(1.0 \mathrm{~s})^{2}=0 .
$$

(g) Similarly, $v(2 \mathrm{~s})=\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s})-\left(6.0 \mathrm{~m} / \mathrm{s}^{3}\right)(2.0 \mathrm{~s})^{2}=-12 \mathrm{~m} / \mathrm{s}$.
(h) $v(3 \mathrm{~s})=\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})-\left(6.0 \mathrm{~m} / \mathrm{s}^{3}\right)(3.0 \mathrm{~s})^{2}=-36.0 \mathrm{~m} / \mathrm{s}$.
(i) $v(4 \mathrm{~s})=\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right)(4.0 \mathrm{~s})-\left(6.0 \mathrm{~m} / \mathrm{s}^{3}\right)(4.0 \mathrm{~s})^{2}=-72 \mathrm{~m} / \mathrm{s}$.

The acceleration is given by $a=d v / d t=2 c-6 b=6.0 \mathrm{~m} / \mathrm{s}^{2}-\left(12.0 \mathrm{~m} / \mathrm{s}^{3}\right) t$.
(j) Plugging in $t=1 \mathrm{~s}$, we obtain

$$
a(1 \mathrm{~s})=6.0 \mathrm{~m} / \mathrm{s}^{2}-\left(12.0 \mathrm{~m} / \mathrm{s}^{3}\right)(1.0 \mathrm{~s})=-6.0 \mathrm{~m} / \mathrm{s}^{2}
$$

(k) $a(2 \mathrm{~s})=6.0 \mathrm{~m} / \mathrm{s}^{2}-\left(12.0 \mathrm{~m} / \mathrm{s}^{3}\right)(2.0 \mathrm{~s})=-18 \mathrm{~m} / \mathrm{s}^{2}$.
(l) $a(3 \mathrm{~s})=6.0 \mathrm{~m} / \mathrm{s}^{2}-\left(12.0 \mathrm{~m} / \mathrm{s}^{3}\right)(3.0 \mathrm{~s})=-30 \mathrm{~m} / \mathrm{s}^{2}$.
(m) $a(4 \mathrm{~s})=6.0 \mathrm{~m} / \mathrm{s}^{2}-\left(12.0 \mathrm{~m} / \mathrm{s}^{3}\right)(4.0 \mathrm{~s})=-42 \mathrm{~m} / \mathrm{s}^{2}$.
20. The constant-acceleration condition permits the use of Table 2-1.
(a) Setting $v=0$ and $x_{0}=0$ in $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$, we find

$$
x=-\frac{1}{2} \frac{v_{0}^{2}}{a}=-\frac{1}{2}\left(\frac{5.00 \times 10^{6}}{-1.25 \times 10^{14}}\right)=0.100 \mathrm{~m}
$$

Since the muon is slowing, the initial velocity and the acceleration must have opposite signs.
(b) Below are the time-plots of the position x and velocity v of the muon from the moment it enters the field to the time it stops. The computation in part (a) made no reference to t, so that other equations from Table 2-1 (such as $v=v_{0}+a t$ and $x=v_{0} t+\frac{1}{2} a t^{2}$) are used in making these plots.

21. We use $v=v_{0}+a t$, with $t=0$ as the instant when the velocity equals $+9.6 \mathrm{~m} / \mathrm{s}$.
(a) Since we wish to calculate the velocity for a time before $t=0$, we set $t=-2.5 \mathrm{~s}$. Thus, Eq. 2-11 gives

$$
v=(9.6 \mathrm{~m} / \mathrm{s})+\left(3.2 \mathrm{~m} / \mathrm{s}^{2}\right)(-2.5 \mathrm{~s})=1.6 \mathrm{~m} / \mathrm{s} .
$$

(b) Now, $t=+2.5 \mathrm{~s}$ and we find

$$
v=(9.6 \mathrm{~m} / \mathrm{s})+\left(3.2 \mathrm{~m} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s})=18 \mathrm{~m} / \mathrm{s} .
$$

22. We take $+x$ in the direction of motion, so $v_{0}=+24.6 \mathrm{~m} / \mathrm{s}$ and $a=-4.92 \mathrm{~m} / \mathrm{s}^{2}$. We also take $x_{0}=0$.
(a) The time to come to a halt is found using Eq. 2-11:

$$
0=v_{0}+a t \Rightarrow t=\frac{24.6}{-4.92}=5.00 \mathrm{~s}
$$

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 2-16 (since it does not depend on our answer to part (a)).

$$
0=v_{0}^{2}+2 a x \Rightarrow x=-\frac{24.6^{2}}{2(-4.92)}=61.5 \mathrm{~m} .
$$

(c) Using these results, we plot $v_{0} t+\frac{1}{2} a t^{2}$ (the x graph, shown next, on the left) and $v_{0}+a t$ (the v graph, on the right) over $0 \leq t \leq 5 \mathrm{~s}$, with SI units understood.

23. The constant acceleration stated in the problem permits the use of the equations in Table 2-1.
(a) We solve $v=v_{0}+a t$ for the time:

$$
t=\frac{v-v_{0}}{a}=\frac{\frac{1}{10}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=3.1 \times 10^{6} \mathrm{~s}
$$

which is equivalent to 1.2 months.
(b) We evaluate $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$, with $x_{0}=0$. The result is

$$
x=\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3.1 \times 10^{6} \mathrm{~s}\right)^{2}=4.6 \times 10^{13} \mathrm{~m} .
$$

24. We separate the motion into two parts, and take the direction of motion to be positive. In part 1, the vehicle accelerates from rest to its highest speed; we are given $\mathrm{v}_{0}=0 ; \mathrm{v}=20 \mathrm{~m} / \mathrm{s}$ and $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. In part 2 , the vehicle decelerates from its highest speed to a halt; we are given $\mathrm{v}_{0}=20 \mathrm{~m} / \mathrm{s} ; \mathrm{v}=0$ and $a=-1.0 \mathrm{~m} / \mathrm{s}^{2}$ (negative because the acceleration vector points opposite to the direction of motion).
(a) From Table 2-1, we find t_{1} (the duration of part 1) from $\mathrm{v}=\mathrm{v}_{0}+a t$. In this way, $20=0+2.0 t_{1}$ yields $t_{1}=10 \mathrm{~s}$. We obtain the duration t_{2} of part 2 from the same equation. Thus, $0=20+(-1.0) t_{2}$ leads to $t_{2}=20 \mathrm{~s}$, and the total is $t=t_{1}+t_{2}=30 \mathrm{~s}$.
(b) For part 1 , taking $x_{0}=0$, we use the equation $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ from Table 2-1 and find

$$
x=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{(20)^{2}-(0)^{2}}{2(2.0)}=100 \mathrm{~m} .
$$

This position is then the initial position for part 2 , so that when the same equation is used in part 2 we obtain

$$
x-100=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{(0)^{2}-(20)^{2}}{2(-1.0)} .
$$

Thus, the final position is $x=300 \mathrm{~m}$. That this is also the total distance traveled should be evident (the vehicle did not "backtrack" or reverse its direction of motion).
25. Assuming constant acceleration permits the use of the equations in Table 2-1. We solve $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ with $x_{0}=0$ and $x=0.010 \mathrm{~m}$. Thus,

$$
a=\frac{v^{2}-v_{0}^{2}}{2 x}=\frac{\left(5.7 \times 10^{5}\right)^{2}-\left(1.5 \times 10^{5}\right)^{2}}{2(0.01)}=1.62 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2} .
$$

26. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).

$$
a=\frac{\Delta v}{\Delta t}=\frac{(1020 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)}{1.4 \mathrm{~s}}=202.4 \mathrm{~m} / \mathrm{s}^{2}
$$

In terms of the gravitational acceleration g, this is expressed as a multiple of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ as follows:

$$
a=\frac{202.4}{9.8} g=21 \mathrm{~g} .
$$

27. The problem statement (see part (a)) indicates that $a=$ constant, which allows us to use Table 2-1.
(a) We take $x_{0}=0$, and solve $x=v_{0} t+\frac{1}{2} a t^{2}$ (Eq. 2-15) for the acceleration: $a=2(x-$ $\left.v_{0} t\right) / t^{2}$. Substituting $x=24.0 \mathrm{~m}, v_{0}=56.0 \mathrm{~km} / \mathrm{h}=15.55 \mathrm{~m} / \mathrm{s}$ and $t=2.00 \mathrm{~s}$, we find

$$
a=\frac{2(24.0 \mathrm{~m}-(15.55 \mathrm{~m} / \mathrm{s})(2.00 \mathrm{~s}))}{(2.00 \mathrm{~s})^{2}}=-3.56 \mathrm{~m} / \mathrm{s}^{2}
$$

or $|a|=3.56 \mathrm{~m} / \mathrm{s}^{2}$. The negative sign indicates that the acceleration is opposite to the direction of motion of the car. The car is slowing down.
(b) We evaluate $v=v_{0}+a t$ as follows:

$$
v=15.55 \mathrm{~m} / \mathrm{s}-\left(3.56 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})=8.43 \mathrm{~m} / \mathrm{s}
$$

which can also be converted to $30.3 \mathrm{~km} / \mathrm{h}$.
28. We choose the positive direction to be that of the initial velocity of the car (implying that $a<0$ since it is slowing down). We assume the acceleration is constant and use Table 2-1.
(a) Substituting $v_{0}=137 \mathrm{~km} / \mathrm{h}=38.1 \mathrm{~m} / \mathrm{s}, v=90 \mathrm{~km} / \mathrm{h}=25 \mathrm{~m} / \mathrm{s}$, and $a=-5.2 \mathrm{~m} / \mathrm{s}^{2}$ into $v=v_{0}+a t$, we obtain

$$
t=\frac{25 \mathrm{~m} / \mathrm{s}-38 \mathrm{~m} / \mathrm{s}}{-5.2 \mathrm{~m} / \mathrm{s}^{2}}=2.5 \mathrm{~s} .
$$

(b) We take the car to be at $x=0$ when the brakes are applied (at time $t=0$). Thus, the coordinate of the car as a function of time is given by

$$
x=(38) t+\frac{1}{2}(-5.2) t^{2}
$$

in SI units. This function is plotted from $t=0$ to $t=2.5 \mathrm{~s}$ on the graph below. We have not shown the v-vs- t graph here; it is a descending straight line from v_{0} to v.

29. We assume the periods of acceleration (duration t_{1}) and deceleration (duration t_{2}) are periods of constant a so that Table 2-1 can be used. Taking the direction of motion to be $+x$ then $a_{1}=+1.22 \mathrm{~m} / \mathrm{s}^{2}$ and $a_{2}=-1.22 \mathrm{~m} / \mathrm{s}^{2}$. We use SI units so the velocity at t $=t_{1}$ is $v=305 / 60=5.08 \mathrm{~m} / \mathrm{s}$.
(a) We denote Δx as the distance moved during t_{1}, and use Eq. 2-16:

$$
v^{2}=v_{0}^{2}+2 a_{1} \Delta x \Rightarrow \Delta x=\frac{5.08^{2}}{2(1.22)}=10.59 \approx 10.6 \mathrm{~m} .
$$

(b) Using Eq. 2-11, we have

$$
t_{1}=\frac{v-v_{0}}{a_{1}}=\frac{5.08}{1.22}=4.17 \mathrm{~s} .
$$

The deceleration time t_{2} turns out to be the same so that $t_{1}+t_{2}=8.33 \mathrm{~s}$. The distances traveled during t_{1} and t_{2} are the same so that they total to $2(10.59)=21.18 \mathrm{~m}$. This implies that for a distance of $190-21.18=168.82 \mathrm{~m}$, the elevator is traveling at constant velocity. This time of constant velocity motion is

$$
t_{3}=\frac{168.82 \mathrm{~m}}{5.08 \mathrm{~m} / \mathrm{s}}=33.21 \mathrm{~s} .
$$

Therefore, the total time is $8.33+33.21 \approx 41.5 \mathrm{~s}$.
30. (a) Eq. 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:

$$
\begin{array}{ll}
\Delta x_{1}=v_{\mathrm{ol}} t_{1}+\frac{1}{2} a_{1} t_{1}^{2} & \text { where } a_{1}=2.25 \mathrm{~m} / \mathrm{s}^{2} \text { and } \Delta x_{1}=\frac{900}{4} \mathrm{~m} \\
\Delta x_{2}=v_{2} t_{2}-\frac{1}{2} a_{2} t_{2}^{2} & \text { where } a_{2}=-0.75 \mathrm{~m} / \mathrm{s}^{2} \text { and } \Delta x_{2}=\frac{3(900)}{4} \mathrm{~m}
\end{array}
$$

In addition, $v_{01}=v_{2}=0$. Solving these equations for the times and adding the results gives $t=t_{1}+t_{2}=56.6 \mathrm{~s}$.
(b) Eq. 2-16 is used for part 1 of the trip:

$$
v^{2}=\left(v_{\mathrm{ol}}\right)^{2}+2 a_{1} \Delta x_{1}=0+2(2.25)\left(\frac{900}{4}\right)=1013 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

which leads to $v=31.8 \mathrm{~m} / \mathrm{s}$ for the maximum speed.
31. (a) From the figure, we see that $x_{0}=-2.0 \mathrm{~m}$. From Table 2-1, we can apply $x-x_{0}$ $=v_{0} t+\frac{1}{2} a t^{2}$ with $t=1.0 \mathrm{~s}$, and then again with $t=2.0 \mathrm{~s}$. This yields two equations for the two unknowns, v_{0} and a. SI units are understood.

$$
\begin{aligned}
& 0.0-(-2.0)=v_{0}(1.0)+\frac{1}{2} a(1.0)^{2} \\
& 6.0-(-2.0)=v_{0}(2.0)+\frac{1}{2} a(2.0)^{2}
\end{aligned}
$$

Solving these simultaneous equations yields the results $v_{0}=0.0$ and $a=4.0 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The fact that the answer is positive tells us that the acceleration vector points in the $+x$ direction.
32. (a) Note that $110 \mathrm{~km} / \mathrm{h}$ is equivalent to $30.56 \mathrm{~m} / \mathrm{s}$. During a two second interval, you travel 61.11 m . The decelerating police car travels (using Eq. 2-15) 51.11 m . In light of the fact that the initial "gap" between cars was 25 m , this means the gap has narrowed by 10.0 m - that is, to a distance of 15.0 meters between cars.
(b) First, we add 0.4 s to the considerations of part (a). During a 2.4 s interval, you travel 73.33 m . The decelerating police car travels (using Eq. 2-15) 58.93 m during that time. The initial distance between cars of 25 m has therefore narrowed by 14.4 m . Thus, at the start of your braking (call it t_{0}) the gap between the cars is 10.6 m . The speed of the police car at t_{0} is $30.56-5(2.4)=18.56 \mathrm{~m} / \mathrm{s}$. Collision occurs at time t when $\mathrm{x}_{\text {you }}=\mathrm{x}_{\text {police }}$ (we choose coordinates such that your position is $x=0$ and the police car's position is $x=10.6 \mathrm{~m}$ at t_{0}). Eq. 2-15 becomes, for each car:

$$
\begin{aligned}
& \mathrm{x}_{\text {police }}-10.6=18.56\left(t-t_{0}\right)-\frac{1}{2}(5)\left(t-t_{0}\right)^{2} \\
& \mathrm{x}_{\mathrm{you}}=30.56\left(t-t_{0}\right)-\frac{1}{2}(5)\left(t-t_{\mathrm{o}}\right)^{2} .
\end{aligned}
$$

Subtracting equations, we find $10.6=(30.56-18.56)\left(t-t_{0}\right) \Rightarrow 0.883 \mathrm{~s}=t-t_{0}$. At that time your speed is $30.56+a\left(t-t_{0}\right)=30.56-5(0.883) \approx 26 \mathrm{~m} / \mathrm{s}($ or $94 \mathrm{~km} / \mathrm{h})$.
33. (a) We note that $v_{\mathrm{A}}=12 / 6=2 \mathrm{~m} / \mathrm{s}$ (with two significant figures understood). Therefore, with an initial x value of 20 m , car A will be at $x=28 \mathrm{~m}$ when $t=4 \mathrm{~s}$. This must be the value of x for car B at that time; we use Eq. 2-15:

$$
28 \mathrm{~m}=(12 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2} a_{\mathrm{B}} t^{2} \quad \text { where } t=4.0 \mathrm{~s}
$$

This yields $a_{\mathrm{B}}=-\frac{5}{2}=-2.5 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The question is: using the value obtained for a_{B} in part (a), are there other values of t (besides $t=4 \mathrm{~s}$) such that $x_{\mathrm{A}}=x_{\mathrm{B}}$? The requirement is

$$
20+2 t=12 t+\frac{1}{2} a_{\mathrm{B}} t^{2}
$$

where $a_{\mathrm{B}}=-5 / 2$. There are two distinct roots unless the discriminant $\sqrt{10^{2}-2(-20)\left(a_{\mathrm{B}}\right)}$ is zero. In our case, it is zero - which means there is only one root. The cars are side by side only once at $t=4 \mathrm{~s}$.
(c) A sketch is not shown here, but briefly - it would consist of a straight line tangent to a parabola at $t=4$.
(d) We only care about real roots, which means $10^{2}-2(-20)\left(a_{\mathrm{B}}\right) \geq 0$. If $\left|a_{\mathrm{B}}\right|>5 / 2$ then there are no (real) solutions to the equation; the cars are never side by side.
(e) Here we have $10^{2}-2(-20)\left(a_{\mathrm{B}}\right)>0 \Rightarrow$ two real roots. The cars are side by side at two different times.
34. We assume the train accelerates from rest ($v_{0}=0$ and $x_{0}=0$) at $a_{1}=+1.34 \mathrm{~m} / \mathrm{s}^{2}$ until the midway point and then decelerates at $a_{2}=-1.34 \mathrm{~m} / \mathrm{s}^{2}$ until it comes to a stop $\left(v_{2}=0\right)$ at the next station. The velocity at the midpoint is v_{1} which occurs at $x_{1}=806 / 2=403 \mathrm{~m}$.
(a) Eq. 2-16 leads to

$$
v_{1}^{2}=v_{0}^{2}+2 a_{1} x_{1} \Rightarrow v_{1}=\sqrt{2(1.34)(403)}=32.9 \mathrm{~m} / \mathrm{s} .
$$

(b) The time t_{1} for the accelerating stage is (using Eq. 2-15)

$$
x_{1}=v_{0} t_{1}+\frac{1}{2} a_{1} t_{1}^{2} \Rightarrow t_{1}=\sqrt{\frac{2(403)}{1.34}}
$$

which yields $t_{1}=24.53 \mathrm{~s}$. Since the time interval for the decelerating stage turns out to be the same, we double this result and obtain $t=49.1 \mathrm{~s}$ for the travel time between stations.
(c) With a "dead time" of 20 s , we have $T=t+20=69.1 \mathrm{~s}$ for the total time between start-ups. Thus, Eq. 2-2 gives

$$
v_{\text {avg }}=\frac{806 \mathrm{~m}}{69.1 \mathrm{~s}}=11.7 \mathrm{~m} / \mathrm{s} .
$$

(d) The graphs for x, v and a as a function of t are shown below. SI units are understood. The third graph, $a(t)$, consists of three horizontal "steps" - one at 1.34 during $0<t<24.53$ and the next at -1.34 during $24.53<t<49.1$ and the last at zero during the "dead time" $49.1<t<69.1$).

$$
\begin{aligned}
& a\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

35. The displacement (Δx) for each train is the "area" in the graph (since the displacement is the integral of the velocity). Each area is triangular, and the area of a triangle is $1 / 2$ (base) x (height). Thus, the (absolute value of the) displacement for one train $(1 / 2)(40 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s})=100 \mathrm{~m}$, and that of the other train is $(1 / 2)(30 \mathrm{~m} / \mathrm{s})(4 \mathrm{~s})=60$ m . The initial "gap" between the trains was 200 m , and according to our displacement computations, the gap has narrowed by 160 m . Thus, the answer is $200-160=40 \mathrm{~m}$.
36. Let d be the 220 m distance between the cars at $t=0$, and v_{1} be the $20 \mathrm{~km} / \mathrm{h}=50 / 9$ m / s speed (corresponding to a passing point of $x_{1}=44.5 \mathrm{~m}$) and v_{2} be the $40 \mathrm{~km} / \mathrm{h}$ $=100 / 9 \mathrm{~m} / \mathrm{s}$ speed (corresponding to passing point of $x_{2}=76.6 \mathrm{~m}$) of the red car. We have two equations (based on Eq. 2-17):

$$
\begin{array}{ll}
d-x_{1}=v_{0} t_{1}+\frac{1}{2} a t_{1}^{2} & \text { where } t_{1}=x_{1} / v_{1} \\
d-x_{2}=v_{0} t_{2}+\frac{1}{2} a t_{2}^{2} & \text { where } t_{2}=x_{2} / v_{2}
\end{array}
$$

We simultaneously solve these equations and obtain the following results:
(a) $v_{\mathrm{o}}=13.9 \mathrm{~m} / \mathrm{s}$ (or roughly $50 \mathrm{~km} / \mathrm{h}$) along the $-x$ direction.
(b) $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$ along the $-x$ direction.
37. In this solution we elect to wait until the last step to convert to SI units. Constant acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and denote the train's initial velocity as v_{t} and the locomotive's velocity as v_{ℓ} (which is also the final velocity of the train, if the rear-end collision is barely avoided). We note that the distance Δx consists of the original gap between them D as well as the forward distance traveled during this time by the locomotive $v_{\ell} t$. Therefore,

$$
\frac{v_{t}+v_{\ell}}{2}=\frac{\Delta x}{t}=\frac{D+v_{\ell} t}{t}=\frac{D}{t}+v_{\ell} .
$$

We now use Eq. 2-11 to eliminate time from the equation. Thus,

$$
\frac{v_{t}+v_{\ell}}{2}=\frac{D}{\left(v_{\ell}-v_{t}\right) / a}+v_{\ell}
$$

leads to

$$
a=\left(\frac{v_{t}+v_{\ell}}{2}-v_{\ell}\right)\left(\frac{v_{\ell}-v_{t}}{D}\right)=-\frac{1}{2 D}\left(v_{\ell}-v_{t}\right)^{2} .
$$

Hence,

$$
a=-\frac{1}{2(0.676 \mathrm{~km})}\left(29 \frac{\mathrm{~km}}{\mathrm{~h}}-161 \frac{\mathrm{~km}}{\mathrm{~h}}\right)^{2}=-12888 \mathrm{~km} / \mathrm{h}^{2}
$$

which we convert as follows:

$$
a=\left(-12888 \mathrm{~km} / \mathrm{h}^{2}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}=-0.994 \mathrm{~m} / \mathrm{s}^{2}
$$

so that its magnitude is $|a|=0.994 \mathrm{~m} / \mathrm{s}^{2}$. A graph is shown below for the case where a collision is just avoided (x along the vertical axis is in meters and t along the horizontal axis is in seconds). The top (straight) line shows the motion of the locomotive and the bottom curve shows the motion of the passenger train.

The other case (where the collision is not quite avoided) would be similar except that the slope of the bottom curve would be greater than that of the top line at the point where they meet.

38. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1 (with Δy replacing Δx).
(a) Noting that $\Delta y=y-y_{0}=-30 \mathrm{~m}$, we apply Eq. 2-15 and the quadratic formula (Appendix E) to compute t :

$$
\Delta y=v_{0} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{v_{0} \pm \sqrt{v_{0}^{2}-2 g \Delta y}}{g}
$$

which (with $v_{0}=-12 \mathrm{~m} / \mathrm{s}$ since it is downward) leads, upon choosing the positive root (so that $t>0$), to the result:

$$
t=\frac{-12+\sqrt{(-12)^{2}-2(9.8)(-30)}}{9.8}=1.54 \mathrm{~s} .
$$

(b) Enough information is now known that any of the equations in Table 2-1 can be used to obtain v; however, the one equation that does not use our result from part (a) is Eq. 2-16:

$$
v=\sqrt{v_{0}^{2}-2 g \Delta y}=27.1 \mathrm{~m} / \mathrm{s}
$$

where the positive root has been chosen in order to give speed (which is the magnitude of the velocity vector).
39. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1 (with Δy replacing Δx).
(a) Starting the clock at the moment the wrench is dropped $\left(v_{0}=0\right)$, then $v^{2}=v_{\mathrm{o}}^{2}-2 g \Delta y$ leads to

$$
\Delta y=-\frac{(-24)^{2}}{2(9.8)}=-29.4 \mathrm{~m}
$$

so that it fell through a height of 29.4 m .
(b) Solving $v=v_{0}-g t$ for time, we find:

$$
t=\frac{v_{0}-v}{g}=\frac{0-(-24)}{9.8}=2.45 \mathrm{~s} .
$$

(c) SI units are used in the graphs, and the initial position is taken as the coordinate origin. In the interest of saving space, we do not show the acceleration graph, which is a horizontal line at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$.

40. Neglect of air resistance justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (where down is our $-y$ direction) for the duration of the fall. This is constant acceleration motion, and we may use Table 2-1 (with Δy replacing Δx).
(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), we have

$$
v=-\sqrt{v_{0}^{2}-2 g \Delta y}=-\sqrt{0-2(9.8)(-1700)}=-183
$$

in SI units. Its magnitude is therefore $183 \mathrm{~m} / \mathrm{s}$.
(b) No, but it is hard to make a convincing case without more analysis. We estimate the mass of a raindrop to be about a gram or less, so that its mass and speed (from part (a)) would be less than that of a typical bullet, which is good news. But the fact that one is dealing with many raindrops leads us to suspect that this scenario poses an unhealthy situation. If we factor in air resistance, the final speed is smaller, of course, and we return to the relatively healthy situation with which we are familiar.
41. We neglect air resistance for the duration of the motion (between "launching" and "landing"), so $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (we take downward to be the $-y$ direction). We use the equations in Table 2-1 (with Δy replacing Δx) because this is $a=$ constant motion.
(a) At the highest point the velocity of the ball vanishes. Taking $y_{0}=0$, we set $v=0$ in $v^{2}=v_{0}^{2}-2 g y$, and solve for the initial velocity: $v_{0}=\sqrt{2 g y}$. Since $y=50 \mathrm{~m}$ we find $v_{0}=31 \mathrm{~m} / \mathrm{s}$.
(b) It will be in the air from the time it leaves the ground until the time it returns to the ground $(y=0)$. Applying Eq. 2-15 to the entire motion (the rise and the fall, of total time $t>0$) we have

$$
y=v_{0} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{2 v_{0}}{g}
$$

which (using our result from part (a)) produces $t=6.4 \mathrm{~s}$. It is possible to obtain this without using part (a)'s result; one can find the time just for the rise (from ground to highest point) from Eq. 2-16 and then double it.
(c) SI units are understood in the x and v graphs shown. In the interest of saving space, we do not show the graph of a, which is a horizontal line at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$.

42. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y axis.
(a) Using $y=v_{0} t-\frac{1}{2} g t^{2}$, with $y=0.544 \mathrm{~m}$ and $t=0.200 \mathrm{~s}$, we find

$$
v_{0}=\frac{y+\frac{1}{2} g t^{2}}{t}=\frac{0.544+\frac{1}{2}(9.8)(0.200)^{2}}{0.200}=3.70 \mathrm{~m} / \mathrm{s}
$$

(b) The velocity at $y=0.544 \mathrm{~m}$ is

$$
v=v_{0}-g t=3.70-(9.8)(0.200)=1.74 \mathrm{~m} / \mathrm{s} .
$$

(c) Using $v^{2}=v_{0}^{2}-2 g y$ (with different values for y and v than before), we solve for the value of y corresponding to maximum height (where $v=0$).

$$
y=\frac{v_{0}^{2}}{2 g}=\frac{3.7^{2}}{2(9.8)}=0.698 \mathrm{~m} .
$$

Thus, the armadillo goes $0.698-0.544=0.154 \mathrm{~m}$ higher.
43. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. We are placing the coordinate origin on the ground. We note that the initial velocity of the package is the same as the velocity of the balloon, $v_{0}=+12 \mathrm{~m} / \mathrm{s}$ and that its initial coordinate is y_{0} $=+80 \mathrm{~m}$.
(a) We solve $y=y_{0}+v_{0} t-\frac{1}{2} g t^{2}$ for time, with $y=0$, using the quadratic formula (choosing the positive root to yield a positive value for t).

$$
t=\frac{v_{0}+\sqrt{v_{0}^{2}+2 g y_{0}}}{g}=\frac{12+\sqrt{12^{2}+2(9.8)(80)}}{9.8}=5.4 \mathrm{~s}
$$

(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if that is not a concern, then a variety of formulas from Table 2-1 can be used. For instance, Eq. 2-11 leads to

$$
v=v_{0}-g t=12-(9.8)(5.4)=-41 \mathrm{~m} / \mathrm{s} .
$$

Its final speed is $41 \mathrm{~m} / \mathrm{s}$.
44. The full extent of the bolt's fall is given by $y-y_{0}=-\frac{1}{2} g t^{2}$ where $y-y_{0}=-90 \mathrm{~m}$ (if upwards is chosen as the positive y direction). Thus the time for the full fall is found to be $t=4.29 \mathrm{~s}$. The first 80% of its free fall distance is given by $-72=-g \tau^{2} / 2$, which requires time $\tau=3.83 \mathrm{~s}$.
(a) Thus, the final 20% of its fall takes $t-\tau=0.45 \mathrm{~s}$.
(b) We can find that speed using $v=-g \tau$. Therefore, $|v|=38 \mathrm{~m} / \mathrm{s}$, approximately.
(c) Similarly, $v_{\text {final }}=-g t \Rightarrow\left|v_{\text {final }}\right|=42 \mathrm{~m} / \mathrm{s}$.
45. The y coordinate of Apple 1 obeys $\quad y-y_{\mathrm{o} 1}=-\frac{1}{2} g t^{2}$ where $y=0$ when $t=2.0 \mathrm{~s}$. This allows us to solve for $y_{\mathrm{o} 1}$, and we find $y_{\mathrm{o} 1}=19.6 \mathrm{~m}$.

The graph for the coordinate of Apple 2 (which is thrown apparently at $t=1.0 \mathrm{~s}$ with velocity v_{2}) is

$$
y-y_{02}=v_{2}(t-1.0)-\frac{1}{2} g(t-1.0)^{2}
$$

where $y_{\mathrm{o} 2}=y_{\mathrm{o} 1}=19.6 \mathrm{~m}$ and where $y=0$ when $t=2.25 \mathrm{~s}$. Thus we obtain $\left|v_{2}\right|=9.6$ m / s, approximately.
46. We use Eq. 2-16, $v_{\mathrm{B}}^{2}=v_{\mathrm{A}}^{2}+2 a\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)$, with $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}, y_{\mathrm{B}}-y_{\mathrm{A}}=0.40 \mathrm{~m}$, and $v_{\mathrm{B}}=\frac{1}{3} v_{\mathrm{A}}$. It is then straightforward to solve: $v_{\mathrm{A}}=3.0 \mathrm{~m} / \mathrm{s}$, approximately.
47. The speed of the boat is constant, given by $v_{b}=d / t$. Here, d is the distance of the boat from the bridge when the key is dropped (12 m) and t is the time the key takes in falling. To calculate t, we put the origin of the coordinate system at the point where the key is dropped and take the y axis to be positive in the downward direction. Taking the time to be zero at the instant the key is dropped, we compute the time t when $y=45 \mathrm{~m}$. Since the initial velocity of the key is zero, the coordinate of the key is given by $y=\frac{1}{2} g t^{2}$. Thus

$$
t=\sqrt{\frac{2 y}{g}}=\sqrt{\frac{2(45 \mathrm{~m})}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=3.03 \mathrm{~s}
$$

Therefore, the speed of the boat is

$$
v_{b}=\frac{12 \mathrm{~m}}{3.03 \mathrm{~s}}=4.0 \mathrm{~m} / \mathrm{s} .
$$

48. (a) With upward chosen as the $+y$ direction, we use Eq. 2-11 to find the initial velocity of the package:

$$
v=v_{\mathrm{o}}+a t \Rightarrow 0=v_{\mathrm{o}}-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s})
$$

which leads to $v_{0}=19.6 \mathrm{~m} / \mathrm{s}$. Now we use Eq. 2-15:

$$
\Delta y=(19.6 \mathrm{~m} / \mathrm{s})(2.0 \mathrm{~s})+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s})^{2} \approx 20 \mathrm{~m} .
$$

We note that the " 2.0 s " in this second computation refers to the time interval $2<t<4$ in the graph (whereas the " 2.0 s " in the first computation referred to the $0<t<2$ time interval shown in the graph).
(b) In our computation for part (b), the time interval (" 6.0 s ") refers to the $2<t<8$ portion of the graph:

$$
\Delta y=(19.6 \mathrm{~m} / \mathrm{s})(6.0 \mathrm{~s})+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~s})^{2} \approx-59 \mathrm{~m}
$$

or $|\Delta y|=59 \mathrm{~m}$.
49. (a) We first find the velocity of the ball just before it hits the ground. During contact with the ground its average acceleration is given by

$$
a_{\text {avg }}=\frac{\Delta v}{\Delta t}
$$

where Δv is the change in its velocity during contact with the ground and $\Delta t=20.0 \times 10^{-3} \mathrm{~s}$ is the duration of contact. Now, to find the velocity just before contact, we put the origin at the point where the ball is dropped (and take $+y$ upward) and take $t=0$ to be when it is dropped. The ball strikes the ground at $y=-15.0 \mathrm{~m}$. Its velocity there is found from Eq. 2-16: $v^{2}=-2 g y$. Therefore,

$$
v=-\sqrt{-2 g y}=-\sqrt{-2(9.8)(-15.0)}=-17.1 \mathrm{~m} / \mathrm{s}
$$

where the negative sign is chosen since the ball is traveling downward at the moment of contact. Consequently, the average acceleration during contact with the ground is

$$
a_{\mathrm{avg}}=\frac{0-(-17.1)}{20.0 \times 10^{-3}}=857 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) The fact that the result is positive indicates that this acceleration vector points upward. In a later chapter, this will be directly related to the magnitude and direction of the force exerted by the ground on the ball during the collision.
50. To find the "launch" velocity of the rock, we apply Eq. 2-11 to the maximum height (where the speed is momentarily zero)

$$
v=v_{0}-g t \Rightarrow 0=v_{0}-(9.8)(2.5)
$$

so that $v_{0}=24.5 \mathrm{~m} / \mathrm{s}$ (with $+y$ up). Now we use Eq. 2-15 to find the height of the tower (taking $y_{0}=0$ at the ground level)

$$
y-y_{0}=v_{0} t+\frac{1}{2} a t^{2} \Rightarrow y-0=(24.5)(1.5)-\frac{1}{2}(9.8)(1.5)^{2} .
$$

Thus, we obtain $y=26 \mathrm{~m}$.
51. The average acceleration during contact with the floor is $a_{\text {avg }}=\left(v_{2}-v_{1}\right) / \Delta t$, where v_{1} is its velocity just before striking the floor, v_{2} is its velocity just as it leaves the floor, and Δt is the duration of contact with the floor $\left(12 \times 10^{-3} \mathrm{~s}\right)$.
(a) Taking the y axis to be positively upward and placing the origin at the point where the ball is dropped, we first find the velocity just before striking the floor, using $v_{1}^{2}=v_{0}^{2}-2 g y$. With $v_{0}=0$ and $y=-4.00 \mathrm{~m}$, the result is

$$
v_{1}=-\sqrt{-2 g y}=-\sqrt{-2(9.8)(-4.00)}=-8.85 \mathrm{~m} / \mathrm{s}
$$

where the negative root is chosen because the ball is traveling downward. To find the velocity just after hitting the floor (as it ascends without air friction to a height of 2.00 m), we use $v^{2}=v_{2}^{2}-2 g\left(y-y_{0}\right)$ with $v=0, y=-2.00 \mathrm{~m}$ (it ends up two meters below its initial drop height), and $y_{0}=-4.00 \mathrm{~m}$. Therefore,

$$
v_{2}=\sqrt{2 g\left(y-y_{0}\right)}=\sqrt{2(9.8)(-2.00+4.00)}=6.26 \mathrm{~m} / \mathrm{s} \mathrm{.}
$$

Consequently, the average acceleration is

$$
a_{\text {avg }}=\frac{v_{2}-v_{1}}{\Delta t}=\frac{6.26+8.85}{12.0 \times 10^{-3}}=1.26 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The positive nature of the result indicates that the acceleration vector points upward. In a later chapter, this will be directly related to the magnitude and direction of the force exerted by the ground on the ball during the collision.
52. (a) We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Eq. 2-15 (with Δy replacing Δx) because this is constant acceleration motion. We use primed variables (except t) with the first stone, which has zero initial velocity, and unprimed variables with the second stone (with initial downward velocity $-v_{0}$, so that v_{0} is being used for the initial speed). SI units are used throughout.

$$
\begin{aligned}
\Delta y^{\prime} & =0(t)-\frac{1}{2} g t^{2} \\
\Delta y & =\left(-v_{0}\right)(t-1)-\frac{1}{2} g(t-1)^{2}
\end{aligned}
$$

Since the problem indicates $\Delta y^{\prime}=\Delta y=-43.9 \mathrm{~m}$, we solve the first equation for t (finding $t=2.99 \mathrm{~s}$) and use this result to solve the second equation for the initial speed of the second stone:

which leads to $v_{0}=12.3 \mathrm{~m} / \mathrm{s}$.
(b) The velocity of the stones are given by

$$
v_{y}^{\prime}=\frac{d\left(\Delta y^{\prime}\right)}{d t}=-g t, \quad v_{y}=\frac{d(\Delta y)}{d t}=-v_{0}-g(t-1)
$$

The plot is shown below:

53. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y axis.
(a) The time drop 1 leaves the nozzle is taken as $t=0$ and its time of landing on the floor t_{1} can be computed from Eq. 2-15, with $v_{0}=0$ and $y_{1}=-2.00 \mathrm{~m}$.

$$
y_{1}=-\frac{1}{2} g t_{1}^{2} \Rightarrow t_{1}=\sqrt{\frac{-2 y}{g}}=\sqrt{\frac{-2(-2.00)}{9.8}}=0.639 \mathrm{~s} \mathrm{.}
$$

At that moment, the fourth drop begins to fall, and from the regularity of the dripping we conclude that drop 2 leaves the nozzle at $t=0.639 / 3=0.213 \mathrm{~s}$ and drop 3 leaves the nozzle at $t=2(0.213)=0.426 \mathrm{~s}$. Therefore, the time in free fall (up to the moment drop 1 lands) for drop 2 is $t_{2}=t_{1}-0.213=0.426 \mathrm{~s}$. Its position at the moment drop 1 strikes the floor is

$$
y_{2}=-\frac{1}{2} g t_{2}^{2}=-\frac{1}{2}(9.8)(0.426)^{2}=-0.889 \mathrm{~m}
$$

or 89 cm below the nozzle.
(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is $t_{3}=t_{1}-0.426=$ 0.213 s . Its position at the moment drop 1 strikes the floor is

$$
y_{3}=-\frac{1}{2} g t_{3}^{2}=-\frac{1}{2}(9.8)(0.213)^{2}=-0.222 \mathrm{~m},
$$

or 22 cm below the nozzle.
54. We choose down as the $+y$ direction and set the coordinate origin at the point where it was dropped (which is when we start the clock). We denote the 1.00 s duration mentioned in the problem as $t-t^{\prime}$ where t is the value of time when it lands and t^{\prime} is one second prior to that. The corresponding distance is $y-y^{\prime}=0.50 h$, where y denotes the location of the ground. In these terms, y is the same as h, so we have $h-y^{\prime}=0.50 h$ or $0.50 h=y^{\prime}$.
(a) We find t ' and t from Eq. 2-15 (with $v_{0}=0$):

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} g t^{\prime 2} \Rightarrow t^{\prime}=\sqrt{\frac{2 y^{\prime}}{g}} \\
& y=\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{2 y}{g}}
\end{aligned}
$$

Plugging in $y=h$ and $y^{\prime}=0.50 h$, and dividing these two equations, we obtain

$$
\frac{t^{\prime}}{t}=\sqrt{\frac{2(0.50 h) / g}{2 h / g}}=\sqrt{0.50} .
$$

Letting $t^{\prime}=t-1.00$ (SI units understood) and cross-multiplying, we find

$$
t-1.00=t \sqrt{0.50} \Rightarrow t=\frac{1.00}{1-\sqrt{0.50}}
$$

which yields $t=3.41 \mathrm{~s}$.
(b) Plugging this result into $y=\frac{1}{2} g t^{2}$ we find $h=57 \mathrm{~m}$.
(c) In our approach, we did not use the quadratic formula, but we did "choose a root" when we assumed (in the last calculation in part (a)) that $\sqrt{0.50}=+2.236$ instead of -2.236 . If we had instead let $\sqrt{0.50}=-2.236$ then our answer for t would have been roughly 0.6 s which would imply that $t^{\prime}=t-1$ would equal a negative number (indicating a time before it was dropped) which certainly does not fit with the physical situation described in the problem.
55. The time t the pot spends passing in front of the window of length $L=2.0 \mathrm{~m}$ is 0.25 s each way. We use v for its velocity as it passes the top of the window (going up). Then, with $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down to be the $-y$ direction), Eq. 2-18 yields

$$
L=v t-\frac{1}{2} g t^{2} \quad \Rightarrow \quad v=\frac{L}{t}-\frac{1}{2} g t .
$$

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 with the final velocity being zero to indicate the highest point)

$$
H=\frac{v^{2}}{2 g}=\frac{(L / t-g t / 2)^{2}}{2 g}=\frac{(2.00 / 0.25-(9.80)(0.25) / 2)^{2}}{(2)(9.80)}=2.34 \mathrm{~m} .
$$

56. The height reached by the player is $y=0.76 \mathrm{~m}$ (where we have taken the origin of the y axis at the floor and $+y$ to be upward).
(a) The initial velocity v_{0} of the player is

$$
v_{0}=\sqrt{2 g y}=\sqrt{2(9.8)(0.76)}=3.86 \mathrm{~m} / \mathrm{s} .
$$

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y_{1} $=0.76-0.15=0.61 \mathrm{~m}$, his speed v_{1} satisfies $v_{0}^{2}-v_{1}^{2}=2 g y_{1}$, which yields

$$
v_{1}=\sqrt{v_{0}^{2}-2 g y_{1}}=\sqrt{(3.86)^{2}-2(9.80)(0.61)}=1.71 \mathrm{~m} / \mathrm{s} .
$$

The time t_{1} that the player spends ascending in the top $\Delta y_{1}=0.15 \mathrm{~m}$ of the jump can now be found from Eq. 2-17:

$$
\Delta y_{1}=\frac{1}{2}\left(v_{1}+v\right) t_{1} \Rightarrow t_{1}=\frac{2(0.15)}{1.71+0}=0.175 \mathrm{~s}
$$

which means that the total time spent in that top 15 cm (both ascending and descending) is $2(0.17)=0.35 \mathrm{~s}=350 \mathrm{~ms}$.
(b) The time t_{2} when the player reaches a height of 0.15 m is found from Eq. 2-15:

$$
0.15=v_{0} t_{2}-\frac{1}{2} g t_{2}^{2}=(3.86) t_{2}-\frac{9.8}{2} t_{2}^{2},
$$

which yields (using the quadratic formula, taking the smaller of the two positive roots) $t_{2}=0.041 \mathrm{~s}=41 \mathrm{~ms}$, which implies that the total time spent in that bottom 15 cm (both ascending and descending) is $2(41)=82 \mathrm{~ms}$.
57. We choose down as the $+y$ direction and place the coordinate origin at the top of the building (which has height H). During its fall, the ball passes (with velocity v_{1}) the top of the window (which is at y_{1}) at time t_{1}, and passes the bottom (which is at y_{2}) at time t_{2}. We are told $y_{2}-y_{1}=1.20 \mathrm{~m}$ and $t_{2}-t_{1}=0.125 \mathrm{~s}$. Using Eq. $2-15$ we have

$$
y_{2}-y_{1}=v_{1}\left(t_{2}-t_{1}\right)+\frac{1}{2} g\left(t_{2}-t_{1}\right)^{2}
$$

which immediately yields

$$
v_{1}=\frac{1.20-\frac{1}{2}(9.8)(0.125)^{2}}{0.125}=8.99 \mathrm{~m} / \mathrm{s}
$$

From this, Eq. 2-16 (with $\left.v_{0}=0\right)$ reveals the value of y_{1} :

$$
v_{1}^{2}=2 g y_{1} \Rightarrow y_{1}=\frac{8.99^{2}}{2(9.8)}=4.12 \mathrm{~m}
$$

It reaches the ground $\left(y_{3}=H\right)$ at t_{3}. Because of the symmetry expressed in the problem ("upward flight is a reverse of the fall") we know that $t_{3}-t_{2}=2.00 / 2=1.00$ s. And this means $t_{3}-t_{1}=1.00+0.125=1.125 \mathrm{~s}$. Now Eq. 2-15 produces

$$
\begin{aligned}
y_{3}-y_{1} & =v_{1}\left(t_{3}-t_{1}\right)+\frac{1}{2} g\left(t_{3}-t_{1}\right)^{2} \\
y_{3}-4.12 & =(8.99)(1.125)+\frac{1}{2}(9.8)(1.125)^{2}
\end{aligned}
$$

which yields $y_{3}=H=20.4 \mathrm{~m}$.
58. The graph shows $y=25 \mathrm{~m}$ to be the highest point (where the speed momentarily vanishes). The neglect of "air friction" (or whatever passes for that on the distant planet) is certainly reasonable due to the symmetry of the graph.
(a) To find the acceleration due to gravity g_{p} on that planet, we use Eq. 2-15 (with $+y$ up)

$$
y-y_{0}=v t+\frac{1}{2} g_{p} t^{2} \Rightarrow 25-0=(0)(2.5)+\frac{1}{2} g_{p}(2.5)^{2}
$$

so that $g_{p}=8.0 \mathrm{~m} / \mathrm{s}^{2}$.
(b) That same (max) point on the graph can be used to find the initial velocity.

$$
y-y_{0}=\frac{1}{2}\left(v_{0}+v\right) t \quad \Rightarrow \quad 25-0=\frac{1}{2}\left(v_{0}+0\right)(2.5)
$$

Therefore, $v_{0}=20 \mathrm{~m} / \mathrm{s}$.
59. We follow the procedures outlined in Sample Problem 2-8. The key idea here is that the speed of the head (and the torso as well) at any given time can be calculated by finding the area on the graph of the head's acceleration versus time, as shown in Eq. 2-26:

$$
v_{1}-v_{0}=\binom{\text { area between the acceleration curve }}{\text { and the time axis, from } t_{0} \text { to } t_{1}}
$$

(a) From Fig. 2.13a, we see that the head begins to accelerate from rest $\left(v_{0}=0\right)$ at $t_{0}=$ 110 ms and reaches a maximum value of $90 \mathrm{~m} / \mathrm{s}^{2}$ at $t_{1}=160 \mathrm{~ms}$. The area of this region is

$$
\text { area }=\frac{1}{2}(160-110) \times 10^{-3} \mathrm{~s} \cdot\left(90 \mathrm{~m} / \mathrm{s}^{2}\right)=2.25 \mathrm{~m} / \mathrm{s}
$$

which is equal to v_{1}, the speed at t_{1}.
(b) To compute the speed of the torso at $t_{1}=160 \mathrm{~ms}$, we divide the area into 4 regions: From 0 to 40 ms , region A has zero area. From 40 ms to 100 ms , region B has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{B}}=\frac{1}{2}(0.0600 \mathrm{~s})\left(50.0 \mathrm{~m} / \mathrm{s}^{2}\right)=1.50 \mathrm{~m} / \mathrm{s} .
$$

From 100 to 120 ms , region C has the shape of a rectangle with area

$$
\operatorname{area}_{\mathrm{C}}=(0.0200 \mathrm{~s})\left(50.0 \mathrm{~m} / \mathrm{s}^{2}\right)=1.00 \mathrm{~m} / \mathrm{s} .
$$

From 110 to 160 ms , region D has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{D}}=\frac{1}{2}(0.0400 \mathrm{~s})(50.0+20.0) \mathrm{m} / \mathrm{s}^{2}=1.40 \mathrm{~m} / \mathrm{s} .
$$

Substituting these values into Eq. 2-26, with $v_{0}=0$ then gives

$$
v_{1}-0=0+1.50 \mathrm{~m} / \mathrm{s}+1.00 \mathrm{~m} / \mathrm{s}+1.40 \mathrm{~m} / \mathrm{s}=3.90 \mathrm{~m} / \mathrm{s} \text {, }
$$

or $v_{1}=3.90 \mathrm{~m} / \mathrm{s}$.
60. The key idea here is that the position of an object at any given time can be calculated by finding the area on the graph of the object's velocity versus time, as shown in Eq. 2-25:

$$
x_{1}-x_{0}=\binom{\text { area between the velocity curve }}{\text { and the time axis, from } t_{0} \text { to } t_{1}} .
$$

(a) To compute the position of the fist at $t=50 \mathrm{~ms}$, we divide the area in Fig. 2-29 into two regions. From 0 to 10 ms , region A has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{A}}=\frac{1}{2}(0.010 \mathrm{~s})(2 \mathrm{~m} / \mathrm{s})=0.01 \mathrm{~m} .
$$

From 10 to 50 ms , region B has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{B}}=\frac{1}{2}(0.040 \mathrm{~s})(2+4) \mathrm{m} / \mathrm{s}=0.12 \mathrm{~m} .
$$

Substituting these values into Eq. 2-25, with $x_{0}=0$ then gives

$$
x_{1}-0=0+0.01 \mathrm{~m}+0.12 \mathrm{~m}=0.13 \mathrm{~m}
$$

or $x_{1}=0.13 \mathrm{~m}$.
(b) The speed of the fist reaches a maximum at $t_{1}=120 \mathrm{~ms}$. From 50 to 90 ms , region C has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{C}}=\frac{1}{2}(0.040 \mathrm{~s})(4+5) \mathrm{m} / \mathrm{s}=0.18 \mathrm{~m} .
$$

From 90 to 120 ms , region D has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{D}}=\frac{1}{2}(0.030 \mathrm{~s})(5+7.5) \mathrm{m} / \mathrm{s}=0.19 \mathrm{~m} .
$$

Substituting these values into Eq. 2-25, with $x_{0}=0$ then gives

$$
x_{1}-0=0+0.01 \mathrm{~m}+0.12 \mathrm{~m}+0.18 \mathrm{~m}+0.19 \mathrm{~m}=0.50 \mathrm{~m}
$$

or $x_{1}=0.50 \mathrm{~m}$.
61. Since $v=\frac{d x}{d t}$ (Eq. 2-4), then $\Delta x=\int v d t$, which corresponds to the area under the v vs t graph. Dividing the total area A into rectangular (base \times height) and triangular ($\frac{1}{2}$ base \times height) areas, we have

$$
\begin{aligned}
A & =A_{0<t<2}+A_{2<t<10}+A_{10<t<12}+A_{12<t<16} \\
& =\frac{1}{2}(2)(8)+(8)(8)+\left((2)(4)+\frac{1}{2}(2)(4)\right)+(4)(4)
\end{aligned}
$$

with SI units understood. In this way, we obtain $\Delta x=100 \mathrm{~m}$.
62. The problem is solved using Eq. 2-26:

$$
v_{1}-v_{0}=\binom{\text { area between the acceleration curve }}{\text { and the time axis, from } t_{0} \text { to } t_{1}}
$$

To compute the speed of the helmeted head at $t_{1}=7.0 \mathrm{~ms}$, we divide the area under the a vs. t graph into 4 regions: From 0 to 2 ms , region A has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{A}}=\frac{1}{2}(0.0020 \mathrm{~s})\left(120 \mathrm{~m} / \mathrm{s}^{2}\right)=0.12 \mathrm{~m} / \mathrm{s} .
$$

From 2 ms to 4 ms , region B has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{B}}=\frac{1}{2}(0.0020 \mathrm{~s})(120+140) \mathrm{m} / \mathrm{s}^{2}=0.26 \mathrm{~m} / \mathrm{s} .
$$

From 4 to 6 ms , region C has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{C}}=\frac{1}{2}(0.0020 \mathrm{~s})(140+200) \mathrm{m} / \mathrm{s}^{2}=0.34 \mathrm{~m} / \mathrm{s}
$$

From 6 to 7 ms , region D has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{D}}=\frac{1}{2}(0.0010 \mathrm{~s})\left(200 \mathrm{~m} / \mathrm{s}^{2}\right)=0.10 \mathrm{~m} / \mathrm{s} .
$$

Substituting these values into Eq. 2-26, with $v_{0}=0$ then gives

$$
v_{\text {helmeeted }}=0.12 \mathrm{~m} / \mathrm{s}+0.26 \mathrm{~m} / \mathrm{s}+0.34 \mathrm{~m} / \mathrm{s}+0.10 \mathrm{~m} / \mathrm{s}=0.82 \mathrm{~m} / \mathrm{s}
$$

Carrying out similar calculations for the unhelmeted, bare head, we have the following results: From 0 to 3 ms , region A has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{A}}=\frac{1}{2}(0.0030 \mathrm{~s})\left(40 \mathrm{~m} / \mathrm{s}^{2}\right)=0.060 \mathrm{~m} / \mathrm{s}
$$

From 3 ms to 4 ms , region B has the shape of a rectangle with area

$$
\operatorname{area}_{\mathrm{B}}=(0.0010 \mathrm{~s})\left(40 \mathrm{~m} / \mathrm{s}^{2}\right)=0.040 \mathrm{~m} / \mathrm{s} .
$$

From 4 to 6 ms , region C has the shape of a trapezoid with area

$$
\operatorname{area}_{\mathrm{C}}=\frac{1}{2}(0.0020 \mathrm{~s})(40+80) \mathrm{m} / \mathrm{s}^{2}=0.12 \mathrm{~m} / \mathrm{s} .
$$

From 6 to 7 ms , region D has the shape of a triangle with area

$$
\operatorname{area}_{\mathrm{D}}=\frac{1}{2}(0.0010 \mathrm{~s})\left(80 \mathrm{~m} / \mathrm{s}^{2}\right)=0.040 \mathrm{~m} / \mathrm{s} .
$$

Substituting these values into Eq. 2-26, with $v_{0}=0$ then gives

$$
v_{\text {unhelmeted }}=0.060 \mathrm{~m} / \mathrm{s}+0.040 \mathrm{~m} / \mathrm{s}+0.12 \mathrm{~m} / \mathrm{s}+0.040 \mathrm{~m} / \mathrm{s}=0.26 \mathrm{~m} / \mathrm{s}
$$

Thus, the difference in the speed is

$$
\Delta v=v_{\text {helmeted }}-v_{\text {unhelmeted }}=0.82 \mathrm{~m} / \mathrm{s}-0.26 \mathrm{~m} / \mathrm{s}=0.56 \mathrm{~m} / \mathrm{s}
$$

63. We denote the required time as t, assuming the light turns green when the clock reads zero. By this time, the distances traveled by the two vehicles must be the same.
(a) Denoting the acceleration of the automobile as a and the (constant) speed of the truck as v then

$$
\Delta x=\left(\frac{1}{2} a t^{2}\right)_{\text {car }}=(v t)_{\text {truck }}
$$

which leads to

$$
t=\frac{2 v}{a}=\frac{2(9.5)}{2.2}=8.6 \mathrm{~s}
$$

Therefore,

$$
\Delta x=v t=(9.5)(8.6)=82 \mathrm{~m} .
$$

(b) The speed of the car at that moment is

$$
v_{\mathrm{car}}=a t=(2.2)(8.6)=19 \mathrm{~m} / \mathrm{s} .
$$

64. We take the moment of applying brakes to be $t=0$. The deceleration is constant so that Table 2-1 can be used. Our primed variables (such as $v_{0}^{\prime}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$) refer to one train (moving in the $+x$ direction and located at the origin when $t=0$) and unprimed variables refer to the other (moving in the $-x$ direction and located at $x_{0}=$ +950 m when $t=0$). We note that the acceleration vector of the unprimed train points in the positive direction, even though the train is slowing down; its initial velocity is $v_{0}=-144 \mathrm{~km} / \mathrm{h}=-40 \mathrm{~m} / \mathrm{s}$. Since the primed train has the lower initial speed, it should stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it should stop (meaning $v^{\prime}=0$) at

$$
x^{\prime}=\frac{\left(v^{\prime}\right)^{2}-\left(v_{0}^{\prime}\right)^{2}}{2 a^{\prime}}=\frac{0-20^{2}}{-2}=200 \mathrm{~m} .
$$

The speed of the other train, when it reaches that location, is

$$
v=\sqrt{v_{o}^{2}+2 a \Delta x}=\sqrt{(-40)^{2}+2(1.0)(200-950)}=\sqrt{100}=10 \mathrm{~m} / \mathrm{s}
$$

using Eq 2-16 again. Specifically, its velocity at that moment would be $-10 \mathrm{~m} / \mathrm{s}$ since it is still traveling in the $-x$ direction when it crashes. If the computation of v had failed (meaning that a negative number would have been inside the square root) then we would have looked at the possibility that there was no collision and examined how far apart they finally were. A concern that can be brought up is whether the primed train collides before it comes to rest; this can be studied by computing the time it stops (Eq. 2-11 yields $t=20 \mathrm{~s}$) and seeing where the unprimed train is at that moment (Eq. 2-18 yields $x=350 \mathrm{~m}$, still a good distance away from contact).
65. The y coordinate of Piton 1 obeys $y-y_{01}=-\frac{1}{2} g t^{2}$ where $y=0$ when $t=3.0 \mathrm{~s}$. This allows us to solve for y_{01}, and we find $y_{01}=44.1 \mathrm{~m}$. The graph for the coordinate of Piton 2 (which is thrown apparently at $t=1.0 \mathrm{~s}$ with velocity v_{1}) is

$$
y-y_{02}=v_{1}(t-1.0)-\frac{1}{2} g(t-1.0)^{2}
$$

where $y_{02}=y_{01}+10=54.1 \mathrm{~m}$ and where (again) $y=0$ when $t=3.0 \mathrm{~s}$. Thus we obtain $\left|v_{1}\right|=17 \mathrm{~m} / \mathrm{s}$, approximately.
66. (a) The derivative (with respect to time) of the given expression for x yields the "velocity" of the spot:

$$
v(t)=9-\frac{9}{4} t^{2}
$$

with 3 significant figures understood. It is easy to see that $v=0$ when $t=2.00 \mathrm{~s}$.
(b) At $t=2 \mathrm{~s}, x=9(2)-3 / 4(2)^{3}=12$. Thus, the location of the spot when $v=0$ is 12.0 cm from left edge of screen.
(c) The derivative of the velocity is $a=-\frac{9}{2} t$ which gives an acceleration (leftward) of magnitude $9.00 \mathrm{~m} / \mathrm{s}^{2}$ when the spot is 12 cm from left edge of screen.
(d) Since $v>0$ for times less than $t=2 \mathrm{~s}$, then the spot had been moving rightwards.
(e) As implied by our answer to part (c), it moves leftward for times immediately after $t=2 \mathrm{~s}$. In fact, the expression found in part (a) guarantees that for all $t>2, v<0$ (that is, until the clock is "reset" by reaching an edge).
(f) As the discussion in part (e) shows, the edge that it reaches at some $t>2 \mathrm{~s}$ cannot be the right edge; it is the left edge $(x=0)$. Solving the expression given in the problem statement (with $x=0$) for positive t yields the answer: the spot reaches the left edge at $t=\sqrt{12} \approx 3.46 \mathrm{~s}$.
67. We adopt the convention frequently used in the text: that "up" is the positive y direction.
(a) At the highest point in the trajectory $v=0$. Thus, with $t=1.60 \mathrm{~s}$, the equation $v=$ $v_{0}-g t$ yields $v_{0}=15.7 \mathrm{~m} / \mathrm{s}$.
(b) One equation that is not dependent on our result from part (a) is $y-y_{0}=v t+\frac{1}{2} g t^{2}$; this readily gives $y_{\max }-y_{0}=12.5 \mathrm{~m}$ for the highest ("max") point measured relative to where it started (the top of the building).
(c) Now we use our result from part (a) and plug into $y-y_{0}=v_{0} t+\frac{1}{2} g t^{2}$ with $t=6.00$ s and $y=0$ (the ground level). Thus, we have

$$
0-y_{0}=(15.68 \mathrm{~m} / \mathrm{s})(6.00 \mathrm{~s})-\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.00 \mathrm{~s})^{2}
$$

Therefore, y_{0} (the height of the building) is equal to 82.3 meters.
68. The acceleration is constant and we may use the equations in Table 2-1.
(a) Taking the first point as coordinate origin and time to be zero when the car is there, we apply Eq. 2-17 (with SI units understood):

$$
x=\frac{1}{2}\left(v+v_{0}\right) t=\frac{1}{2}\left(15.0+v_{0}\right)(6.00) .
$$

With $x=60.0 \mathrm{~m}$ (which takes the direction of motion as the $+x$ direction) we solve for the initial velocity: $v_{0}=5.00 \mathrm{~m} / \mathrm{s}$.
(b) Substituting $v=15.0 \mathrm{~m} / \mathrm{s}, v_{0}=5.00 \mathrm{~m} / \mathrm{s}$ and $t=6.00 \mathrm{~s}$ into $a=\left(v-v_{0}\right) / t$ (Eq. 2-11), we find $a=1.67 \mathrm{~m} / \mathrm{s}^{2}$.
(c) Substituting $v=0$ in $v^{2}=v_{0}^{2}+2 a x$ and solving for x, we obtain

$$
x=-\frac{v_{0}^{2}}{2 a}=-\frac{(5.00)^{2}}{2(1.67)}=-7.50 \mathrm{~m}
$$

or $|x|=7.50 \mathrm{~m}$.
(d) The graphs require computing the time when $v=0$, in which case, we use $v=v_{0}+$ $a t^{\prime}=0$. Thus,

$$
t^{\prime}=\frac{-v_{0}}{a}=\frac{-5.00}{1.67}=-3.0 \mathrm{~s}
$$

indicates the moment the car was at rest. SI units are assumed.

69. (a) The wording of the problem makes it clear that the equations of Table 2-1 apply, the challenge being that v_{0}, v , and a are not explicitly given. We can, however, apply $x-x_{0}=\mathrm{v}_{0} t+\frac{1}{2} a t^{2}$ to a variety of points on the graph and solve for the unknowns from the simultaneous equations. For instance,

$$
\begin{aligned}
& 16-0=v_{0}(2.0)+\frac{1}{2} a(2.0)^{2} \\
& { }^{2} 7-0=v_{0}(3.0)+\frac{1}{2} a(3.0)^{2}
\end{aligned}
$$

lead to the values $v_{0}=6.0 \mathrm{~m} / \mathrm{s}$ and $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$.
(b) From Table 2-1,

$$
x-x_{0}=v t-\frac{1}{2} a t^{2} \quad \Rightarrow \quad 27-0=v(3.0)-\frac{1}{2}(2.0)(3.0)^{2}
$$

which leads to $v=12 \mathrm{~m} / \mathrm{s}$.
(c) Assuming the wind continues during $3.0 \leq t \leq 6.0$, we apply $x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$ to this interval (where $\mathrm{v}_{0}=12.0 \mathrm{~m} / \mathrm{s}$ from part (b)) to obtain

$$
\Delta x=(12.0)(3.0)+\frac{1}{2}(2.0)(3.0)^{2}=45 \mathrm{~m}
$$

70. Taking the $+y$ direction downward and $y_{0}=0$, we have $y=v_{0} t+\frac{1}{2} g t^{2}$ which (with $v_{0}=0$) yields $t=\sqrt{2 y / g}$.
(a) For this part of the motion, $y=50 \mathrm{~m}$ so that

$$
t=\sqrt{\frac{2(50)}{9.8}}=3.2 \mathrm{~s}
$$

(b) For this next part of the motion, we note that the total displacement is $y=100 \mathrm{~m}$. Therefore, the total time is

$$
t=\sqrt{\frac{2(100)}{9.8}}=4.5 \mathrm{~s}
$$

The different between this and the answer to part (a) is the time required to fall through that second 50 m distance: $4.5-3.2=1.3 \mathrm{~s}$.
71. We take the direction of motion as $+x$, so $a=-5.18 \mathrm{~m} / \mathrm{s}^{2}$, and we use SI units, so $v_{0}=55(1000 / 3600)=15.28 \mathrm{~m} / \mathrm{s}$.
(a) The velocity is constant during the reaction time T, so the distance traveled during it is

$$
d_{r}=v_{0} T-(15.28)(0.75)=11.46 \mathrm{~m} .
$$

We use Eq. 2-16 (with $v=0$) to find the distance d_{b} traveled during braking:

$$
v^{2}=v_{0}^{2}+2 a d_{b} \Rightarrow d_{b}=-\frac{15.28^{2}}{2(-5.18)}
$$

which yields $d_{b}=22.53 \mathrm{~m}$. Thus, the total distance is $d_{r}+d_{b}=34.0 \mathrm{~m}$, which means that the driver is able to stop in time. And if the driver were to continue at v_{0}, the car would enter the intersection in $t=(40 \mathrm{~m}) /(15.28 \mathrm{~m} / \mathrm{s})=2.6 \mathrm{~s}$ which is (barely) enough time to enter the intersection before the light turns, which many people would consider an acceptable situation.
(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than the distance to the intersection, so the driver cannot stop without the front end of the car being a couple of meters into the intersection. And the time to reach it at constant speed is $32 / 15.28=2.1 \mathrm{~s}$, which is too long (the light turns in 1.8 s). The driver is caught between a rock and a hard place.
72. Direction of $+x$ is implicit in the problem statement. The initial position (when the clock starts) is $x_{0}=0$ (where $v_{0}=0$), the end of the speeding-up motion occurs at $x_{1}=$ $1100 / 2=550 \mathrm{~m}$, and the subway comes to a halt $\left(v_{2}=0\right)$ at $x_{2}=1100 \mathrm{~m}$.
(a) Using Eq. 2-15, the subway reaches x_{1} at

$$
t_{1}=\sqrt{\frac{2 x_{1}}{a_{1}}}=\sqrt{\frac{2(550)}{1.2}}=30.3 \mathrm{~s} \mathrm{.}
$$

The time interval $t_{2}-t_{1}$ turns out to be the same value (most easily seen using Eq. $2-18$ so the total time is $t_{2}=2(30.3)=60.6 \mathrm{~s}$.
(b) Its maximum speed occurs at t_{1} and equals

$$
v_{1}=v_{0}+a_{1} t_{1}=36.3 \mathrm{~m} / \mathrm{s} .
$$

(c) The graphs are shown below:

73. During T_{r} the velocity v_{0} is constant (in the direction we choose as $+x$) and obeys $v_{0}=D_{r} / T_{r}$ where we note that in SI units the velocity is $v_{0}=200(1000 / 3600)=55.6$ m / s. During T_{b} the acceleration is opposite to the direction of v_{0} (hence, for us, $a<0$) until the car is stopped $(v=0)$.
(a) Using Eq. 2-16 (with $\Delta x_{b}=170 \mathrm{~m}$) we find

$$
v^{2}=v_{0}^{2}+2 a \Delta x_{b} \Rightarrow a=-\frac{v_{0}^{2}}{2 \Delta x_{b}}
$$

which yields $|a|=9.08 \mathrm{~m} / \mathrm{s}^{2}$.
(b) We express this as a multiple of g by setting up a ratio:

$$
a=\left(\frac{9.08}{9.8}\right) 9=0.926 \mathrm{~g} .
$$

(c) We use Eq. 2-17 to obtain the braking time:

$$
\Delta x_{b}=\frac{1}{2}\left(v_{0}+v\right) T_{b} \Rightarrow T_{b}=\frac{2(170)}{55.6}=6.12 \mathrm{~s} .
$$

(d) We express our result for T_{b} as a multiple of the reaction time T_{r} by setting up a ratio:

$$
T_{b}=\left(\frac{6.12}{400 \times 10^{-3}}\right) T_{r}=15.3 T_{r}
$$

(e) Since $T_{b}>T_{r}$, most of the full time required to stop is spent in braking.
(f) We are only asked what the increase in distance D is, due to $\Delta T_{r}=0.100 \mathrm{~s}$, so we simply have

$$
\Delta D=v_{0} \Delta T_{r}=(55.6)(0.100)=5.56 \mathrm{~m}
$$

74. We assume constant velocity motion and use Eq. 2-2 (with $v_{\text {avg }}=v>0$). Therefore,

$$
\Delta x=v \Delta t=\left(303 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)\right)\left(100 \times 10^{-3} \mathrm{~s}\right)=8.4 \mathrm{~m} .
$$

75. Integrating (from $t=2 \mathrm{~s}$ to variable $t=4 \mathrm{~s}$) the acceleration to get the velocity (and using the velocity datum mentioned in the problem, leads to

$$
\mathrm{v}=17+\frac{1}{2}(5)\left(4^{2}-2^{2}\right)=47 \mathrm{~m} / \mathrm{s}
$$

76. The statement that the stoneflies have "constant speed along a straight path" means we are dealing with constant velocity motion (Eq. 2-2 with $v_{\text {avg }}$ replaced with v_{s} or v_{ns}, as the case may be).
(a) We set up the ratio and simplify (using d for the common distance).

$$
\frac{v_{\mathrm{s}}}{v_{\mathrm{ns}}}=\frac{d / t_{\mathrm{s}}}{d / t_{\mathrm{ns}}}=\frac{t_{\mathrm{ns}}}{t_{\mathrm{s}}}=\frac{25.0}{7.1}=3.52 \approx 3.5 .
$$

(b) We examine Δt and simplify until we are left with an expression having numbers and no variables other than v_{s}. Distances are understood to be in meters.

$$
t_{\mathrm{ns}}-t_{\mathrm{s}}=\frac{2}{v_{\mathrm{ns}}}-\frac{2}{v_{\mathrm{s}}}=\frac{2}{\left(v_{\mathrm{s}} / 3.52\right)}-\frac{2}{v_{\mathrm{s}}}=\frac{2}{v_{\mathrm{s}}}(3.52-1) \approx \frac{5.0 \mathrm{~m}}{v_{\mathrm{s}}}
$$

77. We orient + along the direction of motion (so a will be negative-valued, since it is a deceleration), and we use Eq. 2-7 with

$$
a_{\text {avg }}=-3400 g=-3400(9.8)=-3.33 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

and $v=0$ (since the recorder finally comes to a stop).

$$
a_{\mathrm{avg}}=\frac{v-v_{0}}{\Delta t} \Rightarrow v_{0}=\left(3.33 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.5 \times 10^{-3} \mathrm{~s}\right)
$$

which leads to $v_{0}=217 \mathrm{~m} / \mathrm{s}$.
78. (a) We estimate $x \approx 2 \mathrm{~m}$ at $t=0.5 \mathrm{~s}$, and $x \approx 12 \mathrm{~m}$ at $t=4.5 \mathrm{~s}$. Hence, using the definition of average velocity Eq. 2-2, we find

$$
v_{\mathrm{avg}}=\frac{12-2}{4.5-0.5}=2.5 \mathrm{~m} / \mathrm{s}
$$

(b) In the region $4.0 \leq t \leq 5.0$, the graph depicts a straight line, so its slope represents the instantaneous velocity for any point in that interval. Its slope is the average velocity between $t=4.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$:

$$
v_{\text {avg }}=\frac{16.0-8.0}{5.0-4.0}=8.0 \mathrm{~m} / \mathrm{s} .
$$

Thus, the instantaneous velocity at $t=4.5 \mathrm{~s}$ is $8.0 \mathrm{~m} / \mathrm{s}$. (Note: similar reasoning leads to a value needed in the next part: the slope of the $0 \leq t \leq 1$ region indicates that the instantaneous velocity at $t=0.5 \mathrm{~s}$ is $4.0 \mathrm{~m} / \mathrm{s}$.)
(c) The average acceleration is defined by Eq. 2-7:

$$
a_{\mathrm{avg}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{8.0-4.0}{4.5-0.5}=1.0 \mathrm{~m} / \mathrm{s}
$$

(d) The instantaneous acceleration is the instantaneous rate-of-change of the velocity, and the constant x vs. t slope in the interval $4.0 \leq t \leq 5.0$ indicates that the velocity is constant during that interval. Therefore, $a=0$ at $t=4.5 \mathrm{~s}$.
79. We use the functional notation $x(t), v(t)$ and $a(t)$ and find the latter two quantities by differentiating:

$$
v(t)=\frac{d x(t)}{t}=6.0 t^{2} \quad \text { and } \quad a(t)=\frac{d v(t)}{d t}=12 t
$$

with SI units understood. These expressions are used in the parts that follow.
(a) Using the definition of average velocity, Eq. 2-2, we find

$$
v_{\text {avg }}=\frac{x(2)-x(1)}{2.0-1.0}=\frac{2(2)^{3}-2(1)^{3}}{1.0}=14 \mathrm{~m} / \mathrm{s} .
$$

(b) The average acceleration is defined by Eq. 2-7:

$$
a_{\mathrm{avg}}=\frac{v(2)-v(1)}{2.0-1.0}=\frac{6(2)^{2}-6(1)^{2}}{1.0}=18 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The value of $v(t)$ when $t=1.0 \mathrm{~s}$ is $v(1)=6(1)^{2}=6.0 \mathrm{~m} / \mathrm{s}$.
(d) The value of $a(t)$ when $t=1.0 \mathrm{~s}$ is $a(1)=12(1)=12 \mathrm{~m} / \mathrm{s}^{2}$.
(e) The value of $v(t)$ when $t=2.0 \mathrm{~s}$ is $v(2)=6(2)^{2}=24 \mathrm{~m} / \mathrm{s}$.
(f) The value of $a(t)$ when $t=2.0 \mathrm{~s}$ is $a(2)=12(2)=24 \mathrm{~m} / \mathrm{s}^{2}$.
(g) We don't expect average values of a quantity, say, heights of trees, to equal any particular height for a specific tree, but we are sometimes surprised at the different kinds of averaging that can be performed. Now, the acceleration is a linear function (of time) so its average as defined by Eq. 2-7 is, not surprisingly, equal to the arithmetic average of its $a(1)$ and $a(2)$ values. The velocity is not a linear function so the result of part (a) is not equal to the arithmetic average of parts (c) and (e) (although it is fairly close). This reminds us that the calculus-based definition of the average a function (equivalent to Eq. 2-2 for $v_{\text {avg }}$) is not the same as the simple idea of an arithmetic average of two numbers; in other words,

$$
\frac{1}{t^{\prime}-t} \int_{t}^{t^{\prime}} f(\tau) d \tau \neq \frac{f\left(t^{\prime}\right)-f(t)}{2}
$$

except in very special cases (like with linear functions).
(h) The graphs are shown below, $x(t)$ on the left and $v(t)$ on the right. SI units are understood. We do not show the tangent lines (representing instantaneous slope values) at $t=1$ and $t=2$, but we do show line segments representing the average quantities computed in parts (a) and (b).

80. (a) Let the height of the diving board be h. We choose down as the $+y$ direction and set the coordinate origin at the point where it was dropped (which is when we start the clock). Thus, $y=h$ designates the location where the ball strikes the water. Let the depth of the lake be D, and the total time for the ball to descend be T. The speed of the ball as it reaches the surface of the lake is then $v=\sqrt{2 g h}$ (from Eq. $2-16$), and the time for the ball to fall from the board to the lake surface is $t_{1}=$ $\sqrt{2 h / g}$ (from Eq. 2-15). Now, the time it spends descending in the lake (at constant velocity v) is

$$
t_{2}=\frac{D}{v}=\frac{D}{\sqrt{2 g h}}
$$

Thus, $T=t_{1}+t_{2}=\sqrt{\frac{2 h}{g}}+\frac{D}{\sqrt{2 g h}}$, which gives

$$
D=T \sqrt{2 g h}-2 h=(4.80) \sqrt{(2)(9.80)(5.20)}-(2)(5.20)=38.1 \mathrm{~m}
$$

(b) Using Eq. 2-2, the magnitude of the average velocity is

$$
v_{\text {avg }}=\frac{D+h}{T}=\frac{38.1+5.20}{4.80}=9.02 \mathrm{~m} / \mathrm{s}
$$

(c) In our coordinate choices, a positive sign for $v_{\text {avg }}$ means that the ball is going downward. If, however, upwards had been chosen as the positive direction, then this answer in (b) would turn out negative-valued.
(d) We find v_{0} from $\Delta y=v_{0} t+\frac{1}{2} g t^{2}$ with $t=T$ and $\Delta y=h+D$. Thus,

$$
v_{0}=\frac{h+D}{T}-\frac{g T}{2}=\frac{5.20+38.1}{4.80}-\frac{(9.8)(4.80)}{2}=14.5 \mathrm{~m} / \mathrm{s}
$$

(e) Here in our coordinate choices the negative sign means that the ball is being thrown upward.
81. The time being considered is 6 years and roughly 235 days, which is approximately $\Delta t=2.1 \times 10^{7} \mathrm{~s}$. Using Eq. 2-3, we find the average speed to be

$$
\frac{30600 \times 10^{3} \mathrm{~m}}{2.1 \times 10^{8} \mathrm{~s}}=0.15 \mathrm{~m} / \mathrm{s}
$$

82. (a) It follows from Eq. 2-8 that $v-v_{0}=\int a d t$, which has the geometric interpretation of being the area under the graph. Thus, with $v_{0}=2.0 \mathrm{~m} / \mathrm{s}$ and that area amounting to $3.0 \mathrm{~m} / \mathrm{s}$ (adding that of a triangle to that of a square, over the interval $0 \leq t \leq 2 \mathrm{~s}$), we find $v=2.0+3.0=5.0 \mathrm{~m} / \mathrm{s}$ (which we will denote as v_{2} in the next part). The information given that $x_{0}=4.0 \mathrm{~m}$ is not used in this solution.
(b) During $2<t \leq 4 \mathrm{~s}$, the graph of a is a straight line with slope $1.0 \mathrm{~m} / \mathrm{s}^{3}$. Extrapolating, we see that the intercept of this line with the a axis is zero. Thus, with SI units understood,

$$
v=v_{2}+\int_{2.0}^{t} a d \tau=5.0+\int_{2.0}^{t}(1.0) \tau d \tau=5.0+\frac{(1.0) t^{2}-(1.0)(2.0)^{2}}{2}
$$

which yield $v=3.0+0.50 t^{2}$ in m / s.
83. We take $+x$ in the direction of motion. We use subscripts 1 and 2 for the data. Thus, $v_{1}=+30 \mathrm{~m} / \mathrm{s}, v_{2}=+50 \mathrm{~m} / \mathrm{s}$ and $x_{2}-x_{1}=+160 \mathrm{~m}$.
(a) Using these subscripts, Eq. 2-16 leads to

$$
a=\frac{v_{2}^{2}-v_{1}^{2}}{2\left(x_{2}-x_{1}\right)}=\frac{50^{2}-30^{2}}{2(160)}=5.0 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) We find the time interval corresponding to the displacement $x_{2}-x_{1}$ using Eq. 2-17:

$$
t_{2}-t_{1}=\frac{2\left(x_{2}-x_{1}\right)}{v_{1}+v_{2}}=\frac{2(160)}{30+50}=4.0 \mathrm{~s} \mathrm{.}
$$

(c) Since the train is at rest $\left(v_{0}=0\right)$ when the clock starts, we find the value of t_{1} from Eq. 2-11:

$$
v_{1}=v_{0}+a t_{1} \Rightarrow t_{1}=\frac{30}{5.0}=6.0 \mathrm{~s}
$$

(d) The coordinate origin is taken to be the location at which the train was initially at rest (so $x_{0}=0$). Thus, we are asked to find the value of x_{1}. Although any of several equations could be used, we choose Eq. 2-17:

$$
x_{1}=\frac{1}{2}\left(v_{0}+v_{1}\right) t_{1}=\frac{1}{2}(30)(6.0)=90 \mathrm{~m} .
$$

(e) The graphs are shown below, with SI units assumed.

84. We choose down as the $+y$ direction and use the equations of Table 2-1 (replacing x with y) with $a=+g, v_{0}=0$ and $y_{0}=0$. We use subscript 2 for the elevator reaching the ground and 1 for the halfway point.
(a) Eq. 2-16, $v_{2}^{2}=v_{0}^{2}+2 a\left(y_{2}-y_{0}\right)$, leads to

$$
v_{2}=\sqrt{2 g y_{2}}=\sqrt{2(9.8)(120)}=48.5 \mathrm{~m} / \mathrm{s} .
$$

(b) The time at which it strikes the ground is (using Eq. 2-15)

$$
t_{2}=\sqrt{\frac{2 y_{2}}{g}}=\sqrt{\frac{2(120)}{9.8}}=4.95 \mathrm{~s} \mathrm{.}
$$

(c) Now Eq. 2-16, in the form $v_{1}^{2}=v_{0}^{2}+2 a\left(y_{1}-y_{0}\right)$, leads to

$$
v_{1}=\sqrt{2 g y_{1}}=\sqrt{2(9.8)(60)}=34.3 \mathrm{~m} / \mathrm{s} .
$$

(d) The time at which it reaches the halfway point is (using Eq. 2-15)

$$
t_{1}=\sqrt{\frac{2 y_{1}}{g}}=\sqrt{\frac{2(60)}{9.8}}=3.50 \mathrm{~s}
$$

85. We take the direction of motion as $+x$, take $x_{0}=0$ and use SI units, so $v=$ $1600(1000 / 3600)=444 \mathrm{~m} / \mathrm{s}$.
(a) Eq. 2-11 gives $444=a(1.8)$ or $a=247 \mathrm{~m} / \mathrm{s}^{2}$. We express this as a multiple of g by setting up a ratio:

$$
a=\left(\frac{247}{9.8}\right) g=25 g .
$$

(b) Eq. 2-17 readily yields

$$
x=\frac{1}{2}\left(v_{0}+v\right) t=\frac{1}{2}(444)(1.8)=400 \mathrm{~m} .
$$

86. This problem consists of two parts: part 1 with constant acceleration (so that the equations in Table 2-1 apply), $v_{0}=0, v=11.0 \mathrm{~m} / \mathrm{s}, x=12.0 \mathrm{~m}$, and $x_{0}=0$ (adopting the starting line as the coordinate origin); and, part 2 with constant velocity (so that $x-x_{0}=v t$ applies) with $v=11.0 \mathrm{~m} / \mathrm{s}, x_{0}=12.0$, and $x=100.0 \mathrm{~m}$.
(a) We obtain the time for part 1 from Eq. 2-17

$$
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t_{1} \Rightarrow 12.0-0=\frac{1}{2}(0+11.0) t_{1}
$$

so that $t_{1}=2.2 \mathrm{~s}$, and we find the time for part 2 simply from $88.0=(11.0) t_{2} \rightarrow t_{2}=$ 8.0 s . Therefore, the total time is $t_{1}+t_{2}=10.2 \mathrm{~s}$.
(b) Here, the total time is required to be 10.0 s , and we are to locate the point x_{p} where the runner switches from accelerating to proceeding at constant speed. The equations for parts 1 and 2, used above, therefore become

$$
\begin{aligned}
x_{p}-0 & =\frac{1}{2}(0+11.0) t_{1} \\
100.0-x_{p} & =(11.0)\left(10.0-t_{1}\right)
\end{aligned}
$$

where in the latter equation, we use the fact that $t_{2}=10.0-t_{1}$. Solving the equations for the two unknowns, we find that $t_{1}=1.8 \mathrm{~s}$ and $x_{p}=10.0 \mathrm{~m}$.
87. We take $+x$ in the direction of motion, so

$$
v=(60 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)=+16.7 \mathrm{~m} / \mathrm{s}
$$

and $a>0$. The location where it starts from rest $\left(v_{0}=0\right)$ is taken to be $x_{0}=0$.
(a) Eq. 2-7 gives $a_{\text {avg }}=\left(v-v_{0}\right) / t$ where $t=5.4 \mathrm{~s}$ and the velocities are given above. Thus, $a_{\text {avg }}=3.1 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The assumption that $a=$ constant permits the use of Table 2-1. From that list, we choose Eq. 2-17:

$$
x=\frac{1}{2}\left(v_{0}+v\right) t=\frac{1}{2}(16.7)(5.4)=45 \mathrm{~m} .
$$

(c) We use Eq. 2-15, now with $x=250 \mathrm{~m}$:

$$
x=\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{2 x}{a}}=\sqrt{\frac{2(250)}{3.1}}
$$

which yields $t=13 \mathrm{~s}$.
88. (a) Using the fact that the area of a triangle is $\frac{1}{2}$ (base) (height) (and the fact that the integral corresponds to the area under the curve) we find, from $t=0$ through $t=5$ s , the integral of v with respect to t is 15 m . Since we are told that $x_{0}=0$ then we conclude that $x=15 \mathrm{~m}$ when $t=5.0 \mathrm{~s}$.
(b) We see directly from the graph that $v=2.0 \mathrm{~m} / \mathrm{s}$ when $t=5.0 \mathrm{~s}$.
(c) Since $a=d v / d t=$ slope of the graph, we find that the acceleration during the interval $4<t<6$ is uniformly equal to $-2.0 \mathrm{~m} / \mathrm{s}^{2}$.
(d) Thinking of $x(t)$ in terms of accumulated area (on the graph), we note that $x(1)=1$ m ; using this and the value found in part (a), Eq. 2-2 produces

$$
v_{\text {avg }}=\frac{x(5)-x(1)}{5-1}=\frac{15-1}{4}=3.5 \mathrm{~m} / \mathrm{s} .
$$

(e) From Eq. 2-7 and the values $v(t)$ we read directly from the graph, we find

$$
a_{\mathrm{avg}}=\frac{v(5)-v(1)}{5-1}=\frac{2-2}{4}=0 .
$$

89. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the stone's motion. We are allowed to use Table 2-1 (with Δx replaced by y) because the ball has constant acceleration motion (and we choose $y_{0}=0$).
(a) We apply Eq. 2-16 to both measurements, with SI units understood.

$$
\begin{array}{ll}
v_{B}^{2}=v_{0}^{2}-2 g y_{B} & \Rightarrow \quad\left(\frac{1}{2} v\right)^{2}+2 g\left(y_{A}+3\right)=v_{0}^{2} \\
v_{A}^{2}=v_{0}^{2}-2 g y_{A} & \Rightarrow \quad v^{2}+2 g y_{A}=v_{0}^{2}
\end{array}
$$

We equate the two expressions that each equal v_{0}^{2} and obtain

$$
\frac{1}{4} v^{2}+2 g y_{A}+2 g(3)=v^{2}+2 g y_{A} \quad \Rightarrow \quad 2 g(3)=\frac{3}{4} v^{2}
$$

which yields $v=\sqrt{2 g(4)}=8.85 \mathrm{~m} / \mathrm{s}$.
(b) An object moving upward at A with speed $v=8.85 \mathrm{~m} / \mathrm{s}$ will reach a maximum height $y-y_{A}=v^{2} / 2 g=4.00 \mathrm{~m}$ above point A (this is again a consequence of Eq. 2-16, now with the "final" velocity set to zero to indicate the highest point). Thus, the top of its motion is 1.00 m above point B.
90. The object, once it is dropped ($v_{0}=0$) is in free-fall ($a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ if we take down as the $-y$ direction), and we use Eq. 2-15 repeatedly.
(a) The (positive) distance D from the lower dot to the mark corresponding to a certain reaction time t is given by $\Delta y=-D=-\frac{1}{2} g t^{2}$, or $D=g t^{2} / 2$. Thus, for $t_{1}=50.0 \mathrm{~ms}$,

$$
D_{1}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(50.0 \times 10^{-3} \mathrm{~s}\right)^{2}}{2}=0.0123 \mathrm{~m}=1.23 \mathrm{~cm} .
$$

(b) For $t_{2}=100 \mathrm{~ms}, \quad D_{2}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(100 \times 10^{-3} \mathrm{~s}\right)^{2}}{2}=0.049 \mathrm{~m}=4 D_{1}$.
(c) For $t_{3}=150 \mathrm{~ms}, \quad D_{3}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(150 \times 10^{-3} \mathrm{~s}\right)^{2}}{2}=0.11 \mathrm{~m}=9 D_{1}$.
(d) For $t_{4}=200 \mathrm{~ms}, \quad D_{4}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(200 \times 10^{-3} \mathrm{~s}\right)^{2}}{2}=0.196 \mathrm{~m}=16 D_{1}$.
(e) For $t_{4}=250 \mathrm{~ms}, \quad D_{5}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(250 \times 10^{-3} \mathrm{~s}\right)^{2}}{2}=0.306 \mathrm{~m}=25 D_{1}$.
91. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y axis. The total time of fall can be computed from Eq. 2-15 (using the quadratic formula).

$$
\Delta y=v_{0} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{v_{0}+\sqrt{v_{0}^{2}-2 g \Delta y}}{g}
$$

with the positive root chosen. With $y=0, v_{0}=0$ and $y_{0}=h=60 \mathrm{~m}$, we obtain

$$
t=\frac{\sqrt{2 g h}}{g}=\sqrt{\frac{2 h}{g}}=3.5 \mathrm{~s} .
$$

Thus, " 1.2 s earlier" means we are examining where the rock is at $t=2.3 \mathrm{~s}$:

$$
y-h=v_{0}(2.3)-\frac{1}{2} g(2.3)^{2} \Rightarrow y=34 \mathrm{~m}
$$

where we again use the fact that $h=60 \mathrm{~m}$ and $v_{0}=0$.
92. With $+y$ upward, we have $y_{0}=36.6 \mathrm{~m}$ and $y=12.2 \mathrm{~m}$. Therefore, using Eq. 2-18 (the last equation in Table 2-1), we find

$$
y-y_{0}=v t+\frac{1}{2} g t^{2} \Rightarrow v=-22 \mathrm{~m} / \mathrm{s}
$$

at $t=2.00 \mathrm{~s}$. The term speed refers to the magnitude of the velocity vector, so the answer is $|v|=22.0 \mathrm{~m} / \mathrm{s}$.
93. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. When something is thrown straight up and is caught at the level it was thrown from (with a trajectory similar to that shown in Fig. 2-25), the time of flight t is half of its time of ascent t_{a}, which is given by Eq. 2-18 with $\Delta y=H$ and $v=0$ (indicating the maximum point).

$$
H=v t_{a}+\frac{1}{2} g t_{a}^{2} \quad \Rightarrow \quad t_{a}=\sqrt{\frac{2 H}{g}}
$$

Writing these in terms of the total time in the air $t=2 t_{a}$ we have

$$
H=\frac{1}{8} g t^{2} \quad \Rightarrow \quad t=2 \sqrt{\frac{2 H}{g}} .
$$

We consider two throws, one to height H_{1} for total time t_{1} and another to height H_{2} for total time t_{2}, and we set up a ratio:

$$
\frac{H_{2}}{H_{1}}=\frac{\frac{1}{8} g t_{2}^{2}}{\frac{1}{8} g t_{1}^{2}}=\left(\frac{t_{2}}{t_{1}}\right)^{2}
$$

from which we conclude that if $t_{2}=2 t_{1}$ (as is required by the problem) then $H_{2}=2^{2} H_{1}$ $=4 H_{1}$.
94. Taking $+y$ to be upward and placing the origin at the point from which the objects are dropped, then the location of diamond 1 is given by $y_{1}=-\frac{1}{2} g t^{2}$ and the location of diamond 2 is given by $y_{2}=-\frac{1}{2} g(t-1)^{2}$. We are starting the clock when the first object is dropped. We want the time for which $y_{2}-y_{1}=10 \mathrm{~m}$. Therefore,

$$
-\frac{1}{2} g(t-1)^{2}+\frac{1}{2} g t^{2}=10 \Rightarrow t=(10 / g)+0.5=1.5 \mathrm{~s} .
$$

95. We denote t_{r} as the reaction time and t_{b} as the braking time. The motion during t_{r} is of the constant-velocity (call it v_{0}) type. Then the position of the car is given by

$$
x=v_{0} t_{r}+v_{0} t_{b}+\frac{1}{2} a t_{b}^{2}
$$

where v_{0} is the initial velocity and a is the acceleration (which we expect to be negative-valued since we are taking the velocity in the positive direction and we know the car is decelerating). After the brakes are applied the velocity of the car is given by $v=v_{0}+a t_{b}$. Using this equation, with $v=0$, we eliminate t_{b} from the first equation and obtain

$$
x=v_{0} t_{r}-\frac{v_{0}^{2}}{a}+\frac{1}{2} \frac{v_{0}^{2}}{a}=v_{0} t_{r}-\frac{1}{2} \frac{v_{0}^{2}}{a} .
$$

We write this equation for each of the initial velocities:

$$
x_{1}=v_{01} t_{r}-\frac{1}{2} \frac{v_{01}^{2}}{a}
$$

and

$$
x_{2}=v_{02} t_{r}-\frac{1}{2} \frac{v_{02}^{2}}{a} .
$$

Solving these equations simultaneously for t_{r} and a we get

$$
t_{r}=\frac{v_{02}^{2} x_{1}-v_{01}^{2} x_{2}}{v_{01} v_{02}\left(v_{02}-v_{01}\right)}
$$

and

$$
a=-\frac{1}{2} \frac{v_{02} v_{01}^{2}-v_{01} v_{02}^{2}}{v_{02} x_{1}-v_{01} x_{2}} .
$$

(a) Substituting $x_{1}=56.7 \mathrm{~m}, v_{01}=80.5 \mathrm{~km} / \mathrm{h}=22.4 \mathrm{~m} / \mathrm{s}, x_{2}=24.4 \mathrm{~m}$ and $v_{02}=48.3$ $\mathrm{km} / \mathrm{h}=13.4 \mathrm{~m} / \mathrm{s}$, we find

$$
t_{r}=\frac{13.4^{2}(56.7)-22.4^{2}(24.4)}{(22.4)(13.4)(13.4-22.4)}=0.74 \mathrm{~s}
$$

(b) In a similar manner, substituting $x_{1}=56.7 \mathrm{~m}, v_{01}=80.5 \mathrm{~km} / \mathrm{h}=22.4 \mathrm{~m} / \mathrm{s}, x_{2}=24.4$ m and $v_{02}=48.3 \mathrm{~km} / \mathrm{h}=13.4 \mathrm{~m} / \mathrm{s}$ gives

$$
a=-\frac{1}{2} \frac{(13.4) 22.4^{2}-(22.4) 13.4^{2}}{(13.4)(56.7)-(22.4)(24.4)}=-6.2 \mathrm{~m} / \mathrm{s}^{2} .
$$

The magnitude of the deceleration is therefore $6.2 \mathrm{~m} / \mathrm{s}^{2}$. Although rounded off values are displayed in the above substitutions, what we have input into our calculators are the "exact" values (such as $v_{02}=\frac{161}{12} \mathrm{~m} / \mathrm{s}$).
96. Assuming the horizontal velocity of the ball is constant, the horizontal displacement is

$$
\Delta x=v \Delta t
$$

where Δx is the horizontal distance traveled, Δt is the time, and v is the (horizontal) velocity. Converting v to meters per second, we have $160 \mathrm{~km} / \mathrm{h}=44.4 \mathrm{~m} / \mathrm{s}$. Thus

$$
\Delta t=\frac{\Delta x}{v}=\frac{18.4 \mathrm{~m}}{44.4 \mathrm{~m} / \mathrm{s}}=0.414 \mathrm{~s} .
$$

The velocity-unit conversion implemented above can be figured "from basics" (1000 $\mathrm{m}=1 \mathrm{~km}, 3600 \mathrm{~s}=1 \mathrm{~h}$) or found in Appendix D.
97. In this solution, we make use of the notation $x(t)$ for the value of x at a particular t. Thus, $x(t)=50 t+10 t^{2}$ with SI units (meters and seconds) understood.
(a) The average velocity during the first 3 s is given by

$$
v_{\text {avg }}=\frac{x(3)-x(0)}{\Delta t}=\frac{(50)(3)+(10)(3)^{2}-0}{3}=80 \mathrm{~m} / \mathrm{s} .
$$

(b) The instantaneous velocity at time t is given by $v=d x / d t=50+20 t$, in SI units. At $t=3.0 \mathrm{~s}, v=50+(20)(3.0)=110 \mathrm{~m} / \mathrm{s}$.
(c) The instantaneous acceleration at time t is given by $a=d v / d t=20 \mathrm{~m} / \mathrm{s}^{2}$. It is constant, so the acceleration at any time is $20 \mathrm{~m} / \mathrm{s}^{2}$.
(d) and (e) The graphs that follow show the coordinate x and velocity v as functions of time, with SI units understood. The dashed line marked (a) in the first graph runs from $t=0, x=0$ to $t=3.0 \mathrm{~s}, x=240 \mathrm{~m}$. Its slope is the average velocity during the first 3 s of motion. The dashed line marked (b) is tangent to the x curve at $t=3.0 \mathrm{~s}$. Its slope is the instantaneous velocity at $t=3.0 \mathrm{~s}$.

98. The bullet starts at rest $\left(v_{0}=0\right)$ and after traveling the length of the barrel ($\Delta x=1.2 \mathrm{~m}$) emerges with the given velocity $(v=640 \mathrm{~m} / \mathrm{s})$, where the direction of motion is the positive direction. Turning to the constant acceleration equations in Table 2-1, we use

$$
\Delta x=\frac{1}{2}\left(v_{0}+v\right) t
$$

Thus, we find $t=0.00375 \mathrm{~s}$ (about 3.8 ms).
99. The velocity v at $t=6$ (SI units and two significant figures understood) is $v_{\text {given }}+\int_{-2}^{6} a d t$. A quick way to implement this is to recall the area of a triangle ($\frac{1}{2}$ base x height). The result is $v=7+32=39 \mathrm{~m} / \mathrm{s}$.

100 . Let D be the distance up the hill. Then average speed $=\frac{\text { total distance traveled }}{\text { total time of travel }}=\frac{2 D}{\frac{D}{20 \mathrm{~km} / \mathrm{h}}+\frac{D}{35 \mathrm{~km} / \mathrm{h}}} \approx 25 \mathrm{~km} / \mathrm{h}$.
101. The time Δt is $2(60)+41=161 \mathrm{~min}$ and the displacement $\Delta x=370 \mathrm{~cm}$. Thus, Eq. 2-2 gives

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{370}{161}=2.3 \mathrm{~cm} / \mathrm{min} .
$$

102. Converting to SI units, we have $v=3400(1000 / 3600)=944 \mathrm{~m} / \mathrm{s}$ (presumed constant) and $\Delta t=0.10 \mathrm{~s}$. Thus, $\Delta x=v \Delta t=94 \mathrm{~m}$.
103. The (ideal) driving time before the change was $t=\Delta x / v$, and after the change it is $t^{\prime}=\Delta x / v^{\prime}$. The time saved by the change is therefore

$$
t-t^{\prime}=\Delta x\left(\frac{1}{v}-\frac{1}{v^{\prime}}\right)=\Delta x\left(\frac{1}{55}-\frac{1}{65}\right)=\Delta x(0.0028 \mathrm{~h} / \mathrm{mi})
$$

which becomes, converting $\Delta x=700 / 1.61=435 \mathrm{mi}$ (using a conversion found on the inside front cover of the textbook), $t-t^{\prime}=(435)(0.0028)=1.2 \mathrm{~h}$. This is equivalent to 1 h and 13 min .
104. We take $+x$ in the direction of motion, so $v_{0}=+30 \mathrm{~m} / \mathrm{s}, v_{1}=+15 \mathrm{~m} / \mathrm{s}$ and $a<0$. The acceleration is found from Eq. 2-11: $a=\left(v_{1}-v_{0}\right) / t_{1}$ where $t_{1}=3.0 \mathrm{~s}$. This gives a $=-5.0 \mathrm{~m} / \mathrm{s}^{2}$. The displacement (which in this situation is the same as the distance traveled) to the point it stops ($v_{2}=0$) is, using Eq. 2-16,

$$
v_{2}^{2}=v_{0}^{2}+2 a \Delta x \Rightarrow \Delta x=-\frac{30^{2}}{2(-5)}=90 \mathrm{~m}
$$

105. During free fall, we ignore the air resistance and set $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ where we are choosing down to be the $-y$ direction. The initial velocity is zero so that Eq. 2-15 becomes $\Delta y=-\frac{1}{2} g t^{2}$ where Δy represents the negative of the distance d she has fallen. Thus, we can write the equation as $d=\frac{1}{2} g t^{2}$ for simplicity.
(a) The time t_{1} during which the parachutist is in free fall is (using Eq. 2-15) given by

$$
d_{1}=50 \mathrm{~m}=\frac{1}{2} g t_{1}^{2}=\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) t_{1}^{2}
$$

which yields $t_{1}=3.2 \mathrm{~s}$. The speed of the parachutist just before he opens the parachute is given by the positive root $v_{1}^{2}=2 g d_{1}$, or

$$
v_{1}=\sqrt{2 g h_{1}}=\sqrt{(2)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(50 \mathrm{~m})}=31 \mathrm{~m} / \mathrm{s} .
$$

If the final speed is v_{2}, then the time interval t_{2} between the opening of the parachute and the arrival of the parachutist at the ground level is

$$
t_{2}=\frac{v_{1}-v_{2}}{a}=\frac{31 \mathrm{~m} / \mathrm{s}-3.0 \mathrm{~m} / \mathrm{s}}{2 \mathrm{~m} / \mathrm{s}^{2}}=14 \mathrm{~s} .
$$

This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed minus final-speed); we also note that the acceleration vector for this part of the motion is positive since it points upward (opposite to the direction of motion - which makes it a deceleration). The total time of flight is therefore $t_{1}+t_{2}=17 \mathrm{~s}$.
(b) The distance through which the parachutist falls after the parachute is opened is given by

$$
d=\frac{v_{1}^{2}-v_{2}^{2}}{2 a}=\frac{(31 \mathrm{~m} / \mathrm{s})^{2}-(3.0 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)} \approx 240 \mathrm{~m} .
$$

In the computation, we have used Eq. 2-16 with both sides multiplied by -1 (which changes the negative-valued Δy into the positive d on the left-hand side, and switches the order of v_{1} and v_{2} on the right-hand side). Thus the fall begins at a height of $h=50$ $+d \approx 290 \mathrm{~m}$.
106. If the plane (with velocity v) maintains its present course, and if the terrain continues its upward slope of 4.3°, then the plane will strike the ground after traveling

$$
\Delta x=\frac{h}{\tan \theta}=\frac{35 \mathrm{~m}}{\tan 4.3^{\circ}}=465.5 \mathrm{~m} \approx 0.465 \mathrm{~km}
$$

This corresponds to a time of flight found from Eq. 2-2 (with $v=v_{\text {avg }}$ since it is constant)

$$
t=\frac{\Delta x}{v}=\frac{0.465 \mathrm{~km}}{1300 \mathrm{~km} / \mathrm{h}}=0.000358 \mathrm{~h} \approx 1.3 \mathrm{~s}
$$

This, then, estimates the time available to the pilot to make his correction.
107. (a) We note each reaction distance (second column in the table) is 0.75 multiplied by the values in the first column (initial speed). We conclude that a reaction time of 0.75 s is being assumed. Since we will need the assumed deceleration (during braking) in order to part (b), we point out here that the first column squared, divided by 2 and divided by the third column (see Eq. 2-16) gives $|a|$ $=10 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Multiplying $25 \mathrm{~m} / \mathrm{s}$ by 0.75 s gives a reaction distance of 18.75 m (where we are carrying out more figures than are meaningful, at least in these intermediate results, for the sake of not introducing round off errors into our calculations). Using Eq. 2-16 with an initial speed of $25 \mathrm{~m} / \mathrm{s}$ and a deceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$ leads to a braking distance of 31.25 m . Adding these distances gives the answer: 50 m . We note that this is close (but not exactly the same) as the value one would get if one simply interpolated using the last column in the table.
108. The problem consists of two constant-acceleration parts: part 1 with $\mathrm{v}_{0}=0, \mathrm{v}=$ $6.0 \mathrm{~m} / \mathrm{s}, x=1.8 \mathrm{~m}$, and $x_{0}=0$ (if we take its original position to be the coordinate origin); and, part 2 with $\mathrm{v}_{0}=6.0 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0$, and $a_{2}=-2.5 \mathrm{~m} / \mathrm{s}^{2}$ (negative because we are taking the positive direction to be the direction of motion).
(a) We can use Eq. 2-17 to find the time for the first part

$$
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t_{1} \Rightarrow 1.8-0=\frac{1}{2}(0+6.0) t_{1}
$$

so that $t_{1}=0.6 \mathrm{~s}$. And Eq. 2-11 is used to obtain the time for the second part

$$
v=v_{0}+a_{2} t_{2} \Rightarrow 0=6.0+(-2.5) t_{2}
$$

from which $t_{2}=2.4 \mathrm{~s}$ is computed. Thus, the total time is $t_{1}+t_{2}=3.0 \mathrm{~s}$.
(b) We already know the distance for part 1 . We could find the distance for part 2 from several of the equations, but the one that makes no use of our part (a) results is Eq. 2-16

$$
v^{2}=v_{0}^{2}+2 a_{2} \Delta x_{2} \quad \Rightarrow \quad 0=(6.0)^{2}+2(-2.5) \Delta x_{2}
$$

which leads to $\Delta x_{2}=7.2 \mathrm{~m}$. Therefore, the total distance traveled by the shuffleboard disk is $(1.8+7.2) \mathrm{m}=9.0 \mathrm{~m}$.
109. We obtain the velocity by integration of the acceleration: $v-v_{0}=\int_{0}^{t}\left(6.1-1.2 t^{\prime}\right) d t^{\prime}$. Lengths are in meters and times are in seconds. The student is encouraged to look at the discussion in the textbook in §2-7 to better understand the manipulations here.
(a) The result of the above calculation is

$$
v=v_{0}+6.1 t-0.6 t^{2}
$$

where the problem states that $v_{0}=2.7 \mathrm{~m} / \mathrm{s}$. The maximum of this function is found by knowing when its derivative (the acceleration) is zero ($a=0$ when $t=6.1 / 1.2=5.1 \mathrm{~s}$) and plugging that value of t into the velocity equation above. Thus, we find $v=18 \mathrm{~m} / \mathrm{s}$.
(b) We integrate again to find x as a function of t :

$$
x-x_{0}=\int_{0}^{t} v d t^{\prime}=\int_{0}^{t}\left(v_{0}+6.1 t^{\prime}-0.6 t^{2}\right) d t^{\prime}=v_{0} t+3.05 t^{2}-0.2 t^{3}
$$

With $x_{0}=7.3 \mathrm{~m}$, we obtain $x=83 \mathrm{~m}$ for $t=6$. This is the correct answer, but one has the right to worry that it might not be; after all, the problem asks for the total distance traveled (and $x-x_{0}$ is just the displacement). If the cyclist backtracked, then his total distance would be greater than his displacement. Thus, we might ask, "did he backtrack?" To do so would require that his velocity be (momentarily) zero at some point (as he reversed his direction of motion). We could solve the above quadratic equation for velocity, for a positive value of t where $v=0$; if we did, we would find that at $t=10.6 \mathrm{~s}$, a reversal does indeed happen. However, in the time interval concerned with in our problem $(0 \leq t \leq 6 \mathrm{~s})$, there is no reversal and the displacement is the same as the total distance traveled.
110. The time required is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). First, we convert the velocity change to SI units:

$$
\Delta v=(100 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)=27.8 \mathrm{~m} / \mathrm{s} .
$$

Thus, $\Delta t=\Delta v / a=27.8 / 50=0.556 \mathrm{~s}$.
111. From Table 2-1, $v^{2}-v_{0}^{2}=2 a \Delta x$ is used to solve for a. Its minimum value is

$$
a_{\min }=\frac{v_{2}-v_{0}^{2}}{2 \Delta x_{\max }}=\frac{(360 \mathrm{~km} / \mathrm{h})^{2}}{2(1.80 \mathrm{~km})}=36000 \mathrm{~km} / \mathrm{h}^{2}
$$

which converts to $2.78 \mathrm{~m} / \mathrm{s}^{2}$.
112. (a) For the automobile $\Delta v=55-25=30 \mathrm{~km} / \mathrm{h}$, which we convert to SI units:

$$
a=\frac{\Delta v}{\Delta t}=\frac{(30 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)}{(0.50 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})}=0.28 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) The change of velocity for the bicycle, for the same time, is identical to that of the car, so its acceleration is also $0.28 \mathrm{~m} / \mathrm{s}^{2}$.
113. For each rate, we use distance $d=v t$ and convert to SI using $0.0254 \mathrm{~cm}=1$ inch (from which we derive the factors appearing in the computations below).
(a) The total distance d comes from summing

$$
\begin{aligned}
& d_{1}=\left(120 \frac{\text { steps }}{\min }\right)\left(\frac{0.762 \mathrm{~m} / \text { step }}{60 \mathrm{~s} / \mathrm{min}}\right)(5 \mathrm{~s})=7.62 \mathrm{~m} \\
& d_{2}=\left(120 \frac{\text { steps }}{\min }\right)\left(\frac{0.381 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)(5 \mathrm{~s})=3.81 \mathrm{~m} \\
& d_{3}=\left(180 \frac{\text { steps }}{\mathrm{min}}\right)\left(\frac{0.914 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)(5 \mathrm{~s})=13.72 \mathrm{~m} \\
& d_{4}=\left(180 \frac{\text { steps }}{\mathrm{min}}\right)\left(\frac{0.457 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)(5 \mathrm{~s})=6.86 \mathrm{~m}
\end{aligned}
$$

so that $d=d_{1}+d_{2}+d_{3}+d_{4}=32 \mathrm{~m}$.
(b) Average velocity is computed using Eq. 2-2: $v_{\text {avg }}=32 / 20=1.6 \mathrm{~m} / \mathrm{s}$, where we have used the fact that the total time is 20 s .
(c) The total time t comes from summing

$$
\begin{aligned}
& t_{1}=\frac{8 \mathrm{~m}}{\left(120 \frac{\text { steps }}{\min }\right)\left(\frac{0.762 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)}=5.25 \mathrm{~s} \\
& t_{2}=\frac{8 \mathrm{~m}}{\left(120 \frac{\text { steps }}{\min }\right)\left(\frac{0.381 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)}=10.5 \mathrm{~s} \\
& t_{3}=\frac{8 \mathrm{~m}}{\left(180 \frac{\text { steps }}{\min }\right)\left(\frac{0.914 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)}=2.92 \mathrm{~s} \\
& t_{4}=\frac{8 \mathrm{~m}}{\left(180 \frac{\text { steps }}{\min }\right)\left(\frac{0.457 \mathrm{~m} / \mathrm{step}}{60 \mathrm{~s} / \mathrm{min}}\right)}=5.83 \mathrm{~s}
\end{aligned}
$$

so that $t=t_{1}+t_{2}+t_{3}+t_{4}=24.5 \mathrm{~s}$.
(d) Average velocity is computed using Eq. 2-2: $v_{\text {avg }}=32 / 24.5=1.3 \mathrm{~m} / \mathrm{s}$, where we have used the fact that the total distance is $4(8)=32 \mathrm{~m}$.
114. (a) It is the intent of this problem to treat the $v_{0}=0$ condition rigidly. In other words, we are not fitting the distance to just any second-degree polynomial in t; rather, we require $d=A t^{2}$ (which meets the condition that d and its derivative is zero when t $=0$). If we perform a least squares fit with this expression, we obtain $A=3.587$ (SI units understood). We return to this discussion in part (c). Our expectation based on Eq. 2-15, assuming no error in starting the clock at the moment the acceleration begins, is $d=\frac{1}{2} a t^{2}$ (since he started at the coordinate origin, the location of which presumably is something we can be fairly certain about).
(b) The graph (d on the vertical axis, SI units understood) is shown.

The horizontal axis is t^{2} (as indicated by the problem statement) so that we have a straight line instead of a parabola.

(c) Comparing our two expressions for d, we see the parameter A in our fit should correspond to $\frac{1}{2} a$, so $a=2(3.587) \approx 7.2 \mathrm{~m} / \mathrm{s}^{2}$. Now, other approaches might be considered (trying to fit the data with $d=C t^{2}+B$ for instance, which leads to $a=2 C$ $=7.0 \mathrm{~m} / \mathrm{s}^{2}$ and $B \neq 0$), and it might be useful to have the class discuss the assumptions made in each approach.
115. When comparing two positions at the same elevation, $\Delta y=0$, which means

$$
\begin{array}{ll}
\Delta y_{\mathrm{U}}=0=v_{\mathrm{U}} \Delta T_{\mathrm{U}}-\frac{1}{2} g \Delta T_{\mathrm{U}}^{2} & (\text { Equation 1) } \\
\Delta y_{\mathrm{L}}=0=v_{\mathrm{L}} \Delta T_{\mathrm{L}}-\frac{1}{2} g \Delta T_{\mathrm{L}}^{2} & (\text { Equation 2). }
\end{array}
$$

Now the time between the instants where the (upward moving) ball has velocities v_{U} and v_{L} is $\frac{1}{2}\left(\Delta T_{\mathrm{L}}-\Delta T_{\mathrm{U}}\right)$, which is evident from the graph. That distance is H, so Eq. 2-17 leads to

$$
H=\left(\frac{\mathrm{v}_{\mathrm{L}}+\mathrm{v}_{\mathrm{U}}}{2}\right) \frac{1}{2}\left(\Delta T_{\mathrm{L}}-\Delta T_{\mathrm{U}}\right)=1 / 4\left(v_{\mathrm{L}} \Delta T_{\mathrm{L}}-v_{\mathrm{U}} \Delta T_{\mathrm{U}}\right) \quad \text { (Equation 3) }
$$

where we have also used the fact that $v_{\mathrm{L}} / \Delta T_{\mathrm{L}}=\mathrm{v}_{\mathrm{U}} / \Delta T_{\mathrm{U}}$ (see Eq. 2-11, keeping in mind the acceleration is the same for both time intervals). We subtract (Equation 2) from (Equation 1), then divide through by 4 , and add to (Equation 3). The result is

$$
H=\frac{1}{8} g\left(\Delta T_{\mathrm{L}}^{2}-\Delta T_{\mathrm{U}}^{2}\right)
$$

which readily yields

$$
g=\frac{8 H}{\Delta T_{L}^{2}-\Delta T_{U}{ }^{2}}
$$

116. There is no air resistance, which makes it quite accurate to set $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (where downward is the $-y$ direction) for the duration of the fall. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion; in fact, when the acceleration changes (during the process of catching the ball) we will again assume constant acceleration conditions; in this case, we have $a_{2}=+25 g=245$ $\mathrm{m} / \mathrm{s}^{2}$.
(a) The time of fall is given by Eq. $2-15$ with $v_{0}=0$ and $y=0$. Thus,

$$
t=\sqrt{\frac{2 y_{0}}{g}}=\sqrt{\frac{2(145)}{9.8}}=5.44 \mathrm{~s} .
$$

(b) The final velocity for its free-fall (which becomes the initial velocity during the catching process) is found from Eq. 2-16 (other equations can be used but they would use the result from part (a)).

$$
v=-\sqrt{v_{0}^{2}-2 g\left(y-y_{0}\right)}=-\sqrt{2 g y_{0}}=-53.3 \mathrm{~m} / \mathrm{s}
$$

where the negative root is chosen since this is a downward velocity. Thus, the speed is $|v|=53.3 \mathrm{~m} / \mathrm{s}$.
(c) For the catching process, the answer to part (b) plays the role of an initial velocity ($v_{0}=-53.3 \mathrm{~m} / \mathrm{s}$) and the final velocity must become zero. Using Eq. 2-16, we find

$$
\Delta y_{2}=\frac{v^{2}-v_{0}^{2}}{2 a_{2}}=\frac{-(-53.3)^{2}}{2(245)}=-5.80 \mathrm{~m},
$$

where the negative value of Δy_{2} signifies that the distance traveled while arresting its motion is downward.
117. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. The ground level is taken to correspond to $y=0$.
(a) With $y_{0}=h$ and v_{0} replaced with $-v_{0}$, Eq. 2-16 leads to

$$
v=\sqrt{\left(-v_{0}\right)^{2}-2 g\left(y-y_{0}\right)}=\sqrt{v_{0}^{2}+2 g h} .
$$

The positive root is taken because the problem asks for the speed (the magnitude of the velocity).
(b) We use the quadratic formula to solve Eq. 2-15 for t, with v_{0} replaced with $-v_{0}$,

$$
\Delta y=-v_{0} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{-v_{0}+\sqrt{\left(-v_{0}\right)^{2}-2 g \Delta y}}{g}
$$

where the positive root is chosen to yield $t>0$. With $y=0$ and $y_{0}=h$, this becomes

$$
t=\frac{\sqrt{v_{0}^{2}+2 g h}-v_{0}}{g}
$$

(c) If it were thrown upward with that speed from height h then (in the absence of air friction) it would return to height h with that same downward speed and would therefore yield the same final speed (before hitting the ground) as in part (a). An important perspective related to this is treated later in the book (in the context of energy conservation).
(d) Having to travel up before it starts its descent certainly requires more time than in part (b). The calculation is quite similar, however, except for now having $+v_{0}$ in the equation where we had put in $-v_{0}$ in part (b). The details follow:

$$
\Delta y=v_{0} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{v_{0}+\sqrt{v_{0}^{2}-2 g \Delta y}}{g}
$$

with the positive root again chosen to yield $t>0$. With $y=0$ and $y_{0}=h$, we obtain

$$
t=\frac{\sqrt{v_{0}^{2}+2 g h}+v_{0}}{g}
$$

1. The x and the y components of a vector \vec{a} lying on the $x y$ plane are given by

$$
a_{x}=a \cos \theta, \quad a_{y}=a \sin \theta
$$

where $a=|\vec{a}|$ is the magnitude and θ is the angle between \vec{a} and the positive x axis.
(a) The x component of \vec{a} is given by $a_{x}=7.3 \cos 250^{\circ}=-2.5 \mathrm{~m}$.
(b) and the y component is given by $a_{y}=7.3 \sin 250^{\circ}=-6.9 \mathrm{~m}$.

In considering the variety of ways to compute these, we note that the vector is 70° below the $-x$ axis, so the components could also have been found from $a_{x}=-7.3 \cos 70^{\circ}$ and a_{y} $=-7.3 \sin 70^{\circ}$. In a similar vein, we note that the vector is 20° to the left from the $-y$ axis, so one could use $a_{x}=-7.3 \sin 20^{\circ}$ and $a_{y}=-7.3 \cos 20^{\circ}$ to achieve the same results.
2. The angle described by a full circle is $360^{\circ}=2 \pi$ rad, which is the basis of our conversion factor.
(a)

$$
20.0^{\circ}=\left(20.0^{\circ}\right) \frac{2 \pi \mathrm{rad}}{360^{\circ}}=0.349 \mathrm{rad}
$$

(b)

$$
50.0^{\circ}=\left(50.0^{\circ}\right) \frac{2 \pi \mathrm{rad}}{360^{\circ}}=0.873 \mathrm{rad}
$$

(c)

$$
100^{\circ}=\left(100^{\circ}\right) \frac{2 \pi \mathrm{rad}}{360^{\circ}}=1.75 \mathrm{rad}
$$

(d)

$$
0.330 \mathrm{rad}=(0.330 \mathrm{rad}) \frac{360^{\circ}}{2 \pi \mathrm{rad}}=18.9^{\circ}
$$

(e)

$$
2.10 \mathrm{rad}=(2.10 \mathrm{rad}) \frac{360^{\circ}}{2 \pi \mathrm{rad}}=120^{\circ}
$$

(f)

$$
7.70 \mathrm{rad}=(7.70 \mathrm{rad}) \frac{360^{\circ}}{2 \pi \mathrm{rad}}=441^{\circ}
$$

3. A vector \vec{a} can be represented in the magnitude-angle notation (a, θ), where

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

is the magnitude and

$$
\theta=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)
$$

is the angle \vec{a} makes with the positive x axis.
(a) Given $A_{x}=-25.0 \mathrm{~m}$ and $A_{y}=40.0 \mathrm{~m}, A=\sqrt{(-25.0 \mathrm{~m})^{2}+(40.0 \mathrm{~m})^{2}}=47.2 \mathrm{~m}$
(b) Recalling that $\tan \theta=\tan \left(\theta+180^{\circ}\right), \tan ^{-1}[40 /(-25)]=-58^{\circ}$ or 122°. Noting that the vector is in the third quadrant (by the signs of its x and y components) we see that 122° is the correct answer. The graphical calculator "shortcuts" mentioned above are designed to correctly choose the right possibility.
4. (a) With $r=15 \mathrm{~m}$ and $\theta=30^{\circ}$, the x component of \vec{r} is given by $r_{x}=r \cos \theta=15 \cos$ $30^{\circ}=13 \mathrm{~m}$.
(b) Similarly, the y component is given by $r_{y}=r \sin \theta=15 \sin 30^{\circ}=7.5 \mathrm{~m}$.
5. The vector sum of the displacements $\vec{d}_{\text {storm }}$ and $\vec{d}_{\text {new }}$ must give the same result as its originally intended displacement $\vec{d}_{\mathrm{o}}=120 \hat{\mathrm{j}}$ where east is $\hat{\mathrm{i}}$, north is $\hat{\mathrm{j}}$, and the assumed length unit is km . Thus, we write

$$
\vec{d}_{\text {storm }}=100 \hat{\hat{i}}, \quad \vec{d}_{\text {new }}=A \hat{\mathrm{i}}+B \hat{\mathrm{j}} .
$$

(a) The equation $\vec{d}_{\text {storm }}+\vec{d}_{\text {new }}=\vec{d}_{\text {o }}$ readily yields $A=-100 \mathrm{~km}$ and $B=120 \mathrm{~km}$. The magnitude of $\vec{d}_{\text {new }}$ is therefore $\sqrt{A^{2}+B^{2}}=156 \mathrm{~km}$.
(b) And its direction is $\tan ^{-1}(B / A)=-50.2^{\circ}$ or $180^{\circ}+\left(-50.2^{\circ}\right)=129.8^{\circ}$. We choose the latter value since it indicates a vector pointing in the second quadrant, which is what we expect here. The answer can be phrased several equivalent ways: 129.8° counterclockwise from east, or 39.8° west from north, or 50.2° north from west.
6. (a) The height is $h=d \sin \theta$, where $d=12.5 \mathrm{~m}$ and $\theta=20.0^{\circ}$. Therefore, $h=4.28 \mathrm{~m}$.
(b) The horizontal distance is $d \cos \theta=11.7 \mathrm{~m}$.
7. The length unit meter is understood throughout the calculation.
(a) We compute the distance from one corner to the diametrically opposite corner: $d=\sqrt{3.00^{2}+3.70^{2}+4.30^{2}}=6.42$.

(b) The displacement vector is along the straight line from the beginning to the end point of the trip. Since a straight line is the shortest distance between two points, the length of the path cannot be less than the magnitude of the displacement.
(c) It can be greater, however. The fly might, for example, crawl along the edges of the room. Its displacement would be the same but the path length would be $\ell+w+h=11.0 \mathrm{~m}$.
(d) The path length is the same as the magnitude of the displacement if the fly flies along the displacement vector.
(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to be upward. Then the x component of the displacement is $w=3.70$, the y component of the displacement is 4.30 , and the z component is 3.00 . Thus $\vec{d}=3.70 \hat{\mathrm{i}}+4.30 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}$. An equally correct answer is gotten by interchanging the length, width, and height.

(f) Suppose the path of the fly is as shown by the dotted lines on the upper diagram. Pretend there is a hinge where the front wall of the room joins the floor and lay the wall down as shown on the lower diagram. The shortest walking distance between the lower left back of the room and the upper right front corner is the dotted straight line shown on the diagram. Its length is

$$
L_{\min }=\sqrt{(w+h)^{2}+\ell^{2}}=\sqrt{(3.70+3.00)^{2}+4.30^{2}}=7.96 \mathrm{~m} .
$$

8. We label the displacement vectors \vec{A}, \vec{B} and \vec{C} (and denote the result of their vector sum as \vec{r}). We choose east as the \hat{i} direction ($+x$ direction) and north as the \hat{j} direction ($+y$ direction) All distances are understood to be in kilometers.
(a) The vector diagram representing the motion is shown below:

$$
\begin{aligned}
\vec{A} & =3.1 \hat{\mathrm{j}} \\
\vec{B} & =-2.4 \hat{\mathrm{i}} \\
\vec{C} & =-5.2 \hat{\mathrm{j}}
\end{aligned}
$$

(b) The final point is represented by

$$
\vec{r}=\vec{A}+\vec{B}+\vec{C}=-2.4 \hat{\mathrm{i}}-2.1 \hat{\mathrm{j}}
$$

whose magnitude is

$$
|\vec{r}|=\sqrt{(-2.4)^{2}+(-2.1)^{2}} \approx 3.2 \mathrm{~km}
$$

(c) There are two possibilities for the angle:

$$
\tan ^{-1}\left(\frac{-2.1}{-2.4}\right)=41^{\circ}, \text { or } 221^{\circ}
$$

We choose the latter possibility since \vec{r} is in the third quadrant. It should be noted that many graphical calculators have polar \leftrightarrow rectangular "shortcuts" that automatically produce the correct answer for angle (measured counterclockwise from the $+x$ axis). We may phrase the angle, then, as 221° counterclockwise from East (a phrasing that sounds peculiar, at best) or as 41° south from west or 49° west from south. The resultant \vec{r} is not shown in our sketch; it would be an arrow directed from the "tail" of \vec{A} to the "head" of \vec{C}.
9. We find the components and then add them (as scalars, not vectors). With $d=3.40 \mathrm{~km}$ and $\theta=35.0^{\circ}$ we find $d \cos \theta+d \sin \theta=4.74 \mathrm{~km}$.
10. We label the displacement vectors \vec{A}, \vec{B} and \vec{C} (and denote the result of their vector sum as \vec{r}). We choose east as the $\hat{\mathrm{i}}$ direction ($+x$ direction) and north as the $\hat{\mathrm{j}}$ direction ($+y$ direction). All distances are understood to be in kilometers. We note that the angle between \vec{C} and the x axis is 60°. Thus,

$$
\begin{aligned}
\vec{A} & =50 \hat{\mathrm{i}} \\
\vec{B} & =30 \hat{\mathrm{j}} \\
\vec{C} & =25 \cos \left(60^{\circ}\right) \hat{\mathrm{i}}+25 \sin \left(60^{\circ}\right) \hat{\mathrm{j}}
\end{aligned}
$$

(a) The total displacement of the car from its initial position is represented by

$$
\vec{r}=\vec{A}+\vec{B}+\vec{C}=62.5 \hat{\mathrm{i}}+51.7 \hat{\mathrm{j}}
$$

which means that its magnitude is

$$
|\vec{r}|=\sqrt{(62.5)^{2}+(51.7)^{2}}=81 \mathrm{~km} .
$$

(b) The angle (counterclockwise from $+x$ axis) is $\tan ^{-1}(51.7 / 62.5)=40^{\circ}$, which is to say that it points 40° north of east. Although the resultant \vec{r} is shown in our sketch, it would be a direct line from the "tail" of \vec{A} to the "head" of \vec{C}.
11. We write $\vec{r}=\vec{a}+\vec{b}$. When not explicitly displayed, the units here are assumed to be meters.
(a) The x and the y components of \vec{r} are $r_{x}=a_{x}+b_{x}=4.0-13=-9.0$ and $r_{y}=a_{y}+b_{y}=$ $3.0+7.0=10$, respectively. Thus $\vec{r}=(-9.0 \mathrm{~m}) \hat{\mathrm{i}}+(10 \mathrm{~m}) \hat{\mathrm{j}}$.
(b) The magnitude of \vec{r} is

$$
r=|\vec{r}|=\sqrt{r_{x}^{2}+r_{y}^{2}}=\sqrt{(-9.0)^{2}+(10)^{2}}=13 \mathrm{~m} .
$$

(c) The angle between the resultant and the $+x$ axis is given by

$$
\theta=\tan ^{-1}\left(r_{y} / r_{x}\right)=\tan ^{-1}[10 /(-9.0)]=-48^{\circ} \text { or } 132^{\circ} .
$$

Since the x component of the resultant is negative and the y component is positive, characteristic of the second quadrant, we find the angle is 132° (measured counterclockwise from $+x$ axis).
12. The x, y and z components (with meters understood) of $\vec{r}=\vec{c}+\vec{d}$ are, respectively,
(a) $r_{x}=c_{x}+d_{x}=7.4+4.4=12$,
(b) $r_{y}=c_{y}+d_{y}=-3.8-2.0=-5.8$, and
(c) $r_{z}=c_{z}+d_{z}=-6.1+3.3=-2.8$
13. Reading carefully, we see that the (x, y) specifications for each "dart" are to be interpreted as $(\Delta x, \Delta y)$ descriptions of the corresponding displacement vectors. We combine the different parts of this problem into a single exposition.
(a) Along the x axis, we have (with the centimeter unit understood)

$$
30.0+b_{x}-20.0-80.0=-140
$$

which gives $b_{x}=-70.0 \mathrm{~cm}$.
(b) Along the y axis we have

$$
40.0-70.0+c_{y}-70.0=-20.0
$$

which yields $c_{y}=80.0 \mathrm{~cm}$.
(c) The magnitude of the final location $(-140,-20.0)$ is $\sqrt{(-140)^{2}+(-20.0)^{2}}=141 \mathrm{~cm}$.
(d) Since the displacement is in the third quadrant, the angle of the overall displacement is given by $\pi+\tan ^{-1}[(-20.0) /(-140)]$ or 188° counterclockwise from the $+x$ axis $\left(172^{\circ}\right.$ clockwise from the $+x$ axis).
14. All distances in this solution are understood to be in meters.
(a) $\vec{a}+\vec{b}=(3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}})+(5.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}})=8.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}$.
(b) The magnitude of $\vec{a}+\vec{b}$ is

$$
|\vec{a}+\vec{b}|=\sqrt{(8.0)^{2}+(2.0)^{2}}=8.2 \mathrm{~m} .
$$

(c) The angle between this vector and the $+x$ axis is $\tan ^{-1}(2.0 / 8.0)=14^{\circ}$.
(d) $\vec{b}-\vec{a}=(5.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}})-(3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}})=2.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}$.
(e) The magnitude of the difference vector $\vec{b}-\vec{a}$ is

$$
|\vec{b}-\vec{a}|=\sqrt{2.0^{2}+(-6.0)^{2}}=6.3 \mathrm{~m} .
$$

(f) The angle between this vector and the $+x$ axis is $\tan ^{-1}(-6.0 / 2.0)=-72^{\circ}$. The vector is 72° clockwise from the axis defined by \hat{i}.
15. All distances in this solution are understood to be in meters.
(a) $\vec{a}+\vec{b}=[4.0+(-1.0)] \hat{\mathrm{i}}+[(-3.0)+1.0] \hat{\mathrm{j}}+(1.0+4.0) \hat{\mathrm{k}}=3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+5.0 \hat{\mathrm{k}}$.
(b) $\vec{a}-\vec{b}=[4.0-(-1.0)] \hat{\mathrm{i}}+[(-3.0)-1.0] \hat{\mathrm{j}}+(1.0-4.0) \hat{\mathrm{k}}=5.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}-3.0 \hat{\mathrm{k}}$.
(c) The requirement $\vec{a}-\vec{b}+\vec{c}=0$ leads to $\vec{c}=\vec{b}-\vec{a}$, which we note is the opposite of what we found in part (b). Thus, $\vec{c}=-5.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$.
16. (a) Summing the x components, we have $20+b_{x}-20-60=-140$, which gives $b_{x}=-80 \mathrm{~m}$.
(b) Summing the y components, we have $60-70+c_{y}-70=30$, which implies $c_{y}=110 \mathrm{~m}$.
(c) Using the Pythagorean theorem, the magnitude of the overall displacement is given by $\sqrt{(-140)^{2}+(30)^{2}} \approx 143 \mathrm{~m}$.
(d) The angle is given by $\tan ^{-1}(30 /(-140))=-12^{\circ}$, (which would be 12° measured clockwise from the $-x$ axis, or 168° measured counterclockwise from the $+x$ axis)
17. Many of the operations are done efficiently on most modern graphical calculators using their built-in vector manipulation and rectangular \leftrightarrow polar "shortcuts." In this solution, we employ the "traditional" methods (such as Eq. 3-6). Where the length unit is not displayed, the unit meter should be understood.
(a) Using unit-vector notation,

$$
\begin{aligned}
\vec{a} & =50 \cos \left(30^{\circ}\right) \hat{\mathrm{i}}+50 \sin \left(30^{\circ}\right) \hat{\mathrm{j}} \\
\vec{b} & =50 \cos \left(195^{\circ}\right) \hat{\mathrm{i}}+50 \sin \left(195^{\circ}\right) \hat{\mathrm{j}} \\
\vec{c} & =50 \cos \left(315^{\circ}\right) \hat{\mathrm{i}}+50 \sin \left(315^{\circ}\right) \hat{\mathrm{j}} \\
\vec{a}+\vec{b}+\vec{c} & =30.4 \hat{\mathrm{i}}-23.3 \hat{\mathrm{j}} .
\end{aligned}
$$

The magnitude of this result is $\sqrt{30.4^{2}+(-23.3)^{2}}=38 \mathrm{~m}$.
(b) The two possibilities presented by a simple calculation for the angle between the vector described in part (a) and the $+x$ direction are $\tan ^{-1}(-23.2 / 30.4)=-37.5^{\circ}$, and 180° $+\left(-37.5^{\circ}\right)=142.5^{\circ}$. The former possibility is the correct answer since the vector is in the fourth quadrant (indicated by the signs of its components). Thus, the angle is -37.5°, which is to say that it is 37.5° clockwise from the $+x$ axis. This is equivalent to 322.5° counterclockwise from $+x$.
(c) We find

$$
\vec{a}-\vec{b}+\vec{c}=[43.3-(-48.3)+35.4] \hat{\mathrm{i}}-[25-(-12.9)+(-35.4)] \hat{\mathrm{j}}=127 \hat{\mathrm{i}}+2.60 \hat{\mathrm{j}}
$$

in unit-vector notation. The magnitude of this result is $\sqrt{(127)^{2}+(2.6)^{2}} \approx 1.30 \times 10^{2} \mathrm{~m}$.
(d) The angle between the vector described in part (c) and the $+x$ axis is $\tan ^{-1}(2.6 / 127) \approx 1.2^{\circ}$.
(e) Using unit-vector notation, \vec{d} is given by $\vec{d}=\vec{a}+\vec{b}-\vec{c}=-40.4 \hat{\mathrm{i}}+47.4 \hat{\mathrm{j}}$, which has a magnitude of $\sqrt{(-40.4)^{2}+47.4^{2}}=62 \mathrm{~m}$.
(f) The two possibilities presented by a simple calculation for the angle between the vector described in part (e) and the $+x$ axis are $\tan ^{-1}(47.4 /(-40.4))=-50.0^{\circ}$, and $180^{\circ}+\left(-50.0^{\circ}\right)=130^{\circ}$. We choose the latter possibility as the correct one since it indicates that \vec{d} is in the second quadrant (indicated by the signs of its components).
18. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle between \vec{C} and the $+x$ axis is $180^{\circ}+20.0^{\circ}=200^{\circ}$.
(a) The x component of \vec{B} is given by $C_{x}-A_{x}=15.0 \cos 200^{\circ}-12.0 \cos 40^{\circ}=-23.3 \mathrm{~m}$, and the y component of \vec{B} is given by $C_{y}-A_{y}=15.0 \sin 200^{\circ}-12.0 \sin 40^{\circ}=-12.8 \mathrm{~m}$. Consequently, its magnitude is $\sqrt{(-23.3)^{2}+(-12.8)^{2}}=26.6 \mathrm{~m}$.
(b) The two possibilities presented by a simple calculation for the angle between \vec{B} and the $+x$ axis are $\tan ^{-1}[(-12.8) /(-23.3)]=28.9^{\circ}$, and $180^{\circ}+28.9^{\circ}=209^{\circ}$. We choose the latter possibility as the correct one since it indicates that \vec{B} is in the third quadrant (indicated by the signs of its components). We note, too, that the answer can be equivalently stated as -151°.
19. It should be mentioned that an efficient way to work this vector addition problem is with the cosine law for general triangles (and since \vec{a}, \vec{b} and \vec{r} form an isosceles triangle, the angles are easy to figure). However, in the interest of reinforcing the usual systematic approach to vector addition, we note that the angle \vec{b} makes with the $+x$ axis is 30° $+105^{\circ}=135^{\circ}$ and apply Eq. 3-5 and Eq. 3-6 where appropriate.
(a) The x component of \vec{r} is $r_{\mathrm{x}}=10 \cos 30^{\circ}+10 \cos 135^{\circ}=1.59 \mathrm{~m}$.
(b) The y component of \vec{r} is $r_{\mathrm{y}}=10 \sin 30^{\circ}+10 \sin 135^{\circ}=12.1 \mathrm{~m}$.
(c) The magnitude of \vec{r} is $\sqrt{(1.59)^{2}+(12.1)^{2}}=12.2 \mathrm{~m}$.
(d) The angle between \vec{r} and the $+x$ direction is $\tan ^{-1}(12.1 / 1.59)=82.5^{\circ}$.
20. Angles are given in 'standard' fashion, so Eq. 3-5 applies directly. We use this to write the vectors in unit-vector notation before adding them. However, a very differentlooking approach using the special capabilities of most graphical calculators can be imagined. Wherever the length unit is not displayed in the solution below, the unit meter should be understood.
(a) Allowing for the different angle units used in the problem statement, we arrive at

$$
\begin{aligned}
\vec{E} & =3.73 \hat{\mathrm{i}}+4.70 \hat{\mathrm{j}} \\
\vec{F} & =1.29 \hat{\mathrm{i}}-4.83 \hat{\mathrm{j}} \\
\vec{G} & =1.45 \hat{\mathrm{i}}+3.73 \hat{\mathrm{j}} \\
\vec{H} & =-5.20 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}} \\
\vec{E}+\vec{F}+\vec{G}+\vec{H} & =1.28 \hat{\mathrm{i}}+6.60 \hat{\mathrm{j}} .
\end{aligned}
$$

(b) The magnitude of the vector sum found in part (a) is $\sqrt{(1.28)^{2}+(6.60)^{2}}=6.72 \mathrm{~m}$.
(c) Its angle measured counterclockwise from the $+x$ axis is $\tan ^{-1}(6.60 / 1.28)=79.0^{\circ}$.
(d) Using the conversion factor $\pi \mathrm{rad}=180^{\circ}, 79.0^{\circ}=1.38 \mathrm{rad}$.
21. (a) With \hat{i} directed forward and \hat{j} directed leftward, then the resultant is $5.00 \hat{i}+2.00$ \hat{j}. The magnitude is given by the Pythagorean theorem: $\sqrt{(5.00)^{2}+(2.00)^{2}}=5.385 \approx$ 5.39 squares.
(b) The angle is $\tan ^{-1}(2.00 / 5.00) \approx 21.8^{\circ}$ (left of forward).
22. The strategy is to find where the camel is (\vec{C}) by adding the two consecutive displacements described in the problem, and then finding the difference between that location and the oasis (\vec{B}). Using the magnitude-angle notation

$$
\vec{C}=\left(24 \angle-15^{\circ}\right)+\left(8.0 \angle 90^{\circ}\right)=\left(23.25 \angle 4.41^{\circ}\right)
$$

so

$$
\vec{B}-\vec{C}=\left(25 \angle 0^{\circ}\right)-\left(23.25 \angle 4.41^{\circ}\right)=\left(2.5 \angle-45^{\circ}\right)
$$

which is efficiently implemented using a vector capable calculator in polar mode. The distance is therefore 2.6 km .
23. Let \vec{A} represent the first part of Beetle 1 's trip (0.50 m east or $0.5 \hat{\mathrm{i}}$) and \vec{C} represent the first part of Beetle 2's trip intended voyage (1.6 m at 50° north of east). For their respective second parts: \vec{B} is 0.80 m at 30° north of east and \vec{D} is the unknown. The final position of Beetle 1 is

$$
\vec{A}+\vec{B}=0.5 \hat{\mathrm{i}}+0.8\left(\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30^{\circ} \hat{\mathrm{j}}\right)=1.19 \hat{\mathrm{i}}+0.40 \hat{\mathrm{j}} .
$$

The equation relating these is $\vec{A}+\vec{B}=\vec{C}+\vec{D}$, where

$$
\vec{C}=1.60\left(\cos 50.0^{\circ} \hat{\mathrm{i}}+\sin 50.0^{\circ} \hat{\mathrm{j}}\right)=1.03 \hat{\mathrm{i}}+1.23 \hat{\mathrm{j}}
$$

(a) We find $\vec{D}=\vec{A}+\vec{B}-\vec{C}=0.16 \hat{\mathrm{i}}-0.83 \hat{\mathrm{j}}$, and the magnitude is $D=0.84 \mathrm{~m}$.
(b) The angle is $\tan ^{-1}(-0.83 / 0.16)=-79^{\circ}$ which is interpreted to mean 79° south of east (or 11 ${ }^{\circ}$ east of south).
24. The desired result is the displacement vector, in units of $\mathrm{km}, \vec{A}=5.6,90^{\circ}$ (measured counterclockwise from the $+x$ axis), or $\vec{A}=5.6 \hat{\mathrm{j}}$, where $\hat{\mathrm{j}}$ is the unit vector along the positive y axis (north). This consists of the sum of two displacements: during the whiteout, $\vec{B}=7.8,50^{\circ}$, or $\vec{B}=7.8\left(\cos 50^{\circ} \hat{\mathrm{i}}+\sin 50^{\circ} \hat{\mathrm{j}}\right)=5.01 \hat{\mathrm{i}}+5.98 \hat{\mathrm{j}}$ and the unknown \vec{C}. Thus, $\vec{A}=\vec{B}+\vec{C}$.
(a) The desired displacement is given by $\vec{C}=\vec{A}-\vec{B}=-5.01 \hat{\mathrm{i}}-0.38 \hat{\mathrm{j}}$. The magnitude is $\sqrt{(-5.01)^{2}+(-0.38)^{2}}=5.0 \mathrm{~km}$.
(b) The angle is $\tan ^{-1}(-0.38 /-5.01)=4.3^{\circ}$, south of due west.
25. (a) As can be seen from Figure 3-30, the point diametrically opposite the origin ($0,0,0$) has position vector $a \hat{\mathrm{i}}+a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$ and this is the vector along the "body diagonal."
(b) From the point $(a, 0,0)$ which corresponds to the position vector $a \hat{1}$, the diametrically opposite point is $(0, a, a)$ with the position vector $a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$. Thus, the vector along the line is the difference $-a \hat{\mathrm{i}}+a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$.

(c) If the starting point is $(0, a, 0)$ with the corresponding position vector $a \hat{\mathrm{j}}$, the diametrically opposite point is ($a, 0, a$) with the position vector $a \hat{\mathrm{i}}+a \hat{\mathrm{k}}$. Thus, the vector along the line is the difference $a \hat{\mathrm{i}}-a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$.
(d) If the starting point is ($a, a, 0$) with the corresponding position vector $a \hat{i}+a \hat{j}$, the diametrically opposite point is $(0,0, a)$ with the position vector $a \hat{\mathrm{k}}$. Thus, the vector along the line is the difference $-a \hat{\mathrm{i}}-a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$.
(e) Consider the vector from the back lower left corner to the front upper right corner. It is $a \hat{\mathrm{i}}+a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$. We may think of it as the sum of the vector $a \hat{\mathrm{i}}$ parallel to the x axis and the vector $a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$ perpendicular to the x axis. The tangent of the angle between the vector and the x axis is the perpendicular component divided by the parallel component. Since the magnitude of the perpendicular component is $\sqrt{a^{2}+a^{2}}=a \sqrt{2}$ and the magnitude of the parallel component is $a, \tan \theta=(a \sqrt{2}) / a=\sqrt{2}$. Thus $\theta=54.7^{\circ}$. The angle between the vector and each of the other two adjacent sides (the y and z axes) is the same as is the angle between any of the other diagonal vectors and any of the cube sides adjacent to them.
(f) The length of any of the diagonals is given by $\sqrt{a^{2}+a^{2}+a^{2}}=a \sqrt{3}$.
26. (a) With $a=17.0 \mathrm{~m}$ and $\theta=56.0^{\circ}$ we find $a_{x}=a \cos \theta=9.51 \mathrm{~m}$.
(b) And $a_{y}=a \sin \theta=14.1 \mathrm{~m}$.
(c) The angle relative to the new coordinate system is $\theta^{\prime}=(56.0-18.0)=38.0^{\circ}$. Thus, $a_{x}{ }^{\prime}=a \cos \theta^{\prime}=13.4 \mathrm{~m}$.
(d) And $a_{y}{ }^{\prime}=a \sin \theta^{\prime}=10.5 \mathrm{~m}$.
27. (a) The scalar $($ dot $)$ product is $(4.50)(7.30) \cos \left(320^{\circ}-85.0^{\circ}\right)=-18.8$.
(b) The vector (cross) product is in the $\hat{\mathrm{k}}$ direction (by the Right Hand Rule) with magnitude $\left|(4.50)(7.30) \sin \left(320^{\circ}-85.0^{\circ}\right)\right|=26.9$.
28. We apply Eq. 3-30 and Eq. 3-23.
(a) $\vec{a} \times \vec{b}=\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathrm{k}}$ since all other terms vanish, due to the fact that neither \vec{a} nor \vec{b} have any z components. Consequently, we obtain $[(3.0)(4.0)-(5.0)(2.0)] \hat{\mathrm{k}}=2.0 \hat{\mathrm{k}}$.
(b) $\vec{a} \cdot b=a_{x} b_{x}+a_{y} b_{y}$ yields $(3.0)(2.0)+(5.0)(4.0)=26$.
(c) $\vec{a}+\vec{b}=(3.0+2.0) \hat{\mathrm{i}}+(5.0+4.0) \hat{\mathrm{j}} \Rightarrow(\vec{a}+\vec{b}) \cdot \vec{b}=(5.0)(2.0)+(9.0)(4.0)=46$.
(d) Several approaches are available. In this solution, we will construct a \hat{b} unit-vector and "dot" it (take the scalar product of it) with \vec{a}. In this case, we make the desired unitvector by

$$
\hat{b}=\frac{\vec{b}}{|\vec{b}|}=\frac{2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}}{\sqrt{(2.0)^{2}+(4.0)^{2}}} .
$$

We therefore obtain

$$
a_{b}=\vec{a} \cdot \hat{b}=\frac{(3.0)(2.0)+(5.0)(4.0)}{\sqrt{(2.0)^{2}+(4.0)^{2}}}=5.8
$$

29. We apply Eq. 3-30 and Eq.3-23. If a vector-capable calculator is used, this makes a good exercise for getting familiar with those features. Here we briefly sketch the method.
(a) We note that $\vec{b} \times \vec{c}=-8.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}$. Thus,

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=(3.0)(-8.0)+(3.0)(5.0)+(-2.0)(6.0)=-21 .
$$

(b) We note that $\vec{b}+\vec{c}=1.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$. Thus,

$$
\vec{a} \cdot(\vec{b}+\vec{c})=(3.0)(1.0)+(3.0)(-2.0)+(-2.0)(3.0)=-9.0 .
$$

(c) Finally,

$$
\begin{aligned}
\vec{a} \times(\vec{b}+\vec{c}) & =[(3.0)(3.0)-(-2.0)(-2.0)] \hat{\mathrm{i}}+[(-2.0)(1.0)-(3.0)(3.0)] \hat{\mathrm{j}} \\
& +[(3.0)(-2.0)-(3.0)(1.0)] \hat{\mathrm{k}} \\
& =5 \hat{\mathrm{i}}-11 \hat{\mathrm{j}}-9 \hat{\mathrm{k}}
\end{aligned}
$$

30. First, we rewrite the given expression as $4\left(\overrightarrow{d_{\text {plane }}} \cdot \overrightarrow{d_{\text {cross }}}\right)$ where $\overrightarrow{d_{\text {plane }}}=\overrightarrow{d_{1}}+\overrightarrow{d_{2}}$ and in the plane of $\overrightarrow{d_{1}}$ and $\overrightarrow{d_{2}}$, and $\overrightarrow{d_{\text {cross }}}=\overrightarrow{d_{1}} \times \overrightarrow{d_{2}}$. Noting that $\overrightarrow{d_{c r o s s}}$ is perpendicular to the plane of $\overrightarrow{d_{1}}$ and $\overrightarrow{d_{2}}$, we see that the answer must be 0 (the scalar [dot] product of perpendicular vectors is zero).
31. Since $a b \cos \phi=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$,

$$
\cos \phi=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{a b} .
$$

The magnitudes of the vectors given in the problem are

$$
\begin{aligned}
& a=|\vec{a}|=\sqrt{(3.00)^{2}+(3.00)^{2}+(3.00)^{2}}=5.20 \\
& b=|\vec{b}|=\sqrt{(2.00)^{2}+(1.00)^{2}+(3.00)^{2}}=3.74
\end{aligned}
$$

The angle between them is found from

$$
\cos \phi=\frac{(3.00)(2.00)+(3.00)(1.00)+(3.00)(3.00)}{(5.20)(3.74)}=0.926 .
$$

The angle is $\phi=22^{\circ}$.
32. Applying Eq. 3-23, $\vec{F}=q \vec{v} \times \vec{B}$ (where q is a scalar) becomes

$$
F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}+F_{z} \hat{\mathrm{k}}=q\left(v_{y} B_{z}-v_{z} B_{y}\right) \hat{\mathrm{i}}+q\left(v_{z} B_{x}-v_{x} B_{z}\right) \hat{\mathrm{j}}+q\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}}
$$

which — plugging in values - leads to three equalities:

$$
\begin{aligned}
4.0 & =2\left(4.0 B_{z}-6.0 B_{y}\right) \\
-20 & =2\left(6.0 B_{x}-2.0 B_{z}\right) \\
12 & =2\left(2.0 B_{y}-4.0 B_{x}\right)
\end{aligned}
$$

Since we are told that $B_{x}=B_{y}$, the third equation leads to $B_{y}=-3.0$. Inserting this value into the first equation, we find $B_{z}=-4.0$. Thus, our answer is

$$
\vec{B}=-3.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}
$$

33. From the definition of the dot product between \vec{A} and $\vec{B}, \vec{A} \cdot \vec{B}=A B \cos \theta$, we have

$$
\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}
$$

With $A=6.00, B=7.00$ and $\vec{A} \cdot \vec{B}=14.0, \cos \theta=0.333$, or $\theta=70.5^{\circ}$.
34. Using the fact that

$$
\hat{\mathbf{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}, \hat{\mathrm{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}, \quad \hat{\mathrm{k}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}}
$$

we obtain

$$
2 \vec{A} \times \vec{B}=2(2.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}}-4.00 \hat{\mathrm{k}}) \times(-3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}})=44.0 \hat{\mathrm{i}}+16.0 \hat{\mathrm{j}}+34.0 \hat{\mathrm{k}}
$$

Next, making use of

$$
\begin{aligned}
& \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1 \\
& \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0
\end{aligned}
$$

we obtain

$$
\begin{aligned}
3 \vec{C} \cdot(2 \vec{A} \times \vec{B}) & =3(7.00 \hat{\mathrm{i}}-8.00 \hat{\mathrm{j}}) \cdot(44.0 \hat{\mathrm{i}}+16.0 \hat{\mathrm{j}}+34.0 \hat{\mathrm{k}}) \\
& =3[(7.00)(44.0)+(-8.00)(16.0)+(0)(34.0)]=540 .
\end{aligned}
$$

35. From the figure, we note that $\vec{c} \perp \vec{b}$, which implies that the angle between \vec{c} and the $+x$ axis is 120°. Direct application of Eq. 3-5 yields the answers for this and the next few parts.
(a) $a_{x}=a \cos 0^{\circ}=a=3.00 \mathrm{~m}$.
(b) $a_{y}=a \sin 0^{\circ}=0$.
(c) $b_{x}=b \cos 30^{\circ}=(4.00 \mathrm{~m}) \cos 30^{\circ}=3.46 \mathrm{~m}$.
(d) $b_{y}=b \sin 30^{\circ}=(4.00 \mathrm{~m}) \sin 30^{\circ}=2.00 \mathrm{~m}$.
(e) $c_{x}=c \cos 120^{\circ}=(10.0 \mathrm{~m}) \cos 120^{\circ}=-5.00 \mathrm{~m}$.
(f) $c_{y}=c \sin 30^{\circ}=(10.0 \mathrm{~m}) \sin 120^{\circ}=8.66 \mathrm{~m}$.
(g) In terms of components (first x and then y), we must have

$$
\begin{aligned}
-5.00 \mathrm{~m} & =p(3.00 \mathrm{~m})+q(3.46 \mathrm{~m}) \\
8.66 \mathrm{~m} & =p(0)+q(2.00 \mathrm{~m})
\end{aligned}
$$

Solving these equations, we find $p=-6.67$.
(h) And $q=4.33$ (note that it's easiest to solve for q first). The numbers p and q have no units.
36. The two vectors are written as, in unit of meters,

$$
\vec{d}_{1}=4.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}=d_{1 x} \hat{\mathrm{i}}+d_{1 y} \hat{\mathrm{j}}, \quad \vec{d}_{2}=-3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}=d_{2 x} \hat{\mathrm{i}}+d_{2 y} \hat{\mathrm{j}}
$$

(a) The vector (cross) product gives

$$
\vec{d}_{1} \times \vec{d}_{2}=\left(d_{1 x} d_{2 y}-d_{1 y} d_{2 x}\right) \hat{\mathrm{k}}=[(4.0)(4.0)-(5.0)(-3.0)] \hat{\mathrm{k}}=31 \hat{\mathrm{k}}
$$

(b) The scalar (dot) product gives

$$
\vec{d}_{1} \cdot \vec{d}_{2}=d_{1 x} d_{2 x}+d_{1 y} d_{2 y}=(4.0)(-3.0)+(5.0)(4.0)=8.0
$$

(c)

$$
\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot \vec{d}_{2}=\vec{d}_{1} \cdot \vec{d}_{2}+d_{2}^{2}=8.0+(-3.0)^{2}+(4.0)^{2}=33 .
$$

(d) Note that the magnitude of the d_{1} vector is $\sqrt{16+25}=6.4$. Now, the dot product is $(6.4)(5.0) \cos \theta=8$. Dividing both sides by 32 and taking the inverse cosine yields $\theta=$ 75.5°. Therefore the component of the d_{1} vector along the direction of the d_{2} vector is $6.4 \cos \theta \approx 1.6$.
37. Although we think of this as a three-dimensional movement, it is rendered effectively two-dimensional by referring measurements to its well-defined plane of the fault.
(a) The magnitude of the net displacement is

$$
|\overrightarrow{A B}|=\sqrt{|A D|^{2}+|A C|^{2}}=\sqrt{(17.0)^{2}+(22.0)^{2}}=27.8 \mathrm{~m} .
$$

(b) The magnitude of the vertical component of $\overrightarrow{A B}$ is $|A D| \sin 52.0^{\circ}=13.4 \mathrm{~m}$.
38. Where the length unit is not displayed, the unit meter is understood.
(a) We first note that $a=|\vec{a}|=\sqrt{(3.2)^{2}+(1.6)^{2}}=3.58$ and $b=|\vec{b}|=\sqrt{(0.50)^{2}+(4.5)^{2}}=4.53$. Now,

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}=a b \cos \phi \\
& (3.2)(0.50)+(1.6)(4.5)=(3.58)(4.53) \cos \phi
\end{aligned}
$$

which leads to $\phi=57^{\circ}$ (the inverse cosine is double-valued as is the inverse tangent, but we know this is the right solution since both vectors are in the same quadrant).
(b) Since the angle (measured from $+x$) for \vec{a} is $\tan ^{-1}(1.6 / 3.2)=26.6^{\circ}$, we know the angle for \vec{c} is $26.6^{\circ}-90^{\circ}=-63.4^{\circ}$ (the other possibility, $26.6^{\circ}+90^{\circ}$ would lead to a $c_{x}<0$). Therefore, $c_{x}=c \cos \left(-63.4^{\circ}\right)=(5.0)(0.45)=2.2 \mathrm{~m}$.
(c) Also, $c_{y}=c \sin \left(-63.4^{\circ}\right)=(5.0)(-0.89)=-4.5 \mathrm{~m}$.
(d) And we know the angle for \vec{d} to be $26.6^{\circ}+90^{\circ}=116.6^{\circ}$, which leads to

$$
d_{x}=d \cos \left(116.6^{\circ}\right)=(5.0)(-0.45)=-2.2 \mathrm{~m} .
$$

(e) Finally, $d_{y}=d \sin 116.6^{\circ}=(5.0)(0.89)=4.5 \mathrm{~m}$.
39. The point P is displaced vertically by $2 R$, where R is the radius of the wheel. It is displaced horizontally by half the circumference of the wheel, or πR. Since $R=0.450 \mathrm{~m}$, the horizontal component of the displacement is 1.414 m and the vertical component of the displacement is 0.900 m . If the x axis is horizontal and the y axis is vertical, the vector displacement (in meters) is $\vec{r}=(1.414 \hat{\mathrm{i}}+0.900 \hat{\mathrm{j}})$. The displacement has a magnitude of

$$
|\vec{r}|=\sqrt{(\pi R)^{2}+(2 R)^{2}}=R \sqrt{\pi^{2}+4}=1.68 \mathrm{~m}
$$

and an angle of

$$
\tan ^{-1}\left(\frac{2 R}{\pi R}\right)=\tan ^{-1}\left(\frac{2}{\pi}\right)=32.5^{\circ}
$$

above the floor. In physics there are no "exact" measurements, yet that angle computation seemed to yield something exact. However, there has to be some uncertainty in the observation that the wheel rolled half of a revolution, which introduces some indefiniteness in our result.
40. All answers will be in meters.
(a) This is one example of an answer: $-40 \hat{i}-20 \hat{j}+25 \hat{k}$, with \hat{i} directed anti-parallel to the first path, $\hat{\mathrm{j}}$ directed anti-parallel to the second path and $\hat{\mathrm{k}}$ directed upward (in order to have a right-handed coordinate system). Other examples are $40 \hat{i}+20 \hat{j}+25 \hat{k}$ and $40 \hat{i}-$ $20 \hat{j}-25 \hat{k}$ (with slightly different interpretations for the unit vectors). Note that the product of the components is positive in each example.
(b) Using Pythagorean theorem, we have $\sqrt{40^{2}+20^{2}}=44.7 \approx 45 \mathrm{~m}$.
41. Given: $\vec{A}+\vec{B}=6.0 \hat{i}+1.0 \hat{j}$ and $\vec{A}-\vec{B}=-4.0 \hat{i}+7.0 \hat{j}$. Solving these simultaneously leads to $\vec{A}=1.0 \hat{i}+4.0 \hat{j}$. The Pythagorean theorem then leads to $A=\sqrt{(1.0)^{2}+(4.0)^{2}}=4.1$.
42. The resultant (along the y axis, with the same magnitude as \vec{C}) forms (along with \vec{C}) a side of an isosceles triangle (with \vec{B} forming the base). If the angle between \vec{C} and the y axis is $\theta=\tan ^{-1}(3 / 4)=36.87^{\circ}$, then it should be clear that (referring to the magnitudes of the vectors) $B=2 C \sin (\theta / 2)$. Thus (since $C=5.0$) we find $B=3.2$.
43. From the figure, it is clear that $\vec{a}+\vec{b}+\vec{c}=0$, where $\vec{a} \perp \vec{b}$.
(a) $\vec{a} \cdot \vec{b}=0$ since the angle between them is 90°.
(b) $\vec{a} \cdot \vec{c}=\vec{a} \cdot(-\vec{a}-\vec{b})=-|\vec{a}|^{2}=-16$.
(c) Similarly, $\vec{b} \cdot \vec{c}=-9.0$.
44. Examining the figure, we see that $\vec{a}+\vec{b}+\vec{c}=0$, where $\vec{a} \perp \vec{b}$.
(a) $|\vec{a} \times \vec{b}|=(3.0)(4.0)=12$ since the angle between them is 90°.
(b) Using the Right Hand Rule, the vector $\vec{a} \times \vec{b}$ points in the $\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}$, or the $+z$ direction.
(c) $|\vec{a} \times \vec{c}|=|\vec{a} \times(-\vec{a}-\vec{b})|=|-(\vec{a} \times \vec{b})|=12$.
(d) The vector $-\vec{a} \times \vec{b}$ points in the $-\hat{\mathrm{i}} \times \hat{\mathrm{j}}=-\hat{\mathrm{k}}$, or the $-z$ direction.
(e) $|\vec{b} \times \vec{c}|=|\vec{b} \times(-\vec{a}-\vec{b})|=|-(\vec{b} \times \vec{a})|=|(\vec{a} \times \vec{b})|=12$.
(f) The vector points in the $+z$ direction, as in part (a).
45. We apply Eq. 3-20 and Eq. 3-27.
(a) The scalar (dot) product of the two vectors is

$$
\vec{a} \cdot \vec{b}=a b \cos \phi=(10)(6.0) \cos 60^{\circ}=30
$$

(b) The magnitude of the vector (cross) product of the two vectors is

$$
|\vec{a} \times \vec{b}|=a b \sin \phi=(10)(6.0) \sin 60^{\circ}=52
$$

46. Reference to Figure 3-18 (and the accompanying material in that section) is helpful. If we convert \vec{B} to the magnitude-angle notation (as \vec{A} already is) we have $\vec{B}=\left(14.4 \angle 33.7^{\circ}\right)$ (appropriate notation especially if we are using a vector capable calculator in polar mode). Where the length unit is not displayed in the solution, the unit meter should be understood. In the magnitude-angle notation, rotating the axis by $+20^{\circ}$ amounts to subtracting that angle from the angles previously specified. Thus, $\vec{A}=\left(12.0 \angle 40.0^{\circ}\right)^{\prime}$ and $\vec{B}=\left(14.4 \angle 13.7^{\circ}\right)^{\prime}$, where the 'prime' notation indicates that the description is in terms of the new coordinates. Converting these results to (x, y) representations, we obtain
(a) $\vec{A}=9.19 \hat{\mathrm{i}}^{\prime}+7.71 \hat{\mathrm{j}}^{\prime}$, and
(b) $\vec{B}=14.0 \hat{\mathrm{i}}^{\prime}+3.41 \hat{\mathrm{j}}^{\prime}$, with the unit meter understood, as already mentioned.
47. Let \vec{A} represent the first part of his actual voyage (50.0 km east) and \vec{C} represent the intended voyage (90.0 km north). We are looking for a vector \vec{B} such that $\vec{A}+\vec{B}$ $=\vec{C}$.
(a) The Pythagorean theorem yields $B=\sqrt{(50.0)^{2}+(90.0)^{2}}=103 \mathrm{~km}$.
(b) The direction is $\tan ^{-1}(50.0 / 90.0)=29.1^{\circ}$ west of north (which is equivalent to 60.9° north of due west).
48. If we wish to use Eq. 3-5 directly, we should note that the angles for \vec{Q}, \vec{R} and \vec{S} are $100^{\circ}, 250^{\circ}$ and 310°, respectively, if they are measured counterclockwise from the $+x$ axis.
(a) Using unit-vector notation, with the unit meter understood, we have

$$
\begin{aligned}
\vec{P} & =10.0 \cos \left(25.0^{\circ}\right) \hat{\mathrm{i}}+10.0 \sin \left(25.0^{\circ}\right) \hat{\mathrm{j}} \\
\vec{Q} & =12.0 \cos \left(100^{\circ}\right) \hat{\mathrm{i}}+12.0 \sin \left(100^{\circ}\right) \hat{\mathrm{j}} \\
\vec{R} & =8.00 \cos \left(250^{\circ}\right) \hat{\mathrm{i}}+8.00 \sin \left(250^{\circ}\right) \hat{\mathrm{j}} \\
\vec{S} & =9.00 \cos \left(310^{\circ}\right) \hat{\mathrm{i}}+9.00 \sin \left(310^{\circ}\right) \hat{\mathrm{j}} \\
\vec{P}+\vec{Q}+\vec{R}+\vec{S} & =10.0 \hat{\mathrm{i}}+1.63 \hat{\mathrm{j}}
\end{aligned}
$$

(b) The magnitude of the vector sum is $\sqrt{(10.0)^{2}+(1.63)^{2}}=10.2 \mathrm{~m}$.
(c) The angle is $\tan ^{-1}(1.63 / 10.0) \approx 9.24^{\circ}$ measured counterclockwise from the $+x$ axis.
49. Many of the operations are done efficiently on most modern graphical calculators using their built-in vector manipulation and rectangular \leftrightarrow polar "shortcuts." In this solution, we employ the "traditional" methods (such as Eq. 3-6).
(a) The magnitude of \vec{a} is $a=\sqrt{(4.0)^{2}+(-3.0)^{2}}=5.0 \mathrm{~m}$.
(b) The angle between \vec{a} and the $+x$ axis is $\tan ^{-1}(-3.0 / 4.0)=-37^{\circ}$. The vector is 37° clockwise from the axis defined by $\hat{\mathrm{i}}$.
(c) The magnitude of \vec{b} is $b=\sqrt{(6.0)^{2}+(8.0)^{2}}=10 \mathrm{~m}$.
(d) The angle between \vec{b} and the $+x$ axis is $\tan ^{-1}(8.0 / 6.0)=53^{\circ}$.
(e) $\vec{a}+\vec{b}=(4.0+6.0) \hat{\mathrm{i}}+[(-3.0)+8.0] \hat{\mathrm{j}}=10 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}$, with the unit meter understood. The magnitude of this vector is $|\vec{a}+\vec{b}|=\sqrt{10^{2}+(5.0)^{2}}=11 \mathrm{~m}$; we round to two significant figures in our results.
(f) The angle between the vector described in part (e) and the $+x$ axis is $\tan ^{-1}(5.0 / 10)=$ 27°.
(g) $\vec{b}-\vec{a}=(6.0-4.0) \hat{\mathrm{i}}+[8.0-(-3.0)] \hat{\mathrm{j}}=2.0 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}$, with the unit meter understood. The magnitude of this vector is $|\vec{b}-\vec{a}|=\sqrt{(2.0)^{2}+(11)^{2}}=11 \mathrm{~m}$, which is, interestingly, the same result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is made possible by the fact that $\vec{a} \perp \vec{b}$).
(h) The angle between the vector described in part (g) and the $+x$ axis is $\tan ^{-1}(11 / 2.0)=$ 80°.
(i) $\vec{a}-\vec{b}=(4.0-6.0) \hat{\mathrm{i}}+[(-3.0)-8.0] \hat{\mathrm{j}}=-2.0 \hat{\mathrm{i}}-11 \hat{\mathrm{j}}$, with the unit meter understood. The magnitude of this vector is $|\vec{a}-\vec{b}|=\sqrt{(-2.0)^{2}+(-11)^{2}}=11 \mathrm{~m}$.
(j) The two possibilities presented by a simple calculation for the angle between the vector described in part (i) and the $+x$ direction are $\tan ^{-1}[(-11) /(-2.0)]=80^{\circ}$, and $180^{\circ}+$ $80^{\circ}=260^{\circ}$. The latter possibility is the correct answer (see part (k) for a further observation related to this result).
(k) Since $\vec{a}-\vec{b}=(-1)(\vec{b}-\vec{a})$, they point in opposite (anti-parallel) directions; the angle between them is 180°.
50. The ant's trip consists of three displacements:

$$
\begin{aligned}
& \vec{d}_{1}=0.40\left(\cos 225^{\circ} \hat{\mathrm{i}}+\sin 225^{\circ} \hat{\mathrm{j}}\right)=-0.28 \hat{\mathrm{i}}-0.28 \hat{\mathrm{j}} \\
& \vec{d}_{2}=0.50 \hat{\mathrm{i}} \\
& \vec{d}_{3}=0.60\left(\cos 60^{\circ} \hat{\mathrm{i}}+\sin 60^{\circ} \hat{\mathrm{j}}\right)=0.30 \hat{\mathrm{i}}+0.52 \hat{\mathrm{j}},
\end{aligned}
$$

where the angle is measured with respect to the positive x axis. We have taken the positive x and y directions to correspond to east and north, respectively.
(a) The x component of \vec{d}_{1} is $d_{1 x}=0.40 \cos 225^{\circ}=-0.28 \mathrm{~m}$.
(b) The y component of \vec{d}_{1} is $d_{1 y}=0.40 \sin 225^{\circ}=-0.28 \mathrm{~m}$.
(c) The x component of \vec{d}_{2} is $d_{2 x}=0.50 \mathrm{~m}$.
(d) The y component of \vec{d}_{2} is $d_{2 y}=0 \mathrm{~m}$.
(e) The x component of \vec{d}_{3} is $d_{3 x}=0.60 \cos 60^{\circ}=0.30 \mathrm{~m}$.
(f) The y component of \vec{d}_{3} is $d_{3 y}=0.60 \sin 60^{\circ}=0.52 \mathrm{~m}$.
(g) The x component of the net displacement $\vec{d}_{\text {net }}$ is

$$
d_{n e t, x}=d_{1 x}+d_{2 x}+d_{3 x}=(-0.28)+(0.50)+(0.30)=0.52 \mathrm{~m} .
$$

(h) The y component of the net displacement $\vec{d}_{\text {net }}$ is

$$
d_{n e t, y}=d_{1 y}+d_{2 y}+d_{3 y}=(-0.28)+(0)+(0.52)=0.24 \mathrm{~m} .
$$

(i) The magnitude of the net displacement is

$$
d_{n e t}=\sqrt{d_{n e t, x}^{2}+d_{n e t, y}^{2}}=\sqrt{(0.52)^{2}+(0.24)^{2}}=0.57 \mathrm{~m} .
$$

(j) The direction of the net displacement is

$$
\theta=\tan ^{-1}\left(\frac{d_{\text {net }, y}}{d_{\text {net }, x}}\right)=\tan ^{-1}\left(\frac{0.24}{0.52}\right)=25^{\circ} \text { (north of east) }
$$

If the ant has to return directly to the starting point, the displacement would be $-\vec{d}_{n e t}$. (k) The distance the ant has to travel is $\mathrm{I}-\vec{d}_{\text {net }} \mathrm{I}=0.57 \mathrm{~m}$.
(1) The direction the ant has to travel is 25° (south of west).
51. The diagram shows the displacement vectors for the two segments of her walk, labeled \vec{A} and \vec{B}, and the total ("final") displacement vector, labeled \vec{r}. We take east to be the $+x$ direction and north to be the $+y$ direction. We observe that the angle between \vec{A} and the x axis is 60°. Where the units are not explicitly shown, the distances are understood to be in meters. Thus, the components of \vec{A} are $A_{x}=250 \cos 60^{\circ}=125$ and A_{y} $=250 \sin 60^{\circ}=216.5$. The components of \vec{B} are $B_{x}=175$ and $B_{y}=0$. The components of the total displacement are $r_{x}=A_{x}+B_{x}=125+175=300$ and $r_{y}=A_{y}+B_{y}=216.5+0=$ 216.5.

(a) The magnitude of the resultant displacement is

$$
|\vec{r}|=\sqrt{r_{x}^{2}+r_{y}^{2}}=\sqrt{(300)^{2}+(216.5)^{2}}=370 \mathrm{~m} .
$$

(b) The angle the resultant displacement makes with the $+x$ axis is

$$
\tan ^{-1}\left(\frac{r_{y}}{r_{x}}\right)=\tan ^{-1}\left(\frac{216.5}{300}\right)=36^{\circ} .
$$

The direction is 36° north of due east.
(c) The total distance walked is $d=250+175=425 \mathrm{~m}$.
(d) The total distance walked is greater than the magnitude of the resultant displacement. The diagram shows why: \vec{A} and \vec{B} are not collinear.
52. The displacement vectors can be written as (in meters)

$$
\begin{aligned}
& \vec{d}_{1}=4.50\left(\cos 63^{\circ} \hat{\mathrm{j}}+\sin 63^{\circ} \hat{\mathrm{k}}\right)=2.04 \hat{\mathrm{j}}+4.01 \hat{\mathrm{k}} \\
& \vec{d}_{2}=1.40\left(\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30^{\circ} \hat{\mathrm{k}}\right)=1.21 \hat{\mathrm{i}}+0.70 \hat{\mathrm{k}}
\end{aligned}
$$

(a) The dot product of \vec{d}_{1} and \vec{d}_{2} is

$$
\vec{d}_{1} \cdot \vec{d}_{2}=(2.04 \hat{\mathrm{j}}+4.01 \hat{\mathrm{k}}) \cdot(1.21 \hat{\mathrm{i}}+0.70 \hat{\mathrm{k}})=(4.01 \hat{\mathrm{k}}) \cdot(0.70 \hat{\mathrm{k}})=2.81 \mathrm{~m}^{2}
$$

(b) The cross product of \vec{d}_{1} and \vec{d}_{2} is

$$
\begin{aligned}
\vec{d}_{1} \times \vec{d}_{2} & =(2.04 \hat{\mathrm{j}}+4.01 \hat{\mathrm{k}}) \times(1.21 \hat{\mathrm{i}}+0.70 \hat{\mathrm{k}}) \\
& =(2.04)(1.21)(-\hat{\mathrm{k}})+(2.04)(0.70) \hat{\mathrm{i}}+(4.01)(1.21) \hat{\mathrm{j}} \\
& =(1.43 \hat{\mathrm{i}}+4.86 \hat{\mathrm{j}}-2.48 \hat{\mathrm{k}}) \mathrm{m}^{2} .
\end{aligned}
$$

(c) The magnitudes of \vec{d}_{1} and \vec{d}_{2} are

$$
\begin{aligned}
& d_{1}=\sqrt{(2.04)^{2}+(4.01)^{2}}=4.50 \\
& d_{2}=\sqrt{(1.21)^{2}+(0.70)^{2}}=1.40
\end{aligned}
$$

Thus, the angle between the two vectors is

$$
\theta=\cos ^{-1}\left(\frac{\vec{d}_{1} \cdot \vec{d}_{2}}{d_{1} d_{2}}\right)=\cos ^{-1}\left(\frac{2.81}{(4.50)(1.40)}\right)=63.5^{\circ} .
$$

53. The three vectors are

$$
\begin{aligned}
& \vec{d}_{1}=4.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}} \\
& \vec{d}_{2}=-1.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}} \\
& \vec{d}_{3}=4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}
\end{aligned}
$$

(a) $\vec{r}=\vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}=9.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}-7.0 \hat{\mathrm{k}}$ (in meters).
(b) The magnitude of \vec{r} is $|\vec{r}|=\sqrt{(9.0)^{2}+(6.0)^{2}+(-7.0)^{2}}=12.9$. The angle between \vec{r} and the z-axis is given by

$$
\cos \theta=\frac{\vec{r} \cdot \hat{\mathrm{k}}}{|\vec{r}|}=\frac{-7.0}{12.9}=-0.543
$$

which implies $\theta=123^{\circ}$.
(c) The component of \vec{d}_{1} along the direction of \vec{d}_{2} is given by $d_{\square}=\vec{d}_{1} \cdot \hat{\mathrm{u}}=d_{1} \cos \varphi$ where φ is the angle between \vec{d}_{1} and \vec{d}_{2}, and $\hat{\mathrm{u}}$ is the unit vector in the direction of \vec{d}_{2}. Using the properties of the scalar (dot) product, we have

$$
d_{\square}=d_{1}\left(\frac{\vec{d}_{1} \cdot \vec{d}_{2}}{d_{1} d_{2}}\right)=\frac{\vec{d}_{1} \cdot \vec{d}_{2}}{d_{2}}=\frac{(4.0)(-1.0)+(5.0)(2.0)+(-6.0)(3.0)}{\sqrt{(-1.0)^{2}+(2.0)^{2}+(3.0)^{2}}}=\frac{-12}{\sqrt{14}}=-3.2 \mathrm{~m} .
$$

(d) Now we are looking for d_{\perp} such that $d_{1}^{2}=(4.0)^{2}+(5.0)^{2}+(-6.0)^{2}=77=d_{\square}^{2}+d_{\perp}^{2}$. From (c), we have

$$
d_{\perp}=\sqrt{77-(-3.2)^{2}}=8.2 \mathrm{~m} .
$$

This gives the magnitude of the perpendicular component (and is consistent with what one would get using Eq. 3-27), but if more information (such as the direction, or a full specification in terms of unit vectors) is sought then more computation is needed.
54. Noting that the given 130° is measured counterclockwise from the $+x$ axis, the two vectors can be written as

$$
\begin{aligned}
& \vec{A}=8.00\left(\cos 130^{\circ} \hat{\mathrm{i}}+\sin 130^{\circ} \hat{\mathrm{j}}\right)=-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}} \\
& \vec{B}=B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}=-7.72 \hat{\mathrm{i}}-9.20 \hat{\mathrm{j}} .
\end{aligned}
$$

(a) The angle between the negative direction of the y axis $(-\hat{\mathrm{j}})$ and the direction of \vec{A} is

$$
\theta=\cos ^{-1}\left(\frac{\vec{A} \cdot(-\hat{\mathrm{j}})}{A}\right)=\cos ^{-1}\left(\frac{-6.13}{\sqrt{(-5.14)^{2}+(6.13)^{2}}}\right)=\cos ^{-1}\left(\frac{-6.13}{8.00}\right)=140^{\circ} .
$$

Alternatively, one may say that the $-y$ direction corresponds to an angle of 270°, and the answer is simply given by $270^{\circ}-130^{\circ}=140^{\circ}$.
(b) Since the y axis is in the $x y$ plane, and $\vec{A} \times \vec{B}$ is perpendicular to that plane, then the answer is 90.0°.
(c) The vector can be simplified as

$$
\begin{aligned}
\vec{A} \times(\vec{B}+3.00 \hat{\mathrm{k}}) & =(-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}}) \times(-7.72 \hat{\mathrm{i}}-9.20 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}) \\
& =18.39 \hat{\mathrm{i}}+15.42 \hat{\mathrm{j}}+94.61 \hat{\mathrm{k}}
\end{aligned}
$$

Its magnitude is $|\vec{A} \times(\vec{B}+3.00 \hat{\mathrm{k}})|=97.6$. The angle between the negative direction of the y axis $(-\hat{\mathrm{j}})$ and the direction of the above vector is

$$
\theta=\cos ^{-1}\left(\frac{-15.42}{97.6}\right)=99.1^{\circ}
$$

55. The two vectors are given by

$$
\begin{aligned}
& \vec{A}=8.00\left(\cos 130^{\circ} \hat{\mathrm{i}}+\sin 130^{\circ} \hat{\mathrm{j}}\right)=-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}} \\
& \vec{B}=B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}=-7.72 \hat{\mathrm{i}}-9.20 \hat{\mathrm{j}} .
\end{aligned}
$$

(a) The dot product of $5 \vec{A} \cdot \vec{B}$ is

$$
\begin{aligned}
5 \vec{A} \cdot \vec{B} & =5(-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}}) \cdot(-7.72 \hat{\mathrm{i}}-9.20 \hat{\mathrm{j}})=5[(-5.14)(-7.72)+(6.13)(-9.20)] \\
& =-83.4
\end{aligned}
$$

(b) In unit vector notation

$$
4 \vec{A} \times 3 \vec{B}=12 \vec{A} \times \vec{B}=12(-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}}) \times(-7.72 \hat{\mathrm{i}}-9.20 \hat{\mathrm{j}})=12(94.6 \hat{\mathrm{k}})=1.14 \times 10^{3} \hat{\mathrm{k}}
$$

(c) We note that the azimuthal angle is undefined for a vector along the z axis. Thus, our result is " $1.14 \times 10^{3}, \theta$ not defined, and $\phi=0^{\circ}$."
(d) Since \vec{A} is in the $x y$ plane, and $\vec{A} \times \vec{B}$ is perpendicular to that plane, then the answer is 90°.
(e) Clearly, $\vec{A}+3.00 \hat{\mathrm{k}}=-5.14 \hat{\mathrm{i}}+6.13 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}$.
(f) The Pythagorean theorem yields magnitude $A=\sqrt{(5.14)^{2}+(6.13)^{2}+(3.00)^{2}}=8.54$. The azimuthal angle is $\theta=130^{\circ}$, just as it was in the problem statement (\vec{A} is the projection onto to the $x y$ plane of the new vector created in part (e)). The angle measured from the $+z$ axis is $\phi=\cos ^{-1}(3.00 / 8.54)=69.4^{\circ}$.
56. The two vectors \vec{d}_{1} and \vec{d}_{2} are given by

$$
\vec{d}_{1}=-d_{1} \hat{\mathrm{j}}, \quad \vec{d}_{2}=d_{2} \hat{\mathrm{i}} .
$$

(a) The vector $\vec{d}_{2} / 4=\left(d_{2} / 4\right) \hat{i}$ points in the $+x$ direction. The $1 / 4$ factor does not affect the result.
(b) The vector $\vec{d}_{1} /(-4)=\left(d_{1} / 4\right) \hat{\mathrm{j}}$ points in the $+y$ direction. The minus sign (with the " -4 ") does affect the direction: $-(-y)=+y$.
(c) $\vec{d}_{1} \cdot \vec{d}_{2}=0$ since $\hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=0$. The two vectors are perpendicular to each other.
(d) $\vec{d}_{1} \cdot\left(\vec{d}_{2} / 4\right)=\left(\vec{d}_{1} \cdot \vec{d}_{2}\right) / 4=0$, as in part (c).
(e) $\vec{d}_{1} \times \vec{d}_{2}=-d_{1} d_{2}(\hat{\mathrm{j}} \times \hat{\mathrm{i}})=d_{1} d_{2} \hat{\mathrm{k}}$, in the $+z$-direction.
(f) $\vec{d}_{2} \times \vec{d}_{1}=-d_{2} d_{1}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=-d_{1} d_{2} \hat{\mathrm{k}}$, in the $-z$-direction.
(g) The magnitude of the vector in (e) is $d_{1} d_{2}$.
(h) The magnitude of the vector in (f) is $d_{1} d_{2}$.
(i) Since $d_{1} \times\left(\vec{d}_{2} / 4\right)=\left(d_{1} d_{2} / 4\right) \hat{\mathrm{k}}$, the magnitude is $d_{1} d_{2} / 4$.
(j) The direction of $\vec{d}_{1} \times\left(\vec{d}_{2} / 4\right)=\left(d_{1} d_{2} / 4\right) \hat{\mathrm{k}}$ is in the $+z$-direction.
57. The vector \vec{d} (measured in meters) can be represented as $\vec{d}=3.0(-\hat{\mathrm{j}})$, where $-\hat{\mathrm{j}}$ is the unit vector pointing south. Therefore,

$$
5.0 \vec{d}=5.0(-3.0 \hat{\mathrm{j}})=-15 \hat{\mathrm{j}} .
$$

(a) The positive scalar factor (5.0) affects the magnitude but not the direction. The magnitude of $5 \vec{d}$ is 15 m .
(b) The new direction of $5 \vec{d}$ is the same as the old: south.

The vector $-2.0 \vec{d}$ can be written as $-2.0 \vec{d}=6.0 \hat{\mathrm{j}}$.
(c) The absolute value of the scalar factor $(|-2.0|=2.0)$ affects the magnitude. The new magnitude is 6.0 m .
(d) The minus sign carried by this scalar factor reverses the direction, so the new direction is $+\hat{\mathrm{j}}$, or north.
58. Solving the simultaneous equations yields the answers:
(a) $\overrightarrow{d_{1}}=4 \overrightarrow{d_{3}}=8 \hat{i}+16 \hat{j}$, and
(b) $\overrightarrow{d_{2}}=\overrightarrow{d_{3}}=2 \hat{i}+4 \hat{j}$.
59. The vector equation is $\vec{R}=\vec{A}+\vec{B}+\vec{C}+\vec{D}$. Expressing \vec{B} and \vec{D} in unit-vector notation, we have $1.69 \hat{\mathrm{i}}+3.63 \hat{\mathrm{j}}$ and $-2.87 \hat{\mathrm{i}}+4.10 \hat{\mathrm{j}}$, respectively. Where the length unit is not displayed in the solution below, the unit meter should be understood.
(a) Adding corresponding components, we obtain $\vec{R}=-3.18 \hat{\mathrm{i}}+4.72 \hat{\mathrm{j}}$.
(b) Using Eq. 3-6, the magnitude is

$$
|\vec{R}|=\sqrt{(-3.18)^{2}+(4.72)^{2}}=5.69 .
$$

(c) The angle is

$$
\theta=\tan ^{-1}\left(\frac{4.72}{-3.18}\right)=-56.0^{\circ} \quad(\text { with }-x \text { axis }) .
$$

If measured counterclockwise from $+x$-axis, the angle is then $180^{\circ}-56.0^{\circ}=124^{\circ}$. Thus, converting the result to polar coordinates, we obtain

$$
(-3.18,4.72) \rightarrow\left(5.69 \angle 124^{\circ}\right)
$$

60. As a vector addition problem, we express the situation (described in the problem statement) as $\vec{A}+\vec{B}=(3 A) \hat{\mathrm{j}}$, where $\vec{A}=A \hat{\mathrm{i}}$ and $B=7.0 \mathrm{~m}$. Since $\hat{\mathrm{i}} \perp \hat{\mathrm{j}}$ we may use the Pythagorean theorem to express B in terms of the magnitudes of the other two vectors:

$$
B=\sqrt{(3 A)^{2}+A^{2}} \quad \Rightarrow \quad A=\frac{1}{\sqrt{10}} B=2.2 \mathrm{~m}
$$

61. The three vectors are

$$
\begin{aligned}
& \vec{d}_{1}=-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{2}=-2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{3}=2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+1.0 \hat{\mathrm{k}} .
\end{aligned}
$$

(a) Since $\vec{d}_{2}+\vec{d}_{3}=0 \hat{\mathrm{i}}-1.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$, we have

$$
\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}\right)=(-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}) \cdot(0 \hat{\mathrm{i}}-1.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}})=0-3.0+6.0=3.0 \mathrm{~m}^{2} .
$$

(b) Using Eq. 3-30, we obtain $\vec{d}_{2} \times \vec{d}_{3}=-10 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$. Thus,

$$
\vec{d}_{1} \cdot\left(\vec{d}_{2} \times \vec{d}_{3}\right)=(-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}) \cdot(-10 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}})=30+18+4.0=52 \mathrm{~m}^{3} .
$$

(c) We found $\overrightarrow{d_{2}}+\overrightarrow{d_{3}}$ in part (a). Use of Eq. 3-30 then leads to

$$
\begin{aligned}
\vec{d}_{1} \times\left(\vec{d}_{2}+\vec{d}_{3}\right) & =(-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}) \times(0 \hat{\mathrm{i}}-1.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}) \\
& =(11 \hat{\mathrm{i}}+9.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}) \mathrm{m}^{2}
\end{aligned}
$$

62. The vectors are shown on the diagram. The x axis runs from west to east and the y axis runs from south to north. Then $a_{x}=5.0 \mathrm{~m}, a_{y}=0, b_{x}=-(4.0 \mathrm{~m}) \sin 35^{\circ}=-2.29 \mathrm{~m}$, and $b_{y}=(4.0 \mathrm{~m}) \cos 35^{\circ}=3.28 \mathrm{~m}$.

(a) Let $\vec{c}=\vec{a}+\vec{b}$. Then $c_{x}=a_{x}+b_{x}=5.00 \mathrm{~m}-2.29 \mathrm{~m}=2.71 \mathrm{~m}$ and $c_{y}=a_{y}+b_{y}=0+3.28 \mathrm{~m}=3.28 \mathrm{~m}$. The magnitude of c is

$$
c=\sqrt{c_{x}^{2}+c_{y}^{2}}=\sqrt{(2.71 \mathrm{~m})^{2}+(3.28 \mathrm{~m})^{2}}=4.2 \mathrm{~m}
$$

(b) The angle θ that $\vec{c}=\vec{a}+\vec{b}$ makes with the $+x$ axis is

$$
\theta=\tan ^{-1}\left(\frac{c_{y}}{c_{x}}\right)=\tan ^{-1}\left(\frac{3.28}{2.71}\right)=50^{\circ} .
$$

The second possibility $\left(\theta=50.4^{\circ}+180^{\circ}=230.4^{\circ}\right)$ is rejected because it would point in a direction opposite to \vec{c}.
(c) The vector $\vec{b}-\vec{a}$ is found by adding $-\vec{a}$ to \vec{b}. The result is shown on the diagram to the right. Let $\vec{c}=\vec{b}-\vec{a}$. The components are $c_{x}=b_{x}-a_{x}=-2.29 \mathrm{~m}-5.00 \mathrm{~m}=-7.29 \mathrm{~m}$, and $c_{y}=b_{y}-a_{y}=3.28 \mathrm{~m}$. The magnitude of \vec{c} is $c=\sqrt{c_{x}^{2}+c_{y}^{2}}=8.0 \mathrm{~m}$.

(d) The tangent of the angle θ that \vec{c} makes with the $+x$ axis (east) is

$$
\tan \theta=\frac{c_{y}}{c_{x}}=\frac{3.28 \mathrm{~m}}{-7.29 \mathrm{~m}}=-4.50 .
$$

There are two solutions: -24.2° and 155.8°. As the diagram shows, the second solution is correct. The vector $\vec{c}=-\vec{a}+\vec{b}$ is 24° north of west.
63. We choose $+x$ east and $+y$ north and measure all angles in the "standard" way (positive ones counterclockwise from $+x$, negative ones clockwise). Thus, vector \vec{d}_{1} has magnitude $d_{1}=3.66$ (with the unit meter and three significant figures assumed) and direction $\theta_{1}=90^{\circ}$. Also, \vec{d}_{2} has magnitude $d_{2}=1.83$ and direction $\theta_{2}=-45^{\circ}$, and vector \vec{d}_{3} has magnitude $d_{3}=0.91$ and direction $\theta_{3}=-135^{\circ}$. We add the x and y components, respectively:

$$
\begin{aligned}
& x: d_{1} \cos \theta_{1}+d_{2} \cos \theta_{2}+d_{3} \cos \theta_{3}=0.65 \mathrm{~m} \\
& y: d_{1} \sin \theta_{1}+d_{2} \sin \theta_{2}+d_{3} \sin \theta_{3}=1.7 \mathrm{~m} .
\end{aligned}
$$

(a) The magnitude of the direct displacement (the vector sum $\vec{d}_{1}+\vec{d}_{2}+\vec{d}_{3}$) is $\sqrt{(0.65)^{2}+(1.7)^{2}}=1.8 \mathrm{~m}$.
(b) The angle (understood in the sense described above) is $\tan ^{-1}(1.7 / 0.65)=69^{\circ}$. That is, the first putt must aim in the direction 69° north of east.
64. We choose $+x$ east and $+y$ north and measure all angles in the "standard" way (positive ones are counterclockwise from $+x$). Thus, vector \vec{d}_{1} has magnitude $d_{1}=4.00$ (with the unit meter) and direction $\theta_{1}=225^{\circ}$. Also, \vec{d}_{2} has magnitude $d_{2}=5.00$ and direction $\theta_{2}=0^{\circ}$, and vector \vec{d}_{3} has magnitude $d_{3}=6.00$ and direction $\theta_{3}=60^{\circ}$.
(a) The x-component of \vec{d}_{1} is $d_{1} \cos \theta_{1}=-2.83 \mathrm{~m}$.
(b) The y-component of \vec{d}_{1} is $d_{1} \sin \theta_{1}=-2.83 \mathrm{~m}$.
(c) The x-component of $\quad \vec{d}_{2}$ is $d_{2} \cos \theta_{2}=5.00 \mathrm{~m}$.
(d) The y-component of \vec{d}_{2} is $d_{2} \sin \theta_{2}=0$.
(e) The x-component of \vec{d}_{3} is $d_{3} \cos \theta_{3}=3.00 \mathrm{~m}$.
(f) The y-component of \vec{d}_{3} is $d_{3} \sin \theta_{3}=5.20 \mathrm{~m}$.
(g) The sum of x-components is $-2.83+5.00+3.00=5.17 \mathrm{~m}$.
(h) The sum of y-components is $-2.83+0+5.20=2.37 \mathrm{~m}$.
(i) The magnitude of the resultant displacement is $\sqrt{5.17^{2}+2.37^{2}}=5.69 \mathrm{~m}$.
(j) And its angle is $\theta=\tan ^{-1}(2.37 / 5.17)=24.6^{\circ}$ which (recalling our coordinate choices) means it points at about 25° north of east.
(k) and (l) This new displacement (the direct line home) when vectorially added to the previous (net) displacement must give zero. Thus, the new displacement is the negative, or opposite, of the previous (net) displacement. That is, it has the same magnitude (5.69 $\mathrm{m})$ but points in the opposite direction (25° south of west).
65. The two vectors \vec{a} and \vec{b} are given by

$$
\begin{aligned}
& \vec{a}=3.20\left(\cos 63^{\circ} \hat{\mathrm{j}}+\sin 63^{\circ} \hat{\mathrm{k}}\right)=1.45 \hat{\mathrm{j}}+2.85 \hat{\mathrm{k}} \\
& \vec{b}=1.40\left(\cos 48^{\circ} \hat{\mathrm{i}}+\sin 48^{\circ} \hat{\mathrm{k}}\right)=0.937 \hat{\mathrm{i}}+1.04 \hat{\mathrm{k}}
\end{aligned}
$$

The components of \vec{a} are $a_{x}=0, a_{y}=3.20 \cos 63^{\circ}=1.45$, and $a_{z}=3.20 \sin 63^{\circ}=2.85$.
The components of \vec{b} are $b_{x}=1.40 \cos 48^{\circ}=0.937, b_{y}=0$, and $b_{z}=1.40 \sin 48^{\circ}=1.04$.
(a) The scalar (dot) product is therefore

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=(0)(0.937)+(1.45)(0)+(2.85)(1.04)=2.97
$$

(b) The vector (cross) product is

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{\mathrm{i}}+\left(\mathrm{a}_{z} b_{x}-a_{x} b_{z}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathrm{k}} \\
& =((1.45)(1.04)-0)) \hat{\mathrm{i}}+((2.85)(0.937)-0)) \hat{\mathrm{j}}+(0-(1.45)(0.937)) \hat{\mathrm{k}} \\
& =1.51 \hat{\mathrm{i}}+2.67 \hat{\mathrm{j}}-1.36 \hat{\mathrm{k}}
\end{aligned}
$$

(c) The angle θ between \vec{a} and \vec{b} is given by

$$
\theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{a b}\right)=\cos ^{-1}\left(\frac{2.96}{(3.30)(1.40)}\right)=48^{\circ}
$$

66. The three vectors given are

$$
\begin{aligned}
& \vec{a}=5.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}} \\
& \vec{b}=-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}} \\
& \vec{c}=4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}
\end{aligned}
$$

(a) The vector equation $\vec{r}=\vec{a}-\vec{b}+\vec{c}$ is

$$
\begin{aligned}
\vec{r} & =[5.0-(-2.0)+4.0] \hat{\mathrm{i}}+(4.0-2.0+3.0) \hat{\mathrm{j}}+(-6.0-3.0+2.0) \hat{\mathrm{k}} \\
& =11 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}-7.0 \hat{\mathrm{k}} .
\end{aligned}
$$

(b) We find the angle from $+z$ by "dotting" (taking the scalar product) \vec{r} with $\hat{\mathrm{k}}$. Noting that $r=|\vec{r}|=\sqrt{(11.0)^{2}+(5.0)^{2}+(-7.0)^{2}}=14$, Eq. 3-20 with Eq. 3-23 leads to

$$
\vec{r} \cdot \overrightarrow{\mathrm{k}}=-7.0=(14)(1) \cos \phi \Rightarrow \phi=120^{\circ} .
$$

(c) To find the component of a vector in a certain direction, it is efficient to "dot" it (take the scalar product of it) with a unit-vector in that direction. In this case, we make the desired unit-vector by

$$
\hat{b}=\frac{\vec{b}}{|\vec{b}|}=\frac{-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}}{\sqrt{(-2.0)^{2}+(2.0)^{2}+(3.0)^{2}}} .
$$

We therefore obtain

$$
a_{b}=\vec{a} \cdot \hat{b}=\frac{(5.0)(-2.0)+(4.0)(2.0)+(-6.0)(3.0)}{\sqrt{(-2.0)^{2}+(2.0)^{2}+(3.0)^{2}}}=-4.9 .
$$

(d) One approach (if all we require is the magnitude) is to use the vector cross product, as the problem suggests; another (which supplies more information) is to subtract the result in part (c) (multiplied by \hat{b}) from \vec{a}. We briefly illustrate both methods. We note that if $a \cos \theta$ (where θ is the angle between \vec{a} and \vec{b}) gives a_{b} (the component along \hat{b}) then we expect $a \sin \theta$ to yield the orthogonal component:

$$
a \sin \theta=\frac{|\vec{a} \times \vec{b}|}{b}=7.3
$$

(alternatively, one might compute θ form part (c) and proceed more directly). The second method proceeds as follows:

$$
\begin{aligned}
\vec{a}-a_{b} \hat{b} & =(5.0-2.35) \hat{\mathrm{i}}+(4.0-(-2.35)) \hat{\mathrm{j}}+((-6.0)-(-3.53)) \hat{\mathrm{k}} \\
& =2.65 \hat{\mathrm{i}}+6.35 \hat{\mathrm{j}}-2.47 \hat{\mathrm{k}}
\end{aligned}
$$

This describes the perpendicular part of \vec{a} completely. To find the magnitude of this part, we compute

$$
\sqrt{2.65^{2}+6.35^{2}+(-2.47)^{2}}=7.3
$$

which agrees with the first method.
67. Let A denote the magnitude of \vec{A}; similarly for the other vectors. The vector equation is $\vec{A}+\vec{B}=\vec{C}$ where $B=8.0 \mathrm{~m}$ and $C=2 A$. We are also told that the angle (measured in the 'standard' sense) for \vec{A} is 0° and the angle for \vec{C} is 90°, which makes this a right triangle (when drawn in a "head-to-tail" fashion) where B is the size of the hypotenuse. Using the Pythagorean theorem,

$$
B=\sqrt{A^{2}+C^{2}} \Rightarrow 8.0=\sqrt{A^{2}+4 A^{2}}
$$

which leads to $A=8 / \sqrt{5}=3.6 \mathrm{~m}$.
68. The vectors can be written as $\vec{a}=a \hat{\mathrm{i}}$ and $\vec{b}=b \hat{\mathrm{j}}$ where $a, b>0$.
(a) We are asked to consider

$$
\frac{\vec{b}}{d}=\left(\frac{b}{d}\right) \hat{\mathrm{j}}
$$

in the case $d>0$. Since the coefficient of $\hat{\mathrm{j}}$ is positive, then the vector points in the $+y$ direction.
(b) If, however, $d<0$, then the coefficient is negative and the vector points in the $-y$ direction.
(c) Since $\cos 90^{\circ}=0$, then $\vec{a} \cdot \vec{b}=0$, using Eq. 3-20.
(d) Since \vec{b} / d is along the y axis, then (by the same reasoning as in the previous part) $\vec{a} \cdot(\vec{b} / d)=0$.
(e) By the right-hand rule, $\vec{a} \times \vec{b}$ points in the $+z$-direction.
(f) By the same rule, $\vec{b} \times \vec{a}$ points in the $-z$-direction. We note that $\vec{b} \times \vec{a}=-\vec{a} \times \vec{b}$ is true in this case and quite generally.
(g) Since $\sin 90^{\circ}=1$, Eq. 3-27 gives $|\vec{a} \times \vec{b}|=a b$ where a is the magnitude of \vec{a}.
(h) Also, $|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{a}|=a b$.
(i) With $d>0$, we find that $\vec{a} \times(\vec{b} / d)$ has magnitude $a b / d$.
(j) The vector $\vec{a} \times(\vec{b} / d)$ points in the $+z$ direction.
69. The vector can be written as $\vec{d}=2.5 \mathrm{~m} \hat{\mathrm{j}}$, where we have taken $\hat{\mathrm{j}}$ to be the unit vector pointing north.
(a) The magnitude of the vector $\vec{a}=4.0 \vec{d}$ is $(4.0)(2.5)=10 \mathrm{~m}$.
(b) The direction of the vector $\vec{a}=4.0 \vec{d}$ is the same as the direction of \vec{d} (north).
(c) The magnitude of the vector $\vec{c}=-3.0 \vec{d}$ is $(3.0)(2.5)=7.5 \mathrm{~m}$.
(d) The direction of the vector $\vec{c}=-3.0 \vec{d}$ is the opposite of the direction of \vec{d}. Thus, the direction of \vec{c} is south.
70. We orient $\hat{\mathrm{i}}$ eastward, $\hat{\mathrm{j}}$ northward, and $\hat{\mathrm{k}}$ upward.
(a) The displacement in meters is consequently $1000 \hat{i}+2000 \hat{j}-500 \hat{k}$.
(b) The net displacement is zero since his final position matches his initial position.
71. The solution to problem 25 showed that each diagonal has a length given by $a \sqrt{3}$, where a is the length of a cube edge. Vectors along two diagonals are $\vec{b}=a \hat{\mathrm{i}}+a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$ and $\vec{c}=-a \hat{\mathrm{i}}+a \hat{\mathrm{j}}+a \hat{\mathrm{k}}$. Using Eq. 3-20 with Eq. 3-23, we find the angle between them:

$$
\cos \phi=\frac{b_{x} c_{x}+b_{y} c_{y}+b_{z} c_{z}}{b c}=\frac{-a^{2}+a^{2}+a^{2}}{3 a^{2}}=\frac{1}{3} .
$$

The angle is $\phi=\cos ^{-1}(1 / 3)=70.5^{\circ}$.
72. The two vectors can be found be solving the simultaneous equations.
(a) If we add the equations, we obtain $2 \vec{a}=6 \vec{c}$, which leads to $\vec{a}=3 \vec{c}=9 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}$.
(b) Plugging this result back in, we find $\vec{b}=\vec{c}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$.
73. We note that the set of choices for unit vector directions has correct orientation (for a right-handed coordinate system). Students sometimes confuse "north" with "up", so it might be necessary to emphasize that these are being treated as the mutually perpendicular directions of our real world, not just some "on the paper" or "on the blackboard" representation of it. Once the terminology is clear, these questions are basic to the definitions of the scalar (dot) and vector (cross) products.
(a) $\hat{\mathrm{i}} \cdot \hat{\mathrm{k}}=0$ since $\hat{\mathrm{i}} \perp \hat{\mathrm{k}}$
(b) $(-\hat{k}) \cdot(-\hat{j})=0$ since $\hat{k} \perp \hat{j}$.
(c) $\hat{\mathrm{j}} \cdot(-\hat{\mathrm{j}})=-1$.
(d) $\hat{k} \times \hat{j}=-\hat{i}$ (west).
(e) $(-\hat{i}) \times(-\hat{j})=+\hat{k}$ (upward).
(f) $(-\hat{k}) \times(-\hat{\mathrm{j}})=-\hat{\mathrm{i}}$ (west).
74. (a) The vectors should be parallel to achieve a resultant 7 m long (the unprimed case shown below),
(b) anti-parallel (in opposite directions) to achieve a resultant 1 m long (primed case shown),
(c) and perpendicular to achieve a resultant $\sqrt{3^{2}+4^{2}}=5 \mathrm{~m}$ long (the double-primed case shown).

In each sketch, the vectors are shown in a "head-to-tail" sketch but the resultant is not shown. The resultant would be a straight line drawn from beginning to end; the beginning is indicated by A (with or without primes, as the case may be) and the end is indicated by B.

75. A sketch of the displacements is shown. The resultant (not shown) would be a straight line from start (Bank) to finish (Walpole). With a careful drawing, one should find that the resultant vector has length 29.5 km at 35° west of south.

76. Both proofs shown next utilize the fact that the vector (cross) product of \vec{a} and \vec{b} is perpendicular to both \vec{a} and \vec{b}. This is mentioned in the book, and is fundamental to its discussion of the right-hand rule.
(a) $(\vec{b} \times \vec{a})$ is a vector that is perpendicular to \vec{a}, so the scalar product of \vec{a} with this vector is zero. This can also be verified by using Eq. 3-30, and then (with suitable notation changes) Eq. 3-23.
(b) Let $\vec{c}=\vec{b} \times \vec{a}$. Then the magnitude of \vec{c} is $c=a b \sin \phi$. Since \vec{c} is perpendicular to \vec{a} the magnitude of $\vec{a} \times \vec{c}$ is ac. The magnitude of $\vec{a} \times(\vec{b} \times \vec{a})$ is consequently $|\vec{a} \times(\vec{b} \times \vec{a})|=a c=a^{2} b \sin \phi$. This too can be verified by repeated application of Eq. 3-30, although it must be admitted that this is much less intimidating if one is using a math software package such as MAPLE or Mathematica.
77. The area of a triangle is half the product of its base and altitude. The base is the side formed by vector \vec{a}. Then the altitude is $b \sin \phi$ and the area is

$$
A=\frac{1}{2} a b \sin \phi=\frac{1}{2}|\vec{a} \times \vec{b}| .
$$

78. We consider all possible products and then simplify using relations such as $\hat{\imath} \times \hat{\imath}=0$ and the important fundamental products

$$
\begin{aligned}
& \hat{i} \times \hat{j}=-\hat{j} \times \hat{i}=\hat{k} \\
& \hat{j} \times \hat{k}=-\hat{k} \times \hat{j}=\hat{i} \\
& \hat{k} \times \hat{i}=-\hat{i} \times \hat{k}=\hat{j} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
& =a_{x} b_{x}(\hat{\mathrm{i}} \times \hat{\mathrm{i}})+a_{x} b_{y}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})+a_{x} b_{z}(\hat{\mathrm{i}} \times \hat{\mathrm{k}})+a_{y} b_{x}(\hat{\mathrm{j}} \times \hat{\mathrm{i}})+a_{y} b_{y}(\hat{\mathrm{j}} \times \hat{\mathrm{j}})+\cdots \\
& =a_{x} b_{x}(0)+a_{x} b_{y}(\hat{\mathrm{k}})+a_{x} b_{z}(-\hat{\mathrm{j}})+a_{y} b_{x}(-\hat{\mathrm{k}})+a_{y} b_{y}(0)+\cdots
\end{aligned}
$$

which is seen to simplify to the desired result.
79. We consider all possible products and then simplify using relations such as $\hat{\mathrm{i}} \cdot \hat{\mathrm{k}}=0$ and $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1$. Thus,

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
& =a_{x} b_{x}(\hat{\mathrm{i}} \cdot \hat{\mathrm{i}})+a_{x} b_{y}(\hat{\mathrm{i}} \cdot \hat{\mathrm{j}})+a_{x} b_{z}(\hat{\mathrm{i}} \cdot \hat{\mathrm{k}})+a_{y} b_{x}(\hat{\mathrm{j}} \cdot \hat{\mathrm{i}})+a_{y} b_{y}(\hat{\mathrm{j}} \cdot \hat{\mathrm{j}})+\cdots \\
& =a_{x} b_{x}(1)+a_{x} b_{y}(0)+a_{x} b_{z}(0)+a_{y} b_{x}(0)+a_{y} b_{y}(1)+\cdots \\
& =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} .
\end{aligned}
$$

which is seen to reduce to the desired result (one might wish to show this in two dimensions before tackling the additional tedium of working with these three-component vectors).

1. (a) The magnitude of \vec{r} is $\sqrt{5.0^{2}+(-3.0)^{2}+2.0^{2}}=6.2 \mathrm{~m}$.
(b) A sketch is shown. The coordinate values are in meters.

2. Wherever the length unit is not specified (in this solution), the unit meter should be understood.
(a) The position vector, according to Eq. $4-1$, is $\vec{r}=(-5.0 \mathrm{~m}) \hat{\mathrm{i}}+(8.0 \mathrm{~m}) \hat{\mathrm{j}}$.
(b) The magnitude is $|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(-5.0)^{2}+(8.0)^{2}+0^{2}}=9.4 \mathrm{~m}$.
(c) Many calculators have polar \leftrightarrow rectangular conversion capabilities which make this computation more efficient than what is shown below. Noting that the vector lies in the $x y$ plane, we are using Eq. 3-6:

$$
\theta=\tan ^{-1}\left(\frac{8.0}{-5.0}\right)=-58^{\circ} \text { or } 122^{\circ}
$$

where we choose the latter possibility (122° measured counterclockwise from the $+x$ direction) since the signs of the components imply the vector is in the second quadrant.
(d) In the interest of saving space, we omit the sketch. The vector is 32° counterclockwise from the $+y$ direction, where the $+y$ direction is assumed to be (as is standard) $+90^{\circ}$ counterclockwise from $+x$, and the $+z$ direction would therefore be "out of the paper."
(e) The displacement is $\Delta \vec{r}=\vec{r}^{\prime}-\vec{r}$ where \vec{r} is given in part (a) and $\vec{r}^{\prime}=3.0 \hat{\mathrm{i}}$. Therefore, $\Delta \vec{r}=8.0 \hat{\mathrm{i}}-8.0 \hat{\mathrm{j}}$ (in meters).
(f) The magnitude of the displacement is $|\Delta \vec{r}|=\sqrt{(8.0)^{2}+(-8.0)^{2}}=11 \mathrm{~m}$.
(g) The angle for the displacement, using Eq. 3-6, is found from

$$
\tan ^{-1}\left(\frac{8.0}{-8.0}\right)=-45^{\circ} \text { or } 135^{\circ}
$$

where we choose the former possibility $\left(-45^{\circ}\right.$, which means 45° measured clockwise from $+x$, or 315° counterclockwise from $+x$) since the signs of the components imply the vector is in the fourth quadrant.
3. The initial position vector \vec{r}_{o} satisfies $\vec{r}-\vec{r}_{\mathrm{o}}=\Delta \vec{r}$, which results in

$$
\vec{r}_{\mathrm{o}}=\vec{r}-\Delta \vec{r}=(3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}})-(2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}})=-2.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}-10 \hat{\mathrm{k}}
$$

where the understood unit is meters.
4. We choose a coordinate system with origin at the clock center and $+x$ rightward (towards the " $3: 00$ " position) and $+y$ upward (towards " $12: 00$ ").
(a) In unit-vector notation, we have (in centimeters) $\vec{r}_{1}=10 \hat{\mathrm{i}}$ and $\vec{r}_{2}=-10 \hat{\mathrm{j}}$. Thus, Eq. 4-2 gives

$$
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}=-10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}} .
$$

Thus, the magnitude is given by $|\Delta \vec{r}|=\sqrt{(-10)^{2}+(-10)^{2}}=14 \mathrm{~cm}$.
(b) The angle is

$$
\theta=\tan ^{-1}\left(\frac{-10}{-10}\right)=45^{\circ} \text { or }-135^{\circ}
$$

We choose -135° since the desired angle is in the third quadrant. In terms of the magnitude-angle notation, one may write $\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}=-10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}} \rightarrow\left(14 \angle-135^{\circ}\right)$.
(c) In this case, $\vec{r}_{1}=-10 \hat{\mathrm{j}}$ and $\vec{r}_{2}=10 \hat{\mathrm{j}}$, and $\Delta \vec{r}=20 \hat{\mathrm{j}} \mathrm{cm}$. Thus, $|\Delta \vec{r}|=20 \mathrm{~cm}$.
(d) The angle is given by

$$
\theta=\tan ^{-1}\left(\frac{20}{0}\right)=90^{\circ}
$$

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is zero.
(f) The corresponding angle for a full-hour sweep is also zero.
5. The average velocity is given by Eq. 4-8. The total displacement $\Delta \vec{r}$ is the sum of three displacements, each result of a (constant) velocity during a given time. We use a coordinate system with $+x$ East and $+y$ North.
(a) In unit-vector notation, the first displacement is given by

$$
\Delta \vec{r}_{1}=\left(60.0 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{40.0 \mathrm{~min}}{60 \mathrm{~min} / \mathrm{h}}\right) \hat{\mathrm{i}}=(40.0 \mathrm{~km}) \hat{\mathrm{i}} .
$$

The second displacement has a magnitude of $60.0 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{20.0 \mathrm{~min}}{60 \mathrm{~min} / \mathrm{h}}=20.0 \mathrm{~km}$, and its direction is 40° north of east. Therefore,

$$
\Delta \vec{r}_{2}=20.0 \cos \left(40.0^{\circ}\right) \hat{i}+20.0 \sin \left(40.0^{\circ}\right) \hat{j}=15.3 \hat{i}+12.9 \hat{j}
$$

in kilometers. And the third displacement is

$$
\Delta \vec{r}_{3}=-\left(60.0 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{50.0 \mathrm{~min}}{60 \mathrm{~min} / \mathrm{h}}\right) \hat{\mathrm{i}}=(-50.0 \mathrm{~km}) \hat{\mathrm{i}} .
$$

The total displacement is

$$
\Delta \vec{r}=\Delta \vec{r}_{1}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3}=40.0 \hat{\mathrm{i}}+15.3 \hat{\mathrm{i}}+12.9 \hat{\mathrm{j}}-50.0 \hat{\mathrm{i}}=(5.30 \mathrm{~km}) \hat{\mathrm{i}}+(12.9 \mathrm{~km}) \hat{\mathrm{j}} .
$$

The time for the trip is $(40.0+20.0+50.0)=110 \mathrm{~min}$, which is equivalent to 1.83 h . Eq. 4-8 then yields

$$
\vec{v}_{\text {avg }}=\left(\frac{5.30 \mathrm{~km}}{1.83 \mathrm{~h}}\right) \hat{\mathrm{i}}+\left(\frac{12.9 \mathrm{~km}}{1.83 \mathrm{~h}}\right) \hat{\mathrm{j}}=(2.90 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}+(7.01 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}} .
$$

The magnitude is

$$
\left|\vec{v}_{\text {avg }}\right|=\sqrt{(2.90)^{2}+(7.01)^{2}}=7.59 \mathrm{~km} / \mathrm{h} .
$$

(b) The angle is given by

$$
\theta=\tan ^{-1}\left(\frac{7.01}{2.90}\right)=67.5^{\circ} \quad(\text { north of east }),
$$

or 22.5° east of due north.
6. To emphasize the fact that the velocity is a function of time, we adopt the notation $v(t)$ for $d x / d t$.
(a) Eq. 4-10 leads to

$$
v(t)=\frac{d}{d t}\left(3.00 t \hat{\mathrm{i}}-4.00 t^{2} \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}}\right)=(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(8.00 t \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
$$

(b) Evaluating this result at $t=2.00 \mathrm{~s}$ produces $\vec{v}=(3.00 \hat{\mathrm{i}}-16.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$.
(c) The speed at $t=2.00 \mathrm{~s}$ is $v=|\vec{v}|=\sqrt{(3.00)^{2}+(-16.0)^{2}}=16.3 \mathrm{~m} / \mathrm{s}$.
(d) And the angle of \vec{v} at that moment is one of the possibilities

$$
\tan ^{-1}\left(\frac{-16.0}{3.00}\right)=-79.4^{\circ} \text { or } 101^{\circ}
$$

where we choose the first possibility (79.4° measured clockwise from the $+x$ direction, or 281° counterclockwise from $+x$) since the signs of the components imply the vector is in the fourth quadrant.
7. Using Eq. 4-3 and Eq. 4-8, we have

$$
\vec{v}_{\text {avg }}=\frac{(-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}})-(5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}})}{10}=(-0.70 \hat{\mathrm{i}}+1.40 \hat{\mathrm{j}}-0.40 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}
$$

8. Our coordinate system has \hat{i} pointed east and \hat{j} pointed north. All distances are in kilometers, times in hours, and speeds in km / h. The first displacement is $\vec{r}_{A B}=483 \hat{\mathrm{i}}$ and the second is $\vec{r}_{B C}=-966 \hat{\mathbf{j}}$.
(a) The net displacement is

$$
\vec{r}_{A C}=\vec{r}_{A B}+\vec{r}_{B C}=(483 \mathrm{~km}) \hat{\mathrm{i}}-(966 \mathrm{~km}) \hat{\mathrm{j}}
$$

which yields $\left|\vec{r}_{A C}\right|=\sqrt{(483)^{2}+(-966)^{2}}=1.08 \times 10^{3} \mathrm{~km}$.
(b) The angle is given by

$$
\tan ^{-1}\left(\frac{-966}{483}\right)=-63.4^{\circ}
$$

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° east of south.
(c) Dividing the magnitude of $\vec{r}_{A C}$ by the total time $(2.25 \mathrm{~h})$ gives

$$
\vec{v}_{\mathrm{avg}}=\frac{483 \hat{\mathrm{i}}-966 \hat{\mathrm{j}}}{2.25}=215 \hat{\mathrm{i}}-429 \hat{\mathrm{j}} .
$$

with a magnitude $\left|\vec{v}_{\text {avg }}\right|=\sqrt{(215)^{2}+(-429)^{2}}=480 \mathrm{~km} / \mathrm{h}$.
(d) The direction of $\overrightarrow{\mathrm{a}}_{\text {avg }}$ is 26.6° east of south, same as in part (b). In magnitude-angle notation, we would have $\vec{v}_{\text {avg }}=\left(480 \angle-63.4^{\circ}\right)$.
(e) Assuming the $A B$ trip was a straight one, and similarly for the $B C$ trip, then $\left|\vec{r}_{A B}\right|$ is the distance traveled during the $A B$ trip, and $\left|\vec{r}_{B C}\right|$ is the distance traveled during the $B C$ trip. Since the average speed is the total distance divided by the total time, it equals

$$
\frac{483+966}{2.25}=644 \mathrm{~km} / \mathrm{h} .
$$

9. We apply Eq. 4-10 and Eq. 4-16.
(a) Taking the derivative of the position vector with respect to time, we have

$$
\vec{v}=\frac{d}{d t}\left(\hat{\mathrm{i}}+4 t^{2} \hat{\mathrm{j}}+t \hat{\mathrm{k}}\right)=8 t \hat{\mathrm{j}}+\hat{\mathrm{k}}
$$

in SI units (m / s).
(b) Taking another derivative with respect to time leads to

$$
\vec{a}=\frac{d}{d t}(8 t \hat{\mathrm{j}}+\hat{\mathrm{k}})=8 \hat{\mathrm{j}}
$$

in SI units $\left(\mathrm{m} / \mathrm{s}^{2}\right)$.
10. We adopt a coordinate system with \hat{i} pointed east and \hat{j} pointed north; the coordinate origin is the flagpole. With SI units understood, we "translate" the given information into unit-vector notation as follows:

$$
\begin{array}{lll}
\vec{r}_{\mathrm{o}}=40 \hat{\mathrm{i}} & \text { and } & \vec{v}_{\mathrm{o}}=-10 \hat{\mathrm{j}} \\
\vec{r}=40 \hat{\mathrm{j}} & \text { and } & \vec{v}=10 \hat{\mathrm{i}} .
\end{array}
$$

(a) Using Eq. 4-2, the displacement $\Delta \vec{r}$ is

$$
\Delta \vec{r}=\vec{r}-\vec{r}_{\mathrm{o}}=-40 \hat{\mathrm{i}}+40 \hat{\mathrm{j}} .
$$

with a magnitude $|\Delta \vec{r}|=\sqrt{(-40)^{2}+(40)^{2}}=56.6 \mathrm{~m}$.
(b) The direction of $\Delta \vec{r}$ is

$$
\theta=\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)=\tan ^{-1}\left(\frac{40}{-40}\right)=-45^{\circ} \text { or } 135^{\circ}
$$

Since the desired angle is in the second quadrant, we pick $135^{\circ}\left(45^{\circ}\right.$ north of due west). Note that the displacement can be written as $\Delta \vec{r}=\vec{r}-\vec{r}_{0}=\left(56.6 \angle 135^{\circ}\right)$ in terms of the magnitude-angle notation.
(c) The magnitude of $\vec{v}_{\text {avg }}$ is simply the magnitude of the displacement divided by the time $(\Delta t=30 \mathrm{~s})$. Thus, the average velocity has magnitude $56.6 / 30=1.89 \mathrm{~m} / \mathrm{s}$.
(d) Eq. $4-8$ shows that $\vec{v}_{\text {avg }}$ points in the same direction as $\Delta \vec{r}$, i.e, $135^{\circ}\left(45^{\circ}\right.$ north of due west).
(e) Using Eq. 4-15, we have

$$
\vec{a}_{\text {avg }}=\frac{\vec{v}-\vec{v}_{\mathrm{o}}}{\Delta t}=0.333 \hat{\mathrm{i}}+0.333 \hat{\mathrm{j}}
$$

in SI units. The magnitude of the average acceleration vector is therefore $0.333 \sqrt{2}=0.471 \mathrm{~m} / \mathrm{s}^{2}$.
(f) The direction of $\vec{a}_{\text {avg }}$ is

$$
\theta=\tan ^{-1}\left(\frac{0.333}{0.333}\right)=45^{\circ} \text { or }-135^{\circ}
$$

Since the desired angle is now in the first quadrant, we choose 45°, and $\vec{a}_{\text {avg }}$ points north of due east.
11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction of the velocity computed in part (b), since that represents the asked-for tangent line.
(a) Plugging into the given expression, we obtain

$$
\left.\vec{r}\right|_{t=2.00}=[2.00(8)-5.00(2)] \hat{\mathrm{i}}+[6.00-7.00(16)] \hat{\mathrm{j}}=6.00 \hat{\mathrm{i}}-106 \hat{\mathrm{j}}
$$

in meters.
(b) Taking the derivative of the given expression produces

$$
\vec{v}(t)=\left(6.00 t^{2}-5.00\right) \hat{i}-28.0 t^{3} \hat{\mathrm{j}}
$$

where we have written $v(t)$ to emphasize its dependence on time. This becomes, at $t=2.00 \mathrm{~s}, \vec{v}=(19.0 \hat{\mathrm{i}}-224 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$.
(c) Differentiating the $\vec{v}(t)$ found above, with respect to t produces $12.0 t \hat{i}-84.0 t^{2} \hat{j}$, which yields $\vec{a}=(24.0 \hat{\mathrm{i}}-336 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$ at $t=2.00 \mathrm{~s}$.
(d) The angle of \vec{v}, measured from $+x$, is either

$$
\tan ^{-1}\left(\frac{-224}{19.0}\right)=-85.2^{\circ} \text { or } 94.8^{\circ}
$$

where we settle on the first choice (-85.2°, which is equivalent to 275° measured counterclockwise from the $+x$ axis) since the signs of its components imply that it is in the fourth quadrant.
12. We find t by solving $\Delta x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}$:

$$
12.0=0+(4.00) t+\frac{1}{2}(5.00) t^{2}
$$

where $\Delta x=12.0 \mathrm{~m}, v_{x}=4.00 \mathrm{~m} / \mathrm{s}$, and $a_{x}=5.00 \mathrm{~m} / \mathrm{s}^{2}$. We use the quadratic formula and find $t=1.53 \mathrm{~s}$. Then, Eq. 2-11 (actually, its analog in two dimensions) applies with this value of t. Therefore, its velocity (when $\Delta x=12.00 \mathrm{~m}$) is

$$
\begin{aligned}
\vec{v} & =\vec{v}_{0}+\vec{a} t=(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+\left(5.00 \mathrm{~m} / \mathrm{s}^{2}\right)(1.53 \mathrm{~s}) \hat{\mathrm{i}}+\left(7.00 \mathrm{~m} / \mathrm{s}^{2}\right)(1.53 \mathrm{~s}) \hat{\mathrm{j}} \\
& =(11.7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(10.7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} .
\end{aligned}
$$

Thus, the magnitude of \vec{v} is $|\vec{v}|=\sqrt{(11.7)^{2}+(10.7)^{2}}=15.8 \mathrm{~m} / \mathrm{s}$.
(b) The angle of \vec{v}, measured from $+x$, is

$$
\tan ^{-1}\left(\frac{10.7}{11.7}\right)=42.6^{\circ}
$$

13. We find t by applying Eq. 2-11 to motion along the y axis (with $v_{y}=0$ characterizing $\left.y=y_{\text {max }}\right): 0=(12 \mathrm{~m} / \mathrm{s})+\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right) t \Rightarrow t=6.0 \mathrm{~s}$. Then, Eq. 2-11 applies to motion along the x axis to determine the answer: $v_{x}=(8.0 \mathrm{~m} / \mathrm{s})+\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~s})=32 \mathrm{~m} / \mathrm{s}$. Therefore, the velocity of the cart, when it reaches $y=y_{\max }$, is $(32 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
14. We make use of Eq. 4-16.
(a) The acceleration as a function of time is

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(\left(6.0 t-4.0 t^{2}\right) \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}\right)=(6.0-8.0 t) \hat{\mathrm{i}}
$$

in SI units. Specifically, we find the acceleration vector at $t=3.0 \mathrm{~s}$ to be $(6.0-8.0(3.0)) \hat{\mathrm{i}}=\left(-18 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$.
(b) The equation is $\vec{a}=(6.0-8.0 t) \hat{\mathrm{i}}=0$; we find $t=0.75 \mathrm{~s}$.
(c) Since the y component of the velocity, $v_{y}=8.0 \mathrm{~m} / \mathrm{s}$, is never zero, the velocity cannot vanish.
(d) Since speed is the magnitude of the velocity, we have

$$
v=|\vec{v}|=\sqrt{\left(6.0 t-4.0 t^{2}\right)^{2}+(8.0)^{2}}=10
$$

in SI units (m / s). We solve for t as follows:

$$
\begin{aligned}
\text { squaring }\left(6.0 t-4.0 t^{2}\right)^{2}+64 & =100 \\
\text { rearranging }\left(6.0 t-4.0 t^{2}\right)^{2} & =36 \\
\text { taking square root } 6.0 t-4.0 t^{2} & = \pm 6.0 \\
\text { rearranging } 4.0 t^{2}-6.0 t \pm 6.0 & =0 \\
\text { using quadratic formula } t & =\frac{6.0 \pm \sqrt{36-4(4.0)(\pm 6.0)}}{2(8.0)}
\end{aligned}
$$

where the requirement of a real positive result leads to the unique answer: $t=2.2 \mathrm{~s}$.
15. Constant acceleration in both directions (x and y) allows us to use Table 2-1 for the motion along each direction. This can be handled individually (for Δx and Δy) or together with the unit-vector notation (for Δr). Where units are not shown, SI units are to be understood.
(a) The velocity of the particle at any time t is given by $\vec{v}=\vec{v}_{0}+\vec{a} t$, where \vec{v}_{0} is the initial velocity and \vec{a} is the (constant) acceleration. The x component is $v_{x}=v_{0 x}+a_{x} t=$ $3.00-1.00 t$, and the y component is $v_{y}=v_{0 y}+a_{y} t=-0.500 t$ since $v_{0 y}=0$. When the particle reaches its maximum x coordinate at $t=t_{m}$, we must have $v_{x}=0$. Therefore, 3.00 $-1.00 t_{m}=0$ or $t_{m}=3.00 \mathrm{~s}$. The y component of the velocity at this time is

$$
v_{y}=0-0.500(3.00)=-1.50 \mathrm{~m} / \mathrm{s}
$$

this is the only nonzero component of \vec{v} at t_{m}.
(b) Since it started at the origin, the coordinates of the particle at any time t are given by $\vec{r}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$. At $t=t_{m}$ this becomes

$$
\vec{r}=(3.00 \hat{\mathrm{i}})(3.00)+\frac{1}{2}(-1.00 \hat{\mathrm{i}}-0.50 \hat{\mathrm{j}})(3.00)^{2}=(4.50 \hat{\mathrm{i}}-2.25 \hat{\mathrm{j}}) \mathrm{m} .
$$

16. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is permitted. Where units are not shown, SI units are to be understood. Collision between particles A and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15 and noting that θ is measured from the y axis)

$$
y=\frac{1}{2} a_{y} t^{2} \Rightarrow 30=\frac{1}{2}(0.40 \cos \theta) t^{2} .
$$

Second, the x motions of A and B must coincide:

$$
v t=\frac{1}{2} a_{x} t^{2} \Rightarrow 3.0 t=\frac{1}{2}(0.40 \sin \theta) t^{2}
$$

We eliminate a factor of t in the last relationship and formally solve for time:

$$
t=\frac{3.0}{0.20 \sin \theta}
$$

This is then plugged into the previous equation to produce

$$
30=\frac{1}{2}(0.40 \cos \theta)\left(\frac{3.0}{0.20 \sin \theta}\right)^{2}
$$

which, with the use of $\sin ^{2} \theta=1-\cos ^{2} \theta$, simplifies to

$$
30=\frac{9.0}{0.20} \frac{\cos \theta}{1-\cos ^{2} \theta} \Rightarrow 1-\cos ^{2} \theta=\frac{9.0}{(0.20)(30)} \cos \theta
$$

We use the quadratic formula (choosing the positive root) to solve for $\cos \theta$:

$$
\cos \theta=\frac{-1.5+\sqrt{1.5^{2}-4(1.0)(-1.0)}}{2}=\frac{1}{2}
$$

which yields

$$
\theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}
$$

17. (a) From Eq. 4-22 (with $\theta_{0}=0$), the time of flight is

$$
t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2(45.0)}{9.80}}=3.03 \mathrm{s.}
$$

(b) The horizontal distance traveled is given by Eq. 4-21:

$$
\Delta x=v_{0} t=(250)(3.03)=758 \mathrm{~m} .
$$

(c) And from Eq. 4-23, we find

$$
\left|v_{y}\right|=g t=(9.80)(3.03)=29.7 \mathrm{~m} / \mathrm{s} .
$$

18. We use Eq. 4-26

$$
R_{\max }=\left(\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}\right)_{\max }=\frac{v_{0}^{2}}{g}=\frac{(9.5 \mathrm{~m} / \mathrm{s})^{2}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=9.209 \mathrm{~m} \approx 9.21 \mathrm{~m}
$$

to compare with Powell's long jump; the difference from $R_{\max }$ is only $\Delta R=(9.21-8.95)$ $=0.259 \mathrm{~m}$.
19. We designate the given velocity $\vec{v}=7.6 \hat{i}+6.1 \hat{j}$ (SI units understood) as $\vec{v}_{1}-$ as opposed to the velocity when it reaches the max height \vec{v}_{2} or the velocity when it returns to the ground $\vec{v}_{3}-$ and take \vec{v}_{0} as the launch velocity, as usual. The origin is at its launch point on the ground.
(a) Different approaches are available, but since it will be useful (for the rest of the problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, we have

$$
v_{1 y}^{2}=v_{0 y}^{2}-2 g \Delta y \Rightarrow(6.1)^{2}=v_{0 y}^{2}-2(9.8)(9.1)
$$

which yields $v_{0 y}=14.7 \mathrm{~m} / \mathrm{s}$. Knowing that $v_{2 y}$ must equal 0 , we use Eq. 2-16 again but now with $\Delta y=h$ for the maximum height:

$$
v_{2 y}^{2}=v_{0 y}^{2}-2 g h \Rightarrow 0=(14.7)^{2}-2(9.8) h
$$

which yields $h=11 \mathrm{~m}$.
(b) Recalling the derivation of Eq. 4-26, but using $v_{0 y}$ for $v_{0} \sin \theta_{0}$ and $v_{0 x}$ for $v_{0} \cos \theta_{0}$, we have

$$
\begin{aligned}
& 0=v_{0 y} t-\frac{1}{2} g t^{2} \\
& R=v_{0 x} t
\end{aligned}
$$

which leads to $R=2 v_{0 x} v_{0 y} / g$. Noting that $v_{0 x}=v_{1 x}=7.6 \mathrm{~m} / \mathrm{s}$, we plug in values and obtain $R=2(7.6)(14.7) / 9.8=23 \mathrm{~m}$.
(c) Since $v_{3 x}=v_{1 x}=7.6 \mathrm{~m} / \mathrm{s}$ and $v_{3 y}=-v_{0 y}=-14.7 \mathrm{~m} / \mathrm{s}$, we have

$$
v_{3}=\sqrt{v_{3 x}^{2}+v_{3 y}^{2}}=\sqrt{(7.6)^{2}+(-14.7)^{2}}=17 \mathrm{~m} / \mathrm{s}
$$

(d) The angle (measured from horizontal) for \vec{v}_{3} is one of these possibilities:

$$
\tan ^{-1}\left(\frac{-14.7}{7.6}\right)=-63^{\circ} \text { or } 117^{\circ}
$$

where we settle on the first choice (-63°, which is equivalent to 297°) since the signs of its components imply that it is in the fourth quadrant.
20. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable.
(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given by $y=-\frac{1}{2} g t^{2}$. If t is the time of flight and $y=-1.20 \mathrm{~m}$ indicates the level at which the ball hits the floor, then

$$
t=\sqrt{\frac{2(-1.20)}{-9.80}}=0.495 \mathrm{~s}
$$

(b) The initial (horizontal) velocity of the ball is $\vec{v}=v_{0} \hat{i}$. Since $x=1.52 \mathrm{~m}$ is the horizontal position of its impact point with the floor, we have $x=v_{0} t$. Thus,

$$
v_{0}=\frac{x}{t}=\frac{1.52}{0.495}=3.07 \mathrm{~m} / \mathrm{s} .
$$

21. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that $v_{0 y}=0$ and $v_{0 x}=v_{0}=10 \mathrm{~m} / \mathrm{s}$.
(a) With the origin at the initial point (where the dart leaves the thrower's hand), the y coordinate of the dart is given by $y=-\frac{1}{2} g t^{2}$, so that with $y=-P Q$ we have $P Q=\frac{1}{2}(9.8)(0.19)^{2}=0.18 \mathrm{~m}$.
(b) From $x=v_{0} t$ we obtain $x=(10)(0.19)=1.9 \mathrm{~m}$.
22. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for $y=h$:

$$
h=y_{0}+v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}
$$

which yields $h=51.8 \mathrm{~m}$ for $y_{0}=0, v_{0}=42.0 \mathrm{~m} / \mathrm{s}, \theta_{0}=60.0^{\circ}$ and $t=5.50 \mathrm{~s}$.
(b) The horizontal motion is steady, so $v_{x}=v_{0 x}=v_{0} \cos \theta_{0}$, but the vertical component of velocity varies according to Eq. 4-23. Thus, the speed at impact is

$$
v=\sqrt{\left(v_{0} \cos \theta_{0}\right)^{2}+\left(v_{0} \sin \theta_{0}-g t\right)^{2}}=27.4 \mathrm{~m} / \mathrm{s}
$$

(c) We use Eq. 4-24 with $v_{y}=0$ and $y=H$:

$$
H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}=67.5 \mathrm{~m}
$$

23. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below the release point. We write $\theta_{0}=-30.0^{\circ}$ since the angle shown in the figure is measured clockwise from horizontal. We note that the initial speed of the decoy is the plane's speed at the moment of release: $v_{0}=290 \mathrm{~km} / \mathrm{h}$, which we convert to SI units: $(290)(1000 / 3600)$ $=80.6 \mathrm{~m} / \mathrm{s}$.
(a) We use Eq. 4-12 to solve for the time:

$$
\Delta x=\left(v_{0} \cos \theta_{0}\right) t \Rightarrow t=\frac{700}{(80.6) \cos \left(-30.0^{\circ}\right)}=10.0 \mathrm{~s}
$$

(b) And we use Eq. 4-22 to solve for the initial height y_{0} :

$$
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \Rightarrow 0-y_{0}=(-40.3)(10.0)-\frac{1}{2}(9.80)(10.0)^{2}
$$

which yields $y_{0}=897 \mathrm{~m}$.
24. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is throwing point (the stone's initial position). The x component of its initial velocity is given by $v_{0 x}=v_{0} \cos \theta_{0}$ and the y component is given by $v_{0 y}=v_{0} \sin \theta_{0}$, where $v_{0}=20 \mathrm{~m} / \mathrm{s}$ is the initial speed and $\theta_{0}=$ 40.0° is the launch angle.
(a) At $t=1.10 \mathrm{~s}$, its x coordinate is

$$
x=v_{0} t \cos \theta_{0}=(20.0 \mathrm{~m} / \mathrm{s})(1.10 \mathrm{~s}) \cos 40.0^{\circ}=16.9 \mathrm{~m}
$$

(b) Its y coordinate at that instant is

$$
y=v_{0} t \sin \theta_{0}-\frac{1}{2} g t^{2}=(20.0 \mathrm{~m} / \mathrm{s})(1.10 \mathrm{~s}) \sin 40.0^{\circ}-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.10 \mathrm{~s})^{2}=8.21 \mathrm{~m} .
$$

(c) At $t^{\prime}=1.80 \mathrm{~s}$, its x coordinate is

$$
x=(20.0 \mathrm{~m} / \mathrm{s})(1.80 \mathrm{~s}) \cos 40.0^{\circ}=27.6 \mathrm{~m} .
$$

(d) Its y coordinate at t^{\prime} is

$$
y=(20.0 \mathrm{~m} / \mathrm{s})(1.80 \mathrm{~s}) \sin 40.0^{\circ}-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.80 \mathrm{~s}^{2}\right)=7.26 \mathrm{~m}
$$

(e) The stone hits the ground earlier than $t=5.0 \mathrm{~s}$. To find the time when it hits the ground solve $y=v_{0} t \sin \theta_{0}-\frac{1}{2} g t^{2}=0$ for t. We find

$$
t=\frac{2 v_{0}}{g} \sin \theta_{0}=\frac{2(20.0 \mathrm{~m} / \mathrm{s})}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \sin 40^{\circ}=2.62 \mathrm{~s}
$$

Its x coordinate on landing is

$$
x=v_{0} t \cos \theta_{0}=(20.0 \mathrm{~m} / \mathrm{s})(2.62 \mathrm{~s}) \cos 40^{\circ}=40.2 \mathrm{~m}
$$

(or Eq. 4-26 can be used).
(f) Assuming it stays where it lands, its vertical component at $t=5.00 \mathrm{~s}$ is $y=0$.
25. The initial velocity has no vertical component - only an x component equal to +2.00 m / s. Also, $y_{0}=+10.0 \mathrm{~m}$ if the water surface is established as $y=0$.
(a) $x-x_{0}=v_{x} t$ readily yields $x-x_{0}=1.60 \mathrm{~m}$.
(b) Using $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$, we obtain $y=6.86 \mathrm{~m}$ when $t=0.800 \mathrm{~s}$ and $v_{0 y}=0$.
(c) Using the fact that $y=0$ and $y_{0}=10.0$, the equation $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ leads to $t=\sqrt{2(10.0) / 9.80}=1.43 \mathrm{~s}$. During this time, the x-displacement of the diver is $x-x_{0}=$ $(2.00 \mathrm{~m} / \mathrm{s})(1.43 \mathrm{~s})=2.86 \mathrm{~m}$.
26. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below the point where the ball was hit by the racquet.
(a) We want to know how high the ball is above the court when it is at $x=12 \mathrm{~m}$. First, Eq. 4-21 tells us the time it is over the fence:

$$
t=\frac{x}{v_{0} \cos \theta_{0}}=\frac{12}{(23.6) \cos 0^{\circ}}=0.508 \mathrm{~s} .
$$

At this moment, the ball is at a height (above the court) of

$$
y=y_{0}+\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=1.10 \mathrm{~m}
$$

which implies it does indeed clear the 0.90 m high fence.
(b) At $t=0.508 \mathrm{~s}$, the center of the ball is $(1.10-0.90) \mathrm{m}=0.20 \mathrm{~m}$ above the net.
(c) Repeating the computation in part (a) with $\theta_{0}=-5^{\circ}$ results in $t=0.510 \mathrm{~s}$ and $y=0.04 \mathrm{~m}$, which clearly indicates that it cannot clear the net.
(d) In the situation discussed in part (c), the distance between the top of the net and the center of the ball at $t=0.510 \mathrm{~s}$ is $0.90-0.04=0.86 \mathrm{~m}$.
27. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below the release point. We write $\theta_{0}=-37.0^{\circ}$ for the angle measured from $+x$, since the angle given in the problem is measured from the $-y$ direction. We note that the initial speed of the projectile is the plane's speed at the moment of release.
(a) We use Eq. 4-22 to find v_{0} (SI units are understood).

$$
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \Rightarrow 0-730=v_{0} \sin \left(-37.0^{\circ}\right)(5.00)-\frac{1}{2}(9.80)(5.00)^{2}
$$

which yields $v_{0}=202 \mathrm{~m} / \mathrm{s}$.
(b) The horizontal distance traveled is $x=v_{0} t \cos \theta_{0}=(202)(5.00) \cos \left(-37.0^{\circ}\right)=806 \mathrm{~m}$.
(c) The x component of the velocity (just before impact) is

$$
v_{x}=v_{0} \cos \theta_{0}=(202) \cos \left(-37.0^{\circ}\right)=161 \mathrm{~m} / \mathrm{s} .
$$

(d) The y component of the velocity (just before impact) is

$$
v_{y}=v_{0} \sin \theta_{0}-g t=(202) \sin \left(-37.0^{\circ}\right)-(9.80)(5.00)=-171 \mathrm{~m} / \mathrm{s}
$$

28. Although we could use Eq. 4-26 to find where it lands, we choose instead to work with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about where and when and these are also considered more fundamental than Eq. 4-26. With Δy $=0$, we have

$$
\Delta y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{(19.5) \sin 45.0^{\circ}}{(9.80) / 2}=2.81 \mathrm{~s}
$$

Then Eq. 4-21 yields $\Delta x=\left(v_{0} \cos \theta_{0}\right) t=38.7 \mathrm{~m}$. Thus, using Eq. $4-8$ and SI units, the player must have an average velocity of

$$
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}=\frac{38.7 \hat{\mathrm{i}}-55 \hat{\mathrm{i}}}{2.81}=-5.8 \hat{\mathrm{i}}
$$

which means his average speed (assuming he ran in only one direction) is $5.8 \mathrm{~m} / \mathrm{s}$.
29. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is launched). At maximum height, we observe $v_{y}=0$ and denote $v_{x}=v$ (which is also equal to $v_{0 \mathrm{x}}$). In this notation, we have $v_{0}=5 v$. Next, we observe $v_{0} \cos \theta_{0}=v_{0 x}=v$, so that we arrive at an equation (where $v \neq 0$ cancels) which can be solved for θ_{0} :

$$
(5 v) \cos \theta_{0}=v \Rightarrow \theta_{0}=\cos ^{-1}\left(\frac{1}{5}\right)=78.5^{\circ}
$$

30. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial position for the ball as it begins projectile motion in the sense of $\S 4-5$), and we let θ_{0} be the angle of throw (shown in the figure). Since the horizontal component of the velocity of the ball is $v_{x}=v_{0} \cos 40.0^{\circ}$, the time it takes for the ball to hit the wall is

$$
t=\frac{\Delta x}{v_{x}}=\frac{22.0}{25.0 \cos 40.0^{\circ}}=1.15 \mathrm{~s} .
$$

(a) The vertical distance is

$$
\Delta y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=\left(25.0 \sin 40.0^{\circ}\right)(1.15)-\frac{1}{2}(9.80)(1.15)^{2}=12.0 \mathrm{~m} .
$$

(b) The horizontal component of the velocity when it strikes the wall does not change from its initial value: $v_{x}=v_{0} \cos 40.0^{\circ}=19.2 \mathrm{~m} / \mathrm{s}$.
(c) The vertical component becomes (using Eq. 4-23)

$$
v_{y}=v_{0} \sin \theta_{0}-g t=25.0 \sin 40.0^{\circ}-(9.80)(1.15)=4.80 \mathrm{~m} / \mathrm{s} .
$$

(d) Since $v_{y}>0$ when the ball hits the wall, it has not reached the highest point yet.
31. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle (the initial point for the bullet as it begins projectile motion in the sense of $\S 4-5$), and we let θ_{0} be the firing angle. If the target is a distance d away, then its coordinates are $x=d, y=0$. The projectile motion equations lead to $d=v_{0} t \cos \theta_{0}$ and $0=v_{0} t \sin \theta_{0}-\frac{1}{2} g t^{2}$. Eliminating t leads to $2 v_{0}^{2} \sin \theta_{0} \cos \theta_{0}-g d=0$. Using $\sin \theta_{0} \cos \theta_{0}=\frac{1}{2} \sin \left(2 \theta_{0}\right)$, we obtain

$$
v_{0}^{2} \sin \left(2 \theta_{0}\right)=g d \Rightarrow \sin \left(2 \theta_{0}\right)=\frac{g d}{v_{0}^{2}}=\frac{(9.80)(45.7)}{(460)^{2}}
$$

which yields $\sin \left(2 \theta_{0}\right)=2.11 \times 10^{-3}$ and consequently $\theta_{0}=0.0606^{\circ}$. If the gun is aimed at a point a distance ℓ above the target, then $\tan \theta_{0}=\ell / d$ so that

$$
\ell=d \tan \theta_{0}=45.7 \tan \left(0.0606^{\circ}\right)=0.0484 \mathrm{~m}=4.84 \mathrm{~cm} .
$$

32. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that $v_{0 y}=0$ and $v_{0_{x}}=v_{0}=161 \mathrm{~km} / \mathrm{h}$. Converting to SI units, this is $v_{0}=44.7 \mathrm{~m} / \mathrm{s}$.
(a) With the origin at the initial point (where the ball leaves the pitcher's hand), the y coordinate of the ball is given by $y=-\frac{1}{2} g t^{2}$, and the x coordinate is given by $x=v_{0} t$. From the latter equation, we have a simple proportionality between horizontal distance and time, which means the time to travel half the total distance is half the total time. Specifically, if $x=18.3 / 2 \mathrm{~m}$, then $t=(18.3 / 2) / 44.7=0.205 \mathrm{~s}$.
(b) And the time to travel the next $18.3 / 2 \mathrm{~m}$ must also be 0.205 s . It can be useful to write the horizontal equation as $\Delta x=v_{0} \Delta t$ in order that this result can be seen more clearly.
(c) From $y=-\frac{1}{2} g t^{2}$, we see that the ball has reached the height of $\left\lvert\,-\frac{1}{2}(9.80)(0.205)^{2}\right.$ । $=0.205 \mathrm{~m}$ at the moment the ball is halfway to the batter.
(d) The ball's height when it reaches the batter is $-\frac{1}{2}(9.80)(0.409)^{2}=-0.820 \mathrm{~m}$, which, when subtracted from the previous result, implies it has fallen another 0.615 m . Since the value of y is not simply proportional to t, we do not expect equal time-intervals to correspond to equal height-changes; in a physical sense, this is due to the fact that the initial y-velocity for the first half of the motion is not the same as the "initial" y-velocity for the second half of the motion.
33. Following the hint, we have the time-reversed problem with the ball thrown from the ground, towards the right, at 60° measured counterclockwise from a rightward axis. We see in this time-reversed situation that it is convenient to use the familiar coordinate system with $+x$ as rightward and with positive angles measured counterclockwise. Lengths are in meters and time is in seconds.
(a) The x-equation (with $x_{0}=0$ and $x=25.0$) leads to $25.0=\left(v_{0} \cos 60.0^{\circ}\right)(1.50)$, so that $v_{0}=33.3 \mathrm{~m} / \mathrm{s}$. And with $y_{0}=0$, and $y=h>0$ at $t=1.50$, we have $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ where $v_{0 y}=v_{0} \sin 60.0^{\circ}$. This leads to $h=32.3 \mathrm{~m}$.
(b) We have $v_{x}=v_{0 x}=33.3 \cos 60.0^{\circ}=16.7 \mathrm{~m} / \mathrm{s}$. And $v_{y}=v_{0 y}-g t=33.3 \sin 60.0^{\circ}-$ $(9.80)(1.50)=14.2 \mathrm{~m} / \mathrm{s}$. The magnitude of \vec{v} is given by

$$
|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(16.7)^{2}+(14.2)^{2}}=21.9 \mathrm{~m} / \mathrm{s} .
$$

(c) The angle is

$$
\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{14.2}{16.7}\right)=40.4^{\circ} .
$$

(d) We interpret this result ("undoing" the time reversal) as an initial velocity (from the edge of the building) of magnitude $21.9 \mathrm{~m} / \mathrm{s}$ with angle (down from leftward) of 40.4°.
34. In this projectile motion problem, we have $v_{0}=v_{x}=$ constant, and what is plotted is $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$. We infer from the plot that at $t=2.5 \mathrm{~s}$, the ball reaches its maximum height, where $v_{y}=0$. Therefore, we infer from the graph that $v_{x}=19 \mathrm{~m} / \mathrm{s}$.
(a) During $t=5 \mathrm{~s}$, the horizontal motion is $x-x_{0}=v_{x} t=95 \mathrm{~m}$.
(b) Since $\sqrt{19^{2}+v_{0 y}^{2}}=31 \mathrm{~m} / \mathrm{s}$ (the first point on the graph), we find $v_{0 y}=24.5 \mathrm{~m} / \mathrm{s}$. Thus, with $t=2.5 \mathrm{~s}$, we can use $y_{\max }-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ or $v_{y}^{2}=0=v_{0 y}^{2}-2 g\left(y_{\max }-y_{0}\right)$, or $y_{\text {max }}-y_{0}=\frac{1}{2}\left(v_{y}+v_{0_{y}}\right) t$ to solve. Here we will use the latter:

$$
y_{\max }-y_{0}=\frac{1}{2}\left(v_{y}+v_{0 y}\right) t \Rightarrow y_{\max }=\frac{1}{2}(0+24.5)(2.5)=31 \mathrm{~m}
$$

where we have taken $y_{0}=0$ as the ground level.
35. (a) Let $m=\frac{d_{2}}{d_{1}}=0.600$ be the slope of the ramp, so $y=m x$ there. We choose our coordinate origin at the point of launch and use Eq. 4-25. Thus,

$$
y=\tan \left(50.0^{\mathrm{o}}\right) x-\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) x^{2}}{2\left((10 \mathrm{~m} / \mathrm{s}) \cos \left(50^{\circ}\right)\right)^{2}} .=0.600 x
$$

which yields $x=4.99 \mathrm{~m}$. This is less than d_{1} so the ball does land on the ramp.
(b) Using the value of x found in part (a), we obtain $y=m x=2.99 \mathrm{~m}$. Thus, the Pythagorean theorem yields a displacement magnitude of $\sqrt{x^{2}+y^{2}}=5.82 \mathrm{~m}$.
(c) The angle is, of course, the angle of the ramp: $\tan ^{-1}(m)=31.0^{\circ}$.
36. Following the hint, we have the time-reversed problem with the ball thrown from the roof, towards the left, at 60° measured clockwise from a leftward axis. We see in this time-reversed situation that it is convenient to take $+x$ as leftward with positive angles measured clockwise. Lengths are in meters and time is in seconds.
(a) With $y_{0}=20.0$, and $y=0$ at $t=4.00$, we have $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ where $v_{0 y}=v_{0} \sin 60^{\circ}$. This leads to $v_{0}=16.9 \mathrm{~m} / \mathrm{s}$. This plugs into the x-equation $x-x_{0}=v_{0 x} t$ (with $x_{0}=0$ and $x=d$) to produce $d=\left(16.9 \cos 60^{\circ}\right)(4.00)=33.7 \mathrm{~m}$.
(b)We have

$$
\begin{aligned}
& v_{x}=v_{0 x}=16.9 \cos 60.0^{\circ}=8.43 \mathrm{~m} / \mathrm{s} \\
& v_{y}=v_{0 y}-g t=16.9 \sin 60.0^{\circ}-(9.80)(4.00)=-24.6 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

The magnitude of \vec{v} is

$$
|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8.43)^{2}+(-24.6)^{2}}=26.0 \mathrm{~m} / \mathrm{s}
$$

(c) The angle relative to horizontal is

$$
\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{-24.6}{8.43}\right)=-71.1^{\circ}
$$

We may convert the result from rectangular components to magnitude-angle representation:

$$
\vec{v}=(8.43,-24.6) \rightarrow\left(26.0 \angle-71.1^{\circ}\right)
$$

and we now interpret our result ("undoing" the time reversal) as an initial velocity of magnitude $26.0 \mathrm{~m} / \mathrm{s}$ with angle (up from rightward) of 71.1°.
37. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below impact point between bat and ball. The Hint given in the problem is important, since it provides us with enough information to find v_{0} directly from Eq. 4-26.
(a) We want to know how high the ball is from the ground when it is at $x=97.5 \mathrm{~m}$, which requires knowing the initial velocity. Using the range information and $\theta_{0}=45^{\circ}$, we use Eq. $4-26$ to solve for v_{0} :

$$
v_{0}=\sqrt{\frac{g R}{\sin 2 \theta_{0}}}=\sqrt{\frac{(9.8)(107)}{1}}=32.4 \mathrm{~m} / \mathrm{s} .
$$

Thus, Eq. 4-21 tells us the time it is over the fence:

$$
t=\frac{x}{v_{0} \cos \theta_{0}}=\frac{97.5}{(32.4) \cos 45^{\circ}}=4.26 \mathrm{~s} .
$$

At this moment, the ball is at a height (above the ground) of

$$
y=y_{0}+\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=9.88 \mathrm{~m}
$$

which implies it does indeed clear the 7.32 m high fence.
(b) At $t=4.26 \mathrm{~s}$, the center of the ball is $9.88-7.32=2.56 \mathrm{~m}$ above the fence.
38. From Eq. 4-21, we find $t=x / v_{0 x}$. Then Eq. 4-23 leads to

$$
v_{y}=v_{0 y}-g t=v_{0 y}-\frac{g x}{v_{0 x}} .
$$

Since the slope of the graph is -0.500 , we conclude $\frac{g}{v_{o x}}=\frac{1}{2} \Rightarrow v_{\mathrm{ox}}=19.6 \mathrm{~m} / \mathrm{s}$. And from the " y intercept" of the graph, we find $v_{\mathrm{oy}}=5.00 \mathrm{~m} / \mathrm{s}$. Consequently, $\theta_{\mathrm{o}}=\tan ^{-1}\left(v_{\mathrm{oy}} / v_{\mathrm{ox}}\right)=$ 14.3°.
39. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at the point where the ball is kicked. Where units are not displayed, SI units are understood. We use x and y to denote the coordinates of ball at the goalpost, and try to find the kicking angle(s) θ_{0} so that $y=$ 3.44 m when $x=50 \mathrm{~m}$. Writing the kinematic equations for projectile motion:

$$
\begin{aligned}
& x=v_{0} \cos \theta_{0} \\
& y=v_{0} t \sin \theta_{0}-\frac{1}{2} g t^{2},
\end{aligned}
$$

we see the first equation gives $t=x / v_{0} \cos \theta_{0}$, and when this is substituted into the second the result is

$$
y=x \tan \theta_{0}-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \theta_{0}} .
$$

One may solve this by trial and error: systematically trying values of θ_{0} until you find the two that satisfy the equation. A little manipulation, however, will give an algebraic solution: Using the trigonometric identity $1 / \cos ^{2} \theta_{0}=1+\tan ^{2} \theta_{0}$, we obtain

$$
\frac{1}{2} \frac{g x^{2}}{v_{0}^{2}} \tan ^{2} \theta_{0}-x \tan \theta_{0}+y+\frac{1}{2} \frac{g x^{2}}{v_{0}^{2}}=0
$$

which is a second-order equation for $\tan \theta_{0}$. To simplify writing the solution, we denote $c=\frac{1}{2} g x^{2} / v_{0}^{2}=\frac{1}{2}(9.80)(50)^{2} /(25)^{2}=19.6 \mathrm{~m}$. Then the second-order equation becomes $c \tan ^{2} \theta_{0}-x \tan \theta_{0}+y+c=0$. Using the quadratic formula, we obtain its solution(s).

$$
\tan \theta_{0}=\frac{x \pm \sqrt{x^{2}-4(y+c) c}}{2 c}=\frac{50 \pm \sqrt{50^{2}-4(3.44+19.6)(19.6)}}{2(19.6)}
$$

The two solutions are given by $\tan \theta_{0}=1.95$ and $\tan \theta_{0}=0.605$. The corresponding (firstquadrant) angles are $\theta_{0}=63^{\circ}$ and $\theta_{0}=31^{\circ}$. Thus,
(a) The smallest elevation angle is $\theta_{0}=31^{\circ}$, and
(b) The greatest elevation angle is $\theta_{0}=63^{\circ}$.

If kicked at any angle between these two, the ball will travel above the cross bar on the goalposts.
40. For $\Delta y=0$, Eq. 4-22 leads to $t=2 \mathrm{v}_{\mathrm{o}} \sin \theta_{0} / g$, which immediately implies $t_{\max }=2 v_{0} / g$ (which occurs for the "straight up" case: $\theta_{0}=90^{\circ}$). Thus, $\frac{1}{2} t_{\max }=v_{0} / g \Rightarrow \frac{1}{2}=\sin \theta_{0}$. Thus, the half-maximum-time flight is at angle $\theta_{0}=30.0^{\circ}$. Since the least speed occurs at the top of the trajectory, which is where the velocity is simply the x-component of the initial velocity $\left(v_{0} \cos \theta_{0}=v_{0} \cos 30^{\circ}\right.$ for the half-maximum-time flight), then we need to refer to the graph in order to find v_{0} - in order that we may complete the solution. In the graph, we note that the range is 240 m when $\theta_{0}=45.0^{\circ}$. Eq. $4-26$ then leads to $v_{0}=48.5$ m / s. The answer is thus $(48.5) \cos 30.0^{\circ}=42.0 \mathrm{~m} / \mathrm{s}$.
41. We denote h as the height of a step and w as the width. To hit step n, the ball must fall a distance $n h$ and travel horizontally a distance between $(n-1) w$ and $n w$. We take the origin of a coordinate system to be at the point where the ball leaves the top of the stairway, and we choose the y axis to be positive in the upward direction. The coordinates of the ball at time t are given by $x=v_{0 x} t$ and $y=-\frac{1}{2} g t^{2}$ (since $v_{0 y}=0$). We equate y to $-n h$ and solve for the time to reach the level of step n :

$$
t=\sqrt{\frac{2 n h}{g}}
$$

The x coordinate then is

$$
x=v_{0 x} \sqrt{\frac{2 n h}{g}}=(1.52 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2 n(0.203 \mathrm{~m})}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=(0.309 \mathrm{~m}) \sqrt{n} .
$$

The method is to try values of n until we find one for which x / w is less than n but greater than $n-1$. For $n=1, x=0.309 \mathrm{~m}$ and $x / w=1.52$, which is greater than n. For $n=2, x=$ 0.437 m and $x / w=2.15$, which is also greater than n. For $n=3, x=0.535 \mathrm{~m}$ and $x / w=$ 2.64. Now, this is less than n and greater than $n-1$, so the ball hits the third step.
42. We apply Eq. 4-21, Eq. 4-22 and Eq. 4-23.
(a) From $\Delta x=v_{0 x} t$, we find $v_{0_{x}}=40 / 2=20 \mathrm{~m} / \mathrm{s}$.
(b) From $\Delta y=v_{0 y} t-\frac{1}{2} g t^{2}$, we find $v_{0 y}=\left(53+\frac{1}{2}(9.8)(2)^{2}\right) / 2=36 \mathrm{~m} / \mathrm{s}$.
(c) From $v_{y}=v_{0 y}-g t^{\prime}$ with $v_{y}=0$ as the condition for maximum height, we obtain $t^{\prime}=36 / 9.8=3.7 \mathrm{~s}$. During that time the x-motion is constant, so $x^{\prime}-x_{0}=(20)(3.7)=74 \mathrm{~m}$.
43. Let $y_{0}=h_{0}=1.00 \mathrm{~m}$ at $x_{0}=0$ when the ball is hit. Let $y_{1}=h$ (the height of the wall) and x_{1} describe the point where it first rises above the wall one second after being hit; similarly, $y_{2}=h$ and x_{2} describe the point where it passes back down behind the wall four seconds later. And $y_{f}=1.00 \mathrm{~m}$ at $x_{f}=R$ is where it is caught. Lengths are in meters and time is in seconds.
(a) Keeping in mind that v_{x} is constant, we have $x_{2}-x_{1}=50.0=v_{1 x}$ (4.00), which leads to $v_{1 x}=12.5 \mathrm{~m} / \mathrm{s}$. Thus, applied to the full six seconds of motion:

$$
x_{f}-x_{0}=R=v_{x}(6.00)=75.0 \mathrm{~m} .
$$

(b) We apply $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ to the motion above the wall,

$$
y_{2}-y_{1}=0=v_{1 y}(4.00)-\frac{1}{2} g(4.00)^{2}
$$

and obtain $v_{1 y}=19.6 \mathrm{~m} / \mathrm{s}$. One second earlier, using $v_{1 y}=v_{0 y}-g(1.00)$, we find $v_{0 y}=29.4 \mathrm{~m} / \mathrm{s}$. Therefore, the velocity of the ball just after being hit is

$$
\vec{v}=v_{0 x} \hat{i}+v_{0 y} \hat{\mathrm{j}}=(12.5 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(29.4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
$$

Its magnitude is

$$
|\vec{v}|=\sqrt{(12.5)^{2}+(29.4)^{2}}=31.9 \mathrm{~m} / \mathrm{s} .
$$

(c) The angle is

$$
\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{29.4}{12.5}\right)=67.0^{\circ}
$$

We interpret this result as a velocity of magnitude $31.9 \mathrm{~m} / \mathrm{s}$, with angle (up from rightward) of 67.0°.
(d) During the first 1.00 s of motion, $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$ yields

$$
h=1.0+(29.4)(1.00)-\frac{1}{2}(9.8)(1.00)^{2}=25.5 \mathrm{~m} .
$$

44. The magnitude of the acceleration is

$$
a=\frac{v^{2}}{r}=\frac{(10 \mathrm{~m} / \mathrm{s})^{2}}{25 \mathrm{~m}}=4.0 \mathrm{~m} / \mathrm{s}^{2} .
$$

45. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, or 12 s .
(b) The magnitude of the centripetal acceleration is given by $a=v^{2} / R$, where R is the radius of the wheel, and v is the speed of the passenger. Since the passenger goes a distance $2 \pi R$ for each revolution, his speed is

$$
v=\frac{2 \pi(15 \mathrm{~m})}{12 \mathrm{~s}}=7.85 \mathrm{~m} / \mathrm{s}
$$

and his centripetal acceleration is

$$
a=\frac{(7.85 \mathrm{~m} / \mathrm{s})^{2}}{15 \mathrm{~m}}=4.1 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) When the passenger is at the highest point, his centripetal acceleration is downward, toward the center of the orbit.
(d) At the lowest point, the centripetal acceleration is $a=4.1 \mathrm{~m} / \mathrm{s}^{2}$, same as part (b).
(e) The direction is up, toward the center of the orbit.
46. (a) During constant-speed circular motion, the velocity vector is perpendicular to the acceleration vector at every instant. Thus, $\overrightarrow{\mathrm{v}} \cdot \vec{a}=0$.
(b) The acceleration in this vector, at every instant, points towards the center of the circle, whereas the position vector points from the center of the circle to the object in motion. Thus, the angle between \vec{r} and \vec{a} is 180° at every instant, so $\vec{r} \times \vec{a}=0$.
47. The magnitude of centripetal acceleration $\left(a=v^{2} / r\right)$ and its direction (towards the center of the circle) form the basis of this problem.
(a) If a passenger at this location experiences $\vec{a}=1.83 \mathrm{~m} / \mathrm{s}^{2}$ east, then the center of the circle is east of this location. And the distance is $r=v^{2} / a=\left(3.66^{2}\right) /(1.83)=7.32 \mathrm{~m}$.
(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the west.
(c) If the direction of \vec{a} experienced by the passenger is now south-indicating that the center of the merry-go-round is south of him, then relative to the center, the passenger at that moment is located 7.32 m toward the north.
48. (a) The circumference is $c=2 \pi r=2 \pi(0.15)=0.94 \mathrm{~m}$.
(b) With $T=60 / 1200=0.050 \mathrm{~s}$, the speed is $v=c / T=(0.94) /(0.050)=19 \mathrm{~m} / \mathrm{s}$. This is equivalent to using Eq. 4-35.
(c) The magnitude of the acceleration is $a=v^{2} / r=19^{2} / 0.15=2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
(d) The period of revolution is $(1200 \mathrm{rev} / \mathrm{min})^{-1}=8.3 \times 10^{-4} \mathrm{~min}$ which becomes, in SI units, $T=0.050 \mathrm{~s}=50 \mathrm{~ms}$.
49. Since the period of a uniform circular motion is $T=2 \pi r / v$, where r is the radius and v is the speed, the centripetal acceleration can be written as

$$
a=\frac{v^{2}}{r}=\frac{1}{r}\left(\frac{2 \pi r}{T}\right)^{2}=\frac{4 \pi^{2} r}{T^{2}} .
$$

Based on this expression, we compare the (magnitudes) of the wallet and purse accelerations, and find their ratio is the ratio of r values. Therefore, $a_{\text {wallet }}=1.50 a_{\text {purse }}$. Thus, the wallet acceleration vector is

$$
a=1.50\left[\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\right]=\left(3.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}} .
$$

50. The fact that the velocity is in the $+y$ direction, and the acceleration is in the $+x$ direction at $t_{1}=4.00 \mathrm{~s}$ implies that the motion is clockwise. The position corresponds to the "9:00 position." On the other hand, the position at $t_{2}=10.0 \mathrm{~s}$ is in the " $6: 00$ position" since the velocity points in the $-x$ direction and the acceleration is in the $+y$ direction. The time interval $\Delta t=10.0-4.00=6.00 \mathrm{~s}$ is equal to $3 / 4$ of a period:

$$
6.00 \mathrm{~s}=\frac{3}{4} T \Rightarrow T=8.00 \mathrm{~s}
$$

Eq. 4-35 then yields

$$
r=\frac{v T}{2 \pi}=\frac{(3.00)(8.00)}{2 \pi}=3.82 \mathrm{~m} .
$$

(a) The x coordinate of the center of the circular path is $x=5.00+3.82=8.82 \mathrm{~m}$.
(b) The y coordinate of the center of the circular path is $y=6.00 \mathrm{~m}$.

In other words, the center of the circle is at $(x, y)=(8.82 \mathrm{~m}, 6.00 \mathrm{~m})$.
51. We first note that \vec{a}_{1} (the acceleration at $t_{1}=2.00 \mathrm{~s}$) is perpendicular to \vec{a}_{2} (the acceleration at $t_{2}=5.00 \mathrm{~s}$), by taking their scalar (dot) product.:

$$
\vec{a}_{1} \cdot \vec{a}_{2}=\left[\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\right] \cdot\left[\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\right]=0 .
$$

Since the acceleration vectors are in the (negative) radial directions, then the two positions (at t_{1} and t_{2}) are a quarter-circle apart (or three-quarters of a circle, depending on whether one measures clockwise or counterclockwise). A quick sketch leads to the conclusion that if the particle is moving counterclockwise (as the problem states) then it travels three-quarters of a circumference in moving from the position at time t_{1} to the position at time t_{2}. Letting T stand for the period, then $t_{2}-t_{1}=3.00 \mathrm{~s}=3 T / 4$. This gives $T=4.00 \mathrm{~s}$. The magnitude of the acceleration is

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{(6.00)^{2}+(4.00)^{2}}=7.21 \mathrm{~m} / \mathrm{s}^{2} .
$$

Using Eq. 4-34 and 4-35, we have $a=4 \pi^{2} r / T^{2}$, which yields

$$
r=\frac{a T^{2}}{4 \pi^{2}}=\frac{\left(7.21 \mathrm{~m} / \mathrm{s}^{2}\right)(4.00 \mathrm{~s})^{2}}{4 \pi^{2}}=2.92 \mathrm{~m} .
$$

52. When traveling in circular motion with constant speed, the instantaneous acceleration vector necessarily points towards the center. Thus, the center is "straight up" from the cited point.
(a) Since the center is "straight up" from ($4.00 \mathrm{~m}, 4.00 \mathrm{~m}$), the x coordinate of the center is 4.00 m .
(b) To find out "how far up" we need to know the radius. Using Eq. 4-34 we find

$$
r=\frac{\mathrm{v}^{2}}{a}=\frac{5.00^{2}}{12.5}=2.00 \mathrm{~m}
$$

Thus, the y coordinate of the center is $2.00+4.00=6.00 \mathrm{~m}$. Thus, the center may be written as $(x, y)=(4.00 \mathrm{~m}, 6.00 \mathrm{~m})$.
53. To calculate the centripetal acceleration of the stone, we need to know its speed during its circular motion (this is also its initial speed when it flies off). We use the kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking the $+y$ direction to be upward and placing the origin at the point where the stone leaves its circular orbit, then the coordinates of the stone during its motion as a projectile are given by $x=v_{0} t$ and $y=-\frac{1}{2} g t^{2}$ (since $v_{0 y}=0$). It hits the ground at $x=10 \mathrm{~m}$ and $y=-2.0 \mathrm{~m}$. Formally solving the second equation for the time, we obtain $t=\sqrt{-2 y / g}$, which we substitute into the first equation:

$$
v_{0}=x \sqrt{-\frac{g}{2 y}}=(10 \mathrm{~m}) \sqrt{-\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{2(-2.0 \mathrm{~m})}}=15.7 \mathrm{~m} / \mathrm{s} .
$$

Therefore, the magnitude of the centripetal acceleration is

$$
a=\frac{v^{2}}{r}=\frac{(15.7 \mathrm{~m} / \mathrm{s})^{2}}{1.5 \mathrm{~m}}=160 \mathrm{~m} / \mathrm{s}^{2} .
$$

54. We note that after three seconds have elapsed ($t_{2}-t_{1}=3.00 \mathrm{~s}$) the velocity (for this object in circular motion of period T) is reversed; we infer that it takes three seconds to reach the opposite side of the circle. Thus, $T=2(3.00)=6.00 \mathrm{~s}$.
(a) Using Eq. 4-35, $r=v T / 2 \pi$, where $v=\sqrt{(3.00)^{2}+(4.00)^{2}}=5.00 \mathrm{~m} / \mathrm{s}$, we obtain $r=4.77 \mathrm{~m}$. The magnitude of the object's centripetal acceleration is therefore $a=v^{2} / r=$ $5.24 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The average acceleration is given by Eq. 4-15:

$$
\vec{a}_{\text {avg }}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}}=\frac{(-3.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}})-(3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}})}{5.00-2.00}=\left(-2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-2.67 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

which implies $\left|\vec{a}_{\mathrm{avg}}\right|=\sqrt{(-2.00)^{2}+(-2.67)^{2}}=3.33 \mathrm{~m} / \mathrm{s}^{2}$.
55. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using velocities relative to the ground (subscript g). We work with SI units, so $20 \mathrm{~km} / \mathrm{h} \rightarrow 5.6 \mathrm{~m} / \mathrm{s}, 30 \mathrm{~km} / \mathrm{h} \rightarrow 8.3 \mathrm{~m} / \mathrm{s}$, and $45 \mathrm{~km} / \mathrm{h} \rightarrow 12.5 \mathrm{~m} / \mathrm{s}$. We choose east as the $+\hat{\mathrm{i}}$ direction.
(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq. 4-44)

$$
\vec{v}_{\mathrm{ct}}=\vec{v}_{\mathrm{cg}}-\vec{v}_{\mathrm{tg}}=12.5 \hat{\mathrm{i}}-(-5.6 \hat{\mathrm{i}})=(18.1 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}
$$

relative to the truck. Since the velocity of the cheetah relative to the truck at the beginning of the 2.0 s interval is $(-8.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$, the (average) acceleration vector relative to the cameraman (in the truck) is

$$
\vec{a}_{\text {avg }}=\frac{18.1 \hat{\mathrm{i}}-(-8.3 \hat{\mathrm{i}})}{2.0}=\left(13 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}},
$$

or $\left|\vec{a}_{\text {avg }}\right|=13 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The direction of $\vec{a}_{\text {avg }}$ is $+\hat{\mathrm{i}}$, or eastward.
(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44)

$$
\vec{v}_{0 \mathrm{~g}}=\vec{v}_{0 \mathrm{ct}}+\vec{v}_{0 \mathrm{~g}}=(-8.3 \hat{\mathrm{i}})+(-5.6 \hat{\mathrm{i}})=(-13.9 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}
$$

relative to the ground. The (average) acceleration vector relative to the crew member (on the ground) is

$$
\vec{a}_{\mathrm{avg}}=\frac{12.5 \hat{\mathrm{i}}-(-13.9 \hat{\mathrm{i}})}{2.0}=\left(13 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}, \quad\left|\vec{a}_{\mathrm{avg}}\right|=13 \mathrm{~m} / \mathrm{s}^{2}
$$

identical to the result of part (a).
(d) The direction of $\vec{a}_{\text {avg }}$ is $+\hat{\mathrm{i}}$, or eastward.
56. We use Eq. 4-44, noting that the upstream corresponds to the $+\hat{\mathrm{i}}$ direction.
(a) The subscript b is for the boat, w is for the water, and g is for the ground.

$$
\vec{v}_{\mathrm{b} \mathrm{~g}}=\vec{v}_{\mathrm{bw}}+\vec{v}_{\mathrm{wg}}=(14 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}+(-9 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}=(5 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}
$$

Thus, the magnitude is $\left|\vec{v}_{\mathrm{bg}}\right|=5 \mathrm{~km} / \mathrm{h}$.
(b) The direction of \vec{v}_{bg} is $+x$, or upstream.
(c) We use the subscript c for the child, and obtain

$$
\vec{v}_{\mathrm{cg}}=\vec{v}_{\mathrm{cb}}+\vec{v}_{\mathrm{bg}}=(-6 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}+(5 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}=(-1 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}} .
$$

The magnitude is $\left|\vec{v}_{\mathrm{cg}}\right|=1 \mathrm{~km} / \mathrm{h}$.
(d) The direction of \vec{v}_{cg} is $-x$, or downstream.
57. While moving in the same direction as the sidewalk's motion (covering a distance d relative to the ground in time $t_{1}=2.50 \mathrm{~s}$), Eq. 4-44 leads to

$$
v_{\text {sidewalk }}+v_{\text {man running }}=\frac{d}{t_{1}} .
$$

While he runs back (taking time $t_{2}=10.0 \mathrm{~s}$) we have

$$
v_{\text {sidewalk }}-v_{\text {man running }}=-\frac{d}{t_{2}} .
$$

Dividing these equations and solving for the desired ratio, we get $\frac{12.5}{7.5}=\frac{5}{3}=1.67$.
58. We denote the velocity of the player with $\vec{v}_{P F}$ and the relative velocity between the player and the ball be $\vec{v}_{B P}$. Then the velocity $\vec{v}_{B F}$ of the ball relative to the field is given by $\vec{v}_{B F}=\vec{v}_{P F}+\vec{v}_{B P}$. The smallest angle $\theta_{\min }$ corresponds to the case when $\vec{v} \perp \vec{v}_{1}$. Hence,

$$
\theta_{\text {min }}=180^{\circ}-\cos ^{-1}\left(\frac{\left|\vec{v}_{P F}\right|}{\left|\vec{v}_{B P}\right|}\right)=180^{\circ}-\cos ^{-1}\left(\frac{4.0 \mathrm{~m} / \mathrm{s}}{6.0 \mathrm{~m} / \mathrm{s}}\right)=130^{\circ} .
$$

59. Relative to the car the velocity of the snowflakes has a vertical component of $8.0 \mathrm{~m} / \mathrm{s}$ and a horizontal component of $50 \mathrm{~km} / \mathrm{h}=13.9 \mathrm{~m} / \mathrm{s}$. The angle θ from the vertical is found from

$$
\tan \theta=\frac{v_{h}}{v_{v}}=\frac{13.9 \mathrm{~m} / \mathrm{s}}{8.0 \mathrm{~m} / \mathrm{s}}=1.74
$$

which yields $\theta=60^{\circ}$.
60. The destination is $\vec{D}=800 \mathrm{~km} \hat{\mathrm{j}}$ where we orient axes so that $+y$ points north and $+x$ points east. This takes two hours, so the (constant) velocity of the plane (relative to the ground) is $\overrightarrow{\mathrm{v}}_{\mathrm{pg}}=400 \mathrm{~km} / \mathrm{h} \hat{\mathrm{j}}$. This must be the vector sum of the plane's velocity with respect to the air which has (x, y) components $\left(500 \cos 70^{\circ}, 500 \sin 70^{\circ}\right)$ and the velocity of the air (wind) relative to the ground $\overrightarrow{\mathrm{v}}_{\mathrm{ag}}$. Thus,

$$
400 \hat{j}=500 \cos 70^{\circ} \hat{i}+500 \sin 70^{\circ} \hat{j}+\vec{v}_{a g} \Rightarrow \vec{v}_{a g}=-171 \hat{i}-70.0 \hat{j}
$$

(a) The magnitude of \vec{v}_{ag} is $\left|\vec{v}_{\mathrm{ag}}\right|=\sqrt{(-171)^{2}+(-70.0)^{2}}=185 \mathrm{~km} / \mathrm{h}$.
(b) The direction of $\vec{v}_{\text {ag }}$ is

$$
\theta=\tan ^{-1}\left(\frac{-70.0}{-171}\right)=22.3^{\circ} \quad(\text { south of west }) .
$$

61. The velocity vectors (relative to the shore) for ships A and B are given by

$$
\vec{v}_{A}=-\left(v_{A} \cos 45^{\circ}\right) \hat{\mathrm{i}}+\left(v_{A} \sin 45^{\circ}\right) \hat{\mathrm{j}}
$$

and

$$
\vec{v}_{B}=-\left(v_{B} \sin 40^{\circ}\right) \hat{\mathrm{i}}-\left(v_{B} \cos 40^{\circ}\right) \hat{\mathrm{j}}
$$

respectively, with $v_{A}=24$ knots and $v_{B}=28$ knots. We take east as $+\hat{\mathrm{i}}$ and north as $\hat{\mathrm{j}}$.
(a) Their relative velocity is

$$
\vec{v}_{A B}=\vec{v}_{A}-\vec{v}_{B}=\left(v_{B} \sin 40^{\circ}-v_{A} \cos 45^{\circ}\right) \hat{\mathrm{i}}+\left(v_{B} \cos 40^{\circ}+v_{A} \sin 45^{\circ}\right) \hat{\mathrm{j}}
$$

the magnitude of which is $\left|\vec{v}_{A B}\right|=\sqrt{(1.03)^{2}+(38.4)^{2}} \approx 38$ knots.
(b) The angle θ which $\vec{v}_{A B}$ makes with north is given by

$$
\theta=\tan ^{-1}\left(\frac{v_{A B, x}}{v_{A B, y}}\right)=\tan ^{-1}\left(\frac{1.03}{38.4}\right)=1.5^{\circ}
$$

which is to say that $\vec{v}_{A B}$ points 1.5° east of north.
(c) Since they started at the same time, their relative velocity describes at what rate the distance between them is increasing. Because the rate is steady, we have

$$
t=\frac{\left|\Delta r_{A B}\right|}{\left|\vec{v}_{A B}\right|}=\frac{160}{38.4}=4.2 \mathrm{~h} .
$$

(d) The velocity $\vec{v}_{A B}$ does not change with time in this problem, and $\vec{r}_{A B}$ is in the same direction as $\vec{v}_{A B}$ since they started at the same time. Reversing the points of view, we have $\vec{v}_{A B}=-\vec{v}_{B A}$ so that $\vec{r}_{A B}=-\vec{r}_{B A}$ (i.e., they are 180° opposite to each other). Hence, we conclude that B stays at a bearing of 1.5° west of south relative to A during the journey (neglecting the curvature of Earth).
62. Velocities are taken to be constant; thus, the velocity of the plane relative to the ground is $\vec{v}_{P G}=(55 \mathrm{~km}) /(1 / 4$ hour $) \hat{\mathrm{j}}=(220 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}}$. In addition,

$$
\vec{v}_{A G}=42\left(\cos 20^{\circ} \hat{\mathrm{i}}-\sin 20^{\circ} \hat{\mathrm{j}}\right)=(39 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}-(14 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}} .
$$

Using $\vec{v}_{P G}=\vec{v}_{P A}+\vec{v}_{A G}$, we have

$$
\vec{v}_{P A}=\vec{v}_{P G}-\vec{v}_{A G}=-(39 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}+(234 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}} .
$$

which implies $\left|\vec{v}_{P A}\right|=237 \mathrm{~km} / \mathrm{h}$, or $240 \mathrm{~km} / \mathrm{h}$ (to two significant figures.)
63. Since the raindrops fall vertically relative to the train, the horizontal component of the velocity of a raindrop is $v_{h}=30 \mathrm{~m} / \mathrm{s}$, the same as the speed of the train. If v_{v} is the vertical component of the velocity and θ is the angle between the direction of motion and the vertical, then $\tan \theta=v_{h} / v_{v}$. Thus $v_{v}=v_{h} / \tan \theta=(30 \mathrm{~m} / \mathrm{s}) / \tan 70^{\circ}=10.9 \mathrm{~m} / \mathrm{s}$. The speed of a raindrop is $v=\sqrt{v_{h}^{2}+v_{v}^{2}}=\sqrt{(30 \mathrm{~m} / \mathrm{s})^{2}+(10.9 \mathrm{~m} / \mathrm{s})^{2}}=32 \mathrm{~m} / \mathrm{s}$.
64. We make use of Eq. 4-44 and Eq. 4-45.

The velocity of Jeep P relative to A at the instant is (in m / s)

$$
\vec{v}_{P A}=40.0\left(\cos 60^{\circ} \hat{\mathrm{i}}+\sin 60^{\circ} \hat{\mathrm{j}}\right)=20.0 \hat{\mathrm{i}}+34.6 \hat{\mathrm{j}} .
$$

Similarly, the velocity of Jeep B relative to A at the instant is (in m / s)

$$
\vec{v}_{B A}=20.0\left(\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30^{\circ} \hat{\mathrm{j}}\right)=17.3 \hat{\mathrm{i}}+10.0 \hat{\mathrm{j}} .
$$

Thus, the velocity of P relative to B is (in m / s)

$$
\vec{v}_{P B}=\vec{v}_{P A}-\vec{v}_{B A}=(20.0 \hat{\mathrm{i}}+34.6 \hat{\mathrm{j}})-(17.3 \hat{\mathrm{i}}+10.0 \hat{\mathrm{j}})=2.68 \hat{\mathrm{i}}+24.6 \hat{\mathrm{j}} .
$$

(a) The magnitude of $\vec{v}_{P B}$ is $\left|\vec{v}_{P B}\right|=\sqrt{(2.68)^{2}+(24.6)^{2}}=24.8 \mathrm{~m} / \mathrm{s}$.
(b) The direction of $\vec{v}_{P B}$ is $\theta=\tan ^{-1}(24.6 / 2.68)=83.8^{\circ}$ north of east (or 6.2° east of north).
(c) The acceleration of P is $\vec{a}_{P A}=0.400\left(\cos 60.0^{\circ} \hat{\dot{i}}+\sin 60.0^{\circ} \hat{\mathrm{j}}\right)=0.200 \hat{\mathrm{i}}+0.346 \hat{\mathrm{j}}$, and $\vec{a}_{P A}=\vec{a}_{P B}$. Thus, we have $\left|\vec{a}_{P B}\right|=0.400 \mathrm{~m} / \mathrm{s}^{2}$.
(d) The direction is 60.0° north of east (or 30.0° east of north).
65. Here, the subscript W refers to the water. Our coordinates are chosen with $+x$ being east and $+y$ being north. In these terms, the angle specifying east would be 0° and the angle specifying south would be -90° or 270°. Where the length unit is not displayed, km is to be understood.
(a) We have $\vec{v}_{A W}=\vec{v}_{A B}+\vec{v}_{B W}$, so that

$$
\vec{v}_{A B}=\left(22 \angle-90^{\circ}\right)-\left(40 \angle 37^{\circ}\right)=\left(56 \angle-125^{\circ}\right)
$$

in the magnitude-angle notation (conveniently done with a vector-capable calculator in polar mode). Converting to rectangular components, we obtain

$$
\vec{v}_{A B}=(-32 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}-(46 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}} .
$$

Of course, this could have been done in unit-vector notation from the outset.
(b) Since the velocity-components are constant, integrating them to obtain the position is straightforward $\left(\vec{r}-\vec{r}_{0}=\int \vec{v} d t\right)$

$$
\vec{r}=(2.5-32 t) \hat{\mathrm{i}}+(4.0-46 t) \hat{\mathrm{j}}
$$

with lengths in kilometers and time in hours.
(c) The magnitude of this \vec{r} is $r=\sqrt{(2.5-32 t)^{2}+(4.0-46 t)^{2}}$. We minimize this by taking a derivative and requiring it to equal zero - which leaves us with an equation for t

$$
\frac{d r}{d t}=\frac{1}{2} \frac{6286 t-528}{\sqrt{(2.5-32 t)^{2}+(4.0-46 t)^{2}}}=0
$$

which yields $t=0.084 \mathrm{~h}$.
(d) Plugging this value of t back into the expression for the distance between the ships (r), we obtain $r=0.2 \mathrm{~km}$. Of course, the calculator offers more digits ($r=0.225 \ldots$), but they are not significant; in fact, the uncertainties implicit in the given data, here, should make the ship captains worry.
66. We construct a right triangle starting from the clearing on the south bank, drawing a line (200 m long) due north (upward in our sketch) across the river, and then a line due west (upstream, leftward in our sketch) along the north bank for a distance $(82 \mathrm{~m})+(1.1 \mathrm{~m} / \mathrm{s}) t$, where the t-dependent contribution is the distance that the river will carry the boat downstream during time t.

The hypotenuse of this right triangle (the arrow in our sketch) also depends on t and on the boat's speed (relative to the water), and we set it equal to the Pythagorean "sum" of the triangle's sides:

$$
(4.0) t=\sqrt{200^{2}+(82+1.1 t)^{2}}
$$

which leads to a quadratic equation for t

$$
46724+180.4 t-14.8 t^{2}=0
$$

We solve this and find a positive value: $t=62.6 \mathrm{~s}$. The angle between the northward $(200 \mathrm{~m})$ leg of the triangle and the hypotenuse (which is measured "west of north") is then given by

$$
\theta=\tan ^{-1}\left(\frac{82+1.1 t}{200}\right)=\tan ^{-1}\left(\frac{151}{200}\right)=37^{\circ} .
$$

67. Using displacement $=$ velocity x time (for each constant-velocity part of the trip), along with the fact that 1 hour $=60$ minutes, we have the following vector addition exercise (using notation appropriate to many vector capable calculators):
$\left(1667 \mathrm{~m} \angle 0^{\circ}\right)+\left(1333 \mathrm{~m} \angle-90^{\circ}\right)+\left(333 \mathrm{~m} \angle 180^{\circ}\right)+\left(833 \mathrm{~m} \angle-90^{\circ}\right)+\left(667 \mathrm{~m} \angle 180^{\circ}\right)$ $+\left(417 \mathrm{~m} \angle-90^{\circ}\right)=\left(2668 \mathrm{~m} \angle-76^{\circ}\right)$.
(a) Thus, the magnitude of the net displacement is 2.7 km .
(b) Its direction is 76° clockwise (relative to the initial direction of motion).
68. We compute the coordinate pairs (x, y) from $x=v_{0} \cos \theta t$ and $x=v_{0} \sin \theta t-\frac{1}{2} g t^{2}$ for t $=20 \mathrm{~s}$ and the speeds and angles given in the problem.
(a) We obtain (in kilometers)

$$
\begin{array}{ll}
\left(x_{A}, y_{A}\right)=(10.1,0.56) & \left(x_{B}, y_{B}\right)=(12.1,1.51) \\
\left(x_{C}, y_{C}\right)=(14.3,2.68) & \left(x_{D}, y_{D}\right)=(16.4,3.99)
\end{array}
$$

and $\left(x_{E}, y_{E}\right)=(18.5,5.53)$ which we plot in the next part.
(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at the origin. The curve to "fit" the data is not shown, but is easily imagined (forming the "curtain of death").

69. Since $v_{y}^{2}=v_{0 y}^{2}-2 g \Delta y$, and $v_{y}=0$ at the target, we obtain

$$
v_{0 y}=\sqrt{2(9.80)(5.00)}=9.90 \mathrm{~m} / \mathrm{s}
$$

(a) Since $v_{0} \sin \theta_{0}=v_{0 y}$, with $v_{0}=12.0 \mathrm{~m} / \mathrm{s}$, we find $\theta_{0}=55.6^{\circ}$.
(b) Now, $v_{y}=v_{0 y}-g t$ gives $t=9.90 / 9.80=1.01 \mathrm{~s}$. Thus, $\Delta x=\left(v_{0} \cos \theta_{0}\right) t=6.85 \mathrm{~m}$.
(c) The velocity at the target has only the v_{x} component, which is equal to $v_{0 x}=v_{0} \cos \theta_{0}$ $=6.78 \mathrm{~m} / \mathrm{s}$.
70. Let $v_{\mathrm{o}}=2 \pi(0.200) / .00500 \approx 251 \mathrm{~m} / \mathrm{s}$ (using Eq. $4-35$) be the speed it had in circular motion and $\theta_{0}=(1 \mathrm{hr})\left(360 \% / 12 \mathrm{hr}[\right.$ for full rotation] $)=30.0^{\circ}$. Then Eq. 4-25 leads to

$$
y=(2.50) \tan 30.0^{\circ}-\frac{(9.8)(2.50)^{2}}{2\left(251 \cos \left(30^{\circ}\right)\right)^{2}} \approx 1.44 \mathrm{~m}
$$

which means its height above the floor is $(1.44+1.20) \mathrm{m}=2.64 \mathrm{~m}$.
71. The (x, y) coordinates (in meters) of the points are $A=(15,-15), B=(30,-45), C=$ $(20,-15)$, and $D=(45,45)$. The respective times are $t_{A}=0, t_{B}=300 \mathrm{~s}, t_{C}=600 \mathrm{~s}$, and t_{D} $=900 \mathrm{~s}$. Average velocity is defined by Eq. 4-8. Each displacement $\overrightarrow{\Delta r}$ is understood to originate at point A.
(a) The average velocity having the least magnitude (5.0/600) is for the displacement ending at point $C:\left|\vec{v}_{\text {avg }}\right|=0.0083 \mathrm{~m} / \mathrm{s}$.
(b) The direction of $\vec{v}_{\text {avg }}$ is 0° (measured counterclockwise from the $+x$ axis).
(c) The average velocity having the greatest magnitude $\left(\frac{\sqrt{15^{2}+30^{2}}}{300}\right)$ is for the displacement ending at point $B:\left|\vec{v}_{\text {avg }}\right|=0.11 \mathrm{~m} / \mathrm{s}$.
(d) The direction of $\vec{v}_{\text {avg }}$ is 297° (counterclockwise from $+x$) or -63° (which is equivalent to measuring 63° clockwise from the $+x$ axis).
72. From the figure, the three displacements can be written as (in unit of meters)

$$
\begin{aligned}
\vec{d}_{1} & =d_{1}\left(\cos \theta_{1} \hat{\mathrm{i}}+\sin \theta_{1} \hat{\mathrm{j}}\right)=5.00\left(\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30^{\circ} \hat{\mathrm{j}}\right)=4.33 \hat{\mathrm{i}}+2.50 \hat{\mathrm{j}} \\
\vec{d}_{2} & =d_{2}\left[\cos \left(180^{\circ}+\theta_{1}-\theta_{2}\right) \hat{\mathrm{i}}+\sin \left(180^{\circ}+\theta_{1}-\theta_{2}\right) \hat{\mathrm{j}}\right]=8.00\left(\cos 160^{\circ} \hat{\mathrm{i}}+\sin 160^{\circ} \hat{\mathrm{j}}\right) \\
& =-7.52 \hat{\mathrm{i}}+2.74 \hat{\mathrm{j}} \\
\vec{d}_{3} & =d_{3}\left[\cos \left(360^{\circ}-\theta_{3}-\theta_{2}+\theta_{1}\right) \hat{\mathrm{i}}+\sin \left(360^{\circ}-\theta_{3}-\theta_{2}+\theta_{1}\right) \hat{\mathrm{j}}\right]=12.0\left(\cos 260^{\circ} \hat{\mathrm{i}}+\sin 260^{\circ} \hat{\mathrm{j}}\right) \\
& =-2.08 \hat{\mathrm{i}}-11.8 \hat{\mathrm{j}}
\end{aligned}
$$

where the angles are measured from the $+x$ axis. The net displacement is

$$
\vec{d}=\vec{d}_{1}+\vec{d}_{2}+\vec{d}_{3}=-5.27 \hat{\mathrm{i}}-6.58 \hat{\mathrm{j}} .
$$

(a) The magnitude of the net displacement is $|\vec{d}|=\sqrt{(-5.27)^{2}+(-6.58)^{2}}=8.43 \mathrm{~m}$.
(b) The direction of \vec{d} is

$$
\theta=\tan ^{-1}\left(\frac{d_{y}}{d_{x}}\right)=\tan ^{-1}\left(\frac{-6.58}{-5.27}\right)=51.3^{\circ} \text { or } 231^{\circ} .
$$

We choose 231° (measured counterclockwise from $+x$) since the desired angle is in the third quadrant. An equivalent answer is -129° (measured clockwise from $+x$).
73. For circular motion, we must have \vec{v} with direction perpendicular to \vec{r} and (since the speed is constant) magnitude $v=2 \pi r / T$ where $r=\sqrt{2^{2}+3^{2}}$ and $T=7.00 \mathrm{~s}$. The \vec{r} (given in the problem statement) specifies a point in the fourth quadrant, and since the motion is clockwise then the velocity must have both components negative. Our result, satisfying these three conditions, (using unit-vector notation which makes it easy to double-check that $\vec{r} \cdot \vec{v}=0)$ for $\vec{v}=(-2.69 \mathrm{~m} / \mathrm{s}) \hat{i}+(-1.80 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$.
74. Using Eq. 2-16, we obtain $v^{2}=v_{0}^{2}-2 g h$, or $h=\left(v_{0}^{2}-v^{2}\right) / 2 g$.
(a) Since $v=0$ at the maximum height of an upward motion, with $v_{0}=7.00 \mathrm{~m} / \mathrm{s}$, we have $h=(7.00)^{2} / 2(9.80)=2.50 \mathrm{~m}$.
(b) With respect to the floor, the relative speed is $v_{r}=v_{0}-v_{c}=7.00-3.00=4.00 \mathrm{~m} / \mathrm{s}$. Using the above equation we obtain $h=(4.00)^{2} / 2(9.80)=0.82 \mathrm{~m}$.
(c) The acceleration, or the rate of change of speed of the ball with respect to the ground is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (downward).
(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the ball with respect to the cab floor is also $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (downward).
75. Relative to the sled, the launch velocity is $\vec{v}_{\mathrm{o} \text { rel }}=v_{\mathrm{ox}} \hat{\mathrm{i}}+v_{\mathrm{oy}} \hat{\mathrm{j}}$. Since the sled's motion is in the negative direction with speed v_{s} (note that we are treating v_{s} as a positive number, so the sled's velocity is actually $-v_{s} \hat{i}$), then the launch velocity relative to the ground is $\overrightarrow{\mathrm{v}}_{\mathrm{o}}=\left(v_{\mathrm{ox}}-v_{\mathrm{s}}\right) \hat{\mathrm{i}}+v_{\mathrm{oy}} \hat{\mathrm{j}}$. The horizontal and vertical displacement (relative to the ground) are therefore

$$
\begin{aligned}
& x_{\text {land }}-x_{\text {launch }}=\Delta x_{\mathrm{bg}}=\left(v_{\mathrm{ox}}-v_{\mathrm{s}}\right) t_{\mathrm{flight}} \\
& y_{\text {land }}-y_{\text {launch }}=0=v_{\mathrm{oy}} t_{\mathrm{flight}}+\frac{1}{2}(-g)\left(t_{\mathrm{flight}}\right)^{2} .
\end{aligned}
$$

Combining these equations leads to

$$
\Delta x_{\mathrm{bg}}=\frac{2 \mathrm{v}_{\mathrm{ox}} \mathrm{v}_{\mathrm{ov}}}{g}-\left(\frac{2 \mathrm{v}_{\mathrm{ov}}}{g}\right) \nu_{\mathrm{s} .}
$$

The first term corresponds to the " y intercept" on the graph, and the second term (in parentheses) corresponds to the magnitude of the "slope." From Figure 4-50, we have

$$
\Delta x_{b g}=40-4 v_{s} .
$$

This implies $v_{\mathrm{oy}}=4.0(9.8) / 2=19.6 \mathrm{~m} / \mathrm{s}$, and that furnishes enough information to determine v_{ox}.
(a) $v_{\mathrm{ox}}=40 \mathrm{~g} / 2 v_{\mathrm{oy}}=(40)(9.8) / 39.2=10 \mathrm{~m} / \mathrm{s}$.
(b) As noted above, $v_{o y}=19.6 \mathrm{~m} / \mathrm{s}$.
(c) Relative to the sled, the displacement $\Delta x_{\text {bs }}$ does not depend on the sled's speed, so $\Delta x_{\mathrm{bs}}=v_{\mathrm{ox}} t_{\mathrm{flight}}=40 \mathrm{~m}$.
(d) As in (c), relative to the sled, the displacement $\Delta x_{b s}$ does not depend on the sled's speed, and $\Delta x_{\mathrm{bs}}=v_{\mathrm{ox}} t_{\mathrm{flight}}=40 \mathrm{~m}$.
76. We make use of Eq. 4-16 and Eq. 4-10.

Using $\vec{a}=3 t \hat{i}+4 t \hat{j}$, we have (in m / s)

$$
\vec{v}(t)=\vec{v}_{0}+\int_{0}^{t} \vec{a} d t=(5.00 \hat{\mathrm{i}}+2.00 \hat{\mathrm{j}})+\int_{0}^{t}(3 t \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) d t=\left(5.00+3 t^{2} / 2\right) \hat{\mathrm{i}}+\left(2.00+2 t^{2}\right) \hat{\mathrm{j}}
$$

Integrating using Eq. 4-10 then yields (in metes)

$$
\begin{aligned}
\vec{r}(t)=\vec{r}_{0}+\int_{0}^{t} \vec{v} d t & =(20.0 \hat{\mathrm{i}}+40.0 \hat{\mathrm{j}})+\int_{0}^{t}\left[\left(5.00+3 t^{2} / 2\right) \hat{\mathrm{i}}+\left(2.00+2 t^{2}\right) \hat{\mathrm{j}}\right] d t \\
& =(20.0 \hat{\mathrm{i}}+40.0 \hat{\mathrm{j}})+\left(5.00 t+t^{3} / 2\right) \hat{\mathrm{i}}+\left(2.00 t+2 t^{3} / 3\right) \hat{\mathrm{j}} \\
& =\left(20.0+5.00 t+t^{3} / 2\right) \hat{\mathrm{i}}+\left(40.0+2.00 t+2 t^{3} / 3\right) \hat{\mathrm{j}}
\end{aligned}
$$

(a) At $t=4.00 \mathrm{~s}$, we have $\vec{r}(t=4.00)=(72.0 \mathrm{~m}) \hat{\mathrm{i}}+(90.7 \mathrm{~m}) \hat{\mathrm{j}}$.
(b) $\vec{v}(t=4.00)=(29.0 \mathrm{~m} / \mathrm{s}) \hat{i}+(34.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. Thus, the angle between the direction of travel and $+x$, measured counterclockwise, is $\theta=\tan ^{-1}(34.0 / 29.0)=49.5^{\circ}$.
77. With $v_{0}=30.0 \mathrm{~m} / \mathrm{s}$ and $R=20.0 \mathrm{~m}$, Eq. $4-26$ gives

$$
\sin 2 \theta_{0}=\frac{g R}{v_{0}^{2}}=0.218
$$

Because $\sin \phi=\sin \left(180^{\circ}-\phi\right)$, there are two roots of the above equation:

$$
2 \theta_{0}=\sin ^{-1}(0.218)=12.58^{\circ} \text { and } 167.4^{\circ} .
$$

which correspond to the two possible launch angles that will hit the target (in the absence of air friction and related effects).
(a) The smallest angle is $\theta_{0}=6.29^{\circ}$.
(b) The greatest angle is and $\theta_{0}=83.7^{\circ}$.

An alternative approach to this problem in terms of Eq. 4-25 (with $y=0$ and $1 / \cos ^{2}=1+$ $\tan ^{2}$) is possible - and leads to a quadratic equation for $\tan \theta_{0}$ with the roots providing these two possible θ_{0} values.
78. We differentiate $\vec{r}=5.00 t \hat{\mathrm{i}}+\left(e t+f t^{2}\right) \hat{\mathrm{j}}$.
(a) The particle's motion is indicated by the derivative of $\vec{r}: \overrightarrow{\mathrm{v}}=5.00 \hat{\mathrm{i}}+(e+2 f t) \hat{\mathrm{j}}$. The angle of its direction of motion is consequently

$$
\theta=\tan ^{-1}\left(v_{\mathrm{y}} / v_{\mathrm{x}}\right)=\tan ^{-1}[(e+2 f t) / 5.00] .
$$

The graph indicates $\theta_{0}=35.0^{\circ}$ which determines the parameter e :

$$
e=5.00 \tan \left(35.0^{\circ}\right)=3.50 \mathrm{~m} / \mathrm{s}
$$

(b) We note (from the graph) that $\theta=0$ when $t=14.0 \mathrm{~s}$. Thus, $e+2 f t=0$ at that time. This determines the parameter f :

$$
f=-3.5 / 2(14.0)=-0.125 \mathrm{~m} / \mathrm{s}^{2} .
$$

79. We establish coordinates with \hat{i} pointing to the far side of the river (perpendicular to the current) and $\hat{\mathrm{j}}$ pointing in the direction of the current. We are told that the magnitude (presumed constant) of the velocity of the boat relative to the water is $\left|\vec{v}_{b w}\right|=6.4 \mathrm{~km} / \mathrm{h}$. Its angle, relative to the x axis is θ. With km and h as the understood units, the velocity of the water (relative to the ground) is $\vec{v}_{w g}=3.2 \hat{\mathrm{j}}$.
(a) To reach a point "directly opposite" means that the velocity of her boat relative to ground must be $\vec{v}_{b g}=v_{b g} \hat{\mathrm{i}}$ where $v>0$ is unknown. Thus, all $\hat{\mathrm{j}}$ components must cancel in the vector sum $\vec{v}_{b w}+\vec{v}_{w g}=\vec{v}_{b g}$, which means the $u \sin \theta=-3.2$, so

$$
\theta=\sin ^{-1}(-3.2 / 6.4)=-30^{\circ} .
$$

(b) Using the result from part (a), we find $v_{b g}=v_{b w} \cos \theta=5.5 \mathrm{~km} / \mathrm{h}$. Thus, traveling a distance of $\ell=6.4 \mathrm{~km}$ requires a time of $6.4 / 5.5=1.15 \mathrm{~h}$ or 69 min .
(c) If her motion is completely along the y axis (as the problem implies) then with $v_{w g}=$ $3.2 \mathrm{~km} / \mathrm{h}$ (the water speed) we have

$$
t_{\text {total }}=\frac{D}{v_{b w}+v_{w g}}+\frac{D}{v_{b w}-v_{w g}}=1.33 \mathrm{~h}
$$

where $D=3.2 \mathrm{~km}$. This is equivalent to 80 min .
(d) Since

$$
\frac{D}{v_{b w}+v_{w g}}+\frac{D}{v_{b w}-v_{w g}}=\frac{D}{v_{b w}-v_{w g}}+\frac{D}{v_{b w}+v_{w g}}
$$

the answer is the same as in the previous part, i.e., $t_{\text {total }}=80 \mathrm{~min}$.
(e) The shortest-time path should have $\theta=0$. This can also be shown by noting that the case of general θ leads to

$$
\vec{v}_{b g}=\vec{v}_{b w}+\vec{v}_{w g}=v_{b w} \cos \theta \hat{\mathrm{i}}+\left(v_{b w} \sin \theta+v_{w g}\right) \hat{\mathrm{j}}
$$

where the x component of $\vec{v}_{b g}$ must equal l / t. Thus,

$$
t=\frac{l}{v_{b w} \cos \theta}
$$

which can be minimized using $d t / d \theta=0$.
(f) The above expression leads to $t=6.4 / 6.4=1.0 \mathrm{~h}$, or 60 min .
80. We make use of Eq. 4-25.
(a) By rearranging Eq. 4-25, we obtain the initial speed:

$$
v_{0}=\frac{x}{\cos \theta_{0}} \sqrt{\frac{g}{2\left(x \tan \theta_{0}-y\right)}}
$$

which yields $v_{0}=255.5 \approx 2.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$ for $x=9400 \mathrm{~m}, y=-3300 \mathrm{~m}$, and $\theta_{0}=35^{\circ}$.
(b) From Eq. 4-21, we obtain the time of flight:

$$
t=\frac{x}{v_{0} \cos \theta_{0}}=\frac{9400}{255.5 \cos 35^{\circ}}=45 \mathrm{~s} .
$$

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we would need a greater launching speed to reach the same target.
81. On the one hand, we could perform the vector addition of the displacements with a vector-capable calculator in polar mode $\left(\left(75 \angle 37^{\circ}\right)+\left(65 \angle-90^{\circ}\right)=\left(63 \angle-18^{\circ}\right)\right)$, but in keeping with Eq. 3-5 and Eq. 3-6 we will show the details in unit-vector notation. We use a 'standard' coordinate system with $+x$ East and $+y$ North. Lengths are in kilometers and times are in hours.
(a) We perform the vector addition of individual displacements to find the net displacement of the camel.

$$
\begin{aligned}
\Delta \vec{r}_{1} & =75 \cos \left(37^{\circ}\right) \hat{\mathrm{i}}+75 \sin \left(37^{\circ}\right) \hat{\mathrm{j}} \\
\Delta \vec{r}_{2} & =-65 \hat{\mathrm{j}} \\
\Delta \vec{r}=\Delta \vec{r}_{1}+\Delta \vec{r}_{2} & =60 \hat{\mathrm{i}}-20 \hat{\mathrm{j}} .
\end{aligned}
$$

If it is desired to express this in magnitude-angle notation, then this is equivalent to a vector of length $|\Delta \vec{r}|=\sqrt{(60)^{2}+(-20)^{2}}=63 \mathrm{~km}$.
(b) The direction of $\Delta \vec{r}$ is $\theta=\tan ^{-1}(-20 / 60)=-18^{\circ}$, or 18° south of east.
(c) We use the result from part (a) in Eq. $4-8$ along with the fact that $\Delta t=90 \mathrm{~h}$. In unit vector notation, we obtain

$$
\vec{v}_{\text {avg }}=\frac{60 \hat{i}-20 \hat{j}}{90}=0.67 \hat{i}-0.22 \hat{j}
$$

in kilometers-per-hour. This leads to $\left|\vec{v}_{\text {avg }}\right|=0.70 \mathrm{~km} / \mathrm{h}$.
(d) The direction of $\vec{v}_{\text {avg }}$ is $\theta=\tan ^{-1}(-0.22 / 0.67)=-18^{\circ}$, or 18° south of east.
(e) The average speed is distinguished from the magnitude of average velocity in that it depends on the total distance as opposed to the net displacement. Since the camel travels 140 km , we obtain $140 / 90=1.56 \mathrm{~km} / \mathrm{h} \approx 1.6 \mathrm{~km} / \mathrm{h}$.
(f) The net displacement is required to be the 90 km East from A to B. The displacement from the resting place to B is denoted $\Delta \vec{r}_{3}$. Thus, we must have (in kilometers)

$$
\Delta \vec{r}_{1}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3}=90 \hat{i}
$$

which produces $\Delta \vec{r}_{3}=30 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}$ in unit-vector notation, or ($36 \angle 33^{\circ}$) in magnitudeangle notation. Therefore, using Eq. 4-8 we obtain

$$
\left|\vec{v}_{\mathrm{avg}}\right|=\frac{36 \mathrm{~km}}{(120-90) \mathrm{h}}=1.2 \mathrm{~km} / \mathrm{h} .
$$

(g) The direction of $\vec{v}_{\text {avg }}$ is the same as \vec{r}_{3} (that is, 33° north of east).
82. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a.
(a) $v=2 \pi r / T=2 \pi(20 \mathrm{~km}) / 1.0 \mathrm{~s}=126 \mathrm{~km} / \mathrm{s}=1.3 \times 10^{5} \mathrm{~m} / \mathrm{s}$.
(b)

$$
a=\frac{v^{2}}{r}=\frac{(126 \mathrm{~km} / \mathrm{s})^{2}}{20 \mathrm{~km}}=7.9 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}
$$

(c) Clearly, both v and a will increase if T is reduced.
83. We make use of Eq. 4-21 and Eq.4-22.
(a) With $v_{0}=16 \mathrm{~m} / \mathrm{s}$, we square Eq. 4-21 and Eq. 4-22 and add them, then (using Pythagoras' theorem) take the square root to obtain r :

$$
\begin{aligned}
r=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} & =\sqrt{\left(v_{0} \cos \theta_{0} t\right)^{2}+\left(v_{0} \sin \theta_{0} t-g t^{2} / 2\right)^{2}} \\
& =t \sqrt{v_{0}^{2}-v_{0} g \sin \theta_{0} t+g^{2} t^{2} / 4}
\end{aligned}
$$

Below we plot r as a function of time for $\theta_{0}=40.0^{\circ}$:

(b) For this next graph for r versus t we set $\theta_{0}=80.0^{\circ}$.

(c) Differentiating r with respect to t, we obtain

$$
\frac{d r}{d t}=\frac{v_{0}^{2}-3 v_{0} g t \sin \theta_{0} / 2+g^{2} t^{2} / 2}{\sqrt{v_{0}^{2}-v_{0} g \sin \theta_{0} t+g^{2} t^{2} / 4}}
$$

Setting $d r / d t=0$, with $v_{0}=16.0 \mathrm{~m} / \mathrm{s}$ and $\theta_{0}=40.0^{\circ}$, we have $256-151 t+48 t^{2}=0$. The equation has no real solution. This means that the maximum is reached at the end of the flight, with $t_{\text {total }}=2 v_{0} \sin \theta_{0} / g=2(16.0) \sin 40.0^{\circ} / 9.80=2.10 \mathrm{~s}$.
(d) The value of r is given by

$$
r=(2.10) \sqrt{(16.0)^{2}-(16.0)(9.80) \sin 40.0^{\circ}(2.10)+(9.80)^{2}(2.10)^{2} / 4}=25.7 \mathrm{~m} .
$$

(e) The horizontal distance is $r_{x}=v_{0} \cos \theta_{0} t=(16.0) \cos 40.0^{\circ}(2.10)=25.7 \mathrm{~m}$.
(f) The vertical distance is $r_{y}=0$.
(g) For the $\theta_{0}=80^{\circ}$ launch, the condition for maximum r is $256-232 t+48 t^{2}=0$, or $t=1.71 \mathrm{~s}$ (the other solution, $t=3.13 \mathrm{~s}$, corresponds to a minimum.)
(h) The distance traveled is

$$
r=(1.71) \sqrt{(16.0)^{2}-(16.0)(9.80) \sin 80.0^{\circ}(1.71)+(9.80)^{2}(1.71)^{2} / 4}=13.5 \mathrm{~m} .
$$

(i) The horizontal distance is $r_{x}=v_{0} \cos \theta_{0} t=(16.0) \cos 80.0^{\circ}(1.71)=4.75 \mathrm{~m}$.
(j) The vertical distance is

$$
r_{y}=v_{0} \sin \theta_{0} t-\frac{g t^{2}}{2}=(16.0) \sin 80^{\circ}(1.71)-\frac{(9.80)(1.71)^{2}}{2}=12.6 \mathrm{~m} .
$$

84. When moving in the same direction as the jet stream (of speed v_{s}), the time is

$$
t_{1}=\frac{d}{\mathrm{v}_{\mathrm{ja}}+\mathrm{v}_{\mathrm{s}}}
$$

where $d=4000 \mathrm{~km}$ is the distance and v_{ja} is the speed of the jet relative to the air (1000 km / h). When moving against the jet stream, the time is

$$
t_{2}=\frac{d}{\mathrm{v}_{\mathrm{ja}}-\mathrm{v}_{\mathrm{s}}} \quad \text { where } \quad t_{2}-t_{1}=\frac{70}{60} \mathrm{~h} .
$$

Combining these equations and using the quadratic formula to solve gives $v_{\mathrm{s}}=143 \mathrm{~km} / \mathrm{h}$.
85. We use a coordinate system with $+x$ eastward and $+y$ upward.
(a) We note that 123° is the angle between the initial position and later position vectors, so that the angle from $+x$ to the later position vector is $40^{\circ}+123^{\circ}=163^{\circ}$. In unit-vector notation, the position vectors are

$$
\begin{aligned}
& \vec{r}_{1}=360 \cos \left(40^{\circ}\right) \hat{i}+360 \sin \left(40^{\circ}\right) \hat{j}=276 \hat{i}+231 \hat{\mathrm{j}} \\
& \vec{r}_{2}=790 \cos \left(163^{\circ}\right) \hat{\mathrm{i}}+790 \sin \left(163^{\circ}\right) \hat{\mathrm{j}}=-755 \hat{\mathrm{i}}+231 \hat{\mathrm{j}}
\end{aligned}
$$

respectively (in meters). Consequently, we plug into Eq. 4-3

$$
\Delta \vec{r}=[(-755)-276] \hat{i}+(231-231) \hat{j}=-(1031 \mathrm{~m}) \hat{\mathrm{i}} .
$$

Thus, the magnitude of the displacement $\Delta \vec{r}$ is $|\Delta \vec{r}|=1031 \mathrm{~m}$.
(b) The direction of $\Delta \vec{r}$ is $-\hat{i}$, or westward.
86. We denote the police and the motorist with subscripts p and m, respectively. The coordinate system is indicated in Fig. 4-55.
(a) The velocity of the motorist with respect to the police car is (in km / h)

$$
\vec{v}_{m p}=\vec{v}_{m}-\vec{v}_{p}=-60 \hat{\mathrm{j}}-(-80 \hat{\mathrm{i}})=80 \hat{\mathrm{i}}-60 \hat{\mathrm{j}} .
$$

(b) $\vec{v}_{m p}$ does happen to be along the line of sight. Referring to Fig. 4-55, we find the vector pointing from one car to another is $\vec{r}=800 \hat{i}-600 \hat{\mathrm{j}} \mathrm{m}$ (from M to P). Since the ratio of components in \vec{r} is the same as in $\vec{v}_{m p}$, they must point the same direction.
(c) No, they remain unchanged.
87. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable.
(a) With the origin at the firing point, the y coordinate of the bullet is given by $y=-\frac{1}{2} g t^{2}$. If t is the time of flight and $y=-0.019 \mathrm{~m}$ indicates where the bullet hits the target, then

$$
t=\sqrt{\frac{2(0.019)}{9.8}}=6.2 \times 10^{-2} \mathrm{~s}
$$

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since $x=30 \mathrm{~m}$ is the horizontal position of the target, we have $x=v_{0}$. Thus,

$$
v_{0}=\frac{x}{t}=\frac{30}{6.3 \times 10^{-2}}=4.8 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

88. Eq. 4-34 describes an inverse proportionality between r and a, so that a large acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower limit for r.
(a) The minimum turning radius of the train is given by

$$
r_{\min }=\frac{v^{2}}{a_{\max }}=\frac{(216 \mathrm{~km} / \mathrm{h})^{2}}{(0.050)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=7.3 \times 10^{3} \mathrm{~m}
$$

(b) The speed of the train must be reduced to no more than

$$
v=\sqrt{a_{\max } r}=\sqrt{0.050(9.8)\left(1.00 \times 10^{3}\right)}=22 \mathrm{~m} / \mathrm{s}
$$

which is roughly $80 \mathrm{~km} / \mathrm{h}$.
89. (a) With $r=0.15 \mathrm{~m}$ and $a=3.0 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$, Eq. $4-34$ gives

$$
v=\sqrt{r a}=6.7 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) The period is given by Eq. 4-35:

$$
T=\frac{2 \pi r}{v}=1.4 \times 10^{-7} \mathrm{~s}
$$

90. This is a classic problem involving two-dimensional relative motion. We align our coordinates so that east corresponds to $+x$ and north corresponds to $+y$. We write the vector addition equation as $\vec{v}_{B G}=\vec{v}_{B W}+\vec{v}_{W G}$. We have $\vec{v}_{W G}=\left(2.0 \angle 0^{\circ}\right)$ in the magnitudeangle notation (with the unit m / s understood), or $\vec{v}_{W G}=2.0 \hat{\mathrm{i}}$ in unit-vector notation. We also have $\vec{v}_{B W}=\left(8.0 \angle 120^{\circ}\right)$ where we have been careful to phrase the angle in the 'standard' way (measured counterclockwise from the $+x$ axis), or $\vec{v}_{B W}=-4.0 \hat{\mathrm{i}}+6.9 \hat{\mathrm{j}}$.
(a) We can solve the vector addition equation for $\vec{v}_{B G}$:

$$
\vec{v}_{B G}=v_{B W}+\vec{v}_{W G}=2.0 \hat{\mathrm{i}}+(-4.0 \hat{\mathrm{i}}+6.9 \hat{\mathrm{j}})=-2.0 \hat{\mathrm{i}}+6.9 \hat{\mathrm{j}} .
$$

Thus, we find $\left|\vec{v}_{B G}\right|=7.2 \mathrm{~m} / \mathrm{s}$.
(b) The direction of $\vec{v}_{B G}$ is $\theta=\tan ^{-1}(6.9 /(-2.0))=106^{\circ}$ (measured counterclockwise from the $+x$ axis), or 16° west of north.
(c) The velocity is constant, and we apply $y-y_{0}=v_{y} t$ in a reference frame. Thus, in the ground reference frame, we have $200=7.2 \sin \left(106^{\circ}\right) t \rightarrow t=29 \mathrm{~s}$. Note: if a student obtains " 28 s ", then the student has probably neglected to take the y component properly (a common mistake).
91. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated cannon from

$$
y=x \tan \theta_{0}-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \quad \text { where } y=-30 \mathrm{~m} .
$$

Using the quadratic formula (choosing the positive root), we find

$$
x=v_{0} \cos \theta_{0}\left(\frac{v_{0} \sin \theta_{0}+\sqrt{\left(v_{0} \sin \theta_{0}\right)^{2}-2 g y}}{g}\right)
$$

which yields $x=715 \mathrm{~m}$ for $v_{0}=82 \mathrm{~m} / \mathrm{s}$ and $\theta_{0}=45^{\circ}$. This is 29 m longer than the 686 m found in that Sample Problem. Since the " 9 " in 29 m is not reliable, due to the low level of precision in the given data, we write the answer as $3 \times 10^{1} \mathrm{~m}$.
92. Where the unit is not specified, the unit meter is understood. We use Eq. 4-2 and Eq. 4-3.
(a) With the initial position vector as \vec{r}_{1} and the later vector as \vec{r}_{2}, Eq. 4-3 yields

$$
\Delta r=[(-2.0)-5.0] \hat{i}+[6.0-(-6.0)] \hat{j}+(2.0-2.0) \hat{k}=-7.0 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}
$$

for the displacement vector in unit-vector notation (in meters).
(b) Since there is no z component (that is, the coefficient of $\hat{\mathrm{k}}$ is zero), the displacement vector is in the $x y$ plane.
93. (a) Using the same coordinate system assumed in Eq. 4-25, we find

$$
y=x \tan \theta_{0}-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}}=-\frac{g x^{2}}{2 v_{0}^{2}} \quad \text { if } \theta_{0}=0 .
$$

Thus, with $v_{0}=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and $x=1.0 \mathrm{~m}$, we obtain $y=-5.4 \times 10^{-13} \mathrm{~m}$ which is not practical to measure (and suggests why gravitational processes play such a small role in the fields of atomic and subatomic physics).
(b) It is clear from the above expression that $|y|$ decreases as v_{0} is increased.
94. At maximum height, the y-component of a projectile's velocity vanishes, so the given $10 \mathrm{~m} / \mathrm{s}$ is the (constant) x-component of velocity.
(a) Using $v_{0 y}$ to denote the y-velocity 1.0 s before reaching the maximum height, then (with $v_{y}=0$) the equation $v_{y}=v_{0 y}-g t$ leads to $v_{0 y}=9.8 \mathrm{~m} / \mathrm{s}$. The magnitude of the velocity vector at that moment (also known as the speed) is therefore

$$
\sqrt{v_{x}^{2}+v_{0 y}^{2}}=\sqrt{(10)^{2}+(9.8)^{2}}=14 \mathrm{~m} / \mathrm{s}
$$

(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after reaching the top, as it was 1.0 s before ($14 \mathrm{~m} / \mathrm{s}$ again). This may be verified by using $v_{y}=$ $v_{0 y}-g t$ again but now "starting the clock" at the highest point so that $v_{0 y}=0$ (and $t=1.0 \mathrm{~s}$). This leads to $v_{y}=-9.8 \mathrm{~m} / \mathrm{s}$ and ultimately to $\sqrt{10^{2}+(-9.8)^{2}}=14 \mathrm{~m} / \mathrm{s}$.
(c) The x_{0} value may be obtained from $x=0=x_{0}+(10 \mathrm{~m} / \mathrm{s})(1.0 \mathrm{~s})$, which yields $x_{0}=-10 \mathrm{~m}$.
(d) With $v_{0 y}=9.8 \mathrm{~m} / \mathrm{s}$ denoting the y-component of velocity one second before the top of the trajectory, then we have $y=0=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$ where $t=1.0 \mathrm{~s}$. This yields $y_{0}=-4.9 \mathrm{~m}$.
(e) By using $x-x_{0}=(10 \mathrm{~m} / \mathrm{s})(1.0 \mathrm{~s})$ where $x_{0}=0$, we obtain $x=10 \mathrm{~m}$.
(f) Let $t=0$ at the top with $y_{0}=v_{0 y}=0$. From $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$, we have, for $t=1.0 \mathrm{~s}$, $y=-(9.8)(1.0)^{2} / 2=-4.9 \mathrm{~m}$.
95. We use Eq. 4-15 with \vec{v}_{1} designating the initial velocity and \vec{v}_{2} designating the later one.
(a) The average acceleration during the $\Delta t=4 \mathrm{~s}$ interval is

$$
\vec{a}_{\text {avg }}=\frac{(-2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+5.0 \hat{\mathrm{k}})-(4.0 \hat{\mathrm{i}}-22 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}})}{4}=\left(-1.5 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(0.5 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{k}}
$$

(b) The magnitude of $\vec{a}_{\text {avg }}$ is $\sqrt{(-1.5)^{2}+0.5^{2}}=1.6 \mathrm{~m} / \mathrm{s}^{2}$.
(c) Its angle in the $x z$ plane (measured from the $+x$ axis) is one of these possibilities:

$$
\tan ^{-1}\left(\frac{0.5}{-1.5}\right)=-18^{\circ} \text { or } 162^{\circ}
$$

where we settle on the second choice since the signs of its components imply that it is in the second quadrant.
96. We write our magnitude-angle results in the form $(R \angle \theta)$ with SI units for the magnitude understood (m for distances, m / s for speeds, $\mathrm{m} / \mathrm{s}^{2}$ for accelerations). All angles θ are measured counterclockwise from $+x$, but we will occasionally refer to angles ϕ which are measured counterclockwise from the vertical line between the circle-center and the coordinate origin and the line drawn from the circle-center to the particle location (see r in the figure). We note that the speed of the particle is $v=2 \pi r / T$ where $r=3.00 \mathrm{~m}$ and T $=20.0 \mathrm{~s}$; thus, $v=0.942 \mathrm{~m} / \mathrm{s}$. The particle is moving counterclockwise in Fig. 4-56.
(a) At $t=5.0 \mathrm{~s}$, the particle has traveled a fraction of

$$
\frac{t}{T}=\frac{5.00}{20.0}=\frac{1}{4}
$$

of a full revolution around the circle (starting at the origin). Thus, relative to the circlecenter, the particle is at

$$
\phi=\frac{1}{4}\left(360^{\circ}\right)=90^{\circ}
$$

measured from vertical (as explained above). Referring to Fig. 4-56, we see that this position (which is the " 3 o'clock" position on the circle) corresponds to $x=3.0 \mathrm{~m}$ and $y=$ 3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed as $(R \angle \theta)=\left(4.2 \angle 45^{\circ}\right)$. Although this position is easy to analyze without resorting to trigonometric relations, it is useful (for the computations below) to note that these values of x and y relative to coordinate origin can be gotten from the angle ϕ from the relations x $=r \sin \phi$ and $y=r-r \cos \phi$. Of course, $R=\sqrt{x^{2}+y^{2}}$ and θ comes from choosing the appropriate possibility from $\tan ^{-1}(y / x)$ (or by using particular functions of vector-capable calculators).
(b) At $t=7.5 \mathrm{~s}$, the particle has traveled a fraction of $7.5 / 20=3 / 8$ of a revolution around the circle (starting at the origin). Relative to the circle-center, the particle is therefore at ϕ $=3 / 8\left(360^{\circ}\right)=135^{\circ}$ measured from vertical in the manner discussed above. Referring to Fig. 4-37, we compute that this position corresponds to $x=3.00 \sin 135^{\circ}=2.1 \mathrm{~m}$ and $y=$ $3.0-3.0 \cos 135^{\circ}=5.1 \mathrm{~m}$ relative to the coordinate origin. In our magnitude-angle notation, this is expressed as $(R \angle \theta)=\left(5.5 \angle 68^{\circ}\right)$.
(c) At $t=10.0 \mathrm{~s}$, the particle has traveled a fraction of $10 / 20=1 / 2$ of a revolution around the circle. Relative to the circle-center, the particle is at $\phi=180^{\circ}$ measured from vertical (see explanation, above). Referring to Fig. 4-37, we see that this position corresponds to x $=0$ and $y=6.0 \mathrm{~m}$ relative to the coordinate origin. In our magnitude-angle notation, this is expressed as $(R \angle \theta)=\left(6.0 \angle 90^{\circ}\right)$.
(d) We subtract the position vector in part (a) from the position vector in part (c):

$$
\left(6.0 \angle 90^{\circ}\right)-\left(4.2 \angle 45^{\circ}\right)=\left(4.2 \angle 135^{\circ}\right)
$$

using magnitude-angle notation (convenient when using vector-capable calculators). If we wish instead to use unit-vector notation, we write

$$
\Delta \vec{R}=(0-3.0) \hat{\mathrm{i}}+(6.0-3.0) \hat{\mathrm{j}}=-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}
$$

which leads to $|\Delta \vec{R}|=4.2 \mathrm{~m}$ and $\theta=135^{\circ}$.
(e) From Eq. 4-8, we have $\vec{v}_{\text {avg }}=\Delta \vec{R} / \Delta t$. With $\Delta t=5.0 \mathrm{~s}$, we have

$$
\vec{v}_{\text {avg }}=(-0.60 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(0.60 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
$$

in unit-vector notation or $\left(0.85 \angle 135^{\circ}\right)$ in magnitude-angle notation.
(f) The speed has already been noted ($v=0.94 \mathrm{~m} / \mathrm{s}$), but its direction is best seen by referring again to Fig. 4-37. The velocity vector is tangent to the circle at its " 3 o'clock position" (see part (a)), which means \vec{v} is vertical. Thus, our result is $\left(0.94 \angle 90^{\circ}\right)$.
(g) Again, the speed has been noted above ($v=0.94 \mathrm{~m} / \mathrm{s}$), but its direction is best seen by referring to Fig. 4-37. The velocity vector is tangent to the circle at its " 12 o'clock position" (see part (c)), which means \vec{v} is horizontal. Thus, our result is $\left(0.94 \angle 180^{\circ}\right)$.
(h) The acceleration has magnitude $a=v^{2} / r=0.30 \mathrm{~m} / \mathrm{s}^{2}$, and at this instant (see part (a)) it is horizontal (towards the center of the circle). Thus, our result is $\left(0.30 \angle 180^{\circ}\right)$.
(i) Again, $a=v^{2} / r=0.30 \mathrm{~m} / \mathrm{s}^{2}$, but at this instant (see part (c)) it is vertical (towards the center of the circle). Thus, our result is $\left(0.30 \angle 270^{\circ}\right)$.
97. Noting that $\vec{v}_{2}=0$, then, using Eq. $4-15$, the average acceleration is

$$
\vec{a}_{\text {avg }}=\frac{\Delta \vec{v}}{\Delta t}=\frac{0-(6.30 \hat{\mathrm{i}}-8.42 \hat{\mathrm{j}})}{3}=-2.1 \hat{\mathrm{i}}+2.8 \hat{\mathrm{j}}
$$

in SI units $\left(\mathrm{m} / \mathrm{s}^{2}\right)$.
98. With no acceleration in the x direction yet a constant acceleration of $1.4 \mathrm{~m} / \mathrm{s}^{2}$ in the y direction, the position (in meters) as a function of time (in seconds) must be

$$
\vec{r}=(6.0 t) \hat{\mathrm{i}}+\left(\frac{1}{2}(1.4) t^{2}\right) \hat{\mathrm{j}}
$$

and \vec{v} is its derivative with respect to t.
(a) At $t=3.0 \mathrm{~s}$, therefore, $\vec{v}=(6.0 \hat{\mathrm{i}}+4.2 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$.
(b) At $t=3.0 \mathrm{~s}$, the position is $\vec{r}=(18 \hat{\mathrm{i}}+6.3 \hat{\mathrm{j}}) \mathrm{m}$.
99. Since the x and y components of the acceleration are constants, we can use Table 2-1 for the motion along both axes. This can be handled individually (for Δx and Δy) or together with the unit-vector notation (for Δr). Where units are not shown, SI units are to be understood.
(a) Since $\vec{r}_{0}=0$, the position vector of the particle is (adapting Eq. 2-15)

$$
\vec{r}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}=(8.0 \hat{\mathrm{j}}) t+\frac{1}{2}(4.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) t^{2}=\left(2.0 t^{2}\right) \hat{\mathrm{i}}+\left(8.0 t+1.0 t^{2}\right) \hat{\mathrm{j}} .
$$

Therefore, we find when $x=29 \mathrm{~m}$, by solving $2.0 t^{2}=29$, which leads to $t=3.8 \mathrm{~s}$. The y coordinate at that time is $y=8.0(3.8)+1.0(3.8)^{2}=45 \mathrm{~m}$.
(b) Adapting Eq. 2-11, the velocity of the particle is given by

$$
\vec{v}=\vec{v}_{0}+\vec{a} t .
$$

Thus, at $t=3.8 \mathrm{~s}$, the velocity is

$$
\vec{v}=8.0 \hat{\mathrm{j}}+(4.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}})(3.8)=15.2 \hat{\mathrm{i}}+15.6 \hat{\mathrm{j}}
$$

which has a magnitude of

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{15.2^{2}+15.6^{2}}=22 \mathrm{~m} / \mathrm{s} .
$$

100. (a) The magnitude of the displacement vector $\Delta \vec{r}$ is given by

$$
|\Delta \vec{r}|=\sqrt{21.5^{2}+9.7^{2}+2.88^{2}}=23.8 \mathrm{~km}
$$

Thus,

$$
\left|\vec{v}_{\text {avg }}\right|=\frac{|\Delta \vec{r}|}{\Delta t}=\frac{23.8}{3.50}=6.79 \mathrm{~km} / \mathrm{h} .
$$

(b) The angle θ in question is given by

$$
\theta=\tan ^{-1}\left(\frac{2.88}{\sqrt{21.5^{2}+9.7^{2}}}\right)=6.96^{\circ} .
$$

101. We note that

$$
\vec{v}_{P G}=\vec{v}_{P A}+\vec{v}_{A G}
$$

describes a right triangle, with one leg being $\vec{v}_{P G}$ (east), another leg being $\vec{v}_{A G}$ $($ magnitude $=20$, direction $=$ south $)$, and the hypotenuse being $\vec{v}_{P A}($ magnitude $=70)$. Lengths are in kilometers and time is in hours. Using the Pythagorean theorem, we have

$$
\left|\vec{v}_{P A}\right|=\sqrt{\left|\vec{v}_{P G}\right|^{2}+\left|\vec{v}_{A G}\right|^{2}} \Rightarrow 70=\sqrt{\left|\vec{v}_{P G}\right|^{2}+20^{2}}
$$

which is easily solved for the ground speed: $\left|\vec{v}_{P G}\right|=67 \mathrm{~km} / \mathrm{h}$.
102. We make use of Eq. 4-34 and Eq. 4-35.
(a) The track radius is given by

$$
r=\frac{\mathrm{v}^{2}}{a}=\frac{9.2^{2}}{3.8}=22 \mathrm{~m}
$$

(b) The period of the circular motion is $T=2 \pi(22) / 9.2=15 \mathrm{~s}$.
103. The initial velocity has magnitude v_{0} and because it is horizontal, it is equal to v_{x} the horizontal component of velocity at impact. Thus, the speed at impact is

$$
\sqrt{v_{0}^{2}+v_{y}^{2}}=3 v_{0}
$$

where $v_{y}=\sqrt{2 g h}$ and we have used Eq. 2-16 with Δx replaced with $h=20 \mathrm{~m}$. Squaring both sides of the first equality and substituting from the second, we find

$$
v_{0}^{2}+2 g h=\left(3 v_{0}\right)^{2}
$$

which leads to $g h=4 v_{0}^{2}$ and therefore to $v_{0}=\sqrt{(9.8)(20)} / 2=7.0 \mathrm{~m} / \mathrm{s}$.
104. Since this problem involves constant downward acceleration of magnitude a, similar to the projectile motion situation, we use the equations of $\S 4-6$ as long as we substitute a for g. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that $v_{0 y}=0$ and

$$
v_{0 x}=v_{0}=1.00 \times 10^{9} \mathrm{~cm} / \mathrm{s}
$$

(a) If ℓ is the length of a plate and t is the time an electron is between the plates, then $\ell=v_{0} t$, where v_{0} is the initial speed. Thus

$$
t=\frac{\ell}{v_{0}}=\frac{2.00 \mathrm{~cm}}{1.00 \times 10^{9} \mathrm{~cm} / \mathrm{s}}=2.00 \times 10^{-9} \mathrm{~s}
$$

(b) The vertical displacement of the electron is

$$
y=-\frac{1}{2} a t^{2}=-\frac{1}{2}\left(1.00 \times 10^{17} \mathrm{~cm} / \mathrm{s}^{2}\right)\left(2.00 \times 10^{-9} \mathrm{~s}\right)^{2}=-0.20 \mathrm{~cm}=-2.00 \mathrm{~mm},
$$

or $|y|=2.00 \mathrm{~mm}$.
(c) The x component of velocity does not change: $v_{x}=v_{0}=1.00 \times 10^{9} \mathrm{~cm} / \mathrm{s}=1.00 \times 10^{7}$ m / s.
(d) The y component of the velocity is

$$
v_{y}=a_{y} t=\left(1.00 \times 10^{17} \mathrm{~cm} / \mathrm{s}^{2}\right)\left(2.00 \times 10^{-9} \mathrm{~s}\right)=2.00 \times 10^{8} \mathrm{~cm} / \mathrm{s}=2.00 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

105. We choose horizontal x and vertical y axes such that both components of \vec{v}_{0} are positive. Positive angles are counterclockwise from $+x$ and negative angles are clockwise from it. In unit-vector notation, the velocity at each instant during the projectile motion is

$$
\vec{v}=v_{0} \cos \theta_{0} \hat{\mathrm{i}}+\left(v_{0} \sin \theta_{0}-g t\right) \hat{\mathrm{j}} .
$$

(a) With $v_{0}=30 \mathrm{~m} / \mathrm{s}$ and $\theta_{0}=60^{\circ}$, we obtain $\vec{v}=(15 \hat{\mathrm{i}}+6.4 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, for $t=2.0 \mathrm{~s}$. The magnitude of \vec{v} is $|\vec{v}|=\sqrt{(15)^{2}+(6.4)^{2}}=16 \mathrm{~m} / \mathrm{s}$.
(b) The direction of \vec{v} is $\theta=\tan ^{-1}(6.4 / 15)=23^{\circ}$, measured counterclockwise from $+x$.
(c) Since the angle is positive, it is above the horizontal.
(d) With $t=5.0 \mathrm{~s}$, we find $\vec{v}=(15 \hat{\mathrm{i}}-23 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, which yields

$$
|\vec{v}|=\sqrt{(15)^{2}+(-23)^{2}}=27 \mathrm{~m} / \mathrm{s} .
$$

(e) The direction of \vec{v} is $\theta=\tan ^{-1}((-23) / 15)=-57^{\circ}$, or 57° measured clockwise from $+x$.
(f) Since the angle is negative, it is below the horizontal.
106. The figure offers many interesting points to analyze, and others are easily inferred (such as the point of maximum height). The focus here, to begin with, will be the final point shown (1.25 s after the ball is released) which is when the ball returns to its original height. In English units, $g=32 \mathrm{ft} / \mathrm{s}^{2}$.
(a) Using $x-x_{0}=v_{x} t$ we obtain $v_{x}=(40 \mathrm{ft}) /(1.25 \mathrm{~s})=32 \mathrm{ft} / \mathrm{s}$. And $y-y_{0}=0=v_{0 y} t-\frac{1}{2} g t^{2}$ yields $v_{0 y}=\frac{1}{2}(32)(1.25)=20 \mathrm{ft} / \mathrm{s}$. Thus, the initial speed is

$$
v_{0}=\left|\vec{v}_{0}\right|=\sqrt{32^{2}+20^{2}}=38 \mathrm{ft} / \mathrm{s}
$$

(b) Since $v_{y}=0$ at the maximum height and the horizontal velocity stays constant, then the speed at the top is the same as $v_{x}=32 \mathrm{ft} / \mathrm{s}$.
(c) We can infer from the figure (or compute from $v_{y}=0=v_{0 y}-g t$) that the time to reach the top is 0.625 s . With this, we can use $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$ to obtain 9.3 ft (where $y_{0}=$ 3 ft has been used). An alternative approach is to use $v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)$.
107. The velocity of Larry is v_{1} and that of Curly is v_{2}. Also, we denote the length of the corridor by L. Now, Larry's time of passage is $t_{1}=150 \mathrm{~s}$ (which must equal L / v_{1}), and Curly's time of passage is $t_{2}=70 \mathrm{~s}$ (which must equal L / v_{2}). The time Moe takes is therefore

$$
t=\frac{L}{v_{1}+v_{2}}=\frac{1}{v_{1} / L+v_{2} / L}=\frac{1}{\frac{1}{150}+\frac{1}{70}}=48 \mathrm{~s} .
$$

108. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the football as it begins projectile motion in the sense of $\S 4-5$), and we let θ_{0} be the angle of its initial velocity measured from the $+x$ axis.
(a) $x=46 \mathrm{~m}$ and $y=-1.5 \mathrm{~m}$ are the coordinates for the landing point; it lands at time $t=$ 4.5 s . Since $x=v_{0 x} t$,

$$
v_{0 x}=\frac{x}{t}=\frac{46 \mathrm{~m}}{4.5 \mathrm{~s}}=10.2 \mathrm{~m} / \mathrm{s} .
$$

Since $y=v_{0 y} t-\frac{1}{2} g t^{2}$,

$$
v_{0 y}=\frac{y+\frac{1}{2} g t^{2}}{t}=\frac{(-1.5 \mathrm{~m})+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4.5 \mathrm{~s})^{2}}{4.5 \mathrm{~s}}=21.7 \mathrm{~m} / \mathrm{s} .
$$

The magnitude of the initial velocity is

$$
v_{0}=\sqrt{v_{0 x}^{2}+v_{0 y}^{2}}=\sqrt{(10.2 \mathrm{~m} / \mathrm{s})^{2}+(21.7 \mathrm{~m} / \mathrm{s})^{2}}=24 \mathrm{~m} / \mathrm{s} .
$$

(b) The initial angle satisfies $\tan \theta_{0}=v_{0 y} / v_{0 x}$. Thus, $\theta_{0}=\tan ^{-1}(21.7 / 10.2)=65^{\circ}$.
109. We denote \vec{v}_{PG} as the velocity of the plane relative to the ground, \vec{v}_{AG} as the velocity of the air relative to the ground, and \vec{v}_{PA} as the velocity of the plane relative to the air.
(a) The vector diagram is shown next. $\vec{v}_{\mathrm{PG}}=\vec{v}_{\mathrm{PA}}+\vec{v}_{\mathrm{AG}}$. Since the magnitudes v_{PG} and v_{PA} are equal the triangle is isosceles, with two sides of equal length.

Consider either of the right triangles formed when the bisector of θ is drawn (the dashed line). It bisects \vec{v}_{AG}, so

$$
\sin (\theta / 2)=\frac{v_{\mathrm{AG}}}{2 v_{\mathrm{PG}}}=\frac{70.0 \mathrm{mi} / \mathrm{h}}{2(135 \mathrm{mi} / \mathrm{h})}
$$

which leads to $\theta=30.1^{\circ}$. Now \vec{v}_{AG} makes the same angle with the $\mathrm{E}-\mathrm{W}$ line as the dashed line does with the N-S line. The wind is blowing in the direction 15.0° north of west. Thus, it is blowing from 75.0° east of south.
(b) The plane is headed along \vec{v}_{PA}, in the direction 30.0° east of north. There is another solution, with the plane headed 30.0° west of north and the wind blowing 15° north of east (that is, from 75° west of south).
110. We assume the ball's initial velocity is perpendicular to the plane of the net. We choose coordinates so that $\left(x_{0}, y_{0}\right)=(0,3.0) \mathrm{m}$, and $v_{x}>0$ (note that $v_{0 y}=0$).
(a) To (barely) clear the net, we have

$$
y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2} \Rightarrow 2.24-3.0=0-\frac{1}{2}(9.8) t^{2}
$$

which gives $t=0.39 \mathrm{~s}$ for the time it is passing over the net. This is plugged into the x equation to yield the (minimum) initial velocity $v_{x}=(8.0 \mathrm{~m}) /(0.39 \mathrm{~s})=20.3 \mathrm{~m} / \mathrm{s}$.
(b) We require $y=0$ and find t from $y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$. This value $(t=\sqrt{2(3.0) / 9.8}$
$=0.78 \mathrm{~s})$ is plugged into the x-equation to yield the (maximum) initial velocity $v_{x}=(17.0$ $\mathrm{m}) /(0.78 \mathrm{~s})=21.7 \mathrm{~m} / \mathrm{s}$.
111. (a) With $\Delta x=8.0 \mathrm{~m}, t=\Delta t_{1}, a=a_{\mathrm{x}}$, and $\mathrm{v}_{\mathrm{ox}}=0$, Eq. 2-15 gives

$$
8.0=\frac{1}{2} a_{\mathrm{x}}\left(\Delta t_{1}\right)^{2},
$$

and the corresponding expression for motion along the y axis leads to

$$
\Delta y=12=\frac{1}{2} a_{y}\left(\Delta t_{1}\right)^{2}
$$

Dividing the second expression by the first leads to $a_{y} / a_{x}=3 / 2=1.5$.
(b) Letting $t=2 \Delta t_{1}$, then Eq. 2-15 leads to $\Delta x=(8.0)(2.0)^{2}=32 \mathrm{~m}$, which implies that its x coordinate is now $(4.0+32) \mathrm{m}=36 \mathrm{~m}$. Similarly, $\Delta y=(12)(2.0)^{2}=48 \mathrm{~m}$, which means its y coordinate has become $(6.0+48) \mathrm{m}=54 \mathrm{~m}$.
112. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a.
(a) Since the radius of Earth is $6.37 \times 10^{6} \mathrm{~m}$, the radius of the satellite orbit is $\left(6.37 \times 10^{6}\right.$ $\left.+640 \times 10^{3}\right)=7.01 \times 10^{6} \mathrm{~m}$. Therefore, the speed of the satellite is

$$
v=\frac{2 \pi r}{T}=\frac{2 \pi\left(7.01 \times 10^{6} \mathrm{~m}\right)}{(98.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})}=7.49 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

(b) The magnitude of the acceleration is

$$
a=\frac{v^{2}}{r}=\frac{\left(7.49 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}}{7.01 \times 10^{6} \mathrm{~m}}=8.00 \mathrm{~m} / \mathrm{s}^{2} .
$$

113. Taking derivatives of $\vec{r}=2 t \hat{\mathrm{i}}+2 \sin (\pi t / 4) \hat{\mathrm{j}}$ (with lengths in meters, time in seconds and angles in radians) provides expressions for velocity and acceleration:

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=2 \hat{\mathrm{i}}+\frac{\pi}{2} \cos \left(\frac{\pi t}{4}\right) \hat{\mathrm{j}} \\
& \vec{a}=\frac{d \vec{v}}{d t}=-\frac{\pi^{2}}{8} \sin \left(\frac{\pi t}{4}\right) \hat{\mathrm{j}}
\end{aligned}
$$

Thus, we obtain:

time t			0.0	1.0	2.0	3.0	4.0
(a)		x	0.0	2.0	4.0	6.0	8.0
		y	0.0	1.4	2.0	1.4	0.0
(b)	$\overrightarrow{\mathrm{v}}$ velocity	v_{x}		2.0	2.0	2.0	
		v_{y}		1.1	0.0	-1.1	
(c)	$\begin{gathered} \vec{a} \\ \text { acceleration } \end{gathered}$	a_{x}		0.0	0.0	0.0	
		a_{y}		-0.87	-1.2	-0.87	

And the path of the particle in the $x y$ plane is shown in the following graph. The arrows indicating the velocities are not shown here, but they would appear as tangent-lines, as expected.
114. We make use of Eq. 4-24 and Eq. 4-25.
(a) With $x=180 \mathrm{~m}, \theta_{0}=30^{\circ}$, and $v_{\mathrm{o}}=43 \mathrm{~m} / \mathrm{s}$, we obtain

$$
y=\tan \left(30^{\circ}\right)(180 \mathrm{~m})-\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(180 \mathrm{~m})^{2}}{2\left((43 \mathrm{~m} / \mathrm{s}) \cos \left(30^{\circ}\right)\right)^{2}}=-11 \mathrm{~m}
$$

or $|y|=11 \mathrm{~m}$. This implies the rise is roughly eleven meters above the fairway.
(b) The horizontal component (in the absence of air friction) is unchanged, but the vertical component increases (see Eq. 4-24). The Pythagorean theorem then gives the magnitude of final velocity (right before striking the ground): $45 \mathrm{~m} / \mathrm{s}$.
115. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period T.
(a) We obtain

$$
v=\sqrt{r a}=\sqrt{(5.0 \mathrm{~m})(7.0)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=19 \mathrm{~m} / \mathrm{s}
$$

(b) The time to go around once (the period) is $T=2 \pi r / v=1.7 \mathrm{~s}$. Therefore, in one minute ($t=60 \mathrm{~s}$), the astronaut executes

$$
\frac{t}{T}=\frac{60}{1.7}=35
$$

revolutions. Thus, $35 \mathrm{rev} / \mathrm{min}$ is needed to produce a centripetal acceleration of $7 g$ when the radius is 5.0 m .
(c) As noted above, $T=1.7 \mathrm{~s}$.
116. The radius of Earth may be found in Appendix C.
(a) The speed of an object at Earth's equator is $v=2 \pi R / T$, where R is the radius of Earth $\left(6.37 \times 10^{6} \mathrm{~m}\right)$ and T is the length of a day $\left(8.64 \times 10^{4} \mathrm{~s}\right)$:

$$
v=2 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right) /\left(8.64 \times 10^{4} \mathrm{~s}\right)=463 \mathrm{~m} / \mathrm{s} .
$$

The magnitude of the acceleration is given by

$$
a=\frac{v^{2}}{R}=\frac{(463 \mathrm{~m} / \mathrm{s})^{2}}{6.37 \times 10^{6} \mathrm{~m}}=0.034 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) If T is the period, then $v=2 \pi R / T$ is the speed and the magnitude of the acceleration is

$$
a=\frac{v^{2}}{R}=\frac{(2 \pi R / T)^{2}}{R}=\frac{4 \pi^{2} R}{T^{2}} .
$$

Thus,

$$
T=2 \pi \sqrt{\frac{R}{a}}=2 \pi \sqrt{\frac{6.37 \times 10^{6} \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=5.1 \times 10^{3} \mathrm{~s}=84 \mathrm{~min} .
$$

117. We neglect air resistance, which justifies setting $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (taking down as the $-y$ direction) for the duration of the motion of the shot ball. We are allowed to use Table 2-1 (with Δy replacing Δx) because the ball has constant acceleration motion. We use primed variables (except t) with the constant-velocity elevator (so $v^{\prime}=10 \mathrm{~m} / \mathrm{s}$), and unprimed variables with the ball (with initial velocity $v_{0}=v^{\prime}+20=30 \mathrm{~m} / \mathrm{s}$, relative to the ground). SI units are used throughout.
(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum height y (relative to the ground) with $v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)$, where the highest point is characterized by $v=0$. Thus,

$$
y=y_{\mathrm{o}}+\frac{v_{0}^{2}}{2 g}=76 \mathrm{~m}
$$

where $y_{\mathrm{o}}=y_{\mathrm{o}}^{\prime}+2=30 \mathrm{~m}$ (where $y_{\mathrm{o}}^{\prime}=28 \mathrm{~m}$ is given in the problem) and $v_{0}=30 \mathrm{~m} / \mathrm{s}$ relative to the ground as noted above.
(b) There are a variety of approaches to this question. One is to continue working in the frame of reference adopted in part (a) (which treats the ground as motionless and "fixes" the coordinate origin to it); in this case, one describes the elevator motion with $y^{\prime}=y_{\mathrm{o}}^{\prime}+v^{\prime} t$ and the ball motion with Eq. 2-15, and solves them for the case where they reach the same point at the same time. Another is to work in the frame of reference of the elevator (the boy in the elevator might be oblivious to the fact the elevator is moving since it isn't accelerating), which is what we show here in detail:

$$
\Delta y_{e}=v_{0_{e}} t-\frac{1}{2} g t^{2} \Rightarrow t=\frac{v_{0_{e}}+\sqrt{v_{0_{e}}^{2}-2 g \Delta y_{e}}}{g}
$$

where $v_{0 e}=20 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the ball relative to the elevator and $\Delta y_{e}=$ -2.0 m is the ball's displacement relative to the floor of the elevator. The positive root is chosen to yield a positive value for t; the result is $t=4.2 \mathrm{~s}$.
118. When the escalator is stalled the speed of the person is $v_{p}=\ell / t$, where ℓ is the length of the escalator and t is the time the person takes to walk up it. This is $v_{p}=(15$ $\mathrm{m}) /(90 \mathrm{~s})=0.167 \mathrm{~m} / \mathrm{s}$. The escalator moves at $v_{e}=(15 \mathrm{~m}) /(60 \mathrm{~s})=0.250 \mathrm{~m} / \mathrm{s}$. The speed of the person walking up the moving escalator is $v=v_{p}+v_{e}=0.167 \mathrm{~m} / \mathrm{s}+0.250 \mathrm{~m} / \mathrm{s}=$ $0.417 \mathrm{~m} / \mathrm{s}$ and the time taken to move the length of the escalator is

$$
t=\ell / v=(15 \mathrm{~m}) /(0.417 \mathrm{~m} / \mathrm{s})=36 \mathrm{~s} .
$$

If the various times given are independent of the escalator length, then the answer does not depend on that length either. In terms of ℓ (in meters) the speed (in meters per second) of the person walking on the stalled escalator is $\ell / 90$, the speed of the moving escalator is $\ell / 60$, and the speed of the person walking on the moving escalator is $v=(\ell / 90)+(\ell / 60)=0.0278 \ell$. The time taken is $t=\ell / v=\ell / 0.0278 \ell=36 \mathrm{~s}$ and is independent of ℓ.
119. We let g_{p} denote the magnitude of the gravitational acceleration on the planet. A number of the points on the graph (including some "inferred" points - such as the max height point at $x=12.5 \mathrm{~m}$ and $t=1.25 \mathrm{~s}$) can be analyzed profitably; for future reference, we label (with subscripts) the first $\left(\left(x_{0}, y_{0}\right)=(0,2)\right.$ at $\left.t_{0}=0\right)$ and last ("final") points ((x_{f}, $\left.y_{f}\right)=(25,2)$ at $\left.t_{f}=2.5\right)$, with lengths in meters and time in seconds.
(a) The x-component of the initial velocity is found from $x_{f}-x_{0}=v_{0 x} t_{f}$. Therefore, $v_{0 x}=25 / 2.5=10 \mathrm{~m} / \mathrm{s}$. And we try to obtain the y-component from $y_{f}-y_{0}=0=v_{0 y} t_{f}-\frac{1}{2} g_{p} t_{f}^{2}$. This gives us $v_{0 y}=1.25 g_{p}$, and we see we need another equation (by analyzing another point, say, the next-to-last one) $y-y_{0}=v_{0 y} t-\frac{1}{2} g_{p} t^{2}$ with $y=6$ and $t=2$; this produces our second equation $v_{0 y}=2+g_{p}$. Simultaneous solution of these two equations produces results for $v_{0 y}$ and g_{p} (relevant to part (b)). Thus, our complete answer for the initial velocity is $\vec{v}=10 \hat{\mathrm{i}}+10 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$.
(b) As a by-product of the part (a) computations, we have $g_{p}=8.0 \mathrm{~m} / \mathrm{s}^{2}$.
(c) Solving for t_{g} (the time to reach the ground) in $y_{g}=0=y_{0}+v_{0 y} t_{g}-\frac{1}{2} g_{p} t_{g}^{2} \quad$ leads to a positive answer: $t_{g}=2.7 \mathrm{~s}$.
(d) With $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the method employed in part (c) would produce the quadratic equation $-4.9 t_{g}^{2}+10 t_{g}+2=0$ and then the positive result $t_{g}=2.2 \mathrm{~s}$.
120. With his initial y-component of velocity pointed downward, the fact that his acceleration is uniformly $u p$ means that he's decelerating and enabling his landing to be smooth. His x-component of velocity doesn't change.
(a) With $y_{0}=7.5 \mathrm{~m}$ and $v_{0 y}=-v_{0} \sin 30^{\circ}$, then the constant-acceleration equation along this axis $y-y_{0}=v_{0 y}+\frac{1}{2} a_{y} t^{2}$ becomes

$$
y=7.5-(4.0) t+(0.50) t^{2}
$$

with length in meters and time in seconds.
(b) Setting $y=0$ we are led to the quadratic (in t) equation $0.50 t^{2}-4.0 t+7.5=0$ which we can solve by factoring, using the quadratic formula, or with calculator-specific methods. We find two positive roots: 3.0 s and 5.0 s .
(c) The glider reaches the ground at $t=3.0 \mathrm{~s}$.

A quick graph of the (upward concave) parabola implicit in our equation for y shows immediately the situation. If the ground were not solid -- were an imaginary surface instead -- then the glider would swoop down, passing through the surface, then back up passing through the surface again, with the two times-of-passing being $t=3.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$.
(d) The glider's horizontal velocity is $v_{0 x}=v_{0} \cos 30^{\circ}=6.9 \mathrm{~m} / \mathrm{s}$ and is constant, so the distance traveled is $(6.9 \mathrm{~m} / \mathrm{s})(3.0 \mathrm{~s})=21 \mathrm{~m}$.
(e) To have zero vertical component of velocity when $y=0$ is reached, the y-component of acceleration must satisfy

$$
v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right) \Rightarrow 0=(4.0)^{2}+2 a_{y}(0-7.5)
$$

which gives us $a_{y}=1.1 \mathrm{~m} / \mathrm{s}^{2}$. This implies that the time of landing is (using $v_{y}=v_{0 y}+a_{y} t$) equal to 3.8 s . This in turn implies that the horizontal acceleration must satisfy the condition $v_{x}=0=v_{0 x}+a_{x} t$ for $v_{0 x}=6.9 \mathrm{~m} / \mathrm{s}$ and $t=3.8 \mathrm{~s}$. Therefore, $a_{x}=-1.8 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration vector is consequently $\vec{a}=(-1.8 \hat{i}+1.1 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$.
121. We make use of Eq. 4-21 and Eq. 4-22.
(a) The time of fall from height $h=24 \mathrm{~m}$ is given by

$$
t=\sqrt{\frac{2 h}{g}}=2.2 \mathrm{~s}
$$

The speed with which the victim pass (horizontally) through the window is then found from Eq. 4-21:

$$
v_{\mathrm{o}}=\frac{\Delta x}{t}=\frac{4.6}{2.2}=2.1 \mathrm{~m} / \mathrm{s} .
$$

(b) The implication is that this was not an accident. The result of part (a) is about 20% of a world class sprint speed and is not the sort of motion one would expect of a person who has accidentally stumbled and fallen through an open window.
122. (a) Since a mile is 5280 feet, then $\vec{v}_{0}=85 \mathrm{mi} / \mathrm{h} \hat{\mathrm{i}}=125 \mathrm{ft} / \mathrm{s} \hat{\mathrm{i}}$. With $\theta_{0}=0, y=0, g$ $=32 \mathrm{ft} / \mathrm{s}^{2}$ and $y_{\mathrm{o}}=3 \mathrm{ft}$, Eq. 4-22 leads to $t=0.43 \mathrm{~s}$. Consequently, Eq. $4-21$ gives $\Delta x=$ 54 ft , which is 73 ft from first base.
(b) Since $y_{\mathrm{o}}=y$ we may use Eq. 4-26 to solve for the angle. With $R=127 \mathrm{ft}, g=32 \mathrm{ft} / \mathrm{s}^{2}$ and $\mathrm{v}_{\mathrm{o}}=125 \mathrm{ft} / \mathrm{s}$, that equation leads to $\theta_{\mathrm{o}}=7.6^{\circ}$.
(c) With $v_{\mathrm{ox}}=(125) \cos \left(7.6^{\circ}\right)=123.6 \mathrm{ft} / \mathrm{s}$ and $\Delta x=R=127 \mathrm{ft}$, then Eq. $4-21$ yields $t=$ $1.03 \mathrm{~s} \approx 1.0 \mathrm{~s}$.
123. (a) The time available before the train arrives at the impact spot is

$$
t_{\text {train }}=\frac{40.0 \mathrm{~m}}{30.0 \mathrm{~m} / \mathrm{s}}=1.33 \mathrm{~s}
$$

(the train does not reduce its speed). We interpret the phrase "distance between the car and the center of the crossing" to refer to the distance from the front bumper of the car to that point. In which case, the car needs to travel a total distance of $\Delta x=(40.0+5.00+$ $1.50) \mathrm{m}=46.5 \mathrm{~m}$ in order for its rear bumper and the edge of the train not to collide (the distance from the center of the train to either edge of the train is 1.50 m). With a starting velocity of $v_{0}=30.0 \mathrm{~m} / \mathrm{s}$ and an acceleration of $a=1.50 \mathrm{~m} / \mathrm{s}^{2}$, Eq. 2-15 leads to

$$
\Delta x=v_{0} t+\frac{1}{2} a t^{2} \Rightarrow t=\frac{-v_{0} \pm \sqrt{v_{0}^{2}+2 a \Delta x}}{a}
$$

which yields (upon taking the positive root) a time $t_{\mathrm{car}}=1.49 \mathrm{~s}$ needed for the car to make it. Recalling our result for $t_{\text {train }}$ we see the car doesn't have enough time available to make it across.
(b) The difference is $t_{\text {car }}-t_{\text {train }}=0.160 \mathrm{~s}$. We note that at $t=t_{\text {train }}$ the front bumper of the car is $v_{0} t+\frac{1}{2} a t^{2}=41.33 \mathrm{~m}$ from where it started, which means it is 1.33 m past the center of the track (but the edge of the track is 1.50 m from the center). If the car was coming from the south, then the point P on the car impacted by the southern-most corner of the front of the train is 2.83 m behind the front bumper (or 2.17 m in front of the rear bumper).
(c) The motion of P is what is plotted below (the top graph - looking like a line instead of a parabola because the final speed of the car is not much different than its initial speed).

Since the position of the train is on an entirely different axis than that of the car, we plot the distance (in meters) from P to "south" rail of the tracks (the top curve shown), and the
distance of the "south" front corner of the train to the line-of-motion of the car (the bottom line shown).
124. We orient our axes so that $+x$ is due east and $+y$ is due north, and quote angles measured counterclockwise from the $+x$ axis. We adapt Eq. 2-15 to the individual parts of the trip:
(1) With $\mathrm{v}_{\mathrm{o}}=0, a_{1}=0.40 \mathrm{~m} / \mathrm{s}^{2}$ and $t=6.0 \mathrm{~s}$, we have $d_{1}=\mathrm{v}_{\mathrm{o}} t+\frac{1}{2} a_{1} t^{2}=7.2 \mathrm{~m}$ at 30°.
(2) Using Eq. 2-11, we see that part (1) ended up with a speed of $2.4 \mathrm{~m} / \mathrm{s}$, so (with $t=$ 8.0 s and $\left.a_{2}=0\right) d_{2}=(2.4 \mathrm{~m} / \mathrm{s})(8.0 \mathrm{~s})=19.2 \mathrm{~m}$ at 30°.
(3) This involves the same displacement as part (1), and (due to the deceleration) ends up at rest (a fact needed for the next part). $d_{3}=7.2 \mathrm{~m}$ at 30°.
(4) With $\mathrm{v}_{\mathrm{o}}=0, a_{4}=0.4 \mathrm{~m} / \mathrm{s}^{2}$ (at 180°) and $t=5.0 \mathrm{~s}$, we have $d_{4}=\mathrm{v}_{\mathrm{o}} t+\frac{1}{2} a_{4} t^{2}=5.0 \mathrm{~m}$ at 180°. We note (for use in the next part) that this part ends up with a speed of (0.4 $\left.\mathrm{m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s})=2.0 \mathrm{~m} / \mathrm{s}$.
(5) Here the displacement is $d_{5}=(2.0 \mathrm{~m} / \mathrm{s})(10 \mathrm{~s})=20.0 \mathrm{~m}$ at 180°.
(6) As in part (4), the displacement is $d_{6}=5.0 \mathrm{~m}$ at 180°.

In the following, we use magnitude-angle notation suitable for a vector-capable calculator. Using Eq. 4-8,

$$
\vec{v}_{\text {avg }}=\frac{\left[7.2+19.2+7.2 \angle 30^{\circ}\right]+\left[5.0+20.0+5.0 \angle 180^{\circ}\right]}{6+8+6+5+10+5}=\left[0.421 \angle 93.1^{\circ}\right]
$$

which means the average velocity is $0.421 \mathrm{~m} / \mathrm{s}$ at 3.1° west of due north.
125. (a) The displacement is (in meters)

$$
\begin{aligned}
\Delta \vec{D} & =\vec{D}_{f}-\vec{D}_{i}=(3.00 \hat{\mathrm{i}}+1.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}})-(2.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}}+1.00 \hat{\mathrm{k}}) \\
& =(1.00 \hat{\mathrm{i}}-2.00 \hat{\mathrm{j}}+1.00 \hat{\mathrm{k}})
\end{aligned}
$$

(b) The magnitude is found using Pythagoras' theorem:

$$
|\Delta \vec{D}|=\sqrt{(1.00)^{2}+(-2.00)^{2}+(1.00)^{2}}=2.45 \mathrm{~m}
$$

(c) From Eq. $4-8$, we obtain $\overrightarrow{\mathrm{v}}_{\text {avg }}=(2.50 \mathrm{~cm} / \mathrm{s}) \hat{\mathrm{i}}-(5.00 \mathrm{~cm} / \mathrm{s}) \hat{\mathrm{j}}+(2.50 \mathrm{~cm} / \mathrm{s}) \hat{k}$.
(d) Distance is not necessarily the same as displacement, so we do not have enough information to find the average speed from Eq. 2-3.
126. (a) Using the same coordinate system assumed in Eq. 4-21 and Eq. 4-22 (so that θ_{0} $=-20.0^{\circ}$), we use $v_{0}=15.0 \mathrm{~m} / \mathrm{s}$ and find the horizontal displacement of the ball at $t=2.30 \mathrm{~s}: \Delta x=\left(v_{0} \cos \theta_{0}\right) t=32.4 \mathrm{~m}$.
(b) And we find the vertical displacement:

$$
\Delta y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=-37.7 \mathrm{~m}
$$

or $|\Delta y|=37.7 \mathrm{~m}$.
127. (a) Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the maximum height (when $t=3.0 \mathrm{~s}$ and $v_{y}=0$):

$$
y_{\max }-y_{0}=v_{y} t-\frac{1}{2} g t^{2} .
$$

With ground level chosen so $y_{0}=0$, this equation gives the result $y_{\max }=\frac{1}{2} g(3.0)^{2}=44 \mathrm{~m}$.
(b) After the moment it reached maximum height, it is falling; at $t=2.5 \mathrm{~s}$, it will have fallen an amount given by Eq. 2-18

$$
y_{\text {fence }}-y_{\max }=(0)(2.5)-\frac{1}{2} g(2.5)^{2}
$$

which leads to $y_{\text {fence }}=13 \mathrm{~m}$.
(c) Either the range formula, Eq. 4-26, can be used or one can note that after passing the fence, it will strike the ground in 0.5 s (so that the total "fall-time" equals the "rise-time"). Since the horizontal component of velocity in a projectile-motion problem is constant (neglecting air friction), we find the original x-component from $97.5 \mathrm{~m}=v_{0 x}(5.5 \mathrm{~s}$) and then apply it to that final 0.5 s . Thus, we find $v_{0 x}=17.7 \mathrm{~m} / \mathrm{s}$ and that after the fence $\Delta x=$ $(17.7 \mathrm{~m} / \mathrm{s})(0.5 \mathrm{~s})=8.9 \mathrm{~m}$.
128. (a) With $v=c / 10=3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and $a=20 g=196 \mathrm{~m} / \mathrm{s}^{2}$, Eq. $4-34$ gives $r=v^{2} / a=4.6 \times 10^{12} \mathrm{~m}$.
(b) The period is given by Eq. 4-35: $T=2 \pi r / v=9.6 \times 10^{5} \mathrm{~s}$. Thus, the time to make a quarter-turn is $T / 4=2.4 \times 10^{5}$ s or about 2.8 days.
129. The type of acceleration involved in steady-speed circular motion is the centripetal acceleration $a=v^{2} / r$ which is at each moment directed towards the center of the circle. The radius of the circle is $r=(12)^{2} / 3=48 \mathrm{~m}$.
(a) Thus, if at the instant the car is traveling clockwise around the circle, it is 48 m west of the center of its circular path.
(b) The same result holds here if at the instant the car is traveling counterclockwise. That is, it is 48 m west of the center of its circular path.
130. (a) Using the same coordinate system assumed in Eq. 4-21, we obtain the time of flight

$$
t=\frac{\Delta x}{v_{0} \cos \theta_{0}}=\frac{20.0}{15.0 \cos 35.0^{\circ}}=1.63 \mathrm{~s}
$$

(b) At that moment, its height above the ground (taking $y_{0}=0$) is

$$
y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=1.02 \mathrm{~m} .
$$

Thus, the ball is 18 cm below the center of the circle; since the circle radius is 15 cm , we see that it misses it altogether.
(c) The horizontal component of velocity (at $t=1.63 \mathrm{~s}$) is the same as initially:

$$
v_{x}=v_{0_{x}}=v_{0} \cos \theta_{0}=15 \cos 35^{\circ}=12.3 \mathrm{~m} / \mathrm{s} .
$$

The vertical component is given by Eq. 4-23:

$$
v_{y}=v_{0} \sin \theta_{0}-g t=15.0 \sin 35.0^{\circ}-(9.80)(1.63)=-7.37 \mathrm{~m} / \mathrm{s} .
$$

Thus, the magnitude of its speed at impact is $\sqrt{v_{x}^{2}+v_{y}^{2}}=14.3 \mathrm{~m} / \mathrm{s}$.
(d) As we saw in the previous part, the sign of v_{y} is negative, implying that it is now heading down (after reaching its max height).
131. With $g_{B}=9.8128 \mathrm{~m} / \mathrm{s}^{2}$ and $g_{M}=9.7999 \mathrm{~m} / \mathrm{s}^{2}$, we apply Eq. 4-26:

$$
R_{M}-R_{B}=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g_{M}}-\frac{v_{0}^{2} \sin 2 \theta_{0}}{g_{B}}=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g_{B}}\left(\frac{g_{B}}{g_{M}}-1\right)
$$

which becomes

$$
R_{M}-R_{B}=R_{B}\left(\frac{9.8128}{9.7999}-1\right)
$$

and yields (upon substituting $R_{B}=8.09 \mathrm{~m}$) $R_{M}-R_{B}=0.01 \mathrm{~m}=1 \mathrm{~cm}$.
132. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to solve for the initial speed:

$$
v_{0}=\frac{x}{\cos \theta_{0}} \sqrt{\frac{g}{2\left(x \tan \theta_{0}-y\right)}}
$$

which yields $v_{0}=23 \mathrm{ft} / \mathrm{s}$ for $g=32 \mathrm{ft} / \mathrm{s}^{2}, x=13 \mathrm{ft}, y=3 \mathrm{ft}$ and $\theta_{0}=55^{\circ}$.
133. (a) The helicopter's speed is $v^{\prime}=6.2 \mathrm{~m} / \mathrm{s}$, which implies that the speed of the package is $v_{0}=12-v^{\prime}=5.8 \mathrm{~m} / \mathrm{s}$, relative to the ground.
(b) Letting $+x$ be in the direction of \vec{v}_{0} for the package and $+y$ be downward, we have (for the motion of the package) $\Delta x=v_{0} t$ and $\Delta y=g t^{2} / 2$, where $\Delta y=9.5 \mathrm{~m}$. From these, we find $t=1.39 \mathrm{~s}$ and $\Delta x=8.08 \mathrm{~m}$ for the package, while Δx^{\prime} (for the helicopter, which is moving in the opposite direction) is $-v^{\prime} t=-8.63 \mathrm{~m}$. Thus, the horizontal separation between them is $8.08-(-8.63)=16.7 \mathrm{~m} \approx 17 \mathrm{~m}$.
(c) The components of \vec{v} at the moment of impact are $\left(v_{x}, v_{y}\right)=(5.8,13.6)$ in SI units. The vertical component has been computed using Eq. 2-11. The angle (which is below horizontal) for this vector is $\tan ^{-1}(13.6 / 5.8)=67^{\circ}$.
134. (a) Since the performer returns to the original level, Eq. 4-26 applies. With $R=4.0$ m and $\theta_{0}=30^{\circ}$, the initial speed (for the projectile motion) is consequently

$$
v_{0}=\sqrt{\frac{g R}{\sin 2 \theta_{0}}}=6.7 \mathrm{~m} / \mathrm{s} .
$$

This is, of course, the final speed v for the Air Ramp's acceleration process (for which the initial speed is taken to be zero). Then, for that process, Eq. 2-11 leads to

$$
a=\frac{v}{t}=\frac{6.7}{0.25}=27 \mathrm{~m} / \mathrm{s}^{2} .
$$

We express this as a multiple of g by setting up a ratio: $a=(27 / 9.8) g=2.7 g$.
(b) Repeating the above steps for $R=12 \mathrm{~m}, t=0.29 \mathrm{~s}$ and $\theta_{0}=45^{\circ}$ gives $a=3.8 g$.
135. We take the initial (x, y) specification to be $(0.000,0.762) \mathrm{m}$, and the positive x direction to be towards the "green monster." The components of the initial velocity are $\left(33.53 \angle 55^{\circ}\right) \rightarrow(19.23,27.47) \mathrm{m} / \mathrm{s}$.
(a) With $t=5.00 \mathrm{~s}$, we have $x=x_{0}+v_{x} t=96.2 \mathrm{~m}$.
(b) At that time, $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}=15.59 \mathrm{~m}$, which is 4.31 m above the wall.
(c) The moment in question is specified by $t=4.50 \mathrm{~s}$. At that time, $x-x_{0}=(19.23)(4.50)$ $=86.5 \mathrm{~m}$.
(d) The vertical displacement is $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}=25.1 \mathrm{~m}$.
136. The (box)car has velocity $\vec{v}_{c g}=v_{1} \hat{\hat{i}}$ relative to the ground, and the bullet has velocity

$$
\vec{v}_{0 b g}=v_{2} \cos \theta \hat{\mathrm{i}}+v_{2} \sin \theta \hat{\mathrm{j}}
$$

relative to the ground before entering the car (we are neglecting the effects of gravity on the bullet). While in the car, its velocity relative to the outside ground is $\vec{v}_{b g}=0.8 v_{2} \cos \theta \hat{\mathrm{i}}+0.8 v_{2} \sin \theta \hat{\mathrm{j}}$ (due to the 20% reduction mentioned in the problem). The problem indicates that the velocity of the bullet in the car relative to the car is (with v_{3} unspecified) $\vec{v}_{b c}=v_{3} \hat{\mathrm{j}}$. Now, Eq. $4-44$ provides the condition

$$
\begin{aligned}
\vec{v}_{b g} & =\vec{v}_{b c}+\vec{v}_{c g} \\
0.8 v_{2} \cos \theta \hat{\mathrm{i}}+0.8 v_{2} \sin \theta \hat{\mathrm{j}} & =v_{3} \hat{\mathrm{j}}+v_{1} \hat{\mathrm{i}}
\end{aligned}
$$

so that equating x components allows us to find θ. If one wished to find v_{3} one could also equate the y components, and from this, if the car width were given, one could find the time spent by the bullet in the car, but this information is not asked for (which is why the width is irrelevant). Therefore, examining the x components in SI units leads to

$$
\theta=\cos ^{-1}\left(\frac{v_{1}}{0.8 v_{2}}\right)=\cos ^{-1}\left(\frac{85\left(\frac{1000}{3600}\right)}{0.8(650)}\right)
$$

which yields 87° for the direction of $\vec{v}_{b g}$ (measured from \hat{i}, which is the direction of motion of the car). The problem asks, "from what direction was it fired?" - which means the answer is not 87° but rather its supplement 93° (measured from the direction of motion). Stating this more carefully, in the coordinate system we have adopted in our solution, the bullet velocity vector is in the first quadrant, at 87° measured counterclockwise from the $+x$ direction (the direction of train motion), which means that the direction from which the bullet came (where the sniper is) is in the third quadrant, at -93° (that is, 93° measured clockwise from $+x$).

1. We are only concerned with horizontal forces in this problem (gravity plays no direct role). We take East as the $+x$ direction and North as $+y$. This calculation is efficiently implemented on a vector-capable calculator, using magnitude-angle notation (with SI units understood).

$$
\vec{a}=\frac{\vec{F}}{m}=\frac{\left(9.0 \angle 0^{\circ}\right)+\left(8.0 \angle 118^{\circ}\right)}{3.0}=\left(2.9 \angle 53^{\circ}\right)
$$

Therefore, the acceleration has a magnitude of $2.9 \mathrm{~m} / \mathrm{s}^{2}$.
2. We apply Newton's second law (specifically, Eq. 5-2).
(a) We find the x component of the force is

$$
F_{x}=m a_{x}=m a \cos 20.0^{\circ}=(1.00 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 20.0^{\circ}=1.88 \mathrm{~N} .
$$

(b) The y component of the force is

$$
F_{y}=m a_{y}=m a \sin 20.0^{\circ}=(1.0 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 20.0^{\circ}=0.684 \mathrm{~N} .
$$

(c) In unit-vector notation, the force vector (in newtons) is

$$
\vec{F}=F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}=1.88 \hat{\mathrm{i}}+0.684 \hat{\mathrm{j}}
$$

3. We apply Newton's second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force applied on the chopping block is $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}$, where the vector addition is done using unit-vector notation. The acceleration of the block is given by $\vec{a}=\left(\vec{F}_{1}+\vec{F}_{2}\right) / \mathrm{m}$.
(a) In the first case

$$
\vec{F}_{1}+\vec{F}_{2}=[(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}]+[(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}}]=0
$$

so $\vec{a}=0$.
(b) In the second case, the acceleration \vec{a} equals

$$
\frac{\vec{F}_{1}+\vec{F}_{2}}{m}=\frac{((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})+((-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})}{2.0 \mathrm{~kg}}=\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

(c) In this final situation, \vec{a} is

$$
\frac{\vec{F}_{1}+\vec{F}_{2}}{m}=\frac{((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})+((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}})}{2.0 \mathrm{~kg}}=\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}
$$

4. The net force applied on the chopping block is $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}$, where the vector addition is done using unit-vector notation. The acceleration of the block is given by $\vec{a}=\left(\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}\right) / m$.
(a) The forces (in newtons) exerted by the three astronauts can be expressed in unitvector notation as follows:

$$
\begin{aligned}
& \vec{F}_{1}=32\left(\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30^{\circ} \hat{\mathrm{j}}\right)=27.7 \hat{\mathrm{i}}+16 \hat{\mathrm{j}} \\
& \vec{F}_{2}=55\left(\cos 0^{\circ} \hat{\mathrm{i}}+\sin 0^{\circ} \hat{\mathrm{j}}\right)=55 \hat{\mathrm{i}} \\
& \vec{F}_{3}=41\left(\cos \left(-60^{\circ}\right) \hat{\mathrm{i}}+\sin \left(-60^{\circ}\right) \hat{\mathrm{j}}\right)=20.5 \hat{\mathrm{i}}-35.5 \hat{\mathrm{j}} .
\end{aligned}
$$

The resultant acceleration of the asteroid of mass $m=120 \mathrm{~kg}$ is therefore

$$
\vec{a}=\frac{(27.7 \hat{\mathrm{i}}+16 \hat{\mathrm{j}})+(55 \hat{\mathrm{i}})+(20.5 \hat{\mathrm{i}}-35.5 \hat{\mathrm{j}})}{120}=\left(0.86 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(0.16 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

(b) The magnitude of the acceleration vector is

$$
|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{0.86^{2}+(-0.16)^{2}}=0.88 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The vector \vec{a} makes an angle θ with the $+x$ axis, where

$$
\theta=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)=\tan ^{-1}\left(\frac{-0.16}{0.86}\right)=-11^{\circ} .
$$

5. We denote the two forces \vec{F}_{1} and \vec{F}_{2}. According to Newton's second law, $\vec{F}_{1}+\vec{F}_{2}=m \vec{a}$, so $\vec{F}_{2}=m \vec{a}-\vec{F}_{1}$.
(a) In unit vector notation $\vec{F}_{1}=(20.0 \mathrm{~N}) \hat{\mathrm{i}}$ and

$$
\vec{a}=-\left(12.0 \sin 30.0^{\circ} \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(12.0 \cos 30.0^{\circ} \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}=-\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(10.4 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

Therefore,

$$
\begin{aligned}
\vec{F}_{2} & =(2.00 \mathrm{~kg})\left(-6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+(2.00 \mathrm{~kg})\left(-10.4 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}-(20.0 \mathrm{~N}) \hat{\mathrm{i}} \\
& =(-32.0 \mathrm{~N}) \hat{\mathrm{i}}-(20.8 \mathrm{~N}) \hat{\mathrm{j}}
\end{aligned}
$$

(b) The magnitude of \vec{F}_{2} is

$$
\left|\vec{F}_{2}\right|=\sqrt{F_{2 x}^{2}+F_{2 y}^{2}}=\sqrt{(-32.0)^{2}+(-20.8)^{2}}=38.2 \mathrm{~N} .
$$

(c) The angle that \vec{F}_{2} makes with the positive x axis is found from

$$
\tan \theta=\left(F_{2 y} / F_{2 x}\right)=[(-20.8) /(-32.0)]=0.656 .
$$

Consequently, the angle is either 33.0° or $33.0^{\circ}+180^{\circ}=213^{\circ}$. Since both the x and y components are negative, the correct result is 213°. An alternative answer is $213^{\circ}-360^{\circ}=-147^{\circ}$.
6. We note that $m \vec{a}=(-16 \mathrm{~N}) \hat{\mathrm{i}}+(12 \mathrm{~N}) \hat{\mathrm{j}}$. With the other forces as specified in the problem, then Newton's second law gives the third force as

$$
\overrightarrow{F_{3}}=m \vec{a}-\vec{F}_{1}-\vec{F}_{2}=(-34 \mathrm{~N}) \hat{\mathrm{i}}-(12 \mathrm{~N}) \hat{\mathrm{j}} .
$$

7. Since $\vec{v}=$ constant, we have $\vec{a}=0$, which implies

$$
\vec{F}_{\mathrm{net}}=\vec{F}_{1}+\vec{F}_{2}=m \vec{a}=0 .
$$

Thus, the other force must be

$$
\vec{F}_{2}=-\vec{F}_{1}=(-2 \mathrm{~N}) \hat{\mathrm{i}}+(6 \mathrm{~N}) \hat{\mathrm{j}} .
$$

8. From the slope of the graph we find $a_{x}=3.0 \mathrm{~m} / \mathrm{s}^{2}$. Applying Newton's second law to the x axis (and taking θ to be the angle between F_{1} and F_{2}), we have

$$
F_{1}+F_{2} \cos \theta=m a_{x} \Rightarrow \theta=56^{\circ} .
$$

9. (a) - (c) In all three cases the scale is not accelerating, which means that the two cords exert forces of equal magnitude on it. The scale reads the magnitude of either of these forces. In each case the tension force of the cord attached to the salami must be the same in magnitude as the weight of the salami because the salami is not accelerating. Thus the scale reading is $m g$, where m is the mass of the salami. Its value is $(11.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=$ 108 N.
10. Three vertical forces are acting on the block: the earth pulls down on the block with gravitational force 3.0 N ; a spring pulls up on the block with elastic force 1.0 N ; and, the surface pushes up on the block with normal force F_{N}. There is no acceleration, so

$$
\sum F_{y}=0=F_{N}+(1.0 \mathrm{~N})+(-3.0 \mathrm{~N})
$$

yields $F_{N}=2.0 \mathrm{~N}$.
(a) By Newton's third law, the force exerted by the block on the surface has that same magnitude but opposite direction: 2.0 N .
(b) The direction is down.
11. (a) From the fact that $T_{3}=9.8 \mathrm{~N}$, we conclude the mass of disk D is 1.0 kg . Both this and that of disk C cause the tension $T_{2}=49 \mathrm{~N}$, which allows us to conclude that disk C has a mass of 4.0 kg . The weights of these two disks plus that of disk B determine the tension $T_{1}=58.8 \mathrm{~N}$, which leads to the conclusion that $m_{B}=1.0 \mathrm{~kg}$. The weights of all the disks must add to the 98 N force described in the problem; therefore, disk A has mass 4.0 kg .
(b) $m_{B}=1.0 \mathrm{~kg}$, as found in part (a).
(c) $m_{C}=4.0 \mathrm{~kg}$, as found in part (a).
(d) $m_{D}=1.0 \mathrm{~kg}$, as found in part (a).
12. (a) There are six legs, and the vertical component of the tension force in each leg is $T \sin \theta$ where $\theta=40^{\circ}$. For vertical equilibrium (zero acceleration in the y direction) then Newton's second law leads to

$$
6 T \sin \theta=m g \Rightarrow T=\frac{m g}{6 \sin \theta}
$$

which (expressed as a multiple of the bug's weight $m g$) gives roughly $T / m g \approx 0.260$.
(b) The angle θ is measured from horizontal, so as the insect "straightens out the legs" θ will increase (getting closer to 90°), which causes $\sin \theta$ to increase (getting closer to 1) and consequently (since $\sin \theta$ is in the denominator) causes T to decrease.
13. We note that the free-body diagram is shown in Fig. 5-18 of the text.
(a) Since the acceleration of the block is zero, the components of the Newton's second law equation yield

$$
\begin{aligned}
T-m g \sin \theta & =0 \\
F_{N}-m g \cos \theta & =0 .
\end{aligned}
$$

Solving the first equation for the tension in the string, we find

$$
T=m g \sin \theta=(8.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30^{\circ}=42 \mathrm{~N}
$$

(b) We solve the second equation in part (a) for the normal force F_{N} :

$$
F_{N}=m g \cos \theta=(8.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 30^{\circ}=72 \mathrm{~N} .
$$

(c) When the string is cut, it no longer exerts a force on the block and the block accelerates. The x component of the second law becomes $-m g \sin \theta=m a$, so the acceleration becomes

$$
a=-g \sin \theta=-9.8 \sin 30^{\circ}=-4.9 \mathrm{~m} / \mathrm{s}^{2}
$$

The negative sign indicates the acceleration is down the plane. The magnitude of the acceleration is $4.9 \mathrm{~m} / \mathrm{s}^{2}$.
14. (a) The reaction force to $\vec{F}_{M W}=180 \mathrm{~N}$ west is, by Newton's third law, $\vec{F}_{W M}=180 \mathrm{~N}$.
(b) The direction of $\vec{F}_{W M}$ is east.
(c) Applying $\vec{F}=m \vec{a}$ to the woman gives an acceleration $a=180 / 45=4.0 \mathrm{~m} / \mathrm{s}^{2}$.
(d) The acceleration of the woman is directed west.
(e) Applying $\vec{F}=m \vec{a}$ to the man gives an acceleration $a=180 / 90=2.0 \mathrm{~m} / \mathrm{s}^{2}$.
(f) The acceleration of the man is directed east.
15. (a) The slope of each graph gives the corresponding component of acceleration. Thus, we find $a_{\mathrm{x}}=3.00 \mathrm{~m} / \mathrm{s}^{2}$ and $a_{\mathrm{y}}=-5.00 \mathrm{~m} / \mathrm{s}^{2}$. The magnitude of the acceleration vector is therefore $a=\sqrt{(3.00)^{2}+(-5.00)^{2}}=5.83 \mathrm{~m} / \mathrm{s}^{2}$, and the force is obtained from this by multiplying with the mass ($m=2.00 \mathrm{~kg}$). The result is $F=m a=11.7 \mathrm{~N}$.
(b) The direction of the force is the same as that of the acceleration:

$$
\theta=\tan ^{-1}(-5.00 / 3.00)=-59.0^{\circ} .
$$

16. We take rightwards as the $+x$ direction. Thus, $\vec{F}_{1}=(20 \mathrm{~N}) \hat{\mathrm{i}}$. In each case, we use Newton's second law $\vec{F}_{1}+\vec{F}_{2}=m \vec{a}$ where $m=2.0 \mathrm{~kg}$.
(a) If $\vec{a}=\left(+10 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$, then the equation above gives $\vec{F}_{2}=0$.
(b) If, $\vec{a}=\left(+20 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$, then that equation gives $\vec{F}_{2}=(20 \mathrm{~N}) \hat{\mathrm{i}}$.
(c) If $\vec{a}=0$, then the equation gives $\vec{F}_{2}=(-20 \mathrm{~N}) \hat{\mathrm{i}}$.
(d) If $\vec{a}=\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$, the equation gives $\vec{F}_{2}=(-40 \mathrm{~N}) \hat{\mathrm{i}}$.
(e) If $\vec{a}=\left(-20 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$, the equation gives $\vec{F}_{2}=(-60 \mathrm{~N}) \hat{\mathrm{i}}$.
17. In terms of magnitudes, Newton's second law is $F=m a$, where $F=\left|\vec{F}_{\text {net }}\right|, a=|\vec{a}|$, and m is the (always positive) mass. The magnitude of the acceleration can be found using constant acceleration kinematics (Table 2-1). Solving $v=v_{0}+a t$ for the case where it starts from rest, we have $a=v / t$ (which we interpret in terms of magnitudes, making specification of coordinate directions unnecessary). The velocity is $v=(1600 \mathrm{~km} / \mathrm{h})$ $(1000 \mathrm{~m} / \mathrm{km}) /(3600 \mathrm{~s} / \mathrm{h})=444 \mathrm{~m} / \mathrm{s}$, so

$$
F=(500 \mathrm{~kg}) \frac{444 \mathrm{~m} / \mathrm{s}}{1.8 \mathrm{~s}}=1.2 \times 10^{5} \mathrm{~N}
$$

18. Some assumptions (not so much for realism but rather in the interest of using the given information efficiently) are needed in this calculation: we assume the fishing line and the path of the salmon are horizontal. Thus, the weight of the fish contributes only (via Eq. 5-12) to information about its mass ($m=W / g=8.7 \mathrm{~kg}$). Our $+x$ axis is in the direction of the salmon's velocity (away from the fisherman), so that its acceleration ("deceleration") is negative-valued and the force of tension is in the $-x$ direction: $\vec{T}=-T$. We use Eq. 2-16 and SI units (noting that $v=0$).

$$
v^{2}=v_{0}^{2}+2 a \Delta x \Rightarrow a=-\frac{v_{0}^{2}}{2 \Delta x}=-\frac{2.8^{2}}{2(0.11)}=-36 \mathrm{~m} / \mathrm{s}^{2}
$$

Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads to

$$
\vec{T}=m \vec{a} \Rightarrow-T=(8.7 \mathrm{~kg})\left(-36 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

which results in $T=3.1 \times 10^{2} \mathrm{~N}$.
19. (a) The acceleration is

$$
a=\frac{F}{m}=\frac{20 \mathrm{~N}}{900 \mathrm{~kg}}=0.022 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The distance traveled in 1 day $(=86400 \mathrm{~s})$ is

$$
s=\frac{1}{2} a t^{2}=\frac{1}{2}\left(0.0222 \mathrm{~m} / \mathrm{s}^{2}\right)(86400 \mathrm{~s})^{2}=8.3 \times 10^{7} \mathrm{~m} .
$$

(c) The speed it will be traveling is given by

$$
v=a t=\left(0.0222 \mathrm{~m} / \mathrm{s}^{2}\right)(86400 \mathrm{~s})=1.9 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

20. The stopping force \vec{F} and the path of the passenger are horizontal. Our $+x$ axis is in the direction of the passenger's motion, so that the passenger's acceleration ("deceleration") is negative-valued and the stopping force is in the $-x$ direction: $\vec{F}=-F \hat{\mathrm{i}}$. We use Eq. 2-16 and SI units (noting that $v_{0}=53(1000 / 3600)=14.7 \mathrm{~m} / \mathrm{s}$ and $v=0$).

$$
v^{2}=v_{0}^{2}+2 a \Delta x \Rightarrow a=-\frac{v_{0}^{2}}{2 \Delta x}=-\frac{14.7^{2}}{2(0.65)}=-167 \mathrm{~m} / \mathrm{s}^{2} .
$$

Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 leads to

$$
\vec{F}=m \vec{a} \Rightarrow-F=(41 \mathrm{~kg})\left(-167 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

which results in $F=6.8 \times 10^{3} \mathrm{~N}$.
21. We choose up as the $+y$ direction, so $\vec{a}=\left(-3.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$ (which, without the unitvector, we denote as a since this is a 1 -dimensional problem in which Table 2-1 applies). From Eq. 5-12, we obtain the firefighter's mass: $m=W / g=72.7 \mathrm{~kg}$.
(a) We denote the force exerted by the pole on the firefighter $\vec{F}_{\mathrm{fp}}=F_{\mathrm{fp}} \hat{\mathrm{j}}$ and apply Eq.

5-1 (using SI units). Since $\vec{F}_{\text {net }}=m \vec{a}$, we have

$$
F_{\mathrm{fp}}-F_{g}=m a \quad \Rightarrow F_{\mathrm{fp}}-712=(72.7)(-3.00)
$$

which yields $F_{\mathrm{fp}}=494 \mathrm{~N}$.
(b) The fact that the result is positive means \vec{F}_{fp} points up.
(c) Newton's third law indicates $\vec{F}_{\mathrm{f} p}=-\vec{F}_{\mathrm{pf}}$, which leads to the conclusion that $\left|\vec{F}_{\mathrm{pf}}\right|=494 \mathrm{~N}$.
(d) The direction of \vec{F}_{pf} is down.
22. The stopping force \vec{F} and the path of the car are horizontal. Thus, the weight of the car contributes only (via Eq. 5-12) to information about its mass ($m=W / g=1327 \mathrm{~kg}$). Our $+x$ axis is in the direction of the car's velocity, so that its acceleration ("deceleration") is negative-valued and the stopping force is in the $-x$ direction: $\vec{F}=-F \hat{\mathrm{i}}$.
(a) We use Eq. 2-16 and SI units (noting that $v=0$ and $v_{0}=40(1000 / 3600)=11.1 \mathrm{~m} / \mathrm{s}$).

$$
v^{2}=v_{0}^{2}+2 a \Delta x \Rightarrow a=-\frac{v_{0}^{2}}{2 \Delta x}=-\frac{11.1^{2}}{2(15)}
$$

which yields $a=-4.12 \mathrm{~m} / \mathrm{s}^{2}$. Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 leads to

$$
\vec{F}=m \vec{a} \Rightarrow-F=(1327 \mathrm{~kg})\left(-4.12 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

which results in $F=5.5 \times 10^{3} \mathrm{~N}$.
(b) Eq. 2-11 readily yields $t=-v_{0} / a=2.7 \mathrm{~s}$.
(c) Keeping F the same means keeping a the same, in which case (since $v=0$) Eq. 2-16 expresses a direct proportionality between Δx and v_{0}^{2}. Therefore, doubling v_{0} means quadrupling Δx. That is, the new over the old stopping distances is a factor of 4.0.
(d) Eq. 2-11 illustrates a direct proportionality between t and v_{0} so that doubling one means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than the one found in part (b).
23. The acceleration of the electron is vertical and for all practical purposes the only force acting on it is the electric force. The force of gravity is negligible. We take the $+x$ axis to be in the direction of the initial velocity and the $+y$ axis to be in the direction of the electrical force, and place the origin at the initial position of the electron. Since the force and acceleration are constant, we use the equations from Table 2-1: $x=v_{0} t$ and

$$
y=\frac{1}{2} a t^{2}=\frac{1}{2}\left(\frac{F}{m}\right) t^{2}
$$

The time taken by the electron to travel a distance $x(=30 \mathrm{~mm})$ horizontally is $t=x / v_{0}$ and its deflection in the direction of the force is

$$
y=\frac{1}{2} \frac{F}{m}\left(\frac{x}{v_{0}}\right)^{2}=\frac{1}{2}\left(\frac{4.5 \times 10^{-16}}{9.11 \times 10^{-31}}\right)\left(\frac{30 \times 10^{-3}}{1.2 \times 10^{7}}\right)^{2}=1.5 \times 10^{-3} \mathrm{~m}
$$

24. We resolve this horizontal force into appropriate components.

(a) Newton's second law applied to the x axis produces

$$
F \cos \theta-m g \sin \theta=m a .
$$

For $a=0$, this yields $F=566 \mathrm{~N}$.
(b) Applying Newton's second law to the y axis (where there is no acceleration), we have

$$
F_{N}-F \sin \theta-m g \cos \theta=0
$$

which yields the normal force $F_{N}=1.13 \times 10^{3} \mathrm{~N}$.
25. We note that the rope is 22.0° from vertical - and therefore 68.0° from horizontal.
(a) With $T=760 \mathrm{~N}$, then its components are

$$
\vec{T}=T \cos 68.0^{\circ} \hat{\mathrm{i}}+T \sin 68.0^{\circ} \hat{\mathrm{j}}=(285 \mathrm{~N}) \hat{\mathrm{i}}+(705 \mathrm{~N}) \hat{\mathrm{j}}
$$

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth's gravity (his weight). Thus,

$$
\vec{F}_{\text {net }}=\vec{T}+\vec{W}=(285 \mathrm{~N}) \hat{\mathrm{i}}+(705 \mathrm{~N}) \hat{\mathrm{j}}-(820 \mathrm{~N}) \hat{\mathrm{j}}=(285 \mathrm{~N}) \hat{\mathrm{i}}-(115 \mathrm{~N}) \hat{\mathrm{j}} .
$$

(c) In a manner that is efficiently implemented on a vector-capable calculator, we convert from rectangular (x, y) components to magnitude-angle notation:

$$
\vec{F}_{\mathrm{net}}=(285,-115) \rightarrow\left(307 \angle-22.0^{\circ}\right)
$$

so that the net force has a magnitude of 307 N .
(d) The angle (see part (c)) has been found to be 22.0° below horizontal (away from cliff).
(e) Since $\vec{a}=\vec{F}_{\text {net }} / m$ where $m=W / g=83.7 \mathrm{~kg}$, we obtain $\vec{a}=3.67 \mathrm{~m} / \mathrm{s}^{2}$.
(f) Eq. 5-1 requires that $\vec{a} \| \vec{F}_{\text {net }}$ so that it is also directed at 22.0° below horizontal (away from cliff).
26. (a) Using notation suitable to a vector capable calculator, the $\overrightarrow{F_{\text {net }}}=0$ condition becomes

$$
\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\left(6.00 \angle 150^{\mathrm{o}}\right)+\left(7.00 \angle-60.0^{\mathrm{o}}\right)+\vec{F}_{3}=0
$$

Thus, $\vec{F}_{3}=(1.70 \mathrm{~N}) \hat{i}+(3.06 \mathrm{~N}) \hat{\mathrm{j}}$.
(b) A constant velocity condition requires zero acceleration, so the answer is the same.
(c) Now, the acceleration is $\vec{a}=13.0 \hat{\mathrm{i}}-14.0 \hat{\mathrm{j}}$ (SI units understood). Using $\overrightarrow{F_{\text {net }}}=m \vec{a}$ (with $m=0.025 \mathrm{~kg}$) we now obtain

$$
\overrightarrow{F_{3}}=(2.02 \mathrm{~N}) \hat{\mathrm{i}}+(2.71 \mathrm{~N}) \hat{\mathrm{j}} .
$$

27. (a) Since friction is negligible the force of the girl is the only horizontal force on the sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero. The acceleration of the sled is

$$
a_{s}=\frac{F}{m_{s}}=\frac{5.2 \mathrm{~N}}{8.4 \mathrm{~kg}}=0.62 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) According to Newton's third law, the force of the sled on the girl is also 5.2 N. Her acceleration is

$$
a_{g}=\frac{F}{m_{g}}=\frac{5.2 \mathrm{~N}}{40 \mathrm{~kg}}=0.13 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl starts at the origin and moves in the $+x$ direction, her coordinate is given by $x_{g}=\frac{1}{2} a_{g} t^{2}$. The sled starts at $x_{0}=1.5 \mathrm{~m}$ and moves in the $-x$ direction. Its coordinate is given by $x_{s}=x_{0}-\frac{1}{2} a_{s} t^{2}$. They meet when $x_{g}=x_{s}$, or

$$
\frac{1}{2} a_{g} t^{2}=x_{0}-\frac{1}{2} a_{s} t^{2}
$$

This occurs at time

$$
t=\sqrt{\frac{2 x_{0}}{a_{g}+a_{s}}} .
$$

By then, the girl has gone the distance

$$
x_{g}=\frac{1}{2} a_{g} t^{2}=\frac{x_{0} a_{g}}{a_{g}+a_{s}}=\frac{(15)(0.13)}{0.13+0.62}=2.6 \mathrm{~m} .
$$

28. We label the 40 kg skier " m " which is represented as a block in the figure shown. The force of the wind is denoted \vec{F}_{w} and might be either "uphill" or "downhill" (it is shown uphill in our sketch). The incline angle θ is 10°. The $-x$ direction is downhill.

(a) Constant velocity implies zero acceleration; thus, application of Newton's second law along the x axis leads to

$$
m g \sin \theta-F_{w}=0 .
$$

This yields $F_{w}=68 \mathrm{~N}$ (uphill).
(b) Given our coordinate choice, we have $a=|a|=1.0 \mathrm{~m} / \mathrm{s}^{2}$. Newton's second law

$$
m g \sin \theta-F_{w}=m a
$$

now leads to $F_{w}=28 \mathrm{~N}$ (uphill).
(c) Continuing with the forces as shown in our figure, the equation

$$
m g \sin \theta-F_{w}=m a
$$

will lead to $F_{w}=-12 \mathrm{~N}$ when $|a|=2.0 \mathrm{~m} / \mathrm{s}^{2}$. This simply tells us that the wind is opposite to the direction shown in our sketch; in other words, $\vec{F}_{w}=12 \mathrm{~N}$ downhill.
29. The free-body diagram is shown next. \vec{F}_{N} is the normal force of the plane on the block and $m \vec{g}$ is the force of gravity on the block. We take the $+x$ direction to be down the incline, in the direction of the acceleration, and the $+y$ direction to be in the direction of the normal force exerted by the incline on the block. The x component of Newton's second law is then $m g \sin \theta=m a$; thus, the acceleration is $a=g \sin \theta$.

(a) Placing the origin at the bottom of the plane, the kinematic equations (Table 2-1) for motion along the x axis which we will use are $v^{2}=v_{0}^{2}+2 a x$ and $v=v_{0}+a t$. The block momentarily stops at its highest point, where $v=0$; according to the second equation, this occurs at time $t=-v_{0} / a$. The position where it stops is

$$
x=-\frac{1}{2} \frac{v_{0}^{2}}{a}=-\frac{1}{2}\left(\frac{(-3.50 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 32.0^{\circ}}\right)=-1.18 \mathrm{~m}
$$

or $|x|=1.18 \mathrm{~m}$.
(b) The time is

$$
t=\frac{v_{0}}{a}=-\frac{v_{0}}{g \sin \theta}=-\frac{-3.50 \mathrm{~m} / \mathrm{s}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 32.0^{\circ}}=0.674 \mathrm{~s}
$$

(c) That the return-speed is identical to the initial speed is to be expected since there are no dissipative forces in this problem. In order to prove this, one approach is to set $x=0$ and solve $x=v_{0} t+\frac{1}{2} a t^{2}$ for the total time (up and back down) t. The result is

$$
t=-\frac{2 v_{0}}{a}=-\frac{2 v_{0}}{g \sin \theta}=-\frac{2(-3.50 \mathrm{~m} / \mathrm{s})}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 32.0^{\circ}}=1.35 \mathrm{~s}
$$

The velocity when it returns is therefore

$$
v=v_{0}+a t=v_{0}+g t \sin \theta=-3.50+(9.8)(1.35) \sin 32^{\circ}=3.50 \mathrm{~m} / \mathrm{s} .
$$

30. The acceleration of an object (neither pushed nor pulled by any force other than gravity) on a smooth inclined plane of angle θ is $a=-g \sin \theta$. The slope of the graph shown with the problem statement indicates $a=-2.50 \mathrm{~m} / \mathrm{s}^{2}$. Therefore, we find $\theta=14.8^{\circ}$. Examining the forces perpendicular to the incline (which must sum to zero since there is no component of acceleration in this direction) we find $F_{N}=m g \cos \theta$, where $m=5.00 \mathrm{~kg}$. Thus, the normal (perpendicular) force exerted at the box/ramp interface is 47.4 N .
31. The solutions to parts (a) and (b) have been combined here. The free-body diagram is shown below, with the tension of the string \vec{T}, the force of gravity $m \vec{g}$, and the force of the air \vec{F}. Our coordinate system is shown. Since the sphere is motionless the net force on it is zero, and the x and the y components of the equations are:

$$
\begin{aligned}
T \sin \theta-F & =0 \\
T \cos \theta-m g & =0
\end{aligned}
$$

where $\theta=37^{\circ}$. We answer the questions in the reverse order. Solving $T \cos \theta-m g=0$ for the tension, we obtain

$$
T=m g / \cos \theta=\left(3.0 \times 10^{-4}\right)(9.8) / \cos 37^{\circ}=3.7 \times 10^{-3} \mathrm{~N} .
$$

Solving $T \sin \theta-F=0$ for the force of the air:

$$
F=T \sin \theta=\left(3.7 \times 10^{-3}\right) \sin 37^{\circ}=2.2 \times 10^{-3} \mathrm{~N} .
$$

32. The analysis of coordinates and forces (the free-body diagram) is exactly as in the textbook in Sample Problem 5-7 (see Fig. 5-18(b) and (c)).
(a) Constant velocity implies zero acceleration, so the "uphill" force must equal (in magnitude) the "downhill" force: $T=m g \sin \theta$. Thus, with $m=50 \mathrm{~kg}$ and $\theta=8.0^{\circ}$, the tension in the rope equals 68 N .
(b) With an uphill acceleration of $0.10 \mathrm{~m} / \mathrm{s}^{2}$, Newton's second law (applied to the x axis shown in Fig. 5-18(b)) yields

$$
T-m g \sin \theta=m a \Rightarrow T-(50)(9.8) \sin 8.0^{\circ}=(50)(0.10)
$$

which leads to $T=73 \mathrm{~N}$.
33. The free-body diagram is shown below. Let \vec{T} be the tension of the cable and $m \vec{g}$ be the force of gravity. If the upward direction is positive, then Newton's second law is T $m g=m a$, where a is the acceleration.

Thus, the tension is $T=m(g+a)$. We use constant acceleration kinematics (Table 2-1) to find the acceleration (where $v=0$ is the final velocity, $v_{0}=-12 \mathrm{~m} / \mathrm{s}$ is the initial velocity, and $y=-42 \mathrm{~m}$ is the coordinate at the stopping point). Consequently, $v^{2}=v_{0}^{2}+2 a y$ leads to

$$
a=-\frac{v_{0}^{2}}{2 y}=-\frac{(-12)^{2}}{2(-42)}=1.71 \mathrm{~m} / \mathrm{s}^{2}
$$

We now return to calculate the tension:

$$
\begin{aligned}
T & =m(g+a) \\
& =(1600 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+1.71 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1.8 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

34. (a) The term "deceleration" means the acceleration vector is in the direction opposite to the velocity vector (which the problem tells us is downward). Thus (with $+y$ upward) the acceleration is $a=+2.4 \mathrm{~m} / \mathrm{s}^{2}$. Newton's second law leads to

$$
T-m g=m a \Rightarrow m=\frac{T}{g+a}
$$

which yields $m=7.3 \mathrm{~kg}$ for the mass.
(b) Repeating the above computation (now to solve for the tension) with $a=+2.4 \mathrm{~m} / \mathrm{s}^{2}$ will, of course, lead us right back to $T=89 \mathrm{~N}$. Since the direction of the velocity did not enter our computation, this is to be expected.
35. (a) The mass of the elevator is $m=(27800 / 9.80)=2837 \mathrm{~kg}$ and (with $+y$ upward) the acceleration is $a=+1.22 \mathrm{~m} / \mathrm{s}^{2}$. Newton's second law leads to

$$
T-m g=m a \Rightarrow T=m(g+a)
$$

which yields $T=3.13 \times 10^{4} \mathrm{~N}$ for the tension.
(b) The term "deceleration" means the acceleration vector is in the direction opposite to the velocity vector (which the problem tells us is upward). Thus (with $+y$ upward) the acceleration is now $a=-1.22 \mathrm{~m} / \mathrm{s}^{2}$, so that the tension is

$$
T=m(g+a)=2.43 \times 10^{4} \mathrm{~N}
$$

36. With $a_{\text {ce }}$ meaning "the acceleration of the coin relative to the elevator" and $a_{\text {eg }}$ meaning "the acceleration of the elevator relative to the ground", we have

$$
a_{\mathrm{ce}}+a_{\mathrm{eg}}=a_{\mathrm{cg}} \Rightarrow-8.00 \mathrm{~m} / \mathrm{s}^{2}+a_{\mathrm{eg}}=-9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

which leads to $a_{\mathrm{eg}}=-1.80 \mathrm{~m} / \mathrm{s}^{2}$. We have chosen upward as the positive y direction. Then Newton's second law (in the "ground" reference frame) yields $T-m g=m a_{\mathrm{eg}}$, or

$$
T=m g+m a_{\mathrm{eg}}=m\left(g+a_{\mathrm{eg}}\right)=(2000 \mathrm{~kg})\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right)=16.0 \mathrm{kN} .
$$

37. The mass of the bundle is $m=(449 / 9.80)=45.8 \mathrm{~kg}$ and we choose $+y$ upward.
(a) Newton's second law, applied to the bundle, leads to

$$
T-m g=m a \Rightarrow a=\frac{387-449}{45.8}
$$

which yields $a=-1.4 \mathrm{~m} / \mathrm{s}^{2}$ (or $|a|=1.4 \mathrm{~m} / \mathrm{s}^{2}$) for the acceleration. The minus sign in the result indicates the acceleration vector points down. Any downward acceleration of magnitude greater than this is also acceptable (since that would lead to even smaller values of tension).
(b) We use Eq. 2-16 (with Δx replaced by $\Delta y=-6.1 \mathrm{~m}$). We assume $v_{0}=0$.

$$
|v|=\sqrt{2 a \Delta y}=\sqrt{2(-1.35)(-6.1)}=4.1 \mathrm{~m} / \mathrm{s} .
$$

For downward accelerations greater than $1.4 \mathrm{~m} / \mathrm{s}^{2}$, the speeds at impact will be larger than $4.1 \mathrm{~m} / \mathrm{s}$.
38. Applying Newton's second law to cab B (of mass m) we have $a=\frac{T}{m}-g=4.89 \mathrm{~m} / \mathrm{s}^{2}$. Next, we apply it to the box (of mass m_{b}) to find the normal force:

$$
F_{N}=m_{b}(g+a)=176 \mathrm{~N} .
$$

39. (a) The links are numbered from bottom to top. The forces on the bottom link are the force of gravity $m \vec{g}$, downward, and the force $\vec{F}_{2 \text { on1 }}$ of link 2 , upward. Take the positive direction to be upward. Then Newton's second law for this link is $F_{20 n 1}-m g=m a$. Thus,

$$
F_{2 \mathrm{on} 1}=m(a+g)=(0.100 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=1.23 \mathrm{~N} .
$$

(b) The forces on the second link are the force of gravity $m \vec{g}$, downward, the force $\vec{F}_{\text {lon } 2}$ of link 1, downward, and the force $\vec{F}_{3 \text { on2 }}$ of link 3, upward. According to Newton's third law $\vec{F}_{\text {lon2 }}$ has the same magnitude as $\vec{F}_{\text {2on1 }}$. Newton's second law for the second link is $F_{3 \mathrm{on} 2}-F_{1 \mathrm{on} 2}-m g=m a$, so

$$
F_{3 \mathrm{on} 2}=m(a+g)+F_{\text {1on } 2}=(0.100 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+1.23 \mathrm{~N}=2.46 \mathrm{~N} .
$$

(c) Newton's second for link 3 is $F_{40 n 3}-F_{2 \text { on3 }}-m g=m a$, so

$$
F_{4 \mathrm{on} 3}=m(a+g)+F_{2 \mathrm{on} 3}=(0.100 \mathrm{~N})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+2.46 \mathrm{~N}=3.69 \mathrm{~N},
$$

where Newton's third law implies $F_{2 \mathrm{on} 3}=F_{3 \mathrm{on} 2}$ (since these are magnitudes of the force vectors).
(d) Newton's second law for link 4 is $F_{50 n 4}-F_{3 o n 4}-m g=m a$, so

$$
F_{5 \text { on } 4}=m(a+g)+F_{3 \text { on } 4}=(0.100 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+3.69 \mathrm{~N}=4.92 \mathrm{~N},
$$

where Newton's third law implies $F_{3 \text { on } 4}=F_{4 \text { on } 3}$.
(e) Newton's second law for the top link is $F-F_{40 n 5}-m g=m a$, so

$$
F=m(a+g)+F_{4 \mathrm{on} 5}=(0.100 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+4.92 \mathrm{~N}=6.15 \mathrm{~N},
$$

where $F_{40 n 5}=F_{50 n 4}$ by Newton's third law.
(f) Each link has the same mass and the same acceleration, so the same net force acts on each of them:

$$
F_{\text {net }}=m a=(0.100 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}\right)=0.250 \mathrm{~N} .
$$

40. The direction of motion (the direction of the barge's acceleration) is $+\hat{\mathrm{i}}$, and $+\overrightarrow{\mathrm{j}}$ is chosen so that the pull \vec{F}_{h} from the horse is in the first quadrant. The components of the unknown force of the water are denoted simply F_{x} and F_{y}.
(a) Newton's second law applied to the barge, in the x and y directions, leads to

$$
\begin{aligned}
& (7900 \mathrm{~N}) \cos 18^{\circ}+F_{x}=m a \\
& (7900 \mathrm{~N}) \sin 18^{\circ}+F_{y}=0
\end{aligned}
$$

respectively. Plugging in $a=0.12 \mathrm{~m} / \mathrm{s}^{2}$ and $m=9500 \mathrm{~kg}$, we obtain $F_{x}=-6.4 \times 10^{3} \mathrm{~N}$ and $F_{y}=-2.4 \times 10^{3} \mathrm{~N}$. The magnitude of the force of the water is therefore

$$
F_{\text {water }}=\sqrt{F_{x}^{2}+F_{y}^{2}}=6.8 \times 10^{3} \mathrm{~N} .
$$

(b) Its angle measured from $+\hat{\dot{i}}$ is either

$$
\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)=+21^{\circ} \text { or } 201^{\circ} .
$$

The signs of the components indicate the latter is correct, so $\vec{F}_{\text {water }}$ is at 201° measured counterclockwise from the line of motion ($+x$ axis).
41. The force diagram (not to scale) for the block is shown below. \vec{F}_{N} is the normal force exerted by the floor and $m \vec{g}$ is the force of gravity.

(a) The x component of Newton's second law is $F \cos \theta=m a$, where m is the mass of the block and a is the x component of its acceleration. We obtain

$$
a=\frac{F \cos \theta}{m}=\frac{(12.0 \mathrm{~N}) \cos 25.0^{\circ}}{5.00 \mathrm{~kg}}=2.18 \mathrm{~m} / \mathrm{s}^{2} .
$$

This is its acceleration provided it remains in contact with the floor. Assuming it does, we find the value of F_{N} (and if F_{N} is positive, then the assumption is true but if F_{N} is negative then the block leaves the floor). The y component of Newton's second law becomes

$$
F_{N}+F \sin \theta-m g=0
$$

so

$$
F_{N}=m g-F \sin \theta=(5.00)(9.80)-(12.0) \sin 25.0^{\circ}=43.9 \mathrm{~N} .
$$

Hence the block remains on the floor and its acceleration is $a=2.18 \mathrm{~m} / \mathrm{s}^{2}$.
(b) If F is the minimum force for which the block leaves the floor, then $F_{N}=0$ and the y component of the acceleration vanishes. The y component of the second law becomes

$$
F \sin \theta-m g=0 \Rightarrow F=\frac{m g}{\sin \theta}=\frac{(5.00)(9.80)}{\sin 25.0^{\circ}}=116 \mathrm{~N} .
$$

(c) The acceleration is still in the x direction and is still given by the equation developed in part (a):

$$
a=\frac{F \cos \theta}{m}=\frac{116 \cos 25.0^{\circ}}{5.00}=21.0 \mathrm{~m} / \mathrm{s}^{2}
$$

42. First, we consider all the penguins (1 through 4, counting left to right) as one system, to which we apply Newton's second law:

$$
T_{4}=\left(m_{1}+m_{2}+m_{3}+m_{4}\right) a \Rightarrow 222 \mathrm{~N}=\left(12 \mathrm{~kg}+m_{2}+15 \mathrm{~kg}+20 \mathrm{~kg}\right) a .
$$

Second, we consider penguins 3 and 4 as one system, for which we have

$$
\begin{aligned}
T_{4}-T_{2} & =\left(m_{3}+m_{4}\right) a \\
111 \mathrm{~N} & =(15 \mathrm{~kg}+20 \mathrm{~kg}) a \Rightarrow a=3.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Substituting the value, we obtain $m_{2}=23 \mathrm{~kg}$.
43. The free-body diagrams for part (a) are shown below. \vec{F} is the applied force and \vec{f} is the force exerted by block 1 on block 2 . We note that \vec{F} is applied directly to block 1 and that block 2 exerts the force $-\vec{f}$ on block 1 (taking Newton's third law into account).

(a) Newton's second law for block 1 is $F-f=m_{1} a$, where a is the acceleration. The second law for block 2 is $f=m_{2} a$. Since the blocks move together they have the same acceleration and the same symbol is used in both equations. From the second equation we obtain the expression $a=f / m_{2}$, which we substitute into the first equation to get $F-f=$ $m_{1} f / m_{2}$. Therefore,

$$
f=\frac{F m_{2}}{m_{1}+m_{2}}=\frac{(3.2 \mathrm{~N})(1.2 \mathrm{~kg})}{2.3 \mathrm{~kg}+1.2 \mathrm{~kg}}=1.1 \mathrm{~N} .
$$

(b) If \vec{F} is applied to block 2 instead of block 1 (and in the opposite direction), the force of contact between the blocks is

$$
f=\frac{F m_{1}}{m_{1}+m_{2}}=\frac{(3.2 \mathrm{~N})(2.3 \mathrm{~kg})}{2.3 \mathrm{~kg}+1.2 \mathrm{~kg}}=2.1 \mathrm{~N}
$$

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the force f is the only horizontal force on the block of mass m_{2} and in part (b) f is the only horizontal force on the block with $m_{1}>m_{2}$. Since $f=m_{2} a$ in part (a) and $f=m_{1} a$ in part (b), then for the accelerations to be the same, f must be larger in part (b).
44. Both situations involve the same applied force and the same total mass, so the accelerations must be the same in both figures.
(a) The (direct) force causing B to have this acceleration in the first figure is twice as big as the (direct) force causing A to have that acceleration. Therefore, B has the twice the mass of A. Since their total is given as 12.0 kg then B has a mass of $m_{B}=8.00 \mathrm{~kg}$ and A has mass $m_{A}=4.00 \mathrm{~kg}$. Considering the first figure, $(20.0 \mathrm{~N}) /(8.00 \mathrm{~kg})=2.50 \mathrm{~m} / \mathrm{s}^{2}$. Of course, the same result comes from considering the second figure $((10.0 \mathrm{~N}) /(4.00 \mathrm{~kg})=$ $2.50 \mathrm{~m} / \mathrm{s}^{2}$).
(b) $F_{\mathrm{a}}=(12.0 \mathrm{~kg})\left(2.50 \mathrm{~m} / \mathrm{s}^{2}\right)=30.0 \mathrm{~N}$
45. We apply Newton's second law first to the three blocks as a single system and then to the individual blocks. The $+x$ direction is to the right in Fig. 5-49.
(a) With $m_{\text {sys }}=m_{1}+m_{2}+m_{3}=67.0 \mathrm{~kg}$, we apply Eq. $5-2$ to the x motion of the system in which case, there is only one force $\vec{T}_{3}=+\vec{T}_{3} \hat{i}$. Therefore,

$$
T_{3}=m_{\text {sys }} a \Rightarrow 65.0 \mathrm{~N}=(67.0 \mathrm{~kg}) a
$$

which yields $a=0.970 \mathrm{~m} / \mathrm{s}^{2}$ for the system (and for each of the blocks individually).
(b) Applying Eq. 5-2 to block 1, we find

$$
T_{1}=m_{1} a=(12.0 \mathrm{~kg})\left(0.970 \mathrm{~m} / \mathrm{s}^{2}\right)=11.6 \mathrm{~N} .
$$

(c) In order to find T_{2}, we can either analyze the forces on block 3 or we can treat blocks 1 and 2 as a system and examine its forces. We choose the latter.

$$
T_{2}=\left(m_{1}+m_{2}\right) a=(12.0+24.0)(0.970)=34.9 \mathrm{~N} .
$$

46. (a) The net force on the system (of total mass $M=80.0 \mathrm{~kg}$) is the force of gravity acting on the total overhanging mass $\left(m_{B C}=50.0 \mathrm{~kg}\right)$. The magnitude of the acceleration is therefore $a=\left(m_{B C} g\right) / M=6.125 \mathrm{~m} / \mathrm{s}^{2}$. Next we apply Newton's second law to block C itself (choosing down as the $+y$ direction) and obtain

$$
m_{C} g-T_{B C}=m_{C} a .
$$

This leads to $T_{B C}=36.8 \mathrm{~N}$.
(b) We use Eq. 2-15 (choosing rightward as the $+x$ direction): $\Delta x=0+\frac{1}{2} a t^{2}=0.191 \mathrm{~m}$.
47. The free-body diagrams for m_{1} and m_{2} are shown in the figures below. The only forces on the blocks are the upward tension \vec{T} and the downward gravitational forces $\vec{F}_{1}=m_{1} g$ and $\vec{F}_{2}=m_{2} g$. Applying Newton's second law, we obtain:

$$
\begin{aligned}
& T-m_{1} g=m_{1} a \\
& m_{2} g-T=m_{2} a
\end{aligned}
$$

which can be solved to yield

$$
a=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) g
$$

Substituting the result back, we have

$$
T=\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\right) g
$$

(a) With $m_{1}=1.3 \mathrm{~kg}$ and $m_{2}=2.8 \mathrm{~kg}$, the acceleration becomes

$$
a=\left(\frac{2.8-1.3}{2.8+1.3}\right)(9.8)=3.6 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) Similarly, the tension in the cord is

$$
T=\frac{2(1.3)(2.8)}{1.3+2.8}(9.8)=17 \mathrm{~N}
$$

48. Referring to Fig. 5-10(c) is helpful. In this case, viewing the man-rope-sandbag as a system means that we should be careful to choose a consistent positive direction of motion (though there are other ways to proceed - say, starting with individual application of Newton's law to each mass). We take down as positive for the man's motion and $u p$ as positive for the sandbag's motion and, without ambiguity, denote their acceleration as a. The net force on the system is the different between the weight of the man and that of the sandbag. The system mass is $m_{\text {sys }}=85+65=150 \mathrm{~kg}$. Thus, Eq. 5-1 leads to

$$
(85)(9.8)-(65)(9.8)=m_{\mathrm{sys}} a
$$

which yields $a=1.3 \mathrm{~m} / \mathrm{s}^{2}$. Since the system starts from rest, Eq. 2-16 determines the speed (after traveling $\Delta y=10 \mathrm{~m}$) as follows:

$$
v=\sqrt{2 a \Delta y}=\sqrt{2(1.3)(10)}=5.1 \mathrm{~m} / \mathrm{s} .
$$

49. We take $+y$ to be up for both the monkey and the package.
(a) The force the monkey pulls downward on the rope has magnitude F. According to Newton's third law, the rope pulls upward on the monkey with a force of the same magnitude, so Newton's second law for forces acting on the monkey leads to

$$
F-m_{m} g=m_{m} a_{m}
$$

where m_{m} is the mass of the monkey and a_{m} is its acceleration. Since the rope is massless $F=T$ is the tension in the rope. The rope pulls upward on the package with a force of magnitude F, so Newton's second law for the package is

$$
F+F_{N}-m_{p} g=m_{p} a_{p}
$$

where m_{p} is the mass of the package, a_{p} is its acceleration, and F_{N} is the normal force exerted by the ground on it. Now, if F is the minimum force required to lift the package, then $F_{N}=0$ and $a_{p}=0$. According to the second law equation for the package, this means $F=m_{p} g$. Substituting $m_{p} g$ for F in the equation for the monkey, we solve for a_{m} :

$$
a_{m}=\frac{F-m_{m} g}{m_{m}}=\frac{\left(m_{p}-m_{m}\right) g}{m_{m}}=\frac{(15-10)(9.8)}{10}=4.9 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) As discussed, Newton's second law leads to $F-m_{p} g=m_{p} a_{p}$ for the package and $F-m_{m} g=m_{m} a_{m}$ for the monkey. If the acceleration of the package is downward, then the acceleration of the monkey is upward, so $a_{m}=-a_{p}$. Solving the first equation for F

$$
F=m_{p}\left(g+a_{p}\right)=m_{p}\left(g-a_{m}\right)
$$

and substituting this result into the second equation, we solve for a_{m} :

$$
a_{m}=\frac{\left(m_{p}-m_{m}\right) g}{m_{p}+m_{m}}=\frac{(15-10)(9.8)}{15+10}=2.0 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) The result is positive, indicating that the acceleration of the monkey is upward.
(d) Solving the second law equation for the package, we obtain

$$
F=m_{p}\left(g-a_{m}\right)=(15)(9.8-2.0)=120 \mathrm{~N} .
$$

50. The motion of the man-and-chair is positive if upward.
(a) When the man is grasping the rope, pulling with a force equal to the tension T in the rope, the total upward force on the man-and-chair due its two contact points with the rope is $2 T$. Thus, Newton's second law leads to

$$
2 T-m g=m a
$$

so that when $a=0$, the tension is $T=466 \mathrm{~N}$.
(b) When $a=+1.30 \mathrm{~m} / \mathrm{s}^{2}$ the equation in part (a) predicts that the tension will be $T=527 \mathrm{~N}$.
(c) When the man is not holding the rope (instead, the co-worker attached to the ground is pulling on the rope with a force equal to the tension T in it), there is only one contact point between the rope and the man-and-chair, and Newton's second law now leads to

$$
T-m g=m a
$$

so that when $a=0$, the tension is $T=931 \mathrm{~N}$.
(d) When $a=+1.30 \mathrm{~m} / \mathrm{s}^{2}$, the equation in (c) yields $T=1.05 \times 10^{3} \mathrm{~N}$.
(e) The rope comes into contact (pulling down in each case) at the left edge and the right edge of the pulley, producing a total downward force of magnitude $2 T$ on the ceiling. Thus, in part (a) this gives $2 T=931 \mathrm{~N}$.
(f) In part (b) the downward force on the ceiling has magnitude $2 T=1.05 \times 10^{3} \mathrm{~N}$.
(g) In part (c) the downward force on the ceiling has magnitude $2 T=1.86 \times 10^{3} \mathrm{~N}$.
(h) In part (d) the downward force on the ceiling has magnitude $2 T=2.11 \times 10^{3} \mathrm{~N}$.
51. The free-body diagram for each block is shown below. T is the tension in the cord and $\theta=30^{\circ}$ is the angle of the incline. For block 1, we take the $+x$ direction to be up the incline and the $+y$ direction to be in the direction of the normal force \vec{F}_{N} that the plane exerts on the block. For block 2, we take the $+y$ direction to be down. In this way, the accelerations of the two blocks can be represented by the same symbol a, without ambiguity. Applying Newton's second law to the x and y axes for block 1 and to the y axis of block 2, we obtain

$$
\begin{aligned}
T-m_{1} g \sin \theta & =m_{1} a \\
F_{N}-m_{1} g \cos \theta & =0 \\
m_{2} g-T & =m_{2} a
\end{aligned}
$$

respectively. The first and third of these equations provide a simultaneous set for obtaining values of a and T. The second equation is not needed in this problem, since the normal force is neither asked for nor is it needed as part of some further computation (such as can occur in formulas for friction).

(a) We add the first and third equations above:

$$
m_{2} g-m_{1} g \sin \theta=m_{1} a+m_{2} a .
$$

Consequently, we find

$$
a=\frac{\left(m_{2}-m_{1} \sin \theta\right) g}{m_{1}+m_{2}}=\frac{\left(2.30-3.70 \sin 30.0^{\circ}\right)(9.80)}{3.70+2.30}=0.735 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the incline and that the acceleration of block 2 is vertically down.
(c) The tension in the cord is

$$
T=m_{1} a+m_{1} g \sin \theta=(3.70)(0.735)+(3.70)(9.80) \sin 30.0^{\circ}=20.8 \mathrm{~N} .
$$

52. First we analyze the entire system with "clockwise" motion considered positive (that is, downward is positive for block C, rightward is positive for block B, and upward is positive for block A): $m_{C} g-m_{A} g=M a$ (where $M=$ mass of the system $=24.0 \mathrm{~kg}$). This yields an acceleration of

$$
a=g\left(m_{C}-m_{A}\right) / M=1.63 \mathrm{~m} / \mathrm{s}^{2} .
$$

Next we analyze the forces just on block $C: m_{C} g-T=m_{C} a$. Thus the tension is

$$
T=m_{C} g\left(2 m_{A}+m_{B}\right) / M=81.7 \mathrm{~N} .
$$

53. The forces on the balloon are the force of gravity $m \vec{g}$ (down) and the force of the air \vec{F}_{a} (up). We take the $+y$ to be up, and use a to mean the magnitude of the acceleration (which is not its usual use in this chapter). When the mass is M (before the ballast is thrown out) the acceleration is downward and Newton's second law is

$$
F_{a}-M g=-M a .
$$

After the ballast is thrown out, the mass is $M-m$ (where m is the mass of the ballast) and the acceleration is upward. Newton's second law leads to

$$
F_{a}-(M-m) g=(M-m) a .
$$

The previous equation gives $F_{a}=M(g-a)$, and this plugs into the new equation to give

$$
M(g-a)-(M-m) g=(M-m) a \Rightarrow m=\frac{2 M a}{g+a} .
$$

54. The $+x$ direction for $m_{2}=1.0 \mathrm{~kg}$ is "downhill" and the $+x$ direction for $m_{1}=3.0 \mathrm{~kg}$ is rightward; thus, they accelerate with the same sign.

(a) We apply Newton's second law to each block's x axis:

$$
\begin{aligned}
m_{2} g \sin \theta-T & =m_{2} a \\
F+T & =m_{1} a
\end{aligned}
$$

Adding the two equations allows us to solve for the acceleration:

$$
a=\frac{m_{2} g \sin \theta+F}{m_{1}+m_{2}}
$$

With $F=2.3 \mathrm{~N}$ and $\theta=30^{\circ}$, we have $a=1.8 \mathrm{~m} / \mathrm{s}^{2}$. We plug back and find $T=3.1 \mathrm{~N}$.
(b) We consider the "critical" case where the F has reached the max value, causing the tension to vanish. The first of the equations in part (a) shows that $a=g \sin 30^{\circ}$ in this case; thus, $a=4.9 \mathrm{~m} / \mathrm{s}^{2}$. This implies (along with $T=0$ in the second equation in part (a)) that $F=(3.0)(4.9)=14.7 \mathrm{~N} \approx 15 \mathrm{~N}$ in the critical case.
55. (a) The acceleration (which equals F / m in this problem) is the derivative of the velocity. Thus, the velocity is the integral of F / m, so we find the "area" in the graph (15 units) and divide by the mass (3) to obtain $v-v_{0}=15 / 3=5$. Since $v_{0}=3.0 \mathrm{~m} / \mathrm{s}$, then $v=8.0 \mathrm{~m} / \mathrm{s}$.
(b) Our positive answer in part (a) implies \vec{v} points in the $+x$ direction.
56. The free-body diagram is shown below. Newton's second law for the mass m for the x direction leads to

$$
T_{1}-T_{2}-m g \sin \theta=m a
$$

which gives the difference in the tension in the pull cable:

$$
\begin{aligned}
T_{1}-T_{2} & =m(g \sin \theta+a) \\
& =(2800)\left(9.8 \sin 35^{\circ}+0.81\right) \\
& =1.8 \times 10^{4} \mathrm{~N} .
\end{aligned}
$$

57. (a) We quote our answers to many figures - probably more than are truly "significant." Here $(7682 \mathrm{~L})(" 1.77 \mathrm{~kg} / \mathrm{L} ")=13597 \mathrm{~kg}$. The quotation marks around the 1.77 are due to the fact that this was believed (by the flight crew) to be a legitimate conversion factor (it is not).
(b) The amount they felt should be added was $22300 \mathrm{~kg}-13597 \mathrm{~kg}=87083 \mathrm{~kg}$, which they believed to be equivalent to $(87083 \mathrm{~kg}) /(" 1.77 \mathrm{~kg} / \mathrm{L} ")=4917 \mathrm{~L}$.
(c) Rounding to 4 figures as instructed, the conversion factor is $1.77 \mathrm{lb} / \mathrm{L} \rightarrow 0.8034 \mathrm{~kg} / \mathrm{L}$, so the amount on board was $(7682 \mathrm{~L})(0.8034 \mathrm{~kg} / \mathrm{L})=6172 \mathrm{~kg}$.
(d) The implication is that what as needed was $22300 \mathrm{~kg}-6172 \mathrm{~kg}=16128 \mathrm{~kg}$, so the request should have been for $(16128 \mathrm{~kg}) /(0.8034 \mathrm{~kg} / \mathrm{L})=20075 \mathrm{~L}$.
(e) The percentage of the required fuel was

$$
\frac{7682 \mathrm{~L}(\text { on board })+4917 \mathrm{~L}(\text { added })}{(22300 \mathrm{~kg} \text { required }) /(0.8034 \mathrm{~kg} / \mathrm{L})}=45 \% .
$$

58. We are only concerned with horizontal forces in this problem (gravity plays no direct role). Without loss of generality, we take one of the forces along the $+x$ direction and the other at 80° (measured counterclockwise from the x axis). This calculation is efficiently implemented on a vector capable calculator in polar mode, as follows (using magnitudeangle notation, with angles understood to be in degrees):

$$
\overrightarrow{F_{\text {net }}}=(20 \angle 0)+(35 \angle 80)=(43 \angle 53) \Rightarrow\left|\overrightarrow{F_{\text {net }}}\right|=43 \mathrm{~N} .
$$

Therefore, the mass is $m=(43 \mathrm{~N}) /\left(20 \mathrm{~m} / \mathrm{s}^{2}\right)=2.2 \mathrm{~kg}$.
59. The velocity is the derivative (with respect to time) of given function x, and the acceleration is the derivative of the velocity. Thus, $a=2 c-3(2.0)(2.0) t$, which we use in Newton's second law: $F=(2.0 \mathrm{~kg}) a=4.0 c-24 t$ (with SI units understood). At $t=3.0 \mathrm{~s}$, we are told that $F=-36 \mathrm{~N}$. Thus, $-36=4.0 c-24(3.0)$ can be used to solve for c. The result is $c=+9.0 \mathrm{~m} / \mathrm{s}^{2}$.
60. (a) A small segment of the rope has mass and is pulled down by the gravitational force of the Earth. Equilibrium is reached because neighboring portions of the rope pull up sufficiently on it. Since tension is a force along the rope, at least one of the neighboring portions must slope up away from the segment we are considering. Then, the tension has an upward component which means the rope sags.
(b) The only force acting with a horizontal component is the applied force \vec{F}. Treating the block and rope as a single object, we write Newton's second law for it: $F=(M+m) a$, where a is the acceleration and the positive direction is taken to be to the right. The acceleration is given by $a=F /(M+m)$.
(c) The force of the rope F_{r} is the only force with a horizontal component acting on the block. Then Newton's second law for the block gives

$$
F_{r}=M a=\frac{M F}{M+m}
$$

where the expression found above for a has been used.
(d) Treating the block and half the rope as a single object, with mass $M+\frac{1}{2} m$, where the horizontal force on it is the tension T_{m} at the midpoint of the rope, we use Newton's second law:

$$
T_{m}=\left(M+\frac{1}{2} m\right) a=\frac{\left(M+\frac{1}{2} m\right) F}{(M+m)}=\frac{(2 M+m) F}{2(M+m)} .
$$

61. The goal is to arrive at the least magnitude of $\vec{F}_{\text {net }}$, and as long as the magnitudes of \vec{F}_{2} and \vec{F}_{3} are (in total) less than or equal to $\left|\vec{F}_{1}\right|$ then we should orient them opposite to the direction of \vec{F}_{1} (which is the $+x$ direction).
(a) We orient both \vec{F}_{2} and \vec{F}_{3} in the $-x$ direction. Then, the magnitude of the net force is $50-30-20=0$, resulting in zero acceleration for the tire.
(b) We again orient \vec{F}_{2} and \vec{F}_{3} in the negative x direction. We obtain an acceleration along the $+x$ axis with magnitude

$$
a=\frac{F_{1}-F_{2}-F_{3}}{m}=\frac{50 \mathrm{~N}-30 \mathrm{~N}-10 \mathrm{~N}}{12 \mathrm{~kg}}=0.83 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) In this case, the forces \vec{F}_{2} and \vec{F}_{3} are collectively strong enough to have y components (one positive and one negative) which cancel each other and still have enough x contributions (in the $-x$ direction) to cancel \vec{F}_{1}. Since $\left|\vec{F}_{2}\right|=\left|\vec{F}_{3}\right|$, we see that the angle above the $-x$ axis to one of them should equal the angle below the $-x$ axis to the other one (we denote this angle θ). We require

$$
-50 \mathrm{~N}=F_{2 x}+F_{3 x}=-(30 \mathrm{~N}) \cos \theta-(30 \mathrm{~N}) \cos \theta
$$

which leads to

$$
\theta=\cos ^{-1}\left(\frac{50 \mathrm{~N}}{60 \mathrm{~N}}\right)=34^{\circ}
$$

62. Since the velocity of the particle does not change, it undergoes no acceleration and must therefore be subject to zero net force. Therefore,

$$
\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=0 .
$$

Thus, the third force \vec{F}_{3} is given by

$$
\begin{aligned}
\vec{F}_{3} & =-\vec{F}_{1}-\vec{F}_{2} \\
& =-(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})-(-5 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \\
& =3 \hat{\mathrm{i}}-11 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}
\end{aligned}
$$

in newtons. The specific value of the velocity is not used in the computation.
63. Although the full specification of $\overrightarrow{\mathrm{F}}_{\text {net }}=m \vec{a}$ in this situation involves both x and y axes, only the x-application is needed to find what this particular problem asks for. We note that $a_{y}=0$ so that there is no ambiguity denoting a_{x} simply as a. We choose $+x$ to the right and $+y$ up. We also note that the x component of the rope's tension (acting on the crate) is

$$
F_{x}=F \cos \theta=450 \cos 38^{\circ}=355 \mathrm{~N},
$$

and the resistive force (pointing in the $-x$ direction) has magnitude $f=125 \mathrm{~N}$.
(a) Newton's second law leads to

$$
F_{x}-f=m a \Rightarrow a=\frac{355-125}{310}=0.74 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) In this case, we use Eq. 5-12 to find the mass: $m=W / g=31.6 \mathrm{~kg}$. Now, Newton's second law leads to

$$
T_{x}-f=m a \Rightarrow a=\frac{355-125}{31.6}=7.3 \mathrm{~m} / \mathrm{s}^{2}
$$

64. According to Newton's second law, the magnitude of the force is given by $F=m a$, where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 21) to find the acceleration that brings the neutron to rest in a distance d. Assuming the acceleration is constant, then $v^{2}=v_{0}^{2}+2 a d$ produces the value of a :

$$
a=\frac{\left(v^{2}-v_{0}^{2}\right)}{2 d}=\frac{-\left(1.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(1.0 \times 10^{-14} \mathrm{~m}\right)}=-9.8 \times 10^{27} \mathrm{~m} / \mathrm{s}^{2}
$$

The magnitude of the force is consequently

$$
F=m a=\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(9.8 \times 10^{27} \mathrm{~m} / \mathrm{s}^{2}\right)=16 \mathrm{~N}
$$

65. We are only concerned with horizontal forces in this problem (gravity plays no direct role). Thus, $\sum \vec{F}=m \vec{a}$ reduces to $\vec{F}_{\text {ave }}=m \vec{a}$, and we see that the magnitude of the force is $m a$, where $m=0.20 \mathrm{~kg}$ and $a=|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}}$ and the direction of the force is the same as that of \vec{a}. We take east as the $+x$ direction and north as $+y$.
(a) We find the acceleration to be

$$
\vec{a}=\frac{\vec{v}-\vec{v}_{0}}{\Delta t}=\frac{-5.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{i}}}{0.40}=\left(-17.5 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}
$$

Thus, the magnitude of the force is $|\vec{F}|=m a=(0.20 \mathrm{~kg})\left(17.5 \mathrm{~m} / \mathrm{s}^{2}\right)=3.5 \mathrm{~N}$.
(b) \vec{F} points in the $-\hat{i}$ direction, which means west in this context.
(c) A computation similar to the one in part (a) yields the acceleration with two components, which can be expressed various ways:

$$
\vec{a}=-5.0 \hat{\mathrm{i}}-12.5 \hat{\mathrm{j}} \rightarrow(-5.0,-12.5) \rightarrow\left(13.5 \angle-112^{\circ}\right)
$$

Therefore, the magnitude of the force is

$$
|\vec{F}|=m a=(0.20 \mathrm{~kg})\left(13.5 \mathrm{~m} / \mathrm{s}^{2}\right)=2.7 \mathrm{~N} .
$$

(d) The direction of \vec{F} is " 112° clockwise from east" which means it is 22° west of south.
66. We begin by examining a slightly different problem: similar to this figure but without the string. The motivation is that if (without the string) block A is found to accelerate faster (or exactly as fast) as block B then (returning to the original problem) the tension in the string is trivially zero. In the absence of the string,

$$
\begin{aligned}
a_{A} & =F_{A} / m_{A}=3.0 \mathrm{~m} / \mathrm{s}^{2} \\
a_{B} & =F_{B} / m_{B}=4.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

so the trivial case does not occur. We now (with the string) consider the net force on the system: $M a=F_{A}+F_{B}=36 \mathrm{~N}$. Since $M=10 \mathrm{~kg}$ (the total mass of the system) we obtain a $=3.6 \mathrm{~m} / \mathrm{s}^{2}$. The two forces on block A are F_{A} and T (in the same direction), so we have

$$
m_{A} a=F_{A}+T \Rightarrow T=2.4 \mathrm{~N} .
$$

67. The $+x$ axis is "uphill" for $m_{1}=3.0 \mathrm{~kg}$ and "downhill" for $m_{2}=2.0 \mathrm{~kg}$ (so they both accelerate with the same sign). The x components of the two masses along the x axis are given by $w_{1 x}=m_{1} g \sin \theta_{1}$ and $w_{2 x}=m_{2} g \sin \theta_{2}$, respectively.

Applying Newton's second law, we obtain

$$
\begin{gathered}
T-m_{1} g \sin \theta_{1}=m_{1} a \\
m_{2} g \sin \theta_{2}-T=m_{2} a
\end{gathered}
$$

Adding the two equations allows us to solve for the acceleration:

$$
a=\left(\frac{m_{2} \sin \theta_{2}-m_{1} \sin \theta_{1}}{m_{2}+m_{1}}\right) g
$$

With $\theta_{1}=30^{\circ}$ and $\theta_{2}=60^{\circ}$, we have $a=0.45 \mathrm{~m} / \mathrm{s}^{2}$. This value is plugged back into either of the two equations to yield the tension $T=16 \mathrm{~N}$.
68. Making separate free-body diagrams for the helicopter and the truck, one finds there are two forces on the truck (\vec{T} upward, caused by the tension, which we'll think of as that of a single cable, and $m \vec{g}$ downward, where $m=4500 \mathrm{~kg}$) and three forces on the helicopter (\vec{T} downward, $\vec{F}_{\text {lift }}$ upward, and $M \vec{g}$ downward, where $M=15000 \mathrm{~kg}$). With $+y$ upward, then $a=+1.4 \mathrm{~m} / \mathrm{s}^{2}$ for both the helicopter and the truck.
(a) Newton's law applied to the helicopter and truck separately gives

$$
\begin{aligned}
F_{\mathrm{lift}}-T-M g & =M a \\
T-m g & =m a
\end{aligned}
$$

which we add together to obtain

$$
F_{\mathrm{lift}}-(M+m) g=(M+m) a .
$$

From this equation, we find $F_{\text {lift }}=2.2 \times 10^{5} \mathrm{~N}$.
(b) From the truck equation $T-m g=m a$ we obtain $T=5.0 \times 10^{4} \mathrm{~N}$.
69. (a) Since the performer's weight is $(52)(9.8)=510 \mathrm{~N}$, the rope breaks.
(b) Setting $T=425 \mathrm{~N}$ in Newton's second law (with $+y$ upward) leads to

$$
T-m g=m a \Rightarrow a=\frac{T}{m}-g
$$

which yields $|a|=1.6 \mathrm{~m} / \mathrm{s}^{2}$.
70. With SI units understood, the net force on the box is

$$
\vec{F}_{\text {net }}=\left(3.0+14 \cos 30^{\circ}-11\right) \hat{\mathrm{i}}+\left(14 \sin 30^{\circ}+5.0-17\right) \hat{\mathrm{j}}
$$

which yields $\vec{F}_{\text {net }}=(4.1 \mathrm{~N}) \hat{\mathrm{i}}-(5.0 \mathrm{~N}) \hat{\mathrm{j}}$.
(a) Newton's second law applied to the $m=4.0 \mathrm{~kg}$ box leads to

$$
\vec{a}=\frac{\vec{F}_{\mathrm{net}}}{m}=\left(1.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(1.3 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}} .
$$

(b) The magnitude of \vec{a} is $a=\sqrt{1.0^{2}+(-1.3)^{2}}=1.6 \mathrm{~m} / \mathrm{s}^{2}$.
(c) Its angle is $\tan ^{-1}(-1.3 / 1.0)=-50^{\circ}$ (that is, 50° measured clockwise from the rightward axis).
71. The net force is in the y direction, so the unknown force must have an x component that cancels the $(8.0 \mathrm{~N}) \hat{\mathrm{i}}$ value of the known force, and it must also have enough y component to give the 3.0 kg object an acceleration of $\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. Thus, the magnitude of the unknown force is

$$
|\vec{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{(-8.0)^{2}+9.0^{2}}=12 \mathrm{~N} .
$$

72. We use the notation g as the acceleration due to gravity near the surface of Callisto, m as the mass of the landing craft, a as the acceleration of the landing craft, and F as the rocket thrust. We take down to be the positive direction. Thus, Newton's second law takes the form $m g-F=m a$. If the thrust is $F_{1}(=3260 \mathrm{~N})$, then the acceleration is zero, so $m g-F_{1}=0$. If the thrust is $F_{2}(=2200 \mathrm{~N})$, then the acceleration is $a_{2}\left(=0.39 \mathrm{~m} / \mathrm{s}^{2}\right)$, so $m g-F_{2}=m a_{2}$.
(a) The first equation gives the weight of the landing craft: $m g=F_{1}=3260 \mathrm{~N}$.
(b) The second equation gives the mass:

$$
m=\frac{m g-F_{2}}{a_{2}}=\frac{3260 \mathrm{~N}-2200 \mathrm{~N}}{0.39 \mathrm{~m} / \mathrm{s}^{2}}=2.7 \times 10^{3} \mathrm{~kg}
$$

(c) The weight divided by the mass gives the acceleration due to gravity:

$$
g=(3260 \mathrm{~N}) /\left(2.7 \times 10^{3} \mathrm{~kg}\right)=1.2 \mathrm{~m} / \mathrm{s}^{2} .
$$

73. The "certain force" denoted F is assumed to be the net force on the object when it gives m_{1} an acceleration $a_{1}=12 \mathrm{~m} / \mathrm{s}^{2}$ and when it gives m_{2} an acceleration $a_{2}=3.3 \mathrm{~m} / \mathrm{s}^{2}$. Thus, we substitute $m_{1}=F / a_{1}$ and $m_{2}=F / a_{2}$ in appropriate places during the following manipulations.
(a) Now we seek the acceleration a of an object of mass $m_{2}-m_{1}$ when F is the net force on it. Thus,

$$
a=\frac{F}{m_{2}-m_{1}}=\frac{F}{\left(F / a_{2}\right)-\left(F / a_{1}\right)}=\frac{a_{1} a_{2}}{a_{1}-a_{2}}
$$

which yields $a=4.6 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Similarly for an object of mass $m_{2}+m_{1}$:

$$
a=\frac{F}{m_{2}+m_{1}}=\frac{F}{\left(F / a_{2}\right)+\left(F / a_{1}\right)}=\frac{a_{1} a_{2}}{a_{1}+a_{2}}
$$

which yields $a=2.6 \mathrm{~m} / \mathrm{s}^{2}$.
74. Using the usual coordinate system (right $=+x$ and $u p=+y$) for both blocks has the important consequence that for the $m_{1}=3.0 \mathrm{~kg}$ block to have a positive acceleration ($a>$ 0), block m_{2} must have a negative acceleration of the same magnitude ($-a$). Thus, applying Newton's second law to the two blocks, we have

$$
\begin{aligned}
T & =m_{1} a=(3.0 \mathrm{~kg})\left(1.0 \mathrm{~m} / \mathrm{s}^{2}\right) & & \text { along } x \text {-axis } \\
T-m_{2} g & =m_{2}\left(-1.0 \mathrm{~m} / \mathrm{s}^{2}\right) & & \text { along } y \text {-axis. }
\end{aligned}
$$

(a) The first equation yields the tension $T=3.0 \mathrm{~N}$.
(b) The second equation yields the mass $m_{2}=3.0 / 8.8=0.34 \mathrm{~kg}$.
75. We take $+x$ uphill for the $m_{2}=1.0 \mathrm{~kg}$ box and $+x$ rightward for the $m_{1}=3.0 \mathrm{~kg}$ box (so the accelerations of the two boxes have the same magnitude and the same sign). The uphill force on m_{2} is F and the downhill forces on it are T and $m_{2} g \sin \theta$, where $\theta=37^{\circ}$. The only horizontal force on m_{1} is the rightward-pointed tension. Applying Newton's second law to each box, we find

$$
\begin{aligned}
F-T-m_{2} g \sin \theta & =m_{2} a \\
T & =m_{1} a
\end{aligned}
$$

which can be added to obtain $F-m_{2} g \sin \theta=\left(m_{1}+m_{2}\right) a$. This yields the acceleration

$$
a=\frac{12-(1.0)(9.8) \sin 37^{\circ}}{1.0+3.0}=1.53 \mathrm{~m} / \mathrm{s}^{2}
$$

Thus, the tension is $T=m_{1} a=(3.0)(1.53)=4.6 \mathrm{~N}$.
76. We apply Newton's second law (with $+y$ up)

$$
F_{\mathrm{elv}}-m g=m a
$$

where $m=100 \mathrm{~kg}$ and a must be estimated from the graph (it is the instantaneous slope at the various moments).
(a) At $t=1.8 \mathrm{~s}$, we estimate the slope to be $+1.0 \mathrm{~m} / \mathrm{s}^{2}$. Thus, Newton's law yields

$$
F_{\mathrm{elv}}=m(a+g) \approx 1100 \mathrm{~N}=1.1 \mathrm{kN}
$$

(b) The direction of $\vec{F}_{\text {elv }}$ is up.
(c) At $t=4.4 \mathrm{~s}$, the slope is zero, so $F_{\text {elv }}=m g=9.8 \times 10^{2} \mathrm{~N}$.
(d) The direction of $\vec{F}_{\text {elv }}$ is up.
(e) At $t=6.8 \mathrm{~s}$, we estimate the slope to be $-1.7 \mathrm{~m} / \mathrm{s}^{2}$. Thus, Newton's law yields

$$
F_{\mathrm{elv}}=m(a+g)=(100)(-1.7+9.8)=8.1 \times 10^{2} \mathrm{~N}
$$

(f) The direction of $\vec{F}_{\text {elv }}$ is up.
77. We first analyze the forces on $m_{1}=1.0 \mathrm{~kg}$.

The $+x$ direction is "downhill" (parallel to \vec{T}).
With the acceleration $\left(5.5 \mathrm{~m} / \mathrm{s}^{2}\right)$ in the positive x direction for m_{1}, then Newton's second law, applied to the x axis, becomes

$$
T+m_{1} g \sin \beta=m_{1}\left(5.5 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

But for $m_{2}=2.0 \mathrm{~kg}$, using the more familiar vertical y axis (with $u p$ as the positive direction), we have the acceleration in the negative direction:

$$
F+T-m_{2} g=m_{2}\left(-5.5 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

where the tension comes in as an upward force (the cord can pull, not push).
(a) From the equation for m_{2}, with $F=6.0 \mathrm{~N}$, we find the tension $T=2.6 \mathrm{~N}$.
(b) From the equation for m, using the result from part (a), we obtain the angle $\beta=17^{\circ}$.
78. From the reading when the elevator was at rest, we know the mass of the object is m $=65 / 9.8=6.6 \mathrm{~kg}$. We choose $+y$ upward and note there are two forces on the object: $m g$ downward and T upward (in the cord that connects it to the balance; T is the reading on the scale by Newton's third law).
(a) "Upward at constant speed" means constant velocity, which means no acceleration. Thus, the situation is just as it was at rest: $T=65 \mathrm{~N}$.
(b) The term "deceleration" is used when the acceleration vector points in the direction opposite to the velocity vector. We're told the velocity is upward, so the acceleration vector points downward ($a=-2.4 \mathrm{~m} / \mathrm{s}^{2}$). Newton's second law gives

$$
T-m g=m a \Rightarrow T=(6.6)(9.8-2.4)=49 \mathrm{~N} .
$$

79. (a) Solving Eq. 5-23 and Eq. 5-24 (with 47 ${ }^{\circ}$ replaced with θ_{2}) for T_{1} we obtain

$$
T_{1}=\frac{147 \mathrm{~N}}{\sin 28^{\circ}+\cos 28^{\circ} \tan \theta_{2}}
$$

A plot of T_{1} as a function of θ_{2} is depicted in the figure below.
79. (a) Solving Eq. 5-23 and Eq. 5-24 (with 47º replaced with θ_{2}) for T_{1} we obtain

$$
T_{1}=\frac{147 \mathrm{~N}}{\sin 28^{\circ}+\cos 28^{\circ} \tan \theta_{2}}
$$

A plot of T_{1} as a function of θ_{2} is depicted in the figure below.

(b) The maximum value of T_{1} is 313 N .
(c) The minimum value of T_{1} is 0 N .
(d) The maximum value $T_{1}=313 \mathrm{~N}$ is not physically possible since it would require rope 2 to become effectively horizontal (in which case its length would have to approach infinity if it were still to connect to the block B and to the ceiling).
(e) The minimum value $T_{1}=0 \mathrm{~N}$ is certainly possible; in this case rope 2 (which is now vertical) supports all the weight and rope 1 becomes slack.
80. We use $W_{p}=m g_{p}$, where W_{p} is the weight of an object of mass m on the surface of a certain planet p, and g_{p} is the acceleration of gravity on that planet.
(a) The weight of the space ranger on Earth is

$$
W_{e}=m g_{e}=(75 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=7.4 \times 10^{2} \mathrm{~N} .
$$

(b) The weight of the space ranger on Mars is

$$
W_{m}=m g_{m}=(75 \mathrm{~kg})\left(3.8 \mathrm{~m} / \mathrm{s}^{2}\right)=2.9 \times 10^{2} \mathrm{~N} .
$$

(c) The weight of the space ranger in interplanetary space is zero, where the effects of gravity are negligible.
(d) The mass of the space ranger remains the same, $m=75 \mathrm{~kg}$, at all the locations.
81. We apply Eq. 5-12.
(a) The mass is $m=W / g=(22 \mathrm{~N}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=2.2 \mathrm{~kg}$. At a place where $g=4.9 \mathrm{~m} / \mathrm{s}^{2}$, the mass is still 2.2 kg but the gravitational force is $F_{g}=m g=(2.2 \mathrm{~kg})\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right)=11 \mathrm{~N}$.
(b) As noted, $m=2.2 \mathrm{~kg}$.
(c) At a place where $g=0$ the gravitational force is zero.
(d) The mass is still 2.2 kg .
82. We write the length unit light-month, the distance traveled by light in one month, as c-month in this solution.
(a) The magnitude of the required acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}=\frac{(0.10)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(3.0 \text { days })(86400 \mathrm{~s} / \text { day })}=1.2 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The acceleration in terms of g is

$$
a=\left(\frac{a}{g}\right) g=\left(\frac{1.2 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right) g=12 g .
$$

(c) The force needed is

$$
F=m a=\left(1.20 \times 10^{6}\right)\left(1.2 \times 10^{2}\right)=1.4 \times 10^{8} \mathrm{~N}
$$

(d) The spaceship will travel a distance $d=0.1 c$-month during one month. The time it takes for the spaceship to travel at constant speed for 5.0 light-months is

$$
t=\frac{d}{v}=\frac{5.0 \mathrm{c} \cdot \text { months }}{0.1 c}=50 \text { months } \approx 4.2 \text { years. }
$$

83. The force diagrams in Fig. 5-18 are helpful to refer to. In adapting Fig. 5-18(b) to this problem, the normal force \vec{F}_{N} and the tension \vec{T} should be labeled $F_{\mathrm{m}, \mathrm{r}_{y}}$ and $F_{\mathrm{m}, \mathrm{r}_{x}}$, respectively, and thought of as the y and x components of the force $\vec{F}_{\mathrm{m}, \mathrm{r}}$ exerted by the motorcycle on the rider. We adopt the coordinates used in Fig. 5-18 and note that they are not the usual horizontal and vertical axes.
(a) Since the net force equals $m a$, then the magnitude of the net force on the rider is $(60.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)=1.8 \times 10^{2} \mathrm{~N}$.
(b) We apply Newton's second law to the x axis:

$$
F_{\mathrm{m}, \mathrm{r}_{x}}-m g \sin \theta=m a
$$

where $m=60.0 \mathrm{~kg}, a=3.0 \mathrm{~m} / \mathrm{s}^{2}$, and $\theta=10^{\circ}$. Thus, $F_{\mathrm{m}, r_{x}}=282 \mathrm{~N}$ Applying it to the y axis (where there is no acceleration), we have

$$
F_{\mathrm{m}, \mathrm{r}_{\mathrm{y}}}-m g \cos \theta=0
$$

which produces $F_{\mathrm{m}, \mathrm{r}_{y}}=579 \mathrm{~N}$. Using the Pythagorean theorem, we find

$$
\sqrt{F_{m, r_{x}}^{2}+F_{m, r_{y}}^{2}}=644 \mathrm{~N} .
$$

Now, the magnitude of the force exerted on the rider by the motorcycle is the same magnitude of force exerted by the rider on the motorcycle, so the answer is $6.4 \times 10^{2} \mathrm{~N}$.
84. The mass of the automobile is $m=(17000 / 9.80)=1735 \mathrm{~kg}$, so the net force has magnitude

$$
F=m a=(1735)(3.66)=6.35 \times 10^{2} \mathrm{~N} .
$$

85. We take the down to be the $+y$ direction.
(a) The first diagram (shown below left) is the free-body diagram for the person and parachute, considered as a single object with a mass of $80 \mathrm{~kg}+5 \mathrm{~kg}=85 \mathrm{~kg}$.

\vec{F}_{a} is the force of the air on the parachute and $m \vec{g}$ is the force of gravity. Application of Newton's second law produces $m g-F_{a}=m a$, where a is the acceleration. Solving for F_{a} we find

$$
F_{a}=m(g-a)=(85 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-2.5 \mathrm{~m} / \mathrm{s}^{2}\right)=620 \mathrm{~N} .
$$

(b) The second diagram (above right) is the free-body diagram for the parachute alone. \vec{F}_{a} is the force of the air, $m_{p} \vec{g}$ is the force of gravity, and \vec{F}_{p} is the force of the person. Now, Newton's second law leads to

$$
m_{p} g+F_{p}-F_{a}=m_{p} a .
$$

Solving for F_{p}, we obtain

$$
F_{p}=m_{p}(a-g)+F_{a}=(5.0)(2.5-9.8)+620=580 \mathrm{~N} .
$$

86. The additional "apparent weight" experienced during upward acceleration is well treated in Sample Problem 5-8. The discussion in the textbook surrounding Eq. 5-13 is also relevant to this.
(a) When $\vec{F}_{\text {net }}=3 F-m g=0$, we have

$$
F=\frac{1}{3} m g=\frac{1}{3}(1400 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=4.6 \times 10^{3} \mathrm{~N}
$$

for the force exerted by each bolt on the engine.
(b) The force on each bolt now satisfies $3 F-m g=m a$, which yields

$$
F=\frac{1}{3} m(g+a)=\frac{1}{3}(1400)(9.8+2.6)=5.8 \times 10^{3} \mathrm{~N} .
$$

87. The coordinate choices are made in the problem statement.
(a) We write the velocity of the armadillo as $\vec{v}=v_{x} \hat{i}+v_{y} \hat{\mathrm{j}}$. Since there is no net force exerted on it in the x direction, the x component of the velocity of the armadillo is a constant: $v_{x}=5.0 \mathrm{~m} / \mathrm{s}$. In the y direction at $t=3.0 \mathrm{~s}$, we have (using Eq. 2-11 with $v_{0 y}=0$)

$$
v_{y}=v_{0 y}+a_{y} t=v_{0 y}+\left(\frac{F_{y}}{m}\right) t=\left(\frac{17}{12}\right)(3.0)=4.3
$$

in SI units. Thus, $\vec{v}=(5.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$.
(b) We write the position vector of the armadillo as $\vec{r}=r_{x} \hat{\mathrm{i}}+r_{y} \hat{\mathrm{j}}$. At $t=3.0 \mathrm{~s}$ we have $r_{x}=(5.0)(3.0)=15$ and (using Eq. 2-15 with $\left.v_{0 y}=0\right)$

$$
r_{y}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}=\frac{1}{2}\left(\frac{F_{y}}{m}\right) t^{2}=\frac{1}{2}\left(\frac{17}{12}\right)(3.0)^{2}=6.4
$$

in SI units. The position vector at $t=3.0 \mathrm{~s}$ is therefore

$$
\vec{r}=(15 \mathrm{~m}) \hat{\mathrm{i}}+(6.4 \mathrm{~m}) \hat{\mathrm{j}} .
$$

88. An excellent analysis of the accelerating elevator is given in Sample Problem 5-8 in the textbook.
(a) From Newton's second law, the magnitude of the maximum force on the passenger from the floor is given by

$$
F_{\max }-m g=m a \quad \text { where } \quad a=a_{\max }=2.0 \mathrm{~m} / \mathrm{s}^{2}
$$

we obtain $F_{N}=590 \mathrm{~N}$ for $m=50 \mathrm{~kg}$.
(b) The direction is upward.
(c) Again, we use Newton's second law, the magnitude of the minimum force on the passenger from the floor is given by

$$
F_{\min }-m g=m a \text { where } a=a_{\min }=-3.0 \mathrm{~m} / \mathrm{s}^{2} .
$$

Now, we obtain $F_{N}=340 \mathrm{~N}$.
(d) The direction is upward.
(e) Returning to part (a), we use Newton's third law, and conclude that the force exerted by the passenger on the floor is $\left|\vec{F}_{P F}\right|=590 \mathrm{~N}$.
(f) The direction is downward.
89. We assume the direction of motion is $+x$ and assume the refrigerator starts from rest (so that the speed being discussed is the velocity \vec{v} which results from the process). The only force along the x axis is the x component of the applied force \vec{F}.
(a) Since $v_{0}=0$, the combination of Eq. 2-11 and Eq. 5-2 leads simply to

$$
F_{x}=m\left(\frac{v}{t}\right) \Rightarrow v_{i}=\left(\frac{F \cos \theta_{i}}{m}\right) t
$$

for $i=1$ or 2 (where we denote $\theta_{1}=0$ and $\theta_{2}=\theta$ for the two cases). Hence, we see that the ratio v_{2} over v_{1} is equal to $\cos \theta$.
(b) Since $v_{0}=0$, the combination of Eq. 2-16 and Eq. 5-2 leads to

$$
F_{x}=m\left(\frac{v^{2}}{2 \Delta x}\right) \Rightarrow v_{i}=\sqrt{2\left(\frac{F \cos \theta_{i}}{m}\right) \Delta x}
$$

for $i=1$ or 2 (again, $\theta_{1}=0$ and $\theta_{2}=\theta$ is used for the two cases). In this scenario, we see that the ratio v_{2} over v_{1} is equal to $\sqrt{\cos \theta}$.
90. (a) In unit vector notation, $m \vec{a}=(-3.76 \mathrm{~N}) \hat{i}+(1.37 \mathrm{~N}) \hat{j}$. Thus, Newton's second law leads to

$$
\overrightarrow{F_{2}}=m \vec{a}-\vec{F}_{1}=(-6.26 \mathrm{~N}) \hat{\mathrm{i}}-(3.23 \mathrm{~N}) \hat{\mathrm{j}} .
$$

(b) The magnitude of \vec{F}_{2} is $F_{2}=\sqrt{(-6.26)^{2}+(-3.23)^{2}}=7.04 \mathrm{~N}$.
(c) Since \vec{F}_{2} is in the third quadrant, the angle is

$$
\theta=\tan ^{-1}\left(\frac{-3.23}{-6.26}\right)=27.3^{\circ} \text { or } 207^{\circ}
$$

counterclockwise from positive direction of x axis (or 153° clockwise from $+x$).
91. (a) The word "hovering" is taken to imply that the upward (thrust) force is equal in magnitude to the downward (gravitational) force: $m g=4.9 \times 10^{5} \mathrm{~N}$.
(b) Now the thrust must exceed the answer of part (a) by $m a=10 \times 10^{5} \mathrm{~N}$, so the thrust must be $1.5 \times 10^{6} \mathrm{~N}$.
92. (a) For the 0.50 meter drop in "free-fall", Eq. 2-16 yields a speed of $3.13 \mathrm{~m} / \mathrm{s}$. Using this as the "initial speed" for the final motion (over 0.02 meter) during which his motion slows at rate " a ", we find the magnitude of his average acceleration from when his feet first touch the patio until the moment his body stops moving is $a=245 \mathrm{~m} / \mathrm{s}^{2}$.
(b) We apply Newton's second law: $F_{\text {stop }}-m g=m a \Rightarrow F_{\text {stop }}=20.4 \mathrm{kN}$.
93. (a) Choosing the direction of motion as $+x$, Eq. 2-11 gives

$$
a=\frac{88.5 \mathrm{~km} / \mathrm{h}-0}{6.0 \mathrm{~s}}=15 \mathrm{~km} / \mathrm{h} / \mathrm{s}
$$

Converting to SI, this is $a=4.1 \mathrm{~m} / \mathrm{s}^{2}$.
(b) With mass $m=2000 / 9.8=204 \mathrm{~kg}$, Newton's second law gives $\vec{F}=m \vec{a}=836 \mathrm{~N}$ in the $+x$ direction.
94. (a) Intuition readily leads to the conclusion that the heavier block should be the hanging one, for largest acceleration. The force that "drives" the system into motion is the weight of the hanging block (gravity acting on the block on the table has no effect on the dynamics, so long as we ignore friction). Thus, $m=4.0 \mathrm{~kg}$.

The acceleration of the system and the tension in the cord can be readily obtained by solving

$$
\begin{aligned}
m g-T & =m a \\
T & =M a .
\end{aligned}
$$

(b) The acceleration is given by

$$
a=\left(\frac{m}{m+M}\right) g=6.5 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The tension is

$$
T=M a=\left(\frac{M m}{m+M}\right) g=13 \mathrm{~N} .
$$

95. (a) With SI units understood, the net force is

$$
\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}=(3.0+(-2.0)) \hat{\mathrm{i}}+(4.0+(-6.0)) \hat{\mathrm{j}}
$$

which yields $\vec{F}_{\text {net }}=1.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}$ in newtons.
(b) The magnitude of $\vec{F}_{\text {net }}$ is $F_{\text {net }}=\sqrt{(1.0)^{2}+(-2.0)^{2}}=2.2 \mathrm{~N}$.
(c) The angle of $\vec{F}_{\text {net }}$ is

$$
\theta=\tan ^{-1}\left(\frac{-2.0}{1.0}\right)=-63^{\circ}
$$

(d) The magnitude of \vec{a} is

$$
a=F_{\text {net }} / m=(2.2 \mathrm{~N}) /(1.0 \mathrm{~kg})=2.2 \mathrm{~m} / \mathrm{s}^{2} .
$$

(e) Since $\vec{F}_{\text {net }}$ is equal to \vec{a} multiplied by mass m, which is a positive scalar that cannot affect the direction of the vector it multiplies, \vec{a} has the same angle as the net force, i.e, $\theta=-63^{\circ}$. In magnitude-angle notation, we may write $\vec{a}=\left(2.2 \mathrm{~m} / \mathrm{s}^{2} \angle-63^{\circ}\right)$.
96. The mass of the pilot is $m=735 / 9.8=75 \mathrm{~kg}$. Denoting the upward force exerted by the spaceship (his seat, presumably) on the pilot as \vec{F} and choosing upward the $+y$ direction, then Newton's second law leads to

$$
F-m g_{\text {moon }}=m a \Rightarrow F=(75)(1.6+1.0)=195 \mathrm{~N} .
$$

97. (a) With $v_{0}=0$, Eq. $2-16$ leads to

$$
a=\frac{v^{2}}{2 \Delta x}=\frac{\left(6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}{2(0.015 \mathrm{~m})}=1.2 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}
$$

The force responsible for producing this acceleration is

$$
F=m a=\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.2 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}\right)=1.1 \times 10^{-15} \mathrm{~N} .
$$

(b) The weight is $m g=8.9 \times 10^{-30} \mathrm{~N}$, many orders of magnitude smaller than the result of part (a). As a result, gravity plays a negligible role in most atomic and subatomic processes.
98. We denote the thrust as T and choose $+y$ upward. Newton's second law leads to

$$
T-M g=M a \Rightarrow a=\frac{2.6 \times 10^{5}}{1.3 \times 10^{4}}-9.8=10 \mathrm{~m} / \mathrm{s}^{2}
$$

99. (a) The bottom cord is only supporting $m_{2}=4.5 \mathrm{~kg}$ against gravity, so its tension is $T_{2}=m_{2} g=(4.5)(9.8)=44 \mathrm{~N}$.
(b) The top cord is supporting a total mass of $m_{1}+m_{2}=(3.5+4.5)=8.0 \mathrm{~kg}$ against gravity, so the tension there is

$$
T_{1}=\left(m_{1}+m_{2}\right) g=(8.0)(9.8)=78 \mathrm{~N} .
$$

(c) In the second picture, the lowest cord supports a mass of $m_{5}=5.5 \mathrm{~kg}$ against gravity and consequently has a tension of $T_{5}=(5.5)(9.8)=54 \mathrm{~N}$.
(d) The top cord, we are told, has tension $T_{3}=199 \mathrm{~N}$ which supports a total of 199/9.80 $=$ $20.3 \mathrm{~kg}, 10.3$ of which is already accounted for in the figure. Thus, the unknown mass in the middle must be $m_{4}=20.3-10.3=10.0 \mathrm{~kg}$, and the tension in the cord above it must be enough to support $m_{4}+m_{5}=(10.0+5.50)=15.5 \mathrm{~kg}$, so $T_{4}=(15.5)(9.80)=152 \mathrm{~N}$. Another way to analyze this is to examine the forces on m_{3}; one of the downward forces on it is T_{4}.
100. Since $\left(x_{0}, y_{0}\right)=(0,0)$ and $\vec{v}_{0}=6.0 \hat{\mathrm{i}}$, we have from Eq. 2-15

$$
\begin{aligned}
& x=(6.0) t+\frac{1}{2} a_{x} t^{2} \\
& y=\frac{1}{2} a_{y} t^{2} .
\end{aligned}
$$

These equations express uniform acceleration along each axis; the x axis points east and the y axis presumably points north (the assumption is that the figure shown in the problem is a view from above). Lengths are in meters, time is in seconds, and force is in newtons.

Examination of any non-zero (x, y) point will suffice, though it is certainly a good idea to check results by examining more than one. Here we will look at the $t=4.0 \mathrm{~s}$ point, at $(8.0,8.0)$. The x equation becomes $8.0=(6.0)(4.0)+\frac{1}{2} a_{x}(4.0)^{2}$. Therefore, $a_{x}=-2.0$ $\mathrm{m} / \mathrm{s}^{2}$. The y equation becomes $8.0=\frac{1}{2} a_{y}(4.0)^{2}$. Thus, $a_{y}=1.0 \mathrm{~m} / \mathrm{s}^{2}$. The force, then, is

$$
\vec{F}=m \vec{a}=-24 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}
$$

(a) The magnitude of \vec{F} is $|\vec{F}|=\sqrt{(-24)^{2}+(12)^{2}}=27 \mathrm{~N}$.
(b) The direction of \vec{F} is $\theta=\tan ^{-1}(12 /(-24))=153^{\circ}$, measured counterclockwise from the $+x$ axis, or 27° north of west.
101. We are only concerned with horizontal forces in this problem (gravity plays no direct role). Thus, $\sum \vec{F}=m \vec{a}$ reduces to $\vec{F}_{\text {avg }}=m \vec{a}$, and we see that the magnitude of the force is $m a$, where $m=0.20 \mathrm{~kg}$ and

$$
a=|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

and the direction of the force is the same as that of \vec{a}. We take east as the $+x$ direction and north as $+y$. The acceleration is the average acceleration in the sense of Eq. 4-15.
(a) We find the (average) acceleration to be

$$
\vec{a}=\frac{\vec{v}-\vec{v}_{0}}{\Delta t}=\frac{(-5.0 \hat{\mathrm{i}})-(2.0 \hat{\mathrm{i}})}{0.50}=-14 \hat{\mathrm{i}} \mathrm{~m} / \mathrm{s}^{2}
$$

Thus, the magnitude of the force is $(0.20 \mathrm{~kg})\left(14 \mathrm{~m} / \mathrm{s}^{2}\right)=2.8 \mathrm{~N}$ and its direction is $-\hat{\mathrm{i}}$ which means west in this context.
(b) A computation similar to the one in part (a) yields the (average) acceleration with two components, which can be expressed various ways:

$$
\vec{a}=-4.0 \hat{\mathrm{i}}-10.0 \hat{\mathrm{j}} \rightarrow(-4.0,-10.0) \rightarrow\left(10.8 \angle-112^{\circ}\right)
$$

Therefore, the magnitude of the force is $(0.20 \mathrm{~kg})\left(10.8 \mathrm{~m} / \mathrm{s}^{2}\right)=2.2 \mathrm{~N}$ and its direction is 112° clockwise from east - which means it is 22° west of south, stated more conventionally.

1. An excellent discussion and equation development related to this problem is given in Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13)

$$
\theta=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.04 \approx 2^{\circ}
$$

2. The free-body diagram for the player is shown next. \vec{F}_{N} is the normal force of the ground on the player, $m \vec{g}$ is the force of gravity, and \vec{f} is the force of friction. The force of friction is related to the normal force by $f=\mu_{k} F_{N}$. We use Newton's second law applied to the vertical axis to find the normal force. The vertical component of the acceleration is zero, so we obtain $F_{N}-m g=0$; thus, $F_{N}=m g$. Consequently,

$$
\begin{aligned}
\mu_{k} & =\frac{f}{F_{N}} \\
& =\frac{470 \mathrm{~N}}{(79 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =0.61 .
\end{aligned}
$$

3. We do not consider the possibility that the bureau might tip, and treat this as a purely horizontal motion problem (with the person's push \vec{F} in the $+x$ direction). Applying Newton's second law to the x and y axes, we obtain

$$
\begin{aligned}
F-f_{s, \max } & =m a \\
F_{N}-m g & =0
\end{aligned}
$$

respectively. The second equation yields the normal force $F_{N}=m g$, whereupon the maximum static friction is found to be (from Eq. 6-1) $f_{s, \text { max }}=\mu_{s} m g$. Thus, the first equation becomes

$$
F-\mu_{s} m g=m a=0
$$

where we have set $a=0$ to be consistent with the fact that the static friction is still (just barely) able to prevent the bureau from moving.
(a) With $\mu_{s}=0.45$ and $m=45 \mathrm{~kg}$, the equation above leads to $F=198 \mathrm{~N}$. To bring the bureau into a state of motion, the person should push with any force greater than this value. Rounding to two significant figures, we can therefore say the minimum required push is $F=2.0 \times 10^{2} \mathrm{~N}$.
(b) Replacing $m=45 \mathrm{~kg}$ with $m=28 \mathrm{~kg}$, the reasoning above leads to roughly $F=1.2 \times 10^{2} \mathrm{~N}$.
4. To maintain the stone's motion, a horizontal force (in the $+x$ direction) is needed that cancels the retarding effect due to kinetic friction. Applying Newton's second to the x and y axes, we obtain

$$
\begin{gathered}
F-f_{k}=m a \\
F_{N}-m g=0
\end{gathered}
$$

respectively. The second equation yields the normal force $F_{N}=m g$, so that (using Eq. 6-2) the kinetic friction becomes $f_{k}=\mu_{k} m g$. Thus, the first equation becomes

$$
F-\mu_{k} m g=m a=0
$$

where we have set $a=0$ to be consistent with the idea that the horizontal velocity of the stone should remain constant. With $m=20 \mathrm{~kg}$ and $\mu_{k}=0.80$, we find $F=1.6 \times 10^{2} \mathrm{~N}$.
5. We denote \vec{F} as the horizontal force of the person exerted on the crate (in the $+x$ direction), \vec{f}_{k} is the force of kinetic friction (in the $-x$ direction), F_{N} is the vertical normal force exerted by the floor (in the $+y$ direction), and $m \vec{g}$ is the force of gravity. The magnitude of the force of friction is given by $f_{k}=\mu_{k} F_{N}$ (Eq. 6-2). Applying Newton's second law to the x and y axes, we obtain

$$
\begin{gathered}
F-f_{k}=m a \\
F_{N}-m g=0
\end{gathered}
$$

respectively.
(a) The second equation yields the normal force $F_{N}=m g$, so that the friction is

$$
f_{k}=\mu_{k} m g=(0.35)(55 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.9 \times 10^{2} \mathrm{~N} .
$$

(b) The first equation becomes

$$
F-\mu_{k} m g=m a
$$

which (with $F=220 \mathrm{~N}$) we solve to find

$$
a=\frac{F}{m}-\mu_{k} g=0.56 \mathrm{~m} / \mathrm{s}^{2} .
$$

6. The greatest deceleration (of magnitude a) is provided by the maximum friction force (Eq. 6-1, with $F_{N}=m g$ in this case). Using Newton's second law, we find

$$
a=f_{\mathrm{s}, \max } / m=\mu_{\mathrm{s}} g .
$$

Eq. 2-16 then gives the shortest distance to stop: $|\Delta x|=v^{2} / 2 a=36 \mathrm{~m}$. In this calculation, it is important to first convert v to $13 \mathrm{~m} / \mathrm{s}$.
7. We choose $+x$ horizontally rightwards and $+y$ upwards and observe that the 15 N force has components $F_{x}=F \cos \theta$ and $F_{y}=-F \sin \theta$.
(a) We apply Newton's second law to the y axis:

$$
F_{N}-F \sin \theta-m g=0 \Rightarrow F_{N}=(15) \sin 40^{\circ}+(3.5)(9.8)=44 \mathrm{~N} .
$$

With $\mu_{k}=0.25$, Eq. 6-2 leads to $f_{k}=11 \mathrm{~N}$.
(b) We apply Newton's second law to the x axis:

$$
F \cos \theta-f_{k}=m a \Rightarrow a=\frac{(15) \cos 40^{\circ}-11}{3.5}=0.14 \mathrm{~m} / \mathrm{s}^{2}
$$

Since the result is positive-valued, then the block is accelerating in the $+x$ (rightward) direction.
8. We first analyze the forces on the pig of mass m. The incline angle is θ.

The $+x$ direction is "downhill."
Application of Newton's second law to the x - and y-axes leads to

$$
\begin{aligned}
m g \sin \theta-f_{k} & =m a \\
F_{N}-m g \cos \theta & =0 .
\end{aligned}
$$

Solving these along with Eq. 6-2 $\left(f_{k}=\mu_{k} F_{N}\right)$ produces the following result for the pig's downhill acceleration:

$$
a=g\left(\sin \theta-\mu_{k} \cos \theta\right) .
$$

To compute the time to slide from rest through a downhill distance ℓ, we use Eq. 2-15:

$$
\ell=v_{0} t+\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{2 \ell}{a}} .
$$

We denote the frictionless $\left(\mu_{k}=0\right)$ case with a prime and set up a ratio:

$$
\frac{t}{t^{\prime}}=\frac{\sqrt{2 \ell / a}}{\sqrt{2 \ell / a^{\prime}}}=\sqrt{\frac{a^{\prime}}{a}}
$$

which leads us to conclude that if $t / t^{\prime}=2$ then $a^{\prime}=4 a$. Putting in what we found out above about the accelerations, we have

$$
g \sin \theta=4 g\left(\sin \theta-\mu_{k} \cos \theta\right) .
$$

Using $\theta=35^{\circ}$, we obtain $\mu_{k}=0.53$.
9. Applying Newton's second law to the horizontal motion, we have $F-\mu_{\mathrm{k}} m g=m a$, where we have used Eq. 6-2, assuming that $F_{N}=m g$ (which is equivalent to assuming that the vertical force from the broom is negligible). Eq. 2-16 relates the distance traveled and the final speed to the acceleration: $v^{2}=2 a \Delta x$. This gives $a=1.4 \mathrm{~m} / \mathrm{s}^{2}$. Returning to the force equation, we find (with $F=25 \mathrm{~N}$ and $m=3.5 \mathrm{~kg}$) that $\mu_{\mathrm{k}}=0.58$.
10. In addition to the forces already shown in Fig. 6-22, a free-body diagram would include an upward normal force \vec{F}_{N} exerted by the floor on the block, a downward $m \vec{g}$ representing the gravitational pull exerted by Earth, and an assumed-leftward \vec{f} for the kinetic or static friction. We choose $+x$ rightwards and $+y$ upwards. We apply Newton's second law to these axes:

$$
\begin{aligned}
F-f & =m a \\
P+F_{N}-m g & =0
\end{aligned}
$$

where $F=6.0 \mathrm{~N}$ and $m=2.5 \mathrm{~kg}$ is the mass of the block.
(a) In this case, $P=8.0 \mathrm{~N}$ leads to $F_{N}=(2.5)(9.8)-8.0=16.5 \mathrm{~N}$. Using Eq. 6-1, this implies $f_{s, \text { max }}=\mu_{s} F_{N}=6.6 \mathrm{~N}$, which is larger than the 6.0 N rightward force - so the block (which was initially at rest) does not move. Putting $a=0$ into the first of our equations above yields a static friction force of $f=P=6.0 \mathrm{~N}$.
(b) In this case, $P=10 \mathrm{~N}$, the normal force is $F_{N}=(2.5)(9.8)-10=14.5 \mathrm{~N}$. Using Eq. 61 , this implies $f_{s, \text { max }}=\mu_{s} F_{N}=5.8 \mathrm{~N}$, which is less than the 6.0 N rightward force - so the block does move. Hence, we are dealing not with static but with kinetic friction, which Eq. 6-2 reveals to be $f_{k}=\mu_{k} F_{N}=3.6 \mathrm{~N}$.
(c) In this last case, $P=12 \mathrm{~N}$ leads to $F_{N}=12.5 \mathrm{~N}$ and thus to $f_{s, \text { max }}=\mu_{s} F_{N}=5.0 \mathrm{~N}$, which (as expected) is less than the 6.0 N rightward force - so the block moves. The kinetic friction force, then, is $f_{k}=\mu_{k} F_{N}=3.1 \mathrm{~N}$.
11. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The magnitude of the static frictional force can vary between zero and $f_{s, \text { max }}=\mu_{s} F_{N}$.
(a) In this case, application of Newton's second law in the vertical direction yields $F_{N}=m g$. Thus,

$$
f_{s, \max }=\mu_{s} F_{N}=\mu_{s} m g=(0.37)(35 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.3 \times 10^{2} \mathrm{~N}
$$

which is greater than F.
(b) The block, which is initially at rest, stays at rest since $F<f_{s, \text { max }}$. Thus, it does not move.
(c) By applying Newton's second law to the horizontal direction, that the magnitude of the frictional force exerted on the crate is $f_{s}=1.1 \times 10^{2} \mathrm{~N}$.
(d) Denoting the upward force exerted by the second worker as F_{2}, then application of Newton's second law in the vertical direction yields $F_{N}=m g-F_{2}$, which leads to

$$
f_{s, \max }=\mu_{s} F_{N}=\mu_{s}\left(m g-F_{2}\right) .
$$

In order to move the crate, F must satisfy the condition $F>f_{s, \max }=\mu_{s}\left(m g-F_{2}\right)$
or

$$
110 \mathrm{~N}>(0.37)\left[(35 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-F_{2}\right]
$$

The minimum value of F_{2} that satisfies this inequality is a value slightly bigger than 45.7 N , so we express our answer as $F_{2, \min }=46 \mathrm{~N}$.
(e) In this final case, moving the crate requires a greater horizontal push from the worker than static friction (as computed in part (a)) can resist. Thus, Newton's law in the horizontal direction leads to

$$
\begin{aligned}
& F+F_{2}>f_{s, \max } \\
& 110 \mathrm{~N}+F_{2}>126.9 \mathrm{~N}
\end{aligned}
$$

which leads (after appropriate rounding) to $F_{2, \min }=17 \mathrm{~N}$.
12. There is no acceleration, so the (upward) static friction forces (there are four of them, one for each thumb and one for each set of opposing fingers) equals the magnitude of the (downward) pull of gravity. Using Eq. 6-1, we have

$$
4 \mu_{s} F_{N}=m g=(79 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

which, with $\mu_{s}=0.70$, yields $F_{N}=2.8 \times 10^{2} \mathrm{~N}$.
13. (a) The free-body diagram for the crate is shown below. \vec{T} is the tension force of the rope on the crate, \vec{F}_{N} is the normal force of the floor on the crate, $m \vec{g}$ is the force of gravity, and \vec{f} is the force of friction. We take the $+x$ direction to be horizontal to the right and the $+y$ direction to be up. We assume the crate is motionless. The equations for the x and the y components of the force according to Newton's second law are:

$$
\begin{array}{r}
T \cos \theta-f=0 \\
T \sin \theta+F_{N}-m g=0
\end{array}
$$

where $\theta=15^{\circ}$ is the angle between the rope and the horizontal. The first equation gives f $=T \cos \theta$ and the second gives $F_{N}=m g-T \sin \theta$. If the crate is to remain at rest, f must be less than $\mu_{s} F_{N}$, or $T \cos \theta<\mu_{s}(m g-T \sin \theta)$. When the tension force is sufficient to just start the crate moving, we must have

$$
T \cos \theta=\mu_{s}(m g-T \sin \theta)
$$

We solve for the tension:

$$
\begin{aligned}
T & =\frac{\mu_{s} m g}{\cos \theta+\mu_{s} \sin \theta} \\
& =\frac{(0.50)(68)(9.8)}{\cos 15^{\circ}+0.50 \sin 15^{\circ}} \\
& =304 \approx 3.0 \times 10^{2} \mathrm{~N} .
\end{aligned}
$$

(b) The second law equations for the moving crate are

$$
\begin{aligned}
T \cos \theta-f & =m a \\
F_{N}+T \sin \theta-m g & =0 .
\end{aligned}
$$

Now $f=\mu_{k} F_{N}$, and the second equation gives $F_{N}=m g-T \sin \theta$, which yields $f=\mu_{k}(m g-T \sin \theta)$. This expression is substituted for f in the first equation to obtain

$$
T \cos \theta-\mu_{k}(m g-T \sin \theta)=m a,
$$

so the acceleration is

$$
a=\frac{T\left(\cos \theta+\mu_{k} \sin \theta\right)}{m}-\mu_{k} g
$$

Numerically, it is given by

$$
a=\frac{(304 \mathrm{~N})\left(\cos 15^{\circ}+0.35 \sin 15^{\circ}\right)}{68 \mathrm{~kg}}-(0.35)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.3 \mathrm{~m} / \mathrm{s}^{2}
$$

14. (a) Although details in Fig. 6-24 might suggest otherwise, we assume (as the problem states) that only static friction holds block B in place. An excellent discussion and equation development related to this topic is given in Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13) for the maximum angle for which static friction applies (in the absence of additional forces such as the \vec{F} of part (b) of this problem).

$$
\theta_{\max }=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.63 \approx 32^{\circ} .
$$

This is greater than the dip angle in the problem, so the block does not slide.
(b) We analyze forces in a manner similar to that shown in Sample Problem 6-3, but with the addition of a downhill force F.

$$
\begin{gathered}
F+m g \sin \theta-f_{s, \max }=m a=0 \\
F_{N}-m g \cos \theta=0
\end{gathered}
$$

Along with Eq. 6-1 $\left(f_{s, \max }=\mu_{s} F_{N}\right)$ we have enough information to solve for F. With $\theta=24^{\circ}$ and $m=1.8 \times 10^{7} \mathrm{~kg}$, we find

$$
F=m g\left(\mu_{s} \cos \theta-\sin \theta\right)=3.0 \times 10^{7} \mathrm{~N}
$$

15. (a) The free-body diagram for the block is shown below. \vec{F} is the applied force, \vec{F}_{N} is the normal force of the wall on the block, \vec{f} is the force of friction, and $m \vec{g}$ is the force of gravity. To determine if the block falls, we find the magnitude f of the force of friction required to hold it without accelerating and also find the
 normal force of the wall on the block.
We compare f and $\mu_{s} F_{N}$. If $f<\mu_{s} F_{N}$, the block does not slide on the wall but if $f>\mu_{s} F_{N}$, the block does slide. The horizontal component of Newton's second law is $F-F_{N}=0$, so $F_{N}=F=12 \mathrm{~N}$ and $\mu_{s} F_{N}=(0.60)(12 \mathrm{~N})=7.2 \mathrm{~N}$. The vertical component is $f-m g=0$, so $f=m g=5.0 \mathrm{~N}$. Since $f<\mu_{s} F_{N}$ the block does not slide.
(b) Since the block does not move $f=5.0 \mathrm{~N}$ and $F_{N}=12 \mathrm{~N}$. The force of the wall on the block is

$$
\vec{F}_{w}=-F_{N} \hat{\mathrm{i}}+f \hat{\mathrm{j}}=-(12 \mathrm{~N}) \hat{\mathrm{i}}+(5.0 \mathrm{~N}) \hat{\mathrm{j}}
$$

where the axes are as shown on Fig. 6-25 of the text.
16. We find the acceleration from the slope of the graph (recall Eq. 2-11): $a=4.5 \mathrm{~m} / \mathrm{s}^{2}$. The forces are similar to what is discussed in Sample Problem 6-2 but with the angle ϕ equal to 0 (the applied force is horizontal), and in this problem the horizontal acceleration is not zero. Thus, Newton's second law leads to

$$
F-\mu_{k} m g=m a,
$$

where $F=40.0 \mathrm{~N}$ is the constant horizontal force applied. With $m=4.1 \mathrm{~kg}$, we arrive at $\mu_{k}=0.54$.
17. Fig. 6-4 in the textbook shows a similar situation (using ϕ for the unknown angle) along with a free-body diagram. We use the same coordinate system as in that figure.
(a) Thus, Newton's second law leads to

$$
\begin{aligned}
T \cos \phi-f=m a & \text { along } x \text { axis } \\
T \sin \phi+F_{N}-m g=0 & \text { along } y \text { axis }
\end{aligned}
$$

Setting $a=0$ and $f=f_{s, \text { max }}=\mu_{s} F_{N}$, we solve for the mass of the box-and-sand (as a function of angle):

$$
m=\frac{T}{g}\left(\sin \phi+\frac{\cos \phi}{\mu_{s}}\right)
$$

which we will solve with calculus techniques (to find the angle ϕ_{m} corresponding to the maximum mass that can be pulled).

$$
\frac{d m}{d t}=\frac{T}{g}\left(\cos \phi_{m}-\frac{\sin \phi_{m}}{\mu_{s}}\right)=0
$$

This leads to $\tan \phi_{m}=\mu_{s}$ which (for $\mu_{s}=0.35$) yields $\phi_{m}=19^{\circ}$.
(b) Plugging our value for ϕ_{m} into the equation we found for the mass of the box-andsand yields $m=340 \mathrm{~kg}$. This corresponds to a weight of $m g=3.3 \times 10^{3} \mathrm{~N}$.
18. (a) Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5). Replace f_{s} with f_{k} in Fig. 6-5(b) and set $\theta=12.0^{\circ}$, we apply Newton's second law to the "downhill" direction:

$$
m g \sin \theta-f=m a,
$$

where, using Eq. 6-12,

$$
f=f_{k}=\mu_{k} F_{N}=\mu_{k} m g \cos \theta .
$$

Thus, with $\mu_{k}=0.600$, we have

$$
a=g \sin \theta-\mu_{k} \cos \theta=-3.72 \mathrm{~m} / \mathrm{s}^{2}
$$

which means, since we have chosen the positive direction in the direction of motion [down the slope] then the acceleration vector points "uphill"; it is decelerating. With $v_{0}=18.0 \mathrm{~m} / \mathrm{s}$ and $\Delta x=d=24.0 \mathrm{~m}$, Eq. 2-16 leads to

$$
v=\sqrt{v_{0}^{2}+2 a d}=12.1 \mathrm{~m} / \mathrm{s} .
$$

(b) In this case, we find $a=+1.1 \mathrm{~m} / \mathrm{s}^{2}$, and the speed (when impact occurs) is $19.4 \mathrm{~m} / \mathrm{s}$.
19. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not sliding, then we determine the extent of static friction from applying Newton's law, with zero acceleration, to the x axis (which is parallel to the incline surface). The question of whether or not it is sliding is therefore crucial, and depends on the maximum static friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along the x axis, and we are taking uphill as $+x$. The net force along the y axis, then, is certainly zero, which provides the following relationship:

$$
\sum \vec{F}_{y}=0 \Rightarrow F_{N}=W \cos \theta
$$

where $W=m g=45 \mathrm{~N}$ is the weight of the block, and $\theta=15^{\circ}$ is the incline angle. Thus, $F_{N}=43.5 \mathrm{~N}$, which implies that the maximum static friction force should be

$$
f_{s, \max }=(0.50)(43.5)=21.7 \mathrm{~N} .
$$

(a) For $\vec{P}=(-5.0 \mathrm{~N}) \hat{\mathrm{i}}$, Newton's second law, applied to the x axis becomes

$$
f-|P|-m g \sin \theta=m a .
$$

Here we are assuming \vec{f} is pointing uphill, as shown in Figure 6-5, and if it turns out that it points downhill (which is a possibility), then the result for f_{s} will be negative. If $f=f_{s}$ then $a=0$, we obtain

$$
f_{s}=|P|+m g \sin \theta=5.0+(43.5) \sin 15^{\circ}=17 \mathrm{~N},
$$

or $\vec{f}_{s}=(17 \mathrm{~N}) \hat{\mathrm{i}}$. This is clearly allowed since f_{s} is less than $f_{s, \max }$.
(b) For $\vec{P}=(-8.0 \mathrm{~N}) \hat{\mathrm{i}}$, we obtain (from the same equation) $\vec{f}_{s}=(20 \mathrm{~N}) \hat{\mathrm{i}}$, which is still allowed since it is less than $f_{s, \text { max }}$.
(c) But for $\vec{P}=(-15 \mathrm{~N}) \hat{\mathrm{i}}$, we obtain (from the same equation) $f_{s}=27 \mathrm{~N}$, which is not allowed since it is larger than $f_{s, \text { max }}$. Thus, we conclude that it is the kinetic friction instead of the static friction that is relevant in this case. The result is

$$
\vec{f}_{k}=\mu_{k} F_{N} \hat{\mathrm{i}}=(0.34)(43.5 \mathrm{~N}) \hat{\mathrm{i}}=(15 \mathrm{~N}) \hat{\mathrm{i}} .
$$

20. We use coordinates and weight-components as indicated in Fig. 5-18 (see Sample Problem 5-7 from the previous chapter).
(a) In this situation, we take \vec{f}_{s} to point uphill and to be equal to its maximum value, in which case $f_{s, \max }=\mu_{s} F_{N}$ applies, where $\mu_{s}=0.25$. Applying Newton's second law to the block of mass $m=W / g=8.2 \mathrm{~kg}$, in the x and y directions, produces

$$
\begin{aligned}
F_{\min 1}-m g \sin \theta+f_{s, \max } & =m a=0 \\
F_{N}-m g \cos \theta & =0
\end{aligned}
$$

which (with $\theta=20^{\circ}$) leads to

$$
F_{\min 1}-m g\left(\sin \theta+\mu_{s} \cos \theta\right)=8.6 \mathrm{~N}
$$

(b) Now we take \vec{f}_{s} to point downhill and to be equal to its maximum value, in which case $f_{s, \max }=\mu_{s} F_{N}$ applies, where $\mu_{s}=0.25$. Applying Newton's second law to the block of mass $m=W / g=8.2 \mathrm{~kg}$, in the x and y directions, produces

$$
\begin{array}{r}
F_{\min 2}=m g \sin \theta-f_{s, \max }=m a=0 \\
F_{N}-m g \cos \theta=0
\end{array}
$$

which (with $\theta=20^{\circ}$) leads to

$$
F_{\min 2}=m g\left(\sin \theta+\mu_{s} \cos \theta\right)=46 \mathrm{~N} .
$$

A value slightly larger than the "exact" result of this calculation is required to make it accelerate uphill, but since we quote our results here to two significant figures, 46 N is a "good enough" answer.
(c) Finally, we are dealing with kinetic friction (pointing downhill), so that

$$
\begin{aligned}
F-m g \sin \theta-f_{k} & =m a=0 \\
F_{N}-m g \cos \theta & =0
\end{aligned}
$$

along with $f_{k}=\mu_{k} F_{N}$ (where $\left.\mu_{k}=0.15\right)$ brings us to

$$
F=m g\left(\sin \theta+\mu_{k} \cos \theta\right)=39 \mathrm{~N} .
$$

21. The free-body diagrams for block B and for the knot just above block A are shown next. \vec{T}_{1} is the tension force of the rope pulling on block B or pulling on the knot (as the case may be), \vec{T}_{2} is the tension force exerted by the second rope (at angle $\theta=30^{\circ}$) on the knot, \vec{f} is the force of static friction exerted by the horizontal surface on block B, \vec{F}_{N} is normal force exerted by the surface on block B, W_{A} is the weight of block A (W_{A} is the magnitude of $\left.m_{A} \vec{g}\right)$, and W_{B} is the weight of block $B\left(W_{B}=711 \mathrm{~N}\right.$ is the magnitude of $\left.m_{B} \vec{g}\right)$.

For each object we take $+x$ horizontally rightward and $+y$ upward. Applying Newton's second law in the x and y directions for block B and then doing the same for the knot results in four equations:

$$
\begin{aligned}
T_{1}-f_{s, \text { max }} & =0 \\
F_{N}-W_{B} & =0 \\
T_{2} \cos \theta-T_{1} & =0 \\
T_{2} \sin \theta-W_{A} & =0
\end{aligned}
$$

where we assume the static friction to be at its maximum value (permitting us to use Eq. 6-1). Solving these equations with $\mu_{s}=0.25$, we obtain $W_{A}=103 \mathrm{~N} \approx 1.0 \times 10^{2} \mathrm{~N}$.
22. Treating the two boxes as a single system of total mass $m_{\mathrm{C}}+m_{\mathrm{W}}=1.0+3.0=4.0 \mathrm{~kg}$, subject to a total (leftward) friction of magnitude $2.0+4.0=6.0 \mathrm{~N}$, we apply Newton's second law (with $+x$ rightward):

$$
\begin{aligned}
F-f_{\text {totala }} & =m_{\text {total }} a \\
12.0-6.0 & =(4.0) a
\end{aligned}
$$

which yields the acceleration $a=1.5 \mathrm{~m} / \mathrm{s}^{2}$. We have treated F as if it were known to the nearest tenth of a Newton so that our acceleration is "good" to two significant figures. Turning our attention to the larger box (the Wheaties box of mass $m_{\mathrm{W}}=3.0 \mathrm{~kg}$) we apply Newton's second law to find the contact force F^{\prime} exerted by the Cheerios box on it.

$$
\begin{aligned}
& F^{\prime}-f_{\mathrm{w}}=m_{\mathrm{w}} a \\
& F^{\prime}-4.0=(3.0)(1.5)
\end{aligned}
$$

This yields the contact force $F^{\prime}=8.5 \mathrm{~N}$.
23. Let the tensions on the strings connecting m_{2} and m_{3} be T_{23}, and that connecting m_{2} and m_{1} be T_{12}, respectively. Applying Newton's second law (and Eq. 6-2, with $F_{N}=m_{2} g$ in this case) to the system we have

$$
\begin{aligned}
m_{3} g-T_{23} & =m_{3} a \\
T_{23}-\mu_{k} m_{2} g-T_{12} & =m_{2} a \\
T_{12}-m_{1} g & =m_{1} a
\end{aligned}
$$

Adding up the three equations and using $m_{1}=M, m_{2}=m_{3}=2 M$, we obtain

$$
2 M g-2 \mu_{k} M g-M g=5 M a
$$

With $a=0.500 \mathrm{~m} / \mathrm{s}^{2}$ this yields $\mu_{\mathrm{k}}=0.372$. Thus, the coefficient of kinetic friction is roughly $\mu_{k}=0.37$.
24. (a) Applying Newton's second law to the system (of total mass $M=60.0 \mathrm{~kg}$) and using Eq. 6-2 (with $F_{N}=M g$ in this case) we obtain

$$
F-\mu_{k} M g=M a \Rightarrow a=0.473 \mathrm{~m} / \mathrm{s}^{2}
$$

Next, we examine the forces just on m_{3} and find $F_{32}=m_{3}\left(a+\mu_{k} g\right)=147 \mathrm{~N}$. If the algebra steps are done more systematically, one ends up with the interesting relationship: $F_{32}=\left(m_{3} / M\right) F$ (which is independent of the friction!).
(b) As remarked at the end of our solution to part (a), the result does not depend on the frictional parameters. The answer here is the same as in part (a).
25. The free-body diagrams for the two blocks are shown next. T is the magnitude of the tension force of the string, $\vec{F}_{N A}$ is the normal force on block A (the leading block), $\vec{F}_{N B}$ is the normal force on block B, \vec{f}_{A} is kinetic friction force on block A, \vec{f}_{B} is kinetic friction force on block B. Also, m_{A} is the mass of block A (where $m_{A}=W_{A} / g$ and $W_{A}=3.6 \mathrm{~N}$), and m_{B} is the mass of block B (where $m_{B}=W_{B} / g$ and $W_{B}=7.2 \mathrm{~N}$). The angle of the incline is $\theta=30^{\circ}$.

For each block we take $+x$ downhill (which is toward the lower-left in these diagrams) and $+y$ in the direction of the normal force. Applying Newton's second law to the x and y directions of first block A and next block B, we arrive at four equations:

$$
\begin{gathered}
W_{A} \sin \theta-f_{A}-T=m_{A} a \\
F_{N A}-W_{A} \cos \theta=0 \\
W_{B} \sin \theta-f_{B}+T=m_{B} a \\
F_{N B}-W_{B} \cos \theta=0
\end{gathered}
$$

which, when combined with Eq. $6-2\left(f_{A}=\mu_{k A} F_{N A}\right.$ where $\mu_{k A}=0.10$ and $f_{B}=\mu_{k B} F_{N B} f_{B}$ where $\mu_{k B}=0.20$), fully describe the dynamics of the system so long as the blocks have the same acceleration and $T>0$.
(a) These equations lead to an acceleration equal to

$$
a=g\left(\sin \theta-\left(\frac{\mu_{k A} W_{A}+\mu_{k B} W_{B}}{W_{A}+W_{B}}\right) \cos \theta\right)=3.5 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) We solve the above equations for the tension and obtain

$$
T=\left(\frac{W_{A} W_{B}}{W_{A}+W_{B}}\right)\left(\mu_{k B}-\mu_{k A}\right) \cos \theta=0.21 \mathrm{~N} .
$$

Simply returning the value for a found in part (a) into one of the above equations is certainly fine, and probably easier than solving for T algebraically as we have done, but the algebraic form does illustrate the $\mu_{k B}-\mu_{k A}$ factor which aids in the understanding of the next part.
26. The free-body diagrams are shown below. T is the magnitude of the tension force of the string, f is the magnitude of the force of friction on block A, F_{N} is the magnitude of the normal force of the plane on block $A, m_{A} \vec{g}$ is the force of gravity on body A (where $m_{A}=10 \mathrm{~kg}$), and $m_{B} \vec{g}$ is the force of gravity on block B. $\theta=30^{\circ}$ is the angle of incline. For A we take the $+x$ to be uphill and $+y$ to be in the direction of the normal force; the positive direction is chosen downward for block B.

Since A is moving down the incline, the force of friction is uphill with magnitude $f_{k}=$ $\mu_{k} F_{N}$ (where $\mu_{k}=0.20$). Newton's second law leads to

$$
\begin{aligned}
T-f_{k}+m_{A} g \sin \theta & =m_{A} a=0 \\
F_{N}-m_{A} g \cos \theta & =0 \\
m_{B} g-T & =m_{B} a=0
\end{aligned}
$$

for the two bodies (where $a=0$ is a consequence of the velocity being constant). We solve these for the mass of block B.

$$
m_{B}=m_{A}\left(\sin \theta-\mu_{k} \cos \theta\right)=3.3 \mathrm{~kg} .
$$

27. First, we check to see if the bodies start to move. We assume they remain at rest and compute the force of (static) friction which holds them there, and compare its magnitude with the maximum value $\mu_{s} F_{N}$. The free-body diagrams are shown below. T is the magnitude of the tension force of the string, f is the magnitude of the force of friction on body A, F_{N} is the magnitude of the normal force of the plane on body $A, m_{A} \vec{g}$ is the force of gravity on body A (with magnitude $W_{A}=102 \mathrm{~N}$), and $m_{B} \vec{g}$ is the force of gravity on body B (with magnitude $W_{B}=32 \mathrm{~N}$). $\theta=40^{\circ}$ is the angle of incline. We are told the direction of \vec{f} but we assume it is downhill. If we obtain a negative result for f, then we know the force is actually up the plane.

(a) For A we take the $+x$ to be uphill and $+y$ to be in the direction of the normal force. The x and y components of Newton's second law become

$$
\begin{aligned}
T-f-W_{A} \sin \theta & =0 \\
F_{N}-W_{A} \cos \theta & =0 .
\end{aligned}
$$

Taking the positive direction to be downward for body B, Newton's second law leads to $W_{B}-T=0$. Solving these three equations leads to

$$
f=W_{B}-W_{A} \sin \theta=32-102 \sin 40^{\circ}=-34 \mathrm{~N}
$$

(indicating that the force of friction is uphill) and to

$$
F_{N}=W_{A} \cos \theta=102 \cos 40^{\circ}=78 \mathrm{~N}
$$

which means that

$$
f_{s, \max }=\mu_{s} F_{N}=(0.56)(78)=44 \mathrm{~N} .
$$

Since the magnitude f of the force of friction that holds the bodies motionless is less than $f_{s, \max }$ the bodies remain at rest. The acceleration is zero.
(b) Since A is moving up the incline, the force of friction is downhill with magnitude $f_{k}=\mu_{k} F_{N}$. Newton's second law, using the same coordinates as in part (a), leads to

$$
\begin{aligned}
T-f_{k}-W_{A} \sin \theta & =m_{A} a \\
F_{N}-W_{A} \cos \theta & =0 \\
W_{B}-T & =m_{B} a
\end{aligned}
$$

for the two bodies. We solve for the acceleration:

$$
\begin{aligned}
a & =\frac{W_{B}-W_{A} \sin \theta-\mu_{k} W_{A} \cos \theta}{m_{B}+m_{A}}=\frac{32 \mathrm{~N}-(102 \mathrm{~N}) \sin 40^{\circ}-(0.25)(102 \mathrm{~N}) \cos 40^{\circ}}{(32 \mathrm{~N}+102 \mathrm{~N}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =-3.9 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

The acceleration is down the plane, i.e., $\vec{a}=\left(-3.9 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$, which is to say (since the initial velocity was uphill) that the objects are slowing down. We note that $m=W / g$ has been used to calculate the masses in the calculation above.
(c) Now body A is initially moving down the plane, so the force of friction is uphill with magnitude $f_{k}=\mu_{k} F_{N}$. The force equations become

$$
\begin{aligned}
T+f_{k}-W_{A} \sin \theta & =m_{A} a \\
F_{N}-W_{A} \cos \theta & =0 \\
W_{B}-T & =m_{B} a
\end{aligned}
$$

which we solve to obtain

$$
\begin{aligned}
a & =\frac{W_{B}-W_{A} \sin \theta+\mu_{k} W_{A} \cos \theta}{m_{B}+m_{A}}=\frac{32 \mathrm{~N}-(102 \mathrm{~N}) \sin 40^{\circ}+(0.25)(102 \mathrm{~N}) \cos 40^{\circ}}{(32 \mathrm{~N}+102 \mathrm{~N}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =-1.0 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

The acceleration is again downhill the plane, i.e., $\vec{a}=\left(-1.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$. In this case, the objects are speeding up.
28. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for the block B are shown below. T is the magnitude of the tension force of the rope, F_{N} is the magnitude of the normal force of the table on block A, f is the magnitude of the force of friction, $W_{A C}$ is the combined weight of blocks A and C (the magnitude of force $\vec{F}_{g A C}$ shown in the figure), and W_{B} is the weight of block B (the magnitude of force $\vec{F}_{g B}$ shown). Assume the blocks are not moving. For the blocks on the table we take the x axis to be to the right and the y axis to be upward. From Newton's second law, we have

$$
\begin{array}{lrl}
x \text { component: } & T-f & =0 \\
y \text { component: } & F_{N}-W_{A C} & =0 .
\end{array}
$$

For block B take the downward direction to be positive. Then Newton's second law for that block is $W_{B}-T=0$. The third equation gives $T=W_{B}$ and the first gives $f=T=W_{B}$. The second equation gives $F_{N}=W_{A C}$. If sliding is not to occur, f must be less than $\mu_{s} F_{N}$, or $W_{B}<\mu_{s} W_{A C}$. The smallest that $W_{A C}$ can be with the blocks still at rest is

$$
W_{A C}=W_{B} / \mu_{s}=(22 \mathrm{~N}) /(0.20)=110 \mathrm{~N} .
$$

Since the weight of block A is 44 N , the least weight for C is $(110-44) \mathrm{N}=66 \mathrm{~N}$.

(b) The second law equations become

$$
\begin{aligned}
T-f & =\left(W_{A} / g\right) a \\
F_{N}-W_{A} & =0 \\
W_{B}-T & =\left(W_{B} / g\right) a .
\end{aligned}
$$

In addition, $f=\mu_{k} F_{N}$. The second equation gives $F_{N}=W_{A}$, so $f=\mu_{k} W_{A}$. The third gives T $=W_{B}-\left(W_{B} / g\right) a$. Substituting these two expressions into the first equation, we obtain

$$
W_{B}-\left(W_{B} / g\right) a-\mu_{k} W_{A}=\left(W_{A} / g\right) a .
$$

Therefore,

$$
a=\frac{g\left(W_{B}-\mu_{k} W_{A}\right)}{W_{A}+W_{B}}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(22 \mathrm{~N}-(0.15)(44 \mathrm{~N}))}{44 \mathrm{~N}+22 \mathrm{~N}}=2.3 \mathrm{~m} / \mathrm{s}^{2} .
$$

29. The free-body diagrams for the two blocks, treated individually, are shown below (first m and then M). F^{\prime} is the contact force between the two blocks, and the static friction force \vec{f}_{s} is at its maximum value (so Eq. 6-1 leads to $f_{s}=f_{s, \max }=\mu_{s} F^{\prime}$ where $\mu_{s}=0.38$).

Treating the two blocks together as a single system (sliding across a frictionless floor), we apply Newton's second law (with $+x$ rightward) to find an expression for the acceleration.

$$
F=m_{\text {total }} a \quad \Rightarrow a=\frac{F}{m+M}
$$

This is equivalent to having analyzed the two blocks individually and then combined their equations. Now, when we analyze the small block individually, we apply Newton's second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1.

$$
\begin{aligned}
& F-F^{\prime}=m a \Rightarrow F^{\prime}=F-m\left(\frac{F}{m+M}\right) \\
& f_{s}-m g=0 \Rightarrow \mu_{s} F^{\prime}-m g=0
\end{aligned}
$$

These expressions are combined (to eliminate F^{\prime}) and we arrive at

$$
F=\frac{m g}{\mu_{s}\left(1-\frac{m}{m+M}\right)}
$$

which we find to be $F=4.9 \times 10^{2} \mathrm{~N}$.
30. The free-body diagrams for the slab and block are shown below.

\vec{F} is the 100 N force applied to the block, $\vec{F}_{N s}$ is the normal force of the floor on the slab, $F_{N b}$ is the magnitude of the normal force between the slab and the block, \vec{f} is the force of friction between the slab and the block, m_{s} is the mass of the slab, and m_{b} is the mass of the block. For both objects, we take the $+x$ direction to be to the right and the $+y$ direction to be up.

Applying Newton's second law for the x and y axes for (first) the slab and (second) the block results in four equations:

$$
\begin{aligned}
-f & =m_{s} a_{s} \\
F_{N s}-F_{N s}-m_{s} g & =0 \\
f-F & =m_{b} a_{b} \\
F_{N b}-m_{b} g & =0
\end{aligned}
$$

from which we note that the maximum possible static friction magnitude would be

$$
\mu_{s} F_{N b}=\mu_{s} m_{b} g=(0.60)(10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=59 \mathrm{~N} .
$$

We check to see if the block slides on the slab. Assuming it does not, then $a_{s}=a_{b}$ (which we denote simply as a) and we solve for f :

$$
f=\frac{m_{s} F}{m_{s}+m_{b}}=\frac{(40 \mathrm{~kg})(100 \mathrm{~N})}{40 \mathrm{~kg}+10 \mathrm{~kg}}=80 \mathrm{~N}
$$

which is greater than $f_{s, \text { max }}$ so that we conclude the block is sliding across the slab (their accelerations are different).
(a) Using $f=\mu_{k} F_{N b}$ the above equations yield

$$
a_{b}=\frac{\mu_{k} m_{b} g-F}{m_{b}}=\frac{(0.40)(10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-100 \mathrm{~N}}{10 \mathrm{~kg}}=-6.1 \mathrm{~m} / \mathrm{s}^{2} .
$$

The negative sign means that the acceleration is leftward. That is, $\vec{a}_{b}=\left(-6.1 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$
(b) We also obtain

$$
a_{s}=-\frac{\mu_{k} m_{b} g}{m_{s}}=-\frac{(0.40)(10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{40 \mathrm{~kg}}=-0.98 \mathrm{~m} / \mathrm{s}^{2}
$$

As mentioned above, this means it accelerates to the left. That is, $\vec{a}_{s}=\left(-0.98 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$
31. We denote the magnitude of the frictional force αv, where $\alpha=70 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$. We take the direction of the boat's motion to be positive. Newton's second law gives

$$
-\alpha v=m \frac{d v}{d t}
$$

Thus,

$$
\int_{v_{0}}^{v} \frac{d v}{v}=-\frac{\alpha}{m} \int_{0}^{t} d t
$$

where v_{0} is the velocity at time zero and v is the velocity at time t. The integrals are evaluated with the result

$$
\ln \left(\frac{v}{v_{0}}\right)=-\frac{\alpha t}{m}
$$

We take $v=v_{0} / 2$ and solve for time:

$$
t=\frac{m}{\alpha} \ln 2=\frac{1000 \mathrm{~kg}}{70 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}} \ln 2=9.9 \mathrm{~s} .
$$

32. Using Eq. 6-16, we solve for the area

$$
A \frac{2 m g}{C \rho v_{t}^{2}}
$$

which illustrates the inverse proportionality between the area and the speed-squared. Thus, when we set up a ratio of areas - of the slower case to the faster case - we obtain

$$
\frac{A_{\text {slow }}}{A_{\text {fast }}}=\left(\frac{310 \mathrm{~km} / \mathrm{h}}{160 \mathrm{~km} / \mathrm{h}}\right)^{2}=3.75
$$

33. For the passenger jet $D_{j}=\frac{1}{2} C \rho_{1} A v_{j}^{2}$, and for the prop-driven transport $D_{t}=\frac{1}{2} C \rho_{2} A v_{t}^{2}$, where ρ_{1} and ρ_{2} represent the air density at 10 km and 5.0 km , respectively. Thus the ratio in question is

$$
\frac{D_{j}}{D_{t}}=\frac{\rho_{1} v_{j}^{2}}{\rho_{2} v_{t}^{2}}=\frac{\left(0.38 \mathrm{~kg} / \mathrm{m}^{3}\right)(1000 \mathrm{~km} / \mathrm{h})^{2}}{\left(0.67 \mathrm{~kg} / \mathrm{m}^{3}\right)(500 \mathrm{~km} / \mathrm{h})^{2}}=2.3
$$

34. (a) From Table 6-1 and Eq. 6-16, we have

$$
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \Rightarrow C \rho A=2 \frac{m g}{v_{t}^{2}}
$$

where $v_{t}=60 \mathrm{~m} / \mathrm{s}$. We estimate the pilot's mass at about $m=70 \mathrm{~kg}$. Now, we convert $v=$ $1300(1000 / 3600) \approx 360 \mathrm{~m} / \mathrm{s}$ and plug into Eq. 6-14:

$$
D=\frac{1}{2} C \rho A v^{2}=\frac{1}{2}\left(2 \frac{m g}{v_{t}^{2}}\right) v^{2}=m g\left(\frac{v}{v_{t}}\right)^{2}
$$

which yields $D=(690)(360 / 60)^{2} \approx 2 \times 10^{4} \mathrm{~N}$.
(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. Thus, Newton's second law (in the horizontal direction) applied to this system of mass $2 m$ gives the magnitude of acceleration:

$$
|a|=\frac{D}{2 m}=\frac{g}{2}\left(\frac{v}{v_{t}}\right)^{2}=18 g .
$$

35. In the solution to exercise 4, we found that the force provided by the wind needed to equal $F=157 \mathrm{~N}$ (where that last figure is not "significant").
(a) Setting $F=D$ (for Drag force) we use Eq. 6-14 to find the wind speed V along the ground (which actually is relative to the moving stone, but we assume the stone is moving slowly enough that this does not invalidate the result):

$$
V=\sqrt{\frac{2 F}{C \rho A}}=\sqrt{\frac{2(157)}{(0.80)(1.21)(0.040)}}=90 \mathrm{~m} / \mathrm{s}=3.2 \times 10^{2} \mathrm{~km} / \mathrm{h} .
$$

(b) Doubling our previous result, we find the reported speed to be $6.5 \times 10^{2} \mathrm{~km} / \mathrm{h}$.
(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds on the order of $2.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$.
36. The magnitude of the acceleration of the car as it rounds the curve is given by v^{2} / R, where v is the speed of the car and R is the radius of the curve. Since the road is horizontal, only the frictional force of the road on the tires makes this acceleration possible. The horizontal component of Newton's second law is $f=m v^{2} / R$. If F_{N} is the normal force of the road on the car and m is the mass of the car, the vertical component of Newton's second law leads to $F_{N}=m g$. Thus, using Eq. 6-1, the maximum value of static friction is

$$
f_{s, \max }=\mu_{s} F_{N}=\mu_{s} m g .
$$

If the car does not slip, $f \leq \mu_{s} m g$. This means

$$
\frac{v^{2}}{R} \leq \mu_{s} g \Rightarrow v \leq \sqrt{\mu_{s} R g}
$$

Consequently, the maximum speed with which the car can round the curve without slipping is

$$
v_{\max }=\sqrt{\mu_{s} R g}=\sqrt{(0.60)(30.5)(9.8)}=13 \mathrm{~m} / \mathrm{s} \approx 48 \mathrm{~km} / \mathrm{h} .
$$

37. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v^{2} / R, where v is the speed of the cyclist and R is the radius of the curve. Since the road is horizontal, only the frictional force of the road on the tires makes this acceleration possible. The horizontal component of Newton's second law is $f=m v^{2} / R$. If F_{N} is the normal force of the road on the bicycle and m is the mass of the bicycle and rider, the vertical component of Newton's second law leads to $F_{N}=m g$. Thus, using Eq. 6-1, the maximum value of static friction is $f_{s, \max }=\mu_{s} F_{N}=\mu_{s} m g$. If the bicycle does not slip, $f \leq$ $\mu_{s} m g$. This means

$$
\frac{v^{2}}{R} \leq \mu_{s} g \Rightarrow R \geq \frac{v^{2}}{\mu_{s} g}
$$

Consequently, the minimum radius with which a cyclist moving at $29 \mathrm{~km} / \mathrm{h}=8.1 \mathrm{~m} / \mathrm{s}$ can round the curve without slipping is

$$
R_{\min }=\frac{v^{2}}{\mu_{s} g}=\frac{(8.1 \mathrm{~m} / \mathrm{s})^{2}}{(0.32)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=21 \mathrm{~m} .
$$

38. With $v=96.6 \mathrm{~km} / \mathrm{h}=26.8 \mathrm{~m} / \mathrm{s}$, Eq. 6-17 readily yields

$$
a=\frac{v^{2}}{R}=\frac{(26.8 \mathrm{~m} / \mathrm{s})^{2}}{7.6 \mathrm{~m}}=94.7 \mathrm{~m} / \mathrm{s}^{2}
$$

which we express as a multiple of g :

$$
a=\left(\frac{a}{g}\right) g=\left(\frac{94.7}{9.8}\right) g=9.7 g
$$

39. Perhaps surprisingly, the equations pertaining to this situation are exactly those in Sample Problem 6-9, although the logic is a little different. In the Sample Problem, the car moves along a (stationary) road, whereas in this problem the cat is stationary relative to the merry-go-around platform. But the static friction plays the same role in both cases since the bottom-most point of the car tire is instantaneously at rest with respect to the race track, just as static friction applies to the contact surface between cat and platform. Using Eq. 6-23 with Eq. 4-35, we find

$$
\mu_{\mathrm{s}}=(2 \pi R / T)^{2} / g R=4 \pi^{2} R / g T^{2} .
$$

With $T=6.0 \mathrm{~s}$ and $R=5.4 \mathrm{~m}$, we obtain $\mu_{\mathrm{s}}=0.60$.
40. We will start by assuming that the normal force (on the car from the rail) points up. Note that gravity points down, and the y axis is chosen positive upwards. Also, the direction to the center of the circle (the direction of centripetal acceleration) is down. Thus, Newton's second law leads to

$$
F_{N}-m g=m\left(-\frac{v^{2}}{r}\right) .
$$

(a) When $v=11 \mathrm{~m} / \mathrm{s}$, we obtain $F_{N}=3.7 \times 10^{3} \mathrm{~N}$.
(b) \vec{F}_{N} points upward.
(c) When $v=14 \mathrm{~m} / \mathrm{s}$, we obtain $F_{N}=-1.3 \times 10^{3} \mathrm{~N}$.
(d) The fact that this answer is negative means that \vec{F}_{N} points opposite to what we had assumed. Thus, the magnitude of \vec{F}_{N} is $F_{N}=1.3 \mathrm{kN}$ and its direction is down.
41. At the top of the hill, the situation is similar to that of Sample Problem 6-7 but with the normal force direction reversed. Adapting Eq. 6-19, we find

$$
F_{N}=m\left(g-v^{2} / R\right) .
$$

Since $F_{N}=0$ there (as stated in the problem) then $v^{2}=g R$. Later, at the bottom of the valley, we reverse both the normal force direction and the acceleration direction (from what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly. Thus we obtain

$$
F_{N}=m\left(g+v^{2} / R\right)=2 m g=1372 \mathrm{~N} \approx 1.37 \times 10^{3} \mathrm{~N}
$$

42. (a) We note that the speed $80.0 \mathrm{~km} / \mathrm{h}$ in SI units is roughly $22.2 \mathrm{~m} / \mathrm{s}$. The horizontal force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the upward force on her must equal $m g$. Thus,

$$
F_{\mathrm{net}}=\sqrt{(m g)^{2}+\left(m v^{2} / R\right)^{2}}=547 \mathrm{~N} .
$$

(b) The angle is $\tan ^{-1}\left[\left(m v^{2} / R\right) /(m g)\right]=\tan ^{-1}\left(v^{2} / g R\right)=9.53^{\circ}$ (as measured from a vertical axis).
43. (a) Eq. $4-35$ gives $T=2 \pi(10) / 6.1=10 \mathrm{~s}$.
(b) The situation is similar to that of Sample Problem 6-7 but with the normal force direction reversed. Adapting Eq. 6-19, we find

$$
F_{N}=m\left(g-v^{2} / R\right)=486 \mathrm{~N} \approx 4.9 \times 10^{2} \mathrm{~N} .
$$

(c) Now we reverse both the normal force direction and the acceleration direction (from what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly. Thus we obtain

$$
F_{N}=m\left(g+v^{2} / R\right)=1081 \mathrm{~N} \approx 1.1 \mathrm{kN} .
$$

44. The situation is somewhat similar to that shown in the "loop-the-loop" example done in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are dealing with the force of the boom \vec{F}_{B} on the car - which is capable of pointing any direction. We will assume it to be upward as we apply Newton's second law to the car (of total weight 5000 N$): F_{B}-W=m a$ where $m=W / g$ and $a=-v^{2} / r$. Note that the centripetal acceleration is downward (our choice for negative direction) for a body at the top of its circular trajectory.
(a) If $r=10 \mathrm{~m}$ and $v=5.0 \mathrm{~m} / \mathrm{s}$, we obtain $F_{B}=3.7 \times 10^{3} \mathrm{~N}=3.7 \mathrm{kN}$.
(b) The direction of \vec{F}_{B} is up.
(c) If $r=10 \mathrm{~m}$ and $v=12 \mathrm{~m} / \mathrm{s}$, we obtain $F_{B}=-2.3 \times 10^{3} \mathrm{~N}=-2.3 \mathrm{kN}$, or $\left|F_{B}\right|=2.3 \mathrm{kN}$.
(d) The minus sign indicates that \vec{F}_{B} points downward.
45. (a) At the top (the highest point in the circular motion) the seat pushes up on the student with a force of magnitude $F_{N}=556 \mathrm{~N}$. Earth pulls down with a force of magnitude $W=667 \mathrm{~N}$. The seat is pushing up with a force that is smaller than the student's weight, and we say the student experiences a decrease in his "apparent weight" at the highest point. Thus, he feels "light."
(b) Now F_{N} is the magnitude of the upward force exerted by the seat when the student is at the lowest point. The net force toward the center of the circle is $F_{b}-W=m v^{2} / R$ (note that we are now choosing upward as the positive direction). The Ferris wheel is "steadily rotating" so the value $m v^{2} / R$ is the same as in part (a). Thus,

$$
F_{N}=\frac{m v^{2}}{R}+W=111 \mathrm{~N}+667 \mathrm{~N}=778 \mathrm{~N}
$$

(c) If the speed is doubled, $m v^{2} / R$ increases by a factor of 4 , to 444 N . Therefore, at the highest point we have $W-F_{N}=m v^{2} / R$, which leads to

$$
F_{N}=667 \mathrm{~N}-444 \mathrm{~N}=223 \mathrm{~N} .
$$

(d) Similarly, the normal force at the lowest point is now found to be

$$
F_{N}=667 \mathrm{~N}+444 \mathrm{~N} \approx 1.11 \mathrm{kN} .
$$

46. The free-body diagram (for the hand straps of mass m) is the view that a passenger might see if she was looking forward and the streetcar was curving towards the right (so \vec{a} points rightwards in the figure). We note that $|\vec{a}|=v^{2} / R$ where $v=16 \mathrm{~km} / \mathrm{h}=4.4 \mathrm{~m} / \mathrm{s}$.

Applying Newton's law to the axes of the problem ($+x$ is rightward and $+y$ is upward) we obtain

$$
\begin{aligned}
T \sin \theta & =m \frac{v^{2}}{R} \\
T \cos \theta & =m g
\end{aligned}
$$

We solve these equations for the angle:

$$
\theta=\tan ^{-1}\left(\frac{v^{2}}{R g}\right)
$$

which yields $\theta=12^{\circ}$.

47. The free-body diagram (for the airplane of mass m) is shown below. We note that \vec{F}_{ℓ} is the force of aerodynamic lift and \vec{a} points rightwards in the figure. We also note that $|\vec{a}|=v^{2} / R$ where $v=480 \mathrm{~km} / \mathrm{h}=133 \mathrm{~m} / \mathrm{s}$.

Applying Newton's law to the axes of the problem ($+x$ rightward and $+y$ upward) we obtain

$$
\begin{aligned}
& \vec{F}_{\ell} \sin \theta=m \frac{v^{2}}{R} \\
& \vec{F}_{\ell} \cos \theta=m g
\end{aligned}
$$

where $\theta=40^{\circ}$. Eliminating mass from these equations leads to

$$
\tan \theta=\frac{v^{2}}{g R}
$$

which yields $R=v^{2} / g \tan \theta=2.2 \times 10^{3} \mathrm{~m}$.

48. We note that the period T is eight times the time between flashes $\left(\frac{1}{2000} \mathrm{~s}\right)$, so $T=$ 0.0040 s. Combining Eq. 6-18 with Eq. $4-35$ leads to

$$
F=\frac{4 m \pi^{2} R}{T^{2}}=\frac{4(0.030 \mathrm{~kg}) \pi^{2}(0.035 \mathrm{~m})}{(0.0040 \mathrm{~s})^{2}}=2.6 \times 10^{3} \mathrm{~N} .
$$

49. For the puck to remain at rest the magnitude of the tension force T of the cord must equal the gravitational force $M g$ on the cylinder. The tension force supplies the centripetal force that keeps the puck in its circular orbit, so $T=m v^{2} / r$. Thus $M g=m v^{2} / r$. We solve for the speed:

$$
v=\sqrt{\frac{M g r}{m}}=\sqrt{\frac{(2.50)(9.80)(0.200)}{1.50}}=1.81 \mathrm{~m} / \mathrm{s} .
$$

50. We refer the reader to Sample Problem 6-10, and use the result Eq. 6-26:

$$
\theta=\tan ^{-1}\left(\frac{v^{2}}{g R}\right)
$$

with $v=60(1000 / 3600)=17 \mathrm{~m} / \mathrm{s}$ and $R=200 \mathrm{~m}$. The banking angle is therefore $\theta=8.1^{\circ}$. Now we consider a vehicle taking this banked curve at $v^{\prime}=40(1000 / 3600)=11 \mathrm{~m} / \mathrm{s}$. Its (horizontal) acceleration is $a^{\prime}=v^{\prime 2} / R$, which has components parallel the incline and perpendicular to it.

$$
\begin{aligned}
& a_{\| \mid}=a^{\prime} \cos \theta=\frac{v^{\prime 2} \cos \theta}{R} \\
& a_{\perp}=a^{\prime} \sin \theta=\frac{v^{\prime 2} \sin \theta}{R}
\end{aligned}
$$

These enter Newton's second law as follows (choosing downhill as the $+x$ direction and away-from-incline as $+y$):

$$
\begin{aligned}
m g \sin \theta-f_{s} & =m a_{\|} \\
F_{N}-m g \cos \theta & =m a_{\perp}
\end{aligned}
$$

and we are led to

$$
\frac{f_{s}}{F_{N}}=\frac{m g \sin \theta-m v^{\prime 2} \cos \theta / R}{m g \cos \theta+m v^{\prime 2} \sin \theta / R}
$$

We cancel the mass and plug in, obtaining $f_{s} / F_{N}=0.078$. The problem implies we should set $f_{s}=f_{s, \text { max }}$ so that, by Eq. 6-1, we have $\mu_{s}=0.078$.
51. The free-body diagram for the ball is shown below. \vec{T}_{u} is the tension exerted by the upper string on the ball, \vec{T}_{ℓ} is the tension force of the lower string, and m is the mass of the ball. Note that the tension in the upper string is greater than the tension in the lower string. It must balance the downward pull of gravity and the force of the lower string.

(a) We take the $+x$ direction to be leftward (toward the center of the circular orbit) and $+y$ upward. Since the magnitude of the acceleration is $a=v^{2} / R$, the x component of Newton's second law is

$$
T_{u} \cos \theta+T_{\ell} \cos \theta=\frac{m v^{2}}{R}
$$

where v is the speed of the ball and R is the radius of its orbit. The y component is

$$
T_{u} \sin \theta-T_{\ell} \sin \theta-m g=0 .
$$

The second equation gives the tension in the lower string: $T_{\ell}=T_{u}-m g / \sin \theta$. Since the triangle is equilateral $\theta=30.0^{\circ}$. Thus

$$
T_{\ell}=35.0-\frac{(1.34)(9.80)}{\sin 30.0^{\circ}}=8.74 \mathrm{~N} .
$$

(b) The net force has magnitude

$$
F_{\text {net,str }}=\left(T_{u}+T_{\ell}\right) \cos \theta=(35.0+8.74) \cos 30.0^{\circ}=37.9 \mathrm{~N} .
$$

(c) The radius of the path is

$$
R=((1.70 \mathrm{~m}) / 2) \tan 30.0^{\circ}=1.47 \mathrm{~m}
$$

Using $F_{\text {net,str }}=m v^{2} / R$, we find that the speed of the ball is

$$
v=\sqrt{\frac{R F_{\text {net,str }}}{m}}=\sqrt{\frac{(1.47 \mathrm{~m})(37.9 \mathrm{~N})}{1.34 \mathrm{~kg}}}=6.45 \mathrm{~m} / \mathrm{s} .
$$

(d) The direction of $\vec{F}_{\text {net,str }}$ is leftward ("radially inward'").
52. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the circumference of the circular path divided by 2π, therefore, $R=0.94 / 2 \pi=0.15 \mathrm{~m}$. The angle that the cord makes with the horizontal is now easily found:

$$
\theta=\cos ^{-1}(R / L)=\cos ^{-1}(0.15 / 0.90)=80^{\circ}
$$

The vertical component of the force of tension in the string is $T \sin \theta$ and must equal the downward pull of gravity (mg). Thus,

$$
T=\frac{m g}{\sin \theta}=0.40 \mathrm{~N} .
$$

Note that we are using T for tension (not for the period).
(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18), so we have $T \cos \theta=m v^{2} / R$. This gives speed $v=0.49 \mathrm{~m} / \mathrm{s}$. This divided into the circumference gives the time for one revolution: $0.94 / 0.49=1.9 \mathrm{~s}$.
53. The layer of ice has a mass of

$$
m_{\mathrm{ice}}=\left(917 \mathrm{~kg} / \mathrm{m}^{3}\right)(400 \mathrm{~m} \times 500 \mathrm{~m} \times 0.0040 \mathrm{~m})=7.34 \times 10^{5} \mathrm{~kg} .
$$

This added to the mass of the hundred stones (at 20 kg each) comes to $m=7.36 \times 10^{5} \mathrm{~kg}$.
(a) Setting $F=D$ (for Drag force) we use Eq. 6-14 to find the wind speed v along the ground (which actually is relative to the moving stone, but we assume the stone is moving slowly enough that this does not invalidate the result):

$$
v=\sqrt{\frac{\mu_{k} m g}{4 C_{\text {ice }} \rho A_{\text {ice }}}}=\sqrt{\frac{(0.10)\left(7.36 \times 10^{5}\right)(9.8)}{4(0.002)(1.21)(400 \times 500)}}=19 \mathrm{~m} / \mathrm{s} \approx 69 \mathrm{~km} / \mathrm{h} .
$$

(b) Doubling our previous result, we find the reported speed to be $139 \mathrm{~km} / \mathrm{h}$.
(c) The result is reasonable for storm winds. (A category 5 hurricane has speeds on the order of $2.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$.)
54. (a) To be on the verge of sliding out means that the force of static friction is acting "down the bank" (in the sense explained in the problem statement) with maximum possible magnitude. We first consider the vector sum \vec{F} of the (maximum) static friction force and the normal force. Due to the facts that they are perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find \vec{F} is at angle (measured from the vertical axis) $\phi=\theta+\theta_{s}$ where $\tan \theta_{s}=\mu_{s}$ (compare with Eq. 6-13), and θ is the bank angle (as stated in the problem). Now, the vector sum of \vec{F} and the vertically downward pull ($m g$) of gravity must be equal to the (horizontal) centripetal force $\left(m v^{2} / R\right)$, which leads to a surprisingly simple relationship:

$$
\tan \phi=\frac{m v^{2} / R}{m g}=\frac{v^{2}}{R g} .
$$

Writing this as an expression for the maximum speed, we have

$$
v_{\max }=\sqrt{R g \tan \left(\theta+\tan ^{-1} \mu_{s}\right)}=\sqrt{\frac{R g\left(\tan \theta+\mu_{s}\right)}{1-\mu_{s} \tan \theta}}
$$

(b) The graph is shown below (with θ in radians):

(c) Either estimating from the graph ($\mu_{\mathrm{s}}=0.60$, upper curve) or calculated it more carefully leads to $v=41.3 \mathrm{~m} / \mathrm{s}=149 \mathrm{~km} / \mathrm{h}$ when $\theta=10^{\circ}=0.175$ radian.
(d) Similarly (for $\mu_{\mathrm{s}}=0.050$, the lower curve) we find $v=21.2 \mathrm{~m} / \mathrm{s}=76.2 \mathrm{~km} / \mathrm{h}$ when $\theta=$ $10^{\circ}=0.175$ radian.
55. We apply Newton's second law (as $F_{\text {push }}-f=m a$). If we find $F_{\text {push }}<f_{\text {max }}$, we conclude "no, the cabinet does not move" (which means a is actually 0 and $f=F_{\text {push }}$), and if we obtain $a>0$ then it is moves (so $f=f_{k}$). For $f_{\max }$ and f_{k} we use Eq. 6-1 and Eq. 6-2 (respectively), and in those formulas we set the magnitude of the normal force equal to 556 N . Thus, $f_{\max }=378 \mathrm{~N}$ and $f_{k}=311 \mathrm{~N}$.
(a) Here we find $F_{\text {push }}<f_{\max }$ which leads to $f=F_{\text {push }}=222 \mathrm{~N}$.
(b) Again we find $F_{\text {push }}<f_{\max }$ which leads to $f=F_{\text {push }}=334 \mathrm{~N}$.
(c) Now we have $F_{\text {push }}>f_{\max }$ which means it moves and $f=f_{k}=311 \mathrm{~N}$.
(d) Again we have $F_{\text {push }}>f_{\text {max }}$ which means it moves and $f=f_{k}=311 \mathrm{~N}$.
(e) The cabinet moves in (c) and (d).
56. Sample Problem 6-3 treats the case of being in "danger of sliding" down the θ (= 35.0° in this problem) incline: $\tan \theta=\mu_{\mathrm{s}}=0.700$ (Eq. 6-13). This value represents a 3.4% decrease from the given 0.725 value.
57. (a) Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5). Replace f_{s} with f_{k} in Fig. 6-5(b). With $\theta=60^{\circ}$, we apply Newton's second law to the "downhill" direction:

$$
\begin{aligned}
m g \sin \theta-f & =m a \\
f=f_{k}=\mu_{k} F_{N} & =\mu_{k} m g \cos \theta .
\end{aligned}
$$

Thus,

$$
a=g\left(\sin \theta-\mu_{k} \cos \theta\right)=7.5 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The direction of the acceleration \vec{a} is down the slope.
(c) Now the friction force is in the "downhill" direction (which is our positive direction) so that we obtain

$$
a=g\left(\sin \theta+\mu_{k} \cos \theta\right)=9.5 \mathrm{~m} / \mathrm{s}^{2} .
$$

(d) The direction is down the slope.
58. (a) The x component of \vec{F} tries to move the crate while its y component indirectly contributes to the inhibiting effects of friction (by increasing the normal force). Newton's second law implies

$$
\begin{aligned}
& x \text { direction: } F \cos \theta-f_{\mathrm{s}}=0 \\
& y \text { direction: } F_{N}-F \sin \theta-m g=0
\end{aligned}
$$

To be "on the verge of sliding" means $f_{\mathrm{s}}=f_{\mathrm{s}, \max }=\mu_{\mathrm{s}} F_{N}$ (Eq. 6-1). Solving these equations for F (actually, for the ratio of F to $m g$) yields

$$
\frac{F}{m g}=\frac{\mu_{s}}{\cos \theta-\mu_{s} \sin \theta}
$$

This is plotted below (θ in degrees).

(b) The denominator of our expression (for F / mg) vanishes when

$$
\cos \theta-\mu_{s} \sin \theta=0 \Rightarrow \theta_{\mathrm{inf}}=\tan ^{-1}\left(\frac{1}{\mu_{s}}\right)
$$

For $\mu_{s}=0.70$, we obtain $\theta_{\text {inf }}=\tan ^{-1}\left(\frac{1}{\mu_{s}}\right)=55^{\circ}$.
(c) Reducing the coefficient means increasing the angle by the condition in part (b).
(d) For $\quad \mu_{s}=0.60 \quad$ we have $\quad \theta_{\text {inf }}=\tan ^{-1}\left(\frac{1}{\mu_{s}}\right)=59^{\circ}$
59. (a) The x component of \vec{F} contributes to the motion of the crate while its y component indirectly contributes to the inhibiting effects of friction (by increasing the normal force). Along the y direction, we have $F_{N}-F \cos \theta-m g=0$ and along the x direction we have $F \sin \theta-f_{k}=0$ (since it is not accelerating, according to the problem). Also, Eq. 6-2 gives $f_{k}=\mu_{k} F_{N}$. Solving these equations for F yields

$$
F=\frac{\mu_{k} m g}{\sin \theta-\mu_{k} \cos \theta}
$$

(b) When $\theta<\theta_{0}=\tan ^{-1} \mu_{s}, F$ will not be able to move the mop head.
60. (a) The tension will be the greatest at the lowest point of the swing. Note that there is no substantive difference between the tension T in this problem and the normal force F_{N} in Sample Problem 6-7. Eq. 6-19 of that Sample Problem examines the situation at the top of the circular path (where F_{N} is the least), and rewriting that for the bottom of the path leads to

$$
T=m g+m v^{2} / r
$$

where F_{N} is at its greatest value.
(b) At the breaking point $T=33 \mathrm{~N}=m\left(g+v^{2} / r\right)$ where $m=0.26 \mathrm{~kg}$ and $r=0.65 \mathrm{~m}$. Solving for the speed, we find that the cord should break when the speed (at the lowest point) reaches $8.73 \mathrm{~m} / \mathrm{s}$.
61. (a) Using $F=\mu_{s} m g$, the coefficient of static friction for the surface between the two blocks is $\mu_{s}=(12 \mathrm{~N}) /(39.2 \mathrm{~N})=0.31$, where $m_{t} g=(4.0)(9.8)=39.2 \mathrm{~N}$ is the weight of the top block. Let $M=m_{t}+m_{b}=9.0 \mathrm{~kg}$ be the total system mass, then the maximum horizontal force has a magnitude $M a=M \mu_{s} g=27 \mathrm{~N}$.
(b) The acceleration (in the maximal case) is $a=\mu_{s} g=3.0 \mathrm{~m} / \mathrm{s}^{2}$.
62. Note that since no static friction coefficient is mentioned, we assume f_{s} is not relevant to this computation. We apply Newton's second law to each block's x axis, which for m_{1} is positive rightward and for m_{2} is positive downhill:

$$
\begin{aligned}
T-f_{k} & =m_{1} a \\
m_{2} g \sin \theta-T & =m_{2} a
\end{aligned}
$$

Adding the equations, we obtain the acceleration:

$$
a=\frac{m_{2} g \sin \theta-f_{k}}{m_{1}+m_{2}}
$$

For $f_{k}=\mu_{k} F_{N}=\mu_{k} m_{1} g$, we obtain

$$
a=\frac{(3.0)(9.8) \sin 30^{\circ}-(0.25)(2.0)(9.8)}{3.0+2.0}=1.96 \mathrm{~m} / \mathrm{s}^{2} .
$$

Returning this value to either of the above two equations, we find $T=8.8 \mathrm{~N}$.
63. (a) To be "on the verge of sliding" means the applied force is equal to the maximum possible force of static friction (Eq. 6-1, with $F_{N}=m g$ in this case):

$$
f_{\mathrm{s}, \max }=\mu_{\mathrm{s}} m g=35.3 \mathrm{~N} .
$$

(b) In this case, the applied force \vec{F} indirectly decreases the maximum possible value of friction (since its y component causes a reduction in the normal force) as well as directly opposing the friction force itself (because of its x component). The normal force turns out to be

$$
F_{N}=m g-F \sin \theta
$$

where $\theta=60^{\circ}$, so that the horizontal equation (the x application of Newton's second law) becomes

$$
F \cos \theta-f_{\mathrm{s}, \max }=F \cos \theta-\mu_{\mathrm{s}}(m g-F \sin \theta)=0 \quad \Rightarrow F=39.7 \mathrm{~N} .
$$

(c) Now, the applied force \vec{F} indirectly increases the maximum possible value of friction (since its y component causes a reduction in the normal force) as well as directly opposing the friction force itself (because of its x component). The normal force in this case turns out to be

$$
F_{N}=m g+F \sin \theta
$$

where $\theta=60^{\circ}$, so that the horizontal equation becomes

$$
F \cos \theta-f_{\mathrm{s}, \max }=F \cos \theta-\mu_{\mathrm{s}}(m g+F \sin \theta)=0 \quad \Rightarrow F=320 \mathrm{~N} .
$$

64. Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5). Replace f_{s} with f_{k} in Fig. 6-5(b). With $\theta=40^{\circ}$, we apply Newton's second law to the "downhill" direction:

$$
\begin{aligned}
m g \sin \theta-f & =m a, \\
f=f_{k}=\mu_{k} F_{N} & =\mu_{k} m g \cos \theta
\end{aligned}
$$

using Eq. 6-12. Thus,

$$
a=0.75 \mathrm{~m} / \mathrm{s}^{2}=g\left(\sin \theta-\mu_{k} \cos \theta\right)
$$

determines the coefficient of kinetic friction: $\mu_{k}=0.74$.
65. The assumption that there is no slippage indicates that we are dealing with static friction f_{s}, and it is this force that is responsible for "pushing" the luggage along as the belt moves. Thus, Fig. 6-5 in the textbook is appropriate for this problem -- if one reverses the arrow indicating the direction of motion (and removes the word "impending"). The mass of the box is $m=69 / 9.8=7.0 \mathrm{~kg}$. Applying Newton's law to the x axis leads to

$$
f_{\mathrm{s}}-m g \sin \theta=m a
$$

where $\theta=2.5^{\circ}$ and uphill is the positive direction.
(a) Interpreting "temporarily at rest" (which is not meant to be the same thing as "momentarily at rest") to mean that the box is at equilibrium, we have $a=0$ and, consequently, $f_{\mathrm{s}}=m g \sin \theta=3.0 \mathrm{~N}$. It is positive and therefore pointed uphill.
(b) Constant speed in a one-dimensional setting implies that the velocity is constant -thus, $a=0$ again. We recover the answer $f_{\mathrm{s}}=3.0 \mathrm{~N}$ uphill, which we obtained in part (a).
(c) Early in the problem, the direction of motion of the luggage was given: downhill. Thus, an increase in that speed indicates a downhill acceleration $a=-0.20 \mathrm{~m} / \mathrm{s}^{2}$. We now solve for the friction and obtain

$$
f_{\mathrm{s}}=m a+m g \sin \theta=1.6 \mathrm{~N},
$$

which is positive -- therefore, uphill.
(d) A decrease in the (downhill) speed indicates the acceleration vector points uphill; thus, $a=+0.20 \mathrm{~m} / \mathrm{s}^{2}$. We solve for the friction and obtain

$$
f_{\mathrm{s}}=m a+m g \sin \theta=4.4 \mathrm{~N},
$$

which is positive -- therefore, uphill.
(e) The situation is similar to the one described in part (c), but with $a=-0.57 \mathrm{~m} / \mathrm{s}^{2}$. Now,

$$
f_{\mathrm{s}}=m a+m g \sin \theta=-1.0 \mathrm{~N},
$$

or $\left|f_{s}\right|=1.0 \mathrm{~N}$. Since f_{s} is negative, the direction is downhill.
(f) From the above, the only case where f_{s} is directed downhill is (e).
66. For the $m_{2}=1.0 \mathrm{~kg}$ block, application of Newton's laws result in

$$
\begin{array}{rlrl}
F \cos \theta-T-f_{k} & =m_{2} a & x \text { axis } \\
F_{N}-F \sin \theta-m_{2} g & =0 & & y \text { axis }
\end{array}
$$

Since $f_{k}=\mu_{k} F_{N}$, these equations can be combined into an equation to solve for a :

$$
F\left(\cos \theta-\mu_{k} \sin \theta\right)-T-\mu_{k} m_{2} g=m_{2} a
$$

Similarly (but without the applied push) we analyze the $m_{1}=2.0 \mathrm{~kg}$ block:

$$
\begin{aligned}
T-f_{k}^{\prime} & =m_{1} a & & x \text { axis } \\
F_{N}^{\prime}-m_{1} g & =0 & & y \text { axis }
\end{aligned}
$$

Using $f_{k}=\mu_{k} F_{N}^{\prime}$, the equations can be combined:

$$
T-\mu_{k} m_{1} g=m_{1} a
$$

Subtracting the two equations for a and solving for the tension, we obtain

$$
T=\frac{m_{1}\left(\cos \theta-\mu_{k} \sin \theta\right)}{m_{1}+m_{2}} F=\frac{(2.0)\left[\cos 35^{\circ}-(0.20) \sin 35^{\circ}\right]}{2.0+1.0}(20)=9.4 \mathrm{~N} .
$$

67. Each side of the trough exerts a normal force on the crate. The first diagram shows the view looking in toward a cross section. The net force is along the dashed line. Since each of the normal forces makes an angle of 45° with the dashed line, the magnitude of the resultant normal force is given by

$$
F_{N r}=2 F_{N} \cos 45^{\circ}=\sqrt{2} F_{N} .
$$

The second diagram is the free-body diagram for the crate (from a "side" view, similar to that shown in the first picture in Fig. 6-50). The force of gravity has magnitude mg , where m is the mass of the crate, and the magnitude of the force of friction is denoted by f. We take the $+x$ direction to be down the incline and $+y$ to be in the direction of $\vec{F}_{N r}$. Then the x and the y components of Newton's second law are

$$
\begin{aligned}
x: & m g \sin \theta-f & =m a \\
y: & F_{N r}-m g \cos \theta & =0 .
\end{aligned}
$$

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the total frictional force has magnitude

$$
f=2 \mu_{k} F_{N}=2 \mu_{k} F_{N r} / \sqrt{2}=\sqrt{2} \mu_{k} F_{N r}
$$

Combining this expression with $F_{N r}=m g \cos \theta$ and substituting into the x component equation, we obtain

$$
m g \sin \theta-\sqrt{2} m g \cos \theta=m a .
$$

Therefore $a=g\left(\sin \theta-\sqrt{2} \mu_{k} \cos \theta\right)$.

68. The free-body diagrams for the two boxes are shown below. T is the magnitude of the force in the rod (when $T>0$ the rod is said to be in tension and when $T<0$ the rod is under compression), $\vec{F}_{N 2}$ is the normal force on box 2 (the uncle box), $\vec{F}_{N 1}$ is the the normal force on the aunt box (box 1), \vec{f}_{1} is kinetic friction force on the aunt box, and \vec{f}_{2} is kinetic friction force on the uncle box. Also, $m_{1}=1.65 \mathrm{~kg}$ is the mass of the aunt box and $m_{2}=3.30 \mathrm{~kg}$ is the mass of the uncle box (which is a lot of ants!).

For each block we take $+x$ downhill (which is toward the lower-right in these diagrams) and $+y$ in the direction of the normal force. Applying Newton's second law to the x and y directions of first box 2 and next box 1 , we arrive at four equations:

$$
\begin{aligned}
m_{2} g \sin \theta-f_{2}-T & =m_{2} a \\
F_{N 2}-m_{2} g \cos \theta & =0 \\
m_{1} g \sin \theta-f_{1}+T & =m_{1} a \\
F_{N 1}-m_{1} g \cos \theta & =0
\end{aligned}
$$

which, when combined with Eq. 6-2 $\left(f_{1}=\mu_{1} F_{N 1}\right.$ where $\mu_{1}=0.226$ and $f_{2}=\mu_{2} F_{N 2}$ where $\mu_{2}=0.113$), fully describe the dynamics of the system.
(a) We solve the above equations for the tension and obtain

$$
T=\left(\frac{m_{2} m_{1} g}{m_{2}+m_{1}}\right)\left(\mu_{1}-\mu_{2}\right) \cos \theta=1.05 \mathrm{~N} .
$$

(b) These equations lead to an acceleration equal to

$$
a=g\left(\sin \theta-\left(\frac{\mu_{2} m_{2}+\mu_{1} m_{1}}{m_{2}+m_{1}}\right) \cos \theta\right)=3.62 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic result in part (a) that this gives a negative value for T (equal in magnitude to the result we got before). Thus, the situation is as it was before except that the rod is now in a state of compression.
69. (a) For block A the figure in the textbook accompanying Sample Problem 6-3 (Fig. 65) applies, but with the addition of an "uphill" tension force T (as in Fig. 5-18(b)) and with f_{s} replaced with $f_{k \text {,incline }}$ (to be as general as possible, we are treating the incline as having a coefficient of kinetic friction μ^{\prime}). If we choose "downhill" positive, then Newton's law gives

$$
m_{A} g \sin \theta-f_{A}-T=m_{A} a
$$

for block A (where $\theta=30^{\circ}$). For block B we choose leftward as the positive direction and write $T-f_{B}=m_{B} a$. Now

$$
f_{A}=\mu_{k, \text { incline }} F_{N A}=\mu^{\prime} m_{A} g \cos \theta
$$

using Eq. 6-12 applies to block A, and

$$
f_{B}=\mu_{k} F_{N B}=\mu_{k} m_{B} g .
$$

In this particular problem, we are asked to set $\mu^{\prime}=0$, and the resulting equations can be straightforwardly solved for the tension: $T=13 \mathrm{~N}$.
(b) Similarly, finding the value of a is straightforward:

$$
a=g\left(m_{A} \sin \theta-\mu_{k} m_{B}\right) /\left(m_{A}+m_{B}\right)=1.6 \mathrm{~m} / \mathrm{s}^{2} .
$$

70. (a) The coefficient of static friction is $\mu_{s}=\tan \left(\theta_{\text {sip }}\right)=0.577 \approx 0.58$.
(b) Using

$$
\begin{aligned}
m g \sin \theta-f & =m a \\
f=f_{k}=\mu_{k} F_{N} & =\mu_{k} m g \cos \theta
\end{aligned}
$$

and $a=2 d / t^{2}$ (with $d=2.5 \mathrm{~m}$ and $t=4.0 \mathrm{~s}$), we obtain $\mu_{k}=0.54$.
71. This situation is similar to that described in Sample Problem 6-2 but with the direction of the normal force reversed (the ceiling "pushes" down on the stone). Making the corresponding change of sign (in front of F_{N}) in Eq. 6-7, then (the new version of) the result for F (analogous to the T in that Sample Problem) is

$$
F=-\mu_{k} m g /\left(\cos \theta-\mu_{k} \sin \theta\right) .
$$

With $\mu_{k}=0.65, m=5.0 \mathrm{~kg}$, and $\theta=70^{\circ}$, we obtain $F=118 \mathrm{~N}$.
72. Consider that the car is "on the verge of sliding out" - meaning that the force of static friction is acting "down the bank" (or "downhill" from the point of view of an ant on the banked curve) with maximum possible magnitude. We first consider the vector sum \vec{F} of the (maximum) static friction force and the normal force. Due to the facts that they are perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find \vec{F} is at angle (measured from the vertical axis) $\phi=\theta+\theta_{s}$ where $\tan \theta_{s}=\mu_{s}$ (compare with Eq. 613), and θ is the bank angle. Now, the vector sum of \vec{F} and the vertically downward pull $(m g)$ of gravity must be equal to the (horizontal) centripetal force $\left(m v^{2} / R\right)$, which leads to a surprisingly simple relationship:

$$
\tan \phi=\frac{m \mathrm{v}^{2} / R}{m g}=\frac{\mathrm{v}^{2}}{R g} .
$$

Writing this as an expression for the maximum speed, we have

$$
v_{\max }=\sqrt{R g \tan \left(\theta+\tan ^{-1} \mu_{s}\right)}=\sqrt{\frac{R g\left(\tan \theta+\mu_{s}\right)}{1-\mu_{s} \tan \theta}}
$$

(a) We note that the given speed is (in SI units) roughly $17 \mathrm{~m} / \mathrm{s}$. If we do not want the cars to "depend" on the static friction to keep from sliding out (that is, if we want the component "down the back" of gravity to be sufficient), then we can set $\mu_{s}=0$ in the above expression and obtain $v=\sqrt{R g \tan \theta}$. With $R=150 \mathrm{~m}$, this leads to $\theta=11^{\circ}$.
(b) If, however, the curve is not banked (so $\theta=0$) then the above expression becomes

$$
v=\sqrt{R g \tan \left(\tan ^{-1} \mu_{s}\right)}=\sqrt{R g \mu_{s}}
$$

Solving this for the coefficient of static friction $\mu_{s}=0.19$.
73. Replace f_{s} with f_{k} in Fig. 6-5(b) to produce the appropriate force diagram for the first part of this problem (when it is sliding downhill with zero acceleration). This amounts to replacing the static coefficient with the kinetic coefficient in Eq. 6-13: $\mu_{k}=\tan \theta$. Now (for the second part of the problem, with the block projected uphill) the friction direction is reversed from what is shown in Fig. 6-5(b). Newton's second law for the uphill motion (and Eq. 6-12) leads to

$$
-m g \sin \theta-\mu_{k} m g \cos \theta=m a
$$

Canceling the mass and substituting what we found earlier for the coefficient, we have

$$
-g \sin \theta-\tan \theta g \cos \theta=a
$$

This simplifies to $-2 g \sin \theta=a$. Eq. 2-16 then gives the distance to stop: $\Delta x=-v_{0}{ }^{2} / 2 a$.
(a) Thus, the distance up the incline traveled by the block is $\Delta x=v_{0}{ }^{2} /(4 g \sin \theta)$.
(b) We usually expect $\mu_{s}>\mu_{k}$ (see the discussion in section 6-1). Sample Problem 6-3 treats the "angle of repose" (the minimum angle necessary for a stationary block to start sliding downhill): $\mu_{s}=\tan \left(\theta_{\text {repose }}\right)$. Therefore, we expect $\theta_{\text {repose }}>\theta$ found in part (a). Consequently, when the block comes to rest, the incline is not steep enough to cause it to start slipping down the incline again.
74. Analysis of forces in the horizontal direction (where there can be no acceleration) leads to the conclusion that $F=F_{N}$; the magnitude of the normal force is 60 N . The maximum possible static friction force is therefore $\mu_{s} F_{N}=33 \mathrm{~N}$, and the kinetic friction force (when applicable) is $\mu_{k} F_{N}=23 \mathrm{~N}$.
(a) In this case, $\vec{P}=34 \mathrm{~N}$ upward. Assuming \vec{f} points down, then Newton's second law for the y leads to

$$
P-m g-f=m a .
$$

if we assume $f=f_{s}$ and $a=0$, we obtain $f=(34-22) \mathrm{N}=12 \mathrm{~N}$. This is less than $f_{s, \max }$, which shows the consistency of our assumption. The answer is: $\overrightarrow{f_{s}}=12 \mathrm{~N}$ down.
(b) In this case, $\vec{P}=12 \mathrm{~N}$ upward. The above equation, with the same assumptions as in part (a), leads to $f=(12-22) \mathrm{N}=-10 \mathrm{~N}$. Thus, $\left|f_{s}\right|<f_{s, \text { max }}$, justifying our assumption that the block is stationary, but its negative value tells us that our initial assumption about the direction of \vec{f} is incorrect in this case. Thus, the answer is: $\overrightarrow{f_{s}}=10 \mathrm{~N}$ up.
(c) In this case, $\vec{P}=48 \mathrm{~N}$ upward. The above equation, with the same assumptions as in part (a), leads to $f=(48-22) \mathrm{N}=26 \mathrm{~N}$. Thus, we again have $f_{s}<f_{s, \text { max }}$, and our answer is: $\overrightarrow{f_{s}}=26 \mathrm{~N}$ down.
(d) In this case, $\vec{P}=62 \mathrm{~N}$ upward. The above equation, with the same assumptions as in part (a), leads to $f=(62-22) \mathrm{N}=40 \mathrm{~N}$, which is larger than $f_{s \text {, max, }}$-- invalidating our assumptions. Therefore, we take $f=f_{k}$ and $a \neq 0$ in the above equation; if we wished to find the value of a we would find it to be positive, as we should expect. The answer is: $\overrightarrow{f_{k}}=23 \mathrm{~N}$ down.
(e) In this case, $\vec{P}=10 \mathrm{~N}$ downward. The above equation (but with P replaced with $-P$) with the same assumptions as in part (a), leads to $f=(-10-22) \mathrm{N}=-32 \mathrm{~N}$. Thus, we have $\left|f_{s}\right|<f_{s, \max }$, justifying our assumption that the block is stationary, but its negative value tells us that our initial assumption about the direction of \vec{f} is incorrect in this case. Thus, the answer is: $\overrightarrow{f_{s}}=32 \mathrm{~N}$ up.
(f) In this case, $\vec{P}=18 \mathrm{~N}$ downward. The above equation (but with P replaced with $-P$) with the same assumptions as in part (a), leads to $f=(-18-22) \mathrm{N}=-40 \mathrm{~N}$, which is larger (in absolute value) than $f_{s, \text { max }}$, -- invalidating our assumptions. Therefore, we take $f=f_{k}$ and $a \neq 0$ in the above equation; if we wished to find the value of a we would find it to be negative, as we should expect. The answer is: $\overrightarrow{f_{k}}=23 \mathrm{~N}$ up.
(g) The block moves up the wall in case (d) where $a>0$.
(h) The block moves down the wall in case (f) where $a<0$.
(i) The frictional force $\overrightarrow{f_{s}}$ is directed down in cases (a), (c) and (d).
75. The figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5) applies, but with f_{s} replaced with f_{k}. If we choose "downhill" positive, then Newton's law gives

$$
m g \sin \theta-f_{k}=m a
$$

for the sliding child. Now using Eq. 6-12

$$
f_{k}=\mu_{k} F_{N}=\mu_{k} m g,
$$

so we obtain $a=g\left(\sin \theta-\mu_{k} \cos \theta\right)=-0.5 \mathrm{~m} / \mathrm{s}^{2}$ (note that the problem gives the direction of the acceleration vector as uphill, even though the child is sliding downhill, so it is a deceleration). With $\theta=35^{\circ}$, we solve for the coefficient and find $\mu_{k}=0.76$.
76. We may treat all 25 cars as a single object of mass $m=25 \times 5.0 \times 10^{4} \mathrm{~kg}$ and (when the speed is $30 \mathrm{~km} / \mathrm{h}=8.3 \mathrm{~m} / \mathrm{s}$) subject to a friction force equal to $f=25 \times 250 \times 8.3=$ $5.2 \times 10^{4} \mathrm{~N}$.
(a) Along the level track, this object experiences a "forward" force T exerted by the locomotive, so that Newton's second law leads to

$$
T-f=m a \Rightarrow T=5.2 \times 10^{4}+\left(1.25 \times 10^{6}\right)(0.20)=3.0 \times 10^{5} \mathrm{~N} .
$$

(b) The free-body diagram is shown next, with θ as the angle of the incline. The $+x$ direction (which is the only direction to which we will be applying Newton's second law) is uphill (to the upper right in our sketch).

Thus, we obtain

$$
T-f-m g \sin \theta=m a
$$

where we set $a=0$ (implied by the problem statement) and solve for the angle. We obtain $\theta=1.2^{\circ}$.

77. (a) The distance traveled by the coin in 3.14 s is $3(2 \pi r)=6 \pi(0.050)=0.94 \mathrm{~m}$. Thus, its speed is $v=0.94 / 3.14=0.30 \mathrm{~m} / \mathrm{s}$.
(b) This centripetal acceleration is given by Eq. 6-17:

$$
a=\frac{v^{2}}{r}=\frac{0.30^{2}}{0.050}=1.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The acceleration vector (at any instant) is horizontal and points from the coin towards the center of the turntable.
(d) The only horizontal force acting on the coin is static friction f_{s} and must be large enough to supply the acceleration of part (b) for the $m=0.0020 \mathrm{~kg}$ coin. Using Newton's second law,

$$
f_{s}=m a=(0.0020)(1.8)=3.6 \times 10^{-3} \mathrm{~N}
$$

(e) The static friction f_{s} must point in the same direction as the acceleration (towards the center of the turntable).
(f) We note that the normal force exerted upward on the coin by the turntable must equal the coin's weight (since there is no vertical acceleration in the problem). We also note that if we repeat the computations in parts (a) and (b) for $r^{\prime}=0.10 \mathrm{~m}$, then we obtain $v^{\prime}=$ $0.60 \mathrm{~m} / \mathrm{s}$ and $a^{\prime}=3.6 \mathrm{~m} / \mathrm{s}^{2}$. Now, if friction is at its maximum at $r=r^{\prime}$, then, by Eq. $6-1$, we obtain

$$
\mu_{s}=\frac{f_{s, \max }}{m g}=\frac{m a^{\prime}}{m g}=0.37 .
$$

78. Although the object in question is a sphere, the area A in Eq. 6-16 is the cross sectional area presented by the object as it moves through the air (the cross section is perpendicular to \vec{v}). Thus, A is that of a circle: $A=\pi R^{2}$. We also note that 16 lb equates to an SI weight of 71 N . Thus,

$$
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho \pi R^{2}}} \Rightarrow R=\frac{1}{145} \sqrt{\frac{2(71)}{(0.49)(1.2) \pi}}
$$

which yields a diameter of $2 R=0.12 \mathrm{~m}$.
79. In the following sketch, T and T^{\prime} are the tensions in the left and right strings, respectively. Also, $m_{1}=M=2.0 \mathrm{~kg}, m_{2}=2 M=4.0 \mathrm{~kg}$, and $m_{3}=2 M=4.0 \mathrm{~kg}$. Since it does, in fact, slide (presumably rightward), the type of friction that is acting upon m_{2} is kinetic friction.

We use the familiar axes with $+x$ rightward and $+y$ upward for each block. This has the consequence that m_{1} and m_{2} accelerate with the same sign, but the acceleration of m_{3} has the opposite sign. We take this into account as we apply Newton's second law to the three blocks.

$$
\begin{aligned}
T-m_{1} g & =m_{1}(+a) \\
T^{\prime}-T-f_{k} & =m_{2}(+a) \\
T^{\prime}-m_{3} g & =m_{3}(-a)
\end{aligned}
$$

Adding the first two equations, and subtracting the last, we obtain

$$
\left(m_{3}-m_{1}\right) g-f_{k}=\left(m_{1}+m_{2}+m_{3}\right) a
$$

or (using M as in the problem statement)

$$
M g-f_{k}=5 M a .
$$

With $a=1.5 \mathrm{~m} / \mathrm{s}^{2}$, we find $f_{k}=4.6 \mathrm{~N}$.
80. (a) The component of the weight along the incline (with downhill understood as the positive direction) is $m g \sin \theta$ where $m=630 \mathrm{~kg}$ and $\theta=10.2^{\circ}$. With $f=62.0 \mathrm{~N}$, Newton's second law leads to

$$
m g \sin \theta-f=m a
$$

which yields $a=1.64 \mathrm{~m} / \mathrm{s}^{2}$. Using Eq. 2-15, we have

$$
80.0 \mathrm{~m}=\left(6.20 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t+\frac{1}{2}\left(1.64 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}
$$

This is solved using the quadratic formula. The positive root is $t=6.80 \mathrm{~s}$.
(b) Running through the calculation of part (a) with $f=42.0 \mathrm{~N}$ instead of $f=62 \mathrm{~N}$ results in $t=6.76 \mathrm{~s}$.
81. An excellent discussion and equation development related to this problem is given in Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13)

$$
\theta=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.5=27^{\circ}
$$

which implies that the angle through which the slope should be reduced is

$$
\phi=45^{\circ}-27^{\circ} \approx 20^{\circ} .
$$

82. (a) Comparing the $t=2.0 \mathrm{~s}$ photo with the $t=0$ photo, we see that the distance traveled by the box is

$$
d=\sqrt{4.0^{2}+2.0^{2}}=4.5 \mathrm{~m} .
$$

Thus (from Table 2-1, with downhill positive) $d=v_{0} t+\frac{1}{2} a t^{2}$, we obtain $a=2.2 \mathrm{~m} / \mathrm{s}^{2}$; note that the boxes are assumed to start from rest.
(b) For the axis along the incline surface, we have

$$
m g \sin \theta-f_{k}=m a .
$$

We compute mass m from the weight $m=(240 / 9.8) \mathrm{kg}=24 \mathrm{~kg}$, and θ is figured from the absolute value of the slope of the graph: $\theta=\tan ^{-1}(2.5 / 5.0)=27^{\circ}$. Therefore, we find $f_{k}=$ 53 N .
83. (a) If the skier covers a distance L during time t with zero initial speed and a constant acceleration a, then $L=a t^{2} / 2$, which gives the acceleration a_{1} for the first (old) pair of skis:

$$
a_{1}=\frac{2 L}{t_{1}^{2}}=\frac{2(200 \mathrm{~m})}{(61 \mathrm{~s})^{2}}=0.11 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The acceleration a_{2} for the second (new) pair is

$$
a_{2}=\frac{2 L}{t_{2}^{2}}=\frac{2(200 \mathrm{~m})}{(42 \mathrm{~s})^{2}}=0.23 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) The net force along the slope acting on the skier of mass m is

$$
F_{\text {net }}=m g \sin \theta-f_{k}=m g\left(\sin \theta-\mu_{k} \cos \theta\right)=m a
$$

which we solve for $\mu_{k 1}$ for the first pair of skis:

$$
\mu_{k 1}=\tan \theta-\frac{a_{1}}{g \cos \theta}=\tan 3.0^{\circ}-\frac{0.11}{9.8 \cos 3.0^{\circ}}=0.041
$$

(d) For the second pair, we have

$$
\mu_{k 2}=\tan \theta-\frac{a_{2}}{g \cos \theta}=\tan 3.0^{\circ}-\frac{0.23}{9.8 \cos 3.0^{\circ}}=0.029 .
$$

84. We make use of Eq. 6-16 which yields

$$
\sqrt{\frac{2 m g}{C \rho \pi R^{2}}}=\sqrt{\frac{2(6)(9.8)}{(1.6)(1.2) \pi(0.03)^{2}}}=147 \mathrm{~m} / \mathrm{s}
$$

85. (a) The box doesn't move until $t=2.8 \mathrm{~s}$, which is when the applied force \vec{F} reaches a magnitude of $F=(1.8)(2.8)=5.0 \mathrm{~N}$, implying therefore that $f_{s, \max }=5.0 \mathrm{~N}$. Analysis of the vertical forces on the block leads to the observation that the normal force magnitude equals the weight $F_{N}=m g=15 \mathrm{~N}$. Thus, $\mu_{s}=f_{s, \max } / F_{N}=0.34$.
(b) We apply Newton's second law to the horizontal x axis (positive in the direction of motion).

$$
F-f_{k}=m a \Rightarrow 1.8 t-f_{k}=(1.5)(1.2 t-2.4)
$$

Thus, we find $f_{k}=3.6 \mathrm{~N}$. Therefore, $\mu_{k}=f_{k} / F_{N}=0.24$.
86. In both cases (highest point and lowest point), the normal force (on the child from the seat) points up, gravity points down, and the y axis is chosen positive upwards. At the high point, the direction to the center of the circle (the direction of centripetal acceleration) is down, and at the low point that direction is up.
(a) Newton's second law (using Eq. 6-17 for the magnitude of the acceleration) leads to

$$
F_{N}-m g=m\left(-\frac{v^{2}}{R}\right)
$$

With $m=26 \mathrm{~kg}, v=5.5 \mathrm{~m} / \mathrm{s}$ and $R=12 \mathrm{~m}$, this yields $F_{N}=189 \mathrm{~N}$ which we round off to $F_{N} \approx 190 \mathrm{~N}$.
(b) Now, Newton's second law leads to

$$
F_{N}-m g=m\left(\frac{v^{2}}{r}\right)
$$

which yields $F_{N}=320 \mathrm{~N}$. As already mentioned, the direction of \vec{F}_{N} is $u p$ in both cases.
87. The mass of the car is $m=(10700 / 9.80) \mathrm{kg}=1.09 \times 10^{3} \mathrm{~kg}$. We choose "inward" (horizontally towards the center of the circular path) as the positive direction.
(a) With $v=13.4 \mathrm{~m} / \mathrm{s}$ and $R=61 \mathrm{~m}$, Newton's second law (using Eq. 6-18) leads to

$$
f_{s}=\frac{m v^{2}}{R}=3.21 \times 10^{3} \mathrm{~N} .
$$

(b) Noting that $F_{N}=m g$ in this situation, the maximum possible static friction is found to be

$$
f_{s, \text { max }}=\mu_{s} m g=(0.35)(10700)=3.75 \times 10^{3} \mathrm{~N}
$$

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car rolls (no skidding) and successfully negotiates the curve.
88. (a) The distance traveled in one revolution is $2 \pi R=2 \pi(4.6)=29 \mathrm{~m}$. The (constant) speed is consequently $v=29 / 30=0.96 \mathrm{~m} / \mathrm{s}$.
(b) Newton's second law (using Eq. 6-17 for the magnitude of the acceleration) leads to

$$
f_{s}=m\left(\frac{v^{2}}{R}\right)=m(0.20)
$$

in SI units. Noting that $F_{N}=m g$ in this situation, the maximum possible static friction is $f_{s, \max }=\mu_{s} m g$ using Eq. 6-1. Equating this with $f_{s}=m(0.20)$ we find the mass m cancels and we obtain $\mu_{s}=0.20 / 9.8=0.021$.
89. At the top of the hill the vertical forces on the car are the upward normal force exerted by the ground and the downward pull of gravity. Designating $+y$ downward, we have

$$
m g-F_{N}=\frac{m v^{2}}{R}
$$

from Newton's second law. To find the greatest speed without leaving the hill, we set F_{N} $=0$ and solve for v :

$$
v=\sqrt{g R}=\sqrt{(9.8)(250)}=49.5 \mathrm{~m} / \mathrm{s}=49.5(3600 / 1000) \mathrm{km} / \mathrm{h}=178 \mathrm{~km} / \mathrm{h}
$$

90 . For simplicity, we denote the 70° angle as θ and the magnitude of the push $(80 \mathrm{~N})$ as P. The vertical forces on the block are the downward normal force exerted on it by the ceiling, the downward pull of gravity (of magnitude $m g$) and the vertical component of \vec{P} (which is upward with magnitude $P \sin \theta$). Since there is no acceleration in the vertical direction, we must have

$$
F_{N}=P \sin \theta-m g
$$

in which case the leftward-pointed kinetic friction has magnitude

$$
f_{k}=\mu_{k}(P \sin \theta-m g)
$$

Choosing $+x$ rightward, Newton's second law leads to

$$
P \cos \theta-f_{k}=m a \Rightarrow a=\frac{P \cos \theta-u_{k}(P \sin \theta-m g)}{m}
$$

which yields $a=3.4 \mathrm{~m} / \mathrm{s}^{2}$ when $\mu_{k}=0.40$ and $m=5.0 \mathrm{~kg}$.
91. Probably the most appropriate picture in the textbook to represent the situation in this problem is in the previous chapter: Fig. 5-9. We adopt the familiar axes with $+x$ rightward and $+y$ upward, and refer to the 85 N horizontal push of the worker as P (and assume it to be rightward). Applying Newton's second law to the x axis and y axis, respectively, produces

$$
\begin{aligned}
& P-f_{k}=m a \\
& F_{N}-m g=0 .
\end{aligned}
$$

Using $v^{2}=v_{0}^{2}+2 a \Delta x$ we find $a=0.36 \mathrm{~m} / \mathrm{s}^{2}$. Consequently, we obtain $f_{k}=71 \mathrm{~N}$ and $F_{N}=$ 392 N. Therefore, $\mu_{k}=f_{k} / F_{N}=0.18$.
92. In the figure below, $m=140 / 9.8=14.3 \mathrm{~kg}$ is the mass of the child. We use \vec{w}_{x} and \vec{w}_{y} as the components of the gravitational pull of Earth on the block; their magnitudes are $w_{x}=m g \sin \theta$ and $w_{y}=m g \cos \theta$.

(a) With the x axis directed up along the incline (so that $a=-0.86 \mathrm{~m} / \mathrm{s}^{2}$), Newton's second law leads to

$$
f_{k}-140 \sin 25^{\circ}=m(-0.86)
$$

which yields $f_{k}=47 \mathrm{~N}$. We also apply Newton's second law to the y axis (perpendicular to the incline surface), where the acceleration-component is zero:

$$
F_{N}-140 \cos 25^{\circ}=0 \Rightarrow F_{N}=127 \mathrm{~N} .
$$

Therefore, $\mu_{k}=f_{k} / F_{N}=0.37$.
(b) Returning to our first equation in part (a), we see that if the downhill component of the weight force were insufficient to overcome static friction, the child would not slide at all. Therefore, we require $140 \sin 25^{\circ}>f_{s, \max }=\mu_{s} F_{N}$, which leads to $\tan 25^{\circ}=0.47>\mu_{s}$. The minimum value of μ_{s} equals μ_{k} and is more subtle; reference to $\S 6-1$ is recommended. If μ_{k} exceeded μ_{s} then when static friction were overcome (as the incline is raised) then it should start to move - which is impossible if f_{k} is large enough to cause deceleration! The bounds on μ_{s} are therefore given by $0.47>\mu_{s}>0.37$.
93. (a) Our $+x$ direction is horizontal and is chosen (as we also do with $+y$) so that the components of the 100 N force \vec{F} are non-negative. Thus, $F_{x}=F \cos \theta=100 \mathrm{~N}$, which the textbook denotes F_{h} in this problem.
(b) Since there is no vertical acceleration, application of Newton's second law in the y direction gives

$$
F_{N}+F_{y}=m g \Rightarrow F_{N}=m g-F \sin \theta
$$

where $m=25.0 \mathrm{~kg}$. This yields $F_{N}=245 \mathrm{~N}$ in this case $\left(\theta=0^{\circ}\right)$.
(c) Now, $F_{x}=F_{h}=F \cos \theta=86.6 \mathrm{~N}$ for $\theta=30.0^{\circ}$.
(d) And $F_{N}=m g-F \sin \theta=195 \mathrm{~N}$.
(e) We find $F_{x}=F_{h}=F \cos \theta=50.0 \mathrm{~N}$ for $\theta=60.0^{\circ}$.
(f) And $F_{N}=m g-F \sin \theta=158 \mathrm{~N}$.
(g) The condition for the chair to slide is

$$
F_{x}>f_{s, \text { max }}=\mu_{s} F_{N} \text { where } \mu_{s}=0.42
$$

For $\theta=0^{\circ}$, we have

$$
F_{x}=100 \mathrm{~N}<f_{s, \text { max }}=(0.42)(245)=103 \mathrm{~N}
$$

so the crate remains at rest.
(h) For $\theta=30.0^{\circ}$, we find

$$
F_{x}=86.6 \mathrm{~N}>f_{s, \text { max }}=(0.42)(195)=81.9 \mathrm{~N}
$$

so the crate slides.
(i) For $\theta=60^{\circ}$, we get

$$
F_{x}=50.0 \mathrm{~N}<f_{s, \text { max }}=(0.42)(158)=66.4 \mathrm{~N}
$$

which means the crate must remain at rest.
94. We note that $F_{N}=m g$ in this situation, so $f_{k}=\mu_{k} m g=(0.32)(220)=70.4 \mathrm{~N}$ and $f_{s, \text { max }}$ $=\mu_{s} m g=(0.41)(220)=90.2 \mathrm{~N}$.
(a) The person needs to push at least as hard as the static friction maximum if he hopes to start it moving. Denoting his force as P, this means a value of P slightly larger than 90.2 N is sufficient. Rounding to two figures, we obtain $P=90 \mathrm{~N}$.
(b) Constant velocity (zero acceleration) implies the push equals the kinetic friction, so $P=70 \mathrm{~N}$.
(c) Applying Newton's second law, we have

$$
P-f_{k}=m a \Rightarrow a=\frac{\mu_{s} m g-\mu_{k} m g}{m}
$$

which simplifies to $a=g\left(\mu_{s}-\mu_{k}\right)=0.88 \mathrm{~m} / \mathrm{s}^{2}$.
95. Except for replacing f_{s} with f_{k}, Fig 6-5 in the textbook is appropriate. With that figure in mind, we choose uphill as the $+x$ direction. Applying Newton's second law to the x axis, we have

$$
f_{k}-W \sin \theta=m a \text { where } m=\frac{W}{g},
$$

and where $W=40 \mathrm{~N}, a=+0.80 \mathrm{~m} / \mathrm{s}^{2}$ and $\theta=25^{\circ}$. Thus, we find $f_{k}=20 \mathrm{~N}$. Along the y axis, we have

$$
\sum \vec{F}_{y}=0 \Rightarrow F_{N}=W \cos \theta
$$

so that $\mu_{k}=f_{k} / F_{N}=0.56$.
96. (a) We note that $F_{N}=m g$ in this situation, so $f_{s, \max }=\mu_{s} m g=(0.52)(11)(9.8)=56 \mathrm{~N}$. Consequently, the horizontal force \vec{F} needed to initiate motion must be (at minimum) slightly more than 56 N .
(b) Analyzing vertical forces when \vec{F} is at nonzero θ yields

$$
F \sin \theta+F_{N}=m g \Rightarrow f_{s, \max }=\mu_{s}(m g-F \sin \theta)
$$

Now, the horizontal component of \vec{F} needed to initiate motion must be (at minimum) slightly more than this, so

$$
F \cos \theta=\mu_{s}(m g-F \sin \theta) \Rightarrow F=\frac{\mu_{s} m g}{\cos \theta+\mu_{s} \sin \theta}
$$

which yields $F=59 \mathrm{~N}$ when $\theta=60^{\circ}$.
(c) We now set $\theta=-60^{\circ}$ and obtain

$$
F=\frac{(0.52)(11)(9.8)}{\cos \left(-60^{\circ}\right)+(0.52) \sin \left(-60^{\circ}\right)}=1.1 \times 10^{3} \mathrm{~N}
$$

97. The coordinate system we wish to use is shown in Fig. 5-18 in the textbook, so we resolve this horizontal force into appropriate components.

(a) Applying Newton's second law to the x (directed uphill) and y (directed away from the incline surface) axes, we obtain

$$
\begin{aligned}
F \cos \theta-f_{k}-m g \sin \theta & =m a \\
F_{N}-F \sin \theta-m g \cos \theta & =0 .
\end{aligned}
$$

Using $f_{k}=\mu_{k} F_{N}$, these equations lead to

$$
a=\frac{F}{m}\left(\cos \theta-\mu_{k} \sin \theta\right)-g\left(\sin \theta+\mu_{k} \cos \theta\right)
$$

which yields $a=-2.1 \mathrm{~m} / \mathrm{s}^{2}$, or $|a|=2.1 \mathrm{~m} / \mathrm{s}^{2}$, for $\mu_{k}=0.30, F=50 \mathrm{~N}$ and $m=5.0 \mathrm{~kg}$.
(b) The direction of \vec{a} is down the plane.
(c) With $v_{0}=+4.0 \mathrm{~m} / \mathrm{s}$ and $v=0$, Eq. 2-16 gives

$$
\Delta x=-\frac{4.0^{2}}{2(-2.1)}=3.9 \mathrm{~m} .
$$

(d) We expect $\mu_{s} \geq \mu_{k}$; otherwise, an object started into motion would immediately start decelerating (before it gained any speed)! In the minimal expectation case, where $\mu_{s}=$ 0.30, the maximum possible (downhill) static friction is, using Eq. 6-1,

$$
f_{s, \max }=\mu_{s} F_{N}=\mu_{s}(F \sin \theta+m g \cos \theta)
$$

which turns out to be 21 N . But in order to have no acceleration along the x axis, we must have

$$
f_{s}=F \cos \theta-m g \sin \theta=10 \mathrm{~N}
$$

(the fact that this is positive reinforces our suspicion that \vec{f}_{s} points downhill).
(e) Since the f_{s} needed to remain at rest is less than $f_{s, \text { max }}$ then it stays at that location.
98. (a) The upward force exerted by the car on the passenger is equal to the downward force of gravity ($W=500 \mathrm{~N}$) on the passenger. So the net force does not have a vertical contribution; it only has the contribution from the horizontal force (which is necessary for maintaining the circular motion). Thus $\left|\vec{F}_{\text {net }}\right|=F=210 \mathrm{~N}$.
(b) Using Eq. 6-18, we have

$$
v=\sqrt{\frac{F R}{m}}=\sqrt{\frac{(210)(470)}{51.0}}=44.0 \mathrm{~m} / \mathrm{s} .
$$

99. The magnitude of the acceleration of the cyclist as it moves along the horizontal circular path is given by v^{2} / R, where v is the speed of the cyclist and R is the radius of the curve.
(a) The horizontal component of Newton's second law is $f=m v^{2} / R$, where f is the static friction exerted horizontally by the ground on the tires. Thus,

$$
f=\frac{(85.0)(9.00)^{2}}{25.0}=275 \mathrm{~N} .
$$

(b) If F_{N} is the vertical force of the ground on the bicycle and m is the mass of the bicycle and rider, the vertical component of Newton's second law leads to $F_{N}=m g=833 \mathrm{~N}$. The magnitude of the force exerted by the ground on the bicycle is therefore

$$
\sqrt{f^{2}+F_{N}^{2}}=\sqrt{(275)^{2}+(833)^{2}}=877 \mathrm{~N} .
$$

100. We use Eq. $6-14, D=\frac{1}{2} C \rho A v^{2}$, where ρ is the air density, A is the cross-sectional area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is given by $A=\pi R^{2}$, where $R=0.265 \mathrm{~m}$ is the radius of the missile. Thus

$$
D=\frac{1}{2}(0.75)\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right) \pi(0.265 \mathrm{~m})^{2}(250 \mathrm{~m} / \mathrm{s})^{2}=6.2 \times 10^{3} \mathrm{~N} .
$$

101. We convert to SI units: $v=94(1000 / 3600)=26 \mathrm{~m} / \mathrm{s}$. Eq. $6-18$ yields

$$
F=\frac{m v^{2}}{R}=\frac{(85)(26)^{2}}{220}=263 \mathrm{~N}
$$

for the horizontal force exerted on the passenger by the seat. But the seat also exerts an upward force equal to $m g=833 \mathrm{~N}$. The magnitude of force is therefore $\sqrt{(263)^{2}+(833)^{2}}=874 \mathrm{~N}$.
102. (a) The free-body diagram for the person (shown as an L-shaped block) is shown below. The force that she exerts on the rock slabs is not directly shown (since the diagram should only show forces exerted on her), but it is related by Newton's third law) to the normal forces $\vec{F}_{N 1}$ and $\vec{F}_{N 2}$ exerted horizontally by the slabs onto her shoes and back, respectively. We will show in part (b) that $F_{N 1}=F_{N 2}$ so that we there is no ambiguity in saying that the magnitude of her push is $F_{N 2}$. The total upward force due to (maximum) static friction is $\vec{f}=\vec{f}_{1}+\vec{f}_{2}$ where $f_{1}=\mu_{s 1} F_{N 1}$ and $f_{2}=\mu_{s 2} F_{N 2}$. The problem gives the values $\mu_{\mathrm{s} 1}=1.2$ and $\mu_{\mathrm{s} 2}=0.8$.

(b) We apply Newton's second law to the x and y axes (with $+x$ rightward and $+y$ upward and there is no acceleration in either direction).

$$
\begin{aligned}
F_{N 1}-F_{N 2} & =0 \\
f_{1}+f_{2}-m g & =0
\end{aligned}
$$

The first equation tells us that the normal forces are equal $F_{N 1}=F_{N 2}=F_{N}$. Consequently, from Eq. 6-1,

$$
\begin{aligned}
& f_{1}=\mu_{\mathrm{s} 1} F_{N} \\
& f_{2}=\mu_{\mathrm{s} 2} F_{N}
\end{aligned}
$$

we conclude that

$$
f_{1}=\left(\frac{\mu_{\mathrm{s} 1}}{\mu_{\mathrm{s} 2}}\right) f_{2}
$$

Therefore, $f_{1}+f_{2}-m g=0$ leads to

$$
\left(\frac{\mu_{\mathrm{s} 1}}{\mu_{\mathrm{s} 2}}+1\right) f_{2}=m g
$$

which (with $m=49 \mathrm{~kg}$) yields $f_{2}=192 \mathrm{~N}$. From this we find $F_{N}=f_{2} / \mu_{\mathrm{s} 2}=240 \mathrm{~N}$. This is equal to the magnitude of the push exerted by the rock climber.
(c) From the above calculation, we find $f_{1}=\mu_{\mathrm{s} 1} F_{N}=288 \mathrm{~N}$ which amounts to a fraction

$$
\frac{f_{1}}{W}=\frac{288}{(49)(9.8)}=0.60
$$

or 60% of her weight.
103. (a) The push (to get it moving) must be at least as big as $f_{\mathrm{s}, \max }=\mu_{s} F_{N}$ (Eq. 6-1, with $F_{N}=m g$ in this case $)$, which equals $(0.51)(165 \mathrm{~N})=84.2 \mathrm{~N}$.
(b) While in motion, constant velocity (zero acceleration) is maintained if the push is equal to the kinetic friction force $f_{k}=\mu_{k} F_{N}=\mu_{\mathrm{k}} m g=52.8 \mathrm{~N}$.
(c) We note that the mass of the crate is $165 / 9.8=16.8 \mathrm{~kg}$. The acceleration, using the push from part (a), is $a=(84.2-52.8) / 16.8 \approx 1.87 \mathrm{~m} / \mathrm{s}^{2}$.
104. The free-body diagram for the puck is shown below. \vec{F}_{N} is the normal force of the ice on the puck, \vec{f} is the force of friction (in the $-x$ direction), and $m \vec{g}$ is the force of gravity.
(a) The horizontal component of Newton's second law gives $-f=m a$, and constant acceleration kinematics (Table 2-1) can be used to find the acceleration.

Since the final velocity is zero, $v^{2}=v_{0}^{2}+2 a x$ leads to $a=-v_{0}^{2} / 2 x$. This is substituted into the Newton's law equation to obtain

$$
\begin{aligned}
f & =\frac{m v_{0}^{2}}{2 x} \\
& =\frac{(0.110 \mathrm{~kg})(6.0 \mathrm{~m} / \mathrm{s})^{2}}{2(15 \mathrm{~m})} \\
& =0.13 \mathrm{~N}
\end{aligned}
$$

(b) The vertical component of Newton's second law gives $F_{N}-m g=0$, so $F_{N}=m g$ which implies (using Eq. 6-2) $f=\mu_{k} m g$. We solve for the coefficient:

$$
\mu_{k}=\frac{f}{m g}=\frac{0.13 \mathrm{~N}}{(0.110 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.12 .
$$

105. We use the familiar horizontal and vertical axes for x and y directions, with rightward and upward positive, respectively. The rope is assumed massless so that the force exerted by the child \vec{F} is identical to the tension uniformly through the rope. The x and y components of \vec{F} are $F \cos \theta$ and $F \sin \theta$, respectively. The static friction force points leftward.
(a) Newton's Law applied to the y-axis, where there is presumed to be no acceleration, leads to

$$
F_{N}+F \sin \theta-m g=0
$$

which implies that the maximum static friction is $\mu_{s}(m g-F \sin \theta)$. If $f_{s}=f_{s, \max }$ is assumed, then Newton's second law applied to the x axis (which also has $a=0$ even though it is "verging" on moving) yields

$$
F \cos \theta-f_{s}=m a \Rightarrow F \cos \theta-\mu_{s}(m g-F \sin \theta)=0
$$

which we solve, for $\theta=42^{\circ}$ and $\mu_{s}=0.42$, to obtain $F=74 \mathrm{~N}$.
(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain

$$
F=\frac{\mu_{s} W}{\cos \theta+\mu_{s} \sin \theta}=\frac{(0.42)(180)}{\cos \theta+(0.42) \sin \theta}=\frac{76}{\cos \theta+(0.42) \sin \theta} .
$$

(c) We minimize the above expression for F by working through the condition:

$$
\frac{d F}{d \theta}=\frac{\mu_{s} W\left(\sin \theta-\mu_{s} \cos \theta\right)}{\left(\cos \theta+\mu_{s} \sin \theta\right)^{2}}=0
$$

which leads to the result $\theta=\tan ^{-1} \mu_{s}=23^{\circ}$.
(d) Plugging $\theta=23^{\circ}$ into the above result for F, with $\mu_{s}=0.42$ and $W=180 \mathrm{~N}$, yields $F=70 \mathrm{~N}$.
106. (a) The centripetal force is given by Eq. 6-18:

$$
F=\frac{m v^{2}}{R}=\frac{(1.00)(465)^{2}}{6.40 \times 10^{6}}=0.0338 \mathrm{~N}
$$

(b) Calling downward (towards the center of Earth) the positive direction, Newton's second law leads to

$$
m g-T=m a
$$

where $m g=9.80 \mathrm{~N}$ and $m a=0.034 \mathrm{~N}$, calculated in part (a). Thus, the tension in the cord by which the body hangs from the balance is $T=9.80-0.03=9.77 \mathrm{~N}$. Thus, this is the reading for a standard kilogram mass, of the scale at the equator of the spinning Earth.
107. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is certainly supported by application of Newton's second law there:

$$
T-m g=\frac{m v^{2}}{R} \Rightarrow T=m\left(g+\frac{v^{2}}{R}\right)
$$

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the bottom of the circle reaching that breaking value of 40 N .
(b) Solving the above equation for the speed, we find

$$
v=\sqrt{R\left(\frac{T}{m}-g\right)}=\sqrt{(0.91)\left(\frac{40}{0.37}-9.8\right)}
$$

which yields $v=9.5 \mathrm{~m} / \mathrm{s}$.
108. (a) The angle made by the cord with the vertical axis is given by

$$
\theta=\cos ^{-1}(18 / 30)=53^{\circ}
$$

This means the radius of the plane's circular path is $r=30 \sin \theta=24 \mathrm{~m}$ (we also could have arrived at this using the Pythagorean theorem). The speed of the plane is

$$
v=\frac{4.4(2 \pi r)}{1 \mathrm{~min}}=\frac{8.8 \pi(24 \mathrm{~m})}{60 \mathrm{~s}}
$$

which yields $v=11 \mathrm{~m} / \mathrm{s}$. Eq. 6-17 then gives the acceleration (which at any instant is horizontally directed from the plane to the center of its circular path)

$$
a=\frac{v^{2}}{r}=\frac{11^{2}}{24}=5.1 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The only horizontal force on the airplane is that component of tension, so Newton's second law gives

$$
T \sin \theta=\frac{m v^{2}}{r} \Rightarrow T=\frac{(0.75)(11)^{2}}{24 \sin 53^{\circ}}
$$

which yields $T=4.8 \mathrm{~N}$.
(c) The net vertical force on the airplane is zero (since its only acceleration is horizontal), so

$$
F_{\text {lift }}=T \cos \theta+m g=4.8 \cos 53^{\circ}+(0.75)(9.8)=10 \mathrm{~N}
$$

1. With speed $v=11200 \mathrm{~m} / \mathrm{s}$, we find

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(2.9 \times 10^{5}\right)(11200)^{2}=1.8 \times 10^{13} \mathrm{~J} .
$$

2. (a) The change in kinetic energy for the meteorite would be

$$
\Delta K=K_{f}-K_{i}=-K_{i}=-\frac{1}{2} m_{i} v_{i}^{2}=-\frac{1}{2}\left(4 \times 10^{6} \mathrm{~kg}\right)\left(15 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}=-5 \times 10^{14} \mathrm{~J},
$$

or $|\Delta K|=5 \times 10^{14} \mathrm{~J}$. The negative sign indicates that kinetic energy is lost.
(b) The energy loss in units of megatons of TNT would be

$$
-\Delta K=\left(5 \times 10^{14} \mathrm{~J}\right)\left(\frac{1 \text { megaton TNT }}{4.2 \times 10^{15} \mathrm{~J}}\right)=0.1 \text { megaton TNT. }
$$

(c) The number of bombs N that the meteorite impact would correspond to is found by noting that megaton $=1000$ kilotons and setting up the ratio:

$$
N=\frac{0.1 \times 1000 \text { kiloton TNT }}{13 \text { kiloton TNT }}=8
$$

3. (a) From Table 2-1, we have $v^{2}=v_{0}^{2}+2 a \Delta x$. Thus,

$$
v=\sqrt{v_{0}^{2}+2 a \Delta x}=\sqrt{\left(2.4 \times 10^{7}\right)^{2}+2\left(3.6 \times 10^{15}\right)(0.035)}=2.9 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

(b) The initial kinetic energy is

$$
K_{i}=\frac{1}{2} m v_{0}^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}=4.8 \times 10^{-13} \mathrm{~J} .
$$

The final kinetic energy is

$$
K_{f}=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.9 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}=6.9 \times 10^{-13} \mathrm{~J} .
$$

The change in kinetic energy is $\Delta K=\left(6.9 \times 10^{-13}-4.8 \times 10^{-13}\right) \mathrm{J}=2.1 \times 10^{-13} \mathrm{~J}$.
4. We apply the equation $x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$, found in Table 2-1. Since at $t=0 \mathrm{~s}, x_{0}=0$ and $v_{0}=12 \mathrm{~m} / \mathrm{s}$, the equation becomes (in unit of meters)

$$
x(t)=12 t+\frac{1}{2} a t^{2} .
$$

With $x=10 \mathrm{~m}$ when $t=1.0 \mathrm{~s}$, the acceleration is found to be $a=-4.0 \mathrm{~m} / \mathrm{s}^{2}$. The fact that $a<0$ implies that the bead is decelerating. Thus, the position is described by $x(t)=12 t-2.0 t^{2}$. Differentiating x with respect to t then yields

$$
v(t)=\frac{d x}{d t}=12-4.0 t
$$

Indeed at $t=3.0 \mathrm{~s}, v(t=3.0)=0$ and the bead stops momentarily. The speed at $t=10 \mathrm{~s}$ is $v(t=10)=-28 \mathrm{~m} / \mathrm{s}$, and the corresponding kinetic energy is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.8 \times 10^{-2} \mathrm{~kg}\right)(-28 \mathrm{~m} / \mathrm{s})^{2}=7.1 \mathrm{~J}
$$

5. We denote the mass of the father as m and his initial speed v_{i}. The initial kinetic energy of the father is

$$
K_{i}=\frac{1}{2} K_{\text {son }}
$$

and his final kinetic energy (when his speed is $v_{f}=v_{i}+1.0 \mathrm{~m} / \mathrm{s}$) is $K_{f}=K_{\mathrm{son}}$. We use these relations along with Eq. 7-1 in our solution.
(a) We see from the above that $K_{i}=\frac{1}{2} K_{f}$ which (with SI units understood) leads to

$$
\frac{1}{2} m v_{i}^{2}=\frac{1}{2}\left[\frac{1}{2} m\left(v_{i}+1.0\right)^{2}\right]
$$

The mass cancels and we find a second-degree equation for v_{i} :

$$
\frac{1}{2} v_{i}^{2}-v_{i}-\frac{1}{2}=0 .
$$

The positive root (from the quadratic formula) yields $v_{i}=2.4 \mathrm{~m} / \mathrm{s}$.
(b) From the first relation above $\left(K_{i}=\frac{1}{2} K_{\text {son }}\right)$, we have

$$
\frac{1}{2} m v_{i}^{2}=\frac{1}{2}\left(\frac{1}{2}\left(\frac{m}{2}\right) v_{\text {son }}^{2}\right)
$$

and (after canceling m and one factor of $1 / 2$) are led to $v_{\text {son }}=2 v_{i}=4.8 \mathrm{~m} / \mathrm{s}$.
6. By the work-kinetic energy theorem,

$$
W=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2}(2.0 \mathrm{~kg})\left((6.0 \mathrm{~m} / \mathrm{s})^{2}-(4.0 \mathrm{~m} / \mathrm{s})^{2}\right)=20 \mathrm{~J} .
$$

We note that the directions of \vec{v}_{f} and \vec{v}_{i} play no role in the calculation.
7. Eq. 7-8 readily yields (with SI units understood)

$$
W=F_{x} \Delta x+F_{y} \Delta y=2 \cos \left(100^{\circ}\right)(3.0)+2 \sin \left(100^{\circ}\right)(4.0)=6.8 \mathrm{~J} .
$$

8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block:

$$
W=\vec{F} \cdot \vec{d}=(210 \hat{\mathrm{i}}-150 \hat{\mathrm{j}}) \cdot(15 \hat{\mathrm{i}}-12 \hat{\mathrm{j}})=(210)(15)+(-150)(-12)=5.0 \times 10^{3} \mathrm{~J}
$$

9. Since this involves constant-acceleration motion, we can apply the equations of Table $2-1$, such as $x=v_{0} t+\frac{1}{2} a t^{2}$ (where $x_{0}=0$). We choose to analyze the third and fifth points, obtaining

$$
\begin{aligned}
& 0.2 \mathrm{~m}=v_{0}(1.0 \mathrm{~s})+\frac{1}{2} a(1.0 \mathrm{~s})^{2} \\
& 0.8 \mathrm{~m}=v_{0}(2.0 \mathrm{~s})+\frac{1}{2} a(2.0 \mathrm{~s})^{2}
\end{aligned}
$$

Simultaneous solution of the equations leads to $v_{0}=0$ and $a=0.40 \mathrm{~m} / \mathrm{s}^{2}$. We now have two ways to finish the problem. One is to compute force from $F=m a$ and then obtain the work from Eq. 7-7. The other is to find ΔK as a way of computing W (in accordance with Eq. $7-10$). In this latter approach, we find the velocity at $t=2.0 \mathrm{~s}$ from $v=v_{0}+a t$ (so $v=0.80 \mathrm{~m} / \mathrm{s}$). Thus,

$$
W=\Delta K=\frac{1}{2}(3.0 \mathrm{~kg})(0.80 \mathrm{~m} / \mathrm{s})^{2}=0.96 \mathrm{~J}
$$

10. The change in kinetic energy can be written as

$$
\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{1}{2} m(2 a \Delta x)=m a \Delta x
$$

where we have used $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$ from Table 2-1. From Fig. 7-27, we see that $\Delta K=(0-30) \mathrm{J}=-30 \mathrm{~J}$ when $\Delta x=+5 \mathrm{~m}$. The acceleration can then be obtained as

$$
a=\frac{\Delta K}{m \Delta x}=\frac{(-30 \mathrm{~J})}{(8.0 \mathrm{~kg})(5.0 \mathrm{~m})}=-0.75 \mathrm{~m} / \mathrm{s}^{2} .
$$

The negative sign indicates that the mass is decelerating. From the figure, we also see that when $x=5 \mathrm{~m}$ the kinetic energy becomes zero, implying that the mass comes to rest momentarily. Thus,

$$
v_{0}^{2}=v^{2}-2 a \Delta x=0-2\left(-0.75 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m})=7.5 \mathrm{~m}^{2} / \mathrm{s}^{2},
$$

or $v_{0}=2.7 \mathrm{~m} / \mathrm{s}$. The speed of the object when $x=-3.0 \mathrm{~m}$ is

$$
v=\sqrt{v_{0}^{2}+2 a \Delta x}=\sqrt{7.5+2(-0.75)(-3.0)}=\sqrt{12}=3.5 \mathrm{~m} / \mathrm{s} .
$$

11. We choose $+x$ as the direction of motion (so \vec{a} and \vec{F} are negative-valued).
(a) Newton's second law readily yields $\vec{F}=(85 \mathrm{~kg})\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right)$ so that

$$
F=|\vec{F}|=1.7 \times 10^{2} \mathrm{~N} .
$$

(b) From Eq. 2-16 (with $v=0$) we have

$$
0=v_{0}^{2}+2 a \Delta x \Rightarrow \Delta x=-\frac{(37 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=3.4 \times 10^{2} \mathrm{~m} .
$$

Alternatively, this can be worked using the work-energy theorem.
(c) Since \vec{F} is opposite to the direction of motion (so the angle ϕ between \vec{F} and $\vec{d}=\Delta x$ is 180°) then Eq. 7-7 gives the work done as $W=-F \Delta x=-5.8 \times 10^{4} \mathrm{~J}$.
(d) In this case, Newton's second law yields $\vec{F}=(85 \mathrm{~kg})\left(-4.0 \mathrm{~m} / \mathrm{s}^{2}\right)$ so that $F=|\vec{F}|=3.4 \times 10^{2} \mathrm{~N}$.
(e) From Eq. 2-16, we now have

$$
\Delta x=-\frac{(37 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-4.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.7 \times 10^{2} \mathrm{~m} .
$$

(f) The force \vec{F} is again opposite to the direction of motion (so the angle ϕ is again 180°) so that Eq. 7-7 leads to $W=-F \Delta x=-5.8 \times 10^{4} \mathrm{~J}$. The fact that this agrees with the result of part (c) provides insight into the concept of work.
12. (a) From Eq. $7-6, F=W / x=3.00 \mathrm{~N}$ (this is the slope of the graph).
(b) Eq. 7-10 yields $K=K_{i}+W=3.00 \mathrm{~J}+6.00 \mathrm{~J}=9.00 \mathrm{~J}$.
13. (a) The forces are constant, so the work done by any one of them is given by $W=\vec{F} \cdot \vec{d}$, where \vec{d} is the displacement. Force \vec{F}_{1} is in the direction of the displacement, so

$$
W_{1}=F_{1} d \cos \phi_{1}=(5.00 \mathrm{~N})(3.00 \mathrm{~m}) \cos 0^{\circ}=15.0 \mathrm{~J} .
$$

Force \vec{F}_{2} makes an angle of 120° with the displacement, so

$$
W_{2}=F_{2} d \cos \phi_{2}=(9.00 \mathrm{~N})(3.00 \mathrm{~m}) \cos 120^{\circ}=-13.5 \mathrm{~J} .
$$

Force \vec{F}_{3} is perpendicular to the displacement, so $W_{3}=F_{3} d \cos \phi_{3}=0$ since $\cos 90^{\circ}=0$. The net work done by the three forces is

$$
W=W_{1}+W_{2}+W_{3}=15.0 \mathrm{~J}-13.5 \mathrm{~J}+0=+1.50 \mathrm{~J} .
$$

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the displacement.
14. The forces are all constant, so the total work done by them is given by $W=F_{\text {net }} \Delta x$, where $F_{\text {net }}$ is the magnitude of the net force and Δx is the magnitude of the displacement. We add the three vectors, finding the x and y components of the net force:

$$
\begin{aligned}
F_{\text {net } x} & =-F_{1}-F_{2} \sin 50.0^{\circ}+F_{3} \cos 35.0^{\circ}=-3.00 \mathrm{~N}-(4.00 \mathrm{~N}) \sin 35.0^{\circ}+(10.0 \mathrm{~N}) \cos 35.0^{\circ} \\
& =2.13 \mathrm{~N} \\
F_{\text {net } y} & =-F_{2} \cos 50.0^{\circ}+F_{3} \sin 35.0^{\circ}=-(4.00 \mathrm{~N}) \cos 50.0^{\circ}+(10.0 \mathrm{~N}) \sin 35.0^{\circ} \\
& =3.17 \mathrm{~N} .
\end{aligned}
$$

The magnitude of the net force is

$$
F_{\mathrm{net}}=\sqrt{F_{\mathrm{net} x}^{2}+F_{\mathrm{net} y}^{2}}=\sqrt{(2.13)^{2}+(3.17)^{2}}=3.82 \mathrm{~N} .
$$

The work done by the net force is

$$
W=F_{\mathrm{net}} d=(3.82 \mathrm{~N})(4.00 \mathrm{~m})=15.3 \mathrm{~J}
$$

where we have used the fact that $\vec{d} \| \vec{F}_{\text {net }}$ (which follows from the fact that the canister started from rest and moved horizontally under the action of horizontal forces - the resultant effect of which is expressed by $\vec{F}_{\text {net }}$).
15. Using the work-kinetic energy theorem, we have

$$
\Delta K=W=\vec{F} \cdot \vec{d}=F d \cos \phi
$$

In addition, $F=12 \mathrm{~N}$ and $d=\sqrt{(2.00)^{2}+(-4.00)^{2}+(3.00)^{2}}=5.39 \mathrm{~m}$.
(a) If $\Delta K=+30.0 \mathrm{~J}$, then

$$
\phi=\cos ^{-1}\left(\frac{\Delta K}{F d}\right)=\cos ^{-1}\left(\frac{30.0}{(12.0)(5.39)}\right)=62.3^{\circ}
$$

(b) $\Delta K=-30.0 \mathrm{~J}$, then

$$
\phi=\cos ^{-1}\left(\frac{\Delta K}{F d}\right)=\cos ^{-1}\left(\frac{-30.0}{(12.0)(5.39)}\right)=118^{\circ}
$$

16. In both cases, there is no acceleration, so the lifting force is equal to the weight of the object.
(a) Eq. $7-8$ leads to $W=\vec{F} \cdot \vec{d}=(360 \mathrm{kN})(0.10 \mathrm{~m})=36 \mathrm{~kJ}$.
(b) In this case, we find $W=(4000 \mathrm{~N})(0.050 \mathrm{~m})=2.0 \times 10^{2} \mathrm{~J}$.
17. (a) We use \vec{F} to denote the upward force exerted by the cable on the astronaut. The force of the cable is upward and the force of gravity is $m g$ downward. Furthermore, the acceleration of the astronaut is $g / 10$ upward. According to Newton's second law, $F-m g$ $=m g / 10$, so $F=11 \mathrm{mg} / 10$. Since the force \vec{F} and the displacement \vec{d} are in the same direction, the work done by \vec{F} is

$$
W_{F}=F d=\frac{11 m g d}{10}=\frac{11(72 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m})}{10}=1.164 \times 10^{4} \mathrm{~J}
$$

which (with respect to significant figures) should be quoted as $1.2 \times 10^{4} \mathrm{~J}$.
(b) The force of gravity has magnitude $m g$ and is opposite in direction to the displacement. Thus, using Eq. 7-7, the work done by gravity is

$$
W_{g}=-m g d=-(72 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m})=-1.058 \times 10^{4} \mathrm{~J}
$$

which should be quoted as $-1.1 \times 10^{4} \mathrm{~J}$.
(c) The total work done is $W=1.164 \times 10^{4} \mathrm{~J}-1.058 \times 10^{4} \mathrm{~J}=1.06 \times 10^{3} \mathrm{~J}$. Since the astronaut started from rest, the work-kinetic energy theorem tells us that this (which we round to $1.1 \times 10^{3} \mathrm{~J}$) is her final kinetic energy.
(d) Since $K=\frac{1}{2} m v^{2}$, her final speed is

$$
v=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2\left(1.06 \times 10^{3} \mathrm{~J}\right)}{72 \mathrm{~kg}}}=5.4 \mathrm{~m} / \mathrm{s} .
$$

18. (a) Using notation common to many vector capable calculators, we have (from Eq. 78) $W=\operatorname{dot}\left([20.0,0]+[0,-(3.00)(9.8)],\left[0.500 \angle 30.0^{\circ}\right]\right)=+1.31 \mathrm{~J}$.
(b) Eq. 7-10 (along with Eq. 7-1) then leads to

$$
v=\sqrt{2(1.31 \mathrm{~J}) /(3.00 \mathrm{~kg})}=0.935 \mathrm{~m} / \mathrm{s} .
$$

19. (a) We use F to denote the magnitude of the force of the cord on the block. This force is upward, opposite to the force of gravity (which has magnitude $M g$). The acceleration is $\vec{a}=g / 4$ downward. Taking the downward direction to be positive, then Newton's second law yields

$$
\vec{F}_{\mathrm{net}}=m \vec{a} \Rightarrow M g-F=M\left(\frac{g}{4}\right)
$$

so $F=3 M g / 4$. The displacement is downward, so the work done by the cord's force is, using Eq. 7-7,

$$
W_{F}=-F d=-3 M g d / 4 .
$$

(b) The force of gravity is in the same direction as the displacement, so it does work $W_{g}=M g d$.
(c) The total work done on the block is $-3 M g d / 4+M g d=M g d / 4$. Since the block starts from rest, we use Eq. 7-15 to conclude that this $(M g d / 4)$ is the block's kinetic energy K at the moment it has descended the distance d.
(d) Since $K=\frac{1}{2} M v^{2}$, the speed is

$$
v=\sqrt{\frac{2 K}{M}}=\sqrt{\frac{2(M g d / 4)}{M}}=\sqrt{\frac{g d}{2}}
$$

at the moment the block has descended the distance d.
20. The fact that the applied force \vec{F}_{a} causes the box to move up a frictionless ramp at a constant speed implies that there is no net change in the kinetic energy: $\Delta K=0$. Thus, the work done by \vec{F}_{a} must be equal to the negative work done by gravity: $W_{a}=-W_{g}$. Since the box is displaced vertically upward by $h=0.150 \mathrm{~m}$, we have

$$
W_{a}=+m g h=(3.00)(9.80)(0.150)=4.41 \mathrm{~J}
$$

21. Eq. 7-15 applies, but the wording of the problem suggests that it is only necessary to examine the contribution from the rope (which would be the " W_{a} " term in Eq. 7-15):

$$
W_{a}=-(50 \mathrm{~N})(0.50 \mathrm{~m})=-25 \mathrm{~J}
$$

(the minus sign arises from the fact that the pull from the rope is anti-parallel to the direction of motion of the block). Thus, the kinetic energy would have been 25 J greater if the rope had not been attached (given the same displacement).
22. We use d to denote the magnitude of the spelunker's displacement during each stage. The mass of the spelunker is $m=80.0 \mathrm{~kg}$. The work done by the lifting force is denoted W_{i} where $i=1,2,3$ for the three stages. We apply the work-energy theorem, Eq. 17-15.
(a) For stage $1, W_{1}-m g d=\Delta K_{1}=\frac{1}{2} m v_{1}^{2}$, where $v_{1}=5.00 \mathrm{~m} / \mathrm{s}$. This gives

$$
W_{1}=m g d+\frac{1}{2} m v_{1}^{2}=(80.0)(9.80)(10.0)+\frac{1}{2}(8.00)(5.00)^{2}=8.84 \times 10^{3} \mathrm{~J}
$$

(b) For stage $2, W_{2}-m g d=\Delta K_{2}=0$, which leads to

$$
W_{2}=m g d=(80.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(10.0 \mathrm{~m})=7.84 \times 10^{3} \mathrm{~J}
$$

(c) For stage $3, W_{3}-m g d=\Delta K_{3}=-\frac{1}{2} m v_{1}^{2}$. We obtain

$$
W_{3}=m g d-\frac{1}{2} m v_{1}^{2}=(80.0)(9.80)(10.0)-\frac{1}{2}(80.0)(5.00)^{2}=6.84 \times 10^{3} \mathrm{~J} .
$$

23. (a) The net upward force is given by

$$
F+F_{N}-(m+M) g=(m+M) a
$$

where $m=0.250 \mathrm{~kg}$ is the mass of the cheese, $M=900 \mathrm{~kg}$ is the mass of the elevator cab, F is the force from the cable, and $F_{N}=3.00 \mathrm{~N}$ is the normal force on the cheese. On the cheese alone, we have

$$
F_{N}-m g=m a \Rightarrow a=\frac{3.00-(0.250)(9.80)}{0.250}=2.20 \mathrm{~m} / \mathrm{s}^{2}
$$

Thus the force from the cable is $F=(m+M)(a+g)-F_{N}=1.08 \times 10^{4} \mathrm{~N}$, and the work done by the cable on the cab is

$$
W=F d_{1}=\left(1.80 \times 10^{4}\right)(2.40)=2.59 \times 10^{4} \mathrm{~J} .
$$

(b) If $W=92.61 \mathrm{~kJ}$ and $d_{2}=10.5 \mathrm{~m}$, the magnitude of the normal force is

$$
F_{N}=(m+M) g-\frac{W}{d_{2}}=(0.250+900)(9.80)-\frac{9.261 \times 10^{4}}{10.5}=2.45 \mathrm{~N} .
$$

24. The spring constant is $k=100 \mathrm{~N} / \mathrm{m}$ and the maximum elongation is $x_{i}=5.00 \mathrm{~m}$. Using Eq. 7-25 with $x_{f}=0$, the work is found to be

$$
W=\frac{1}{2} k x_{i}^{2}=\frac{1}{2}(100)(5.00)^{2}=1.25 \times 10^{3} \mathrm{~J} .
$$

25. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after the displacement. The work done by the applied force can be written as

$$
W_{a}=-W_{s}=\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right) .
$$

The spring constant is $k=(80 \mathrm{~N}) /(2.0 \mathrm{~cm})=4.0 \times 10^{3} \mathrm{~N} / \mathrm{m}$. With $W_{a}=4.0 \mathrm{~J}$, and $x_{i}=-2.0 \mathrm{~cm}$, we have

$$
x_{f}= \pm \sqrt{\frac{2 W_{a}}{k}+x_{i}^{2}}= \pm \sqrt{\frac{2(4.0 \mathrm{~J})}{\left(4.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)}+(-0.020 \mathrm{~m})^{2}}= \pm 0.049 \mathrm{~m}= \pm 4.9 \mathrm{~cm}
$$

26. From Eq. 7-25, we see that the work done by the spring force is given by

$$
W_{s}=\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right) .
$$

The fact that 360 N of force must be applied to pull the block to $x=+4.0 \mathrm{~cm}$ implies that the spring constant is

$$
k=\frac{360 \mathrm{~N}}{4.0 \mathrm{~cm}}=90 \mathrm{~N} / \mathrm{cm}=9.0 \times 10^{3} \mathrm{~N} / \mathrm{m} .
$$

(a) When the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to $x=+3.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(9.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(0.030 \mathrm{~m})^{2}\right]=7.2 \mathrm{~J} .
$$

(b) Moving from $x_{i}=+5.0 \mathrm{~cm}$ to $x=-3.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(9.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(-0.030 \mathrm{~m})^{2}\right]=7.2 \mathrm{~J} .
$$

(c) Moving from $x_{i}=+5.0 \mathrm{~cm}$ to $x=-5.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(9.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(-0.050 \mathrm{~m})^{2}\right]=0 \mathrm{~J} .
$$

(d) Moving from $x_{i}=+5.0 \mathrm{~cm}$ to $x=-9.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(9.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(-0.090 \mathrm{~m})^{2}\right]=-25 \mathrm{~J} .
$$

27. The work done by the spring force is given by Eq. 7-25:

$$
W_{s}=\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right) .
$$

Since $F_{x}=-k x$, the slope in Fig. 7-35 corresponds to the spring constant k. Its value is given by $k=80 \mathrm{~N} / \mathrm{cm}=8.0 \times 10^{3} \mathrm{~N} / \mathrm{m}$.
(a) When the block moves from $x_{i}=+8.0 \mathrm{~cm}$ to $x=+5.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(8.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.080 \mathrm{~m})^{2}-(0.050 \mathrm{~m})^{2}\right]=15.6 \mathrm{~J} \approx 16 \mathrm{~J} .
$$

(b) Moving from $x_{i}=+8.0 \mathrm{~cm}$ to $x=-5.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(8.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.080 \mathrm{~m})^{2}-(-0.050 \mathrm{~m})^{2}\right]=15.6 \mathrm{~J} \approx 16 \mathrm{~J} .
$$

(c) Moving from $x_{i}=+8.0 \mathrm{~cm}$ to $x=-8.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(8.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.080 \mathrm{~m})^{2}-(-0.080 \mathrm{~m})^{2}\right]=0 \mathrm{~J} .
$$

(d) Moving from $x_{i}=+8.0 \mathrm{~cm}$ to $x=-10.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(8.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.080 \mathrm{~m})^{2}-(-0.10 \mathrm{~m})^{2}\right]=-14.4 \mathrm{~J} \approx-14 \mathrm{~J} .
$$

28. The work done by the spring force is given by Eq. 7-25: $W_{s}=\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right)$.

The spring constant k can be deduced from Fig. 7-36 which shows the amount of work done to pull the block from 0 to $x=3.0 \mathrm{~cm}$. The parabola $W_{a}=k x^{2} / 2$ contains $(0,0),(2.0$ $\mathrm{cm}, 0.40 \mathrm{~J})$ and $(3.0 \mathrm{~cm}, 0.90 \mathrm{~J})$. Thus, we may infer from the data that $k=2.0 \times 10^{3} \mathrm{~N} / \mathrm{m}$.
(a) When the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to $x=+4.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(2.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(0.040 \mathrm{~m})^{2}\right]=0.90 \mathrm{~J} .
$$

(b) Moving from $x_{i}=+5.0 \mathrm{~cm}$ to $x=-2.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(2.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(-0.020 \mathrm{~m})^{2}\right]=2.1 \mathrm{~J} .
$$

(c) Moving from $x_{i}=+5.0 \mathrm{~cm}$ to $x=-5.0 \mathrm{~cm}$, we have

$$
W_{s}=\frac{1}{2}\left(2.0 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)\left[(0.050 \mathrm{~m})^{2}-(-0.050 \mathrm{~m})^{2}\right]=0 \mathrm{~J} .
$$

29. (a) As the body moves along the x axis from $x_{i}=3.0 \mathrm{~m}$ to $x_{f}=4.0 \mathrm{~m}$ the work done by the force is

$$
W=\int_{x_{i}}^{x_{f}} F_{x} d x=\int_{x_{i}}^{x_{f}}-6 x d x=-3\left(x_{f}^{2}-x_{i}^{2}\right)=-3\left(4.0^{2}-3.0^{2}\right)=-21 \mathrm{~J} .
$$

According to the work-kinetic energy theorem, this gives the change in the kinetic energy:

$$
W=\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)
$$

where v_{i} is the initial velocity (at x_{i}) and v_{f} is the final velocity (at x_{f}). The theorem yields

$$
v_{f}=\sqrt{\frac{2 W}{m}+v_{i}^{2}}=\sqrt{\frac{2(-21)}{2.0}}+(8.0)^{2}=6.6 \mathrm{~m} / \mathrm{s} .
$$

(b) The velocity of the particle is $v_{f}=5.0 \mathrm{~m} / \mathrm{s}$ when it is at $x=x_{f}$. The work-kinetic energy theorem is used to solve for x_{f}. The net work done on the particle is $W=-3\left(x_{f}^{2}-x_{i}^{2}\right)$, so the theorem leads to

$$
-3\left(x_{f}^{2}-x_{i}^{2}\right)=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) .
$$

Thus,

$$
x_{f}=\sqrt{-\frac{m}{6}\left(v_{f}^{2}-v_{i}^{2}\right)+x_{i}^{2}}=\sqrt{-\frac{2.0 \mathrm{~kg}}{6 \mathrm{~N} / \mathrm{m}}\left((5.0 \mathrm{~m} / \mathrm{s})^{2}-(8.0 \mathrm{~m} / \mathrm{s})^{2}\right)+(3.0 \mathrm{~m})^{2}}=4.7 \mathrm{~m} .
$$

30. (a) This is a situation where Eq. 7-28 applies, so we have

$$
F x=\frac{1}{2} k x^{2} \Rightarrow(3.0 \mathrm{~N}) x=\frac{1}{2}(50 \mathrm{~N} / \mathrm{m}) x^{2}
$$

which (other than the trivial root) gives $x=(3.0 / 25) \mathrm{m}=0.12 \mathrm{~m}$.
(b) The work done by the applied force is $W_{\mathrm{a}}=F x=(3.0 \mathrm{~N})(0.12 \mathrm{~m})=0.36 \mathrm{~J}$.
(c) Eq. 7-28 immediately gives $W_{s}=-W_{\mathrm{a}}=-0.36 \mathrm{~J}$.
(d) With $K_{f}=K$ considered variable and $K_{i}=0$, Eq. 7-27 gives $K=F x-\frac{1}{2} k x^{2}$. We take the derivative of K with respect to x and set the resulting expression equal to zero, in order to find the position x_{c} which corresponds to a maximum value of K :

$$
x_{\mathrm{c}}=\frac{F}{k}=(3.0 / 50) \mathrm{m}=0.060 \mathrm{~m} .
$$

We note that x_{c} is also the point where the applied and spring forces "balance."
(e) At x_{c} we find $K=K_{\max }=0.090 \mathrm{~J}$.
31. According to the graph the acceleration a varies linearly with the coordinate x. We may write $a=\alpha x$, where α is the slope of the graph. Numerically,

$$
\alpha=\frac{20 \mathrm{~m} / \mathrm{s}^{2}}{8.0 \mathrm{~m}}=2.5 \mathrm{~s}^{-2} .
$$

The force on the brick is in the positive x direction and, according to Newton's second law, its magnitude is given by $F=a / m=(\alpha / m) x$. If x_{f} is the final coordinate, the work done by the force is

$$
W=\int_{0}^{x_{f}} F d x=\frac{\alpha}{m} \int_{0}^{x_{f}} x d x=\frac{\alpha}{2 m} x_{f}^{2}=\frac{2.5}{2(10)}(8.0)^{2}=8.0 \times 10^{2} \mathrm{~J} .
$$

32. From Eq. 7-32, we see that the "area" in the graph is equivalent to the work done. Finding that area (in terms of rectangular [length x width] and triangular [$\frac{1}{2}$ base \times height] areas) we obtain

$$
W=W_{0<x<2}+W_{2<x<4}+W_{4<x<6}+W_{6<x<8}=(20+10+0-5) \mathrm{J}=25 \mathrm{~J} .
$$

33. (a) The graph shows F as a function of x assuming x_{0} is positive. The work is negative as the object moves from $x=0$ to $x=x_{0}$ and positive as it moves from $x=x_{0}$ to $x=2 x_{0}$.

Since the area of a triangle is (base)(altitude) $/ 2$, the work done from $x=0$ to $x=x_{0}$ is $-\left(x_{0}\right)\left(F_{0}\right) / 2$ and the work done from $x=x_{0}$ to $x=2 x_{0}$ is $\left(2 x_{0}-x_{0}\right)\left(F_{0}\right) / 2=\left(x_{0}\right)\left(F_{0}\right) / 2$ The total work is the sum, which is zero.
(b) The integral for the work is

$$
W=\int_{0}^{2 x_{0}} F_{0}\left(\frac{x}{x_{0}}-1\right) d x=\left.F_{0}\left(\frac{x^{2}}{2 x_{0}}-x\right)\right|_{0} ^{2 x_{0}}=0
$$

34. Using Eq. 7-32, we find

$$
W=\int_{0.25}^{1.25} e^{-4 x^{2}} d x=0.21 \mathrm{~J}
$$

where the result has been obtained numerically. Many modern calculators have that capability, as well as most math software packages that a great many students have access to.
35. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the initial and final kinetic energies, we need the speeds, so

$$
v=\frac{d x}{d t}=3.0-8.0 t+3.0 t^{2}
$$

in SI units. Thus, the initial speed is $v_{i}=3.0 \mathrm{~m} / \mathrm{s}$ and the speed at $t=4 \mathrm{~s}$ is $v_{f}=19 \mathrm{~m} / \mathrm{s}$. The change in kinetic energy for the object of mass $m=3.0 \mathrm{~kg}$ is therefore

$$
\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=528 \mathrm{~J}
$$

which we round off to two figures and (using the work-kinetic energy theorem) conclude that the work done is $W=5.3 \times 10^{2} \mathrm{~J}$.
36. (a) Using the work-kinetic energy theorem

$$
K_{f}=K_{i}+\int_{0}^{2.0}\left(2.5-x^{2}\right) d x=0+(2.5)(2.0)-\frac{1}{3}(2.0)^{3}=2.3 \mathrm{~J} .
$$

(b) For a variable end-point, we have K_{f} as a function of x, which could be differentiated to find the extremum value, but we recognize that this is equivalent to solving $F=0$ for x :

$$
F=0 \Rightarrow 2.5-x^{2}=0
$$

Thus, K is extremized at $x=\sqrt{2.5} \approx 1.6 \mathrm{~m}$ and we obtain

$$
K_{f}=K_{i}+\int_{0}^{\sqrt{2.5}}\left(2.5-x^{2}\right) d x=0+(2.5)(\sqrt{2.5})-\frac{1}{3}(\sqrt{2.5})^{3}=2.6 \mathrm{~J} .
$$

Recalling our answer for part (a), it is clear that this extreme value is a maximum.
37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the applied force. Now, adding the triangular and rectangular "areas" in the graph (for $0 \leq x$ ≤ 4) gives 42 J for the work done.
(b) Counting the "areas" under the axis as negative contributions, we find (for $0 \leq x \leq 7$) the work to be 30 J at $x=7.0 \mathrm{~m}$.
(c) And at $x=9.0 \mathrm{~m}$, the work is 12 J .
(d) Eq. 7-10 (along with Eq. 7-1) leads to speed $v=6.5 \mathrm{~m} / \mathrm{s}$ at $x=4.0 \mathrm{~m}$. Returning to the original graph (where a was plotted) we note that (since it started from rest) it has received acceleration(s) (up to this point) only in the $+x$ direction and consequently must have a velocity vector pointing in the $+x$ direction at $x=4.0 \mathrm{~m}$.
(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed is $5.5 \mathrm{~m} / \mathrm{s}$ at $x=7.0 \mathrm{~m}$. Although it has experienced some deceleration during the $0 \leq x \leq$ 7 interval, its velocity vector still points in the $+x$ direction.
(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed $v=3.5 \mathrm{~m} / \mathrm{s}$ at $x=9.0 \mathrm{~m}$. It certainly has experienced a significant amount of deceleration during the $0 \leq x \leq 9$ interval; nonetheless, its velocity vector still points in the $+x$ direction.
38. As the body moves along the x axis from $x_{i}=0 \mathrm{~m}$ to $x_{f}=3.00 \mathrm{~m}$ the work done by the force is

$$
\begin{aligned}
W & =\int_{x_{i}}^{x_{f}} F_{x} d x=\int_{x_{i}}^{x_{f}}\left(c x-3.00 x^{2}\right) d x=\left(\frac{c}{2} x^{2}-x^{3}\right)_{0}^{3}=\frac{c}{2}(3.00)^{2}-(3.00)^{3} \\
& =4.50 c-27.0
\end{aligned}
$$

However, $W=\Delta K=(11.0-20.0)=-9.00 \mathrm{~J}$ from the work-kinetic energy theorem. Thus,

$$
4.50 c-27.0=-9.00
$$

or $c=4.00 \mathrm{~N} / \mathrm{m}$.
39. We solve the problem using the work-kinetic energy theorem which states that the change in kinetic energy is equal to the work done by the applied force, $\Delta K=W$. In our problem, the work done is $W=F d$, where F is the tension in the cord and d is the length of the cord pulled as the cart slides from x_{1} to x_{2}. From Fig. 7-40, we have

$$
\begin{aligned}
d & =\sqrt{x_{1}^{2}+h^{2}}-\sqrt{x_{2}^{2}+h^{2}}=\sqrt{(3.00)^{2}+(1.20)^{2}}-\sqrt{(1.00)^{2}+(1.20)^{2}} \\
& =3.23 \mathrm{~m}-1.56 \mathrm{~m}=1.67 \mathrm{~m}
\end{aligned}
$$

which yields $\Delta K=F d=(25.0 \mathrm{~N})(1.67 \mathrm{~m})=41.7 \mathrm{~J}$.
40. Recognizing that the force in the cable must equal the total weight (since there is no acceleration), we employ Eq. 7-47:

$$
P=F v \cos \theta=m g\left(\frac{\Delta x}{\Delta t}\right)
$$

where we have used the fact that $\theta=0^{\circ}$ (both the force of the cable and the elevator's motion are upward). Thus,

$$
P=\left(3.0 \times 10^{3} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{210 \mathrm{~m}}{23 \mathrm{~s}}\right)=2.7 \times 10^{5} \mathrm{~W}
$$

41. The power associated with force \vec{F} is given by $P=\vec{F} \cdot \vec{v}$, where \vec{v} is the velocity of the object on which the force acts. Thus,

$$
P=\vec{F} \cdot \vec{v}=F v \cos \phi=(122 \mathrm{~N})(5.0 \mathrm{~m} / \mathrm{s}) \cos 37^{\circ}=4.9 \times 10^{2} \mathrm{~W} .
$$

42. (a) Since constant speed implies $\Delta K=0$, we require $W_{a}=-W_{g}$, by Eq. 7-15. Since W_{g} is the same in both cases (same weight and same path), then $W_{a}=9.0 \times 10^{2} \mathrm{~J}$ just as it was in the first case.
(b) Since the speed of $1.0 \mathrm{~m} / \mathrm{s}$ is constant, then 8.0 meters is traveled in 8.0 seconds. Using Eq. 7-42, and noting that average power is the power when the work is being done at a steady rate, we have

$$
P=\frac{W}{\Delta t}=\frac{900 \mathrm{~J}}{8.0 \mathrm{~s}}=1.1 \times 10^{2} \mathrm{~W} .
$$

(c) Since the speed of $2.0 \mathrm{~m} / \mathrm{s}$ is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 7-42, with average power replaced by power, we have

$$
P=\frac{W}{\Delta t}=\frac{900 \mathrm{~J}}{4.0 \mathrm{~s}}=225 \mathrm{~W} \approx 2.3 \times 10^{2} \mathrm{~W} .
$$

43. (a) The power is given by $P=F v$ and the work done by \vec{F} from time t_{1} to time t_{2} is given by

$$
W=\int_{t_{1}}^{t_{2}} P \mathrm{~d} t=\int_{t_{1}}^{t_{2}} F v \mathrm{~d} t .
$$

Since \vec{F} is the net force, the magnitude of the acceleration is $a=F / m$, and, since the initial velocity is $v_{0}=0$, the velocity as a function of time is given by $v=v_{0}+a t=(F / m) t$. Thus

$$
W=\int_{t_{1}}^{t_{2}}\left(F^{2} / m\right) t \mathrm{~d} t=\frac{1}{2}\left(F^{2} / m\right)\left(t_{2}^{2}-t_{1}^{2}\right) .
$$

For $t_{1}=0$ and $t_{2}=1.0 \mathrm{~s}$,

$$
W=\frac{1}{2}\left(\frac{(5.0 \mathrm{~N})^{2}}{15 \mathrm{~kg}}\right)(1.0 \mathrm{~s})^{2}=0.83 \mathrm{~J} .
$$

(b) For $t_{1}=1.0 \mathrm{~s}$, and $t_{2}=2.0 \mathrm{~s}$,

$$
W=\frac{1}{2}\left(\frac{(5.0 \mathrm{~N})^{2}}{15 \mathrm{~kg}}\right)\left[(2.0 \mathrm{~s})^{2}-(1.0 \mathrm{~s})^{2}\right]=2.5 \mathrm{~J} .
$$

(c) For $t_{1}=2.0 \mathrm{~s}$ and $t_{2}=3.0 \mathrm{~s}$,

$$
W=\frac{1}{2}\left(\frac{(5.0 \mathrm{~N})^{2}}{15 \mathrm{~kg}}\right)\left[(3.0 \mathrm{~s})^{2}-(2.0 \mathrm{~s})^{2}\right]=4.2 \mathrm{~J} .
$$

(d) Substituting $v=(F / m) t$ into $P=F v$ we obtain $P=F^{2} t / m$ for the power at any time t. At the end of the third second

$$
P=\left(\frac{(5.0 \mathrm{~N})^{2}(3.0 \mathrm{~s})}{15 \mathrm{~kg}}\right)=5.0 \mathrm{~W} .
$$

44. (a) Using Eq. 7-48 and Eq. 3-23, we obtain

$$
P=\vec{F} \cdot \vec{v}=(4.0 \mathrm{~N})(-2.0 \mathrm{~m} / \mathrm{s})+(9.0 \mathrm{~N})(4.0 \mathrm{~m} / \mathrm{s})=28 \mathrm{~W}
$$

(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: $\vec{v}=\hat{\mathrm{j}}$.

$$
\begin{aligned}
P & =\vec{F} \cdot \vec{v} \\
-12 \mathrm{~W} & =(-2.0 \mathrm{~N}) v
\end{aligned}
$$

which yields $v=6 \mathrm{~m} / \mathrm{s}$.
45. The total work is the sum of the work done by gravity on the elevator, the work done by gravity on the counterweight, and the work done by the motor on the system:

$$
W_{T}=W_{e}+W_{c}+W_{s} .
$$

Since the elevator moves at constant velocity, its kinetic energy does not change and according to the work-kinetic energy theorem the total work done is zero. This means W_{e} $+W_{c}+W_{s}=0$. The elevator moves upward through 54 m , so the work done by gravity on it is

$$
W_{e}=-m_{e} g d=-(1200 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(54 \mathrm{~m})=-6.35 \times 10^{5} \mathrm{~J} .
$$

The counterweight moves downward the same distance, so the work done by gravity on it is

$$
W_{c}=m_{c} g d=(950 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(54 \mathrm{~m})=5.03 \times 10^{5} \mathrm{~J} .
$$

Since $W_{T}=0$, the work done by the motor on the system is

$$
W_{s}=-W_{e}-W_{c}=6.35 \times 10^{5} \mathrm{~J}-5.03 \times 10^{5} \mathrm{~J}=1.32 \times 10^{5} \mathrm{~J} .
$$

This work is done in a time interval of $\Delta t=3.0 \mathrm{~min}=180 \mathrm{~s}$, so the power supplied by the motor to lift the elevator is

$$
P=\frac{W_{s}}{\Delta t}=\frac{1.32 \times 10^{5} \mathrm{~J}}{180 \mathrm{~s}}=7.4 \times 10^{2} \mathrm{~W} .
$$

46. (a) Since the force exerted by the spring on the mass is zero when the mass passes through the equilibrium position of the spring, the rate at which the spring is doing work on the mass at this instant is also zero.
(b) The rate is given by $P=\vec{F} \cdot \vec{v}=-F v$, where the minus sign corresponds to the fact that \vec{F} and \vec{v} are anti-parallel to each other. The magnitude of the force is given by $F=k x=(500 \mathrm{~N} / \mathrm{m})(0.10 \mathrm{~m})=50 \mathrm{~N}$, while v is obtained from conservation of energy for the spring-mass system:

$$
E=K+U=10 \mathrm{~J}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2}(0.30 \mathrm{~kg}) v^{2}+\frac{1}{2}(500 \mathrm{~N} / \mathrm{m})(0.10 \mathrm{~m})^{2}
$$

which gives $v=7.1 \mathrm{~m} / \mathrm{s}$. Thus

$$
P=-F v=-(50 \mathrm{~N})(7.1 \mathrm{~m} / \mathrm{s})=-3.5 \times 10^{2} \mathrm{~W} .
$$

47. (a) Eq. 7-8 yields (with SI units understood)

$$
\begin{aligned}
W & =F_{\mathrm{x}} \Delta x+F_{\mathrm{y}} \Delta y+F_{\mathrm{z}} \Delta z \\
& =(2.0)(7.5-0.50)+(4.0)(12.0-0.75)+(6.0)(7.2-0.20)=101 \mathrm{~J} \\
& \approx 1.0 \times 10^{2} \mathrm{~J} .
\end{aligned}
$$

(b) Dividing this result by 12 s (see Eq. 7-42) yields $P=8.4 \mathrm{~W}$.
48. (a) With SI units understood, the object's displacement is

$$
\vec{d}=\vec{d}_{f}-\vec{d}_{i}=-8.00 \hat{\mathrm{i}}+6.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}} .
$$

Thus, Eq. $7-8$ gives $W=\vec{F} \cdot \vec{d}=(3.00)(-8.00)+(7.00)(6.00)+(7.00)(2.00)=32.0 \mathrm{~J}$.
(b) The average power is given by Eq. 7-42:

$$
P_{\text {avg }}=\frac{W}{t}=\frac{32.0}{4.00}=8.00 \mathrm{~W} .
$$

(c) The distance from the coordinate origin to the initial position is $d_{i}=\sqrt{(3.00)^{2}+(-2.00)^{2}+(5.00)^{2}}=6.16 \mathrm{~m}$, and the magnitude of the distance from the coordinate origin to the final position is $d_{f}=\sqrt{(-5.00)^{2}+(4.00)^{2}+(7.00)^{2}}=9.49 \mathrm{~m}$. Their scalar (dot) product is

$$
\vec{d}_{i} \cdot \vec{d}_{f}=(3.00)(-5.00)+(-2.00)(4.00)+(5.00)(7.00)=12.0 \mathrm{~m}^{2} .
$$

Thus, the angle between the two vectors is

$$
\phi=\cos ^{-1}\left(\frac{\vec{d}_{i} \cdot \vec{d}_{f}}{d_{i} d_{f}}\right)=\cos ^{-1}\left(\frac{12.0}{(6.16)(9.49)}\right)=78.2^{\circ} .
$$

49. From Eq. 7-32, we see that the "area" in the graph is equivalent to the work done. We find the area in terms of rectangular [length \times width] and triangular [$\frac{1}{2}$ base \times height] areas and use the work-kinetic energy theorem appropriately. The initial point is taken to be $x=0$, where $v_{0}=4.0 \mathrm{~m} / \mathrm{s}$.
(a) With $K_{i}=\frac{1}{2} m v_{0}^{2}=16 \mathrm{~J}$, we have

$$
K_{3}-K_{0}=W_{0<x<1}+W_{1<x<2}+W_{2<x<3}=-4.0 \mathrm{~J}
$$

so that K_{3} (the kinetic energy when $x=3.0 \mathrm{~m}$) is found to equal 12 J .
(b) With SI units understood, we write $W_{3<x<x_{f}}$ as $F_{x} \Delta x=(-4.0)\left(x_{f}-3.0\right)$ and apply the work-kinetic energy theorem:

$$
\begin{aligned}
& K_{x_{f}}-K_{3}=W_{3<x<x_{f}} \\
& K_{x f}-12=(-4)\left(x_{f}-3.0\right)
\end{aligned}
$$

so that the requirement $K x_{f}=8.0 \mathrm{~J}$ leads to $x_{f}=4.0 \mathrm{~m}$.
(c) As long as the work is positive, the kinetic energy grows. The graph shows this situation to hold until $x=1.0 \mathrm{~m}$. At that location, the kinetic energy is

$$
K_{1}=K_{0}+W_{0<x<1}=16 \mathrm{~J}+2.0 \mathrm{~J}=18 \mathrm{~J} .
$$

50. (a) The compression of the spring is $d=0.12 \mathrm{~m}$. The work done by the force of gravity (acting on the block) is, by Eq. 7-12,

$$
W_{1}=m g d=(0.25 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.29 \mathrm{~J}
$$

(b) The work done by the spring is, by Eq. 7-26,

$$
W_{2}=-\frac{1}{2} k d^{2}=-\frac{1}{2}(250 \mathrm{~N} / \mathrm{m})(0.12 \mathrm{~m})^{2}=-1.8 \mathrm{~J} .
$$

(c) The speed v_{i} of the block just before it hits the spring is found from the work-kinetic energy theorem (Eq. 7-15).

$$
\Delta K=0-\frac{1}{2} m v_{i}^{2}=W_{1}+W_{2}
$$

which yields

$$
v_{i}=\sqrt{\frac{(-2)\left(W_{1}+W_{2}\right)}{m}}=\sqrt{\frac{(-2)(0.29-1.8)}{0.25}}=3.5 \mathrm{~m} / \mathrm{s} .
$$

(d) If we instead had $v_{i}^{\prime}=7 \mathrm{~m} / \mathrm{s}$, we reverse the above steps and solve for d^{\prime}. Recalling the theorem used in part (c), we have

$$
0-\frac{1}{2} m v_{i}^{\prime 2}=W_{1}^{\prime}+W_{2}^{\prime}=m g d^{\prime}-\frac{1}{2} k d^{\prime 2}
$$

which (choosing the positive root) leads to

$$
d^{\prime}=\frac{m g+\sqrt{m^{2} g^{2}+m k v_{i}^{\prime 2}}}{k}
$$

which yields $d^{\prime}=0.23 \mathrm{~m}$. In order to obtain this result, we have used more digits in our intermediate results than are shown above (so $v_{i}=\sqrt{12.048}=3.471 \mathrm{~m} / \mathrm{s}$ and $v_{i}^{\prime}=6.942$ m / s).
51. (a) The component of the force of gravity exerted on the ice block (of mass m) along the incline is $m g \sin \theta$, where $\theta=\sin ^{-1}(0.91 / 1.5)$ gives the angle of inclination for the inclined plane. Since the ice block slides down with uniform velocity, the worker must exert a force \vec{F} "uphill" with a magnitude equal to $m g \sin \theta$. Consequently,

$$
F=m g \sin \theta=(45 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{0.91 \mathrm{~m}}{1.5 \mathrm{~m}}\right)=2.7 \times 10^{2} \mathrm{~N} .
$$

(b) Since the "downhill" displacement is opposite to \vec{F}, the work done by the worker is

$$
W_{1}=-\left(2.7 \times 10^{2} \mathrm{~N}\right)(1.5 \mathrm{~m})=-4.0 \times 10^{2} \mathrm{~J}
$$

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in the same direction as the force of gravity), we find the work done by gravity to be

$$
W_{2}=(45 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.91 \mathrm{~m})=4.0 \times 10^{2} \mathrm{~J} .
$$

(d) Since \vec{F}_{N} is perpendicular to the direction of motion of the block, and $\cos 90^{\circ}=0$, work done by the normal force is $W_{3}=0$ by Eq. 7-7.
(e) The resultant force $\vec{F}_{\text {net }}$ is zero since there is no acceleration. Thus, its work is zero, as can be checked by adding the above results $W_{1}+W_{2}+W_{3}=0$.
52. (a) The force of the worker on the crate is constant, so the work it does is given by $W_{F}=\vec{F} \cdot \vec{d}=F d \cos \phi$, where \vec{F} is the force, \vec{d} is the displacement of the crate, and ϕ is the angle between the force and the displacement. Here $F=210 \mathrm{~N}, d=3.0 \mathrm{~m}$, and $\phi=$ 20°. Thus

$$
W_{F}=(210 \mathrm{~N})(3.0 \mathrm{~m}) \cos 20^{\circ}=590 \mathrm{~J} .
$$

(b) The force of gravity is downward, perpendicular to the displacement of the crate. The angle between this force and the displacement is 90° and $\cos 90^{\circ}=0$, so the work done by the force of gravity is zero.
(c) The normal force of the floor on the crate is also perpendicular to the displacement, so the work done by this force is also zero.
(d) These are the only forces acting on the crate, so the total work done on it is 590 J .
53. The work done by the applied force \vec{F}_{a} is given by $W=\vec{F}_{a} \cdot \vec{d}=F_{a} d \cos \phi$. From Fig. 7-43, we see that $W=25 \mathrm{~J}$ when $\phi=0$ and $d=5.0 \mathrm{~cm}$. This yields the magnitude of \vec{F}_{a} :

$$
F_{a}=\frac{W}{d}=\frac{25 \mathrm{~J}}{0.050 \mathrm{~m}}=5.0 \times 10^{2} \mathrm{~N} .
$$

(a) For $\phi=64^{\circ}$, we have $W=F_{a} d \cos \phi=\left(5.0 \times 10^{2} \mathrm{~N}\right)(0.050 \mathrm{~m}) \cos 64^{\circ}=11 \mathrm{~J}$.
(b) For $\phi=147^{\circ}$, we have $W=F_{a} d \cos \phi=\left(5.0 \times 10^{2} \mathrm{~N}\right)(0.050 \mathrm{~m}) \cos 147^{\circ}=-21 \mathrm{~J}$.
54. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to

$$
v_{f}=\left(2 \frac{d}{m} F \cos \theta\right)^{1 / 2}=(\cos \theta)^{1 / 2}
$$

with SI units understood.
(b) With $v_{i}=1$, those same steps lead to $v_{f}=(1+\cos \theta)^{1 / 2}$.
(c) Replacing θ with $180^{\circ}-\theta$, and still using $v_{i}=1$, we find

$$
v_{f}=\left[1+\cos \left(180^{\circ}-\theta\right)\right]^{1 / 2}=(1-\cos \theta)^{1 / 2} .
$$

(d) The graphs are shown below. Note that as θ is increased in parts (a) and (b) the force provides less and less of a positive acceleration, whereas in part (c) the force provides less and less of a deceleration (as its θ value increases). The highest curve (which slowly decreases from 1.4 to 1) is the curve for part (b); the other decreasing curve (starting at 1 and ending at 0) is for part (a). The rising curve is for part (c); it is equal to 1 where $\theta=$ 90°.

55. (a) We can easily fit the curve to a concave-downward parabola: $x=\frac{1}{10} t(10-t)$, from which (by taking two derivatives) we find the acceleration to be $a=-0.20 \mathrm{~m} / \mathrm{s}^{2}$. The (constant) force is therefore $F=m a=-0.40 \mathrm{~N}$, with a corresponding work given by $W=$ $F x=\frac{2}{50} t(t-10)$. It also follows from the x expression that $v_{0}=1.0 \mathrm{~m} / \mathrm{s}$. This means that $K_{i}=\frac{1}{2} m \mathrm{v}^{2}=1.0 \mathrm{~J}$. Therefore, when $t=1.0 \mathrm{~s}$, Eq. $7-10$ gives $K=K_{i}+W=0.64 \mathrm{~J} \approx 0.6 \mathrm{~J}$, where the second significant figure is not to be taken too seriously.
(b) At $t=5.0 \mathrm{~s}$, the above method gives $K=0$.
(c) Evaluating the $W=\frac{2}{50} t(t-10)$ expression at $t=5.0 \mathrm{~s}$ and $t=1.0 \mathrm{~s}$, and subtracting, yields -0.6 J . This can also be inferred from the answers for parts (a) and (b).
56. With SI units understood, Eq. 7-8 leads to $W=(4.0)(3.0)-c(2.0)=12-2 c$.
(a) If $W=0$, then $c=6.0 \mathrm{~N}$.
(b) If $W=17 \mathrm{~J}$, then $c=-2.5 \mathrm{~N}$.
(c) If $W=-18 \mathrm{~J}$, then $c=15 \mathrm{~N}$.
57. (a) Noting that the x component of the third force is $F_{3 x}=(4.00 \mathrm{~N}) \cos \left(60^{\circ}\right)$, we apply Eq. 7-8 to the problem:

$$
W=\left[5.00-1.00+(4.00) \cos 60^{\circ}\right](0.20 \mathrm{~m})=1.20 \mathrm{~J} .
$$

(b) Eq. 7-10 (along with Eq. 7-1) then yields $v=\sqrt{2 W / m}=1.10 \mathrm{~m} / \mathrm{s}$.
58. (a) The plot of the function (with SI units understood) is shown below.

Estimating the area under the curve allows for a range of answers. Estimates from 11 J to 14 J are typical.
(b) Evaluating the work analytically (using Eq. 7-32), we have

$$
W=\int 10 \mathrm{e}^{-x / 2} d x=-\left.20 \mathrm{e}^{-x / 2}\right|_{0} ^{2}=12.6 \mathrm{~J} \approx 13 \mathrm{~J} .
$$

59. (a) Eq. 7-6 gives $W_{a}=F d=(209 \mathrm{~N})(1.50 \mathrm{~m}) \approx 314 \mathrm{~J}$.
(b) Eq. $7-12$ leads to $W_{g}=(25.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.50 \mathrm{~m}) \cos \left(115^{\circ}\right) \approx-155 \mathrm{~J}$.
(c) The angle between the normal force and the direction of motion remains 90° at all times, so the work it does is zero.
(d) The total work done on the crate is $W_{T}=314 \mathrm{~J}-155 \mathrm{~J}=158 \mathrm{~J}$.
60. (a) Eq. $7-8$ gives $W=(3.0)(-5.0-3.0)+(7.0)[4.0-(-2.0)]+(7.0)(7.0-5.0)=32 \mathrm{~J}$.
(b) Eq. 7-42 gives $P=W / t=32 / 4.0=8.0 \mathrm{~W}$.
(c) Proceeding as in Sample Problem 3-6, we have

$$
\phi=\cos ^{-1}\left(\frac{(-5.0)(3.0)+(4.0)(-2.0)+(7.0)(5.0)}{d_{i} d_{f}}\right)=78^{\circ}
$$

where we used the Pythagorean theorem to find $d_{i}=\sqrt{38}$ and $d_{f}=\sqrt{90}$ (distances understood to be in meters).
61. Hooke's law and the work done by a spring is discussed in the chapter. We apply work-kinetic energy theorem, in the form of $\Delta K=W_{a}+W_{s}$, to the points in Figure 7-48 at $x=1.0 \mathrm{~m}$ and $x=2.0 \mathrm{~m}$, respectively. The "applied" work W_{a} is that due to the constant force \vec{P}.

$$
\begin{aligned}
& 4=P(1.0)-\frac{1}{2} k(1.0)^{2} \\
& 0=P(2.0)-\frac{1}{2} k(2.0)^{2}
\end{aligned}
$$

(a) Simultaneous solution leads to $P=8.0 \mathrm{~N}$,
(b) and $k=8.0 \mathrm{~N} / \mathrm{m}$.
62. Using Eq. 7-8, we find

$$
W=\vec{F} \cdot \vec{d}=(F \cos \theta \hat{\mathrm{i}}+\mathrm{F} \sin \theta \hat{\mathrm{j}}) \cdot(x \hat{\mathrm{i}}+y \hat{\mathrm{j}})=F x \cos \theta+F y \sin \theta
$$

where $x=2.0 \mathrm{~m}, y=-4.0 \mathrm{~m}, F=10 \mathrm{~N}$, and $\theta=150^{\circ}$. Thus, we obtain $W=-37 \mathrm{~J}$. Note that the given mass value (2.0 kg) is not used in the computation.
63. There is no acceleration, so the lifting force is equal to the weight of the object. We note that the person's pull \vec{F} is equal (in magnitude) to the tension in the cord.
(a) As indicated in the hint, tension contributes twice to the lifting of the canister: $2 T=$ $m g$. Since $|\vec{F}|=T$, we find $|\vec{F}|=98 \mathrm{~N}$.
(b) To rise 0.020 m , two segments of the cord (see Fig. 7-48) must shorten by that amount. Thus, the amount of string pulled down at the left end (this is the magnitude of \vec{d}, the downward displacement of the hand) is $d=0.040 \mathrm{~m}$.
(c) Since (at the left end) both \vec{F} and \vec{d} are downward, then Eq. 7-7 leads to

$$
W=\vec{F} \cdot \vec{d}=(98)(0.040)=3.9 \mathrm{~J}
$$

(d) Since the force of gravity \vec{F}_{g} (with magnitude $m g$) is opposite to the displacement $\vec{d}_{c}=0.020 \mathrm{~m}$ (up) of the canister, Eq. 7-7 leads to

$$
W=\vec{F}_{g} \cdot \vec{d}_{c}=-(196)(0.020)=-3.9 \mathrm{~J} .
$$

This is consistent with Eq. 7-15 since there is no change in kinetic energy.
64. The acceleration is constant, so we may use the equations in Table 2-1. We choose the direction of motion as $+x$ and note that the displacement is the same as the distance traveled, in this problem. We designate the force (assumed singular) along the x direction acting on the $m=2.0 \mathrm{~kg}$ object as F.
(a) With $v_{0}=0$, Eq. 2-11 leads to $a=v / t$. And Eq. 2-17 gives $\Delta x=\frac{1}{2} v t$. Newton's second law yields the force $F=m a$. Eq. 7-8, then, gives the work:

$$
W=F \Delta x=m\left(\frac{v}{t}\right)\left(\frac{1}{2} v t\right)=\frac{1}{2} m v^{2}
$$

as we expect from the work-kinetic energy theorem. With $v=10 \mathrm{~m} / \mathrm{s}$, this yields $W=1.0 \times 10^{2} \mathrm{~J}$.
(b) Instantaneous power is defined in Eq. 7-48. With $t=3.0 \mathrm{~s}$, we find

$$
P=F v=m\left(\frac{v}{t}\right) v=67 \mathrm{~W}
$$

(c) The velocity at $t^{\prime}=1.5 \mathrm{~s}$ is $v^{\prime}=a t^{\prime}=5.0 \mathrm{~m} / \mathrm{s}$. Thus, $P^{\prime}=F v^{\prime}=33 \mathrm{~W}$.
65. One approach is to assume a "path" from \vec{r}_{i} to \vec{r}_{f} and do the line-integral accordingly. Another approach is to simply use Eq. 7-36, which we demonstrate:

$$
W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y=\int_{2}^{-4}(2 x) d x+\int_{3}^{-3}(3) d y
$$

with SI units understood. Thus, we obtain $W=12-18=-6 \mathrm{~J}$.
66. The total weight is $(100)(660)=6.6 \times 10^{4} \mathrm{~N}$, and the words "raises \ldots at constant speed" imply zero acceleration, so the lift-force is equal to the total weight. Thus

$$
P=F v=\left(6.6 \times 10^{4}\right)(150 / 60)=1.65 \times 10^{5} \mathrm{~W}
$$

67. (a) The force \vec{F} of the incline is a combination of normal and friction force which is serving to "cancel" the tendency of the box to fall downward (due to its 19.6 N weight). Thus, $\vec{F}=m g$ upward. In this part of the problem, the angle ϕ between the belt and \vec{F} is 80°. From Eq. $7-47$, we have

$$
P=F v \cos \phi=(19.6)(0.50) \cos 80^{\circ}=1.7 \mathrm{~W}
$$

(b) Now the angle between the belt and \vec{F} is 90°, so that $P=0$.
(c) In this part, the angle between the belt and \vec{F} is 100°, so that

$$
P=(19.6)(0.50) \cos 100^{\circ}=-1.7 \mathrm{~W} .
$$

68. Using Eq. 7-7, we have $W=F d \cos \phi=1504 \mathrm{~J}$. Then, by the work-kinetic energy theorem, we find the kinetic energy $K_{f}=K_{i}+W=0+1504 \mathrm{~J}$. The answer is therefore 1.5 kJ .
69. (a) In the work-kinetic energy theorem, we include both the work due to an applied force W_{a} and work done by gravity W_{g} in order to find the latter quantity.

$$
\Delta K=W_{a}+W_{g} \Rightarrow 30=(100)(1.8) \cos 180^{\circ}+W_{g}
$$

leading to $W_{g}=2.1 \times 10^{2} \mathrm{~J}$.
(b) The value of W_{g} obtained in part (a) still applies since the weight and the path of the child remain the same, so $\Delta K=W_{g}=2.1 \times 10^{2} \mathrm{~J}$.
70. (a) To hold the crate at equilibrium in the final situation, \vec{F} must have the same magnitude as the horizontal component of the rope's tension $T \sin \theta$, where θ is the angle between the rope (in the final position) and vertical:

$$
\theta=\sin ^{-1}\left(\frac{4.00}{12.0}\right)=19.5^{\circ}
$$

But the vertical component of the tension supports against the weight: $T \cos \theta=m g$. Thus, the tension is

$$
T=(230)(9.80) / \cos 19.5^{\circ}=2391 \mathrm{~N}
$$

and $F=(2391) \sin 19.5^{\circ}=797 \mathrm{~N}$.
An alternative approach based on drawing a vector triangle (of forces) in the final situation provides a quick solution.
(b) Since there is no change in kinetic energy, the net work on it is zero.
(c) The work done by gravity is $W_{g}=\vec{F}_{g} \cdot \vec{d}=-m g h$, where $h=L(1-\cos \theta)$ is the vertical component of the displacement. With $L=12.0 \mathrm{~m}$, we obtain $W_{g}=-1547 \mathrm{~J}$ which should be rounded to three figures: -1.55 kJ .
(d) The tension vector is everywhere perpendicular to the direction of motion, so its work is zero (since $\cos 90^{\circ}=0$).
(e) The implication of the previous three parts is that the work due to \vec{F} is $-W_{g}$ (so the net work turns out to be zero). Thus, $W_{F}=-W_{g}=1.55 \mathrm{~kJ}$.
(f) Since \vec{F} does not have constant magnitude, we cannot expect Eq. 7-8 to apply.
71. (a) Hooke's law and the work done by a spring is discussed in the chapter. Taking absolute values, and writing that law in terms of differences ΔF and Δx, we analyze the first two pictures as follows:

$$
\begin{aligned}
|\Delta F| & =k|\Delta x| \\
240 \mathrm{~N}-110 \mathrm{~N} & =k(60 \mathrm{~mm}-40 \mathrm{~mm})
\end{aligned}
$$

which yields $k=6.5 \mathrm{~N} / \mathrm{mm}$. Designating the relaxed position (as read by that scale) as x_{o} we look again at the first picture:

$$
110 \mathrm{~N}=k\left(40 \mathrm{~mm}-x_{\mathrm{o}}\right)
$$

which (upon using the above result for k) yields $x_{0}=23 \mathrm{~mm}$.
(b) Using the results from part (a) to analyze that last picture, we find

$$
W=k\left(30 \mathrm{~mm}-x_{\mathrm{o}}\right)=45 \mathrm{~N} .
$$

72. (a) Using Eq. 7-8 and SI units, we find

$$
W=\vec{F} \cdot \vec{d}=(2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \cdot(8 \hat{\mathrm{i}}+c \hat{\mathrm{j}})=16-4 c
$$

which, if equal zero, implies $c=16 / 4=4 \mathrm{~m}$.
(b) If $W>0$ then $16>4 c$, which implies $c<4 \mathrm{~m}$.
(c) If $W<0$ then $16<4 c$, which implies $c>4 \mathrm{~m}$.
73. A convenient approach is provided by Eq. 7-48.

$$
P=F v=(1800 \mathrm{~kg}+4500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.80 \mathrm{~m} / \mathrm{s})=235 \mathrm{~kW} .
$$

Note that we have set the applied force equal to the weight in order to maintain constant velocity (zero acceleration).
74. (a) To estimate the area under the curve between $x=1 \mathrm{~m}$ and $x=3 \mathrm{~m}$ (which should yield the value for the work done), one can try "counting squares" (or half-squares or thirds of squares) between the curve and the axis. Estimates between 5 J and 8 J are typical for this (crude) procedure.
(b) Eq. 7-32 gives

$$
\int_{1}^{3} \frac{a}{x^{2}} d x=\frac{a}{3}-\frac{a}{1}=6 \mathrm{~J}
$$

where $a=-9 \mathrm{~N} \cdot \mathrm{~m}^{2}$ is given in the problem statement.
75. (a) Using Eq. 7-32, the work becomes $W=\frac{9}{2} x^{2}-x^{3}$ (SI units understood). The plot is shown below:

(b) We see from the graph that its peak value occurs at $x=3.00 \mathrm{~m}$. This can be verified by taking the derivative of W and setting equal to zero, or simply by noting that this is where the force vanishes.
(c) The maximum value is $W=\frac{9}{2}(3.00)^{2}-(3.00)^{3}=13.50 \mathrm{~J}$.
(d) We see from the graph (or from our analytic expression) that $W=0$ at $x=4.50 \mathrm{~m}$.
(e) The case is at rest when $v=0$. Since $W=\Delta K=m v^{2} / 2$, the condition implies $W=0$. This happens at $x=4.50 \mathrm{~m}$.
76. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in Joules. Done numerically, using features available on many modern calculators, the result is roughly 0.47 J . For the interested student it might be worthwhile to quote the "exact" answer (in terms of the "error function"):

$$
\int_{.15}^{1.2} \mathrm{e}^{-2 x^{2}} d x=1 / 4 \sqrt{2 \pi}[\operatorname{erf}(6 \sqrt{2} / 5)-\operatorname{erf}(3 \sqrt{2} / 20)]
$$

77. (a) In 10 min the cart moves

$$
d=\left(6.0 \frac{\mathrm{mi}}{\mathrm{~h}}\right)\left(\frac{5280 \mathrm{ft} / \mathrm{mi}}{60 \mathrm{~min} / \mathrm{h}}\right)(10 \mathrm{~min})=5280 \mathrm{ft}
$$

so that Eq. $7-7$ yields

$$
W=F d \cos \phi=(40 \mathrm{lb})(5280 \mathrm{ft}) \cos 30^{\circ}=1.8 \times 10^{5} \mathrm{ft} \cdot \mathrm{lb}
$$

(b) The average power is given by Eq. 7-42, and the conversion to horsepower (hp) can be found on the inside back cover. We note that 10 min is equivalent to 600 s .

$$
P_{\text {avg }}=\frac{1.8 \times 10^{5} \mathrm{ft} \cdot \mathrm{lb}}{600 \mathrm{~s}}=305 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}
$$

which (upon dividing by 550) converts to $P_{\text {avg }}=0.55 \mathrm{hp}$.
78. (a) Estimating the initial speed from the slope of the graph near the origin is somewhat difficult, and it may be simpler to determine it from the constant-acceleration equations from chapter 2: $v=v_{0}+a t$ and $x=v_{0}+\frac{1}{2} a t^{2}$, where $x_{0}=0$ has been used. Applying these to the last point on the graph (where the slope is apparently zero) or applying just the x equation to any two points on the graph, leads to a pair of simultaneous equations from which $a=-2.0 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{0}=10 \mathrm{~m} / \mathrm{s}$ can be found. Then,

$$
K_{0}=\frac{1}{2} m v_{0}^{2}=2.5 \times 10^{3} \mathrm{~J}=2.5 \mathrm{~kJ}
$$

(b) The speed at $t=3.0 \mathrm{~s}$ is obtained by

$$
v=v_{0}+a t=10+(-2.0)(3.0)=4.0 \mathrm{~m} / \mathrm{s}
$$

or by estimating the slope from the graph (not recommended). Then the work-kinetic energy theorem yields

$$
W=\Delta K=\frac{1}{2}(50 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})^{2}-2.5 \times 10^{3} \mathrm{~J}=-2.1 \mathrm{~kJ}
$$

79. (a) We set up the ratio

$$
\frac{50 \mathrm{~km}}{1 \mathrm{~km}}=\left(\frac{E}{1 \text { megaton }}\right)^{1 / 3}
$$

and find $E=50^{3} \approx 1 \times 10^{5}$ megatons of TNT.
(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from part (a) by 0.013 yields about ten million bombs.
80. After converting the speed to meters-per-second, we find

$$
K=\frac{1}{2} m v^{2}=667 \mathrm{~kJ} .
$$

1. The potential energy stored by the spring is given by $U=\frac{1}{2} k x^{2}$, where k is the spring constant and x is the displacement of the end of the spring from its position when the spring is in equilibrium. Thus

$$
k=\frac{2 U}{x^{2}}=\frac{2(25 \mathrm{~J})}{(0.075 \mathrm{~m})^{2}}=8.9 \times 10^{3} \mathrm{~N} / \mathrm{m} .
$$

2. (a) Noting that the vertical displacement is $10.0-1.5=8.5 \mathrm{~m}$ downward (same direction as \vec{F}_{g}), Eq. 7-12 yields

$$
W_{g}=m g d \cos \phi=(2.00)(9.8)(8.5) \cos 0^{\circ}=167 \mathrm{~J} .
$$

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to instead calculate this as ΔU where $U=m g y$ (with upwards understood to be the $+y$ direction).

$$
\Delta U=m g y_{f}-m g y_{i}=(2.00)(9.8)(1.5)-(2.00)(9.8)(10.0)=-167 \mathrm{~J} .
$$

(c) In part (b) we used the fact that $U_{i}=m g y_{i}=196 \mathrm{~J}$.
(d) In part (b), we also used the fact $U_{f}=m g y_{f}=29 \mathrm{~J}$.
(e) The computation of W_{g} does not use the new information (that $U=100 \mathrm{~J}$ at the ground), so we again obtain $W_{g}=167 \mathrm{~J}$.
(f) As a result of Eq. 8-1, we must again find $\Delta U=-W_{g}=-167 \mathrm{~J}$.
(g) With this new information (that $U_{0}=100 \mathrm{~J}$ where $y=0$) we have

$$
U_{i}=m g y_{i}+U_{0}=296 \mathrm{~J} .
$$

(h) With this new information (that $U_{0}=100 \mathrm{~J}$ where $y=0$) we have

$$
U_{f}=m g y_{f}+U_{0}=129 \mathrm{~J} .
$$

We can check part (f) by subtracting the new U_{i} from this result.
3. (a) The force of gravity is constant, so the work it does is given by $W=\vec{F} \cdot \vec{d}$, where \vec{F} is the force and \vec{d} is the displacement. The force is vertically downward and has magnitude $m g$, where m is the mass of the flake, so this reduces to $W=m g h$, where h is the height from which the flake falls. This is equal to the radius r of the bowl. Thus

$$
W=m g r=\left(2.00 \times 10^{-3} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(22.0 \times 10^{-2} \mathrm{~m}\right)=4.31 \times 10^{-3} \mathrm{~J} .
$$

(b) The force of gravity is conservative, so the change in gravitational potential energy of the flake-Earth system is the negative of the work done: $\Delta U=-W=-4.31 \times 10^{-3} \mathrm{~J}$.
(c) The potential energy when the flake is at the top is greater than when it is at the bottom by $|\Delta U|$. If $U=0$ at the bottom, then $U=+4.31 \times 10^{-3} \mathrm{~J}$ at the top.
(d) If $U=0$ at the top, then $U=-4.31 \times 10^{-3} \mathrm{~J}$ at the bottom.
(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all answers are doubled.
4. (a) The only force that does work on the ball is the force of gravity; the force of the rod is perpendicular to the path of the ball and so does no work. In going from its initial position to the lowest point on its path, the ball moves vertically through a distance equal to the length L of the rod, so the work done by the force of gravity is

$$
W=m g L=(0.341 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})=1.51 \mathrm{~J} .
$$

(b) In going from its initial position to the highest point on its path, the ball moves vertically through a distance equal to L, but this time the displacement is upward, opposite the direction of the force of gravity. The work done by the force of gravity is

$$
W=-m g L=-(0.341 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})=-1.51 \mathrm{~J}
$$

(c) The final position of the ball is at the same height as its initial position. The displacement is horizontal, perpendicular to the force of gravity. The force of gravity does no work during this displacement.
(d) The force of gravity is conservative. The change in the gravitational potential energy of the ball-Earth system is the negative of the work done by gravity:

$$
\Delta U=-m g L=-(0.341 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})=-1.51 \mathrm{~J}
$$

as the ball goes to the lowest point.
(e) Continuing this line of reasoning, we find

$$
\Delta U=+m g L=(0.341 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})=1.51 \mathrm{~J}
$$

as it goes to the highest point.
(f) Continuing this line of reasoning, we have $\Delta U=0$ as it goes to the point at the same height.
(g) The change in the gravitational potential energy depends only on the initial and final positions of the ball, not on its speed anywhere. The change in the potential energy is the same since the initial and final positions are the same.
5. We use Eq. 7-12 for W_{g} and Eq. 8-9 for U.
(a) The displacement between the initial point and A is horizontal, so $\phi=90.0^{\circ}$ and $W_{g}=0\left(\right.$ since $\left.\cos 90.0^{\circ}=0\right)$.
(b) The displacement between the initial point and B has a vertical component of $h / 2$ downward (same direction as \vec{F}_{g}), so we obtain

$$
W_{g}=\vec{F}_{g} \cdot \vec{d}=\frac{1}{2} m g h=\frac{1}{2}(825 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(42.0 \mathrm{~m})=1.70 \times 10^{5} \mathrm{~J} .
$$

(c) The displacement between the initial point and C has a vertical component of h downward (same direction as \vec{F}_{g}), so we obtain

$$
W_{g}=\vec{F}_{g} \cdot \vec{d}=m g h=(825 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(42.0 \mathrm{~m})=3.40 \times 10^{5} \mathrm{~J} .
$$

(d) With the reference position at C, we obtain

$$
U_{B}=\frac{1}{2} m g h=\frac{1}{2}(825 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(42.0 \mathrm{~m})=1.70 \times 10^{5} \mathrm{~J}
$$

(e) Similarly, we find

$$
U_{A}=m g h=(825 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(42.0 \mathrm{~m})=3.40 \times 10^{5} \mathrm{~J}
$$

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all answers are doubled.
6. (a) The force of gravity is constant, so the work it does is given by $W=\vec{F} \cdot \vec{d}$, where \vec{F} is the force and \vec{d} is the displacement. The force is vertically downward and has magnitude $m g$, where m is the mass of the snowball. The expression for the work reduces to $W=m g h$, where h is the height through which the snowball drops. Thus

$$
W=m g h=(1.50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(12.5 \mathrm{~m})=184 \mathrm{~J}
$$

(b) The force of gravity is conservative, so the change in the potential energy of the snowball-Earth system is the negative of the work it does: $\Delta U=-W=-184 \mathrm{~J}$.
(c) The potential energy when it reaches the ground is less than the potential energy when it is fired by $|\Delta U|$, so $U=-184 \mathrm{~J}$ when the snowball hits the ground.
7. We use Eq. 7-12 for W_{g} and Eq. 8-9 for U.
(a) The displacement between the initial point and Q has a vertical component of $h-R$ downward (same direction as \vec{F}_{g}), so (with $h=5 R$) we obtain

$$
W_{g}=\vec{F}_{g} \cdot \vec{d}=4 m g R=4\left(3.20 \times 10^{-2} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.15 \mathrm{~J} .
$$

(b) The displacement between the initial point and the top of the loop has a vertical component of $h-2 R$ downward (same direction as \vec{F}_{g}), so (with $h=5 R$) we obtain

$$
W_{g}=\vec{F}_{g} \cdot \vec{d}=3 m g R=3\left(3.20 \times 10^{-2} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.11 \mathrm{~J} .
$$

(c) With $y=h=5 R$, at P we find

$$
U=5 m g R=5\left(3.20 \times 10^{-2} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.19 \mathrm{~J} .
$$

(d) With $y=R$, at Q we have

$$
U=m g R=\left(3.20 \times 10^{-2} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.038 \mathrm{~J}
$$

(e) With $y=2 R$, at the top of the loop, we find

$$
U=2 m g R=2\left(3.20 \times 10^{-2} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})=0.075 \mathrm{~J}
$$

(f) The new information $\left(v_{i} \neq 0\right)$ is not involved in any of the preceding computations; the above results are unchanged.
8. The main challenge for students in this type of problem seems to be working out the trigonometry in order to obtain the height of the ball (relative to the low point of the swing) $h=L-L \cos \theta$ (for angle θ measured from vertical as shown in Fig. 8-29). Once this relation (which we will not derive here since we have found this to be most easily illustrated at the blackboard) is established, then the principal results of this problem follow from Eq. 7-12 (for W_{g}) and Eq. 8-9 (for U).
(a) The vertical component of the displacement vector is downward with magnitude h, so we obtain

$$
\begin{aligned}
W_{g} & =\vec{F}_{g} \cdot \vec{d}=m g h=m g L(1-\cos \theta) \\
& =(5.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~m})\left(1-\cos 30^{\circ}\right)=13.1 \mathrm{~J}
\end{aligned}
$$

(b) From Eq. $8-1$, we have $\Delta U=-W_{g}=-m g L(1-\cos \theta)=-13.1 \mathrm{~J}$.
(c) With $y=h$, Eq. $8-9$ yields $U=m g L(1-\cos \theta)=13.1 \mathrm{~J}$.
(d) As the angle increases, we intuitively see that the height h increases (and, less obviously, from the mathematics, we see that $\cos \theta$ decreases so that $1-\cos \theta$ increases), so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b) also increases.
9. (a) If K_{i} is the kinetic energy of the flake at the edge of the bowl, K_{f} is its kinetic energy at the bottom, U_{i} is the gravitational potential energy of the flake-Earth system with the flake at the top, and U_{f} is the gravitational potential energy with it at the bottom, then $K_{f}+U_{f}=K_{i}+U_{i}$.

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy at the top is $U_{i}=m g r$ where $r=0.220 \mathrm{~m}$ is the radius of the bowl and m is the mass of the flake. $K_{i}=0$ since the flake starts from rest. Since the problem asks for the speed at the bottom, we write $\frac{1}{2} m v^{2}$ for K_{f}. Energy conservation leads to

$$
W_{g}=\vec{F}_{g} \cdot \vec{d}=m g h=m g L(1-\cos \theta) .
$$

The speed is $v=\sqrt{2 g r}=2.08 \mathrm{~m} / \mathrm{s}$.
(b) Since the expression for speed does not contain the mass of the flake, the speed would be the same, $2.08 \mathrm{~m} / \mathrm{s}$, regardless of the mass of the flake.
(c) The final kinetic energy is given by $K_{f}=K_{i}+U_{i}-U_{f}$. Since K_{i} is greater than before, K_{f} is greater. This means the final speed of the flake is greater.
10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects friction and other dissipative effects).
(a) In the solution to exercise 2 (to which this problem refers), we found $U_{i}=m g y_{i}=196 \mathrm{~J}$ and $U_{f}=m g y_{f}=29.0 \mathrm{~J}$ (assuming the reference position is at the ground). Since $K_{i}=0$ in this case, we have

$$
0+196=K_{f}+29.0
$$

which gives $K_{f}=167 \mathrm{~J}$ and thus leads to

$$
v=\sqrt{\frac{2 K_{f}}{m}}=\sqrt{\frac{2(167)}{2.00}}=12.9 \mathrm{~m} / \mathrm{s} .
$$

(b) If we proceed algebraically through the calculation in part (a), we find $K_{f}=-\Delta U=$ $m g h$ where $h=y_{i}-y_{f}$ and is positive-valued. Thus,

$$
v=\sqrt{\frac{2 K_{f}}{m}}=\sqrt{2 g h}
$$

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). The fact that the answer is independent of mass means that the answer to part (b) is identical to that of part (a), i.e., $v=12.9 \mathrm{~m} / \mathrm{s}$.
(c) If $K_{i} \neq 0$, then we find $K_{f}=m g h+K_{i}$ (where K_{i} is necessarily positive-valued). This represents a larger value for K_{f} than in the previous parts, and thus leads to a larger value for v.
11. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects friction and other dissipative effects).
(a) In Problem 4, we found $U_{A}=m g h$ (with the reference position at C). Referring again to Fig. 8-32, we see that this is the same as U_{0} which implies that $K_{A}=K_{0}$ and thus that

$$
v_{A}=v_{0}=17.0 \mathrm{~m} / \mathrm{s} .
$$

(b) In the solution to Problem 4, we also found $U_{B}=m g h / 2$. In this case, we have

$$
\begin{aligned}
K_{0}+U_{0} & =K_{B}+U_{B} \\
\frac{1}{2} m v_{0}^{2}+m g h & =\frac{1}{2} m v_{B}^{2}+m g\left(\frac{h}{2}\right)
\end{aligned}
$$

which leads to

$$
v_{B}=\sqrt{v_{0}^{2}+g h}=\sqrt{(17.0)^{2}+(9.80)(42.0)}=26.5 \mathrm{~m} / \mathrm{s} .
$$

(c) Similarly,

$$
v_{C}=\sqrt{v_{0}^{2}+2 g h}=\sqrt{(17.0)^{2}+2(9.80)(42.0)}=33.4 \mathrm{~m} / \mathrm{s} .
$$

(d) To find the "final" height, we set $K_{f}=0$. In this case, we have

$$
\begin{aligned}
K_{0}+U_{0} & =K_{f}+U_{f} \\
\frac{1}{2} m v_{0}^{2}+m g h & =0+m g h_{f}
\end{aligned}
$$

which leads to $h_{f}=h+\frac{v_{0}^{2}}{2 g}=42.0 \mathrm{~m}+\frac{(17.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=56.7 \mathrm{~m}$.
(e) It is evident that the above results do not depend on mass. Thus, a different mass for the coaster must lead to the same results.
12. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects friction and other dissipative effects).
(a) In the solution to Problem 4 we found $\Delta U=m g L$ as it goes to the highest point. Thus, we have

$$
\begin{array}{r}
\Delta K+\Delta U=0 \\
K_{\text {top }}-K_{0}+m g L=0
\end{array}
$$

which, upon requiring $K_{\text {top }}=0$, gives $K_{0}=m g L$ and thus leads to

$$
v_{0}=\sqrt{\frac{2 K_{0}}{m}}=\sqrt{2 g L}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})}=2.98 \mathrm{~m} / \mathrm{s}
$$

(b) We also found in the Problem 4 that the potential energy change is $\Delta U=-m g L$ in going from the initial point to the lowest point (the bottom). Thus,

$$
\begin{array}{r}
\Delta K+\Delta U=0 \\
K_{\text {bottom }}-K_{0}-m g L=0
\end{array}
$$

which, with $K_{0}=m g L$, leads to $K_{\text {bottom }}=2 m g L$. Therefore,

$$
v_{\mathrm{bottom}}=\sqrt{\frac{2 K_{\mathrm{bottom}}}{m}}=\sqrt{4 g L}=\sqrt{4\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.452 \mathrm{~m})}=4.21 \mathrm{~m} / \mathrm{s}
$$

(c) Since there is no change in height (going from initial point to the rightmost point), then $\Delta U=0$, which implies $\Delta K=0$. Consequently, the speed is the same as what it was initially,

$$
v_{\text {right }}=v_{0}=2.98 \mathrm{~m} / \mathrm{s} .
$$

(d) It is evident from the above manipulations that the results do not depend on mass. Thus, a different mass for the ball must lead to the same results.
13. We neglect any work done by friction. We work with SI units, so the speed is converted: $v=130(1000 / 3600)=36.1 \mathrm{~m} / \mathrm{s}$.
(a) We use Eq. 8-17: $K_{f}+U_{f}=K_{i}+U_{i}$ with $U_{i}=0, U_{f}=m g h$ and $K_{f}=0$. Since $K_{i}=\frac{1}{2} m v^{2}$, where v is the initial speed of the truck, we obtain

$$
\frac{1}{2} m v^{2}=m g h \Rightarrow h=\frac{v^{2}}{2 g}=\frac{36.1^{2}}{2(9.8)}=66.5 \mathrm{~m} .
$$

If L is the length of the ramp, then $L \sin 15^{\circ}=66.5 \mathrm{~m}$ so that $L=66.5 / \sin 15^{\circ}=257 \mathrm{~m}$. Therefore, the ramp must be about $2.6 \times 10^{2} \mathrm{~m}$ long if friction is negligible.
(b) The answers do not depend on the mass of the truck. They remain the same if the mass is reduced.
(c) If the speed is decreased, h and L both decrease (note that h is proportional to the square of the speed and that L is proportional to h).
14. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the reference position for computing U to be at the ground below the cliff; it is also regarded as the "final" position in our calculations.
(a) Using Eq. 8-9, the initial potential energy is given by $U_{i}=m g h$ where $h=12.5 \mathrm{~m}$ and $m=1.50 \mathrm{~kg}$. Thus, we have

$$
\begin{aligned}
K_{i}+U_{i} & =K_{f}+U_{f} \\
\frac{1}{2} m v_{i}^{2}+m g h & =\frac{1}{2} m v^{2}+0
\end{aligned}
$$

which leads to the speed of the snowball at the instant before striking the ground:

$$
v=\sqrt{\frac{2}{m}\left(\frac{1}{2} m v_{i}^{2}+m g h\right)}=\sqrt{v_{i}^{2}+2 g h}
$$

where $v_{i}=14.0 \mathrm{~m} / \mathrm{s}$ is the magnitude of its initial velocity (not just one component of it). Thus we find $v=21.0 \mathrm{~m} / \mathrm{s}$.
(b) As noted above, v_{i} is the magnitude of its initial velocity and not just one component of it; therefore, there is no dependence on launch angle. The answer is again $21.0 \mathrm{~m} / \mathrm{s}$.
(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing the mass of the snowball does not change the result for v.
15. We make use of Eq. 8-20 which expresses the principle of energy conservation:

$$
\Delta K+\Delta U_{g}+\Delta U_{\mathrm{rope}}=0
$$

The change in the potential energy is $\Delta U_{g}=-m g(2 H+d)$, since the leader falls a total distance $2 H+d$, where d is the distance during the stretching. The change in the elastic potential energy is $\Delta U_{\text {rope }}=k d^{2} / 2$, where k is the spring constant. At the lowest position, the leader is momentarily at rest, so that $\Delta K=0$. The above equation leads to

$$
\frac{1}{2} k d_{\max }^{2}-m g d_{\max }-2 m g H=0
$$

which can be solved to yield

$$
d_{\max }=\frac{m g+\sqrt{(m g)^{2}+4 k m g H}}{k}
$$

In the above, only the positive root is chosen. The mass of the leader is $m=80 \mathrm{~kg}$ and the spring constant is $k=e_{\text {rope }} / L$, where $e_{\text {rope }}=20 \mathrm{kN}$ is the elasticity and L is the length of the rope.
(a) In this situation, we have $H=3.0 \mathrm{~m}$ and $L=(10+3.0)=13 \mathrm{~m}$. The maximum distance stretched is

$$
\begin{aligned}
d_{\max } & =\frac{m g+\sqrt{(m g)^{2}+4 e_{\mathrm{rope}} m g H / L}}{e_{\mathrm{rope}} / L} \\
& =\frac{(80)(9.8)+\sqrt{(80)^{2}(9.8)^{2}+4\left(2.0 \times 10^{4}\right)(80)(9.8)(3.0) /(13)}}{\left(2.0 \times 10^{4}\right) / 13}=3.0 \mathrm{~m}
\end{aligned}
$$

(b) In this situation, we have $H=1.0 \mathrm{~m}$ and $L=(1.0+2.0) \mathrm{m}=3.0 \mathrm{~m}$. The result is

$$
d_{\max }=\frac{(80)(9.8)+\sqrt{(80)^{2}(9.8)^{2}+4\left(2.0 \times 10^{4}\right)(80)(9.8)(1.0) /(3.0)}}{\left(2.0 \times 10^{4}\right) / 3.0}=0.81 \mathrm{~m}
$$

(c) At the instant when the rope begins to stretch, for Fig. 8-9a, we have

$$
\frac{1}{2} m v^{2}=m g(2 H) \Rightarrow v=2 \sqrt{g H}=2 \sqrt{(9.8)(3.0)}=11 \mathrm{~m} / \mathrm{s} .
$$

(d) Similarly, for the situation described in Fig. 8-9c, we have

$$
v=2 \sqrt{g H}=2 \sqrt{(9.8)(1.0)}=6.3 \mathrm{~m} / \mathrm{s}
$$

(e) The kinetic energy as a function of d is given by

$$
\Delta K=m g(2 H+d)-\frac{1}{2} k d^{2}
$$

The dependence of ΔK on d is shown in the figure below.

(f) At the maximum speed, ΔK is also a maximum. This can be located by differentiating the above expression with respect to d :

$$
\frac{d(\Delta K)}{d(d)}=m g-k d=0 \Rightarrow d=\frac{m g}{k}=0.51 \mathrm{~m} .
$$

16. We place the reference position for evaluating gravitational potential energy at the relaxed position of the spring. We use x for the spring's compression, measured positively downwards (so $x>0$ means it is compressed).
(a) With $x=0.190 \mathrm{~m}$, Eq. 7-26 gives $W_{s}=-\frac{1}{2} k x^{2}=-7.22 \mathrm{~J} \approx-7.2 \mathrm{~J}$ for the work done by the spring force. Using Newton's third law, we see that the work done on the spring is 7.2 J .
(b) As noted above, $W_{s}=-7.2 \mathrm{~J}$.
(c) Energy conservation leads to

$$
\begin{aligned}
K_{i}+U_{i} & =K_{f}+U_{f} \\
m g h_{0} & =-m g x+\frac{1}{2} k x^{2}
\end{aligned}
$$

which (with $m=0.70 \mathrm{~kg}$) yields $h_{0}=0.86 \mathrm{~m}$.
(d) With a new value for the height $h_{0}^{\prime}=2 h_{0}=1.72 \mathrm{~m}$, we solve for a new value of x using the quadratic formula (taking its positive root so that $x>0$).

$$
m g h_{0}^{\prime}=-m g x+\frac{1}{2} k x^{2} \Rightarrow x=\frac{m g+\sqrt{(m g)^{2}+2 m g k h_{0}^{\prime}}}{k}
$$

which yields $x=0.26 \mathrm{~m}$.
17. We take the reference point for gravitational potential energy at the position of the marble when the spring is compressed.
(a) The gravitational potential energy when the marble is at the top of its motion is $U_{g}=m g h$, where $h=20 \mathrm{~m}$ is the height of the highest point. Thus,

$$
U_{g}=\left(5.0 \times 10^{-3} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(20 \mathrm{~m})=0.98 \mathrm{~J}
$$

(b) Since the kinetic energy is zero at the release point and at the highest point, then conservation of mechanical energy implies $\Delta U_{g}+\Delta U_{s}=0$, where ΔU_{s} is the change in the spring's elastic potential energy. Therefore, $\Delta U_{s}=-\Delta U_{g}=-0.98 \mathrm{~J}$.
(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our result in the previous part implies that its initial potential energy is $U_{s}=0.98 \mathrm{~J}$. This must be $\frac{1}{2} k x^{2}$, where k is the spring constant and x is the initial compression. Consequently,

$$
k=\frac{2 U_{s}}{x^{2}}=\frac{2(0.98 \mathrm{~J})}{(0.080 \mathrm{~m})^{2}}=3.1 \times 10^{2} \mathrm{~N} / \mathrm{m}=3.1 \mathrm{~N} / \mathrm{cm}
$$

18. We denote m as the mass of the block, $h=0.40 \mathrm{~m}$ as the height from which it dropped (measured from the relaxed position of the spring), and x the compression of the spring (measured downward so that it yields a positive value). Our reference point for the gravitational potential energy is the initial position of the block. The block drops a total distance $h+x$, and the final gravitational potential energy is $-m g(h+x)$. The spring potential energy is $\frac{1}{2} k x^{2}$ in the final situation, and the kinetic energy is zero both at the beginning and end. Since energy is conserved

$$
\begin{aligned}
K_{i}+U_{i} & =K_{f}+U_{f} \\
0 & =-m g(h+x)+\frac{1}{2} k x^{2}
\end{aligned}
$$

which is a second degree equation in x. Using the quadratic formula, its solution is

$$
x=\frac{m g \pm \sqrt{(m g)^{2}+2 m g h k}}{k} .
$$

Now $m g=19.6 \mathrm{~N}, h=0.40 \mathrm{~m}$, and $k=1960 \mathrm{~N} / \mathrm{m}$, and we choose the positive root so that $x>0$.

$$
x=\frac{19.6+\sqrt{19.6^{2}+2(19.6)(0.40)(1960)}}{1960}=0.10 \mathrm{~m} .
$$

19. (a) With energy in Joules and length in meters, we have

$$
\Delta U=U(x)-U(0)=-\int_{0}^{x}\left(6 x^{\prime}-12\right) d x^{\prime} .
$$

Therefore, with $U(0)=27 \mathrm{~J}$, we obtain $U(x)$ (written simply as U) by integrating and rearranging:

$$
U=27+12 x-3 x^{2}
$$

(b) We can maximize the above function by working through the $\frac{d U}{d x}=0$ condition, or we can treat this as a force equilibrium situation - which is the approach we show.

$$
F=0 \Rightarrow 6 x_{e q}-12=0
$$

Thus, $x_{e q}=2.0 \mathrm{~m}$, and the above expression for the potential energy becomes $U=39 \mathrm{~J}$.
(c) Using the quadratic formula or using the polynomial solver on an appropriate calculator, we find the negative value of x for which $U=0$ to be $x=-1.6 \mathrm{~m}$.
(d) Similarly, we find the positive value of x for which $U=0$ to be $x=5.6 \mathrm{~m}$
20. We use Eq. 8-18, representing the conservation of mechanical energy. The reference position for computing U is the lowest point of the swing; it is also regarded as the "final" position in our calculations.
(a) In the solution to problem 8 , we found $U=m g L(1-\cos \theta)$ at the position shown in Fig. 8-34 (which we consider to be the initial position). Thus, we have

$$
\begin{aligned}
K_{i}+U_{i} & =K_{f}+U_{f} \\
0+m g L(1-\cos \theta) & =\frac{1}{2} m v^{2}+0
\end{aligned}
$$

which leads to

$$
v=\sqrt{\frac{2 m g L(1-\cos \theta)}{m}}=\sqrt{2 g L(1-\cos \theta)}
$$

Plugging in $L=2.00 \mathrm{~m}$ and $\theta=30.0^{\circ}$ we find $v=2.29 \mathrm{~m} / \mathrm{s}$.
(b) It is evident that the result for v does not depend on mass. Thus, a different mass for the ball must not change the result.
21. (a) At Q the block (which is in circular motion at that point) experiences a centripetal acceleration v^{2} / R leftward. We find v^{2} from energy conservation:

$$
\begin{aligned}
K_{P}+U_{P} & =K_{Q}+U_{Q} \\
0+m g h & =\frac{1}{2} m v^{2}+m g R
\end{aligned}
$$

Using the fact that $h=5 R$, we find $m v^{2}=8 m g R$. Thus, the horizontal component of the net force on the block at Q is

$$
F=m v^{2} / R=8 m g=8(0.032 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=2.5 \mathrm{~N} .
$$

and points left (in the same direction as \vec{a}).
(b) The downward component of the net force on the block at Q is the downward force of gravity

$$
F=m g=(0.032 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=0.31 \mathrm{~N}
$$

(c) To barely make the top of the loop, the centripetal force there must equal the force of gravity:

$$
\frac{m v_{t}^{2}}{R}=m g \Rightarrow m v_{t}^{2}=m g R
$$

This requires a different value of h than was used above.

$$
\begin{aligned}
K_{P}+U_{P} & =K_{t}+U_{t} \\
0+m g h & =\frac{1}{2} m v_{t}^{2}+m g h_{t} \\
m g h & =\frac{1}{2}(m g R)+m g(2 R)
\end{aligned}
$$

Consequently, $h=2.5 R=(2.5)(0.12 \mathrm{~m})=0.3 \mathrm{~m}$.
(d) The normal force F_{N}, for speeds v_{t} greater than $\sqrt{g R}$ (which are the only possibilities for non-zero F_{N} - see the solution in the previous part), obeys

$$
F_{N}=\frac{m v_{t}^{2}}{R}-m g
$$

from Newton's second law. Since v_{t}^{2} is related to h by energy conservation

$$
K_{P}+U_{P}=K_{t}+U_{t} \Rightarrow g h=\frac{1}{2} v_{t}^{2}+2 g R
$$

then the normal force, as a function for h (so long as $h \geq 2.5 R$ - see solution in previous part), becomes

$$
F_{N}=\frac{2 m g h}{R}-5 m g
$$

Thus, the graph for $h \geq 2.5 R$ consists of a straight line of positive slope $2 \mathrm{mg} / R$ (which can be set to some convenient values for graphing purposes).

Note that for $h \leq 2.5 R$, the normal force is zero.
22. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the moment Tarzan swings through the lowest point, which is when the vine - if it didn't break - would have the greatest tension. Choosing upward positive, Newton's second law leads to

$$
T-m g=m \frac{v^{2}}{r}
$$

where $r=18.0 \mathrm{~m}$ and $m=W / g=688 / 9.8=70.2 \mathrm{~kg}$. We find the v^{2} from energy conservation (where the reference position for the potential energy is at the lowest point).

$$
m g h=\frac{1}{2} m v^{2} \Rightarrow v^{2}=2 g h
$$

where $h=3.20 \mathrm{~m}$. Combining these results, we have

$$
T=m g+m \frac{2 g h}{r}=m g\left(1+\frac{2 h}{r}\right)
$$

which yields 933 N. Thus, the vine does not break.
(b) Rounding to an appropriate number of significant figures, we see the maximum tension is roughly $9.3 \times 10^{2} \mathrm{~N}$.
23. (a) As the string reaches its lowest point, its original potential energy $U=m g L$ (measured relative to the lowest point) is converted into kinetic energy. Thus,

$$
m g L=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{2 g L} .
$$

With $L=1.20 \mathrm{~m}$ we obtain $v=4.85 \mathrm{~m} / \mathrm{s}$.
(b) In this case, the total mechanical energy is shared between kinetic $\frac{1}{2} m v_{b}^{2}$ and potential $m g y_{b}$. We note that $y_{b}=2 r$ where $r=L-d=0.450 \mathrm{~m}$. Energy conservation leads to

$$
m g L=\frac{1}{2} m v_{b}^{2}+m g y_{b}
$$

which yields $v_{b}=\sqrt{2 g L-2 g(2 r)}=2.42 \mathrm{~m} / \mathrm{s}$.
24. Since time does not directly enter into the energy formulations, we return to Chapter 4 (or Table 2-1 in Chapter 2) to find the change of height during this $t=6.0 \mathrm{~s}$ flight.

$$
\Delta y=v_{0 y} t-\frac{1}{2} g t^{2}
$$

This leads to $\Delta y=-32 \mathrm{~m}$. Therefore $\Delta U=m g \Delta y=-318 \approx-3.2 \times 10^{-2} \mathrm{~J}$.
25. From Chapter 4, we know the height h of the skier's jump can be found from $v_{y}^{2}=0=v_{0 y}^{2}-2 g h$ where $v_{0 y}=v_{0} \sin 28^{\circ}$ is the upward component of the skier's "launch velocity." To find v_{0} we use energy conservation.
(a) The skier starts at rest $y=20 \mathrm{~m}$ above the point of "launch" so energy conservation leads to

$$
m g y=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{2 g y}=20 \mathrm{~m} / \mathrm{s}
$$

which becomes the initial speed v_{0} for the launch. Hence, the above equation relating h to v_{0} yields

$$
h=\frac{\left(v_{0} \sin 28^{\circ}\right)^{2}}{2 g}=4.4 \mathrm{~m} .
$$

(b) We see that all reference to mass cancels from the above computations, so a new value for the mass will yield the same result as before.
26. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects friction and other dissipative effects). The reference position for computing U (and height h) is the lowest point of the swing; it is also regarded as the "final" position in our calculations.
(a) Careful examination of the figure leads to the trigonometric relation $h=L-L \cos \theta$ when the angle is measured from vertical as shown. Thus, the gravitational potential energy is $U=m g L\left(1-\cos \theta_{0}\right)$ at the position shown in Fig. 8-32 (the initial position). Thus, we have

$$
\begin{aligned}
K_{0}+U_{0} & =K_{f}+U_{f} \\
\frac{1}{2} m v_{0}^{2}+m g L\left(1-\cos \theta_{0}\right) & =\frac{1}{2} m v^{2}+0
\end{aligned}
$$

which leads to

$$
\begin{aligned}
v & =\sqrt{\frac{2}{m}\left[\frac{1}{2} m v_{0}^{2}+m g L\left(1-\cos \theta_{0}\right)\right]}=\sqrt{v_{0}^{2}+2 g L\left(1-\cos \theta_{0}\right)} \\
& =\sqrt{(8.00 \mathrm{~m} / \mathrm{s})^{2}+2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.25 \mathrm{~m})\left(1-\cos 40^{\circ}\right)}=8.35 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) We look for the initial speed required to barely reach the horizontal position described by $v_{h}=0$ and $\theta=90^{\circ}$ (or $\theta=-90^{\circ}$, if one prefers, but since $\cos (-\phi)=\cos \phi$, the sign of the angle is not a concern).

$$
\begin{aligned}
K_{0}+U_{0} & =K_{h}+U_{h} \\
\frac{1}{2} m v_{0}^{2}+m g L\left(1-\cos \theta_{0}\right) & =0+m g L
\end{aligned}
$$

which leads to

$$
v_{0}=\sqrt{2 g L \cos \theta_{0}}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.25 \mathrm{~m}) \cos 40^{\circ}}=4.33 \mathrm{~m} / \mathrm{s} .
$$

(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) equal to gravitational force:

$$
\frac{m v_{t}^{2}}{r}=m g \Rightarrow m v_{t}^{2}=m g L
$$

where we recognize that $r=L$. We plug this into the expression for the kinetic energy (at the top, where $\theta=180^{\circ}$).

$$
\begin{aligned}
K_{0}+U_{0} & =K_{t}+U_{t} \\
\frac{1}{2} m v_{0}^{2}+m g L\left(1-\cos \theta_{0}\right) & =\frac{1}{2} m v_{t}^{2}+m g\left(1-\cos 180^{\circ}\right) \\
\frac{1}{2} m v_{0}^{2}+m g L\left(1-\cos \theta_{0}\right) & =\frac{1}{2}(m g L)+m g(2 L)
\end{aligned}
$$

which leads to

$$
v_{0}=\sqrt{g L\left(3+2 \cos \theta_{0}\right)}=\sqrt{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.25 \mathrm{~m})\left(3+2 \cos 40^{\circ}\right)}=7.45 \mathrm{~m} / \mathrm{s} .
$$

(d) The more initial potential energy there is, the less initial kinetic energy there needs to be, in order to reach the positions described in parts (b) and (c). Increasing θ_{0} amounts to increasing U_{0}, so we see that a greater value of θ_{0} leads to smaller results for v_{0} in parts (b) and (c).
27. (a) Consider Fig. 8-7, taking the reference point for gravitational energy to be at the lowest point of the swing. Let θ be the angle measured from vertical (as shown in Fig. 8-29). Then the height y of the pendulum "bob" (the object at the end of the pendulum, which i this problem is the stone) is given by $L(1-\cos \theta)=y$. Hence, the gravitational potential energy is $m g y=m g L(1-\cos \theta)$. When $\theta=0^{\circ}$ (the string at its lowest point) we are told that its speed is $8.0 \mathrm{~m} / \mathrm{s}$; its kinetic energy there is therefore 64 J (using Eq. $7-1)$. At $\theta=60^{\circ}$ its mechanical energy is

$$
E_{\mathrm{mech}}=\frac{1}{2} m v^{2}+m g L(1-\cos \theta)
$$

Energy conservation (since there is no friction) requires that this be equal to 64 J . Solving for the speed, we find $v=5.0 \mathrm{~m} / \mathrm{s}$.
(b) We now set the above expression again equal to 64 J (with θ being the unknown) but with zero speed (which gives the condition for the maximum point, or "turning point" that it reaches). This leads to $\theta_{\max }=79^{\circ}$.
(c) As observed in our solution to part (a), the total mechanical energy is 64 J .
28. We convert to SI units and choose upward as the $+y$ direction. Also, the relaxed position of the top end of the spring is the origin, so the initial compression of the spring (defining an equilibrium situation between the spring force and the force of gravity) is y_{0} $=-0.100 \mathrm{~m}$ and the additional compression brings it to the position $y_{1}=-0.400 \mathrm{~m}$.
(a) When the stone is in the equilibrium $(a=0)$ position, Newton's second law becomes

$$
\begin{aligned}
\vec{F}_{\text {net }} & =m a \\
F_{\text {spring }}-m g & =0 \\
-k(-0.100)-(8.00)(9.8) & =0
\end{aligned}
$$

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to $k=$ 784 N/m.
(b) With the additional compression (and release) the acceleration is no longer zero, and the stone will start moving upwards, turning some of its elastic potential energy (stored in the spring) into kinetic energy. The amount of elastic potential energy at the moment of release is, using Eq. 8-11,

$$
U=\frac{1}{2} k y_{1}^{2}=\frac{1}{2}(784)(-0.400)^{2}=62.7 \mathrm{~J} .
$$

(c) Its maximum height y_{2} is beyond the point that the stone separates from the spring (entering free-fall motion). As usual, it is characterized by having (momentarily) zero speed. If we choose the y_{1} position as the reference position in computing the gravitational potential energy, then

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
0+\frac{1}{2} k y_{1}^{2} & =0+m g h
\end{aligned}
$$

where $h=y_{2}-y_{1}$ is the height above the release point. Thus, $m g h$ (the gravitational potential energy) is seen to be equal to the previous answer, 62.7 J , and we proceed with the solution in the next part.
(d) We find $h=k y_{1}^{2} / 2 m g=0.800 \mathrm{~m}$, or 80.0 cm .
29. We refer to its starting point as A, the point where it first comes into contact with the spring as B, and the point where the spring is compressed $|x|=0.055 \mathrm{~m}$ as C. Point C is our reference point for computing gravitational potential energy. Elastic potential energy (of the spring) is zero when the spring is relaxed. Information given in the second sentence allows us to compute the spring constant. From Hooke's law, we find

$$
k=\frac{F}{x}=\frac{270 \mathrm{~N}}{0.02 \mathrm{~m}}=1.35 \times 10^{4} \mathrm{~N} / \mathrm{m} .
$$

(a) The distance between points A and B is \vec{F}_{g} and we note that the total sliding distance $\ell+|x|$ is related to the initial height h of the block (measured relative to C) by

$$
\frac{h}{\ell+|x|}=\sin \theta
$$

where the incline angle θ is 30°. Mechanical energy conservation leads to

$$
\begin{aligned}
K_{A}+U_{A} & =K_{C}+U_{C} \\
0+m g h & =0+\frac{1}{2} k x^{2}
\end{aligned}
$$

which yields

$$
h=\frac{k x^{2}}{2 m g}=\frac{\left(1.35 \times 10^{4} \mathrm{~N} / \mathrm{m}\right)(0.055 \mathrm{~m})^{2}}{2(12 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.174 \mathrm{~m}
$$

Therefore,

$$
\ell+|x|=\frac{h}{\sin 30^{\circ}}=\frac{0.174 \mathrm{~m}}{\sin 30^{\circ}}=0.35 \mathrm{~m}
$$

(b) From this result, we find $\ell=0.35-0.055=0.29 \mathrm{~m}$, which means that $\Delta y=-\ell \sin \theta=-0.15 \mathrm{~m}$ in sliding from point A to point B. Thus, Eq. $8-18$ gives

$$
\begin{aligned}
\Delta K+\Delta U & =0 \\
\frac{1}{2} m v_{B}^{2}+m g \Delta h & =0
\end{aligned}
$$

which yields $v_{B}=\sqrt{-2 g \Delta h}=\sqrt{-(9.8)(-0.15)}=1.7 \mathrm{~m} / \mathrm{s}$.
30. All heights h are measured from the lower end of the incline (which is our reference position for computing gravitational potential energy $m g h$). Our x axis is along the incline, with $+x$ being uphill (so spring compression corresponds to $x>0$) and its origin being at the relaxed end of the spring. The height that corresponds to the canister's initial position (with spring compressed amount $x=0.200 \mathrm{~m}$) is given by $h_{1}=(D+x) \sin \theta$, where $\theta=37^{\circ}$.
(a) Energy conservation leads to

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
0+m g(D+x) \sin \theta+\frac{1}{2} k x^{2} & =\frac{1}{2} m v_{2}^{2}+m g D \sin \theta
\end{aligned}
$$

which yields, using the data $m=2.00 \mathrm{~kg}$ and $k=170 \mathrm{~N} / \mathrm{m}$,

$$
v_{2}=\sqrt{2 g x \sin \theta+k x^{2} / m}=2.40 \mathrm{~m} / \mathrm{s}
$$

(b) In this case, energy conservation leads to

$$
\begin{aligned}
K_{1}+U_{1} & =K_{3}+U_{3} \\
0+m g(D+x) \sin \theta+\frac{1}{2} k x^{2} & =\frac{1}{2} m v_{3}^{2}+0
\end{aligned}
$$

which yields $v_{3}=\sqrt{2 g(D+x) \sin \theta+k x^{2} / m}=4.19 \mathrm{~m} / \mathrm{s}$.
31. The reference point for the gravitational potential energy U_{g} (and height h) is at the block when the spring is maximally compressed. When the block is moving to its highest point, it is first accelerated by the spring; later, it separates from the spring and finally reaches a point where its speed v_{f} is (momentarily) zero. The x axis is along the incline, pointing uphill (so x_{0} for the initial compression is negative-valued); its origin is at the relaxed position of the spring. We use SI units, so $k=1960 \mathrm{~N} / \mathrm{m}$ and $x_{0}=-0.200 \mathrm{~m}$.
(a) The elastic potential energy is $\frac{1}{2} k x_{0}^{2}=39.2 \mathrm{~J}$.
(b) Since initially $U_{g}=0$, the change in U_{g} is the same as its final value $m g h$ where $m=$ 2.00 kg . That this must equal the result in part (a) is made clear in the steps shown in the next part. Thus, $\Delta U_{g}=U_{g}=39.2 \mathrm{~J}$.
(c) The principle of mechanical energy conservation leads to

$$
\begin{aligned}
K_{0}+U_{0} & =K_{f}+U_{f} \\
0+\frac{1}{2} k x_{0}^{2} & =0+m g h
\end{aligned}
$$

which yields $h=2.00 \mathrm{~m}$. The problem asks for the distance along the incline, so we have $d=h / \sin 30^{\circ}=4.00 \mathrm{~m}$.
32. We take the original height of the box to be the $y=0$ reference level and observe that, in general, the height of the box (when the box has moved a distance d downhill) is $y=-d \sin 40^{\circ}$.
(a) Using the conservation of energy, we have

$$
K_{i}+U_{i}=K+U \Rightarrow 0+0=\frac{1}{2} m v^{2}+m g y+\frac{1}{2} k d^{2} .
$$

Therefore, with $d=0.10 \mathrm{~m}$, we obtain $v=0.81 \mathrm{~m} / \mathrm{s}$.
(b) We look for a value of $d \neq 0$ such that $K=0$.

$$
K_{i}+U_{i}=K+U \Rightarrow 0+0=0+m g y+\frac{1}{2} k d^{2} .
$$

Thus, we obtain $m g d \sin 40^{\circ}=\frac{1}{2} k d^{2}$ and find $d=0.21 \mathrm{~m}$.
(c) The uphill force is caused by the spring (Hooke's law) and has magnitude $k d=25.2 \mathrm{~N}$. The downhill force is the component of gravity $m g \sin 40^{\circ}=12.6 \mathrm{~N}$. Thus, the net force on the box is $(25.2-12.6) \mathrm{N}=12.6 \mathrm{~N}$ uphill, with $a=F / m=12.6 / 2.0=6.3 \mathrm{~m} / \mathrm{s}^{2}$.
(d) The acceleration is up the incline.
33. From the slope of the graph, we find the spring constant

$$
k=\frac{\Delta F}{\Delta x}=0.10 \mathrm{~N} / \mathrm{cm}=10 \mathrm{~N} / \mathrm{m}
$$

(a) Equating the potential energy of the compressed spring to the kinetic energy of the cork at the moment of release, we have

$$
\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} \Rightarrow v=x \sqrt{\frac{k}{m}}
$$

which yields $v=2.8 \mathrm{~m} / \mathrm{s}$ for $m=0.0038 \mathrm{~kg}$ and $x=0.055 \mathrm{~m}$.
(b) The new scenario involves some potential energy at the moment of release. With $d=$ 0.015 m , energy conservation becomes

$$
\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} k d^{2} \Rightarrow v=\sqrt{\frac{k}{m}\left(x^{2}-d^{2}\right)}
$$

which yields $v=2.7 \mathrm{~m} / \mathrm{s}$.
34. The distance the marble travels is determined by its initial speed (and the methods of Chapter 4), and the initial speed is determined (using energy conservation) by the original compression of the spring. We denote h as the height of the table, and x as the horizontal distance to the point where the marble lands. Then $x=v_{0} t$ and $h=\frac{1}{2} g t^{2}$ (since the vertical component of the marble's "launch velocity" is zero). From these we find $x=v_{0} \sqrt{2 h / g}$. We note from this that the distance to the landing point is directly proportional to the initial speed. We denote v_{01} be the initial speed of the first shot and D_{1} $=(2.20-0.27)=1.93 \mathrm{~m}$ be the horizontal distance to its landing point; similarly, v_{02} is the initial speed of the second shot and $D=2.20 \mathrm{~m}$ is the horizontal distance to its landing spot. Then

$$
\frac{v_{02}}{v_{01}}=\frac{D}{D_{1}} \Rightarrow v_{02}=\frac{D}{D_{1}} v_{01}
$$

When the spring is compressed an amount ℓ, the elastic potential energy is $\frac{1}{2} k \ell^{2}$. When the marble leaves the spring its kinetic energy is $\frac{1}{2} m v_{0}^{2}$. Mechanical energy is conserved: $\frac{1}{2} m v_{0}^{2}=\frac{1}{2} k \ell^{2}$, and we see that the initial speed of the marble is directly proportional to the original compression of the spring. If ℓ_{1} is the compression for the first shot and ℓ_{2} is the compression for the second, then $v_{02}=\left(\ell_{2} / \ell_{1}\right) v_{01}$. Relating this to the previous result, we obtain

$$
\ell_{2}=\frac{D}{D_{1}} \ell_{1}=\left(\frac{2.20 \mathrm{~m}}{1.93 \mathrm{~m}}\right)(1.10 \mathrm{~cm})=1.25 \mathrm{~cm}
$$

35. Consider a differential element of length $\mathrm{d} x$ at a distance x from one end (the end which remains stuck) of the cord. As the cord turns vertical, its change in potential energy is given by

$$
d U=-(\lambda d x) g x
$$

where $\lambda=m / h$ is the mass/unit length and the negative sign indicates that the potential energy decreases. Integrating over the entire length, we obtain the total change in the potential energy:

$$
\Delta U=\int d U=-\int_{0}^{h} \lambda g x d x=-\frac{1}{2} \lambda g h^{2}=-\frac{1}{2} m g h .
$$

With $m=15 \mathrm{~g}$ and $h=25 \mathrm{~cm}$, we have $\Delta U=-0.018 \mathrm{~J}$.
36. The free-body diagram for the boy is shown below. \vec{F}_{N} is the normal force of the ice on him and m is his mass. The net inward force is $m g \cos \theta-F_{N}$ and, according to Newton's second law, this must be equal to $m v^{2} / R$, where v is the speed of the boy. At the point where the boy leaves the ice $F_{N}=0$, so $g \cos \theta=v^{2} / R$. We wish to find his speed. If the gravitational potential energy is taken to be zero when he is at the top of the ice mound, then his potential energy at the time shown is

$$
U=-m g R(1-\cos \theta) .
$$

He starts from rest and his kinetic energy at the time shown is $\frac{1}{2} m v^{2}$. Thus conservation of energy gives

$$
0=\frac{1}{2} m v^{2}-m g R(1-\cos \theta),
$$

or $v^{2}=2 g R(1-\cos \theta)$. We substitute this expression into the equation developed from the second law to obtain $g \cos \theta=2 g(1-\cos \theta)$. This gives $\cos \theta=2 / 3$. The height of the boy above the bottom of the mound is

$$
h=R \cos \theta=2 R / 3=2(13.8 \mathrm{~m}) / 3=9.20 \mathrm{~m} .
$$

37. From Fig. 8-48, we see that at $x=4.5 \mathrm{~m}$, the potential energy is $U_{1}=15 \mathrm{~J}$. If the speed is $v=7.0 \mathrm{~m} / \mathrm{s}$, then the kinetic energy is $K_{1}=m v^{2} / 2=(0.90 \mathrm{~kg})(7.0 \mathrm{~m} / \mathrm{s})^{2} / 2=22 \mathrm{~J}$. The total energy is $E_{1}=U_{1}+K_{1}=(15+22)=37 \mathrm{~J}$.
(a) At $x=1.0 \mathrm{~m}$, the potential energy is $U_{2}=35 \mathrm{~J}$. From energy conservation, we have $K_{2}=2.0 \mathrm{~J}>0$. This means that the particle can reach there with a corresponding speed

$$
v_{2}=\sqrt{\frac{2 K_{2}}{m}}=\sqrt{\frac{2(2.0 \mathrm{~J})}{0.90 \mathrm{~kg}}}=2.1 \mathrm{~m} / \mathrm{s} .
$$

(b) The force acting on the particle is related to the potential energy by the negative of the slope:

$$
F_{x}=-\frac{\Delta U}{\Delta x}
$$

From the figure we have $F_{x}=-\frac{35-15}{2-4}=+10 \mathrm{~N}$.
(c) Since the magnitude $F_{x}>0$, the force points in the $+x$ direction.
(d) At $x=7.0 \mathrm{~m}$, the potential energy is $U_{3}=45 \mathrm{~J}$ which exceeds the initial total energy E_{1}. Thus, the particle can never reach there. At the turning point, the kinetic energy is zero. Between $x=5$ and 6 m , the potential energy is given by

$$
U(x)=15+30(x-5), \quad 5 \leq x \leq 6
$$

Thus, the turning point is found by solving $37=15+30(x-5)$, which yields $x=5.7 \mathrm{~m}$.
(e) At $x=5.0 \mathrm{~m}$, the force acting on the particle is

$$
F_{x}=-\frac{\Delta U}{\Delta x}=-\frac{(45-15) \mathrm{J}}{(6-5) \mathrm{m}}=-30 \mathrm{~N}
$$

The magnitude is $\left|F_{x}\right|=30 \mathrm{~N}$.
(f) The fact that $F_{x}<0$ indicated that the force points in the $-x$ direction.
38. (a) The force at the equilibrium position $r=r_{\mathrm{eq}}$ is

$$
F=-\left.\frac{d U}{d r}\right|_{r=r_{\mathrm{eq}}}=0 \Rightarrow-\frac{12 A}{r_{\mathrm{eq}}^{13}}+\frac{6 B}{r_{\mathrm{eq}}^{7}}=0
$$

which leads to the result

$$
r_{\mathrm{eq}}=\left(\frac{2 A}{B}\right)^{\frac{1}{6}}=1.12\left(\frac{A}{B}\right)^{\frac{1}{6}} .
$$

(b) This defines a minimum in the potential energy curve (as can be verified either by a graph or by taking another derivative and verifying that it is concave upward at this point), which means that for values of r slightly smaller than $r_{\text {eq }}$ the slope of the curve is negative (so the force is positive, repulsive).
(c) And for values of r slightly larger than $r_{\text {eq }}$ the slope of the curve must be positive (so the force is negative, attractive).
39. (a) The energy at $x=5.0 \mathrm{~m}$ is $E=K+U=2.0-5.7=-3.7 \mathrm{~J}$.
(b) A plot of the potential energy curve (SI units understood) and the energy E (the horizontal line) is shown for $0 \leq x \leq 10 \mathrm{~m}$.

(c) The problem asks for a graphical determination of the turning points, which are the points on the curve corresponding to the total energy computed in part (a). The result for the smallest turning point (determined, to be honest, by more careful means) is $x=1.3 \mathrm{~m}$.
(d) And the result for the largest turning point is $x=9.1 \mathrm{~m}$.
(e) Since $K=E-U$, then maximizing K involves finding the minimum of U. A graphical determination suggests that this occurs at $x=4.0 \mathrm{~m}$, which plugs into the expression $E-U=-3.7-\left(-4 x e^{-x / 4}\right)$ to give $K=2.16 \mathrm{~J} \approx 2.2 \mathrm{~J}$. Alternatively, one can measure from the graph from the minimum of the U curve up to the level representing the total energy E and thereby obtain an estimate of K at that point.
(f) As mentioned in the previous part, the minimum of the U curve occurs at $x=4.0 \mathrm{~m}$.
(g) The force (understood to be in newtons) follows from the potential energy, using Eq. 8-20 (and Appendix E if students are unfamiliar with such derivatives).

$$
F=\frac{d U}{d x}=(4-x) e^{-x / 4}
$$

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the minimum of $U(x)$) - but now with the advantage of having the analytic result of part (g). We see that the location which produces $F=0$ is exactly $x=4.0 \mathrm{~m}$.
40. (a) Using Eq. 7-8, we have

$$
W_{\text {applied }}=(8.0 \mathrm{~N})(0.70 \mathrm{~m})=5.6 \mathrm{~J} .
$$

(b) Using Eq. 8-31, the thermal energy generated is

$$
\Delta E_{\mathrm{th}}=f_{k} d=(5.0 \mathrm{~N})(0.70 \mathrm{~m})=3.5 \mathrm{~J} .
$$

41. Since the velocity is constant, $\vec{a}=0$ and the horizontal component of the worker's push $F \cos \theta$ (where $\theta=32^{\circ}$) must equal the friction force magnitude $f_{k}=\mu_{k} F_{N}$. Also, the vertical forces must cancel, implying

$$
W_{\text {applied }}=(8.0 \mathrm{~N})(0.70 \mathrm{~m})=5.6 \mathrm{~J}
$$

which is solved to find $F=71 \mathrm{~N}$.
(a) The work done on the block by the worker is, using Eq. 7-7,

$$
W=F d \cos \theta=(71 \mathrm{~N})(9.2 \mathrm{~m}) \cos 32^{\circ}=5.6 \times 10^{2} \mathrm{~J}
$$

(b) Since $f_{k}=\mu_{k}(m g+F \sin \theta)$, we find $\Delta E_{\mathrm{th}}=f_{k} d=(60 \mathrm{~N})(9.2 \mathrm{~m})=5.6 \times 10^{2} \mathrm{~J}$.
42. (a) The work is $W=F d=(35 \mathrm{~N})(3 \mathrm{~m})=105 \mathrm{~J}$.
(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 6-2)

$$
\Delta E_{\mathrm{th}}=\mu_{k} m g d=(0.6)(4 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m})=70.6 \mathrm{~J} .
$$

If 40 J has gone to the block then $(70.6-40) \mathrm{J}=30.6 \mathrm{~J}$ has gone to the floor.
(c) Much of the work (105 J) has been "wasted" due to the 70.6 J of thermal energy generated, but there still remains $(105-70.6) \mathrm{J}=34.4 \mathrm{~J}$ which has gone into increasing the kinetic energy of the block. (It has not gone into increasing the potential energy of the block because the floor is presumed to be horizontal.)
43. (a) The work done on the block by the force in the rope is, using Eq. 7-7,

$$
W=F d \cos \theta=(7.68 \mathrm{~N})(4.06 \mathrm{~m}) \cos 15.0^{\circ}=30.1 \mathrm{~J}
$$

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the increase in thermal energy is

$$
\Delta E_{\mathrm{th}}=f d=(7.42 \mathrm{~N})(4.06 \mathrm{~m})=30.1 \mathrm{~J}
$$

(c) We can use Newton's second law of motion to obtain the frictional and normal forces, then use $\mu_{k}=f / F_{N}$ to obtain the coefficient of friction. Place the x axis along the path of the block and the y axis normal to the floor. The x and the y component of Newton's second law are

$$
\begin{array}{rrr}
x: & F \cos \theta-f=0 \\
y: & F_{N}+F \sin \theta-m g=0,
\end{array}
$$

where m is the mass of the block, F is the force exerted by the rope, and θ is the angle between that force and the horizontal. The first equation gives

$$
f=F \cos \theta=(7.68) \cos 15.0^{\circ}=7.42 \mathrm{~N}
$$

and the second gives

$$
F_{N}=m g-F \sin \theta=(3.57)(9.8)-(7.68) \sin 15.0^{\circ}=33.0 \mathrm{~N} .
$$

Thus

$$
\mu_{k}=\frac{f}{F_{N}}=\frac{7.42 \mathrm{~N}}{33.0 \mathrm{~N}}=0.225 .
$$

44. Equation 8-33 provides $\Delta E_{\mathrm{th}}=-\Delta E_{\mathrm{mec}}$ for the energy "lost" in the sense of this problem. Thus,

$$
\begin{aligned}
\Delta E_{\mathrm{th}} & =\frac{1}{2} m\left(v_{i}^{2}-v_{f}^{2}\right)+m g\left(y_{i}-y_{f}\right)=\frac{1}{2}(60)\left(24^{2}-22^{2}\right)+(60)(9.8)(14) \\
& =1.1 \times 10^{4} \mathrm{~J} .
\end{aligned}
$$

That the angle of 25° is nowhere used in this calculation is indicative of the fact that energy is a scalar quantity.
45. (a) We take the initial gravitational potential energy to be $U_{i}=0$. Then the final gravitational potential energy is $U_{f}=-m g L$, where L is the length of the tree. The change is

$$
U_{f}-U_{i}=-m g L=-(25 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})=-2.9 \times 10^{3} \mathrm{~J}
$$

(b) The kinetic energy is $K=\frac{1}{2} m v^{2}=\frac{1}{2}(25 \mathrm{~kg})(5.6 \mathrm{~m} / \mathrm{s})^{2}=3.9 \times 10^{2} \mathrm{~J}$.
(c) The changes in the mechanical and thermal energies must sum to zero. The change in thermal energy is $\Delta E_{\mathrm{th}}=f L$, where f is the magnitude of the average frictional force; therefore,

$$
f=-\frac{\Delta K+\Delta U}{L}=-\frac{3.9 \times 10^{2} \mathrm{~J}-2.9 \times 10^{3} \mathrm{~J}}{12 \mathrm{~m}}=2.1 \times 10^{2} \mathrm{~N}
$$

46. We use SI units so $m=0.075 \mathrm{~kg}$. Equation $8-33$ provides $\Delta E_{\mathrm{th}}=-\Delta E_{\mathrm{mec}}$ for the energy "lost" in the sense of this problem. Thus,

$$
\begin{aligned}
\Delta E_{\mathrm{th}} & =\frac{1}{2} m\left(v_{i}^{2}-v_{f}^{2}\right)+m g\left(y_{i}-y_{f}\right)=\frac{1}{2}(0.075)\left(12^{2}-10.5^{2}\right)+(0.075)(9.8)(1.1-2.1) \\
& =0.53 \mathrm{~J} .
\end{aligned}
$$

47. We work this using the English units (with $g=32 \mathrm{ft} / \mathrm{s}$), but for consistency we convert the weight to pounds

$$
m g=(9.0) \mathrm{oz}\left(\frac{11 \mathrm{~b}}{16 \mathrm{oz}}\right)=0.56 \mathrm{lb}
$$

which implies $m=0.018 \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$ (which can be phrased as 0.018 slug as explained in Appendix D). And we convert the initial speed to feet-per-second

$$
v_{i}=(81.8 \mathrm{mi} / \mathrm{h})\left(\frac{5280 \mathrm{ft} / \mathrm{mi}}{3600 \mathrm{~s} / \mathrm{h}}\right)=120 \mathrm{ft} / \mathrm{s}
$$

or a more "direct" conversion from Appendix D can be used. Equation 8-30 provides $\Delta E_{\mathrm{th}}=-\Delta E_{\mathrm{mec}}$ for the energy "lost" in the sense of this problem. Thus,

$$
\Delta E_{\mathrm{th}}=\frac{1}{2} m\left(v_{i}^{2}-v_{f}^{2}\right)+m g\left(y_{i}-y_{f}\right)=\frac{1}{2}(0.018)\left(120^{2}-110^{2}\right)+0=20 \mathrm{ft} \cdot \mathrm{lb} .
$$

48. (a) The initial potential energy is

$$
U_{i}=m g y_{i}=(520 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(300 \mathrm{~m})=1.53 \times 10^{6} \mathrm{~J}
$$

where $+y$ is upward and $y=0$ at the bottom (so that $U_{f}=0$).
(b) Since $f_{k}=\mu_{k} F_{N}=\mu_{k} m g \cos \theta$ we have $\Delta E_{\text {th }}=f_{k} d=\mu_{k} m g d \cos \theta$ from Eq. 8-31. Now, the hillside surface (of length $d=500 \mathrm{~m}$) is treated as an hypotenuse of a 3-4-5 triangle, so $\cos \theta=x / d$ where $x=400 \mathrm{~m}$. Therefore,

$$
\Delta E_{\mathrm{th}}=\mu_{k} m g d \frac{x}{d}=\mu_{k} m g x=(0.25)(520)(9.8)(400)=5.1 \times 10^{5} \mathrm{~J} .
$$

(c) Using Eq. 8-31 (with $W=0$) we find

$$
\begin{aligned}
K_{f} & =K_{i}+U_{i}-U_{f}-\Delta E_{\mathrm{th}} \\
& =0+1.53 \times 10^{6}-0-5.1 \times 10^{5} \\
& =0+1.02 \times 10^{6} \mathrm{~J} .
\end{aligned}
$$

(d) From $K_{f}=\frac{1}{2} m v^{2}$ we obtain $v=63 \mathrm{~m} / \mathrm{s}$.
49. We use Eq. 8-31

$$
\Delta E_{\mathrm{th}}=f_{k} d=(10 \mathrm{~N})(5.0 \mathrm{~m})=50 \mathrm{~J} .
$$

and Eq. 7-8

$$
W=F d=(2.0 \mathrm{~N})(5.0 \mathrm{~m})=10 \mathrm{~J} .
$$

and Eq. 8-31

$$
\begin{aligned}
& W=\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\
& 10=35+\Delta U+50
\end{aligned}
$$

which yields $\Delta U=-75 \mathrm{~J}$. By Eq. $8-1$, then, the work done by gravity is $W=-\Delta U=75 \mathrm{~J}$.
50. Since the valley is frictionless, the only reason for the speed being less when it reaches the higher level is the gain in potential energy $\Delta U=m g h$ where $h=1.1 \mathrm{~m}$. Sliding along the rough surface of the higher level, the block finally stops since its remaining kinetic energy has turned to thermal energy $\Delta E_{\mathrm{th}}=f_{k} d=\mu m g d$, where $\mu=0.60$. Thus, Eq. 8-33 (with $W=0$) provides us with an equation to solve for the distance d :

$$
K_{i}=\Delta U+\Delta E_{\mathrm{th}}=m g(h+\mu d)
$$

where $K_{i}=\frac{1}{2} m v_{i}^{2}$ and $v_{i}=6.0 \mathrm{~m} / \mathrm{s}$. Dividing by mass and rearranging, we obtain

$$
d=\frac{v_{i}^{2}}{2 \mu g}-\frac{h}{\mu}=1.2 \mathrm{~m} .
$$

51. (a) The vertical forces acting on the block are the normal force, upward, and the force of gravity, downward. Since the vertical component of the block's acceleration is zero, Newton's second law requires $F_{N}=m g$, where m is the mass of the block. Thus $f=\mu_{k} F_{N}$ $=\mu_{k} m g$. The increase in thermal energy is given by $\Delta E_{\mathrm{th}}=f d=\mu_{k} m g D$, where D is the distance the block moves before coming to rest. Using Eq. 8-29, we have

$$
\Delta E_{\mathrm{th}}=(0.25)(3.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(7.8 \mathrm{~m})=67 \mathrm{~J}
$$

(b) The block has its maximum kinetic energy $K_{\max }$ just as it leaves the spring and enters the region where friction acts. Therefore, the maximum kinetic energy equals the thermal energy generated in bringing the block back to rest, 67 J .
(c) The energy that appears as kinetic energy is originally in the form of potential energy in the compressed spring. Thus, $K_{\max }=U_{i}=\frac{1}{2} k x^{2}$, where k is the spring constant and x is the compression. Thus,

$$
x=\sqrt{\frac{2 K_{\max }}{k}}=\sqrt{\frac{2(67 \mathrm{~J})}{640 \mathrm{~N} / \mathrm{m}}}=0.46 \mathrm{~m} .
$$

52. Energy conservation, as expressed by Eq. 8-33 (with $W=0$) leads to

$$
\begin{aligned}
\Delta E_{\mathrm{th}} & =K_{i}-K_{f}+U_{i}-U_{f} \Rightarrow \quad f_{k} d=0-0+\frac{1}{2} k x^{2}-0 \\
& \Rightarrow \mu_{k} m g d=\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(0.15 \mathrm{~m})^{2} \Rightarrow \mu_{k}(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.75 \mathrm{~m})=2.25 \mathrm{~J}
\end{aligned}
$$

which yields $\mu_{k}=0.15$ as the coefficient of kinetic friction.
53. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in the textbook. We apply equation $8-31, \Delta E_{\text {th }}=f_{k} d$, and relate initial kinetic energy K_{i} to the "resting" potential energy U_{r} :

$$
K_{i}+U_{i}=f_{k} d+K_{r}+U_{r} \Rightarrow 20.0+0=f_{k} d+0+\frac{1}{2} k d^{2}
$$

where $f_{k}=10.0 \mathrm{~N}$ and $k=400 \mathrm{~N} / \mathrm{m}$. We solve the equation for d using the quadratic formula or by using the polynomial solver on an appropriate calculator, with $d=0.292 \mathrm{~m}$ being the only positive root.
(b) We apply equation 8-31 again and relate U_{r} to the "second" kinetic energy K_{s} it has at the unstretched position.

$$
K_{r}+U_{r}=f_{k} d+K_{s}+U_{s} \Rightarrow \frac{1}{2} k d^{2}=f_{k} d+K_{s}+0
$$

Using the result from part (a), this yields $K_{s}=14.2 \mathrm{~J}$.
54. We look for the distance along the incline d which is related to the height ascended by $\Delta h=d \sin \theta$. By a force analysis of the style done in Ch .6 , we find the normal force has magnitude $F_{N}=m g \cos \theta$ which means $f_{k}=\mu_{k} m g \cos \theta$. Thus, Eq. 8-33 (with $W=0$) leads to

$$
\begin{aligned}
0 & =K_{f}-K_{i}+\Delta U+\Delta E_{\mathrm{th}} \\
& =0-K_{i}+m g d \sin \theta+\mu_{k} m g d \cos \theta
\end{aligned}
$$

which leads to

$$
d=\frac{K_{i}}{m g\left(\sin \theta+\mu_{k} \cos \theta\right)}=\frac{128}{(4.0)(9.8)\left(\sin 30^{\circ}+0.30 \cos 30^{\circ}\right)}=4.3 \mathrm{~m} .
$$

55. (a) Using the force analysis shown in Chapter 6, we find the normal force $F_{N}=m g \cos \theta \quad($ where $m g=267 \mathrm{~N})$ which means $f_{k}=\mu_{k} F_{N}=\mu_{k} m g \cos \theta$. Thus, Eq. 8-31 yields

$$
\Delta E_{\mathrm{th}}=f_{k} d=\mu_{k} m g d \cos \theta=(0.10)(267)(6.1) \cos 20^{\circ}=1.5 \times 10^{2} \mathrm{~J} .
$$

(a) The potential energy change is

$$
\Delta U=m g(-d \sin \theta)=(267)\left(-6.1 \sin 20^{\circ}\right)=-5.6 \times 10^{2} \mathrm{~J}
$$

The initial kinetic energy is

$$
K_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2}\left(\frac{267 \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)\left(0.457 \mathrm{~m} / \mathrm{s}^{2}\right)=2.8 \mathrm{~J}
$$

Therefore, using Eq. 8-33 (with $W=0$), the final kinetic energy is

$$
K_{f}=K_{i}-\Delta U-\Delta E_{\mathrm{th}}=2.8-\left(-5.6 \times 10^{2}\right)-1.5 \times 10^{2}=4.1 \times 10^{2} \mathrm{~J} .
$$

Consequently, the final speed is $v_{f}=\sqrt{2 K_{f} / m}=5.5 \mathrm{~m} / \mathrm{s}$.
56. This can be worked entirely by the methods of Chapters $2-6$, but we will use energy methods in as many steps as possible.
(a) By a force analysis of the style done in Ch. 6, we find the normal force has magnitude $F_{N}=m g \cos \theta\left(\right.$ where $\left.\theta=40^{\circ}\right)$ which means $f_{k}=\mu_{k} F_{N}=\mu_{k} m g \cos \theta$ where $\mu_{k}=0.15$. Thus, Eq. 8-31 yields

$$
\Delta E_{\mathrm{th}}=f_{k} d=\mu_{k} m g d \cos \theta
$$

Also, elementary trigonometry leads us to conclude that $\Delta U=m g d \sin \theta$. Eq. 8-33 (with $W=0$ and $K_{f}=0$) provides an equation for determining d :

$$
\begin{aligned}
K_{i} & =\Delta U+\Delta E_{\mathrm{th}} \\
\frac{1}{2} m v_{i}^{2} & =m g d\left(\sin \theta+\mu_{k} \cos \theta\right)
\end{aligned}
$$

where $v_{i}=1.4 \mathrm{~m} / \mathrm{s}$. Dividing by mass and rearranging, we obtain

$$
d=\frac{v_{i}^{2}}{2 g\left(\sin \theta+\mu_{k} \cos \theta\right)}=0.13 \mathrm{~m} .
$$

(b) Now that we know where on the incline it stops $\left(d^{\prime}=0.13+0.55=0.68 \mathrm{~m}\right.$ from the bottom), we can use Eq. $8-33$ again (with $W=0$ and now with $K_{i}=0$) to describe the final kinetic energy (at the bottom):

$$
\begin{aligned}
K_{f} & =-\Delta U-\Delta E_{\mathrm{th}} \\
\frac{1}{2} m v^{2} & =m g d^{\prime}\left(\sin \theta-\mu_{k} \cos \theta\right)
\end{aligned}
$$

which - after dividing by the mass and rearranging - yields

$$
v=\sqrt{2 g d^{\prime}\left(\sin \theta-\mu_{k} \cos \theta\right)}=2.7 \mathrm{~m} / \mathrm{s} .
$$

(c) In part (a) it is clear that d increases if μ_{k} decreases - both mathematically (since it is a positive term in the denominator) and intuitively (less friction - less energy "lost"). In part (b), there are two terms in the expression for v which imply that it should increase if μ_{k} were smaller: the increased value of $d^{\prime}=d_{0}+d$ and that last factor $\sin \theta-\mu_{k} \cos \theta$ which indicates that less is being subtracted from $\sin \theta$ when μ_{k} is less (so the factor itself increases in value).
57. (a) With $x=0.075 \mathrm{~m}$ and $k=320 \mathrm{~N} / \mathrm{m}$, Eq. $7-26$ yields $W_{s}=-\frac{1}{2} k x^{2}=-0.90 \mathrm{~J}$. For later reference, this is equal to the negative of ΔU.
(b) Analyzing forces, we find $F_{N}=m g$ which means $f_{k}=\mu_{k} F_{N}=\mu_{k} m g$. With $d=x$, Eq. 8 -31 yields $\Delta E_{\mathrm{th}}=f_{k} d=\mu_{k} m g x=(0.25)(2.5)(9.8)(0.075)=0.46 \mathrm{~J}$.
(c) Eq. 8-33 (with $W=0$) indicates that the initial kinetic energy is

$$
K_{i}=\Delta U+\Delta E_{\mathrm{th}}=0.90+0.46=1.36 \mathrm{~J}
$$

which leads to $v_{i}=\sqrt{2 K_{i} / m}=1.0 \mathrm{~m} / \mathrm{s}$.
58. (a) The maximum height reached is h. The thermal energy generated by air resistance as the stone rises to this height is $\Delta E_{\text {th }}=f$ h by Eq. 8-31. We use energy conservation in the form of Eq. 8-33 (with $W=0$):

$$
K_{f}+U_{f}+\Delta E_{\mathrm{th}}=K_{i}+U_{i}
$$

and we take the potential energy to be zero at the throwing point (ground level). The initial kinetic energy is $K_{i}=\frac{1}{2} m v_{0}^{2}$, the initial potential energy is $U_{i}=0$, the final kinetic energy is $K_{f}=0$, and the final potential energy is $U_{f}=w h$, where $w=m g$ is the weight of the stone. Thus, $w h+f h=\frac{1}{2} m v_{0}^{2}$, and we solve for the height:

$$
h=\frac{m v_{0}^{2}}{2(w+f)}=\frac{v_{0}^{2}}{2 g(1+f / w)} .
$$

Numerically, we have, with $m=(5.29 \mathrm{~N}) /\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=0.54 \mathrm{~kg}$,

$$
h=\frac{(20.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1+0.265 / 5.29)}=19.4 \mathrm{~m} / \mathrm{s} .
$$

(b) We notice that the force of the air is downward on the trip up and upward on the trip down, since it is opposite to the direction of motion. Over the entire trip the increase in thermal energy is $\Delta E_{\mathrm{th}}=2 f h$. The final kinetic energy is $K_{f}=\frac{1}{2} m v^{2}$, where v is the speed of the stone just before it hits the ground. The final potential energy is $U_{f}=0$. Thus, using Eq. 8-31 (with $W=0$), we find

$$
\frac{1}{2} m v^{2}+2 f h=\frac{1}{2} m v_{0}^{2}
$$

We substitute the expression found for h to obtain

$$
\frac{2 f v_{0}^{2}}{2 g(1+f / w)}=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}
$$

which leads to

$$
v^{2}=v_{0}^{2}-\frac{2 f v_{0}^{2}}{m g(1+f / w)}=v_{0}^{2}-\frac{2 f v_{0}^{2}}{w(1+f / w)}=v_{0}^{2}\left(1-\frac{2 f}{w+f}\right)=v_{0}^{2} \frac{w-f}{w+f}
$$

where w was substituted for $m g$ and some algebraic manipulations were carried out. Therefore,

$$
v=v_{0} \sqrt{\frac{w-f}{w+f}}=(20.0 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{5.29-0.265}{5.29+0.265}}=19.0 \mathrm{~m} / \mathrm{s} .
$$

59. The initial and final kinetic energies are zero, and we set up energy conservation in the form of Eq. 8-33 (with $W=0$) according to our assumptions. Certainly, it can only come to a permanent stop somewhere in the flat part, but the question is whether this occurs during its first pass through (going rightward) or its second pass through (going leftward) or its third pass through (going rightward again), and so on. If it occurs during its first pass through, then the thermal energy generated is $\Delta E_{\mathrm{th}}=f_{k} d$ where $d \leq L$ and $f_{k}=\mu_{k} m g$. If it occurs during its second pass through, then the total thermal energy is $\Delta E_{\text {th }}=\mu_{k} m g(L+d)$ where we again use the symbol d for how far through the level area it goes during that last pass (so $0 \leq d \leq L$). Generalizing to the $n^{\text {th }}$ pass through, we see that

$$
\Delta E_{\mathrm{th}}=\mu_{k} m g[(n-1) L+d] .
$$

In this way, we have

$$
m g h=\mu_{k} m g((n-1) L+d)
$$

which simplifies (when $h=L / 2$ is inserted) to

$$
\frac{d}{L}=1+\frac{1}{2 \mu_{k}}-n .
$$

The first two terms give $1+1 / 2 \mu_{k}=3.5$, so that the requirement $0 \leq d / L \leq 1$ demands that $n=3$. We arrive at the conclusion that $d / L=\frac{1}{2}$, or

$$
d=\frac{1}{2} L=\frac{1}{2}(40 \mathrm{~cm})=20 \mathrm{~cm}
$$

and that this occurs on its third pass through the flat region.
60. In the absence of friction, we have a simple conversion (as it moves along the inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq. 8-9). Along the horizontal plateaus, however, there is friction which causes some of the kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where $\mu_{k}=$ 0.50 and $F_{N}=m g$ in this situation). Thus, after it slides down a (vertical) distance d it has gained $K=\frac{1}{2} m v^{2}=m g d$, some of which $\left(\Delta E_{\mathrm{th}}=\mu_{k} m g d\right)$ is dissipated, so that the value of kinetic energy at the end of the first plateau (just before it starts descending towards the lowest plateau) is $K=m g d-\mu_{k} m g d=0.5 m g d$. In its descent to the lowest plateau, it gains $m g d / 2$ more kinetic energy, but as it slides across it "loses" $\mu_{k} m g d / 2$ of it. Therefore, as it starts its climb up the right ramp, it has kinetic energy equal to

$$
K=0.5 m g d+m g d / 2-\mu_{k} m g d / 2=3 \mathrm{mgd} / 4
$$

Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get $H=3 / 4 d$. Thus, the block (momentarily) stops on the inclined ramp at the right, at a height of

$$
H=0.75 d=0.75(40 \mathrm{~cm})=30 \mathrm{~cm}
$$

measured from the lowest plateau.
61. We will refer to the point where it first encounters the "rough region" as point C (this is the point at a height h above the reference level). From Eq. 8-17, we find the speed it has at point C to be

$$
v_{C}=\sqrt{\mathrm{v}_{A}{ }^{2}-2 g h}=\sqrt{(8.0)^{2}-2(9.8)(2.0)}=4.980 \approx 5.0 \mathrm{~m} / \mathrm{s} .
$$

Thus, we see that its kinetic energy right at the beginning of its "rough slide" (heading uphill towards B) is $K_{\mathrm{C}}=\frac{1}{2} m(4.980)^{2}=12.4 m$ (with SI units understood). Note that we "carry along" the mass (as if it were a known quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with $F_{N}=m g \cos \theta$) and $y=d \sin \theta$, we note that if $d<L$ (the block does not reach point B), this kinetic energy will turn entirely into thermal (and potential) energy

$$
K_{\mathrm{C}}=m g y+f_{k} d \quad \Rightarrow \quad 12.4 m=m g d \sin \theta+\mu_{k} m g d \cos \theta .
$$

With $\mu_{k}=0.40$ and $\theta=30^{\circ}$, we find $d=1.49 \mathrm{~m}$, which is greater than L (given in the problem as 0.75 m), so our assumption that $d<L$ is incorrect. What is its kinetic energy as it reaches point B ? The calculation is similar to the above, but with d replaced by L and the final v^{2} term being the unknown (instead of assumed zero):

$$
\frac{1}{2} m v^{2}=K_{\mathrm{C}}-\left(m g L \sin \theta+\mu_{k} m g L \cos \theta\right)
$$

This determines the speed with which it arrives at point B :

$$
\begin{aligned}
v_{B} & =\sqrt{24.8-2 g L\left(\sin \theta+\mu_{k} \cos \theta\right)} \\
& =\sqrt{24.8-2(9.8)(0.75)\left(\sin 30^{\circ}+0.4 \cos 30^{\circ}\right)}=3.5 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

62. We observe that the last line of the problem indicates that static friction is not to be considered a factor in this problem. The friction force of magnitude $f=4400 \mathrm{~N}$ mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed upward), and the thermal energy change associated with it is $\Delta E_{\text {th }}=f d$ (Eq. 8-31) where d $=3.7 \mathrm{~m}$ in part (a) (but will be replaced by x, the spring compression, in part (b)).
(a) With $W=0$ and the reference level for computing $U=m g y$ set at the top of the (relaxed) spring, Eq. 8-33 leads to

$$
U_{i}=K+\Delta E_{\mathrm{th}} \Rightarrow v=\sqrt{2 d\left(g-\frac{f}{m}\right)}
$$

which yields $v=7.4 \mathrm{~m} / \mathrm{s}$ for $m=1800 \mathrm{~kg}$.
(b) We again utilize Eq. 8-33 (with $W=0$), now relating its kinetic energy at the moment it makes contact with the spring to the system energy at the bottom-most point. Using the same reference level for computing $U=m g y$ as we did in part (a), we end up with gravitational potential energy equal to $m g(-x)$ at that bottom-most point, where the spring (with spring constant $k=1.5 \times 10^{5} \mathrm{~N} / \mathrm{m}$) is fully compressed.

$$
K=m g(-x)+\frac{1}{2} k x^{2}+f x
$$

where $K=\frac{1}{2} m v^{2}=4.9 \times 10^{4} \mathrm{~J}$ using the speed found in part (a). Using the abbreviation $\xi=m g-f=1.3 \times 10^{4} \mathrm{~N}$, the quadratic formula yields

$$
x=\frac{\xi \pm \sqrt{\xi^{2}+2 k K}}{k}=0.90 \mathrm{~m}
$$

where we have taken the positive root.
(c) We relate the energy at the bottom-most point to that of the highest point of rebound (a distance d^{\prime} above the relaxed position of the spring). We assume $d^{\prime}>x$. We now use the bottom-most point as the reference level for computing gravitational potential energy.

$$
\frac{1}{2} k x^{2}=m g d^{\prime}+f d^{\prime} \Rightarrow d^{\prime}=\frac{k x^{2}}{2(m g+d)}=2.8 \mathrm{~m} .
$$

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is the one that keeps track of the total distance traveled (whereas the potential energy terms,
coming as they do from conservative forces, depend on positions - but not on the paths that led to them). We assume the elevator comes to final rest at the equilibrium position of the spring, with the spring compressed an amount $d_{\text {eq }}$ given by

$$
m g=k d_{\mathrm{eq}} \Rightarrow d_{\mathrm{eq}}=\frac{m g}{k}=0.12 \mathrm{~m} .
$$

In this part, we use that final-rest point as the reference level for computing gravitational potential energy, so the original $U=m g y$ becomes $m g\left(d_{\mathrm{eq}}+d\right)$. In that final position, then, the gravitational energy is zero and the spring energy is $\frac{1}{2} k d_{\mathrm{eq}}^{2}$. Thus, Eq. $8-33$ becomes

$$
\begin{aligned}
m g\left(d_{\mathrm{eq}}+d\right) & =\frac{1}{2} k d_{\mathrm{eq}}^{2}+f d_{\text {total }} \\
(1800)(9.8)(0.12+3.7) & =\frac{1}{2}\left(1.5 \times 10^{5}\right)(0.12)^{2}+(4400) d_{\mathrm{total}}
\end{aligned}
$$

which yields $d_{\text {total }}=15 \mathrm{~m}$.
63. (a) The (final) elastic potential energy is $\frac{1}{2} k x^{2}=\frac{1}{2}(431 \mathrm{~N} / \mathrm{m})(0.210 \mathrm{~m})^{2}=9.50 \mathrm{~J}$. Ultimately this must come from the original (gravitational) energy in the system mgy (where we are measuring y from the lowest "elevation" reached by the block, so $y=(d+$ $x) \sin \left(30^{\circ}\right)$. Thus,

$$
m g(d+x) \sin \left(30^{\circ}\right)=9.50 \mathrm{~J} \quad \Rightarrow \quad d=0.396 \mathrm{~m} .
$$

(b) The block is still accelerating (due to the component of gravity along the incline, $m g \sin \left(30^{\circ}\right)$) for a few moments after coming into contact with the spring (which exerts the Hooke's law force $k x$), until the Hooke's law force is strong enough to cause the block to being decelerating. This point is reached when

$$
k x=m g \sin 30^{\circ}
$$

which leads to $x=0.0364 \mathrm{~m}=3.64 \mathrm{~cm}$; this is long before the block finally stops (36.0 cm before it stops).
64. We use conservation of mechanical energy: the mechanical energy must be the same at the top of the swing as it is initially. Newton's second law is used to find the speed, and hence the kinetic energy, at the top. There the tension force T of the string and the force of gravity are both downward, toward the center of the circle. We notice that the radius of the circle is $r=L-d$, so the law can be written

$$
T+m g=m v^{2} /(L-d)
$$

where v is the speed and m is the mass of the ball. When the ball passes the highest point with the least possible speed, the tension is zero. Then

$$
m g=m \frac{v^{2}}{L-d} \Rightarrow v=\sqrt{g(L-d)}
$$

We take the gravitational potential energy of the ball-Earth system to be zero when the ball is at the bottom of its swing. Then the initial potential energy is $m g L$. The initial kinetic energy is zero since the ball starts from rest. The final potential energy, at the top of the swing, is $2 m g(L-d)$ and the final kinetic energy is $\frac{1}{2} m v^{2}=\frac{1}{2} m g(L-d)$ using the above result for v. Conservation of energy yields

$$
m g L=2 m g(L-d)+\frac{1}{2} m g(L-d) \Rightarrow d=3 L / 5
$$

With $L=1.20 \mathrm{~m}$, we have $d=0.60(1.20 \mathrm{~m})=0.72 \mathrm{~m}$.
Notice that if d is greater than this value, so the highest point is lower, then the speed of the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball cannot go around. Thus the value we found for d is a lower limit.
65. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the ground. A useful analogy is that of the pendulum of length $R=12 \mathrm{~m}$ that is pulled leftward to an angle θ (corresponding to being at the top of the slide at height $h=4.0 \mathrm{~m}$) and released so that the pendulum swings to the lowest point (zero height) gaining speed $v=6.2 \mathrm{~m} / \mathrm{s}$. Exactly as we would analyze the trigonometric relations in the pendulum problem, we find

$$
h=R(1-\cos \theta) \Rightarrow \theta=\cos ^{-1}\left(1-\frac{h}{R}\right)=48^{\circ}
$$

or 0.84 radians. The slide, representing a circular arc of length $s=R \theta$, is therefore $(12)(0.84)=10 \mathrm{~m}$ long.
(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with $W=0$):

$$
\begin{aligned}
0 & =\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\
& =\frac{1}{2} m v^{2}-m g h+f s
\end{aligned}
$$

so that (with $m=25 \mathrm{~kg}$) we obtain $f=49 \mathrm{~N}$.
(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of curvature). Returning to the pendulum analogy, this corresponds to releasing the pendulum from horizontal (at $\theta_{1}=90^{\circ}$ measured from vertical) and taking a snapshot of its motion a few moments later when it is at angle θ_{2} with speed $v=6.2 \mathrm{~m} / \mathrm{s}$. The difference in height between these two positions is (just as we would figure for the pendulum of length R)

$$
\Delta h=R\left(1-\cos \theta_{2}\right)-R\left(1-\cos \theta_{1}\right)=-R \cos \theta_{2}
$$

where we have used the fact that $\cos \theta_{1}=0$. Thus, with $\Delta h=-4.0 \mathrm{~m}$, we obtain $\theta_{2}=70.5^{\circ}$ which means the arc subtends an angle of $|\Delta \theta|=19.5^{\circ}$ or 0.34 radians. Multiplying this by the radius gives a slide length of $s^{\prime}=4.1 \mathrm{~m}$.
(d) We again find the magnitude f^{\prime} of the frictional force by using Eq. 8-31 (with $W=0$):

$$
\begin{aligned}
0 & =\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\
& =\frac{1}{2} m v^{2}-m g h+f^{\prime} s^{\prime}
\end{aligned}
$$

so that we obtain $f^{\prime}=1.2 \times 10^{2} \mathrm{~N}$.
66. (a) Since the speed of the crate of mass m increases from 0 to $1.20 \mathrm{~m} / \mathrm{s}$ relative to the factory ground, the kinetic energy supplied to it is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}(300 \mathrm{~kg})(120 \mathrm{~m} / \mathrm{s})^{2}=216 \mathrm{~J} .
$$

(b) The magnitude of the kinetic frictional force is

$$
f=\mu F_{N}=\mu m g=(0.400)(300 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.18 \times 10^{3} \mathrm{~N} .
$$

(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping be d, then from Eq. 2-16 $\left(v^{2}=2 a d=2(f / m) d\right)$ we find

$$
\Delta E_{\mathrm{th}}=f d=\frac{1}{2} m v^{2}=K
$$

Thus, the total energy that must be supplied by the motor is

$$
W=K+\Delta E_{\mathrm{th}}=2 K=(2)(216 \mathrm{~J})=432 \mathrm{~J} .
$$

(d) The energy supplied by the motor is the work W it does on the system, and must be greater than the kinetic energy gained by the crate computed in part (b). This is due to the fact that part of the energy supplied by the motor is being used to compensate for the energy dissipated $\Delta E_{\text {th }}$ while it was slipping.
67. There is the same potential energy change in both circumstances, so we can equate the kinetic energy changes as well:

$$
\Delta K_{2}=\Delta K_{1} \Rightarrow \frac{1}{2} m v_{B}^{2}-\frac{1}{2} m(4.00)^{2}=\frac{1}{2} m(2.60)^{2}-\frac{1}{2} m(2.00)^{2}
$$

which leads to $v_{B}=4.33 \mathrm{~m} / \mathrm{s}$.
68. We use SI units so $m=0.030 \mathrm{~kg}$ and $d=0.12 \mathrm{~m}$.
(a) Since there is no change in height (and we assume no changes in elastic potential energy), then $\Delta U=0$ and we have

$$
\Delta E_{\mathrm{mech}}=\Delta K=-\frac{1}{2} m v_{0}^{2}=-3.8 \times 10^{3} \mathrm{~J}
$$

where $v_{0}=500 \mathrm{~m} / \mathrm{s}$ and the final speed is zero.
(b) By Eq. 8-33 (with $W=0$) we have $\Delta E_{\text {th }}=3.8 \times 10^{3} \mathrm{~J}$, which implies

$$
f=\frac{\Delta E_{\mathrm{th}}}{d}=3.1 \times 10^{4} \mathrm{~N}
$$

using Eq. 8-31 with f_{k} replaced by f (effectively generalizing that equation to include a greater variety of dissipative forces than just those obeying Eq. 6-2).
69. The connection between angle θ (measured from vertical) and height h (measured from the lowest point, which is our choice of reference position in computing the gravitational potential energy $m g h)$ is given by $h=L(1-\cos \theta)$ where L is the length of the pendulum.
(a) Using this formula (or simply using intuition) we see the initial height is $h_{1}=2 L$, and of course $h_{2}=0$. We use energy conservation in the form of Eq. 8-17.

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
0+m g(2 L) & =\frac{1}{2} m v^{2}+0
\end{aligned}
$$

This leads to $v=2 \sqrt{g L}$. With $L=0.62 \mathrm{~m}$, we have

$$
v=2 \sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.62 \mathrm{~m})}=4.9 \mathrm{~m} / \mathrm{s}
$$

(b) The ball is in circular motion with the center of the circle above it, so $\vec{a}=v^{2} / r$ upward, where $r=L$. Newton's second law leads to

$$
T-m g=m \frac{v^{2}}{r} \Rightarrow T=m\left(g+\frac{4 g L}{L}\right)=5 m g .
$$

With $m=0.092 \mathrm{~kg}$, the tension is given by $T=4.5 \mathrm{~N}$.
(c) The pendulum is now started (with zero speed) at $\theta_{i}=90^{\circ}$ (that is, $h_{i}=L$), and we look for an angle θ such that $T=m g$. When the ball is moving through a point at angle θ, then Newton's second law applied to the axis along the rod yields

$$
T-m g \cos \theta=m \frac{v^{2}}{r}
$$

which (since $r=L$) implies $v^{2}=g L(1-\cos \theta)$ at the position we are looking for. Energy conservation leads to

$$
\begin{aligned}
K_{i}+U_{i} & =K+U \\
0+m g L & =\frac{1}{2} m v^{2}+m g L(1-\cos \theta) \\
g L & =\frac{1}{2}(g L(1-\cos \theta))+g L(1-\cos \theta)
\end{aligned}
$$

where we have divided by mass in the last step. Simplifying, we obtain

$$
\theta=\cos ^{-1}\left(\frac{1}{3}\right)=71^{\circ}
$$

(d) Since the angle found in (c) is independent of the mass, the result remains the same if the mass of the ball is changed.
70. The work required is the change in the gravitational potential energy as a result of the chain being pulled onto the table. Dividing the hanging chain into a large number of infinitesimal segments, each of length $d y$, we note that the mass of a segment is $(m / L) d y$ and the change in potential energy of a segment when it is a distance $|y|$ below the table top is

$$
d U=(m / L) g|y| d y=-(m / L) g y d y
$$

since y is negative-valued (we have $+y$ upward and the origin is at the tabletop). The total potential energy change is

$$
\Delta U=-\frac{m g}{L} \int_{-L / 4}^{0} y d y=\frac{1}{2} \frac{m g}{L}(L / 4)^{2}=m g L / 32 .
$$

The work required to pull the chain onto the table is therefore

$$
W=\Delta U=m g L / 32=(0.012 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.28 \mathrm{~m}) / 32=0.0010 \mathrm{~J} .
$$

71. We use Eq. 8-20.
(a) The force at $x=2.0 \mathrm{~m}$ is

$$
F=-\frac{d U}{d x} \approx-\frac{-(17.5)-(-2.8)}{4.0-1.0}=4.9 \mathrm{~N} .
$$

(b) The force points in the $+x$ direction (but there is some uncertainty in reading the graph which makes the last digit not very significant).
(c) The total mechanical energy at $x=2.0 \mathrm{~m}$ is

$$
E=\frac{1}{2} m v^{2}+U \approx \frac{1}{2}(2.0)(-1.5)^{2}-7.7=-5.5
$$

in SI units (Joules). Again, there is some uncertainty in reading the graph which makes the last digit not very significant. At that level (-5.5 J) on the graph, we find two points where the potential energy curve has that value - at $x \approx 1.5 \mathrm{~m}$ and $x \approx 13.5 \mathrm{~m}$. Therefore, the particle remains in the region $1.5<x<13.5 \mathrm{~m}$. The left boundary is at $x=1.5 \mathrm{~m}$.
(d) From the above results, the right boundary is at $x=13.5 \mathrm{~m}$.
(e) At $x=7.0 \mathrm{~m}$, we read $U \approx-17.5 \mathrm{~J}$. Thus, if its total energy (calculated in the previous part) is $E \approx-5.5 \mathrm{~J}$, then we find

$$
\frac{1}{2} m v^{2}=E-U \approx 12 \mathrm{~J} \Rightarrow v=\sqrt{\frac{2}{m}(E-U)} \approx 3.5 \mathrm{~m} / \mathrm{s}
$$

where there is certainly room for disagreement on that last digit for the reasons cited above.
72. (a) To stretch the spring an external force, equal in magnitude to the force of the spring but opposite to its direction, is applied. Since a spring stretched in the positive x direction exerts a force in the negative x direction, the applied force must be $F=52.8 x+38.4 x^{2}$, in the $+x$ direction. The work it does is

$$
W=\int_{0.50}^{1.00}\left(52.8 x+38.4 x^{2}\right) d x=\left[\frac{52.8}{2} x^{2}+\frac{38.4}{3} x^{3}\right]_{0.50}^{1.00}=31.0 \mathrm{~J} .
$$

(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of the particle. Its speed is then

$$
v=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2(31.0 \mathrm{~J})}{2.17 \mathrm{~kg}}}=5.35 \mathrm{~m} / \mathrm{s}
$$

(c) The force is conservative since the work it does as the particle goes from any point x_{1} to any other point x_{2} depends only on x_{1} and x_{2}, not on details of the motion between x_{1} and x_{2}.
73. This can be worked entirely by the methods of Chapters $2-6$, but we will use energy methods in as many steps as possible.
(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude $F_{N}=m g \cos \theta\left(\right.$ where $\left.\theta=39^{\circ}\right)$ which means $f_{k}=\mu_{k} m g \cos \theta$ where $\mu_{k}=0.28$. Thus, Eq. 8-31 yields

$$
\Delta E_{\mathrm{th}}=f_{k} d=\mu_{k} m g d \cos \theta
$$

Also, elementary trigonometry leads us to conclude that $\Delta U=-m g d \sin \theta$ where $d=3.7 \mathrm{~m}$. Since $K_{i}=0$, Eq. 8-33 (with $W=0$) indicates that the final kinetic energy is

$$
K_{f}=-\Delta U-\Delta E_{\mathrm{th}}=m g d\left(\sin \theta-\mu_{k} \cos \theta\right)
$$

which leads to the speed at the bottom of the ramp

$$
v=\sqrt{\frac{2 K_{f}}{m}}=\sqrt{2 g d\left(\sin \theta-\mu_{k} \cos \theta\right)}=5.5 \mathrm{~m} / \mathrm{s}
$$

(b) This speed begins its horizontal motion, where $f_{k}=\mu_{k} m g$ and $\Delta U=0$. It slides a distance d^{\prime} before it stops. According to Eq. 8-31 (with $W=0$),

$$
\begin{aligned}
0 & =\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\
& =0-\frac{1}{2} m v^{2}+0+\mu_{k} m g d^{\prime} \\
& =-\frac{1}{2}\left(2 g d\left(\sin \theta-\mu_{k} \cos \theta\right)\right)+\mu_{k} g d^{\prime}
\end{aligned}
$$

where we have divided by mass and substituted from part (a) in the last step. Therefore,

$$
d^{\prime}=\frac{d\left(\sin \theta-\mu_{k} \cos \theta\right)}{\mu_{k}}=5.4 \mathrm{~m}
$$

(c) We see from the algebraic form of the results, above, that the answers do not depend on mass. A 90 kg crate should have the same speed at the bottom and sliding distance across the floor, to the extent that the friction relations in Ch. 6 are accurate. Interestingly, since g does not appear in the relation for d^{\prime}, the sliding distance would seem to be the same if the experiment were performed on Mars!
74. Before the launch, the mechanical energy is $\Delta E_{\text {mech }, 0}=0$. At the maximum height h where the speed of the beetle vanishes, the mechanical energy is $\Delta E_{\text {mech }, 1}=m g h$. The change of the mechanical energy is related to the external force by

$$
\Delta E_{\mathrm{mech}}=\Delta E_{\mathrm{mech}, 1}-\Delta E_{\mathrm{mech}, 0}=m g h=F_{a v g} d \cos \phi,
$$

where $F_{\text {avg }}$ is the average magnitude of the external force on the beetle.
(a) From the above equation, we have

$$
F_{\text {avg }}=\frac{m g h}{d \cos \phi}=\frac{\left(4.0 \times 10^{-6} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.30 \mathrm{~m})}{\left(7.7 \times 10^{-4} \mathrm{~m}\right)\left(\cos 0^{\circ}\right)}=1.5 \times 10^{-2} \mathrm{~N} .
$$

(b) Dividing the above result by the mass of the beetle, we obtain

$$
a=\frac{F_{a v g}}{m}=\frac{h}{d \cos \phi} g=\frac{(0.30 \mathrm{~m})}{\left(7.7 \times 10^{-4} \mathrm{~m}\right)\left(\cos 0^{\circ}\right)} g=3.8 \times 10^{2} g .
$$

75. We work this in SI units and convert to horsepower in the last step. Thus,

$$
v=(80 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)=22.2 \mathrm{~m} / \mathrm{s}
$$

The force F_{P} needed to propel the car (of weight w and mass $m=w / g$) is found from Newton's second law:

$$
F_{\mathrm{net}}=F_{P}-F=m a=\frac{w a}{g}
$$

where $F=300+1.8 v^{2}$ in SI units. Therefore, the power required is

$$
\begin{aligned}
P & =\vec{F}_{P} \cdot \vec{v}=\left(F+\frac{w a}{g}\right) v=\left(300+1.8(22.2)^{2}+\frac{(12000)(0.92)}{9.8}\right)(22.2)=5.14 \times 10^{4} \mathrm{~W} \\
& =\left(5.14 \times 10^{4} \mathrm{~W}\right)\left(\frac{1 \mathrm{hp}}{746 \mathrm{~W}}\right)=69 \mathrm{hp} .
\end{aligned}
$$

76. The connection between angle θ (measured from vertical) and height h (measured from the lowest point, which is our choice of reference position in computing the gravitational potential energy) is given by $h=L(1-\cos \theta)$ where L is the length of the pendulum.
(a) We use energy conservation in the form of Eq. 8-17.

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
0+m g L\left(1-\cos \theta_{1}\right) & =\frac{1}{2} m v_{2}^{2}+m g L\left(1-\cos \theta_{2}\right)
\end{aligned}
$$

With $L=1.4 \mathrm{~m}, \theta_{1}=30^{\circ}$, and $\theta_{2}=20^{\circ}$, we have

$$
v_{2}=\sqrt{2 g L\left(\cos \theta_{2}-\cos \theta_{1}\right)}=1.4 \mathrm{~m} / \mathrm{s}
$$

(b) The maximum speed v_{3} is at the lowest point. Our formula for h gives $h_{3}=0$ when θ_{3} $=0^{\circ}$, as expected.

$$
\begin{aligned}
K_{1}+U_{1} & =K_{3}+U_{3} \\
0+m g L\left(1-\cos \theta_{1}\right) & =\frac{1}{2} m v_{3}^{2}+0
\end{aligned}
$$

This yields $v_{3}=1.9 \mathrm{~m} / \mathrm{s}$.
(c) We look for an angle θ_{4} such that the speed there is $v_{4}=v_{3} / 3$. To be as accurate as possible, we proceed algebraically (substituting $v_{3}^{2}=2 g L\left(1-\cos \theta_{1}\right)$ at the appropriate place) and plug numbers in at the end. Energy conservation leads to

$$
\begin{aligned}
K_{1}+U_{1} & =K_{4}+U_{4} \\
0+m g L\left(1-\cos \theta_{1}\right) & =\frac{1}{2} m v_{4}^{2}+m g L\left(1-\cos \theta_{4}\right) \\
m g L\left(1-\cos \theta_{1}\right) & =\frac{1}{2} m \frac{v_{3}^{2}}{9}+m g L\left(1-\cos \theta_{4}\right) \\
-g L \cos \theta_{1} & =\frac{1}{2} \frac{2 g L\left(1-\cos \theta_{1}\right)}{9}-g L \cos \theta_{4}
\end{aligned}
$$

where in the last step we have subtracted out $m g L$ and then divided by m. Thus, we obtain

$$
\theta_{4}=\cos ^{-1}\left(\frac{1}{9}+\frac{8}{9} \cos \theta_{1}\right)=28.2^{\circ} \approx 28^{\circ}
$$

77. (a) At B the speed is (from Eq. 8-17)

$$
v=\sqrt{v_{0}^{2}+2 g h_{1}}=\sqrt{(7.0)^{2}+2(9.8)(6.0)}=13 \mathrm{~m} / \mathrm{s}
$$

(a) Here what matters is the difference in heights (between A and C):

$$
v=\sqrt{v_{0}^{2}+2 g\left(h_{1}-h_{2}\right)}=\sqrt{(7.0)^{2}+2(9.8)(4.0)}=11.29 \approx 11 \mathrm{~m} / \mathrm{s}
$$

(c) Using the result from part (b), we see that its kinetic energy right at the beginning of its "rough slide" (heading horizontally towards D) is $\frac{1}{2} m(11.29)^{2}=63.7 m$ (with SI units understood). Note that we "carry along" the mass (as if it were a known quantity); as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with $F_{N}=m g$) we note that this kinetic energy will turn entirely into thermal energy

$$
63.7 m=\mu_{k} m g d
$$

if $d<L$. With $\mu_{\mathrm{k}}=0.70$, we find $d=9.3 \mathrm{~m}$, which is indeed less than L (given in the problem as 12 m). We conclude that the block stops before passing out of the "rough" region (and thus does not arrive at point D).
78. (a) The table shows that the force is $+(3.0 \mathrm{~N}) \hat{\mathrm{i}}$ while the displacement is in the $+x$ direction $(\vec{d}=+(3.0 \mathrm{~m}) \hat{\mathrm{i}})$, and it is $-(3.0 \mathrm{~N}) \hat{\mathrm{i}}$ while the displacement is in the $-x$ direction. Using Eq. 7-8 for each part of the trip, and adding the results, we find the work done is 18 J . This is not a conservative force field; if it had been, then the net work done would have been zero (since it returned to where it started).
(b) This, however, is a conservative force field, as can be easily verified by calculating that the net work done here is zero.
(c) The two integrations that need to be performed are each of the form $\int 2 x d x$ so that we are adding two equivalent terms, where each equals x^{2} (evaluated at $x=4$, minus its value at $x=1$). Thus, the work done is $2\left(4^{2}-1^{2}\right)=30 \mathrm{~J}$.
(d) This is another conservative force field, as can be easily verified by calculating that the net work done here is zero.
(e) The forces in (b) and (d) are conservative.
79. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor (which we choose to be the $U=0$ level) is the sum of the initial kinetic and potential energies:

$$
K=K_{i}+U_{i}=\frac{1}{2}(2.50)(3.00)^{2}+(2.50)(9.80)(4.00)=109 \mathrm{~J} .
$$

For later use, we note that the speed with which it reaches the ground is $v=\sqrt{2 K / m}=$ $9.35 \mathrm{~m} / \mathrm{s}$.
(b) When the drop in height is 2.00 m instead of 4.00 m , the kinetic energy is

$$
K=\frac{1}{2}(2.50)(3.00)^{2}+(2.50)(9.80)(2.00)=60.3 \mathrm{~J} .
$$

(c) A simple way to approach this is to imagine the can is launched from the ground at $t=0$ with speed $9.35 \mathrm{~m} / \mathrm{s}$ (see above) and ask of its height and speed at $t=0.200 \mathrm{~s}$, using Eq. 2-15 and Eq. 2-11:

$$
\begin{aligned}
& y=(9.35)(0.200)-\frac{1}{2}(9.80)(0.200)^{2}=1.67 \mathrm{~m} \\
& v=9.35-(9.80)(0.200)=7.39 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The kinetic energy is

$$
K=\frac{1}{2}(2.50 \mathrm{~kg})(7.39 \mathrm{~m} / \mathrm{s})^{2}=68.2 \mathrm{~J}
$$

(d) The gravitational potential energy

$$
U=m g y=(2.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.67 \mathrm{~m})=41.0 \mathrm{~J}
$$

80. (a) The remark in the problem statement that the forces can be associated with potential energies is illustrated as follows: the work from $x=3.00 \mathrm{~m}$ to $x=2.00 \mathrm{~m}$ is $W=$ $F_{2} \Delta x=(5.00 \mathrm{~N})(-1.00 \mathrm{~m})=-5.00 \mathrm{~J}$, so the potential energy at $x=2.00 \mathrm{~m}$ is $U_{2}=+5.00 \mathrm{~J}$.
(b) Now, it is evident from the problem statement that $E_{\max }=14.0 \mathrm{~J}$, so the kinetic energy at $x=2.00 \mathrm{~m}$ is

$$
K_{2}=E_{\max }-U_{2}=14.0-5.00=9.00 \mathrm{~J} .
$$

(c) The work from $x=2.00 \mathrm{~m}$ to $x=0$ is $W=F_{1} \Delta x=(3.00 \mathrm{~N})(-2.00 \mathrm{~m})=-6.00 \mathrm{~J}$, so the potential energy at $x=0$ is

$$
U_{0}=6.00 \mathrm{~J}+U_{2}=(6.00+5.00) \mathrm{J}=11.0 \mathrm{~J} .
$$

(d) Similar reasoning to that presented in part (a) then gives

$$
K_{0}=E_{\max }-U_{0}=(14.0-11.0) \mathrm{J}=3.00 \mathrm{~J} .
$$

(e) The work from $x=8.00 \mathrm{~m}$ to $x=11.0 \mathrm{~m}$ is $W=F_{3} \Delta x=(-4.00 \mathrm{~N})(3.00 \mathrm{~m})=-12.0 \mathrm{~J}$, so the potential energy at $x=11.0 \mathrm{~m}$ is $U_{11}=12.0 \mathrm{~J}$.
(f) The kinetic energy at $x=11.0 \mathrm{~m}$ is therefore

$$
K_{11}=E_{\max }-U_{11}=(14.0-12.0) \mathrm{J}=2.00 \mathrm{~J} .
$$

(g) Now we have $W=F_{4} \Delta x=(-1.00 \mathrm{~N})(1.00 \mathrm{~m})=-1.00 \mathrm{~J}$, so the potential energy at $x=12.0 \mathrm{~m}$ is

$$
U_{12}=1.00 \mathrm{~J}+U_{11}=(1.00+12.0) \mathrm{J}=13.0 \mathrm{~J} .
$$

(h) Thus, the kinetic energy at $x=12.0 \mathrm{~m}$ is

$$
K_{12}=E_{\max }-U_{12}=(14.0-13.0)=1.00 \mathrm{~J} .
$$

(i) There is no work done in this interval (from $x=12.0 \mathrm{~m}$ to $x=13.0 \mathrm{~m}$) so the answers are the same as in part $(\mathrm{g}): U_{12}=13.0 \mathrm{~J}$.
(j) There is no work done in this interval (from $x=12.0 \mathrm{~m}$ to $x=13.0 \mathrm{~m}$) so the answers are the same as in part (h): $K_{12}=1.00 \mathrm{~J}$.
(k) Although the plot is not shown here, it would look like a "potential well" with piecewise-sloping sides: from $x=0$ to $x=2$ (SI units understood) the graph if U is a decreasing line segment from 11 to 5 , and from $x=2$ to $x=3$, it then heads down to zero, where it stays until $x=8$, where it starts increasing to a value of 12 (at $x=11$), and then
in another positive-slope line segment it increases to a value of 13 (at $x=12$). For $x>12$ its value does not change (this is the "top of the well").
(1) The particle can be thought of as "falling" down the $0<x<3$ slopes of the well, gaining kinetic energy as it does so, and certainly is able to reach $x=5$. Since $U=0$ at x $=5$, then it's initial potential energy (11 J) has completely converted to kinetic: now $K=$ 11.0 J .
(m) This is not sufficient to climb up and out of the well on the large x side $(x>8)$, but does allow it to reach a "height" of 11 at $x=10.8 \mathrm{~m}$. As discussed in section $8-5$, this is a "turning point" of the motion.
(n) Next it "falls" back down and rises back up the small x slopes until it comes back to its original position. Stating this more carefully, when it is (momentarily) stopped at $x=$ 10.8 m it is accelerated to the left by the force \vec{F}_{3}; it gains enough speed as a result that it eventually is able to return to $x=0$, where it stops again.
81. (a) At $x=5.00$ (SI units understood) the potential energy is zero, and the kinetic energy is $K=\frac{1}{2} m v^{2}=\frac{1}{2}(2.00)(3.45)^{2}=11.9 \mathrm{~J}$. The total energy, therefore, is great enough to reach the point $x=0$ where $U=11.0 \mathrm{~J}$, with a little "left over" $(11.9-11.0=$ 0.9025 J). This is the kinetic energy at $x=0$, which means the speed there is

$$
v=\sqrt{2(0.9025 \mathrm{~J}) /(2 \mathrm{~kg})}=0.950 \mathrm{~m} / \mathrm{s} .
$$

It has now come to a stop, therefore, so it has not encountered a turning point.
(b) The total energy $(11.9 \mathrm{~J})$ is equal to the potential energy (in the scenario where it is initially moving rightward) at $x=10.9756 \approx 11.0 \mathrm{~m}$. This point may be found by interpolation or simply by using the work-kinetic-energy theorem:

$$
K_{f}=K_{i}+W=0 \quad \Rightarrow \quad 11.9025+(-4) d=0 \quad \Rightarrow \quad d=2.9756 \approx 2.98
$$

(which when added to $x=8.00$ [the point where F_{3} begins to act] gives the correct result). This provides a turning point for the particle's motion.
82. (a) At $x=0.10 \mathrm{~m}$, the graph indicates that $U=3 \mathrm{~J}$ and $K=20 \mathrm{~J}$, so that the total mechanical energy at that point is 23 J . Since the system had 30 J at $x=0$ (the location of the impact), then 7 J has since been "lost" (transferred to thermal form) due to the sliding.
(b) At the maximum value of x (which seems to be a little more than 0.21 m), the graph indicates that $U=14 \mathrm{~J}$ (and, of course, $K=0 \mathrm{~J}$ there), so $30-14=16 \mathrm{~J}$ (total) has been "lost" (transferred to thermal form) due to the sliding.
83. Converting to SI units, $v_{0}=8.3 \mathrm{~m} / \mathrm{s}$ and $v=11.1 \mathrm{~m} / \mathrm{s}$. The incline angle is $\theta=5.0^{\circ}$. The height difference between the car's highest and lowest points is (50 m) $\sin \theta=4.4 \mathrm{~m}$. We take the lowest point (the car's final reported location) to correspond to the $y=0$ reference level.
(a) Using Eq. 8-31 and Eq. 8-33, we find

$$
f_{k} d=-\Delta K-\Delta U \Rightarrow f_{k} d=\frac{1}{2} m\left(v_{0}^{2}-v^{2}\right)+m g y_{0} .
$$

Therefore, the mechanical energy reduction (due to friction) is $f_{k} d=2.4 \times 10^{4} \mathrm{~J}$.
(b) With $d=50 \mathrm{~m}$, we solve for f_{k} and obtain $4.7 \times 10^{2} \mathrm{~N}$.
84. (a) The kinetic energy K of the automobile of mass m at $t=30 \mathrm{~s}$ is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}(1500 \mathrm{~kg})\left((72 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)\right)^{2}=3.0 \times 10^{5} \mathrm{~J} .
$$

(b) The average power required is

$$
P_{\text {avg }}=\frac{\Delta K}{\Delta t}=\frac{3.0 \times 10^{5} \mathrm{~J}}{30 \mathrm{~s}}=1.0 \times 10^{4} \mathrm{~W} .
$$

(c) Since the acceleration a is constant, the power is $P=F v=m a v=m a(a t)=m a^{2} t$ using Eq. 2-11. By contrast, from part (b), the average power is $P_{\text {avg }}=\frac{m v^{2}}{2 t}$ which becomes $\frac{1}{2} m a^{2} t$ when $v=a t$ is again utilized. Thus, the instantaneous power at the end of the interval is twice the average power during it:

$$
P=2 P_{\text {avg }}=(2)\left(1.0 \times 10^{4} \mathrm{~W}\right)=2.0 \times 10^{4} \mathrm{~W} .
$$

85. (a) With $P=1.5 \mathrm{MW}=1.5 \times 10^{6} \mathrm{~W}$ (assumed constant) and $t=6.0 \mathrm{~min}=360 \mathrm{~s}$, the work-kinetic energy theorem becomes

$$
W=P t=\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) .
$$

The mass of the locomotive is then

$$
m=\frac{2 P t}{v_{f}^{2}-v_{i}^{2}}=\frac{(2)\left(1.5 \times 10^{6} \mathrm{~W}\right)(360 \mathrm{~s})}{(25 \mathrm{~m} / \mathrm{s})^{2}-(10 \mathrm{~m} / \mathrm{s})^{2}}=2.1 \times 10^{6} \mathrm{~kg}
$$

(b) With t arbitrary, we use $P t=\frac{1}{2} m\left(v^{2}-v_{i}^{2}\right)$ to solve for the speed $v=v(t)$ as a function of time and obtain

$$
v(t)=\sqrt{v_{i}^{2}+\frac{2 P t}{m}}=\sqrt{(10)^{2}+\frac{(2)\left(1.5 \times 10^{6}\right) t}{2.1 \times 10^{6}}}=\sqrt{100+1.5 t}
$$

in SI units (v in m / s and $t \mathrm{in} \mathrm{s}$).
(c) The force $F(t)$ as a function of time is

$$
F(t)=\frac{P}{v(t)}=\frac{1.5 \times 10^{6}}{\sqrt{100+1.5 t}}
$$

in SI units (F in N and t in s).
(d) The distance d the train moved is given by

$$
d=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{360}\left(100+\frac{3}{2} t\right)^{1 / 2} d t=\left.\frac{4}{9}\left(100+\frac{3}{2} t\right)^{3 / 2}\right|_{0} ^{360}=6.7 \times 10^{3} \mathrm{~m}
$$

86. We take the bottom of the incline to be the $y=0$ reference level. The incline angle is $\theta=30^{\circ}$. The distance along the incline d (measured from the bottom) is related to height y by the relation $y=d \sin \theta$.
(a) Using the conservation of energy, we have

$$
K_{0}+U_{0}=K_{\mathrm{top}}+U_{\mathrm{top}} \Rightarrow \frac{1}{2} m v_{0}^{2}+0=0+m g y
$$

with $v_{0}=5.0 \mathrm{~m} / \mathrm{s}$. This yields $y=1.3 \mathrm{~m}$, from which we obtain $d=2.6 \mathrm{~m}$.
(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the friction force is $f_{k}=\mu_{k} m g \cos \theta$. Now, we write Eq. $8-33$ as

$$
\begin{aligned}
K_{0}+U_{0} & =K_{\text {top }}+U_{\text {top }}+f_{k} d \\
\frac{1}{2} m v_{0}^{2}+0 & =0+m g y+f_{k} d \\
\frac{1}{2} m v_{0}^{2} & =m g d \sin \theta+\mu_{k} m g d \cos \theta
\end{aligned}
$$

which — upon canceling the mass and rearranging - provides the result for d :

$$
d=\frac{v_{0}^{2}}{2 g\left(\mu_{k} \cos \theta+\sin \theta\right)}=1.5 \mathrm{~m}
$$

(c) The thermal energy generated by friction is $f_{k} d=\mu_{k} m g d \cos \theta=26 \mathrm{~J}$.
(d) The slide back down, from the height $y=1.5 \sin 30^{\circ}$ is also described by Eq. 8-33. With $\Delta E_{\text {th }}$ again equal to 26 J , we have

$$
K_{\mathrm{top}}+U_{\mathrm{top}}=K_{\mathrm{bot}}+U_{\mathrm{bot}}+f_{k} d \Rightarrow 0+m g y=\frac{1}{2} m v_{\mathrm{bot}}^{2}+0+26
$$

from which we find $v_{\text {bot }}=2.1 \mathrm{~m} / \mathrm{s}$.
87. (a) The initial kinetic energy is $K_{i}=\frac{1}{2}(1.5)(3)^{2}=6.75 \mathrm{~J}$.
(b) The work of gravity is the negative of its change in potential energy. At the highest point, all of K_{i} has converted into U (if we neglect air friction) so we conclude the work of gravity is -6.75 J .
(c) And we conclude that $\Delta U=6.75 \mathrm{~J}$.
(d) The potential energy there is $U_{f}=U_{i}+\Delta U=6.75 \mathrm{~J}$.
(e) If $U_{f}=0$, then $U_{i}=U_{f}-\Delta U=-6.75 \mathrm{~J}$.
(f) Since $m g \Delta y=\Delta U$, we obtain $\Delta y=0.459 \mathrm{~m}$.
88. (a) At the point of maximum height, where $y=140 \mathrm{~m}$, the vertical component of velocity vanishes but the horizontal component remains what it was when it was launched (if we neglect air friction). Its kinetic energy at that moment is

$$
K=\frac{1}{2}(0.55 \mathrm{~kg}) v_{x}^{2} .
$$

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at that moment is $U=m g y=755 \mathrm{~J}$. Thus, by mechanical energy conservation,

$$
K=K_{i}-U=1550-755 \Rightarrow v_{x}=\sqrt{\frac{2(1550-755)}{0.55}}=54 \mathrm{~m} / \mathrm{s}
$$

(b) As mentioned $v_{x}=v_{i x}$ so that the initial kinetic energy

$$
K_{i}=\frac{1}{2} m\left(v_{i x}^{2}+v_{i y}^{2}\right)
$$

can be used to find $v_{i y}$. We obtain $v_{i y}=52 \mathrm{~m} / \mathrm{s}$.
(c) Applying Eq. 2-16 to the vertical direction (with $+y$ upward), we have

$$
v_{y}^{2}=v_{i y}^{2}-2 g \Delta y \Rightarrow(65)^{2}=(52)^{2}-2(9.8) \Delta y
$$

which yields $\Delta y=-76 \mathrm{~m}$. The minus sign tells us it is below its launch point.
89. We note that if the larger mass (block $\mathrm{B}, m_{B}=2 \mathrm{~kg}$) falls $d=0.25 \mathrm{~m}$, then the smaller mass (blocks A, $m_{A}=1 \mathrm{~kg}$) must increase its height by $h=d \sin 30^{\circ}$. Thus, by mechanical energy conservation, the kinetic energy of the system is

$$
K_{\text {total }}=m_{B} g d-m_{A} g h=3.7 \mathrm{~J} .
$$

90. (a) The initial kinetic energy is $K_{i}=\frac{1}{2}(1.5)(20)^{2}=300 \mathrm{~J}$.
(b) At the point of maximum height, the vertical component of velocity vanishes but the horizontal component remains what it was when it was "shot" (if we neglect air friction). Its kinetic energy at that moment is

$$
K=\frac{1}{2}(1.5)\left(20 \cos 34^{\circ}\right)^{2}=206 \mathrm{~J}
$$

Thus, $\Delta U=K_{i}-K=300-206=93.8 \mathrm{~J}$.
(c) Since $\Delta U=m g \Delta y$, we obtain

$$
\Delta y=\frac{94 \mathrm{~J}}{(1.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=6.38 \mathrm{~m}
$$

91. Equating the mechanical energy at his initial position (as he emerges from the canon, where we set the reference level for computing potential energy) to his energy as he lands, we obtain

$$
\begin{aligned}
K_{i} & =K_{f}+U_{f} \\
\frac{1}{2}(60 \mathrm{~kg})(16 \mathrm{~m} / \mathrm{s})^{2} & =K_{f}+(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.9 \mathrm{~m})
\end{aligned}
$$

which leads to $K_{f}=5.4 \times 10^{3} \mathrm{~J}$.
92. The work done by \vec{F} is the negative of its potential energy change (see Eq. 8-6), so $U_{B}=U_{A}-25=15 \mathrm{~J}$.
93. The free-body diagram for the trunk is shown.

The x and y applications of Newton's second law provide two equations:

$$
\begin{aligned}
F_{1} \cos \theta-f_{k}-m g \sin \theta & =m a \\
F_{N}-F_{1} \sin \theta-m g \cos \theta & =0 .
\end{aligned}
$$

(a) The trunk is moving up the incline at constant velocity, so $a=0$. Using $f_{k}=\mu_{k} F_{N}$, we solve for the push-force F_{1} and obtain

$$
F_{1}=\frac{m g\left(\sin \theta+\mu_{k} \cos \theta\right)}{\cos \theta-\mu_{k} \sin \theta} .
$$

The work done by the push-force \vec{F}_{1} as the trunk is pushed through a distance ℓ up the inclined plane is therefore

$$
\begin{aligned}
W_{1} & =F_{1} \ell \cos \theta=\frac{(m g \ell \cos \theta)\left(\sin \theta+\mu_{k} \cos \theta\right)}{\cos \theta-\mu_{\mathrm{k}} \sin \theta} \\
& =\frac{(50 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m})\left(\cos 30^{\circ}\right)\left(\sin 30^{\circ}+(0.20) \cos 30^{\circ}\right)}{\cos 30^{\circ}-(0.20) \sin 30^{\circ}} \\
& =2.2 \times 10^{3} \mathrm{~J} .
\end{aligned}
$$

(b) The increase in the gravitational potential energy of the trunk is

$$
\Delta U=m g \ell \sin \theta=(50 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m}) \sin 30^{\circ}=1.5 \times 10^{3} \mathrm{~J}
$$

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33 leads to

$$
W_{1}=\Delta U+\Delta E_{\mathrm{th}} .
$$

Thus, using more precise numbers than are shown above, the increase in thermal energy (generated by the kinetic friction) is $2.24 \times 10^{3}-1.47 \times 10^{3}=7.7 \times 10^{2} \mathrm{~J}$. An alternate way to this result is to use $\Delta E_{\text {th }}=f_{k} \ell$ (Eq. 8-31).
94. (a) The effect of a (sliding) friction is described in terms of energy dissipated as shown in Eq. 8-31. We have

$$
\Delta E=K+\frac{1}{2} k(0.08)^{2}-\frac{1}{2} k(0.10)^{2}=-f_{k}(0.02)
$$

where distances are in meters and energies are in Joules. With $k=4000 \mathrm{~N} / \mathrm{m}$ and $f_{k}=80 \mathrm{~N}$, we obtain $K=5.6 \mathrm{~J}$.
(b) In this case, we have $d=0.10 \mathrm{~m}$. Thus,

$$
\Delta E=K+0-\frac{1}{2} k(0.10)^{2}=-f_{k}(0.10)
$$

which leads to $K=12 \mathrm{~J}$.
(c) We can approach this two ways. One way is to examine the dependence of energy on the variable d :

$$
\Delta E=K+\frac{1}{2} k\left(d_{0}-d\right)^{2}-\frac{1}{2} k d_{0}^{2}=-f_{k} d
$$

where $d_{0}=0.10 \mathrm{~m}$, and solving for K as a function of d :

$$
K=-\frac{1}{2} k d^{2}+\left(k d_{0}\right) d-f_{k} d .
$$

In this first approach, we could work through the $\frac{d K}{d d}=0$ condition (or with the special capabilities of a graphing calculator) to obtain the answer $K_{\max }=\frac{1}{2 k}\left(k d_{0}-f_{k}\right)^{2}$. In the second (and perhaps easier) approach, we note that K is maximum where v is maximum - which is where $a=0 \Rightarrow$ equilibrium of forces. Thus, the second approach simply solves for the equilibrium position

$$
\left|F_{\text {spring }}\right|=f_{k} \Rightarrow k x=80
$$

Thus, with $k=4000 \mathrm{~N} / \mathrm{m}$ we obtain $x=0.02 \mathrm{~m}$. But $x=d_{0}-d$ so this corresponds to $d=$ 0.08 m . Then the methods of part (a) lead to the answer $K_{\max }=12.8 \approx 13 \mathrm{~J}$.
95. The initial height of the $2 M$ block, shown in Fig. 8-65, is the $y=0$ level in our computations of its value of U_{g}. As that block drops, the spring stretches accordingly. Also, the kinetic energy $K_{\text {sys }}$ is evaluated for the system -- that is, for a total moving mass of $3 M$.
(a) The conservation of energy, Eq. 8-17, leads to

$$
K_{i}+U_{i}=K_{s y s}+U_{s y s} \Rightarrow 0+0=K_{s y s}+(2 M) g(-0.090)+\frac{1}{2} k(0.090)^{2} .
$$

Thus, with $M=2.0 \mathrm{~kg}$, we obtain $K_{s y s}=2.7 \mathrm{~J}$.
(b) The kinetic energy of the $2 M$ block represents a fraction of the total kinetic energy:

$$
\frac{K_{2 M}}{K_{\text {sys }}}=\frac{\frac{1}{2}(2 M) \mathrm{v}^{2}}{\frac{1}{2}(3 M) \mathrm{v}^{2}}=\frac{2}{3}
$$

Therefore, $K_{2 M}=\frac{2}{3}(2.7)=1.8 \mathrm{~J}$.
(c) Here we let $y=-d$ and solve for d.

$$
K_{i}+U_{i}=K_{s y s}+U_{s y s} \Rightarrow 0+0=0+(2 M) g(-d)+\frac{1}{2} k d^{2} .
$$

Thus, with $M=2.0 \mathrm{~kg}$, we obtain $d=0.39 \mathrm{~m}$.
96. Sample Problem 8-3 illustrates simple energy conservation in a similar situation, and derives the frequently encountered relationship: $v=\sqrt{2 g h}$. In our present problem, the height is related to the distance (on the $\theta=10^{\circ}$ slope) $d=920 \mathrm{~m}$ by the trigonometric relation $h=d \sin \theta$. Thus,

$$
v=\sqrt{2(9.8)(920) \sin \left(10^{\circ}\right)}=56 \mathrm{~m} / \mathrm{s}
$$

97. Eq. 8-33 gives

$$
\begin{gathered}
m g y_{f}=K_{i}+m g y_{i}-\Delta E_{\mathrm{th}} \\
(0.50)(9.8)(0.80)=\frac{1}{2}(0.50)(4.00)^{2}+(0.50)(9.8)(0)-\Delta E_{\mathrm{th}}
\end{gathered}
$$

which yields $\Delta E_{\mathrm{th}}=4.00-3.92=0.080 \mathrm{~J}$.
98. (a) The loss of the initial $K=\frac{1}{2} m v^{2}=\frac{1}{2}(70 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})^{2}$ is 3500 J , or 3.5 kJ .
(b) This is dissipated as thermal energy; $\Delta E_{\mathrm{th}}=3500 \mathrm{~J}=3.5 \mathrm{~kJ}$.
99. The initial height, shown in Fig. 8-66, is the $y=0$ level in our computations of U_{g}, and in parts (a) and (b) the heights are $y_{a}=0.80 \sin 40^{\circ}=0.51 \mathrm{~m}$ and $y_{b}=1.00 \sin 40^{\circ}=$ 0.64 m , respectively.
(a) The conservation of energy, Eq. 8-17, leads to

$$
K_{i}+U_{i}=K_{a}+U_{a} \Rightarrow 16+0=K_{a}+m g y_{a}+\frac{1}{2} k(0.20)^{2}
$$

from which we obtain $K_{a}=16-5.0-4.0=7.0 \mathrm{~J}$.
(b) Again we use the conservation of energy

$$
K_{i}+U_{i}=K_{b}+U_{b} \Rightarrow K_{i}+0=0+m g y_{b}+\frac{1}{2} k(0.40)^{2}
$$

from which we obtain $K_{i}=6.0+16=22 \mathrm{~J}$.
100. (a) Resolving the gravitational force into components and applying Newton's second law (as well as Eq. 6-2), we find

$$
F_{\text {machine }}-m g \sin \theta-\mu_{k} m g \cos \theta=m a .
$$

In the situation described in the problem, we have $a=0$, so

$$
F_{\text {machine }}=m g \sin \theta+\mu_{k} m g \cos \theta=372 \mathrm{~N} .
$$

Thus, the work done by the machine is $\quad F_{\text {machine }} d=744 \mathrm{~J}=7.4 \times 10^{2} \mathrm{~J}$.
(b) The thermal energy generated is $\mu_{k} m g \cos \theta d=240 \mathrm{~J}=2.4 \times 10^{2} \mathrm{~J}$.
101. (a) Eq. $8-9$ gives $U=(3.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~m})=94 \mathrm{~J}$.
(b) The mechanical energy is conserved, so $K=94 \mathrm{~J}$.
(c) The speed (from solving Eq. 7-1) is $v=\sqrt{2(94) / 3.2}=7.7 \mathrm{~m} / \mathrm{s}$.
102. (a) In the initial situation, the elongation was (using Eq. 8-11)

$$
x_{i}=\sqrt{2(1.44) / 3200}=0.030 \mathrm{~m}(\text { or } 3.0 \mathrm{~cm}) .
$$

In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less stored energy (relative to what we had initially). Specifically,

$$
\Delta U=\frac{1}{2}(3200)(0.020)^{2}-1.44 \mathrm{~J}=-0.80 \mathrm{~J}
$$

(b) The elastic stored energy for $|x|=0.020 \mathrm{~m}$, does not depend on whether this represents a stretch or a compression. The answer is the same as in part (a), $\Delta U=-0.80 \mathrm{~J}$.
(c) Now we have $|x|=0.040 \mathrm{~m}$ which is greater than x_{i}, so this represents an increase in the potential energy (relative to what we had initially). Specifically,

$$
\Delta U=\frac{1}{2}(3200)(0.040)^{2}-1.44 \mathrm{~J}=+1.12 \mathrm{~J} \approx 1.1 \mathrm{~J} .
$$

103. We use $P=F v$ to compute the force:

$$
F=\frac{P}{v}=\frac{92 \times 10^{6} \mathrm{~W}}{(32.5 \mathrm{knot})\left(1.852 \frac{\mathrm{~km} / \mathrm{h}}{\mathrm{knot}}\right)\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)}=5.5 \times 10^{6} \mathrm{~N} .
$$

104. (a) At the highest point, the velocity $v=v_{x}$ is purely horizontal and is equal to the horizontal component of the launch velocity (see section 4-6): $v_{0 x}=v_{0} \cos \theta$, where $\theta=30^{\circ}$ in this problem. Eq. 8-17 relates the kinetic energy at the highest point to the launch kinetic energy:

$$
K_{\mathrm{o}}=m g y+\frac{1}{2} m v^{2}=\frac{1}{2} m v_{\mathrm{o} x}^{2}+\frac{1}{2} m v_{\mathrm{o} y}^{2} .
$$

with $y=1.83 \mathrm{~m}$. Since the $m v_{\mathrm{ox}}^{2} / 2$ term on the left-hand side cancels the $m v^{2} / 2$ term on the right-hand side, this yields $v_{\mathrm{o} y}=\sqrt{2 g y} \approx 6 \mathrm{~m} / \mathrm{s}$. With $v_{\mathrm{o} y}=v_{\mathrm{o}} \sin \theta$, we obtain

$$
v_{0}=11.98 \mathrm{~m} / \mathrm{s} \approx 12 \mathrm{~m} / \mathrm{s} .
$$

(b) Energy conservation (including now the energy stored elastically in the spring, Eq. 8-11) also applies to the motion along the muzzle (through a distance d which corresponds to a vertical height increase of $d \sin \theta$):

$$
\frac{1}{2} k d^{2}=K_{\mathrm{o}}+m g d \sin \theta \quad \Rightarrow \quad d=0.11 \mathrm{~m}
$$

105. Since the speed is constant $\Delta K=0$ and Eq. 8-33 (an application of the energy conservation concept) implies

$$
W_{\text {applied }}=\Delta E_{\mathrm{th}}=\Delta E_{\mathrm{th}(\text { cube })}+\Delta E_{\text {th(floor) })} .
$$

Thus, if $W_{\text {applied }}=(15)(3.0)=45 \mathrm{~J}$, and we are told that $\Delta E_{\text {th (cube) }}=20 \mathrm{~J}$, then we conclude that $\Delta E_{\text {th (floor) }}=25 \mathrm{~J}$.
106. (a) We take the gravitational potential energy of the skier-Earth system to be zero when the skier is at the bottom of the peaks. The initial potential energy is $U_{i}=m g H$, where m is the mass of the skier, and H is the height of the higher peak. The final potential energy is $U_{f}=m g h$, where h is the height of the lower peak. The skier initially has a kinetic energy of $K_{i}=0$, and the final kinetic energy is $K_{f}=\frac{1}{2} m v^{2}$, where v is the speed of the skier at the top of the lower peak. The normal force of the slope on the skier does no work and friction is negligible, so mechanical energy is conserved:

$$
U_{i}+K_{i}=U_{f}+K_{f} \Rightarrow m g H=m g h+\frac{1}{2} m v^{2}
$$

Thus,

$$
v=\sqrt{2 g(H-h)}=\sqrt{2(9.8)(850-750)}=44 \mathrm{~m} / \mathrm{s}
$$

(b) We recall from analyzing objects sliding down inclined planes that the normal force of the slope on the skier is given by $F_{N}=m g \cos \theta$, where θ is the angle of the slope from the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is given by $f=\mu_{k} F_{N}=\mu_{k} m g \cos \theta$. The thermal energy generated by the force of friction is $f d=\mu_{k} m g d \cos \theta$, where d is the total distance along the path. Since the skier gets to the top of the lower peak with no kinetic energy, the increase in thermal energy is equal to the decrease in potential energy. That is, $\mu_{k} m g d \cos \theta=m g(H-h)$. Consequently,

$$
\mu_{k}=\frac{H-h}{d \cos \theta}=\frac{(850-750)}{\left(3.2 \times 10^{3}\right) \cos 30^{\circ}}=0.036 .
$$

107. To swim at constant velocity the swimmer must push back against the water with a force of 110 N . Relative to him the water is going at $0.22 \mathrm{~m} / \mathrm{s}$ toward his rear, in the same direction as his force. Using Eq. 7-48, his power output is obtained:

$$
P=\vec{F} \cdot \vec{v}=F v=(110 \mathrm{~N})(0.22 \mathrm{~m} / \mathrm{s})=24 \mathrm{~W} .
$$

108. The initial kinetic energy of the automobile of mass m moving at speed v_{i} is $K_{i}=\frac{1}{2} m v_{i}^{2}$, where $m=16400 / 9.8=1673 \mathrm{~kg}$. Using Eq. $8-31$ and Eq. $8-33$, this relates to the effect of friction force f in stopping the auto over a distance d by $K_{i}=f d$, where the road is assumed level (so $\Delta U=0$). Thus,

$$
d=\frac{K_{i}}{f}=\frac{m v_{i}^{2}}{2 f}=\frac{(1673 \mathrm{~kg})\left((113 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)\right)^{2}}{2(8230 \mathrm{~N})}=100 \mathrm{~m}
$$

109. (a) We implement Eq. 8-37 as

$$
K_{f}=K_{i}+m g y_{i}-f_{k} d=0+(60)(9.8)(4)-0=2.35 \times 10^{3} \mathrm{~J}
$$

(b) Now it applies with a nonzero thermal term:

$$
K_{f}=K_{i}+m g y_{i}-f_{k} d=0+(60)(9.8)(4)-(500)(4)=352 \mathrm{~J} .
$$

110. (a) We assume his mass is between $m_{1}=50 \mathrm{~kg}$ and $m_{2}=70 \mathrm{~kg}$ (corresponding to a weight between 110 lb and 154 lb). His increase in gravitational potential energy is therefore in the range

$$
\begin{gathered}
m_{1} g h \leq \Delta U \leq m_{2} g h \\
2 \times 10^{5} \leq \Delta U \leq 3 \times 10^{5}
\end{gathered}
$$

in SI units (J), where $h=443 \mathrm{~m}$.
(b) The problem only asks for the amount of internal energy which converts into gravitational potential energy, so this result is the same as in part (a). But if we were to consider his total internal energy "output" (much of which converts to heat) we can expect that external climb is quite different from taking the stairs.
111. With the potential energy reference level set at the point of throwing, we have (with SI units understood)

$$
\Delta E=m g h-\frac{1}{2} m v_{0}^{2}=m\left((9.8)(8.1)-\frac{1}{2}(14)^{2}\right)
$$

which yields $\Delta E=-12 \mathrm{~J}$ for $m=0.63 \mathrm{~kg}$. This "loss" of mechanical energy is presumably due to air friction.
112. (a) The (internal) energy the climber must convert to gravitational potential energy is $\Delta U=m g h=(90)(9.8)(8850)=7.8 \times 10^{6} \mathrm{~J}$.
(b) The number of candy bars this corresponds to is

$$
N=\frac{7.8 \times 10^{6} \mathrm{~J}}{1.25 \times 10^{6} \mathrm{~J} / \mathrm{bar}} \approx 6.2 \mathrm{bars}
$$

113. (a) The acceleration of the sprinter is (using Eq. 2-15)

$$
a=\frac{2 \Delta x}{t^{2}}=\frac{(2)(7.0 \mathrm{~m})}{(1.6 \mathrm{~s})^{2}}=5.47 \mathrm{~m} / \mathrm{s}^{2}
$$

Consequently, the speed at $t=1.6 \mathrm{~s}$ is $v=a t=\left(5.47 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~s})=8.8 \mathrm{~m} / \mathrm{s}$. Alternatively, Eq. 2-17 could be used.
(b) The kinetic energy of the sprinter (of weight w and mass $m=w / g$) is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(\frac{w}{g}\right) v^{2}=\frac{(670)(8.8)^{2}}{2(9.8)}=2.6 \times 10^{3} \mathrm{~J}
$$

(c) The average power is

$$
P_{\text {avg }}=\frac{\Delta K}{\Delta t}=\frac{2.6 \times 10^{3} \mathrm{~J}}{1.6 \mathrm{~s}}=1.6 \times 10^{3} \mathrm{~W} .
$$

114. We note that in one second, the block slides $d=1.34 \mathrm{~m}$ up the incline, which means its height increase is $h=d \sin \theta$ where

$$
\theta=\tan ^{-1}\left(\frac{30}{40}\right)=37^{\circ}
$$

We also note that the force of kinetic friction in this inclined plane problem is $f_{k}=\mu_{k} m g \cos \theta$, where $\mu_{k}=0.40$ and $m=1400 \mathrm{~kg}$. Thus, using Eq. 8-31 and Eq. 8-33, we find

$$
W=m g h+f_{k} d=m g d\left(\sin \theta+\mu_{k} \cos \theta\right)
$$

or $W=1.69 \times 10^{4} \mathrm{~J}$ for this one-second interval. Thus, the power associated with this is

$$
P=\frac{1.69 \times 10^{4} \mathrm{~J}}{1 \mathrm{~s}}=1.69 \times 10^{4} \mathrm{~W} \approx 1.7 \times 10^{4} \mathrm{~W}
$$

115. (a) During the final $d=12 \mathrm{~m}$ of motion, we use

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2}+f_{k} d \\
\frac{1}{2} m v^{2}+0 & =0+0+f_{k} d
\end{aligned}
$$

where $v=4.2 \mathrm{~m} / \mathrm{s}$. This gives $f_{k}=0.31 \mathrm{~N}$. Therefore, the thermal energy change is $f_{k} d=3.7 \mathrm{~J}$.
(b) Using $f_{k}=0.31 \mathrm{~N}$ we obtain $f_{k} d_{\text {total }}=4.3 \mathrm{~J}$ for the thermal energy generated by friction; here, $d_{\text {total }}=14 \mathrm{~m}$.
(c) During the initial $d^{\prime}=2 \mathrm{~m}$ of motion, we have

$$
K_{0}+U_{0}+W_{\mathrm{app}}=K_{1}+U_{1}+f_{k} d^{\prime} \Rightarrow 0+0+W_{\mathrm{app}}=\frac{1}{2} m v^{2}+0+f_{k} d^{\prime}
$$

which essentially combines Eq. 8-31 and Eq. 8-33. This leads to the result $W_{\text {app }}=4.3 \mathrm{~J}$, and - reasonably enough - is the same as our answer in part (b).
116. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial gravitational potential energy measured relative to where he momentarily stops is what becomes the elastic potential energy of the stretched net (neglecting air friction). Thus,

$$
U_{\text {net }}=U_{\text {grav }}=m g h
$$

where $h=11.0+1.5=12.5 \mathrm{~m}$. With $m=70 \mathrm{~kg}$, we obtain $U_{\text {net }}=8580 \mathrm{~J} \approx 8.6 \times 10^{3} \mathrm{~J}$.
117. (a) The compression is "spring-like" so the maximum force relates to the distance x by Hooke's law:

$$
F_{\mathrm{x}}=k x \Rightarrow x=\frac{750}{2.5 \times 10^{5}}=0.0030 \mathrm{~m} .
$$

(b) The work is what produces the "spring-like" potential energy associated with the compression. Thus, using Eq. 8-11,

$$
W=\frac{1}{2} k x^{2}=\frac{1}{2}\left(2.5 \times 10^{5}\right)(0.0030)^{2}=1.1 \mathrm{~J} .
$$

(c) By Newton's third law, the force F exerted by the tooth is equal and opposite to the "spring-like" force exerted by the licorice, so the graph of F is a straight line of slope k. We plot F (in newtons) versus x (in millimeters); both are taken as positive.

(d) As mentioned in part (b), the spring potential energy expression is relevant. Now, whether or not we can ignore dissipative processes is a deeper question. In other words, it seems unlikely that - if the tooth at any moment were to reverse its motion - that the licorice could "spring back" to its original shape. Still, to the extent that $U=\frac{1}{2} k x^{2}$ applies, the graph is a parabola (not shown here) which has its vertex at the origin and is either concave upward or concave downward depending on how one wishes to define the sign of F (the connection being $F=-d U / d x$).
(e) As a crude estimate, the area under the curve is roughly half the area of the entire plotting-area (8000 N by 12 mm). This leads to an approximate work of
$\frac{1}{2}(8000)(0.012) \approx 50 \mathrm{~J}$. Estimates in the range $40 \leq W \leq 50 \mathrm{~J}$ are acceptable.
(f) Certainly dissipative effects dominate this process, and we cannot assign it a meaningful potential energy.
118. (a) This part is essentially a free-fall problem, which can be easily done with Chapter 2 methods. Instead, choosing energy methods, we take $y=0$ to be the ground level.

$$
K_{i}+U_{i}=K+U \Rightarrow 0+m g y_{i}=\frac{1}{2} m v^{2}+0
$$

Therefore $v=\sqrt{2 g y_{i}}=9.2 \mathrm{~m} / \mathrm{s}$, where $y_{i}=4.3 \mathrm{~m}$.
(b) Eq. 8-29 provides $\Delta E_{\mathrm{th}}=f_{k} d$ for thermal energy generated by the kinetic friction force. We apply Eq. 8-31:

$$
K_{i}+U_{i}=K+U \Rightarrow 0+m g y_{i}=\frac{1}{2} m v^{2}+0+f_{k} d .
$$

With $d=y_{i}, m=70 \mathrm{~kg}$ and $f_{k}=500 \mathrm{~N}$, this yields $v=4.8 \mathrm{~m} / \mathrm{s}$.
119. (a) When there is no change in potential energy, Eq. 8-24 leads to

$$
W_{\mathrm{app}}=\Delta K=\frac{1}{2} m\left(v^{2}-v_{0}^{2}\right) .
$$

Therefore, $\Delta E=6.0 \times 10^{3} \mathrm{~J}$.
(b) From the above manipulation, we see $W_{\text {app }}=6.0 \times 10^{3} \mathrm{~J}$. Also, from Chapter 2, we know that $\Delta t=\Delta v / a=10 \mathrm{~s}$. Thus, using Eq. 7-42,

$$
P_{\text {avg }}=\frac{W}{\Delta t}=\frac{6.0 \times 10^{3}}{10}=600 \mathrm{~W} .
$$

(c) and (d) The constant applied force is $m a=30 \mathrm{~N}$ and clearly in the direction of motion, so Eq. 7-48 provides the results for instantaneous power

$$
P=\vec{F} \cdot \vec{v}= \begin{cases}300 \mathrm{~W} & \text { for } v=10 \mathrm{~m} / \mathrm{s} \\ 900 \mathrm{~W} & \text { for } v=30 \mathrm{~m} / \mathrm{s}\end{cases}
$$

We note that the average of these two values agrees with the result in part (b).
120. The distance traveled up the incline can be figured with Chapter 2 techniques: $v^{2}=v_{0}^{2}+2 a \Delta x \rightarrow \Delta x=200 \mathrm{~m}$. This corresponds to an increase in height equal to $y=200 \sin \theta=17 \mathrm{~m}$, where $\theta=5.0^{\circ}$. We take its initial height to be $y=0$.
(a) Eq. 8-24 leads to

$$
W_{\mathrm{app}}=\Delta E=\frac{1}{2} m\left(v^{2}-v_{0}^{2}\right)+m g y .
$$

Therefore, $\Delta E=8.6 \times 10^{3} \mathrm{~J}$.
(b) From the above manipulation, we see $W_{\text {app }}=8.6 \times 10^{3} \mathrm{~J}$. Also, from Chapter 2, we know that $\Delta t=\Delta v / a=10 \mathrm{~s}$. Thus, using Eq. 7-42,

$$
P_{\text {avg }}=\frac{W}{\Delta t}=\frac{8.6 \times 10^{3}}{10}=860 \mathrm{~W}
$$

where the answer has been rounded off (from the 856 value that is provided by the calculator).
(c) and (d) Taking into account the component of gravity along the incline surface, the applied force is $m a+m g \sin \theta=43 \mathrm{~N}$ and clearly in the direction of motion, so Eq. 7-48 provides the results for instantaneous power

$$
P=\vec{F} \cdot \vec{v}= \begin{cases}430 \mathrm{~W} & \text { for } v=10 \mathrm{~m} / \mathrm{s} \\ 1300 \mathrm{~W} & \text { for } v=30 \mathrm{~m} / \mathrm{s}\end{cases}
$$

where these answers have been rounded off (from 428 and 1284, respectively). We note that the average of these two values agrees with the result in part (b).
121. We want to convert (at least in theory) the water that falls through $h=500 \mathrm{~m}$ into electrical energy. The problem indicates that in one year, a volume of water equal to $A \Delta z$ lands in the form of rain on the country, where $A=8 \times 10^{12} \mathrm{~m}^{2}$ and $\Delta z=0.75 \mathrm{~m}$. Multiplying this volume by the density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ leads to

$$
m_{\text {total }}=\rho A \Delta z=(1000)\left(8 \times 10^{12}\right)(0.75)=6 \times 10^{15} \mathrm{~kg}
$$

for the mass of rainwater. One-third of this "falls" to the ocean, so it is $m=2 \times 10^{15} \mathrm{~kg}$ that we want to use in computing the gravitational potential energy mgh (which will turn into electrical energy during the year). Since a year is equivalent to $3.2 \times 10^{7} \mathrm{~s}$, we obtain

$$
P_{\text {avg }}=\frac{\left(2 \times 10^{15}\right)(9.8)(500)}{3.2 \times 10^{7}}=3.1 \times 10^{11} \mathrm{~W}
$$

122. From Eq. 8-6, we find (with SI units understood)

$$
U(\xi)=-\int_{0}^{\xi}\left(-3 x-5 x^{2}\right) d x=\frac{3}{2} \xi^{2}+\frac{5}{3} \xi^{3} .
$$

(a) Using the above formula, we obtain $U(2) \approx 19 \mathrm{~J}$.
(b) When its speed is $v=4 \mathrm{~m} / \mathrm{s}$, its mechanical energy is $\frac{1}{2} m v^{2}+U(5)$. This must equal the energy at the origin:

$$
\frac{1}{2} m v^{2}+U(5)=\frac{1}{2} m v_{\mathrm{o}}^{2}+U(0)
$$

so that the speed at the origin is

$$
v_{\mathrm{o}}=\sqrt{v^{2}+\frac{2}{m}(U(5)-U(0))}
$$

Thus, with $U(5)=246 \mathrm{~J}, U(0)=0$ and $m=20 \mathrm{~kg}$, we obtain $v_{\mathrm{o}}=6.4 \mathrm{~m} / \mathrm{s}$.
(c) Our original formula for U is changed to

$$
U(x)=-8+\frac{3}{2} x^{2}+\frac{5}{3} x^{3}
$$

in this case. Therefore, $U(2)=11 \mathrm{~J}$. But we still have $v_{0}=6.4 \mathrm{~m} / \mathrm{s}$ since that calculation only depended on the difference of potential energy values (specifically, $U(5)-U(0)$).
123. The spring is relaxed at $y=0$, so the elastic potential energy (Eq. 8-11) is $U_{\text {el }}=\frac{1}{2} k y^{2}$. The total energy is conserved, and is zero (determined by evaluating it at its initial position). We note that U is the same as ΔU in these manipulations. Thus, we have

$$
0=K+U_{g}+U_{e} \Rightarrow K=-U_{g}-U_{e}
$$

where $U_{g}=m g y=(20 \mathrm{~N}) y$ with y in meters (so that the energies are in Joules). We arrange the results in a table:

position y	-0.05	-0.10	-0.15	-0.20
K	(a) 0.75	(d) 1.0	(g) 0.75	(j) 0
U_{g}	(b) -1.0	(e) -2.0	(h) -3.0	(k) -4.0
U_{e}	(c) 0.25	(f) 1.0	(i) 2.25	(l) 4.0

124. We take her original elevation to be the $y=0$ reference level and observe that the top of the hill must consequently have $y_{A}=R\left(1-\cos 20^{\circ}\right)=1.2 \mathrm{~m}$, where R is the radius of the hill. The mass of the skier is $600 / 9.8=61 \mathrm{~kg}$.
(a) Applying energy conservation, Eq. 8-17, we have

$$
K_{B}+U_{B}=K_{A}+U_{A} \Rightarrow K_{B}+0=K_{A}+m g y_{A} .
$$

Using $K_{B}=\frac{1}{2}(61 \mathrm{~kg})(8.0 \mathrm{~m} / \mathrm{s})^{2}$, we obtain $K_{A}=1.2 \times 10^{3} \mathrm{~J}$. Thus, we find the speed at the hilltop is

$$
v=\sqrt{2 K / m}=6.4 \mathrm{~m} / \mathrm{s} .
$$

Note: one might wish to check that the skier stays in contact with the hill - which is indeed the case, here. For instance, at A we find $v^{2} / r \approx 2 \mathrm{~m} / \mathrm{s}^{2}$ which is considerably less than g.
(b) With $K_{A}=0$, we have

$$
K_{B}+U_{B}=K_{A}+U_{A} \Rightarrow K_{B}+0=0+m g y_{A}
$$

which yields $K_{B}=724 \mathrm{~J}$, and the corresponding speed is

$$
v=\sqrt{2 K / m}=4.9 \mathrm{~m} / \mathrm{s} .
$$

(c) Expressed in terms of mass, we have

$$
\begin{aligned}
K_{B}+U_{B} & =K_{A}+U_{A} \Rightarrow \\
\frac{1}{2} m v_{B}^{2}+m g y_{B} & =\frac{1}{2} m v_{A}^{2}+m g y_{A} .
\end{aligned}
$$

Thus, the mass m cancels, and we observe that solving for speed does not depend on the value of mass (or weight).
125. The power generation (assumed constant, so average power is the same as instantaneous power) is

$$
P=\frac{m g h}{t}=\frac{(3 / 4)\left(1200 \mathrm{~m}^{3}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(100 \mathrm{~m})}{1.0 \mathrm{~s}}=8.80 \times 10^{8} \mathrm{~W}
$$

126. (a) The rate of change of the gravitational potential energy is

$$
\frac{d U}{d t}=m g \frac{d y}{d t}=-m g|v|=-(68)(9.8)(59)=-3.9 \times 10^{4} \mathrm{~J} / \mathrm{s}
$$

Thus, the gravitational energy is being reduced at the rate of $3.9 \times 10^{4} \mathrm{~W}$.
(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus the rate at which the mechanical energy is being dissipated is the same as that of the gravitational potential energy $\left(3.9 \times 10^{4} \mathrm{~W}\right)$.
127. (a) At the top of its flight, the vertical component of the velocity vanishes, and the horizontal component (neglecting air friction) is the same as it was when it was thrown. Thus,

$$
K_{\text {top }}=\frac{1}{2} m v_{x}^{2}=\frac{1}{2}(0.050 \mathrm{~kg})\left((8.0 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}\right)^{2}=1.2 \mathrm{~J} .
$$

(b) We choose the point 3.0 m below the window as the reference level for computing the potential energy. Thus, equating the mechanical energy when it was thrown to when it is at this reference level, we have (with SI units understood)

$$
\begin{aligned}
m g y_{0}+K_{0} & =K \\
m(9.8)(3.0)+\frac{1}{2} m(8.0)^{2} & =\frac{1}{2} m v^{2}
\end{aligned}
$$

which yields (after canceling m and simplifying) $v=11 \mathrm{~m} / \mathrm{s}$.
(c) As mentioned, m cancels - and is therefore not relevant to that computation.
(d) The v in the kinetic energy formula is the magnitude of the velocity vector; it does not depend on the direction.
128. Eq. $8-8$ leads directly to $\Delta y=\frac{68000 \mathrm{~J}}{(9.4 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=738 \mathrm{~m}$.
129. (a) Sample Problem 8-3 illustrates simple energy conservation in a similar situation, and derives the frequently encountered relationship: $\mathrm{v}=\sqrt{2 g h}$. In our present problem, the height change is equal to the rod length L. Thus, using the suggested notation for the speed, we have

$$
v_{\mathrm{o}}=\sqrt{2 g L} .
$$

(b) At B the speed is (from Eq. 8-17) $v=\sqrt{v_{0}^{2}+2 g L}=\sqrt{4 g L}$. The direction of the centripetal acceleration $\left(v^{2} / r=4 g L / L=4 g\right)$ is upward (at that moment), as is the tension force. Thus, Newton's second law gives

$$
T-m g=m(4 g) \Rightarrow T=5 m g
$$

(c) The difference in height between C and D is L, so the "loss" of mechanical energy (which goes into thermal energy) is $-m g L$.
(d) The difference in height between B and D is $2 L$, so the total "loss" of mechanical energy (which all goes into thermal energy) is $-2 m g L$.
130. Since the period T is $(2.5 \mathrm{rev} / \mathrm{s})^{-1}=0.40 \mathrm{~s}$, then Eq. $4-33$ leads to $v=3.14 \mathrm{~m} / \mathrm{s}$. The frictional force has magnitude (using Eq. 6-2)

$$
f=\mu_{k} F_{N}=(0.320)(180 \mathrm{~N})=57.6 \mathrm{~N} .
$$

The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48 gives $P=(57.6 \mathrm{~N})(3.14 \mathrm{~m} / \mathrm{s})=181 \mathrm{~W}$.
131. (a) During one second, the decrease in potential energy is

$$
-\Delta U=m g(-\Delta y)=\left(5.5 \times 10^{6} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(50 \mathrm{~m})=2.7 \times 10^{9} \mathrm{~J}
$$

where $+y$ is upward and $\Delta y=y_{f}-y_{i}$.
(b) The information relating mass to volume is not needed in the computation. By Eq. 8-40 (and the SI relation $\mathrm{W}=\mathrm{J} / \mathrm{s}$), the result follows:

$$
P=\left(2.7 \times 10^{9} \mathrm{~J}\right) /(1 \mathrm{~s})=2.7 \times 10^{9} \mathrm{~W}
$$

(c) One year is equivalent to $24 \times 365.25=8766 \mathrm{~h}$ which we write as 8.77 kh . Thus, the energy supply rate multiplied by the cost and by the time is

$$
\left(2.7 \times 10^{9} \mathrm{~W}\right)(8.77 \mathrm{kh})\left(\frac{1 \mathrm{cent}}{1 \mathrm{kWh}}\right)=2.4 \times 10^{10} \text { cents }=\$ 2.4 \times 10^{8}
$$

132. The water has gained

$$
\Delta K=\frac{1}{2}(10 \mathrm{~kg})(13 \mathrm{~m} / \mathrm{s})^{2}-\frac{1}{2}(10 \mathrm{~kg})(3.2 \mathrm{~m} / \mathrm{s})^{2}=794 \mathrm{~J}
$$

of kinetic energy, and it has lost $\Delta U=(10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m})=1470 \mathrm{~J}$.
of potential energy (the lack of agreement between these two values is presumably due to transfer of energy into thermal forms). The ratio of these values is $0.54=54 \%$. The mass of the water cancels when we take the ratio, so that the assumption (stated at the end of the problem: $m=10 \mathrm{~kg}$) is not needed for the final result.
133. The style of reasoning used here is presented in §8-5.
(a) The horizontal line representing E_{1} intersects the potential energy curve at a value of r $\approx 0.07 \mathrm{~nm}$ and seems not to intersect the curve at larger r (though this is somewhat unclear since $U(r)$ is graphed only up to $r=0.4 \mathrm{~nm}$). Thus, if m were propelled towards M from large r with energy E_{1} it would "turn around" at 0.07 nm and head back in the direction from which it came.
(b) The line representing E_{2} has two intersection points $r_{1} \approx 0.16 \mathrm{~nm}$ and $r_{2} \approx 0.28 \mathrm{~nm}$ with the $U(r)$ plot. Thus, if m starts in the region $r_{1}<r<r_{2}$ with energy E_{2} it will bounce back and forth between these two points, presumably forever.
(c) At $r=0.3 \mathrm{~nm}$, the potential energy is roughly $U=-1.1 \times 10^{-19} \mathrm{~J}$.
(d) With $M \gg m$, the kinetic energy is essentially just that of m. Since $E=1 \times 10^{-19} \mathrm{~J}$, its kinetic energy is $K=E-U \approx 2.1 \times 10^{-19} \mathrm{~J}$.
(e) Since force is related to the slope of the curve, we must (crudely) estimate $|F| \approx 1 \times 10^{-9} \mathrm{~N}$ at this point. The sign of the slope is positive, so by Eq. $8-20$, the force is negative-valued. This is interpreted to mean that the atoms are attracted to each other.
(f) Recalling our remarks in the previous part, we see that the sign of F is positive (meaning it's repulsive) for $r<0.2 \mathrm{~nm}$.
(g) And the sign of F is negative (attractive) for $r>0.2 \mathrm{~nm}$.
(h) At $r=0.2 \mathrm{~nm}$, the slope (hence, F) vanishes.
134. (a) The force (SI units understood) from Eq. 8-20 is plotted in the graph below.

(b) The potential energy $U(\mathrm{x})$ and the kinetic energy $K(x)$ are shown in the next. The potential energy curve begins at 4 and drops (until about $x=2$); the kinetic energy curve is the one that starts at zero and rises (until about $x=2$).

135. (a) The integral (see Eq. 8-6, where the value of U at $x=\infty$ is required to vanish) is straightforward. The result is

$$
U(x)=-G m_{1} m_{2} / x .
$$

(b) One approach is to use Eq. 8-5, which means that we are effectively doing the integral of part (a) all over again. Another approach is to use our result from part (a) (and thus use Eq. 8-1). Either way, we arrive at

$$
W=\frac{G m_{1} m_{2}}{x_{1}}-\frac{G m_{1} m_{2}}{x_{1}+d}=\frac{G m_{1} m_{2} d}{x_{1}\left(x_{1}+d\right)} .
$$

136. Let the amount of stretch of the spring be x. For the object to be in equilibrium

$$
k x-m g=0 \Rightarrow x=m g / k .
$$

Thus the gain in elastic potential energy for the spring is

$$
\Delta U_{e}=\frac{1}{2} k x^{2}=\frac{1}{2} k\left(\frac{m g}{k}\right)^{2}=\frac{m^{2} g^{2}}{2 k}
$$

while the loss in the gravitational potential energy of the system is

$$
-\Delta U_{g}=m g x=m g\left(\frac{m g}{k}\right)=\frac{m^{2} g^{2}}{k}
$$

which we see (by comparing with the previous expression) is equal to $2 \Delta U_{e}$. The reason why $\left|\Delta U_{g}\right| \neq \Delta U_{e}$ is that, since the object is slowly lowered, an upward external force (e.g., due to the hand) must have been exerted on the object during the lowering process, preventing it from accelerating downward. This force does negative work on the object, reducing the total mechanical energy of the system.

1. Our notation is as follows: $x_{1}=0$ and $y_{1}=0$ are the coordinates of the $m_{1}=3.0 \mathrm{~kg}$ particle; $x_{2}=2.0 \mathrm{~m}$ and $y_{2}=1.0 \mathrm{~m}$ are the coordinates of the $m_{2}=4.0 \mathrm{~kg}$ particle; and, x_{3} $=1.0 \mathrm{~m}$ and $y_{3}=2.0 \mathrm{~m}$ are the coordinates of the $m_{3}=8.0 \mathrm{~kg}$ particle.
(a) The x coordinate of the center of mass is

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{0+(4.0 \mathrm{~kg})(2.0 \mathrm{~m})+(8.0 \mathrm{~kg})(1.0 \mathrm{~m})}{3.0 \mathrm{~kg}+4.0 \mathrm{~kg}+8.0 \mathrm{~kg}}=1.1 \mathrm{~m} .
$$

(b) The y coordinate of the center of mass is

$$
y_{\mathrm{com}}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{0+(4.0 \mathrm{~kg})(1.0 \mathrm{~m})+(8.0 \mathrm{~kg})(2.0 \mathrm{~m})}{3.0 \mathrm{~kg}+4.0 \mathrm{~kg}+8.0 \mathrm{~kg}}=1.3 \mathrm{~m} .
$$

(c) As the mass of m_{3}, the topmost particle, is increased, the center of mass shifts toward that particle. As we approach the limit where m_{3} is infinitely more massive than the others, the center of mass becomes infinitesimally close to the position of m_{3}.
2. We use Eq. 9-5 (with SI units understood).
(a) The x coordinates of the system's center of mass is:

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2.00)(-1.20)+(4.00)(0.600)+(3.00) x_{3}}{2.00+4.00+3.00}=-0.500
$$

Solving the equation yields $x_{3}=-1.50 \mathrm{~m}$.
(b) The y coordinates of the system's center of mass is:

$$
y_{\mathrm{com}}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2.00)(0.500)+(4.00)(-0.750)+(3.00) y_{3}}{2.00+4.00+3.00}=-0.700
$$

Solving the equation yields $y_{3}=-1.43 \mathrm{~m}$.
3. We will refer to the arrangement as a "table." We locate the coordinate origin at the left end of the tabletop (as shown in Fig. 9-37). With $+x$ rightward and $+y$ upward, then the center of mass of the right leg is at $(x, y)=(+L,-L / 2)$, the center of mass of the left leg is at $(x, y)=(0,-L / 2)$, and the center of mass of the tabletop is at $(x, y)=(L / 2,0)$.
(a) The x coordinate of the (whole table) center of mass is

$$
x_{\mathrm{com}}=\frac{M(+L)+M(0)+3 M(+L / 2)}{M+M+3 M}=0.5 L .
$$

With $L=22 \mathrm{~cm}$, we have $x_{\text {com }}=11 \mathrm{~cm}$.
(b) The y coordinate of the (whole table) center of mass is

$$
y_{\mathrm{com}}=\frac{M(-L / 2)+M(-L / 2)+3 M(0)}{M+M+3 M}=-\frac{L}{5},
$$

or $y_{\mathrm{com}}=-4.4 \mathrm{~cm}$.
From the coordinates, we see that the whole table center of mass is a small distance 4.4 cm directly below the middle of the tabletop.
4. Since the plate is uniform, we can split it up into three rectangular pieces, with the mass of each piece being proportional to its area and its center of mass being at its geometric center. We'll refer to the large $35 \mathrm{~cm} \times 10 \mathrm{~cm}$ piece (shown to the left of the y axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at $\left(x_{1}, y_{1}\right)=(-5.0 \mathrm{~cm},-2.5 \mathrm{~cm})$. The top $20 \mathrm{~cm} \times 5 \mathrm{~cm}$ piece (section 2, in the first quadrant) has 18.2% of the total area; its center of mass is at $\left(x_{2}, y_{2}\right)=(10 \mathrm{~cm}, 12.5 \mathrm{~cm})$. The bottom $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ piece (section 3) also has 18.2% of the total area; its center of mass is at $\left(x_{3}, y_{3}\right)=(5 \mathrm{~cm},-15 \mathrm{~cm})$.
(a) The x coordinate of the center of mass for the plate is

$$
x_{\mathrm{com}}=(0.636) x_{1}+(0.182) x_{2}+(0.182) x_{3}=-0.45 \mathrm{~cm} .
$$

(b) The y coordinate of the center of mass for the plate is

$$
y_{\mathrm{com}}=(0.636) y_{1}+(0.182) y_{2}+(0.182) y_{3}=-2.0 \mathrm{~cm} .
$$

5. (a) By symmetry the center of mass is located on the axis of symmetry of the molecule - the y axis. Therefore $x_{\text {com }}=0$.
(b) To find $y_{\text {com }}$, we note that $3 m_{\mathrm{H}} y_{\mathrm{com}}=m_{\mathrm{N}}\left(y_{\mathrm{N}}-y_{\mathrm{com}}\right)$, where y_{N} is the distance from the nitrogen atom to the plane containing the three hydrogen atoms:

$$
y_{\mathrm{N}}=\sqrt{\left(10.14 \times 10^{-11} \mathrm{~m}\right)^{2}-\left(9.4 \times 10^{-11} \mathrm{~m}\right)^{2}}=3.803 \times 10^{-11} \mathrm{~m} .
$$

Thus,

$$
y_{\mathrm{com}}=\frac{m_{\mathrm{N}} y_{\mathrm{N}}}{m_{\mathrm{N}}+3 m_{\mathrm{H}}}=\frac{(14.0067)\left(3.803 \times 10^{-11} \mathrm{~m}\right)}{14.0067+3(1.00797)}=3.13 \times 10^{-11} \mathrm{~m}
$$

where Appendix F has been used to find the masses.
6. We use Eq. $9-5$ to locate the coordinates.
(a) By symmetry $x_{\text {com }}=-d_{1} / 2=-13 \mathrm{~cm} / 2=-6.5 \mathrm{~cm}$. The negative value is due to our choice of the origin.
(b) We find $y_{\text {com }}$ as

$$
\begin{aligned}
y_{\mathrm{com}} & =\frac{m_{i} y_{\mathrm{com}, i}+m_{a} y_{\mathrm{com}, a}}{m_{i}+m_{a}}=\frac{\rho_{i} V_{i} y_{\mathrm{com}, i}+\rho_{a} V_{a} y_{\mathrm{cm}, a}}{\rho_{i} V_{i}+\rho_{a} V_{a}} \\
& =\frac{(11 \mathrm{~cm} / 2)\left(7.85 \mathrm{~g} / \mathrm{cm}^{3}\right)+3(11 \mathrm{~cm} / 2)\left(2.7 \mathrm{~g} / \mathrm{cm}^{3}\right)}{7.85 \mathrm{~g} / \mathrm{cm}^{3}+2.7 \mathrm{~g} / \mathrm{cm}^{3}}=8.3 \mathrm{~cm} .
\end{aligned}
$$

(c) Again by symmetry, we have $z_{\mathrm{com}}=2.8 \mathrm{~cm} / 2=1.4 \mathrm{~cm}$.
7. The centers of mass (with centimeters understood) for each of the five sides are as follows:

$$
\begin{aligned}
\left(x_{1}, y_{1}, z_{1}\right)=(0,20,20) & \text { for the side in the } y z \text { plane } \\
\left(x_{2}, y_{2}, z_{2}\right)=(20,0,20) & \text { for the side in the } x z \text { plane } \\
\left(x_{3}, y_{3}, z_{3}\right)=(20,20,0) & \text { for the side in the } x y \text { plane } \\
\left(x_{4}, y_{4}, z_{4}\right)=(40,20,20) & \text { for the remaining side parallel to side } 1 \\
\left(x_{5}, y_{5}, z_{5}\right)=(20,40,20) & \text { for the remaining side parallel to side } 2
\end{aligned}
$$

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the results (the first two being expected based on the symmetry of the problem).
(a) The x coordinate of the center of mass is

$$
x_{\mathrm{com}}=\frac{m x_{1}+m x_{2}+m x_{3}+m x_{4}+m x_{5}}{5 m}=\frac{0+20+20+40+20}{5}=20 \mathrm{~cm}
$$

(b) The y coordinate of the center of mass is

$$
y_{\mathrm{com}}=\frac{m y_{1}+m y_{2}+m y_{3}+m y_{4}+m y_{5}}{5 m}=\frac{20+0+20+20+40}{5}=20 \mathrm{~cm}
$$

(c) The z coordinate of the center of mass is

$$
z_{\mathrm{com}}=\frac{m z_{1}+m z_{2}+m z_{3}+m z_{4}+m z_{5}}{5 m}=\frac{20+20+0+20+20}{5}=16 \mathrm{~cm}
$$

8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance $H / 2$ above its base. The center of mass of the soda alone is at its geometrical center, a distance $x / 2$ above the base of the can. When the can is full this is $H / 2$. Thus the center of mass of the can and the soda it contains is a distance

$$
h=\frac{M(H / 2)+m(H / 2)}{M+m}=\frac{H}{2}
$$

above the base, on the cylinder axis. With $H=12 \mathrm{~cm}$, we obtain $h=6.0 \mathrm{~cm}$.
(b) We now consider the can alone. The center of mass is $H / 2=6.0 \mathrm{~cm}$ above the base, on the cylinder axis.
(c) As x decreases the center of mass of the soda in the can at first drops, then rises to $H / 2$ $=6.0 \mathrm{~cm}$ again.
(d) When the top surface of the soda is a distance x above the base of the can, the mass of the soda in the can is $m_{p}=m(x / H)$, where m is the mass when the can is full $(x=H)$. The center of mass of the soda alone is a distance $x / 2$ above the base of the can. Hence

$$
h=\frac{M(H / 2)+m_{p}(x / 2)}{M+m_{p}}=\frac{M(H / 2)+m(x / H)(x / 2)}{M+(m x / H)}=\frac{M H^{2}+m x^{2}}{2(M H+m x)} .
$$

We find the lowest position of the center of mass of the can and soda by setting the derivative of h with respect to x equal to 0 and solving for x. The derivative is

$$
\frac{d h}{d x}=\frac{2 m x}{2(M H+m x)}-\frac{\left(M H^{2}+m x^{2}\right) m}{2(M H+m x)^{2}}=\frac{m^{2} x^{2}+2 M m H x-M m H^{2}}{2(M H+m x)^{2}}
$$

The solution to $m^{2} x^{2}+2 M m H x-M m H^{2}=0$ is

$$
x=\frac{M H}{m}\left(-1+\sqrt{1+\frac{m}{M}}\right) .
$$

The positive root is used since x must be positive. Next, we substitute the expression found for x into $h=\left(M H^{2}+m x^{2}\right) / 2(M H+m x)$. After some algebraic manipulation we obtain

$$
\begin{aligned}
& h=\frac{H M}{m}\left(\sqrt{1+\frac{m}{M}}-1\right) \\
& =\frac{(12 \mathrm{~cm})(0.14 \mathrm{~kg})}{1.31 \mathrm{~kg}}\left(\sqrt{1+\frac{1.31}{0.14}}-1\right)=2.8 \mathrm{~cm}
\end{aligned}
$$

9. We use the constant-acceleration equations of Table 2-1 (with $+y$ downward and the origin at the release point), Eq. $9-5$ for $y_{\text {com }}$ and Eq. $9-17$ for $\vec{v}_{\text {com }}$.
(a) The location of the first stone (of mass m_{1}) at $t=300 \times 10^{-3} \mathrm{~s}$ is

$$
y_{1}=(1 / 2) g t^{2}=(1 / 2)(9.8)\left(300 \times 10^{-3}\right)^{2}=0.44 \mathrm{~m}
$$

and the location of the second stone (of mass $m_{2}=2 m_{1}$) at $t=300 \times 10^{-3} \mathrm{~s}$ is

$$
y_{2}=(1 / 2) g t^{2}=(1 / 2)(9.8)\left(300 \times 10^{-3}-100 \times 10^{-3}\right)^{2}=0.20 \mathrm{~m} .
$$

Thus, the center of mass is at

$$
y_{\mathrm{com}}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}=\frac{m_{1}(0.44 \mathrm{~m})+2 m_{1}(0.20 \mathrm{~m})}{m_{1}+2 m_{2}}=0.28 \mathrm{~m} .
$$

(b) The speed of the first stone at time t is $v_{1}=g t$, while that of the second stone is

$$
v_{2}=g\left(t-100 \times 10^{-3} \mathrm{~s}\right) .
$$

Thus, the center-of-mass speed at $t=300 \times 10^{-3} \mathrm{~s}$ is

$$
\begin{aligned}
v_{\mathrm{com}} & =\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{m_{1}(9.8)\left(300 \times 10^{-3}\right)+2 m_{1}(9.8)\left(300 \times 10^{-3}-100 \times 10^{-3}\right)}{m_{1}+2 m_{1}} \\
& =2.3 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

10. Since the center of mass of the two-skater system does not move, both skaters will end up at the center of mass of the system. Let the center of mass be a distance x from the $40-\mathrm{kg}$ skater, then

$$
(65 \mathrm{~kg})(10 \mathrm{~m}-x)=(40 \mathrm{~kg}) x \Rightarrow x=6.2 \mathrm{~m} .
$$

Thus the $40-\mathrm{kg}$ skater will move by 6.2 m .
11. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic light), Eq. 9-5 for $x_{\text {com }}$ and Eq. $9-17$ for $\vec{v}_{\text {com }}$. At $t=3.0 \mathrm{~s}$, the location of the automobile (of mass m_{1}) is $x_{1}=\frac{1}{2} a t^{2}=\frac{1}{2}\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})^{2}=18 \mathrm{~m}$, while that of the truck (of mass $\left.m_{2}\right)$ is $x_{2}=v t=(8.0 \mathrm{~m} / \mathrm{s})(3.0 \mathrm{~s})=24 \mathrm{~m}$. The speed of the automobile then is $v_{1}=a t=\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})=12 \mathrm{~m} / \mathrm{s}$, while the speed of the truck remains $v_{2}=8.0 \mathrm{~m} / \mathrm{s}$.
(a) The location of their center of mass is

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{(1000 \mathrm{~kg})(18 \mathrm{~m})+(2000 \mathrm{~kg})(24 \mathrm{~m})}{1000 \mathrm{~kg}+2000 \mathrm{~kg}}=22 \mathrm{~m} .
$$

(b) The speed of the center of mass is

$$
v_{\mathrm{com}}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{(1000 \mathrm{~kg})(12 \mathrm{~m} / \mathrm{s})+(2000 \mathrm{~kg})(8.0 \mathrm{~m} / \mathrm{s})}{1000 \mathrm{~kg}+2000 \mathrm{~kg}}=9.3 \mathrm{~m} / \mathrm{s}
$$

12. The implication in the problem regarding \vec{v}_{0} is that the olive and the nut start at rest. Although we could proceed by analyzing the forces on each object, we prefer to approach this using Eq. 9-14. The total force on the nut-olive system is $\vec{F}_{\mathrm{o}}+\vec{F}_{\mathrm{n}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}$ with the unit Newton understood. Thus, Eq. 9-14 becomes

$$
-\hat{\mathrm{i}}+\hat{\mathrm{j}}=M \vec{a}_{\mathrm{com}}
$$

where $M=2.0 \mathrm{~kg}$. Thus, $\vec{a}_{\text {com }}=-\frac{1}{2} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}$ in SI units. Each component is constant, so we apply the equations discussed in Chapters 2 and 4.

$$
\Delta \overrightarrow{\mathrm{r}}_{\mathrm{com}}=\frac{1}{2} \vec{a}_{\mathrm{com}} t^{2}=-4.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}
$$

(in meters) when $t=4.0 \mathrm{~s}$. It is perhaps instructive to work through this problem the long way (separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps to point out the computational advantage of Eq. 9-14.
13. (a) The net force on the system (of total mass $m_{1}+m_{2}$) is $m_{2} g$. Thus, Newton's second law leads to $a=g\left(m_{2} /\left(m_{1}+m_{2}\right)\right)=0.4 g$. For block1, this acceleration is to the right (the \hat{i} direction), and for block 2 this is an acceleration downward (the $-\hat{j}$ direction). Therefore, Eq. 9-18 gives

$$
\vec{a}_{\mathrm{com}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}=\frac{(0.6)(0.4 g \hat{\mathrm{i}})+(0.4)(-0.4 g \hat{j})}{0.6+0.4}=(2.35 \hat{\mathrm{i}}-1.57 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}
$$

(b) Integrating Eq. 4-16, we obtain

$$
\overrightarrow{\mathrm{v}}_{\mathrm{com}}=(2.35 \hat{\mathrm{i}}-1.57 \hat{\mathrm{j}}) t
$$

(with SI units understood), since it started at rest. We note that the ratio of the y component to the x-component (for the velocity vector) does not change with time, and it is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the direction of motion for the center of mass of the system.
(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass is a straight line.
(d) Eq. 3-6 leads to $\theta=-34^{\circ}$. The path of the center of mass is therefore straight, at downward angle 34°.
14. (a) The phrase (in the problem statement) "such that it [particle 2] always stays directly above particle 1 during the flight" means that the shadow (as if a light were directly above the particles shining down on them) of particle 2 coincides with the position of particle 1 , at each moment. We say, in this case, that they are vertically aligned. Because of that alignment, $v_{2 x}=v_{1}=10.0 \mathrm{~m} / \mathrm{s}$. Because the initial value of v_{2} is given as $20.0 \mathrm{~m} / \mathrm{s}$, then (using the Pythagorean theorem) we must have

$$
v_{2 y}=\sqrt{v_{2}^{2}-v_{2 x}^{2}}=\sqrt{300} \mathrm{~m} / \mathrm{s}
$$

for the initial value of the y component of particle 2's velocity. Eq. 2-16 (or conservation of energy) readily yields $y_{\max }=300 / 19.6=15.3 \mathrm{~m}$. Thus, we obtain

$$
H_{\max }=m_{2} y_{\max } / m_{\text {total }}=(3.00)(15.3) / 8.00=5.74 \mathrm{~m} .
$$

(b) Since both particles have the same horizontal velocity, and particle 2's vertical component of velocity vanishes at that highest point, then the center of mass velocity then is simply ($10.0 \mathrm{~m} / \mathrm{s}$) $\hat{\mathrm{i}}$ (as one can verify using Eq. 9-17).
(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so Eq. 9-18 (or Eq. 9-19) leads to

$$
a_{\mathrm{com}}=m_{2} \mathrm{~g} / m_{\text {total }}=(3.00)(9.8) / 8.00=3.68 \mathrm{~m} / \mathrm{s}^{2}
$$

for the magnitude of the downward acceleration of the center of mass of this system. Thus, $\vec{a}_{\text {com }}=\left(-3.68 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$.
15. We need to find the coordinates of the point where the shell explodes and the velocity of the fragment that does not fall straight down. The coordinate origin is at the firing point, the $+x$ axis is rightward, and the $+y$ direction is upward. The y component of the velocity is given by $v=v_{0 y}-g t$ and this is zero at time $t=v_{0} / g=\left(v_{0} / g\right) \sin \theta_{0}$, where v_{0} is the initial speed and θ_{0} is the firing angle. The coordinates of the highest point on the trajectory are

$$
x=v_{0 x} t=v_{0} t \cos \theta_{0}=\frac{v_{0}^{2}}{g} \sin \theta_{0} \cos \theta_{0}=\frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \sin 60^{\circ} \cos 60^{\circ}=17.7 \mathrm{~m}
$$

and

$$
y=v_{0 y} t-\frac{1}{2} g t^{2}=\frac{1}{2} \frac{v_{0}^{2}}{g} \sin ^{2} \theta_{0}=\frac{1}{2} \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \sin ^{2} 60^{\circ}=15.3 \mathrm{~m} .
$$

Since no horizontal forces act, the horizontal component of the momentum is conserved. Since one fragment has a velocity of zero after the explosion, the momentum of the other equals the momentum of the shell before the explosion. At the highest point the velocity of the shell is $v_{0} \cos \theta_{0}$, in the positive x direction. Let M be the mass of the shell and let V_{0} be the velocity of the fragment. Then $M v_{0} \cos \theta_{0}=M V_{0} / 2$, since the mass of the fragment is $M / 2$. This means

$$
V_{0}=2 v_{0} \cos \theta_{0}=2(20 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ}=20 \mathrm{~m} / \mathrm{s} .
$$

This information is used in the form of initial conditions for a projectile motion problem to determine where the fragment lands. Resetting our clock, we now analyze a projectile launched horizontally at time $t=0$ with a speed of $20 \mathrm{~m} / \mathrm{s}$ from a location having coordinates $x_{0}=17.7 \mathrm{~m}, y_{0}=15.3 \mathrm{~m}$. Its y coordinate is given by $y=y_{0}-\frac{1}{2} g t^{2}$, and when it lands this is zero. The time of landing is $t=\sqrt{2 y_{0} / g}$ and the x coordinate of the landing point is

$$
x=x_{0}+V_{0} t=x_{0}+V_{0} \sqrt{\frac{2 y_{0}}{g}}=17.7 \mathrm{~m}+(20 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2(15.3 \mathrm{~m})}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=53 \mathrm{~m} .
$$

16. We denote the mass of Ricardo as M_{R} and that of Carmelita as M_{C}. Let the center of mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the middle of the canoe of length L and mass m. Then $M_{R}(L / 2-x)=m x+M_{C}(L / 2+x)$. Now, after they switch positions, the center of the canoe has moved a distance $2 x$ from its initial position. Therefore, $x=40 \mathrm{~cm} / 2=0.20 \mathrm{~m}$, which we substitute into the above equation to solve for M_{C} :

$$
M_{C}=\frac{M_{R}(L / 2-x)-m x}{L / 2+x}=\frac{(80)\left(\frac{3.0}{2}-0.20\right)-(30)(0.20)}{(3.0 / 2)+0.20}=58 \mathrm{~kg} .
$$

17. There is no net horizontal force on the dog-boat system, so their center of mass does not move. Therefore by Eq. $9-16, M \Delta x_{\text {com }}=0=m_{b} \Delta x_{b}+m_{d} \Delta x_{d}$, which implies

$$
\left|\Delta x_{b}\right|=\frac{m_{d}}{m_{b}}\left|\Delta x_{d}\right| .
$$

Now we express the geometrical condition that relative to the boat the dog has moved a distance $d=2.4 \mathrm{~m}$:

$$
\left|\Delta x_{b}\right|+\left|\Delta x_{d}\right|=d
$$

which accounts for the fact that the dog moves one way and the boat moves the other. We substitute for $\left|\Delta x_{b}\right|$ from above:

$$
\frac{m_{d}}{m_{b}}\left|\left(\Delta x_{d}\right)\right|+\left|\Delta x_{d}\right|=d
$$

which leads to $\left|\Delta x_{d}\right|=\frac{d}{1+\frac{m_{d}}{m_{b}}}=\frac{2.4}{1+\frac{4.5}{18}}=1.92 \mathrm{~m}$.
The dog is therefore 1.9 m closer to the shore than initially (where it was $D=6.1 \mathrm{~m}$ from it). Thus, it is now $D-\left|\Delta x_{d}\right|=4.2 \mathrm{~m}$ from the shore.
18. The magnitude of the ball's momentum change is

$$
\Delta p=\left|m v_{i}-m v_{f}\right|=(0.70 \mathrm{~kg})|5.0 \mathrm{~m} / \mathrm{s}-(-2.0 \mathrm{~m} / \mathrm{s})|=4.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

19. (a) The change in kinetic energy is

$$
\begin{aligned}
\Delta K & =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2}(2100 \mathrm{~kg})\left((51 \mathrm{~km} / \mathrm{h})^{2}-(41 \mathrm{~km} / \mathrm{h})^{2}\right) \\
& =9.66 \times 10^{4} \mathrm{~kg} \cdot(\mathrm{~km} / \mathrm{h})^{2}\left(\left(10^{3} \mathrm{~m} / \mathrm{km}\right)(1 \mathrm{~h} / 3600 \mathrm{~s})\right)^{2} \\
& =7.5 \times 10^{4} \mathrm{~J} .
\end{aligned}
$$

(b) The magnitude of the change in velocity is

$$
|\Delta \vec{v}|=\sqrt{\left(-v_{i}\right)^{2}+\left(v_{f}\right)^{2}}=\sqrt{(-41 \mathrm{~km} / \mathrm{h})^{2}+(51 \mathrm{~km} / \mathrm{h})^{2}}=65.4 \mathrm{~km} / \mathrm{h}
$$

so the magnitude of the change in momentum is

$$
|\Delta \vec{p}|=m|\Delta \vec{v}|=(2100 \mathrm{~kg})(65.4 \mathrm{~km} / \mathrm{h})\left(\frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}}\right)=3.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(c) The vector $\Delta \vec{p}$ points at an angle θ south of east, where

$$
\theta=\tan ^{-1}\left(\frac{v_{i}}{v_{f}}\right)=\tan ^{-1}\left(\frac{41 \mathrm{~km} / \mathrm{h}}{51 \mathrm{~km} / \mathrm{h}}\right)=39^{\circ} .
$$

20. (a) Since the force of impact on the ball is in the y direction, p_{x} is conserved:

$$
p_{x i}=m v_{i} \sin \theta_{1}=p_{x f}=m v_{i} \sin \theta_{2} .
$$

With $\theta_{1}=30.0^{\circ}$, we find $\theta_{2}=30.0^{\circ}$.
(b) The momentum change is

$$
\begin{aligned}
\Delta \vec{p} & =m v_{i} \cos \theta_{2}(-\hat{\mathrm{j}})-m v_{i} \cos \theta_{2}(+\hat{\mathrm{j}})=-2(0.165 \mathrm{~kg})(2.00 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right) \hat{\mathrm{j}} \\
& =(-0.572 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} .
\end{aligned}
$$

21. We infer from the graph that the horizontal component of momentum p_{x} is $4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Also, its initial magnitude of momentum p_{0} is $6.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Thus,

$$
\cos \theta_{0}=\frac{p_{x}}{p_{0}} \Rightarrow \theta_{0}=48^{\circ} .
$$

22. We use coordinates with $+x$ horizontally toward the pitcher and $+y$ upward. Angles are measured counterclockwise from the $+x$ axis. Mass, velocity and momentum units are SI. Thus, the initial momentum can be written $\vec{p}_{0}=\left(4.5 \angle 215^{\circ}\right)$ in magnitude-angle notation.
(a) In magnitude-angle notation, the momentum change is $\left(6.0 \angle-90^{\circ}\right)-\left(4.5 \angle 215^{\circ}\right)$ $=\left(5.0 \angle-43^{\circ}\right)$ (efficiently done with a vector-capable calculator in polar mode). The magnitude of the momentum change is therefore $5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
(b) The momentum change is $\left(6.0 \angle 0^{\circ}\right)-\left(4.5 \angle 215^{\circ}\right)=\left(10 \angle 15^{\circ}\right)$. Thus, the magnitude of the momentum change is $10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
23. The initial direction of motion is in the $+x$ direction. The magnitude of the average force $F_{\text {avg }}$ is given by

$$
F_{a v g}=\frac{J}{\Delta t}=\frac{32.4 \mathrm{~N} \cdot \mathrm{~s}}{2.70 \times 10^{-2} \mathrm{~s}}=1.20 \times 10^{3} \mathrm{~N}
$$

The force is in the negative direction. Using the linear momentum-impulse theorem stated in Eq. 9-31, we have

$$
-F_{\mathrm{avg}} \Delta t=m v_{f}-m v_{i} .
$$

where m is the mass, v_{i} the initial velocity, and v_{f} the final velocity of the ball. Thus,

$$
v_{f}=\frac{m v_{i}-F_{\mathrm{avg}} \Delta t}{m}=\frac{(0.40 \mathrm{~kg})(14 \mathrm{~m} / \mathrm{s})-(1200 \mathrm{~N})\left(27 \times 10^{-3} \mathrm{~s}\right)}{0.40 \mathrm{~kg}}=-67 \mathrm{~m} / \mathrm{s}
$$

(a) The final speed of the ball is $\left|v_{f}\right|=67 \mathrm{~m} / \mathrm{s}$.
(b) The negative sign indicates that the velocity is in the $-x$ direction, which is opposite to the initial direction of travel.
(c) From the above, the average magnitude of the force is $F_{\text {avg }}=1.20 \times 10^{3} \mathrm{~N}$.
(d) The direction of the impulse on the ball is $-x$, same as the applied force.
24. We estimate his mass in the neighborhood of 70 kg and compute the upward force F of the water from Newton's second law: $F-m g=m a$, where we have chosen $+y$ upward, so that $a>0$ (the acceleration is upward since it represents a deceleration of his downward motion through the water). His speed when he arrives at the surface of the water is found either from Eq. 2-16 or from energy conservation: $v=\sqrt{2 g h}$, where $h=12 \mathrm{~m}$, and since the deceleration a reduces the speed to zero over a distance $d=0.30$ m we also obtain $v=\sqrt{2 a d}$. We use these observations in the following.

Equating our two expressions for v leads to $a=g h / d$. Our force equation, then, leads to

$$
F=m g+m\left(g \frac{h}{d}\right)=m g\left(1+\frac{h}{d}\right)
$$

which yields $F \approx 2.8 \times 10^{4} \mathrm{~kg}$. Since we are not at all certain of his mass, we express this as a guessed-at range (in kN) $25<F<30$.

Since $F \gg m g$, the impulse \vec{J} due to the net force (while he is in contact with the water) is overwhelmingly caused by the upward force of the water: $\int F d t=\vec{J}$ to a good approximation. Thus, by Eq. 9-29,

$$
\int F d t=\vec{p}_{f}-\vec{p}_{i}=0-m(-\sqrt{2 g h})
$$

(the minus sign with the initial velocity is due to the fact that downward is the negative direction) which yields (70) $\sqrt{2(9.8)(12)}=1.1 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Expressing this as a range (in $\mathrm{kN} \cdot \mathrm{s}$) we estimate

$$
1.0<\int F d t<1.2
$$

25. We choose $+y$ upward, which implies $a>0$ (the acceleration is upward since it represents a deceleration of his downward motion through the snow).
(a) The maximum deceleration $a_{\max }$ of the paratrooper (of mass m and initial speed $v=56$ m / s) is found from Newton's second law

$$
F_{\text {snow }}-m g=m a_{\max }
$$

where we require $F_{\text {snow }}=1.2 \times 10^{5} \mathrm{~N}$. Using Eq. 2-15 $v^{2}=2 a_{\max } d$, we find the minimum depth of snow for the man to survive:

$$
d=\frac{v^{2}}{2 a_{\max }}=\frac{m v^{2}}{2\left(F_{\text {snow }}-m g\right)} \approx \frac{(85 \mathrm{~kg})(56 \mathrm{~m} / \mathrm{s})^{2}}{2\left(1.2 \times 10^{5} \mathrm{~N}\right)}=1.1 \mathrm{~m} .
$$

(b) His short trip through the snow involves a change in momentum

$$
\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}=0-(85 \mathrm{~kg})(-56 \mathrm{~m} / \mathrm{s})=-4.8 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s},
$$

or $|\Delta \vec{p}|=4.8 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. The negative value of the initial velocity is due to the fact that downward is the negative direction. By the impulse-momentum theorem, this equals the impulse due to the net force $F_{\text {snow }}-m g$, but since $F_{\text {snow }} \gg m g$ we can approximate this as the impulse on him just from the snow.
26. We choose $+y$ upward, which means $\vec{v}_{i}=-25 \mathrm{~m} / \mathrm{s}$ and $\vec{v}_{f}=+10 \mathrm{~m} / \mathrm{s}$. During the collision, we make the reasonable approximation that the net force on the ball is equal to $F_{\text {avg }}$ - the average force exerted by the floor up on the ball.
(a) Using the impulse momentum theorem (Eq. 9-31) we find

$$
\vec{J}=m \vec{v}_{f}-m \vec{v}_{i}=(1.2)(10)-(1.2)(-25)=42 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(b) From Eq. 9-35, we obtain

$$
\vec{F}_{\text {avg }}=\frac{\vec{J}}{\Delta t}=\frac{42}{0.020}=2.1 \times 10^{3} \mathrm{~N} .
$$

27. We choose the positive direction in the direction of rebound so that $\vec{v}_{f}>0$ and $\vec{v}_{i}<0$. Since they have the same speed v, we write this as $\vec{v}_{f}=v$ and $\vec{v}_{i}=-v$. Therefore, the change in momentum for each bullet of mass m is $\Delta \vec{p}=m \Delta v=2 m v$. Consequently, the total change in momentum for the 100 bullets (each minute) $\Delta \vec{P}=100 \Delta \vec{p}=200 \mathrm{mv}$. The average force is then

$$
\vec{F}_{\mathrm{avg}}=\frac{\Delta \vec{P}}{\Delta t}=\frac{(200)\left(3 \times 10^{-3} \mathrm{~kg}\right)(500 \mathrm{~m} / \mathrm{s})}{(1 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})} \approx 5 \mathrm{~N}
$$

28. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must equal the "area" under the $F(t)$ curve. Using the facts that the area of a triangle is $\frac{1}{2}$ (base)(height), and that of a rectangle is (height)(width), we find the momentum at $t=4 \mathrm{~s}$ to be $(30 \mathrm{~kg} \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we find the momentum at $t=7 \mathrm{~s}$ is $(38 \mathrm{~kg} / \mathrm{m} / \mathrm{s}) \hat{\mathrm{i}}$.
(c) At $t=9 \mathrm{~s}$, we obtain $\vec{p}=(6.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
29. We use coordinates with $+x$ rightward and $+y$ upward, with the usual conventions for measuring the angles (so that the initial angle becomes $180+35=215^{\circ}$). Using SI units and magnitude-angle notation (efficient to work with when using a vector-capable calculator), the change in momentum is

$$
\vec{J}=\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}=\left(3.00 \angle 90^{\circ}\right)-\left(3.60 \angle 215^{\circ}\right)=\left(5.86 \angle 59.8^{\circ}\right) .
$$

(a) The magnitude of the impulse is $J=\Delta p=5.86 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
(b) The direction of \vec{J} is 59.8° measured counterclockwise from the $+x$ axis.
(c) Eq. 9-35 leads to

$$
J=F_{\mathrm{avg}} \Delta t=5.86 \Rightarrow F_{\mathrm{avg}}=\frac{5.86}{2.00 \times 10^{-3}} \approx 2.93 \times 10^{3} \mathrm{~N}
$$

We note that this force is very much larger than the weight of the ball, which justifies our (implicit) assumption that gravity played no significant role in the collision.
(d) The direction of $\vec{F}_{\text {avg }}$ is the same as $\vec{J}, 59.8^{\circ}$ measured counterclockwise from the $+x$ axis.
30. (a) Choosing upward as the positive direction, the momentum change of the foot is

$$
\Delta \vec{p}=0-m_{\text {foot }} \vec{v}_{i}=-(0.003 \mathrm{~kg})(-1.50 \mathrm{~m} / \mathrm{s})=4.50 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s}
$$

(b) Using Eq. 9-35 and now treating downward as the positive direction, we have

$$
\vec{J}=\vec{F}_{\text {avg }} \Delta t=m_{\text {lizard }} g \Delta t=(0.090)(9.80)(0.60)=0.529 \mathrm{~N} \cdot \mathrm{~s} .
$$

31. (a) By Eq. 9-30, impulse can be determined from the "area" under the $F(t)$ curve. Keeping in mind that the area of a triangle is $\frac{1}{2}$ (base)(height), we find the impulse in this case is 1.00 N s.
(b) By definition (of the average of function, in the calculus sense) the average force must be the result of part (a) divided by the time (0.010 s). Thus, the average force is found to be 100 N .
(c) Consider ten hits. Thinking of ten hits as $10 F(t)$ triangles, our total time interval is $10(0.050 \mathrm{~s})=0.50 \mathrm{~s}$, and the total area is $10(1.0 \mathrm{~N} \cdot \mathrm{~s})$. We thus obtain an average force of $10 / 0.50=20.0 \mathrm{~N}$. One could consider 15 hits, 17 hits, and so on, and still arrive at this same answer.
32. We choose our positive direction in the direction of the rebound (so the ball's initial velocity is negative-valued). We evaluate the integral $J=\int F d t$ by adding the appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but with the t converted to seconds). With $m=0.058 \mathrm{~kg}$ and $v=34 \mathrm{~m} / \mathrm{s}$, we apply the impulse-momentum theorem:

$$
\begin{aligned}
\int F_{\text {wall }} d t=m \vec{v}_{f}-m \vec{v}_{i} & \Rightarrow \int_{0}^{0.002} F d t+\int_{0.002}^{0.004} F d t+\int_{0.004}^{0.006} F d t=m(+v)-m(-v) \\
& \Rightarrow \frac{1}{2} F_{\max }(0.002 \mathrm{~s})+F_{\max }(0.002 \mathrm{~s})+\frac{1}{2} F_{\max }(0.002 \mathrm{~s})=2 m v
\end{aligned}
$$

which yields $F_{\text {max }}(0.004 \mathrm{~s})=2(0.058 \mathrm{~kg})(34 \mathrm{~m} / \mathrm{s})=9.9 \times 10^{2} \mathrm{~N}$.
33. From Fig. 9-55, $+y$ corresponds to the direction of the rebound (directly away from the wall) and $+x$ towards the right. Using unit-vector notation, the ball's initial and final velocities are

$$
\begin{aligned}
\vec{v}_{i} & =v \cos \theta \hat{\mathrm{i}}-v \sin \theta \hat{\mathrm{j}}=5.2 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}} \\
\vec{v}_{f} & =v \cos \theta \hat{\mathrm{i}}+v \sin \theta \hat{\mathrm{j}}=5.2 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}
\end{aligned}
$$

respectively (with SI units understood).
(a) With $m=0.30 \mathrm{~kg}$, the impulse-momentum theorem (Eq. 9-31) yields

$$
\vec{J}=m \vec{v}_{f}-m \vec{v}_{i}=2(0.30 \mathrm{~kg})(3.0 \mathrm{~m} / \mathrm{s} \hat{\mathrm{j}})=(1.8 \mathrm{~N} \cdot \mathrm{~s}) \hat{\mathrm{j}}
$$

(b) Using Eq. 9-35, the force on the ball by the wall is $\vec{J} / \Delta t=(1.8 / 0.010) \hat{\mathrm{j}}=(180 \mathrm{~N}) \hat{\mathrm{j}}$. By Newton's third law, the force on the wall by the ball is $(-180 \mathrm{~N}) \hat{\mathrm{j}}$ (that is, its magnitude is 180 N and its direction is directly into the wall, or "down" in the view provided by Fig. 9-55).
34. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain

$$
\int_{a}^{b}\left(12-3 t^{2}\right) d t=12(b-a)-\left(b^{3}-a^{3}\right)
$$

in SI units. If $b=1.25 \mathrm{~s}$ and $a=0.50 \mathrm{~s}$, this gives 7.17 Ns .
(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31. We note that the force is zero at $t=2.00 \mathrm{~s}$. Evaluating the above expression for $a=0$ and $b=2.00$ gives an answer of $16.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.
35. No external forces with horizontal components act on the man-stone system and the vertical forces sum to zero, so the total momentum of the system is conserved. Since the man and the stone are initially at rest, the total momentum is zero both before and after the stone is kicked. Let m_{s} be the mass of the stone and v_{s} be its velocity after it is kicked; let m_{m} be the mass of the man and v_{m} be his velocity after he kicks the stone. Then

$$
m_{s} v_{s}+m_{m} v_{m}=0 \rightarrow v_{m}=-m_{s} v_{s} / m_{m}
$$

We take the axis to be positive in the direction of motion of the stone. Then

$$
v_{m}=-\frac{(0.068 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})}{91 \mathrm{~kg}}=-3.0 \times 10^{-3} \mathrm{~m} / \mathrm{s}
$$

or $\left|v_{m}\right|=3.0 \times 10^{-3} \mathrm{~m} / \mathrm{s}$. The negative sign indicates that the man moves in the direction opposite to the direction of motion of the stone.
36. We apply Eq. 9-17, with $M=\sum m=1.3 \mathrm{~kg}$,

$$
\begin{aligned}
M \vec{v}_{\text {com }} & =m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}+m_{C} \vec{v}_{C} \\
(1.3)(-0.40 \hat{\mathrm{i}}) & =(0.50) \vec{v}_{A}+(0.60)(0.20 \hat{\mathrm{i}})+(0.20)(0.30 \hat{\mathrm{i}})
\end{aligned}
$$

which leads to $\vec{v}_{A}=-1.4 \hat{\mathrm{i}}$ in SI units $(\mathrm{m} / \mathrm{s})$.
37. Our notation is as follows: the mass of the motor is M; the mass of the module is m; the initial speed of the system is v_{0}; the relative speed between the motor and the module is v_{r}; and, the speed of the module relative to the Earth is v after the separation. Conservation of linear momentum requires

$$
(M+m) v_{0}=m v+M\left(v-v_{r}\right) .
$$

Therefore,

$$
v=v_{0}+\frac{M v_{r}}{M+m}=4300 \mathrm{~km} / \mathrm{h}+\frac{(4 m)(82 \mathrm{~km} / \mathrm{h})}{4 m+m}=4.4 \times 10^{3} \mathrm{~km} / \mathrm{h} .
$$

38. (a) With SI units understood, the velocity of block L (in the frame of reference indicated in the figure that goes with the problem) is $\left(v_{1}-3\right) \hat{\mathrm{i}}$. Thus, momentum conservation (for the explosion at $t=0$) gives

$$
m_{L}\left(v_{1}-3\right)+\left(m_{C}+m_{R}\right) v_{1}=0
$$

which leads to

$$
v_{1}=\frac{3 m_{L}}{m_{L}+m_{C}+m_{R}}=\frac{3(2 \mathrm{~kg})}{10 \mathrm{~kg}}=0.60 \mathrm{~m} / \mathrm{s} .
$$

Next, at $t=0.80 \mathrm{~s}$, momentum conservation (for the second explosion) gives

$$
m_{C} v_{2}+m_{R}\left(v_{2}+3\right)=\left(m_{C}+m_{R}\right) v_{1}=(8 \mathrm{~kg})(0.60 \mathrm{~m} / \mathrm{s})=4.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

This yields $v_{2}=-0.15$. Thus, the velocity of block C after the second explosion is

$$
v_{2}=-(0.15 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}} .
$$

(b) Between $t=0$ and $t=0.80 \mathrm{~s}$, the block moves $v_{1} \Delta t=(0.60)(0.80)=0.48 \mathrm{~m}$. Between $t=0.80 \mathrm{~s}$ and $t=2.80 \mathrm{~s}$, it moves an additional $v_{2} \Delta t=(-0.15)(2.00)=-0.30 \mathrm{~m}$. Its net displacement since $t=0$ is therefore $0.48-0.30=0.18 \mathrm{~m}$.
39. Our $+x$ direction is east and $+y$ direction is north. The linear momenta for the two $m=$ 2.0 kg parts are then

$$
\vec{p}_{1}=m \vec{v}_{1}=m v_{1} \hat{\mathrm{j}}
$$

where $v_{1}=3.0 \mathrm{~m} / \mathrm{s}$, and

$$
\vec{p}_{2}=m \vec{v}_{2}=m\left(v_{2 x} \hat{\mathrm{i}}+v_{2 y} \hat{\mathrm{j}}\right)=m v_{2}(\cos \theta \hat{\mathrm{i}}+\sin \theta \hat{\mathrm{j}})
$$

where $v_{2}=5.0 \mathrm{~m} / \mathrm{s}$ and $\theta=30^{\circ}$. The combined linear momentum of both parts is then

$$
\begin{aligned}
\vec{P} & =\vec{p}_{1}+\vec{p}_{2}=m v_{1} \hat{\mathrm{j}}+m v_{2}(\cos \theta \hat{\mathrm{i}}+\sin \theta \hat{\mathrm{j}})=\left(m v_{2} \cos \theta\right) \hat{\mathrm{i}}+\left(m v_{1}+m v_{2} \sin \theta\right) \hat{\mathrm{j}} \\
& =(2.0 \mathrm{~kg})(5.0 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right) \hat{\mathrm{i}}+(2.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}+(5.0 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right)\right) \hat{\mathrm{j}} \\
& =(8.66 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

From conservation of linear momentum we know that this is also the linear momentum of the whole kit before it splits. Thus the speed of the $4.0-\mathrm{kg}$ kit is

$$
v=\frac{P}{M}=\frac{\sqrt{P_{x}^{2}+P_{y}^{2}}}{M}=\frac{\sqrt{(8.66 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})^{2}+(11 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})^{2}}}{4.0 \mathrm{~kg}}=3.5 \mathrm{~m} / \mathrm{s}
$$

40. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass of the original body is m; its initial velocity is $\vec{v}_{0}=v \hat{\mathrm{i}}$; the mass of the less massive piece is m_{1}; its velocity is $\vec{v}_{1}=0$; and, the mass of the more massive piece is m_{2}. We note that the conditions $m_{2}=3 m_{1}$ (specified in the problem) and $m_{1}+m_{2}=m$ generally assumed in classical physics (before Einstein) lead us to conclude

$$
m_{1}=\frac{1}{4} m \text { and } m_{2}=\frac{3}{4} m .
$$

Conservation of linear momentum requires

$$
m \vec{v}_{0}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2} \Rightarrow m v \hat{\mathrm{i}}=0+\frac{3}{4} m \vec{v}_{2}
$$

which leads to $\vec{v}_{2}=\frac{4}{3} v \hat{\dot{i}}$. The increase in the system's kinetic energy is therefore

$$
\Delta K=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\frac{1}{2} m v_{0}^{2}=0+\frac{1}{2}\left(\frac{3}{4} m\right)\left(\frac{4}{3} v\right)^{2}-\frac{1}{2} m v^{2}=\frac{1}{6} m v^{2} .
$$

41. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass of one piece is $m_{1}=m$; its velocity is $\vec{v}_{1}=-30 \hat{i}$ in SI units $(\mathrm{m} / \mathrm{s})$; the mass of the second piece is $m_{2}=m$; its velocity is $\vec{v}_{2}=-30 \hat{\mathrm{j}}$ in SI units; and, the mass of the third piece is $m_{3}=3 m$.
(a) Conservation of linear momentum requires

$$
m \vec{v}_{0}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3} \Rightarrow 0=m(-30 \hat{\mathrm{i}})+m(-30 \hat{\mathrm{j}})+3 m \vec{v}_{3}
$$

which leads to $\vec{v}_{3}=10 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}$ in SI units. Its magnitude is $v_{3}=10 \sqrt{2} \approx 14 \mathrm{~m} / \mathrm{s}$.
(b) The direction is 45° counterclockwise from $+x$ (in this system where we have m_{1} flying off in the $-x$ direction and m_{2} flying off in the $-y$ direction).
42. We can think of the sliding-until-stopping as an example of kinetic energy converting into thermal energy (see Eq. 8-29 and Eq. 6-2, with $F_{N}=m g$). This leads to $v^{2}=2 \mu g d$ being true separately for each piece. Thus we can set up a ratio:

$$
\left(\frac{\mathrm{v}_{L}}{\mathrm{v}_{R}}\right)^{2}=\frac{2 \mu_{L} g d_{L}}{2 \mu_{R} g d_{R}}=\frac{12}{25}
$$

But (by the conservation of momentum) the ratio of speeds must be inversely proportional to the ratio of masses (since the initial momentum - before the explosion was zero). Consequently,

$$
\left(\frac{m_{R}}{m_{L}}\right)^{2}=\frac{12}{25} \Rightarrow m_{R}=\frac{2}{5} \sqrt{3} m_{L}=1.39 \mathrm{~kg}
$$

Therefore, the total mass is $m_{R}+m_{L} \approx 3.4 \mathrm{~kg}$.
43. Our notation is as follows: the mass of the original body is $M=20.0 \mathrm{~kg}$; its initial velocity is $\vec{v}_{0}=200 \hat{i}$ in SI units $(\mathrm{m} / \mathrm{s})$; the mass of one fragment is $m_{1}=10.0 \mathrm{~kg}$; its velocity is $\vec{v}_{1}=-100 \hat{\mathrm{j}}$ in SI units; the mass of the second fragment is $m_{2}=4.0 \mathrm{~kg}$; its velocity is $\vec{v}_{2}=-500 \hat{\mathrm{i}}$ in SI units; and, the mass of the third fragment is $m_{3}=6.00 \mathrm{~kg}$.
(a) Conservation of linear momentum requires $M \vec{v}_{0}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \bar{v}_{3}$, which (using the above information) leads to

$$
\vec{v}_{3}=\left(1.00 \times 10^{3} \hat{\mathrm{i}}-0.167 \times 10^{3} \hat{\mathrm{j}}\right) \mathrm{m} / \mathrm{s}
$$

in SI units. The magnitude of \vec{v}_{3} is $v_{3}=\sqrt{1000^{2}+(-167)^{2}}=1.01 \times 10^{3} \mathrm{~m} / \mathrm{s}$. It points at $\tan ^{-1}(-167 / 1000)=-9.48^{\circ}$ (that is, at 9.5° measured clockwise from the $+x$ axis).
(b) We are asked to calculate ΔK or

$$
\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}\right)-\frac{1}{2} M v_{0}^{2}=3.23 \times 10^{6} \mathrm{~J}
$$

44. This problem involves both mechanical energy conservation $U_{i}=K_{1}+K_{2}$, where U_{i} $=60 \mathrm{~J}$, and momentum conservation

$$
0=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}
$$

where $m_{2}=2 m_{1}$. From the second equation, we find $\left|\vec{v}_{1}\right|=2\left|\vec{v}_{2}\right|$ which in turn implies (since $v_{1}=\left|\vec{v}_{1}\right|$ and likewise for v_{2})

$$
K_{1}=\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2}\left(\frac{1}{2} m_{2}\right)\left(2 v_{2}\right)^{2}=2\left(\frac{1}{2} m_{2} v_{2}^{2}\right)=2 K_{2} .
$$

(a) We substitute $K_{1}=2 K_{2}$ into the energy conservation relation and find

$$
U_{i}=2 K_{2}+K_{2} \Rightarrow K_{2}=\frac{1}{3} U_{i}=20 \mathrm{~J}
$$

(b) And we obtain $K_{1}=2(20)=40 \mathrm{~J}$.
45. (a) We choose $+x$ along the initial direction of motion and apply momentum conservation:

$$
\begin{aligned}
m_{\text {bullet }} \vec{v}_{i} & =m_{\text {bulleet }} \vec{v}_{1}+m_{\text {block }} \vec{v}_{2} \\
(5.2 \mathrm{~g})(672 \mathrm{~m} / \mathrm{s}) & =(5.2 \mathrm{~g})(428 \mathrm{~m} / \mathrm{s})+(700 \mathrm{~g}) \vec{v}_{2}
\end{aligned}
$$

which yields $v_{2}=1.81 \mathrm{~m} / \mathrm{s}$.
(b) It is a consequence of momentum conservation that the velocity of the center of mass is unchanged by the collision. We choose to evaluate it before the collision:

$$
\vec{v}_{\text {com }}=\frac{m_{\text {bullet }} \vec{v}_{i}}{m_{\text {bullet }}+m_{\text {block }}}=\frac{(5.2 \mathrm{~g})(672 \mathrm{~m} / \mathrm{s})}{5.2 \mathrm{~g}+700 \mathrm{~g}}=4.96 \mathrm{~m} / \mathrm{s} .
$$

46. We refer to the discussion in the textbook (see Sample Problem 9-8, which uses the same notation that we use here) for many of the important details in the reasoning. Here we only present the primary computational step (using SI units):

$$
v=\frac{m+M}{m} \sqrt{2 g h}=\frac{2.010}{0.010} \sqrt{2(9.8)(0.12)}=3.1 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

47. This is a completely inelastic collision, but Eq. 9-53 $\left(V=\frac{m_{1}}{m_{1}+m_{2}} v_{1 i}\right)$ is not easily applied since that equation is designed for use when the struck particle is initially stationary. To deal with this case (where particle 2 is already in motion), we return to the principle of momentum conservation:

$$
m_{1} \overrightarrow{\mathrm{v}}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}=\left(m_{1}+m_{2}\right) \vec{V} \quad \Rightarrow \quad \vec{V}=\frac{2(4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}})+4(6 \hat{\mathrm{i}}-2 \hat{\mathrm{j}})}{2+4}
$$

(a) In unit-vector notation, then,

$$
\vec{V}=(2.67 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} .
$$

(b) The magnitude of \vec{V} is $|\vec{V}|=4.01 \mathrm{~m} / \mathrm{s}$
(c) The direction of \vec{V} is 48.4° (measured clockwise from the $+x$ axis).
48. (a) The magnitude of the deceleration of each of the cars is $a=f / m=\mu_{k} m g / m=\mu_{k} g$. If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16:

$$
v^{2}=v_{0}^{2}+2 a d \Rightarrow v=\sqrt{2 a d}=\sqrt{2 \mu_{k} g d}
$$

since $v_{0}=0$ (this could alternatively have been derived using Eq. 8-31). Thus,

$$
v_{A}=\sqrt{2 \mu_{k} g d_{A}}=\sqrt{2(0.13)(9.8)(8.2)}=4.6 \mathrm{~m} / \mathrm{s} .
$$

(b) Similarly, $v_{B}=\sqrt{2 \mu_{k} g d_{B}}=\sqrt{2(0.13)(9.8)(6.1)}=3.9 \mathrm{~m} / \mathrm{s}$.
(c) Let the speed of car B be v just before the impact. Conservation of linear momentum gives $m_{B} v=m_{A} v_{A}+m_{B} v_{B}$, or

$$
v=\frac{\left(m_{A} v_{A}+m_{B} v_{B}\right)}{m_{B}}=\frac{(1100)(4.6)+(1400)(3.9)}{1400}=7.5 \mathrm{~m} / \mathrm{s} .
$$

(d) The conservation of linear momentum during the impact depends on the fact that the only significant force (during impact of duration Δt) is the force of contact between the bodies. In this case, that implies that the force of friction exerted by the road on the cars is neglected during the brief Δt. This neglect would introduce some error in the analysis. Related to this is the assumption we are making that the transfer of momentum occurs at one location - that the cars do not slide appreciably during Δt - which is certainly an approximation (though probably a good one). Another source of error is the application of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); friction is a complex force that Eq. 6-2 only partially describes.
49. In solving this problem, our $+x$ direction is to the right (so all velocities are positivevalued).
(a) We apply momentum conservation to relate the situation just before the bullet strikes the second block to the situation where the bullet is embedded within the block.

$$
(0.0035 \mathrm{~kg}) v=(1.8035 \mathrm{~kg})(1.4 \mathrm{~m} / \mathrm{s}) \Rightarrow v=721 \mathrm{~m} / \mathrm{s} .
$$

(b) We apply momentum conservation to relate the situation just before the bullet strikes the first block to the instant it has passed through it (having speed v found in part (a)).

$$
(0.0035 \mathrm{~kg}) v_{0}=(1.20 \mathrm{~kg})(0.630 \mathrm{~m} / \mathrm{s})+(0.00350 \mathrm{~kg})(721 \mathrm{~m} / \mathrm{s})
$$

which yields $v_{0}=937 \mathrm{~m} / \mathrm{s}$.
50. We think of this as having two parts: the first is the collision itself - where the bullet passes through the block so quickly that the block has not had time to move through any distance yet - and then the subsequent "leap" of the block into the air (up to height h measured from its initial position). The first part involves momentum conservation (with $+y$ upward):

$$
(0.01 \mathrm{~kg})(1000 \mathrm{~m} / \mathrm{s})=(5.0 \mathrm{~kg}) \vec{v}+(0.01 \mathrm{~kg})(400 \mathrm{~m} / \mathrm{s})
$$

which yields $\vec{v}=1.2 \mathrm{~m} / \mathrm{s}$. The second part involves either the free-fall equations from Ch . 2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing the latter approach, we have

$$
\frac{1}{2}(5.0 \mathrm{~kg})(1.2 \mathrm{~m} / \mathrm{s})^{2}=(5.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) h
$$

which gives the result $h=0.073 \mathrm{~m}$.
51. We choose $+x$ in the direction of (initial) motion of the blocks, which have masses m_{1} $=5 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$. Where units are not shown in the following, SI units are to be understood.
(a) Momentum conservation leads to

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f} \Rightarrow(5)(3)+(10)(2)=5 \vec{v}_{1 f}+(10)(2.5)
$$

which yields $\vec{v}_{1 f}=2$. Thus, the speed of the 5 kg block immediately after the collision is $2.0 \mathrm{~m} / \mathrm{s}$.
(b) We find the reduction in total kinetic energy:

$$
K_{i}-K_{f}=\frac{1}{2}(5)(3)^{2}+\frac{1}{2}(10)(2)^{2}-\frac{1}{2}(5)(2)^{2}-\frac{1}{2}(10)(2.5)^{2}=-1.25 \mathrm{~J} \approx-1.3 \mathrm{~J} .
$$

(c) In this new scenario where $\vec{v}_{2 f}=4.0 \mathrm{~m} / \mathrm{s}$, momentum conservation leads to $\vec{v}_{1 f}=-1.0 \mathrm{~m} / \mathrm{s}$ and we obtain $\Delta K=+40 \mathrm{~J}$.
(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on the surface where the impact occurred (initially stored chemical energy would then be contributing to the result).
52. The total momentum immediately before the collision (with $+x$ upward) is

$$
p_{i}=(3.0 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})+(2.0 \mathrm{~kg})(-12 \mathrm{~m} / \mathrm{s})=36 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

Their momentum immediately after, when they constitute a combined mass of $M=5.0$ kg , is $p_{f}=(5.0 \mathrm{~kg}) \vec{v}$. By conservation of momentum, then, we obtain $\vec{v}=7.2 \mathrm{~m} / \mathrm{s}$, which becomes their "initial" velocity for their subsequent free-fall motion. We can use Ch. 2 methods or energy methods to analyze this subsequent motion; we choose the latter. The level of their collision provides the reference $(y=0)$ position for the gravitational potential energy, and we obtain

$$
K_{0}+U_{0}=K+U \Rightarrow \frac{1}{2} M v_{0}^{2}+0=0+M g y_{\max }
$$

Thus, with $v_{0}=7.2 \mathrm{~m} / \mathrm{s}$, we find $y_{\max }=2.6 \mathrm{~m}$.
53. As hinted in the problem statement, the velocity v of the system as a whole - when the spring reaches the maximum compression x_{m} - satisfies

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v .
$$

The change in kinetic energy of the system is therefore

$$
\Delta K=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}-\frac{1}{2} m_{1} v_{1 i}^{2}-\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{\left(m_{1} v_{1 i}+m_{2} v_{2 i}\right)^{2}}{2\left(m_{1}+m_{2}\right)}-\frac{1}{2} m_{1} v_{1 i}^{2}-\frac{1}{2} m_{2} v_{2 i}^{2}
$$

which yields $\Delta K=-35 \mathrm{~J}$. (Although it is not necessary to do so, still it is worth noting that algebraic manipulation of the above expression leads to $|\Delta K|=\frac{1}{2}\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right) v_{\mathrm{rel}}^{2}$ where $v_{\text {rel }}=v_{1}-v_{2}$). Conservation of energy then requires

$$
\frac{1}{2} k x_{\mathrm{m}}^{2}=-\Delta K \Rightarrow x_{\mathrm{m}}=\sqrt{\frac{-2 \Delta K}{k}}=\sqrt{\frac{-2(-35)}{1120}}=0.25 \mathrm{~m}
$$

54. We think of this as having two parts: the first is the collision itself - where the blocks "join" so quickly that the $1.0-\mathrm{kg}$ block has not had time to move through any distance yet - and then the subsequent motion of the 3.0 kg system as it compresses the spring to the maximum amount x_{m}. The first part involves momentum conservation (with $+x$ rightward):

$$
m_{1} v_{1}=\left(m_{1}+m_{2}\right) v \Rightarrow(2.0 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})=(3.0 \mathrm{~kg}) \vec{v}
$$

which yields $\vec{v}=2.7 \mathrm{~m} / \mathrm{s}$. The second part involves mechanical energy conservation:

$$
\frac{1}{2}(3.0 \mathrm{~kg})(2.7 \mathrm{~m} / \mathrm{s})^{2}=\frac{1}{2}(200 \mathrm{~N} / \mathrm{m}) x_{\mathrm{m}}^{2}
$$

which gives the result $x_{\mathrm{m}}=0.33 \mathrm{~m}$.
55. (a) Let m_{1} be the mass of the cart that is originally moving, $v_{1 i}$ be its velocity before the collision, and $v_{1 f}$ be its velocity after the collision. Let m_{2} be the mass of the cart that is originally at rest and $v_{2 f}$ be its velocity after the collision. Then, according to Eq. 9-67,

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}
$$

Using SI units (so $m_{1}=0.34 \mathrm{~kg}$), we obtain

$$
m_{2}=\frac{v_{1 i}-v_{1 f}}{v_{1 i}+v_{1 f}} m_{1}=\left(\frac{1.2-0.66}{1.2+0.66}\right)(0.34)=0.099 \mathrm{~kg} .
$$

(b) The velocity of the second cart is given by Eq. 9-68:

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\left(\frac{2(0.34)}{0.34+0.099}\right)(1.2)=1.9 \mathrm{~m} / \mathrm{s} .
$$

(c) The speed of the center of mass is

$$
v_{\mathrm{com}}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}=\frac{(0.34)(1.2)+0}{0.34+0.099}=0.93 \mathrm{~m} / \mathrm{s}
$$

Values for the initial velocities were used but the same result is obtained if values for the final velocities are used.
56. (a) Let m_{A} be the mass of the block on the left, $v_{\mathrm{A} i}$ be its initial velocity, and $v_{\mathrm{A} f}$ be its final velocity. Let m_{B} be the mass of the block on the right, $v_{\mathrm{B} i}$ be its initial velocity, and v_{Bf} be its final velocity. The momentum of the two-block system is conserved, so

$$
m_{\mathrm{A}} v_{\mathrm{A} i}+m_{\mathrm{B}} v_{\mathrm{B} i}=m_{\mathrm{A}} v_{\mathrm{A} f}+m_{\mathrm{B}} v_{\mathrm{B} f}
$$

and

$$
v_{A f}=\frac{m_{A} v_{A i}+m_{B} v_{B i}-m_{B} v_{B f}}{m_{A}}=\frac{(1.6)(5.5)+(2.4)(2.5)-(2.4)(4.9)}{1.6}=1.9 \mathrm{~m} / \mathrm{s} .
$$

(b) The block continues going to the right after the collision.
(c) To see if the collision is elastic, we compare the total kinetic energy before the collision with the total kinetic energy after the collision. The total kinetic energy before is

$$
K_{i}=\frac{1}{2} m_{A} v_{A i}^{2}+\frac{1}{2} m_{B} v_{B i}^{2}=\frac{1}{2}(1.6)(5.5)^{2}+\frac{1}{2}(2.4)(2.5)^{2}=31.7 \mathrm{~J} .
$$

The total kinetic energy after is

$$
K_{f}=\frac{1}{2} m_{A} v_{A f}^{2}+\frac{1}{2} m_{B} v_{B f}^{2}=\frac{1}{2}(1.6)(1.9)^{2}+\frac{1}{2}(2.4)(4.9)^{2}=31.7 \mathrm{~J} .
$$

Since $K_{i}=K_{f}$ the collision is found to be elastic.
57. (a) Let m_{1} be the mass of one sphere, $v_{1 i}$ be its velocity before the collision, and $v_{1 f}$ be its velocity after the collision. Let m_{2} be the mass of the other sphere, $v_{2 i}$ be its velocity before the collision, and $v_{2 f}$ be its velocity after the collision. Then, according to Eq. 9-75,

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} .
$$

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the collision. Sphere 2 is originally traveling in the negative direction. Replace $v_{1 i}$ with $v, v_{2 i}$ with $-v$, and $v_{1 f}$ with zero to obtain $0=m_{1}-3 m_{2}$. Thus, $m_{2}=m_{1} / 3=(300 \mathrm{~g}) / 3=100 \mathrm{~g}$.
(b) We use the velocities before the collision to compute the velocity of the center of mass:

$$
v_{\mathrm{com}}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}=\frac{(300 \mathrm{~g})(2.00 \mathrm{~m} / \mathrm{s})+(100 \mathrm{~g})(-2.00 \mathrm{~m} / \mathrm{s})}{300 \mathrm{~g}+100 \mathrm{~g}}=1.00 \mathrm{~m} / \mathrm{s} .
$$

58. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first collision (at $x=0$ and $t=0$):

$$
\begin{gathered}
\mathrm{v}_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \mathrm{v}_{1 i}=\frac{-0.1 \mathrm{~kg}}{0.7 \mathrm{~kg}}(2.0 \mathrm{~m} / \mathrm{s})=\frac{-2}{7} \mathrm{~m} / \mathrm{s} \\
\mathrm{v}_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} \mathrm{v}_{1 i}=\frac{0.6 \mathrm{~kg}}{0.7 \mathrm{~kg}}(2.0 \mathrm{~m} / \mathrm{s})=\frac{12}{7} \mathrm{~m} / \mathrm{s} \approx 1.7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

At a rate of motion of $1.7 \mathrm{~m} / \mathrm{s}, 2 x_{\mathrm{w}}=140 \mathrm{~cm}$ (the distance to the wall and back to $x=0$) will be traversed by particle 2 in 0.82 s . At $t=0.82 \mathrm{~s}$, particle 1 is located at

$$
x=(-2 / 7)(0.82)=-23 \mathrm{~cm},
$$

and particle 2 is "gaining" at a rate of (10/7) m/s leftward; this is their relative velocity at that time. Thus, this "gap" of 23 cm between them will be closed after an additional time of $(0.23 \mathrm{~m}) /(10 / 7 \mathrm{~m} / \mathrm{s})=0.16 \mathrm{~s}$ has passed. At this time $(t=0.82+0.16=0.98 \mathrm{~s})$ the two particles are at $x=(-2 / 7)(0.98)=-28 \mathrm{~cm}$.
59. (a) Let m_{1} be the mass of the body that is originally moving, $v_{1 i}$ be its velocity before the collision, and $v_{1 f}$ be its velocity after the collision. Let m_{2} be the mass of the body that is originally at rest and $v_{2 f}$ be its velocity after the collision. Then, according to Eq. 9-67,

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} .
$$

We solve for m_{2} to obtain

$$
m_{2}=\frac{v_{1 i}-v_{1 f}}{v_{1 f}+v_{1 i}} m_{1} .
$$

We combine this with $v_{1 f}=v_{1 i} / 4$ to obtain $m_{2}=3 m_{1} / 5=3(2.0) / 5=1.2 \mathrm{~kg}$.
(b) The speed of the center of mass is

$$
v_{\mathrm{com}}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}=\frac{(2.0)(4.0)}{2.0+1.2}=2.5 \mathrm{~m} / \mathrm{s} .
$$

60. First, we find the speed v of the ball of mass m_{1} right before the collision (just as it reaches its lowest point of swing). Mechanical energy conservation (with $h=0.700 \mathrm{~m}$) leads to

$$
m_{1} g h=\frac{1}{2} m_{1} v^{2} \Rightarrow v=\sqrt{2 g h}=3.7 \mathrm{~m} / \mathrm{s} .
$$

(a) We now treat the elastic collision (with SI units) using Eq. 9-67:

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v=\frac{0.5-2.5}{0.5+2.5}(3.7)=-2.47
$$

which means the final speed of the ball is $2.47 \mathrm{~m} / \mathrm{s}$.
(b) Finally, we use Eq. 9-68 to find the final speed of the block:

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v=\frac{2(0.5)}{0.5+2.5}(3.7)=1.23 \mathrm{~m} / \mathrm{s}
$$

61. (a) The center of mass velocity does not change in the absence of external forces. In this collision, only forces of one block on the other (both being part of the same system) are exerted, so the center of mass velocity is $3.00 \mathrm{~m} / \mathrm{s}$ before and after the collision.
(b) We can find the velocity $\mathrm{v}_{1 i}$ of block 1 before the collision (when the velocity of block 2 is known to be zero) using Eq. 9-17:

$$
\left(m_{1}+m_{2}\right) v_{\mathrm{com}}=m_{1} v_{1 i}+0 \quad \Rightarrow \quad v_{1 i}=12.0 \mathrm{~m} / \mathrm{s}
$$

Now we use Eq. 9-68 to find $v_{2 f}$:

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=6.00 \mathrm{~m} / \mathrm{s}
$$

62. (a) If the collision is perfectly elastic, then Eq. 9-68 applies

$$
v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{m_{1}+(2.00) m_{1}} \sqrt{2 g h}=\frac{2}{3} \sqrt{2 g h}
$$

where we have used the fact (found most easily from energy conservation) that the speed of block 1 at the bottom of the frictionless ramp is $\sqrt{2 g h}$ (where $h=2.50 \mathrm{~m}$). Next, for block 2's "rough slide" we use Eq. 8-37:

$$
\frac{1}{2} m_{2} v_{2}^{2}=\Delta E_{\mathrm{th}}=f_{k} d=\mu_{k} m_{2} g d
$$

where $\mu_{k}=0.500$. Solving for the sliding distance d, we find that m_{2} cancels out and we obtain $d=2.22 \mathrm{~m}$.
(b) In a completely inelastic collision, we apply Eq. 9-53: $v_{2}=\frac{m_{1}}{m_{1}+m_{2}} v_{1 i} \quad$ (where, as above, $v_{1 i}=\sqrt{2 g h}$). Thus, in this case we have $v_{2}=\sqrt{2 g h} / 3$. Now, Eq. 8-37 (using the total mass since the blocks are now joined together) leads to a sliding distance of $d=0.556 \mathrm{~m}$ (one-fourth of the part (a) answer).
63. (a) We use conservation of mechanical energy to find the speed of either ball after it has fallen a distance h. The initial kinetic energy is zero, the initial gravitational potential energy is $M g h$, the final kinetic energy is $\frac{1}{2} M v^{2}$, and the final potential energy is zero. Thus $M g h=\frac{1}{2} M v^{2}$ and $v=\sqrt{2 g h}$. The collision of the ball of M with the floor is an elastic collision of a light object with a stationary massive object. The velocity of the light object reverses direction without change in magnitude. After the collision, the ball is traveling upward with a speed of $\sqrt{2 g h}$. The ball of mass m is traveling downward with the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass M after the collision:

$$
v_{M f}=\frac{M-m}{M+m} v_{M i}+\frac{2 m}{M+m} v_{m i}=\frac{M-m}{M+m} \sqrt{2 g h}-\frac{2 m}{M+m} \sqrt{2 g h}=\frac{M-3 m}{M+m} \sqrt{2 g h} .
$$

For this to be zero, $m=M / 3$. With $M=0.63 \mathrm{~kg}$, we have $m=0.21 \mathrm{~kg}$.
(b) We use the same equation to find the velocity of the ball of mass m after the collision:

$$
v_{m f}=-\frac{m-M}{M+m} \sqrt{2 g h}+\frac{2 M}{M+m} \sqrt{2 g h}=\frac{3 M-m}{M+m} \sqrt{2 g h}
$$

which becomes (upon substituting $M=3 m$) $v_{m f}=2 \sqrt{2 g h}$. We next use conservation of mechanical energy to find the height h^{\prime} to which the ball rises. The initial kinetic energy is $\frac{1}{2} m v_{m f}^{2}$, the initial potential energy is zero, the final kinetic energy is zero, and the final potential energy is $m g h^{\prime}$. Thus

$$
\frac{1}{2} m v_{m f}^{2}=m g h^{\prime} \Rightarrow h^{\prime}=\frac{v_{m f}^{2}}{2 g}=4 h .
$$

With $h=1.8 \mathrm{~m}$, we have $h^{\prime}=7.2 \mathrm{~m}$.
64. We use Eqs. 9-67, 9-68 and 4-21 for the elastic collision and the subsequent projectile motion. We note that both pucks have the same time-of-fall t (during their projectile motions). Thus, we have

$$
\begin{array}{ll}
\Delta x_{2}=v_{2} t & \text { where } \Delta x_{2}=d \text { and } v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} \\
\Delta x_{1}=v_{1} t \quad \text { where } \Delta x_{1}=-2 d \text { and } v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}
\end{array}
$$

Dividing the first equation by the second, we arrive at

$$
\frac{d}{-2 d}=\frac{\frac{2 m_{1}}{m_{1}+m_{2}} \mathrm{v}_{1 i} t}{\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \mathrm{v}_{1 i} t} .
$$

After canceling $\mathrm{v}_{1 i}, t$ and d, and solving, we obtain $m_{2}=1.0 \mathrm{~kg}$.
65. We apply the conservation of linear momentum to the x and y axes respectively.

$$
\begin{aligned}
m_{1} v_{1 i} & =m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2} \\
0 & =m_{1} v_{1 f} \sin \theta_{1}-m_{2} v_{2 f} \sin \theta_{2}
\end{aligned}
$$

We are given $v_{2 f}=1.20 \times 10^{5} \mathrm{~m} / \mathrm{s}, \theta_{1}=64.0^{\circ}$ and $\theta_{2}=51.0^{\circ}$. Thus, we are left with two unknowns and two equations, which can be readily solved.
(a) We solve for the final alpha particle speed using the y-momentum equation:

$$
v_{1 f}=\frac{m_{2} v_{2 f} \sin \theta_{2}}{m_{1} \sin \theta_{1}}=\frac{(16.0)\left(1.20 \times 10^{5}\right) \sin \left(51.0^{\circ}\right)}{(4.00) \sin \left(64.0^{\circ}\right)}=4.15 \times 10^{5} \mathrm{~m} / \mathrm{s} .
$$

(b) Plugging our result from part (a) into the x-momentum equation produces the initial alpha particle speed:

$$
\begin{aligned}
v_{1 i} & =\frac{m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}}{m_{1 i}} \\
& =\frac{(4.00)\left(4.15 \times 10^{5}\right) \cos \left(64.0^{\circ}\right)+(16.0)\left(1.2 \times 10^{5}\right) \cos \left(51.0^{\circ}\right)}{4.00} \\
& =4.84 \times 10^{5} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

66. (a) Conservation of linear momentum implies

$$
m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}=m_{A} \vec{v}^{\prime}{ }_{A}+m_{B} \vec{v}^{\prime}{ }_{B} .
$$

Since $m_{A}=m_{B}=m=2.0 \mathrm{~kg}$, the masses divide out and we obtain (in m / s)

$$
\vec{v}_{B}^{\prime}=\vec{v}_{A}+\vec{v}_{B}-\vec{v}_{A}^{\prime}=(15 \hat{\mathrm{i}}+30 \hat{\mathrm{j}})+(-10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}})-(-5 \hat{\mathrm{i}}+20 \hat{\mathrm{j}})=10 \hat{\mathrm{i}}+15 \hat{\mathrm{j}} .
$$

(b) The final and initial kinetic energies are

$$
\begin{aligned}
K_{f} & =\frac{1}{2} m v_{A}^{\prime 2}+\frac{1}{2} m v_{B}^{\prime 2}=\frac{1}{2}(2.0)\left((-5)^{2}+20^{2}+10^{2}+15^{2}\right)=8.0 \times 10^{2} \mathrm{~J} \\
K_{i} & =\frac{1}{2} m v_{A}^{2}+\frac{1}{2} m v_{B}^{2}=\frac{1}{2}(2.0)\left(15^{2}+30^{2}+(-10)^{2}+5^{2}\right)=1.3 \times 10^{3} \mathrm{~J} .
\end{aligned}
$$

The change kinetic energy is then $\Delta K=-5.0 \times 10^{2} \mathrm{~J}$ (that is, 500 J of the initial kinetic energy is lost).
67. We orient our $+x$ axis along the initial direction of motion, and specify angles in the "standard" way - so $\theta=+60^{\circ}$ for the proton (1) which is assumed to scatter into the first quadrant and $\phi=-30^{\circ}$ for the target proton (2) which scatters into the fourth quadrant (recall that the problem has told us that this is perpendicular to θ). We apply the conservation of linear momentum to the x and y axes respectively.

$$
\begin{aligned}
m_{1} v_{1} & =m_{1} v_{1}^{\prime} \cos \theta+m_{2} v_{2}^{\prime} \cos \phi \\
0 & =m_{1} v_{1}^{\prime} \sin \theta+m_{2} v_{2}^{\prime} \sin \phi
\end{aligned}
$$

We are given $v_{1}=500 \mathrm{~m} / \mathrm{s}$, which provides us with two unknowns and two equations, which is sufficient for solving. Since $m_{1}=m_{2}$ we can cancel the mass out of the equations entirely.
(a) Combining the above equations and solving for v_{2}^{\prime} we obtain

$$
v_{2}^{\prime}=\frac{v_{1} \sin \theta}{\sin (\theta-\phi)}=\frac{500 \sin \left(60^{\circ}\right)}{\sin \left(90^{\circ}\right)}=433 \mathrm{~m} / \mathrm{s} .
$$

We used the identity $\sin \theta \cos \phi-\cos \theta \sin \phi=\sin (\theta-\phi)$ in simplifying our final expression.
(b) In a similar manner, we find

$$
v_{1}^{\prime}=\frac{v_{1} \sin \theta}{\sin (\phi-\theta)}=\frac{500 \sin \left(-30^{\circ}\right)}{\sin \left(-90^{\circ}\right)}=250 \mathrm{~m} / \mathrm{s} .
$$

68. We orient our $+x$ axis along the initial direction of motion, and specify angles in the "standard" way - so $\theta=-90^{\circ}$ for the particle B which is assumed to scatter "downward" and $\phi>0$ for particle A which presumably goes into the first quadrant. We apply the conservation of linear momentum to the x and y axes respectively.

$$
\begin{aligned}
m_{B} v_{B} & =m_{B} v_{B}^{\prime} \cos \theta+m_{A} v_{A}^{\prime} \cos \phi \\
0 & =m_{B} v_{B}^{\prime} \sin \theta+m_{A} v_{A}^{\prime} \sin \phi
\end{aligned}
$$

(a) Setting $v_{B}=v$ and $v_{B}^{\prime}=v / 2$, the y-momentum equation yields

$$
m_{A} v_{A}^{\prime} \sin \phi=m_{B} \frac{v}{2}
$$

and the x-momentum equation yields $m_{A} v_{A}^{\prime} \cos \phi=m_{B} v$.
Dividing these two equations, we find $\tan \phi=\frac{1}{2}$ which yields $\phi=27^{\circ}$.
(b) We can formally solve for v_{A}^{\prime} (using the y-momentum equation and the fact that $\phi=1 / \sqrt{5}$)

$$
v_{A}^{\prime}=\frac{\sqrt{5}}{2} \frac{m_{B}}{m_{A}} v
$$

but lacking numerical values for v and the mass ratio, we cannot fully determine the final speed of A. Note: substituting $\cos \phi=2 / \sqrt{5}$, into the x-momentum equation leads to exactly this same relation (that is, no new information is obtained which might help us determine an answer).
69. Suppose the objects enter the collision along lines that make the angles $\theta>0$ and $\phi>$ 0 with the x axis, as shown in the diagram that follows. Both have the same mass m and the same initial speed v. We suppose that after the collision the combined object moves in the positive x direction with speed V. Since the y component of the total momentum of the two-object system is conserved,

$$
m v \sin \theta-m v \sin \phi=0 .
$$

This means $\phi=\theta$. Since the x component is conserved, $2 m v \cos \theta=2 m V$. We now use $V=v / 2$ to find that $\cos \theta=1 / 2$. This means $\theta=60^{\circ}$. The angle between the initial velocities is 120°.

70. We use Eq. 9-88 and simplify with $v_{i}=0, v_{f}=v$, and $v_{\text {rel }}=u$.

$$
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}} \Rightarrow \frac{M_{i}}{M_{f}}=e^{v / u}
$$

(a) If $v=u$ we obtain $\frac{M_{i}}{M_{f}}=e^{1} \approx 2.7$.
(b) If $v=2 u$ we obtain $\frac{M_{i}}{M_{f}}=e^{2} \approx 7.4$.
71. (a) The thrust of the rocket is given by $T=R v_{\text {rel }}$ where R is the rate of fuel consumption and $v_{\text {rel }}$ is the speed of the exhaust gas relative to the rocket. For this problem $R=480 \mathrm{~kg} / \mathrm{s}$ and $v_{\text {rel }}=3.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$, so

$$
T=(480 \mathrm{~kg} / \mathrm{s})\left(3.27 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)=1.57 \times 10^{6} \mathrm{~N}
$$

(b) The mass of fuel ejected is given by $M_{\text {fuel }}=R \Delta t$, where Δt is the time interval of the burn. Thus, $M_{\text {fuel }}=(480 \mathrm{~kg} / \mathrm{s})(250 \mathrm{~s})=1.20 \times 10^{5} \mathrm{~kg}$. The mass of the rocket after the burn is

$$
M_{\mathrm{f}}=M_{\mathrm{i}}-M_{\mathrm{fuel}}=\left(2.55 \times 10^{5} \mathrm{~kg}\right)-\left(1.20 \times 10^{5} \mathrm{~kg}\right)=1.35 \times 10^{5} \mathrm{~kg} .
$$

(c) Since the initial speed is zero, the final speed is given by

$$
v_{f}=v_{\text {rel }} \ln \frac{M_{i}}{M_{f}}=\left(3.27 \times 10^{3}\right) \ln \left(\frac{2.55 \times 10^{5}}{1.35 \times 10^{5}}\right)=2.08 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

72. We use Eq. 9-88. Then

$$
v_{f}=v_{i}+v_{\mathrm{rel}} \ln \left(\frac{M_{i}}{M_{f}}\right)=105 \mathrm{~m} / \mathrm{s}+(253 \mathrm{~m} / \mathrm{s}) \ln \left(\frac{6090 \mathrm{~kg}}{6010 \mathrm{~kg}}\right)=108 \mathrm{~m} / \mathrm{s}
$$

73. (a) We consider what must happen to the coal that lands on the faster barge during one minute $(\Delta t=60 \mathrm{~s})$. In that time, a total of $m=1000 \mathrm{~kg}$ of coal must experience a change of velocity $\Delta v=20 \mathrm{~km} / \mathrm{h}-10 \mathrm{~km} / \mathrm{h}=10 \mathrm{~km} / \mathrm{h}=2.8 \mathrm{~m} / \mathrm{s}$, where rightwards is considered the positive direction. The rate of change in momentum for the coal is therefore

$$
\frac{\Delta \vec{p}}{\Delta t}=\frac{m \Delta \vec{v}}{\Delta t}=\frac{(1000)(2.8)}{60}=46 \mathrm{~N}
$$

which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The processes (the shoveling, the barge motions) are constant, so there is no ambiguity in equating $\frac{\Delta p}{\Delta t}$ with $\frac{d p}{d t}$.
(b) The problem states that the frictional forces acting on the barges does not depend on mass, so the loss of mass from the slower barge does not affect its motion (so no extra force is required as a result of the shoveling).
74. (a) This is a highly symmetric collision, and when we analyze the y-components of momentum we find their net value is zero. Thus, the stuck-together particles travel along the x axis.
(b) Since it is an elastic collision with identical particles, the final speeds are the same as the initial values. Conservation of momentum along each axis then assures that the angles of approach are the same as the angles of scattering. Therefore, one particle travels along line 2 , the other along line 3 .
(c) Here the final speeds are less than they were initially. The total x-component cannot be less, however, by momentum conservation, so the loss of speed shows up as a decrease in their y-velocity-components. This leads to smaller angles of scattering. Consequently, one particle travels through region B, the other through region C; the paths are symmetric about the x-axis. We note that this is intermediate between the final states described in parts (b) and (a).
(d) Conservation of momentum along the x-axis leads (because these are identical particles) to the simple observation that the x-component of each particle remains constant:

$$
v_{f x}=v \cos \theta=3.06 \mathrm{~m} / \mathrm{s} .
$$

(e) As noted above, in this case the speeds are unchanged; both particles are moving at $4.00 \mathrm{~m} / \mathrm{s}$ in the final state.
75. (a) We use Eq. 9-68 twice:

$$
\begin{gathered}
v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{1.5 m_{1}}(4.00 \mathrm{~m} / \mathrm{s})=\frac{16}{3} \mathrm{~m} / \mathrm{s} \\
v_{3}=\frac{2 m_{2}}{m_{2}+m_{3}} v_{2}=\frac{2 m_{2}}{1.5 m_{2}}(16 / 3 \mathrm{~m} / \mathrm{s})=\frac{64}{9} \mathrm{~m} / \mathrm{s}=7.11 \mathrm{~m} / \mathrm{s} .
\end{gathered}
$$

(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1.
(c) The kinetic energy of block 3 is

$$
K_{3 f}=\frac{1}{2} m_{3} v_{3}^{2}=\left(\frac{1}{2}\right)^{3} m_{1}\left(\frac{16}{9}\right)^{2} v_{1 i}^{2}=\frac{64}{81} K_{1 i} .
$$

We see the kinetic energy of block 3 is less than the (initial) K of block 1 . In the final situation, the initial K is being shared among the three blocks (which are all in motion), so this is not a surprising conclusion.
(d) The momentum of block 3 is

$$
p_{3 f}=m_{3} v_{3}=\left(\frac{1}{2}\right)^{2} m_{1}\left(\frac{16}{9}\right) v_{1 i}=\frac{4}{9} p_{1 i}
$$

and is therefore less than the initial momentum (both of these being considered in magnitude, so questions about \pm sign do not enter the discussion).
76. Using Eq. 9-67 and Eq. 9-68, we have after the first collision

$$
\begin{aligned}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{-m_{1}}{3 m_{1}} v_{1 i}=-\frac{1}{3} v_{1 i} \\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{3 m_{1}} v_{1 i}=\frac{2}{3} v_{1 i}
\end{aligned}
$$

After the second collision, the velocities are

$$
\begin{aligned}
& v_{2 f f}=\frac{m_{2}-m_{3}}{m_{2}+m_{3}} v_{2 f}=\frac{-m_{2}}{3 m_{2}} \frac{2}{3} v_{1 i}=-\frac{2}{9} v_{1 i} \\
& v_{3 f f}=\frac{2 m_{2}}{m_{2}+m_{3}} v_{2 f}=\frac{2 m_{2}}{3 m_{2}} \frac{2}{3} v_{1 i}=\frac{4}{9} v_{1 i} .
\end{aligned}
$$

(a) Setting $v_{1 i}=4 \mathrm{~m} / \mathrm{s}$, we find $v_{3 f f} \approx 1.78 \mathrm{~m} / \mathrm{s}$.
(b) We see that $v_{3 f f}$ is less than $v_{1 i}$.
(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of block 1) is

$$
K_{3 f f}=\frac{1}{2} m_{3} v_{3}^{2}=\frac{1}{2}\left(4 m_{1}\right)\left(\frac{16}{9}\right)^{2} v_{1 i}^{2}=\frac{64}{81} K_{1 i} .
$$

We see that this is less than $K_{1 i}$.
(d) The final momentum of block 3 is $p_{3 f f}=m_{3} v_{3 f f}=\left(4 m_{1}\right)\left(\frac{16}{9}\right) v_{1}>m_{1} v_{1}$.
77. (a) Momentum conservation gives

$$
m_{R} v_{R}+m_{L} v_{L}=0 \Rightarrow(0.500) v_{R}+(1.00)(-1.2)=0
$$

which yields $v_{R}=2.40 \mathrm{~m} / \mathrm{s}$. Thus, $\Delta x=v_{R} t=(2.40)(0.800)=1.92 \mathrm{~m}$.
(b) Now we have $m_{R} v_{R}+m_{L}\left(v_{R}-1.20\right)=0$, which yields

$$
v_{R}=\frac{1.2 m_{L}}{m_{L}+m_{R}}=\frac{(1.2)(1)}{1+0.5}=0.800 \mathrm{~m} / \mathrm{s} .
$$

Consequently, $\Delta x=v_{R} t=0.640 \mathrm{~m}$.
78. Momentum conservation (with SI units understood) gives

$$
m_{1}\left(v_{f}-20\right)+\left(M-m_{1}\right) v_{f}=M v_{i}
$$

which yields

$$
v_{f}=\frac{M \mathrm{v}_{i}+20 m_{1}}{M}=v_{i}+20 \frac{m_{1}}{M}=40+20\left(m_{1} / M\right) .
$$

(a) The minimum value of v_{f} is $40 \mathrm{~m} / \mathrm{s}$,
(b) The final speed v_{f} reaches a minimum as m_{1} approaches zero.
(c) The maximum value of v_{f} is $60 \mathrm{~m} / \mathrm{s}$.
(d) The final speed v_{f} reaches a maximum as m_{1} approaches M.
79. We convert mass rate to SI units: $R=540 / 60=9.00 \mathrm{~kg} / \mathrm{s}$. In the absence of the askedfor additional force, the car would decelerate with a magnitude given by Eq. 9-87:

$$
R v_{\mathrm{rel}}=M|a|
$$

so that if $a=0$ is desired then the additional force must have a magnitude equal to $R v_{\text {rel }}$ (so as to cancel that effect).

$$
F=R v_{\mathrm{rel}}=(9.00)(3.20)=28.8 \mathrm{~N} .
$$

80. Denoting the new speed of the car as v, then the new speed of the man relative to the ground is $v-v_{\text {rel }}$. Conservation of momentum requires

$$
\left(\frac{W}{g}+\frac{w}{g}\right) v_{0}=\left(\frac{W}{g}\right) v+\left(\frac{w}{g}\right)\left(v-v_{\mathrm{rel}}\right) .
$$

Consequently, the change of velocity is

$$
\Delta \vec{v}=v-v_{0}=\frac{w v_{\mathrm{rel}}}{W+w}=\frac{(915 \mathrm{~N})(4.00 \mathrm{~m} / \mathrm{s})}{(2415 \mathrm{~N})+(915 \mathrm{~N})}=1.10 \mathrm{~m} / \mathrm{s} .
$$

81. (a) We place the origin of a coordinate system at the center of the pulley, with the x axis horizontal and to the right and with the y axis downward. The center of mass is halfway between the containers, at $x=0$ and $y=\ell$, where ℓ is the vertical distance from the pulley center to either of the containers. Since the diameter of the pulley is 50 mm , the center of mass is at a horizontal distance of 25 mm from each container.
(b) Suppose 20 g is transferred from the container on the left to the container on the right. The container on the left has mass $m_{1}=480 \mathrm{~g}$ and is at $x_{1}=-25 \mathrm{~mm}$. The container on the right has mass $m_{2}=520 \mathrm{~g}$ and is at $x_{2}=+25 \mathrm{~mm}$. The x coordinate of the center of mass is then

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{(480 \mathrm{~g})(-25 \mathrm{~mm})+(520 \mathrm{~g})(25 \mathrm{~mm})}{480 \mathrm{~g}+520 \mathrm{~g}}=1.0 \mathrm{~mm} .
$$

The y coordinate is still ℓ. The center of mass is 26 mm from the lighter container, along the line that joins the bodies.
(c) When they are released the heavier container moves downward and the lighter container moves upward, so the center of mass, which must remain closer to the heavier container, moves downward.
(d) Because the containers are connected by the string, which runs over the pulley, their accelerations have the same magnitude but are in opposite directions. If a is the acceleration of m_{2}, then $-a$ is the acceleration of m_{1}. The acceleration of the center of mass is

$$
a_{\mathrm{com}}=\frac{m_{1}(-a)+m_{2} a}{m_{1}+m_{2}}=a \frac{m_{2}-m_{1}}{m_{1}+m_{2}} .
$$

We must resort to Newton's second law to find the acceleration of each container. The force of gravity $m_{1} g$, down, and the tension force of the string T, up, act on the lighter container. The second law for it is $m_{1} g-T=-m_{1} a$. The negative sign appears because a is the acceleration of the heavier container. The same forces act on the heavier container and for it the second law is $m_{2} g-T=m_{2} a$. The first equation gives $T=m_{1} g+m_{1} a$. This is substituted into the second equation to obtain $m_{2} g-m_{1} g-m_{1} a=m_{2} a$, so

$$
a=\left(m_{2}-m_{1}\right) g /\left(m_{1}+m_{2}\right) .
$$

Thus,

$$
a_{\mathrm{com}}=\frac{g\left(m_{2}-m_{1}\right)^{2}}{\left(m_{1}+m_{2}\right)^{2}}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(520 \mathrm{~g}-480 \mathrm{~g})^{2}}{(480 \mathrm{~g}+520 \mathrm{~g})^{2}}=1.6 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
$$

The acceleration is downward.
82. First, we imagine that the small square piece (of mass m) that was cut from the large plate is returned to it so that the large plate is again a complete $6 \mathrm{~m} \times 6 \mathrm{~m}(d=1.0 \mathrm{~m})$ square plate (which has its center of mass at the origin). Then we "add" a square piece of "negative mass" $(-m)$ at the appropriate location to obtain what is shown in Fig. 9-75. If the mass of the whole plate is M, then the mass of the small square piece cut from it is obtained from a simple ratio of areas:

$$
m=\left(\frac{2.0 \mathrm{~m}}{6.0 \mathrm{~m}}\right)^{2} M \Rightarrow M=9 m
$$

(a) The x coordinate of the small square piece is $x=2.0 \mathrm{~m}$ (the middle of that square "gap" in the figure). Thus the x coordinate of the center of mass of the remaining piece is

$$
x_{\mathrm{com}}=\frac{(-m) x}{M+(-m)}=\frac{-m(2.0 \mathrm{~m})}{9 m-m}=-0.25 \mathrm{~m} .
$$

(b) Since the y coordinate of the small square piece is zero, we have $y_{\mathrm{com}}=0$.
83. By the principle of momentum conservation, we must have

$$
m_{1} \overrightarrow{\mathrm{v}}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}+m_{3} \overrightarrow{\mathrm{v}}_{3}=0
$$

which implies

$$
\vec{v}_{3}=-\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{3}}
$$

With

$$
\begin{aligned}
& m_{1} \vec{v}_{1}=(0.500)(10.0 \hat{\mathrm{i}}+12.0 \hat{\mathrm{j}})=5.00 \hat{\mathrm{i}}+6.00 \hat{\mathrm{j}} \\
& m_{2} \vec{v}_{2}=(0.750)(14.0)\left(\cos 110^{\circ} \hat{\mathrm{i}}+\sin 110^{\circ} \hat{\mathrm{j}}\right)=-3.59 \hat{\mathrm{i}}+9.87 \hat{\mathrm{j}}
\end{aligned}
$$

(in SI units) and $m_{3}=m-m_{1}-m_{2}=(2.65-0.500-0.750) \mathrm{kg}=1.40 \mathrm{~kg}$, we solve for $\overrightarrow{\mathrm{v}}_{3}$ and obtain $\vec{v}_{3}=(-1.01 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-11.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$.
(a) The magnitude of \vec{v}_{3} is $\left|\vec{v}_{3}\right|=11.4 \mathrm{~m} / \mathrm{s}$.
(b) Its angle is 264.9°, which means it is 95.1° clockwise from the $+x$ axis.
84. Using Eq. 9-75 and Eq. 9-76, we find after the collision
(a) $v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}=(-3.8 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$, and
(b) $v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}=(7.2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
85. We assume no external forces act on the system composed of the two parts of the last stage. Hence, the total momentum of the system is conserved. Let m_{c} be the mass of the rocket case and m_{p} the mass of the payload. At first they are traveling together with velocity v. After the clamp is released m_{c} has velocity v_{c} and m_{p} has velocity v_{p}. Conservation of momentum yields

$$
\left(m_{c}+m_{p}\right) v=m_{c} v_{c}+m_{p} v_{p} .
$$

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the greater speed. We write $v_{p}=v_{c}+v_{\text {rel }}$, where $v_{\text {rel }}$ is the relative velocity. When this expression is substituted into the conservation of momentum condition, the result is

$$
\left(m_{c}+m_{p}\right) v=m_{c} v_{c}+m_{p} v_{c}+m_{p} v_{\mathrm{rel}} .
$$

Therefore,

$$
\begin{aligned}
v_{c} & =\frac{\left(m_{c}+m_{p}\right) v-m_{p} v_{\mathrm{rel}}}{m_{c}+m_{p}}=\frac{(290.0 \mathrm{~kg}+150.0 \mathrm{~kg})(7600 \mathrm{~m} / \mathrm{s})-(150.0 \mathrm{~kg})(910.0 \mathrm{~m} / \mathrm{s})}{290.0 \mathrm{~kg}+150.0 \mathrm{~kg}} \\
& =7290 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(b) The final speed of the payload is $v_{p}=v_{c}+v_{\text {rel }}=7290 \mathrm{~m} / \mathrm{s}+910.0 \mathrm{~m} / \mathrm{s}=8200 \mathrm{~m} / \mathrm{s}$.
(c) The total kinetic energy before the clamp is released is

$$
K_{i}=\frac{1}{2}\left(m_{c}+m_{p}\right) v^{2}=\frac{1}{2}(290.0 \mathrm{~kg}+150.0 \mathrm{~kg})(7600 \mathrm{~m} / \mathrm{s})^{2}=1.271 \times 10^{10} \mathrm{~J}
$$

(d) The total kinetic energy after the clamp is released is

$$
\begin{aligned}
K_{f} & =\frac{1}{2} m_{c} v_{c}^{2}+\frac{1}{2} m_{p} v_{p}^{2}=\frac{1}{2}(290.0 \mathrm{~kg})(7290 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(150.0 \mathrm{~kg})(8200 \mathrm{~m} / \mathrm{s})^{2} \\
& =1.275 \times 10^{10} \mathrm{~J} .
\end{aligned}
$$

The total kinetic energy increased slightly. Energy originally stored in the spring is converted to kinetic energy of the rocket parts.
86. Using Eq. 9-67, we have after the elastic collision

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{-200 \mathrm{~g}}{600 \mathrm{~g}} v_{1 i}=-\frac{1}{3}(3 \mathrm{~m} / \mathrm{s})=-1 \mathrm{~m} / \mathrm{s} .
$$

(a) The impulse is therefore

$$
J=m_{1} v_{1 f}-m_{1} v_{1 i}=(0.2)(-1)-(0.2)(3)=-0.800 \mathrm{~N} \cdot \mathrm{~s}=-0.800 \mathrm{~kg} \mathrm{~m} / \mathrm{s},
$$

or $|J|=-0.800 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.
(b) For the completely inelastic collision Eq. 9-75 applies

$$
\mathrm{v}_{1 f}=V=\frac{m_{1}}{m_{1}+m_{2}} \mathrm{v}_{1 i}=+1 \mathrm{~m} / \mathrm{s} .
$$

Now the impulse is

$$
J=m_{1} v_{1 f}-m_{1} v_{1 i}=(0.2)(1)-(0.2)(3)=0.400 \mathrm{~N} \cdot \mathrm{~s}=0.400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

87. The velocity of the object is

$$
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}((3500-160 t) \hat{\mathrm{i}}+2700 \hat{\mathrm{j}}+300 \hat{\mathrm{k}})=-160 \hat{\mathrm{i}} \mathrm{~m} / \mathrm{s} .
$$

(a) The linear momentum is $\vec{p}=m \vec{v}=(250)(-160 \hat{\mathrm{i}})=\left(-4.0 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}$.
(b) The object is moving west (our $-\hat{\mathrm{i}}$ direction).
(c) Since the value of \vec{p} does not change with time, the net force exerted on the object is zero, by Eq. 9-23.
88. We refer to the discussion in the textbook (Sample Problem 9-10, which uses the same notation that we use here) for some important details in the reasoning. We choose rightward in Fig. 9-21 as our $+x$ direction. We use the notation \vec{v} when we refer to velocities and v when we refer to speeds (which are necessarily positive). Since the algebra is fairly involved, we find it convenient to introduce the notation $\Delta m=m_{2}-m_{1}$ (which, we note for later reference, is a positive-valued quantity).
(a) Since $\vec{\nu}_{1 i}=+\sqrt{2 g h_{1}}$ where $h_{1}=9.0 \mathrm{~cm}$, we have

$$
\vec{v}_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=-\frac{\Delta m}{m_{1}+m_{2}} \sqrt{2 g h_{1}}
$$

which is to say that the speed of sphere 1 immediately after the collision is $v_{1 f}=\left(\Delta m /\left(m_{1}+m_{2}\right)\right) \sqrt{2 g h_{1}}$ and that $\vec{v}_{1 f}$ points in the $-x$ direction. This leads (by energy conservation $m_{1} g h_{1 f}=\frac{1}{2} m_{1} v_{1 f}^{2}$) to

$$
h_{1 f}=\frac{v_{1 f}^{2}}{2 g}=\left(\frac{\Delta m}{m_{1}+m_{2}}\right)^{2} h_{1} .
$$

With $m_{1}=50 \mathrm{~g}$ and $m_{2}=85 \mathrm{~g}$, this becomes $h_{1 f} \approx 0.60 \mathrm{~cm}$.
(b) Eq. 9-68 gives

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{m_{1}+m_{2}} \sqrt{2 g h_{1}}
$$

which leads (by energy conservation $m_{2} g h_{2 f}=\frac{1}{2} m_{2} v_{2 f}^{2}$) to

$$
h_{2 f}=\frac{v_{2 f}^{2}}{2 g}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right)^{2} h_{1} .
$$

With $m_{1}=50 \mathrm{~g}$ and $m_{2}=85 \mathrm{~g}$, this becomes $h_{2 f} \approx 4.9 \mathrm{~cm}$.
(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was "small" - this is further discussed in Chapter 16). At the risk of using cumbersome notation, we refer to the next set of heights as $h_{1 f f}$ and $h_{2 f f}$. At the lowest point (before this second collision) sphere 1 has velocity $+\sqrt{2 g h_{1 f}}$ (rightward in Fig. 9-21) and sphere 2
has velocity $-\sqrt{2 g h_{1 f}}$ (that is, it points in the $-x$ direction). Thus, the velocity of sphere 1 immediately after the second collision is, using Eq. 9-75,

$$
\begin{aligned}
\vec{v}_{1 f f} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \sqrt{2 g h_{1 f}}+\frac{2 m_{2}}{m_{1}+m_{2}}\left(-\sqrt{2 g h_{2 f}}\right) \\
& =\frac{-\Delta m}{m_{1}+m_{2}}\left(\frac{\Delta m}{m_{1}+m_{2}} \sqrt{2 g h_{1}}\right)-\frac{2 m_{2}}{m_{1}+m_{2}}\left(\frac{2 m_{1}}{m_{1}+m_{2}} \sqrt{2 g h_{1}}\right) \\
& =-\frac{(\Delta m)^{2}+4 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \sqrt{2 g h_{1}} .
\end{aligned}
$$

This can be greatly simplified (by expanding $(\Delta m)^{2}$ and $\left(m_{1}+m_{2}\right)^{2}$) to arrive at the conclusion that the speed of sphere 1 immediately after the second collision is simply $v_{1 f f}=\sqrt{2 g h_{1}}$ and that $\vec{v}_{1 f f}$ points in the $-x$ direction. Energy conservation $\left(m_{1} g h_{1 f f}=\frac{1}{2} m_{1} v_{1 f f}^{2}\right)$ leads to

$$
h_{1, f f}=\frac{v_{1 f f}^{2}}{2 g}=h_{1}=9.0 \mathrm{~cm}
$$

(d) One can reason (energy-wise) that $h_{1 f f}=0$ simply based on what we found in part (c). Still, it might be useful to see how this shakes out of the algebra. Eq. 9-76 gives the velocity of sphere 2 immediately after the second collision:

$$
\begin{aligned}
v_{2 f f} & =\frac{2 m_{1}}{m_{1}+m_{2}} \sqrt{2 g h_{1 f}}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\left(-\sqrt{2 g h_{2 f}}\right) \\
& =\frac{2 m_{1}}{m_{1}+m_{2}}\left(\frac{\Delta m}{m_{1}+m_{2}} \sqrt{2 g h_{1}}\right)+\frac{\Delta m}{m_{1}+m_{2}}\left(\frac{-2 m_{1}}{m_{1}+m_{2}} \sqrt{2 g h_{1}}\right)
\end{aligned}
$$

which vanishes since $\left(2 m_{1}\right)(\Delta m)-(\Delta m)\left(2 m_{1}\right)=0$. Thus, the second sphere (after the second collision) stays at the lowest point, which basically recreates the conditions at the start of the problem (so all subsequent swings-and-impacts, neglecting friction, can be easily predicted - as they are just replays of the first two collisions).
89. (a) Since the center of mass of the man-balloon system does not move, the balloon will move downward with a certain speed u relative to the ground as the man climbs up the ladder.
(b) The speed of the man relative to the ground is $v_{g}=v-u$. Thus, the speed of the center of mass of the system is

$$
v_{\mathrm{com}}=\frac{m v_{g}-M u}{M+m}=\frac{m(v-u)-M u}{M+m}=0 .
$$

This yields

$$
u=\frac{m v}{M+m}=\frac{(80 \mathrm{~kg})(2.5 \mathrm{~m} / \mathrm{s})}{320 \mathrm{~kg}+80 \mathrm{~kg}}=0.50 \mathrm{~m} / \mathrm{s}
$$

(c) Now that there is no relative motion within the system, the speed of both the balloon and the man is equal to $v_{\text {com }}$, which is zero. So the balloon will again be stationary.
90. (a) The momentum change for the 0.15 kg object is

$$
\Delta \vec{p}=(0.15)[2 \hat{\mathrm{i}}+3.5 \hat{\mathrm{j}}-3.2 \hat{\mathrm{k}}-(5 \hat{\mathrm{i}}+6.5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})]=(-0.450 \hat{\mathrm{i}}-0.450 \hat{\mathrm{j}}-1.08 \hat{\mathrm{k}}) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}
$$

(b) By the impulse-momentum theorem (Eq. 9-31), $\vec{J}=\Delta \vec{p}$, we have

$$
\vec{J}=(-0.450 \hat{\mathrm{i}}-0.450 \hat{\mathrm{j}}-1.08 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~s} .
$$

(c) Newton's third law implies $\vec{J}_{\text {wall }}=-\overrightarrow{J_{\text {ball }}}$ (where $\overrightarrow{J_{\text {ball }}}$ is the result of part (b)), so

$$
\overrightarrow{J_{\text {wall }}}=(0.450 \hat{\mathrm{i}}+0.450 \hat{\mathrm{j}}+1.08 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~s}
$$

91. We use Eq. 9-5.
(a) The x coordinate of the center of mass is

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=\frac{0+(4)(3)+0+(12)(-1)}{m_{1}+m_{2}+m_{3}+m_{4}}=0 .
$$

(b) The ycoordinate of the center of mass is

$$
y_{\mathrm{com}}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=\frac{(2)(3)+0+(3)(-2)+0}{m_{1}+m_{2}+m_{3}+m_{4}}=0 .
$$

(c) We now use Eq. 9-17:

$$
\begin{aligned}
\overrightarrow{\mathrm{v}}_{\mathrm{com}} & =\frac{m_{1} \overrightarrow{\mathrm{v}}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}+m_{3} \overrightarrow{\mathrm{v}}_{3}+m_{4} \overrightarrow{\mathrm{v}}_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
& =\frac{(2)(-9 \hat{\mathrm{j}})+(4)(6 \hat{\mathrm{i}})+(3)(6 \hat{\mathrm{j}})+(12)(-2 \hat{\mathrm{i}})}{m_{1}+m_{2}+m_{3}+m_{4}}=0 .
\end{aligned}
$$

92. (a) The change in momentum (taking upwards to be the positive direction) is

$$
\Delta \vec{p}=(0.550 \mathrm{~kg})[(3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}-(-12 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}]=(+8.25 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
$$

(b) By the impulse-momentum theorem (Eq. 9-31) $\vec{J}=\Delta \vec{p}=(+8.25 \mathrm{~N} \cdot \mathrm{~s}) \hat{\mathrm{j}}$.
(c) By Newton's third law, $\vec{J}_{\mathrm{c}}=-\vec{J}_{\mathrm{b}}=(-8.25 \mathrm{~N} \cdot \mathrm{~s}) \hat{\mathrm{j}}$.
93. One approach is to choose a moving coordinate system which travels the center of mass of the body, and another is to do a little extra algebra analyzing it in the original coordinate system (in which the speed of the $m=8.0 \mathrm{~kg}$ mass is $v_{0}=2 \mathrm{~m} / \mathrm{s}$, as given). Our solution is in terms of the latter approach since we are assuming that this is the approach most students would take. Conservation of linear momentum (along the direction of motion) requires

$$
m v_{0}=m_{1} v_{1}+m_{2} v_{2} \quad \Rightarrow \quad(8.0)(2.0)=(4.0) v_{1}+(4.0) v_{2}
$$

which leads to $v_{2}=4-v_{1}$ in SI units $(\mathrm{m} / \mathrm{s})$. We require

$$
\Delta K=\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}\right)-\frac{1}{2} m v_{0}^{2} \Rightarrow 16=\left(\frac{1}{2}(4.0) v_{1}^{2}+\frac{1}{2}(4.0) v_{2}^{2}\right)-\frac{1}{2}(8.0)(2.0)^{2}
$$

which simplifies to $v_{2}^{2}=16-v_{1}^{2}$ in SI units. If we substitute for v_{2} from above, we find

$$
\left(4-v_{1}\right)^{2}=16-v_{1}^{2}
$$

which simplifies to $2 v_{1}^{2}-8 v_{1}=0$, and yields either $v_{1}=0$ or $v_{1}=4 \mathrm{~m} / \mathrm{s}$. If $v_{1}=0$ then $v_{2}=$ $4-v_{1}=4 \mathrm{~m} / \mathrm{s}$, and if $v_{1}=4 \mathrm{~m} / \mathrm{s}$ then $v_{2}=0$.
(a) Since the forward part continues to move in the original direction of motion, the speed of the rear part must be zero.
(b) The forward part has a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ along the original direction of motion.
94. Using Eq. 9-67 and Eq. 9-68, we have after the collision

$$
\begin{aligned}
& v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{0.6 m_{1}}{1.4 m_{1}} v_{1 i}=-\frac{3}{7}(4 \mathrm{~m} / \mathrm{s}) \\
& v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{1.4 m_{1}} v_{1 i}=\frac{1}{7}(4 \mathrm{~m} / \mathrm{s}) .
\end{aligned}
$$

(a) During the (subsequent) sliding, the kinetic energy of block $1 K_{1 f}=\frac{1}{2} m_{1} v_{1}^{2}$ is converted into thermal form $\left(\Delta E_{\mathrm{th}}=\mu_{k} m_{1} g d_{1}\right)$. Solving for the sliding distance d_{1} we obtain $d_{1}=0.2999 \mathrm{~m} \approx 30 \mathrm{~cm}$.
(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block 2's sliding distance $d_{2}=3.332 \mathrm{~m} \approx 3.3 \mathrm{~m}$.
95. (a) Noting that the initial velocity of the system is zero, we use Eq. 9-19 and Eq. 2-15 (adapted to two dimensions) to obtain

$$
\vec{d}=\frac{1}{2}\left(\frac{\vec{F}_{1}+\vec{F}_{2}}{m_{1}+m_{2}}\right) t^{2}=\frac{1}{2}\left(\frac{-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}}{0.006}\right)(0.002)^{2}
$$

which has a magnitude of 0.745 mm .
(b) The angle of \vec{d} is 153° counterclockwise from $+x$-axis.
(c) A similar calculation using Eq. 2-11 (adapted to two dimensions) leads to a center of mass velocity of $\overrightarrow{\mathrm{v}}=0.7453 \mathrm{~m} / \mathrm{s}$ at 153°. Thus, the center of mass kinetic energy is

$$
K_{\mathrm{com}}=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}=0.00167 \mathrm{~J} .
$$

96. (a) Since the initial momentum is zero, then the final momenta must add (in the vector sense) to 0 . Therefore, with SI units understood, we have

$$
\begin{aligned}
\vec{p}_{3} & =-\vec{p}_{1}-\vec{p}_{2}=-m_{1} \vec{v}_{1}-m_{2} \vec{v}_{2} \\
& =-\left(16.7 \times 10^{-27}\right)\left(6.00 \times 10^{6} \hat{i}\right)-\left(8.35 \times 10^{-27}\right)\left(-8.00 \times 10^{6} \hat{\mathrm{j}}\right) \\
& =\left(-1.00 \times 10^{-19} \hat{\mathrm{i}}+0.67 \times 10^{-19} \hat{\mathrm{j}}\right) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(b) Dividing by $m_{3}=11.7 \times 10^{-27} \mathrm{~kg}$ and using the Pythagorean theorem we find the speed of the third particle to be $v_{3}=1.03 \times 10^{7} \mathrm{~m} / \mathrm{s}$. The total amount of kinetic energy is

$$
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}=1.19 \times 10^{-12} \mathrm{~J}
$$

97. Let $M=22.7 \mathrm{~kg}$ and $m=3.63$ be the mass of the sled and the cat, respectively. Using the principle of momentum conservation, the speed of the first sled after the cat's first jump with a speed of $v_{i}=3.05 \mathrm{~m} / \mathrm{s}$ is

$$
v_{1 f}=\frac{m v_{i}}{M}=0.488 \mathrm{~m} / \mathrm{s} .
$$

On the other hand, as the cat lands on the second sled, it sticks to it and the system (sled plus cat) moves forward with a speed

$$
v_{2 f}=\frac{m v_{i}}{M+m}=0.4205 \mathrm{~m} / \mathrm{s} .
$$

When the cat makes the second jump back to the first sled with a speed v_{i}, momentum conservation implies

$$
M v_{2 f f}=m v_{i}+(M+m) v_{2 f}=m v_{i}+m v_{i}=2 m v_{i}
$$

which yields

$$
v_{2 f f}=\frac{2 m v_{i}}{M}=0.975 \mathrm{~m} / \mathrm{s}
$$

After the cat lands on the first sled, the entire system (cat and the sled) again moves together. By momentum conservation, we have

$$
(M+m) v_{1 f f}=m v_{i}+M v_{1 f}=m v_{i}+m v_{i}=2 m v_{i}
$$

or

$$
v_{1 f f}=\frac{2 m v_{i}}{M+m}=0.841 \mathrm{~m} / \mathrm{s} .
$$

(a) From the above, we conclude that the first sled moves with a speed $v_{1, f f}=0.841 \mathrm{~m} / \mathrm{s}$ a after the cat's two jumps.
(b) Similarly, the speed of the second sled is $v_{2 f f}=0.975 \mathrm{~m} / \mathrm{s}$.
98. We refer to the discussion in the textbook (see Sample Problem 9-8, which uses the same notation that we use here) for many of the important details in the reasoning. Here we only present the primary computational step (using SI units).
(a) The bullet's initial kinetic energy is

$$
\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{m+M}{m} \sqrt{2 g h}\right)^{2}=\frac{m+M}{m} U_{f}
$$

where $U_{f}=(m+M) g h$ is the system's final potential energy (equal to its total mechanical energy since its speed is zero at height h). Thus,

$$
\frac{U}{\frac{1}{2} m v^{2}}=\frac{m}{m+M}=\frac{0.008}{7.008}=0.00114
$$

(b) The fraction $m /(m+M)$ shown in part (a) has no v-dependence. The answer remains the same.
99. (a) If m is the mass of a pellet and v is its velocity as it hits the wall, then its momentum is $p=m v=\left(2.0 \times 10^{-3} \mathrm{~kg}\right)(500 \mathrm{~m} / \mathrm{s})=1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, toward the wall.
(b) The kinetic energy of a pellet is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(2.0 \times 10^{-3} \mathrm{~kg}\right)(500 \mathrm{~m} / \mathrm{s})^{2}=2.5 \times 10^{2} \mathrm{~J}
$$

(c) The force on the wall is given by the rate at which momentum is transferred from the pellets to the wall. Since the pellets do not rebound, each pellet that hits transfers $p=$ $1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. If ΔN pellets hit in time Δt, then the average rate at which momentum is transferred is

$$
F_{\text {avg }}=\frac{p \Delta N}{\Delta t}=(1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})\left(10 \mathrm{~s}^{-1}\right)=10 \mathrm{~N} .
$$

The force on the wall is in the direction of the initial velocity of the pellets.
(d) If Δt is the time interval for a pellet to be brought to rest by the wall, then the average force exerted on the wall by a pellet is

$$
F_{\mathrm{avg}}=\frac{p}{\Delta t}=\frac{1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.6 \times 10^{-3} \mathrm{~s}}=1.7 \times 10^{3} \mathrm{~N} .
$$

The force is in the direction of the initial velocity of the pellet.
(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while in part (c) it is averaged over the time for many pellets to hit the wall. During the majority of this time, no pellet is in contact with the wall, so the average force in part (c) is much less than the average force in part (d).
100. We first consider the 1200 kg part. The impulse has magnitude J and is (by our choice of coordinates) in the positive direction. Let m_{1} be the mass of the part and v_{1} be its velocity after the bolts are exploded. We assume both parts are at rest before the explosion. Then $J=m_{1} v_{1}$, so

$$
v_{1}=\frac{J}{m_{1}}=\frac{300 \mathrm{~N} \cdot \mathrm{~s}}{1200 \mathrm{~kg}}=0.25 \mathrm{~m} / \mathrm{s} .
$$

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, so $-J=m_{2} v_{2}$, where m_{2} is the mass and v_{2} is the velocity of the part. Therefore,

$$
v_{2}=-\frac{J}{m_{2}}=-\frac{300 \mathrm{~N} \cdot \mathrm{~s}}{1800 \mathrm{~kg}}=-0.167 \mathrm{~m} / \mathrm{s} .
$$

Consequently, the relative speed of the parts after the explosion is

$$
u=0.25 \mathrm{~m} / \mathrm{s}-(-0.167 \mathrm{~m} / \mathrm{s})=0.417 \mathrm{~m} / \mathrm{s}
$$

101. (a) The initial momentum of the car is

$$
\vec{p}_{i}=m \vec{v}_{i}=(1400 \mathrm{~kg})(5.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}=(7400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
$$

and the final momentum is $\vec{p}_{f}=(7400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$. The impulse on it equals the change in its momentum: $\vec{J}=\vec{p}_{f}-\vec{p}_{i}=(7400 \mathrm{~N} \cdot \mathrm{~s})(\hat{\mathrm{i}}-\hat{\mathrm{j}})$.
(b) The initial momentum of the car is $\vec{p}_{i}=(7400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$ and the final momentum is $\vec{p}_{f}=0$. The impulse acting on it is $\vec{J}=\vec{p}_{f}-\vec{p}_{i}=\left(-7.4 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}\right) \hat{\mathrm{i}}$.
(c) The average force on the car is

$$
\vec{F}_{\text {avg }}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\vec{J}}{\Delta t}=\frac{(7400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})(\hat{\mathrm{i}}-\hat{\mathrm{j}})}{4.6 \mathrm{~s}}=(1600 \mathrm{~N})(\hat{\mathrm{i}}-\hat{\mathrm{j}})
$$

and its magnitude is $F_{\text {avg }}=(1600 \mathrm{~N}) \sqrt{2}=2.3 \times 10^{3} \mathrm{~N}$.
(d) The average force is

$$
\vec{F}_{\text {avg }}=\frac{\vec{J}}{\Delta t}=\frac{(-7400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}}{350 \times 10^{-3} \mathrm{~s}}=\left(-2.1 \times 10^{4} \mathrm{~N}\right) \hat{\mathrm{i}}
$$

and its magnitude is $F_{\text {avg }}=2.1 \times 10^{4} \mathrm{~N}$.
(e) The average force is given above in unit vector notation. Its x and y components have equal magnitudes. The x component is positive and the y component is negative, so the force is 45° below the positive x axis.
102. We locate the coordinate origin at the center of the carbon atom, and we consider both atoms to be "point particles." We will use the non-SI units for mass found in Appendix F; since they will cancel they will not prevent the answer from being in SI units.

$$
r_{\mathrm{com}}=\frac{(15.9994 \text { grams } / \mathrm{mole})\left(1.131 \times 10^{-10} \mathrm{~m}\right)}{12.01115 \text { grams } / \mathrm{mole}+15.9994 \text { grams } / \mathrm{mole}}=6.46 \times 10^{-11} \mathrm{~m} .
$$

103. We choose our positive direction in the direction of the rebound (so the ball's initial velocity is negative-valued $\left.\vec{v}_{i}=-5.2 \mathrm{~m} / \mathrm{s}\right)$.
(a) The speed of the ball right after the collision is

$$
v_{f}=\sqrt{\frac{2 K_{f}}{m}}=\sqrt{\frac{2\left(\frac{1}{2} K_{i}\right)}{m}}=\sqrt{\frac{\frac{1}{2} m v_{i}^{2}}{m}}=\frac{v_{i}}{\sqrt{2}} \approx 3.7 \mathrm{~m} / \mathrm{s} .
$$

(b) With $m=0.15 \mathrm{~kg}$, the impulse-momentum theorem (Eq. 9-31) yields

$$
\vec{J}=m \vec{v}_{f}-m \vec{v}_{i}=(0.15)(3.7)-(0.15)(-5.2)=1.3 \mathrm{~N} \cdot \mathrm{~s} .
$$

(c) Eq. 9-35 leads to $F_{\text {avg }}=J / \Delta t=1.3 / 0.0076=1.8 \times 10^{2} \mathrm{~N}$.
104. Let m_{c} be the mass of the Chrysler and v_{c} be its velocity. Let m_{f} be the mass of the Ford and v_{f} be its velocity. Then the velocity of the center of mass is

$$
v_{\mathrm{com}}=\frac{m_{c} v_{c}+m_{f} v_{f}}{m_{c}+m_{f}}=\frac{(2400 \mathrm{~kg})(80 \mathrm{~km} / \mathrm{h})+(1600 \mathrm{~kg})(60 \mathrm{~km} / \mathrm{h})}{2400 \mathrm{~kg}+1600 \mathrm{~kg}}=72 \mathrm{~km} / \mathrm{h} .
$$

We note that the two velocities are in the same direction, so the two terms in the numerator have the same sign.
105. (a) We take the force to be in the positive direction, at least for earlier times. Then the impulse is

$$
\begin{aligned}
J & =\int_{0}^{3.0 \times 10^{-3}} F d t=\int_{0}^{3.0 \times 10^{-3}}\left(6.0 \times 10^{6}\right) t-\left(2.0 \times 10^{9}\right) t^{2} d t \\
& =\left[\frac{1}{2}\left(6.0 \times 10^{6}\right) t^{2}-\frac{1}{3}\left(2.0 \times 10^{9}\right) t^{3}\right]_{0}^{3.0 \times 10^{-3}} \\
& =9.0 \mathrm{~N} \cdot \mathrm{~s} .
\end{aligned}
$$

(b) Since $J=F_{\text {avg }} \Delta t$, we find

$$
F_{\text {avg }} \frac{J}{\Delta t}=\frac{9.0 \mathrm{~N} \cdot \mathrm{~s}}{3.0 \times 10^{-3} \mathrm{~s}}=3.0 \times 10^{3} \mathrm{~N} .
$$

(c) To find the time at which the maximum force occurs, we set the derivative of F with respect to time equal to zero - and solve for t. The result is $t=1.5 \times 10^{-3} \mathrm{~s}$. At that time the force is

$$
F_{\max }=\left(6.0 \times 10^{6}\right)\left(1.5 \times 10^{-3}\right)-\left(2.0 \times 10^{9}\right)\left(1.5 \times 10^{-3}\right)^{2}=4.5 \times 10^{3} \mathrm{~N}
$$

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the kick. Let m be the mass of the ball and v its speed as it leaves the foot. Then,

$$
v=\frac{p}{m}=\frac{J}{m}=\frac{9.0 \mathrm{~N} \cdot \mathrm{~s}}{0.45 \mathrm{~kg}}=20 \mathrm{~m} / \mathrm{s}
$$

106. The fact that they are connected by a spring is not used in the solution. We use Eq. 9-17 for $\vec{v}_{\text {com }}$:

$$
\begin{aligned}
M \vec{v}_{\text {com }} & =m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2} \\
& =(1.0)(1.7)+(3.0) \vec{v}_{2}
\end{aligned}
$$

which yields $\left|\vec{v}_{2}\right|=0.57 \mathrm{~m} / \mathrm{s}$. The direction of \vec{v}_{2} is opposite that of \vec{v}_{1} (that is, they are both headed towards the center of mass, but from opposite directions).
107. Let m_{F} be the mass of the freight car and v_{F} be its initial velocity. Let m_{C} be the mass of the caboose and v be the common final velocity of the two when they are coupled. Conservation of the total momentum of the two-car system leads to $m_{F} v_{F}=\left(m_{F}+m_{C}\right) v$, so $v=v_{F} m_{F} /\left(m_{F}+m_{C}\right)$. The initial kinetic energy of the system is

$$
K_{i}=\frac{1}{2} m_{F} v_{F}^{2}
$$

and the final kinetic energy is

$$
K_{f}=\frac{1}{2}\left(m_{F}+m_{C}\right) v^{2}=\frac{1}{2}\left(m_{F}+m_{C}\right) \frac{m_{F}^{2} v_{F}^{2}}{\left(m_{F}+m_{C}\right)^{2}}=\frac{1}{2} \frac{m_{F}^{2} v_{F}^{2}}{\left(m_{F}+m_{C}\right)} .
$$

Since 27% of the original kinetic energy is lost, we have $K_{f}=0.73 K_{i}$. Thus,

$$
\frac{1}{2} \frac{m_{F}^{2} v_{F}^{2}}{\left(m_{F}+m_{C}\right)}=(0.73)\left(\frac{1}{2} m_{F} v_{F}^{2}\right) .
$$

Simplifying, we obtain $m_{F} /\left(m_{F}+m_{C}\right)=0.73$, which we use in solving for the mass of the caboose:

$$
m_{C}=\frac{0.27}{0.73} m_{F}=0.37 m_{F}=(0.37)\left(3.18 \times 10^{4} \mathrm{~kg}\right)=1.18 \times 10^{4} \mathrm{~kg} .
$$

108. No external forces with horizontal components act on the cart-man system and the vertical forces sum to zero, so the total momentum of the system is conserved. Let m_{c} be the mass of the cart, v be its initial velocity, and v_{c} be its final velocity (after the man jumps off). Let m_{m} be the mass of the man. His initial velocity is the same as that of the cart and his final velocity is zero. Conservation of momentum yields $\left(m_{m}+m_{c}\right) v=m_{c} v_{c}$. Consequently, the final speed of the cart is

$$
v_{c}=\frac{v\left(m_{m}+m_{c}\right)}{m_{c}}=\frac{(2.3 \mathrm{~m} / \mathrm{s})(75 \mathrm{~kg}+39 \mathrm{~kg})}{39 \mathrm{~kg}}=6.7 \mathrm{~m} / \mathrm{s} .
$$

The cart speeds up by $6.7-2.3=+4.4 \mathrm{~m} / \mathrm{s}$. In order to slow himself, the man gets the cart to push backward on him by pushing forward on it, so the cart speeds up.
109. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the system is conserved $m v_{i}=(m+M) v$. Therefore,

$$
v=\frac{m v_{i}}{m+M}=\frac{(60 \mathrm{~g})(22 \mathrm{~m} / \mathrm{s})}{60 \mathrm{~g}+240 \mathrm{~g}}=4.4 \mathrm{~m} / \mathrm{s} .
$$

(b) The initial kinetic energy is $K_{i}=\frac{1}{2} m v_{i}^{2}$ and the final kinetic energy is $K_{f}=\frac{1}{2}(m+M) v^{2}=\frac{1}{2} m^{2} v_{i}^{2} /(m+M)$. The problem indicates $\Delta E_{\mathrm{th}}=0$, so the difference $K_{i}-K_{f}$ must equal the energy U_{s} stored in the spring:

$$
U_{s}=\frac{1}{2} m v_{i}^{2}-\frac{1}{2} \frac{m^{2} v_{i}^{2}}{(m+M)}=\frac{1}{2} m v_{i}^{2}\left(1-\frac{m}{m+M}\right)=\frac{1}{2} m v_{i}^{2} \frac{M}{m+M} .
$$

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring is

$$
\frac{U_{s}}{K_{i}}=\frac{M}{m+M}=\frac{240}{60+240}=0.80
$$

110. (a) We find the momentum \vec{p}_{n}. of the residual nucleus from momentum conservation.

$$
\vec{p}_{n i}=\vec{p}_{e}+\vec{p}_{v}+\vec{p}_{n r} \Rightarrow 0=\left(-1.2 \times 10^{-22}\right) \hat{\mathrm{i}}+\left(-6.4 \times 10^{-23}\right) \hat{\mathrm{j}}+\vec{p}_{n r}
$$

Thus, $\vec{p}_{n r}=\left(1.2 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}+\left(6.4 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}$. Its magnitude is

$$
\left|\vec{p}_{n r}\right|=\sqrt{\left(1.2 \times 10^{-22}\right)^{2}+\left(6.4 \times 10^{-23}\right)^{2}}=1.4 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(b) The angle measured from the $+x$ axis to $\vec{p}_{n r}$ is

$$
\theta=\tan ^{-1}\left(\frac{6.4 \times 10^{-23}}{1.2 \times 10^{-22}}\right)=28^{\circ}
$$

(c) Combining the two equations $p=m v$ and $K=\frac{1}{2} m v^{2}$, we obtain (with $p=p_{n r}$ and $m=m_{n r}$)

$$
K=\frac{p^{2}}{2 m}=\frac{\left(1.4 \times 10^{-22}\right)^{2}}{2\left(5.8 \times 10^{-26}\right)}=1.6 \times 10^{-19} \mathrm{~J}
$$

111. We use m_{1} for the mass of the electron and $m_{2}=1840 m_{1}$ for the mass of the hydrogen atom. Using Eq. 9-68,

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+1840 m_{1}} v_{1 i}=\frac{2}{1841} v_{1 i}
$$

we compute the final kinetic energy of the hydrogen atom:

$$
K_{2 f}=\frac{1}{2}\left(1840 m_{1}\right)\left(\frac{2 v_{1 i}}{1841}\right)^{2}=\frac{(1840)(4)}{1841^{2}}\left(\frac{1}{2}\left(1840 m_{1}\right) v_{1 i}^{2}\right)
$$

so we find the fraction to be $(1840)(4) / 1841^{2} \approx 2.2 \times 10^{-3}$, or 0.22%.
112. (a) We use Eq. 9-87. The thrust is

$$
R v_{\mathrm{rel}}=M a=\left(4.0 \times 10^{4} \mathrm{~kg}\right)\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)=8.0 \times 10^{4} \mathrm{~N} .
$$

(b) Since $v_{\text {rel }}=3000 \mathrm{~m} / \mathrm{s}$, we see from part (a) that $R \approx 27 \mathrm{~kg} / \mathrm{s}$.
113. The velocities of m_{1} and m_{2} just after the collision with each other are given by Eq. 9-75 and Eq. 9-76 (setting $v_{1 i}=0$).

$$
\begin{aligned}
& v_{1 f}=\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} \\
& v_{2 f}=\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}
\end{aligned}
$$

After bouncing off the wall, the velocity of m_{2} becomes $-v_{2 f}$. In these terms, the problem requires

$$
\begin{gathered}
v_{1 f}=-v_{2 f} \\
\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}=-\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}
\end{gathered}
$$

which simplifies to

$$
2 m_{2}=-\left(m_{2}-m_{1}\right) \Rightarrow m_{2}=\frac{m_{1}}{3} .
$$

With $m_{1}=6.6 \mathrm{~kg}$, we have $m_{2}=2.2 \mathrm{~kg}$.
114. We use Eq. 9-88 and simplify with $v_{f}-v_{i}=\Delta v$, and $v_{\text {rel }}=u$.

$$
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \left(\frac{M_{i}}{M_{f}}\right) \Rightarrow \frac{M_{f}}{M_{i}}=e^{-\Delta v / u}
$$

If $\Delta v=2.2 \mathrm{~m} / \mathrm{s}$ and $u=1000 \mathrm{~m} / \mathrm{s}$, we obtain $\frac{M_{i}-M_{f}}{M_{i}}=1-e^{-0.0022} \approx 0.0022$.
115. This is a completely inelastic collision (see Eq. 9-53). Thus, the kinetic energy loss is

$$
\Delta K=\frac{1}{2}\left(m_{1}+m_{2}\right) V^{2}-\frac{1}{2} m_{1} \mathrm{v}_{1 i}^{2}=\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\frac{m_{1}}{m_{1}+m_{2}} \mathrm{v}_{1 i}\right)^{2}-\frac{1}{2} m_{1} \mathrm{v}_{1 i}{ }^{2}=-\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}} \mathrm{v}_{1 i}^{2} .
$$

Keeping in mind the relation between mass and weight ($m=w / g$), we find the (absolute value) of ΔK is 61.2 kJ .
116. We treat the car (of mass m_{1}) as a "point-mass" (which is initially 1.5 m from the right end of the boat). The left end of the boat (of mass m_{2}) is initially at $x=0$ (where the dock is), and its left end is at $x=14 \mathrm{~m}$. The boat's center of mass (in the absence of the car) is initially at $x=7.0 \mathrm{~m}$. We use Eq. $9-5$ to calculate the center of mass of the system:

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{(1500 \mathrm{~kg})(14 \mathrm{~m}-1.5 \mathrm{~m})+(4000 \mathrm{~kg})(7 \mathrm{~m})}{1500 \mathrm{~kg}+4000 \mathrm{~kg}}=8.5 \mathrm{~m} .
$$

In the absence of external forces, the center of mass of the system does not change. Later, when the car (about to make the jump) is near the left end of the boat (which has moved from the shore an amount δx), the value of the system center of mass is still 8.5 m . The car (at this moment) is thought of as a "point-mass" 1.5 m from the left end, so we must have

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{(1500 \mathrm{~kg})(\delta x+1.5 \mathrm{~m})+(4000 \mathrm{~kg})(7 \mathrm{~m}+\delta x)}{1500 \mathrm{~kg}+4000 \mathrm{~kg}}=8.5 \mathrm{~m} .
$$

Solving this for δx, we find $\delta x=3.0 \mathrm{~m}$.
117. This is a completely inelastic collision, but Eq. 9-53 $\left(V=\frac{m_{1}}{m_{1}+m_{2}} \mathrm{v}_{1 i}\right)$ is not easily applied since that equation is designed for use when the struck particle is initially stationary. To deal with this case (where particle 2 is already in motion), we return to the principle of momentum conservation:

$$
m_{1} \overrightarrow{\mathrm{v}}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}=\left(m_{1}+m_{2}\right) \vec{V} \quad \Rightarrow \quad \vec{V}=\frac{2(4 \hat{\mathrm{i}})+4(2 \hat{\mathrm{j}})}{2+4} .
$$

(a) In unit-vector notation, then, \vec{V} is equal to $(1.3 \mathrm{~m} / \mathrm{s}) \hat{i}+(1.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$.
(b) The magnitude of \vec{V} is $|\vec{V}|=\sqrt{(1.3 \mathrm{~m} / \mathrm{s})^{2}+(1.3 \mathrm{~m} / \mathrm{s})^{2}} \approx 1.9 \mathrm{~m} / \mathrm{s}$.
(c) The direction of \vec{V} is 45° (measured counterclockwise from the $+x$ axis).
118. (a) The initial momentum of the system is zero, and it remains so as the electron and proton move toward each other. If p_{e} is the magnitude of the electron momentum at some instant (during their motion) and p_{p} is the magnitude of the proton momentum, then these must be equal (and their directions must be opposite) in order to maintain the zero total momentum requirement. Thus, the ratio of their momentum magnitudes is +1 .
(b) With v_{e} and v_{p} being their respective speeds, we obtain (from the $p_{e}=p_{\mathrm{p}}$ requirement)

$$
m_{\mathrm{e}} \mathrm{~V}_{\mathrm{e}}=m_{\mathrm{p}} \mathrm{v}_{\mathrm{p}} \Rightarrow \quad \mathrm{v}_{\mathrm{e}} / \mathrm{v}_{\mathrm{p}}=m_{\mathrm{p}} / m_{\mathrm{e}} \approx 1830 \approx 1.83 \times 10^{3}
$$

(c) We can rewrite $K=\frac{1}{2} m v^{2}$ as $K=\frac{1}{2} p^{2} / m$ which immediately leads to

$$
K_{\mathrm{e}} / K_{\mathrm{p}}=m_{\mathrm{p}} / m_{\mathrm{e}} \approx 1830 \approx 1.83 \times 10^{3} .
$$

(d) Although the speeds (and kinetic energies) increase, they do so in the proportions indicated above. The answers stay the same.
119. (a) The magnitude of the impulse is equal to the change in momentum:

$$
J=m v-m(-v)=2 m v=2(0.140 \mathrm{~kg})(7.80 \mathrm{~m} / \mathrm{s})=2.18 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

(b) Since in the calculus sense the average of a function is the integral of it divided by the corresponding interval, then the average force is the impulse divided by the time Δt. Thus, our result for the magnitude of the average force is $2 m \mathrm{v} / \Delta t$. With the given values, we obtain

$$
F_{\text {avg }}=\frac{2(0.140 \mathrm{~kg})(7.80 \mathrm{~m} / \mathrm{s})}{0.00380 \mathrm{~s}}=575 \mathrm{~N} .
$$

120. (a) Using Eq. 9-18, we have

$$
\vec{a}_{\mathrm{com}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}=\frac{0+m(-9.8 \hat{\mathrm{j}})}{2 m}=\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}} .
$$

(b) Now we have

$$
\vec{a}_{\mathrm{com}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}=\frac{m(-9.8 \hat{\mathrm{j}})+m(-9.8 \hat{\mathrm{j}})}{2 m}=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

for (most of) this second time interval. We note that there is an "undefined" acceleration at the instant when the first coin hits (at $t=1.498 \approx 1.5 \mathrm{~s}$).
(c) Except for the moment when the second coin hits, the answer is the same as in part (a), $\vec{a}_{\text {com }}=\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$, since one of them is in free fall while the other is at rest. As noted in part (b), we are not given enough information to quantitatively describe the acceleration value at the instant when the second coin strikes the ground. Qualitatively, we can describe it as a large and very brief acceleration (a "spike") in the $+\hat{\mathrm{j}}$ direction at t $=1.998 \approx 2 \mathrm{~s}$.
(d) Eq. 2-11 readily yields the center of mass velocity at $t=0.25 \mathrm{~s}$ (which is in the first time interval - see part (a)): $\overrightarrow{\mathrm{v}}_{\text {com }}=(-4.9 \hat{j})(0.25)=(-1.225 \mathrm{~m} / \mathrm{s}) \hat{j}$. The center of mass speed at that moment is therefore approximately $1.23 \mathrm{~m} / \mathrm{s}$.
(e) Because of the "spikes" referred to above, it is probably a better approach to find the individual velocities at $t=0.75 \mathrm{~s}$ and then use Eq. 9-17 to obtain $\overrightarrow{\mathrm{v}}_{\mathrm{com}}$. At this moment, both coins are in free-fall, with speeds $v_{1}=(9.8)(0.75)=7.35 \mathrm{~m} / \mathrm{s}$ and $v_{2}=(9.8)(0.25)=$ $2.45 \mathrm{~m} / \mathrm{s}$ (because the second coin has been in free fall for only 0.25 second). The average of these two speeds (which is the same as what results from Eq. 9-17 for equalmass objects) is $4.90 \mathrm{~m} / \mathrm{s}$.
(f) At $t=1.75 \mathrm{~s}$, the first coin is at rest on the ground (and thus has $\mathrm{v}_{1}=0$) whereas the second coin is still in free fall and has speed given by $v_{2}=(9.8)(1.25)=12.3 \mathrm{~m} / \mathrm{s}$ (because the second coin has been in free fall for 1.25 second). Now the average of these leads to a center of mass speed approximately equal to $6.13 \mathrm{~m} / \mathrm{s}$.
121. Using Eq. 9-68 with $m_{1}=3.0 \mathrm{~kg}, v_{1 i}=8.0 \mathrm{~m} / \mathrm{s}$ and $v_{2 f}=6.0 \mathrm{~m} / \mathrm{s}$, then

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} \Rightarrow m_{2}=m_{1}\left(\frac{2 v_{1 i}}{v_{2 f}}-1\right)
$$

leads to $m_{2}=M=5.0 \mathrm{~kg}$.
122. Conservation of momentum leads to

$$
(900 \mathrm{~kg})(1000 \mathrm{~m} / \mathrm{s})=(500 \mathrm{~kg})\left(\mathrm{v}_{\text {shuttle }}-100 \mathrm{~m} / \mathrm{s}\right)+(400 \mathrm{~kg})\left(\mathrm{v}_{\text {shuttle }}\right)
$$

which yields $\mathrm{v}_{\text {shuttle }}=1055.6 \mathrm{~m} / \mathrm{s}$ for the shuttle speed and $\mathrm{v}_{\text {shuttle }}-100 \mathrm{~m} / \mathrm{s}=955.6 \mathrm{~m} / \mathrm{s}$ for the module speed (all measured in the frame of reference of the stationary main spaceship). The fractional increase in the kinetic energy is

$$
\frac{\Delta K}{K_{i}}=\frac{K_{f}}{K_{i}}-1=\frac{\frac{500 \mathrm{~kg}}{2}(955.6 \mathrm{~m} / \mathrm{s})^{2}+\frac{400 \mathrm{~kg}}{2}(1055.6 \mathrm{~m} / \mathrm{s})^{2}}{\frac{900 \mathrm{~kg}}{2}(1000 \mathrm{~m} / \mathrm{s})^{2}}=2.5 \times 10^{-3}
$$

123. Let $m=6.00 \mathrm{~kg}$ be the mass of the original model rocket which travels with an initial velocity $\vec{v}_{i}=-(20.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. The two pieces it breaks up into have masses $m_{1}=2.00$ kg and $m_{2}=4.00 \mathrm{~kg}$, with \vec{v}_{1} being the velocity of m_{1}. Using the principle of momentum conservation, we have $m \vec{v}_{i}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}$.
(a) The momentum of the second piece is (SI units understood)

$$
\begin{aligned}
\vec{p}_{2} & =m_{2} \vec{v}_{2}=m \vec{v}_{i}-m_{1} \vec{v}_{1}=(6.00)(-20.0 \hat{\mathrm{j}})-(2.00)(-12.0 \hat{\mathrm{i}}+30.0 \hat{\mathrm{j}}-15.0 \hat{\mathrm{k}}) \\
& =24.0 \hat{\mathrm{i}}-180 \hat{\mathrm{j}}+30.0 \hat{\mathrm{k}} .
\end{aligned}
$$

(b) With $\vec{v}_{2}=(24.0 \hat{\mathrm{i}}-180 \hat{\mathrm{j}}+30.0 \hat{\mathrm{k}}) / 4=6.00 \hat{\mathrm{i}}-45.0 \hat{\mathrm{j}}+7.50 \hat{\mathrm{k}}(\mathrm{in} \mathrm{m} / \mathrm{s})$, the kinetic energy of m_{2} is given by

$$
K_{2}=\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{2}\left(v_{2 x}^{2}+v_{2 y}^{2}+v_{2 z}^{2}\right)=\frac{1}{2}(4.00)\left[(6.00)^{2}+(-45.0)^{2}+(7.50)^{2}\right]=4.23 \times 10^{3} \mathrm{~J} .
$$

(c) The initial kinetic energy is

$$
K_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2}(6.00)(20.0)^{2}=1.20 \times 10^{3} \mathrm{~J} .
$$

The kinetic energy of m_{1} is

$$
\begin{aligned}
K_{1} & =\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{1}\left(v_{1 x}^{2}+v_{1 y}^{2}+v_{1 z}^{2}\right) \\
& =\frac{1}{2}(2.00)\left[(-12.0)^{2}+(30.0)^{2}+(-15.0)^{2}\right]=1269 \mathrm{~J} \approx 1.27 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

Thus, the change in kinetic energy is

$$
\Delta K=K_{1}+K_{2}-K_{i}=(1.27+4.23-1.20) \times 10^{3} \mathrm{~J}=4.30 \times 10^{3} \mathrm{~J}
$$

124. The momentum before the collision (with $+x$ rightward) is

$$
(6.0 \mathrm{~kg})(8.0 \mathrm{~m} / \mathrm{s})+(4.0 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})=56 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(a) The total momentum at this instant is $(6.0 \mathrm{~kg})(6.4 \mathrm{~m} / \mathrm{s})+(4.0 \mathrm{~kg}) \vec{v}$. Since this must equal the initial total momentum (56 , using SI units), then we find $\vec{v}=4.4 \mathrm{~m} / \mathrm{s}$.
(b) The initial kinetic energy was

$$
\frac{1}{2}(6.0 \mathrm{~kg})(8.0 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(4.0 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})^{2}=200 \mathrm{~J}
$$

The kinetic energy at the instant described in part (a) is

$$
\frac{1}{2}(6.0 \mathrm{~kg})(6.4 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(4.0 \mathrm{~kg})(4.4 \mathrm{~m} / \mathrm{s})^{2}=162 \mathrm{~J}
$$

The "missing" 38 J is not dissipated since there is no friction; it is the energy stored in the spring at this instant when it is compressed. Thus, $U_{e}=38 \mathrm{~J}$.
125. By conservation of momentum, the final speed v of the sled satisfies

$$
(2900 \mathrm{~kg})(250 \mathrm{~m} / \mathrm{s})=(2900 \mathrm{~kg}+920 \mathrm{~kg}) v
$$

which gives $v=190 \mathrm{~m} / \mathrm{s}$.
126. This is a completely inelastic collision, followed by projectile motion. In the collision, we use momentum conservation.

$$
\vec{p}_{\text {shoes }}=\vec{p}_{\text {together }} \Rightarrow(3.2 \mathrm{~kg})(3.0 \mathrm{~m} / \mathrm{s})=(5.2 \mathrm{~kg}) \vec{v}
$$

Therefore, $\vec{v}=1.8 \mathrm{~m} / \mathrm{s}$ toward the right as the combined system is projected from the edge of the table. Next, we can use the projectile motion material from Ch. 4 or the energy techniques of Ch .8 ; we choose the latter.

$$
\begin{aligned}
K_{\text {edge }}+U_{\text {edge }} & =K_{\text {floor }}+U_{\text {floor }} \\
\frac{1}{2}(5.2 \mathrm{~kg})(1.8 \mathrm{~m} / \mathrm{s})^{2}+(5.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.40 \mathrm{~m}) & =K_{\text {floor }}+0
\end{aligned}
$$

Therefore, the kinetic energy of the system right before hitting the floor is $K_{\text {floor }}=29 \mathrm{~J}$.
127. We denote the mass of the car as M and that of the sumo wrestler as m. Let the initial velocity of the sumo wrestler be $v_{0}>0$ and the final velocity of the car be v. We apply the momentum conservation law.
(a) From $m v_{0}=(M+m) v$ we get

$$
v=\frac{m v_{0}}{M+m}=\frac{(242 \mathrm{~kg})(5.3 \mathrm{~m} / \mathrm{s})}{2140 \mathrm{~kg}+242 \mathrm{~kg}}=0.54 \mathrm{~m} / \mathrm{s} .
$$

(b) Since $v_{\text {rel }}=v_{0}$, we have $m v_{0}=M v+m\left(v+v_{\text {rel }}\right)=m v_{0}+(M+m) v$, and obtain $v=0$ for the final speed of the flatcar.
(c) Now $m v_{0}=M v+m\left(v-v_{\text {rel }}\right)$, which leads to

$$
v=\frac{m\left(v_{0}+v_{\mathrm{rel}}\right)}{m+M}=\frac{(242 \mathrm{~kg})(5.3 \mathrm{~m} / \mathrm{s}+5.3 \mathrm{~m} / \mathrm{s})}{242 \mathrm{~kg}+2140 \mathrm{~kg}}=1.1 \mathrm{~m} / \mathrm{s} .
$$

128. (a) Since $\vec{F}_{\text {net }}=d \vec{p} / d t$, we read from value of F_{x} (see graph) that the rate of change of momentum is $4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$ at $t=3.0 \mathrm{~s}$.
(b) The impulse, which causes the change in momentum, is equivalent to the area under the curve in this graph (see Eq. 9-30). We break the area into that of a triangle $\frac{1}{2}(2.0 \mathrm{~s})(4.0 \mathrm{~N})$ plus that of a rectangle $(1.0 \mathrm{~s})(4.0 \mathrm{~N})$, which yields a total of $8.0 \mathrm{~N} \cdot \mathrm{~s}$. Since the car started from rest, its momentum at $t=3.0 \mathrm{~s}$ must therefore be $8.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
129. From mechanical energy conservation (or simply using Eq. 2-16 with $\vec{a}=g$ downward) we obtain

$$
v=\sqrt{2 g h}=\sqrt{2(9.8)(1.5)}=5.4 \mathrm{~m} / \mathrm{s}
$$

for the speed just as the body makes contact with the ground.
(a) During the compression of the body, the center of mass must decelerate over a distance $d=0.30 \mathrm{~m}$. Choosing $+y$ downward, the deceleration a is found using Eq. 2-16.

$$
0=v^{2}+2 a d \Rightarrow a=-\frac{v^{2}}{2 d}=-\frac{5.4^{2}}{2(0.30)}
$$

which yields $a=-49 \mathrm{~m} / \mathrm{s}^{2}$. Thus, the magnitude of the net (vertical) force is $m|a|=49 m$ in SI units, which (since $49=5(9.8)$) can be expressed as 5 mg .
(b) During the deceleration process, the forces on the dinosaur are (in the vertical direction) \vec{F}_{N} and $m \vec{g}$. If we choose $+y$ upward, and use the final result from part (a), we therefore have $F_{N}-m g=5 m g$, or $F_{N}=6 m g$. In the horizontal direction, there is also a deceleration (from $v_{0}=19 \mathrm{~m} / \mathrm{s}$ to zero), in this case due to kinetic friction $f_{k}=\mu_{k} F_{N}=\mu_{k}(6 \mathrm{mg})$. Thus, the net force exerted by the ground on the dinosaur is

$$
F_{\mathrm{ground}}=\sqrt{f_{k}^{2}+F_{N}^{2}} \approx 7 \mathrm{mg}
$$

(c) We can applying Newton's second law in the horizontal direction (with the sliding distance denoted as Δx) and then use Eq. 2-16, or we can apply the general notions of energy conservation. The latter approach is shown:

$$
\frac{1}{2} m v_{\mathrm{o}}^{2}=\mu_{k}(6 m g) \Delta x \Rightarrow \Delta x=\frac{19^{2}}{2(6)(0.6)(9.8)} \approx 5 \mathrm{~m} .
$$

130. The diagram below shows the situation as the incident ball (the left-most ball) makes contact with the other two.

It exerts an impulse of the same magnitude on each ball, along the line that joins the centers of the incident ball and the target ball. The target balls leave the collision along those lines, while the incident ball leaves the collision along the x axis. The three dotted lines that join the centers of the balls in contact form an equilateral triangle, so both of the angles marked θ are 30°. Let v_{0} be the velocity of the incident ball before the collision and V be its velocity afterward. The two target balls leave the collision with the same speed. Let v represent that speed. Each ball has mass m. Since the x component of the total momentum of the three-ball system is conserved,

$$
m v_{0}=m V+2 m v \cos \theta
$$

and since the total kinetic energy is conserved,

$$
\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m V^{2}+2\left(\frac{1}{2} m v^{2}\right) .
$$

We know the directions in which the target balls leave the collision so we first eliminate V and solve for v. The momentum equation gives $V=v_{0}-2 v \cos \theta$, so

$$
V^{2}=v_{0}^{2}-4 v_{0} v \cos \theta+4 v^{2} \cos ^{2} \theta
$$

and the energy equation becomes $v_{0}^{2}=v_{0}^{2}-4 v_{0} v \cos \theta+4 v^{2} \cos ^{2} \theta+2 v^{2}$. Therefore,

$$
v=\frac{2 v_{0} \cos \theta}{1+2 \cos ^{2} \theta}=\frac{2(10 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}}{1+2 \cos ^{2} 30^{\circ}}=6.93 \mathrm{~m} / \mathrm{s} .
$$

(a) The discussion and computation above determines the final speed of ball 2 (as labeled in Fig. 9-83) to be $6.9 \mathrm{~m} / \mathrm{s}$.
(b) The direction of ball 2 is at 30° counterclockwise from the $+x$ axis.
(c) Similarly, the final speed of ball 3 is $6.9 \mathrm{~m} / \mathrm{s}$.
(d) The direction of ball 3 is at -30° counterclockwise from the $+x$ axis.
(e) Now we use the momentum equation to find the final velocity of ball 1:

$$
V=v_{0}-2 v \cos \theta=10 \mathrm{~m} / \mathrm{s}-2(6.93 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}=-2.0 \mathrm{~m} / \mathrm{s}
$$

So the speed of ball 1 is $|V|=2.0 \mathrm{~m} / \mathrm{s}$.
(f) The minus sign indicates that it bounces back in the $-x$ direction. The angle is -180°.
131. The mass of each ball is m, and the initial speed of one of the balls is $v_{1 i}=2.2 \mathrm{~m} / \mathrm{s}$. We apply the conservation of linear momentum to the x and y axes respectively.

$$
\begin{aligned}
m v_{1 i} & =m v_{1 f} \cos \theta_{1}+m v_{2 f} \cos \theta_{2} \\
0 & =m v_{1 f} \sin \theta_{1}-m v_{2 f} \sin \theta_{2}
\end{aligned}
$$

The mass m cancels out of these equations, and we are left with two unknowns and two equations, which is sufficient to solve.
(a) The y-momentum equation can be rewritten as, using $\theta_{2}=60^{\circ}$ and $v_{2 f}=1.1 \mathrm{~m} / \mathrm{s}$,

$$
v_{1 f} \sin \theta_{1}=(1.1 \mathrm{~m} / \mathrm{s}) \sin 60^{\circ}=0.95 \mathrm{~m} / \mathrm{s} .
$$

and the x-momentum equation yields

$$
v_{1 f} \cos \theta_{1}=(2.2 \mathrm{~m} / \mathrm{s})-(1.1 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ}=1.65 \mathrm{~m} / \mathrm{s} .
$$

Dividing these two equations, we find $\tan \theta_{1}=0.576$ which yields $\theta_{1}=30^{\circ}$. We plug the value into either equation and find $v_{1 f} \approx 1.9 \mathrm{~m} / \mathrm{s}$.
(b) From the above, we have $\theta_{1}=30^{\circ}$.
(c) One can check to see if this an elastic collision by computing

$$
\frac{2 K_{i}}{m}=v_{1 i}^{2} \text { and } \frac{2 K_{f}}{m}=v_{1 f}^{2}+v_{2 f}^{2}
$$

and seeing if they are equal (they are), but one must be careful not to use rounded-off values. Thus, it is useful to note that the answer in part (a) can be expressed "exactly" as $v_{1 f}=\frac{1}{2} v_{1 i} \sqrt{3}$ (and of course $v_{2 f}=\frac{1}{2} v_{1 i}$ "exactly" - which makes it clear that these two kinetic energy expressions are indeed equal).
132. (a) We use Fig. 9-22 of the text (which treats both angles as positive-valued, even though one of them is in the fourth quadrant; this is why there is an explicit minus sign in Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1 and the other ball to be body 2 . Conservation of the x and the components of the total momentum of the two-ball system leads to:

$$
\begin{aligned}
m v_{1 i} & =m v_{1 f} \cos \theta_{1}+m v_{2 f} \cos \theta_{2} \\
0 & =-m v_{1 f} \sin \theta_{1}+m v_{2 f} \sin \theta_{2} .
\end{aligned}
$$

The masses are the same and cancel from the equations. We solve the second equation for $\sin \theta_{2}$:

$$
\sin \theta_{2}=\frac{v_{1 f}}{v_{2 f}} \sin \theta_{1}=\left(\frac{3.50 \mathrm{~m} / \mathrm{s}}{2.00 \mathrm{~m} / \mathrm{s}}\right) \sin 22.0^{\circ}=0.656
$$

Consequently, the angle between the second ball and the initial direction of the first is θ_{2} $=41.0^{\circ}$.
(b) We solve the first momentum conservation equation for the initial speed of the cue ball.

$$
v_{1 i}=v_{1 f} \cos \theta_{1}+v_{2 f} \cos \theta_{2}=(3.50 \mathrm{~m} / \mathrm{s}) \cos 22.0^{\circ}+(2.00 \mathrm{~m} / \mathrm{s}) \cos 41.0^{\circ}=4.75 \mathrm{~m} / \mathrm{s}
$$

(c) With SI units understood, the initial kinetic energy is

$$
K_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m(4.75)^{2}=11.3 m
$$

and the final kinetic energy is

$$
K_{f}=\frac{1}{2} m v_{1 f}^{2}+\frac{1}{2} m v_{2 f}^{2}=\frac{1}{2} m\left((3.50)^{2}+(2.00)^{2}\right)=8.1 m .
$$

Kinetic energy is not conserved.
133. (a) We locate the coordinate origin at the center of Earth. Then the distance $r_{\text {com }}$ of the center of mass of the Earth-Moon system is given by

$$
r_{\mathrm{com}}=\frac{m_{M} r_{M}}{m_{M}+m_{E}}
$$

where m_{M} is the mass of the Moon, m_{E} is the mass of Earth, and r_{M} is their separation. These values are given in Appendix C. The numerical result is

$$
r_{\text {com }}=\frac{\left(7.36 \times 10^{22} \mathrm{~kg}\right)\left(3.82 \times 10^{8} \mathrm{~m}\right)}{7.36 \times 10^{22} \mathrm{~kg}+5.98 \times 10^{24} \mathrm{~kg}}=4.64 \times 10^{6} \mathrm{~m} \approx 4.6 \times 10^{3} \mathrm{~km} .
$$

(b) The radius of Earth is $R_{E}=6.37 \times 10^{6} \mathrm{~m}$, so $r_{\text {com }} / R_{E}=0.73=73 \%$.
134. (a) Each block is assumed to have uniform density, so that the center of mass of each block is at its geometric center (the positions of which are given in the table [see problem statement] at $t=0$). Plugging these positions (and the block masses) into Eq. 929 readily gives $x_{\text {com }}=-0.50 \mathrm{~m}$ (at $\left.t=0\right)$.
(b) Note that the left edge of block 2 (the middle of which is still at $x=0$) is at $x=-2.5$ cm , so that at the moment they touch the right edge of block 1 is at $x=-2.5 \mathrm{~cm}$ and thus the middle of block 1 is at $x=-5.5 \mathrm{~cm}$. Putting these positions (for the middles) and the block masses into Eq. $9-29$ leads to $x_{\text {com }}=-1.83 \mathrm{~cm}$ or -0.018 m (at $t=(1.445 \mathrm{~m}) /(0.75$ $\mathrm{m} / \mathrm{s})=1.93 \mathrm{~s}$).
(c) We could figure where the blocks are at $t=4.0 \mathrm{~s}$ and use Eq. $9-29$ again, but it is easier (and provides more insight) to note that in the absence of external forces on the system the center of mass should move at constant velocity:

$$
\overrightarrow{\mathrm{v}}_{\mathrm{com}}=\frac{m_{1} \overrightarrow{\mathrm{v}}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}}{m_{1}+m_{2}}=0.25 \mathrm{~m} / \mathrm{s} \hat{\mathrm{i}}
$$

as can be easily verified by putting in the values at $t=0$. Thus,

$$
x_{\mathrm{com}}=x_{\mathrm{com} \text { initial }}+\overrightarrow{\mathrm{v}}_{\mathrm{com}} t=(-0.50 \mathrm{~m})+(0.25 \mathrm{~m} / \mathrm{s})(4.0 \mathrm{~s})=+0.50 \mathrm{~m}
$$

135. (a) The thrust is $R v_{\text {rel }}$ where $v_{\text {rel }}=1200 \mathrm{~m} / \mathrm{s}$. For this to equal the weight $M g$ where $M=6100 \mathrm{~kg}$, we must have $R=(6100)(9.8) / 1200 \approx 50 \mathrm{~kg} / \mathrm{s}$.
(b) Using Eq. 9-42 with the additional effect due to gravity, we have

$$
R v_{\mathrm{rel}}-M g=M a
$$

so that requiring $a=21 \mathrm{~m} / \mathrm{s}^{2}$ leads to $R=(6100)(9.8+21) / 1200=1.6 \times 10^{2} \mathrm{~kg} / \mathrm{s}$.
136. From mechanical energy conservation (or simply using Eq. 2-16 with $\vec{a}=g$ downward) we obtain $v=\sqrt{2 g h}=\sqrt{2(9.8)(6.0)}=10.8 \mathrm{~m} / \mathrm{s}$ for the speed just as the $m=$ 3000-kg block makes contact with the pile. At the moment of "joining," they are a system of mass $M=3500 \mathrm{~kg}$ and speed V. With downward positive, momentum conservation leads to

$$
m v=M V \Rightarrow V=\frac{(3000)(10.8)}{3500}=9.3 \mathrm{~m} / \mathrm{s} .
$$

Now this block-pile "object" must be rapidly decelerated over the small distance $d=$ 0.030 m . Using Eq. 2-16 and choosing $+y$ downward, we have

$$
0=V^{2}+2 a d \Rightarrow a=-\frac{9.3^{2}}{2(0.030)}=-1440
$$

in SI units $\left(\mathrm{m} / \mathrm{s}^{2}\right)$. Thus, the net force during the decelerating process has magnitude

$$
M|a|=5.0 \times 10^{6} \mathrm{~N}
$$

137. In the momentum relationships, we could as easily work with weights as with masses, but because part (b) of this problem asks for kinetic energy-we will find the masses at the outset: $m_{1}=280 \times 10^{3} / 9.8=2.86 \times 10^{4} \mathrm{~kg}$ and $m_{2}=210 \times 10^{3} / 9.8=2.14 \times$ $10^{4} \mathrm{~kg}$. Both cars are moving in the $+x$ direction: $v_{1 i}=1.52 \mathrm{~m} / \mathrm{s}$ and $v_{2 i}=0.914 \mathrm{~m} / \mathrm{s}$.
(a) If the collision is completely elastic, momentum conservation leads to a final speed of

$$
V=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}=1.26 \mathrm{~m} / \mathrm{s} .
$$

(b) We compute the total initial kinetic energy and subtract from it the final kinetic energy.

$$
K_{i}-K_{f}=\frac{1}{2} m_{1} v_{l i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) V^{2}=2.25 \times 10^{3} \mathrm{~J} .
$$

(c) Using Eq. 9-76, we find

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}=1.61 \mathrm{~m} / \mathrm{s}
$$

(d) Using Eq. 9-75, we find

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}=1.00 \mathrm{~m} / \mathrm{s} .
$$

138. (a) The center of mass does not move in the absence of external forces (since it was initially at rest).
(b) They collide at their center of mass. If the initial coordinate of P is $x=0$ and the initial coordinate of Q is $x=1.0 \mathrm{~m}$, then Eq. $9-5$ gives

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{0+(0.30 \mathrm{~kg})(1.0 \mathrm{~m})}{0.1 \mathrm{~kg}+0.3 \mathrm{~kg}}=0.75 \mathrm{~m} .
$$

Thus, they collide at a point 0.75 m from P 's original position.
139. We choose coordinates with $+x$ East and $+y$ North, with the standard conventions for measuring the angles. With SI units understood, we write the initial magnitude of the man's momentum as $(60)(6.0)=360$ and the final momentum of the two of them together as $(98)(3.0)=294$. Using magnitude-angle notation (quickly implemented using a vectorcapable calculator in polar mode), momentum conservation becomes

$$
\vec{p}_{\text {man }}+\vec{p}_{\text {child }}=\vec{p}_{\text {together }} \Rightarrow\left(360 \angle 90^{\circ}\right)+\vec{p}=\left(294 \angle 35^{\circ}\right)
$$

Therefore, the momentum of the 38 kg child before the collision is $\vec{p}=\left(308 \angle-38^{\circ}\right)$.
(a) Thus, the child's velocity has magnitude equal to $308 / 38=8.1 \mathrm{~m} / \mathrm{s}$.
(b) The direction of the child's velocity is 38° south of east.
140. We use coordinates with $+x$ eastward and $+y$ northward. Angles are in degrees and are measured counterclockwise from the $+x$ axis. Mass, velocity and momentum units are SI. Thus, the initial momentum can be written $\vec{p}_{0}=(0.20)(10 \hat{\mathrm{i}})=2.0 \hat{\mathrm{i}}$ or in magnitude-angle notation as $(2.0 \angle 0)$.
(a) The momentum change is

$$
4.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{i}}=2.0 \hat{\mathrm{i}}, \text { or }(4.0 \angle 0)-(2.0 \angle 0)=(2.0 \angle 0)
$$

(efficiently done with a vector capable calculator in polar mode). With either notation, we see the magnitude of the change is $2.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ and its direction is east.
(b) The momentum change is

$$
1.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{i}}=-1.0 \hat{\mathrm{i}}, \text { or }(1.0 \angle 0)-(2.0 \angle 0)=(1.0 \angle 180)
$$

The magnitude of the change is $1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ and its direction is west.
(c) The momentum change is

$$
-2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{i}}=-4.0 \hat{\mathrm{i}}, \text { or }(2.0 \angle 180)-(2.0 \angle 0)=(4.0 \angle 180)
$$

(efficiently done with a vector capable calculator in polar mode). Thus, the magnitude of the change is $4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; the direction of the change is west.

1. (a) The second hand of the smoothly running watch turns through 2π radians during 60 s. Thus,

$$
\omega=\frac{2 \pi}{60}=0.105 \mathrm{rad} / \mathrm{s}
$$

(b) The minute hand of the smoothly running watch turns through 2π radians during 3600 s. Thus,

$$
\omega=\frac{2 \pi}{3600}=1.75 \times 10^{-3} \mathrm{rad} / \mathrm{s}
$$

(c) The hour hand of the smoothly running 12 -hour watch turns through 2π radians during 43200 s . Thus,

$$
\omega=\frac{2 \pi}{43200}=1.45 \times 10^{-4} \mathrm{rad} / \mathrm{s} .
$$

2. The problem asks us to assume $v_{\text {com }}$ and ω are constant. For consistency of units, we write

$$
v_{\mathrm{com}}=(85 \mathrm{mi} / \mathrm{h})\left(\frac{5280 \mathrm{ft} / \mathrm{mi}}{60 \mathrm{~min} / \mathrm{h}}\right)=7480 \mathrm{ft} / \mathrm{min} .
$$

Thus, with $\Delta x=60 \mathrm{ft}$, the time of flight is $t=\Delta x / v_{\text {com }}=60 / 7480=0.00802 \mathrm{~min}$. During that time, the angular displacement of a point on the ball's surface is

$$
\theta=\omega t=(1800 \mathrm{rev} / \mathrm{min})(0.00802 \mathrm{~min}) \approx 14 \mathrm{rev} .
$$

3. We have $\omega=10 \pi \mathrm{rad} / \mathrm{s}$. Since $\alpha=0$, Eq. $10-13$ gives

$$
\Delta \theta=\omega t=(10 \pi \mathrm{rad} / \mathrm{s})(n \Delta t), \text { for } n=1,2,3,4,5, \ldots
$$

For $\Delta t=0.20 \mathrm{~s}$, we always get an integer multiple of 2π (and 2π radians corresponds to 1 revolution).
(a) At $f_{1} \Delta \theta=2 \pi \mathrm{rad}$ the dot appears at the "12:00" (straight up) position.
(b) At $f_{2}, \Delta \theta=4 \pi \mathrm{rad}$ and the dot appears at the " $12: 00$ " position.
$\Delta t=0.050 \mathrm{~s}$, and we explicitly include the $1 / 2 \pi$ conversion (to revolutions) in this calculation:

$$
\Delta \theta=\omega t=(10 \pi \mathrm{rad} / \mathrm{s}) n(0.050 \mathrm{~s})\left(\frac{1}{2 \pi}\right)=1 / 4,1 / 2,3 / 4,1, \ldots(\mathrm{revs})
$$

(c) At $f_{1}(\mathrm{n}=1), \Delta \theta=1 / 4 \mathrm{rev}$ and the dot appears at the " $3: 00$ " position.
(d) At $f_{2}(\mathrm{n}=2), \Delta \theta=1 / 2$ rev and the dot appears at the " $6: 00$ " position.
(e) At $f_{3}(\mathrm{n}=3), \Delta \theta=3 / 4 \mathrm{rev}$ and the dot appears at the " $9: 00$ " position.
(f) At $f_{4}(\mathrm{n}=4), \Delta \theta=1$ rev and the dot appears at the " $12: 00$ " position.

Now $\Delta t=0.040 \mathrm{~s}$, and we have

$$
\Delta \theta=\omega t=(10 \pi \mathrm{rad} / \mathrm{s}) n(0.040 \mathrm{~s})\left(\frac{1}{2 \pi}\right)=0.2,0.4,0.6,0.8,1, \ldots(\mathrm{revs})
$$

Note that 20% of 12 hours is $2.4 \mathrm{~h}=2 \mathrm{~h}$ and 24 min .
(g) At $f_{1}(\mathrm{n}=1), \Delta \theta=0.2$ rev and the dot appears at the " $2: 24$ " position.
(h) At $f_{2}(\mathrm{n}=2), \Delta \theta=0.4 \mathrm{rev}$ and the dot appears at the " $4: 48$ " position.
(i) At $f_{3}(\mathrm{n}=3), \Delta \theta=0.6$ rev and the dot appears at the " $7: 12$ " position.
(j) At $f_{4}(\mathrm{n}=4), \Delta \theta=0.8 \mathrm{rev}$ and the dot appears at the " $9: 36$ " position.
(k) At $f_{5}(\mathrm{n}=5), \Delta \theta=1.0 \mathrm{rev}$ and the dot appears at the " $12: 00$ " position.
4. If we make the units explicit, the function is

$$
\theta=(4.0 \mathrm{rad} / \mathrm{s}) t-\left(3.0 \mathrm{rad} / \mathrm{s}^{2}\right) t^{2}+\left(1.0 \mathrm{rad} / \mathrm{s}^{3}\right) t^{3}
$$

but generally we will proceed as shown in the problem-letting these units be understood. Also, in our manipulations we will generally not display the coefficients with their proper number of significant figures.
(a) Eq. 10-6 leads to

$$
\omega=\frac{d}{d t}\left(4 t-3 t^{2}+t^{3}\right)=4-6 t+3 t^{2}
$$

Evaluating this at $t=2 \mathrm{~s}$ yields $\omega_{2}=4.0 \mathrm{rad} / \mathrm{s}$.
(b) Evaluating the expression in part (a) at $t=4 \mathrm{~s}$ gives $\omega_{4}=28 \mathrm{rad} / \mathrm{s}$.
(c) Consequently, Eq. 10-7 gives

$$
\alpha_{\mathrm{avg}}=\frac{\omega_{4}-\omega_{2}}{4-2}=12 \mathrm{rad} / \mathrm{s}^{2} .
$$

(d) And Eq. 10-8 gives

$$
\alpha=\frac{d \omega}{d t}=\frac{d}{d t}\left(4-6 t+3 t^{2}\right)=-6+6 t .
$$

Evaluating this at $t=2 \mathrm{~s}$ produces $\alpha_{2}=6.0 \mathrm{rad} / \mathrm{s}^{2}$.
(e) Evaluating the expression in part (d) at $t=4 \mathrm{~s}$ yields $\alpha_{4}=18 \mathrm{rad} / \mathrm{s}^{2}$. We note that our answer for $\alpha_{\text {avg }}$ does turn out to be the arithmetic average of α_{2} and α_{4} but point out that this will not always be the case.
5. Applying Eq. 2-15 to the vertical axis (with $+y$ downward) we obtain the free-fall time:

$$
\Delta y=v_{0 y} t+\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{2(10)}{9.8}}=1.4 \mathrm{~s} .
$$

Thus, by Eq. 10-5, the magnitude of the average angular velocity is

$$
\omega_{\text {avg }}=\frac{(2.5)(2 \pi)}{1.4}=11 \mathrm{rad} / \mathrm{s} .
$$

6. If we make the units explicit, the function is

$$
\theta=2.0 \mathrm{rad}+\left(4.0 \mathrm{rad} / \mathrm{s}^{2}\right) t^{2}+\left(2.0 \mathrm{rad} / \mathrm{s}^{3}\right) t^{3}
$$

but in some places we will proceed as indicated in the problem-by letting these units be understood.
(a) We evaluate the function θ at $t=0$ to obtain $\theta_{0}=2.0 \mathrm{rad}$.
(b) The angular velocity as a function of time is given by Eq. 10-6:

$$
\omega=\frac{d \theta}{d t}=\left(8.0 \mathrm{rad} / \mathrm{s}^{2}\right) t+\left(6.0 \mathrm{rad} / \mathrm{s}^{3}\right) t^{2}
$$

which we evaluate at $t=0$ to obtain $\omega_{0}=0$.
(c) For $t=4.0 \mathrm{~s}$, the function found in the previous part is $\omega_{4}=(8.0)(4.0)+(6.0)(4.0)^{2}=$ $128 \mathrm{rad} / \mathrm{s}$. If we round this to two figures, we obtain $\omega_{4} \approx 1.3 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(d) The angular acceleration as a function of time is given by Eq. 10-8:

$$
\alpha=\frac{d \omega}{d t}=8.0 \mathrm{rad} / \mathrm{s}^{2}+\left(12 \mathrm{rad} / \mathrm{s}^{3}\right) t
$$

which yields $\alpha_{2}=8.0+(12)(2.0)=32 \mathrm{rad} / \mathrm{s}^{2}$ at $t=2.0 \mathrm{~s}$.
(e) The angular acceleration, given by the function obtained in the previous part, depends on time; it is not constant.
7. (a) To avoid touching the spokes, the arrow must go through the wheel in not more than

$$
\Delta t=\frac{1 / 8 \mathrm{rev}}{2.5 \mathrm{rev} / \mathrm{s}}=0.050 \mathrm{~s} .
$$

The minimum speed of the arrow is then $v_{\text {min }}=\frac{20 \mathrm{~cm}}{0.050 \mathrm{~s}}=400 \mathrm{~cm} / \mathrm{s}=4.0 \mathrm{~m} / \mathrm{s}$.
(b) No-there is no dependence on radial position in the above computation.
8. (a) With $\omega=0$ and $\alpha=-4.2 \mathrm{rad} / \mathrm{s}^{2}$, Eq. $10-12$ yields $t=-\omega_{0} / \alpha=3.00 \mathrm{~s}$.
(b) Eq. 10-4 gives $\theta-\theta_{0}=-\omega_{0}^{2} / 2 \alpha=18.9 \mathrm{rad}$.
9. (a) We assume the sense of rotation is positive. Applying Eq. 10-12, we obtain

$$
\omega=\omega_{0}+\alpha t \Rightarrow \alpha=\frac{3000-1200}{12 / 60}=9.0 \times 10^{3} \mathrm{rev} / \mathrm{min}^{2}
$$

(b) And Eq. 10-15 gives

$$
\theta=\frac{1}{2}\left(\omega_{0}+\omega\right) t=\frac{1}{2}(1200+3000)\left(\frac{12}{60}\right)=4.2 \times 10^{2} \mathrm{rev}
$$

10. We assume the sense of initial rotation is positive. Then, with $\omega_{0}=+120 \mathrm{rad} / \mathrm{s}$ and ω $=0$ (since it stops at time t), our angular acceleration ('deceleration'') will be negativevalued: $\alpha=-4.0 \mathrm{rad} / \mathrm{s}^{2}$.
(a) We apply Eq. 10-12 to obtain t.

$$
\omega=\omega_{0}+\alpha t \quad \Rightarrow \quad t=\frac{0-120}{-4.0}=30 \mathrm{~s} .
$$

(b) And Eq. 10-15 gives

$$
\theta=\frac{1}{2}\left(\omega_{0}+\omega\right) t=\frac{1}{2}(120+0)(30)=1.8 \times 10^{3} \mathrm{rad} .
$$

Alternatively, Eq. 10-14 could be used if it is desired to only use the given information (as opposed to using the result from part (a)) in obtaining θ. If using the result of part (a) is acceptable, then any angular equation in Table 10-1 (except Eq. 10-12) can be used to find θ.
11. We assume the sense of rotation is positive, which (since it starts from rest) means all quantities (angular displacements, accelerations, etc.) are positive-valued.
(a) The angular acceleration satisfies Eq. 10-13:

$$
25 \mathrm{rad}=\frac{1}{2} \alpha(5.0 \mathrm{~s})^{2} \Rightarrow \alpha=2.0 \mathrm{rad} / \mathrm{s}^{2}
$$

(b) The average angular velocity is given by Eq. 10-5:

$$
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t}=\frac{25 \mathrm{rad}}{5.0 \mathrm{~s}}=5.0 \mathrm{rad} / \mathrm{s} .
$$

(c) Using Eq. 10-12, the instantaneous angular velocity at $t=5.0 \mathrm{~s}$ is

$$
\omega=\left(2.0 \mathrm{rad} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s})=10 \mathrm{rad} / \mathrm{s} .
$$

(d) According to Eq. 10-13, the angular displacement at $t=10 \mathrm{~s}$ is

$$
\theta=\omega_{0}+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2}(2.0)(10)^{2}=100 \mathrm{rad} .
$$

Thus, the displacement between $t=5 \mathrm{~s}$ and $t=10 \mathrm{~s}$ is $\Delta \theta=100-25=75 \mathrm{rad}$.
12. (a) Eq. 10-13 gives

$$
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2}\left(1.5 \mathrm{rad} / \mathrm{s}^{2}\right) t_{1}^{2}
$$

where $\theta-\theta_{0}=(2 \mathrm{rev})(2 \pi \mathrm{rad} / \mathrm{rev})$. Therefore, $t_{1}=4.09 \mathrm{~s}$.
(b) We can find the time to go through a full 4 rev (using the same equation to solve for a new time t_{2}) and then subtract the result of part (a) for t_{1} in order to find this answer.

$$
(4 \mathrm{rev})(2 \pi \mathrm{rad} / \mathrm{rev})=0+\frac{1}{2}\left(1.5 \mathrm{rad} / \mathrm{s}^{2}\right) t_{2}^{2} \Rightarrow t_{2}=5.789 \mathrm{~s}
$$

Thus, the answer is $5.789-4.093 \approx 1.70 \mathrm{~s}$.
13. We take $t=0$ at the start of the interval and take the sense of rotation as positive. Then at the end of the $t=4.0 \mathrm{~s}$ interval, the angular displacement is $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$. We solve for the angular velocity at the start of the interval:

$$
\omega_{0}=\frac{\theta-\frac{1}{2} \alpha t^{2}}{t}=\frac{120 \mathrm{rad}-\frac{1}{2}\left(3.0 \mathrm{rad} / \mathrm{s}^{2}\right)(4.0 \mathrm{~s})^{2}}{4.0 \mathrm{~s}}=24 \mathrm{rad} / \mathrm{s}
$$

We now use $\omega=\omega_{0}+\alpha t$ (Eq. 10-12) to find the time when the wheel is at rest:

$$
t=-\frac{\omega_{0}}{\alpha}=-\frac{24 \mathrm{rad} / \mathrm{s}}{3.0 \mathrm{rad} / \mathrm{s}^{2}}=-8.0 \mathrm{~s} .
$$

That is, the wheel started from rest 8.0 s before the start of the described 4.0 s interval.
14. (a) The upper limit for centripetal acceleration (same as the radial acceleration - see Eq. 10-23) places an upper limit of the rate of spin (the angular velocity ω) by considering a point at the rim $(r=0.25 \mathrm{~m})$. Thus, $\omega_{\max }=\sqrt{a / r}=40 \mathrm{rad} / \mathrm{s}$. Now we apply Eq. $10-15$ to first half of the motion (where $\omega_{0}=0$):

$$
\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t \Rightarrow 400 \mathrm{rad}=\frac{1}{2}(0+40 \mathrm{rad} / \mathrm{s}) t
$$

which leads to $t=20 \mathrm{~s}$. The second half of the motion takes the same amount of time (the process is essentially the reverse of the first); the total time is therefore 40 s .
(b) Considering the first half of the motion again, Eq. 10-11 leads to

$$
\omega=\omega_{0}+\alpha t \Rightarrow \alpha=\frac{40 \mathrm{rad} / \mathrm{s}}{20 \mathrm{~s}}=2.0 \mathrm{rad} / \mathrm{s}^{2}
$$

15. The wheel has angular velocity $\omega_{0}=+1.5 \mathrm{rad} / \mathrm{s}=+0.239 \mathrm{rev} / \mathrm{s}^{2}$ at $t=0$, and has constant value of angular acceleration $\alpha<0$, which indicates our choice for positive sense of rotation. At t_{1} its angular displacement (relative to its orientation at $t=0$) is $\theta_{1}=$ +20 rev , and at t_{2} its angular displacement is $\theta_{2}=+40 \mathrm{rev}$ and its angular velocity is $\omega_{2}=0$.
(a) We obtain t_{2} using Eq. 10-15:

$$
\theta_{2}=\frac{1}{2}\left(\omega_{0}+\omega_{2}\right) t_{2} \Rightarrow t_{2}=\frac{2(40)}{0.239}
$$

which yields $t_{2}=335 \mathrm{~s}$ which we round off to $t_{2} \approx 3.4 \times 10^{2} \mathrm{~s}$.
(b) Any equation in Table 10-1 involving α can be used to find the angular acceleration; we select Eq. 10-16.

$$
\theta_{2}=\omega_{2} t_{2}-\frac{1}{2} \alpha t_{2}^{2} \Rightarrow \alpha=-\frac{2(40)}{335^{2}}
$$

which yields $\alpha=-7.12 \times 10^{-4} \mathrm{rev} / \mathrm{s}^{2}$ which we convert to $\alpha=-4.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}^{2}$.
(c) Using $\theta_{1}=\omega_{0} t_{1}+\frac{1}{2} \alpha t_{1}^{2}$ (Eq. 10-13) and the quadratic formula, we have

$$
t_{1}=\frac{-\omega_{0} \pm \sqrt{\omega_{0}^{2}+2 \theta_{1} \alpha}}{\alpha}=\frac{-0.239 \pm \sqrt{0.239^{2}+2(20)\left(-7.12 \times 10^{-4}\right)}}{-7.12 \times 10^{-4}}
$$

which yields two positive roots: 98 s and 572 s . Since the question makes sense only if t_{1} $<t_{2}$ we conclude the correct result is $t_{1}=98 \mathrm{~s}$.
16. The wheel starts turning from rest $\left(\omega_{0}=0\right)$ at $t=0$, and accelerates uniformly at $\alpha>0$, which makes our choice for positive sense of rotation. At t_{1} its angular velocity is $\omega_{1}=$ $+10 \mathrm{rev} / \mathrm{s}$, and at t_{2} its angular velocity is $\omega_{2}=+15 \mathrm{rev} / \mathrm{s}$. Between t_{1} and t_{2} it turns through $\Delta \theta=60 \mathrm{rev}$, where $t_{2}-t_{1}=\Delta t$.
(a) We find α using Eq. 10-14:

$$
\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \Delta \theta \Rightarrow \alpha=\frac{15^{2}-10^{2}}{2(60)}
$$

which yields $\alpha=1.04 \mathrm{rev} / \mathrm{s}^{2}$ which we round off to $1.0 \mathrm{rev} / \mathrm{s}^{2}$.
(b) We find Δt using Eq. 10-15:

$$
\Delta \theta=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) \Delta t \Rightarrow \Delta t=\frac{2(60)}{10+15}=4.8 \mathrm{~s} .
$$

(c) We obtain t_{1} using Eq. 10-12: $\omega_{1}=\omega_{0}+\alpha t_{1} \Rightarrow t_{1}=\frac{10}{1.04}=9.6 \mathrm{~s}$.
(d) Any equation in Table 10-1 involving θ can be used to find θ_{1} (the angular displacement during $0 \leq t \leq t_{1}$); we select Eq. 10-14.

$$
\omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta_{1} \Rightarrow \theta_{1}=\frac{10^{2}}{2(1.04)}=48 \mathrm{rev} .
$$

17. The problem has (implicitly) specified the positive sense of rotation. The angular acceleration of magnitude $0.25 \mathrm{rad} / \mathrm{s}^{2}$ in the negative direction is assumed to be constant over a large time interval, including negative values (for t).
(a) We specify $\theta_{\max }$ with the condition $\omega=0$ (this is when the wheel reverses from positive rotation to rotation in the negative direction). We obtain $\theta_{\max }$ using Eq. 10-14:

$$
\theta_{\max }=-\frac{\omega_{0}^{2}}{2 \alpha}=-\frac{4.7^{2}}{2(-0.25)}=44 \mathrm{rad} .
$$

(b) We find values for t_{1} when the angular displacement (relative to its orientation at $t=0$) is $\theta_{1}=22 \mathrm{rad}$ (or 22.09 rad if we wish to keep track of accurate values in all intermediate steps and only round off on the final answers). Using Eq. 10-13 and the quadratic formula, we have

$$
\theta_{1}=\omega_{0} t_{1}+\frac{1}{2} \alpha t_{1}^{2} \Rightarrow t_{1}=\frac{-\omega_{\mathrm{o}} \pm \sqrt{\omega_{\mathrm{o}}^{2}+2 \theta_{1} \alpha}}{\alpha}
$$

which yields the two roots 5.5 s and 32 s . Thus, the first time the reference line will be at $\theta_{1}=22 \mathrm{rad}$ is $t=5.5 \mathrm{~s}$.
(c) The second time the reference line will be at $\theta_{1}=22 \mathrm{rad}$ is $t=32 \mathrm{~s}$.
(d) We find values for t_{2} when the angular displacement (relative to its orientation at $t=0$) is $\theta_{2}=-10.5 \mathrm{rad}$. Using Eq. $10-13$ and the quadratic formula, we have

$$
\theta_{2}=\omega_{\mathrm{o}} t_{2}+\frac{1}{2} \alpha t_{2}^{2} \Rightarrow t_{2}=\frac{-\omega_{\mathrm{o}} \pm \sqrt{\omega_{\mathrm{o}}^{2}+2 \theta_{2} \alpha}}{\alpha}
$$

which yields the two roots -2.1 s and 40 s . Thus, at $t=-2.1 \mathrm{~s}$ the reference line will be at $\theta_{2}=-10.5 \mathrm{rad}$.
(e) At $t=40 \mathrm{~s}$ the reference line will be at $\theta_{2}=-10.5 \mathrm{rad}$.
(f) With radians and seconds understood, the graph of θ versus t is shown below (with the points found in the previous parts indicated as small circles).

18. The wheel starts turning from rest $\left(\omega_{0}=0\right)$ at $t=0$, and accelerates uniformly at $\alpha=2.00 \mathrm{rad} / \mathrm{s}^{2}$. Between t_{1} and t_{2} the wheel turns through $\Delta \theta=90.0 \mathrm{rad}$, where $t_{2}-t_{1}=$ $\Delta t=3.00 \mathrm{~s}$.
(a) We use Eq. 10-13 (with a slight change in notation) to describe the motion for $t_{1} \leq t \leq$ t_{2} :

$$
\Delta \theta=\omega_{1} \Delta t+\frac{1}{2} \alpha(\Delta t)^{2} \Rightarrow \omega_{1}=\frac{\Delta \theta}{\Delta t}-\frac{\alpha \Delta t}{2}
$$

which we plug into Eq. 10-12, set up to describe the motion during $0 \leq t \leq t_{1}$:

$$
\omega_{1}=\omega_{0}+\alpha t_{1} \Rightarrow \frac{\Delta \theta}{\Delta t}-\frac{\alpha \Delta t}{2}=\alpha t_{1} \Rightarrow \frac{90.0}{3.00}-\frac{(2.00)(3.00)}{2}=(2.00) t_{1}
$$

yielding $t_{1}=13.5 \mathrm{~s}$.
(b) Plugging into our expression for ω_{1} (in previous part) we obtain

$$
\omega_{1}=\frac{\Delta \theta}{\Delta t}-\frac{\alpha \Delta t}{2}=\frac{90.0}{3.00}-\frac{(2.00)(3.00)}{2}=27.0 \mathrm{rad} / \mathrm{s} .
$$

19. We assume the given rate of $1.2 \times 10^{-3} \mathrm{~m} / \mathrm{y}$ is the linear speed of the top; it is also possible to interpret it as just the horizontal component of the linear speed but the difference between these interpretations is arguably negligible. Thus, Eq. 10-18 leads to

$$
\omega=\frac{1.2 \times 10^{-3} \mathrm{~m} / \mathrm{y}}{55 \mathrm{~m}}=2.18 \times 10^{-5} \mathrm{rad} / \mathrm{y}
$$

which we convert (since there are about $3.16 \times 10^{7} \mathrm{~s}$ in a year) to $\omega=6.9 \times 10^{-13} \mathrm{rad} / \mathrm{s}$.
20. Converting $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$ to radians-per-second, we get $\omega=3.49 \mathrm{rad} / \mathrm{s}$. Combining $v=\omega r$ (Eq. 10-18) with $\Delta t=d / v$ where Δt is the time between bumps (a distance d apart), we arrive at the rate of striking bumps:

$$
\frac{1}{\Delta t}=\frac{\omega r}{d} \approx 199 / \mathrm{s}
$$

21. (a) We obtain

$$
\omega=\frac{(200 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})}{60 \mathrm{~s} / \mathrm{min}}=20.9 \mathrm{rad} / \mathrm{s} .
$$

(b) With $r=1.20 / 2=0.60 \mathrm{~m}$, Eq. $10-18$ leads to $v=r \omega=(0.60)(20.9)=12.5 \mathrm{~m} / \mathrm{s}$.
(c) With $t=1 \mathrm{~min}, \omega=1000 \mathrm{rev} / \mathrm{min}$ and $\omega_{0}=200 \mathrm{rev} / \mathrm{min}$, Eq. 10-12 gives

$$
\alpha=\frac{\omega-\omega_{\mathrm{o}}}{t}=800 \mathrm{rev} / \mathrm{min}^{2} .
$$

(d) With the same values used in part (c), Eq. 10-15 becomes

$$
\theta=\frac{1}{2}\left(\omega_{\mathrm{o}}+\omega\right) t=\frac{1}{2}(200+100)(1)=600 \mathrm{rev} .
$$

22. (a) Using Eq. 10-6, the angular velocity at $t=5.0 \mathrm{~s}$ is

$$
\omega=\left.\frac{d \theta}{d t}\right|_{t=5.0}=\left.\frac{d}{d t}\left(0.30 t^{2}\right)\right|_{t=5.0}=2(0.30)(5.0)=3.0 \mathrm{rad} / \mathrm{s} .
$$

(b) Eq. 10-18 gives the linear speed at $t=5.0 \mathrm{~s}: v=\omega r=(3.0 \mathrm{rad} / \mathrm{s})(10 \mathrm{~m})=30 \mathrm{~m} / \mathrm{s}$.
(c) The angular acceleration is, from Eq. 10-8,

$$
\alpha=\frac{d \omega}{d t}=\frac{d}{d t}(0.60 t)=0.60 \mathrm{rad} / \mathrm{s}^{2} .
$$

Then, the tangential acceleration at $t=5.0 \mathrm{~s}$ is, using Eq. $10-22$,

$$
a_{t}=r \alpha=(10 \mathrm{~m})\left(0.60 \mathrm{rad} / \mathrm{s}^{2}\right)=6.0 \mathrm{~m} / \mathrm{s}^{2} .
$$

(d) The radial (centripetal) acceleration is given by Eq. 10-23:

$$
a_{r}=\omega^{2} r=(3.0 \mathrm{rad} / \mathrm{s})^{2}(10 \mathrm{~m})=90 \mathrm{~m} / \mathrm{s}^{2} .
$$

23. (a) Converting from hours to seconds, we find the angular velocity (assuming it is positive) from Eq. 10-18:

$$
\omega=\frac{v}{r}=\frac{\left(2.90 \times 10^{4} \mathrm{~km} / \mathrm{h}\right)\left(\frac{1.00 \mathrm{~h}}{3600 \mathrm{~s}}\right)}{3.22 \times 10^{3} \mathrm{~km}}=2.50 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
$$

(b) The radial (or centripetal) acceleration is computed according to Eq. 10-23:

$$
a_{r}=\omega^{2} r=\left(2.50 \times 10^{-3} \mathrm{rad} / \mathrm{s}\right)^{2}\left(3.22 \times 10^{6} \mathrm{~m}\right)=20.2 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) Assuming the angular velocity is constant, then the angular acceleration and the tangential acceleration vanish, since

$$
\alpha=\frac{d \omega}{d t}=0 \text { and } a_{t}=r \alpha=0 .
$$

24. First, we convert the angular velocity: $\omega=(2000)(2 \pi / 60)=209 \mathrm{rad} / \mathrm{s}$. Also, we convert the plane's speed to SI units: $(480)(1000 / 3600)=133 \mathrm{~m} / \mathrm{s}$. We use Eq. $10-18$ in part (a) and (implicitly) Eq. 4-39 in part (b).
(a) The speed of the tip as seen by the pilot is $v_{t}=\omega r=(209 \mathrm{rad} / \mathrm{s})(1.5 \mathrm{~m})=314 \mathrm{~m} / \mathrm{s}$, which (since the radius is given to only two significant figures) we write as $v_{t}=3.1 \times 10^{2} \mathrm{~m} / \mathrm{s}$.
(b) The plane's velocity \vec{v}_{p} and the velocity of the tip \vec{v}_{t} (found in the plane's frame of reference), in any of the tip's positions, must be perpendicular to each other. Thus, the speed as seen by an observer on the ground is

$$
v=\sqrt{v_{p}^{2}+v_{t}^{2}}=\sqrt{(133 \mathrm{~m} / \mathrm{s})^{2}+(314 \mathrm{~m} / \mathrm{s})^{2}}=3.4 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

25. The function $\theta=\xi e^{\beta t}$ where $\xi=0.40 \mathrm{rad}$ and $\beta=2 \mathrm{~s}^{-1}$ is describing the angular coordinate of a line (which is marked in such a way that all points on it have the same value of angle at a given time) on the object. Taking derivatives with respect to time leads to $\frac{d \theta}{d t}=\xi \beta e^{\beta t}$ and $\frac{d^{2} \theta}{d t^{2}}=\xi \beta^{2} e^{\beta t}$.
(a) Using Eq. 10-22, we have

$$
a_{t}=\alpha r=\frac{d^{2} \theta}{d t^{2}} r=6.4 \mathrm{~cm} / \mathrm{s}^{2}
$$

(b) Using Eq. 10-23, we have

$$
a_{r}=\omega^{2} r=\left(\frac{d \theta}{d t}\right)^{2} r=2.6 \mathrm{~cm} / \mathrm{s}^{2}
$$

26. (a) The tangential acceleration, using Eq. 10-22, is

$$
a_{t}=\alpha r=\left(14.2 \mathrm{rad} / \mathrm{s}^{2}\right)(2.83 \mathrm{~cm})=40.2 \mathrm{~cm} / \mathrm{s}^{2} .
$$

(b) In $\mathrm{rad} / \mathrm{s}$, the angular velocity is $\omega=(2760)(2 \pi / 60)=289$, so

$$
a_{r}=\omega^{2} r=(289 \mathrm{rad} / \mathrm{s})^{2}(0.0283 \mathrm{~m})=2.36 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The angular displacement is, using Eq. 10-14,

$$
\theta=\frac{\omega^{2}}{2 \alpha}=\frac{289^{2}}{2(14.2)}=2.94 \times 10^{3} \mathrm{rad}
$$

Then, using Eq. 10-1, the distance traveled is

$$
s=r \theta=(0.0283 \mathrm{~m})\left(2.94 \times 10^{3} \mathrm{rad}\right)=83.2 \mathrm{~m} .
$$

28. Since the belt does not slip, a point on the rim of wheel C has the same tangential acceleration as a point on the rim of wheel A. This means that $\alpha_{A} r_{A}=\alpha_{C} r_{C}$, where α_{A} is the angular acceleration of wheel A and α_{C} is the angular acceleration of wheel C. Thus,

$$
\alpha_{C}=\left(\frac{r_{A}}{r_{C}}\right) \alpha_{C}=\left(\frac{10 \mathrm{~cm}}{25 \mathrm{~cm}}\right)\left(1.6 \mathrm{rad} / \mathrm{s}^{2}\right)=0.64 \mathrm{rad} / \mathrm{s}^{2}
$$

Since the angular speed of wheel C is given by $\omega_{C}=\alpha_{C} t$, the time for it to reach an angular speed of $\omega=100 \mathrm{rev} / \mathrm{min}=10.5 \mathrm{rad} / \mathrm{s}$ starting from rest is

$$
t=\frac{\omega_{C}}{\alpha_{C}}=\frac{10.5 \mathrm{rad} / \mathrm{s}}{0.64 \mathrm{rad} / \mathrm{s}^{2}}=16 \mathrm{~s}
$$

29. (a) In the time light takes to go from the wheel to the mirror and back again, the wheel turns through an angle of $\theta=2 \pi / 500=1.26 \times 10^{-2} \mathrm{rad}$. That time is

$$
t=\frac{2 \ell}{c}=\frac{2(500 \mathrm{~m})}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.34 \times 10^{-6} \mathrm{~s}
$$

so the angular velocity of the wheel is

$$
\omega=\frac{\theta}{t}=\frac{1.26 \times 10^{-2} \mathrm{rad}}{3.34 \times 10^{-6} \mathrm{~s}}=3.8 \times 10^{3} \mathrm{rad} / \mathrm{s} .
$$

(b) If r is the radius of the wheel, the linear speed of a point on its rim is

$$
v=\omega r=\left(3.8 \times 10^{3} \mathrm{rad} / \mathrm{s}\right)(0.050 \mathrm{~m})=1.9 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

30. (a) The angular acceleration is

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{0-150 \mathrm{rev} / \mathrm{min}}{(2.2 \mathrm{~h})(60 \mathrm{~min} / 1 \mathrm{~h})}=-1.14 \mathrm{rev} / \mathrm{min}^{2} .
$$

(b) Using Eq. 10-13 with $t=(2.2)(60)=132 \mathrm{~min}$, the number of revolutions is

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=(150 \mathrm{rev} / \mathrm{min})(132 \mathrm{~min})+\frac{1}{2}\left(-1.14 \mathrm{rev} / \mathrm{min}^{2}\right)(132 \mathrm{~min})^{2}=9.9 \times 10^{3} \mathrm{rev}
$$

(c) With $r=500 \mathrm{~mm}$, the tangential acceleration is

$$
a_{t}=\alpha r=\left(-1.14 \mathrm{rev} / \mathrm{min}^{2}\right)\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)^{2}(500 \mathrm{~mm})
$$

which yields $a_{t}=-0.99 \mathrm{~mm} / \mathrm{s}^{2}$.
(d) With $r=0.50 \mathrm{~m}$, the radial (or centripetal) acceleration is given by Eq. 10-23:

$$
a_{r}=\omega^{2} r=\left((75 \mathrm{rev} / \mathrm{min})\left(\frac{2 \pi \mathrm{rad} / \mathrm{rev}}{1 \mathrm{~min} / 60 \mathrm{~s}}\right)\right)^{2}(0.50 \mathrm{~m})
$$

which yields $a_{r}=31$ in SI units—and is seen to be much bigger than a_{t}. Consequently, the magnitude of the acceleration is

$$
|\vec{a}|=\sqrt{a_{r}^{2}+a_{t}^{2}} \approx a_{r}=31 \mathrm{~m} / \mathrm{s}^{2} .
$$

31. (a) The angular speed in $\mathrm{rad} / \mathrm{s}$ is

$$
\omega=\left(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\right)\left(\frac{2 \pi \mathrm{rad} / \mathrm{rev}}{60 \mathrm{~s} / \mathrm{min}}\right)=3.49 \mathrm{rad} / \mathrm{s} .
$$

Consequently, the radial (centripetal) acceleration is (using Eq. 10-23)

$$
a=\omega^{2} r=(3.49 \mathrm{rad} / \mathrm{s})^{2}\left(6.0 \times 10^{-2} \mathrm{~m}\right)=0.73 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) Using Ch. 6 methods, we have $m a=f_{s} \leq f_{s, \max }=\mu_{s} m g$, which is used to obtain the (minimum allowable) coefficient of friction:

$$
\mu_{s, \min }=\frac{a}{g}=\frac{0.73}{9.8}=0.075
$$

(c) The radial acceleration of the object is $a_{r}=\omega^{2} r$, while the tangential acceleration is a_{t} $=\alpha r$. Thus

$$
|\vec{a}|=\sqrt{a_{r}^{2}+a_{t}^{2}}=\sqrt{\left(\omega^{2} r\right)^{2}+(\alpha r)^{2}}=r \sqrt{\omega^{4}+\alpha^{2}} .
$$

If the object is not to slip at any time, we require

$$
f_{s, \max }=\mu_{s} m g=m a_{\max }=m r \sqrt{\omega_{\max }^{4}+\alpha^{2}} .
$$

Thus, since $\alpha=\omega / t$ (from Eq. 10-12), we find

$$
\mu_{s, \min }=\frac{r \sqrt{\omega_{\max }^{4}+\alpha^{2}}}{g}=\frac{r \sqrt{\omega_{\max }^{4}+\left(\omega_{\max } / t\right)^{2}}}{g}=\frac{(0.060) \sqrt{3.49^{4}+(3.4 / 0.25)^{2}}}{9.8}=0.11
$$

32. (a) A complete revolution is an angular displacement of $\Delta \theta=2 \pi \mathrm{rad}$, so the angular velocity in rad $/ \mathrm{s}$ is given by $\omega=\Delta \theta / T=2 \pi / T$. The angular acceleration is given by

$$
\alpha=\frac{d \omega}{d t}=-\frac{2 \pi}{T^{2}} \frac{d T}{d t} .
$$

For the pulsar described in the problem, we have

$$
\frac{d T}{d t}=\frac{1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}}{3.16 \times 10^{7} \mathrm{~s} / \mathrm{y}}=4.00 \times 10^{-13}
$$

Therefore,

$$
\alpha=-\left(\frac{2 \pi}{(0.033 \mathrm{~s})^{2}}\right)\left(4.00 \times 10^{-13}\right)=-2.3 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2} .
$$

The negative sign indicates that the angular acceleration is opposite the angular velocity and the pulsar is slowing down.
(b) We solve $\omega=\omega_{0}+\alpha t$ for the time t when $\omega=0$:

$$
t=-\frac{\omega_{0}}{\alpha}=-\frac{2 \pi}{\alpha T}=-\frac{2 \pi}{\left(-2.3 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2}\right)(0.033 \mathrm{~s})}=8.3 \times 10^{10} \mathrm{~s} \approx 2.6 \times 10^{3} \text { years }
$$

(c) The pulsar was born 1992-1054 = 938 years ago. This is equivalent to $(938 \mathrm{y})(3.16 \times$ $\left.10^{7} \mathrm{~s} / \mathrm{y}\right)=2.96 \times 10^{10} \mathrm{~s}$. Its angular velocity at that time was

$$
\omega=\omega_{0}+\alpha t+\frac{2 \pi}{T}+\alpha t=\frac{2 \pi}{0.033 \mathrm{~s}}+\left(-2.3 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2}\right)\left(-2.96 \times 10^{10} \mathrm{~s}\right)=258 \mathrm{rad} / \mathrm{s}
$$

Its period was

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{258 \mathrm{rad} / \mathrm{s}}=2.4 \times 10^{-2} \mathrm{~s} .
$$

33. The kinetic energy (in J) is given by $K=\frac{1}{2} I \omega^{2}$, where I is the rotational inertia (in $\mathrm{kg} \cdot \mathrm{m}^{2}$) and ω is the angular velocity (in $\mathrm{rad} / \mathrm{s}$). We have

$$
\omega=\frac{(602 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})}{60 \mathrm{~s} / \mathrm{min}}=63.0 \mathrm{rad} / \mathrm{s} .
$$

Consequently, the rotational inertia is

$$
I=\frac{2 K}{\omega^{2}}=\frac{2(24400 \mathrm{~J})}{(63.0 \mathrm{rad} / \mathrm{s})^{2}}=12.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

34. (a) Eq. 10-12 implies that the angular acceleration α should be the slope of the ω vs t graph. Thus, $\alpha=9 / 6=1.5 \mathrm{rad} / \mathrm{s}^{2}$.
(b) By Eq. $10-34, K$ is proportional to ω^{2}. Since the angular velocity at $t=0$ is $-2 \mathrm{rad} / \mathrm{s}$ (and this value squared is 4) and the angular velocity at $t=4 \mathrm{~s}$ is $4 \mathrm{rad} / \mathrm{s}$ (and this value squared is 16), then the ratio of the corresponding kinetic energies must be

$$
\frac{K_{0}}{K_{4}}=\frac{4}{16} \Rightarrow K_{\mathrm{o}}=1 / 4 K_{4}=0.40 \mathrm{~J}
$$

35. Since the rotational inertia of a cylinder is $I=\frac{1}{2} M R^{2}$ (Table 10-2(c)), its rotational kinetic energy is

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{4} M R^{2} \omega^{2} .
$$

(a) For the smaller cylinder, we have $K=\frac{1}{4}(1.25)(0.25)^{2}(235)^{2}=1.1 \times 10^{3} \mathrm{~J}$.
(b) For the larger cylinder, we obtain $K=\frac{1}{4}(1.25)(0.75)^{2}(235)^{2}=9.7 \times 10^{3} \mathrm{~J}$.
36. (a) Eq. 10-33 gives

$$
I_{\text {total }}=m d^{2}+m(2 d)^{2}+m(3 d)^{2}=14 m d^{2}
$$

If the innermost one is removed then we would only obtain $m(2 d)^{2}+m(3 d)^{2}=13 m d^{2}$. The percentage difference between these is $(13-14) / 14=0.0714 \approx 7.1 \%$.
(b) If, instead, the outermost particle is removed, we would have $m d^{2}+m(2 d)^{2}=5 m d^{2}$. The percentage difference in this case is $0.643 \approx 64 \%$.
37. We use the parallel axis theorem: $I=I_{\text {com }}+M h^{2}$, where $I_{\text {com }}$ is the rotational inertia about the center of mass (see Table 10-2(d)), M is the mass, and h is the distance between the center of mass and the chosen rotation axis. The center of mass is at the center of the meter stick, which implies $h=0.50 \mathrm{~m}-0.20 \mathrm{~m}=0.30 \mathrm{~m}$. We find

$$
I_{\mathrm{com}}=\frac{1}{12} M L^{2}=\frac{1}{12}(0.56 \mathrm{~kg})(1.0 \mathrm{~m})^{2}=4.67 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Consequently, the parallel axis theorem yields

$$
I=4.67 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2}+(0.56 \mathrm{~kg})(0.30 \mathrm{~m})^{2}=9.7 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

38. The parallel axis theorem (Eq. 10-36) shows that I increases with h. The phrase "out to the edge of the disk" (in the problem statement) implies that the maximum h in the graph is, in fact, the radius R of the disk. Thus, $R=0.20 \mathrm{~m}$. Now we can examine, say, the $h=0$ datum and use the formula for $I_{\text {com }}$ (see Table 10-2(c)) for a solid disk, or (which might be a little better, since this is independent of whether it is really a solid disk) we can the difference between the $h=0$ datum and the $h=h_{\max }=R$ datum and relate that difference to the parallel axis theorem (thus the difference is $M\left(h_{\max }\right)^{2}=0.10 \mathrm{~kg} \cdot \mathrm{~m}^{2}$). In either case, we arrive at $M=2.5 \mathrm{~kg}$.
39. The particles are treated "point-like" in the sense that Eq. 10-33 yields their rotational inertia, and the rotational inertia for the rods is figured using Table 10-2(e) and the parallel-axis theorem (Eq. 10-36).
(a) With subscript 1 standing for the rod nearest the axis and 4 for the particle farthest from it, we have

$$
\begin{aligned}
I & =I_{1}+I_{2}+I_{3}+I_{4}=\left(\frac{1}{12} M d^{2}+M\left(\frac{1}{2} d\right)^{2}\right)+m d^{2}+\left(\frac{1}{12} M d^{2}+M\left(\frac{3}{2} d\right)^{2}\right)+m(2 d)^{2} \\
& =\frac{8}{3} M d^{2}+5 m d^{2}=\frac{8}{3}(1.2 \mathrm{~kg})(0.056 \mathrm{~m})^{2}+5(0.85 \mathrm{~kg})(0.056 \mathrm{~m})^{2} \\
& =0.023 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
\end{aligned}
$$

(b) Using Eq. 10-34, we have

$$
\begin{aligned}
K & =\frac{1}{2} I \omega^{2}=\left(\frac{4}{3} M+\frac{5}{2} m\right) d^{2} \omega^{2}=\left[\frac{4}{3}(1.2 \mathrm{~kg})+\frac{5}{2}(0.85 \mathrm{~kg})\right](0.056 \mathrm{~m})^{2}(0.30 \mathrm{rad} / \mathrm{s})^{2} \\
& =1.1 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

40. (a) Consider three of the disks (starting with the one at point O): $\oplus \mathrm{OO}$. The first one (the one at point O - shown here with the plus sign inside) has rotational inertial (see item (c) in Table 10-2) $I=\frac{1}{2} m R^{2}$. The next one (using the parallel-axis theorem) has

$$
I=\frac{1}{2} m R^{2}+m h^{2}
$$

where $h=2 R$. The third one has $I=\frac{1}{2} m R^{2}+m(4 R)^{2}$. If we had considered five of the disks $\mathrm{OO} \oplus \mathrm{OO}$ with the one at O in the middle, then the total rotational inertia is

$$
I=5\left(\frac{1}{2} m R^{2}\right)+2\left(m(2 R)^{2}+m(4 R)^{2}\right)
$$

The pattern is now clear and we can write down the total I for the collection of fifteen disks:

$$
I=15\left(\frac{1}{2} m R^{2}\right)+2\left(m(2 R)^{2}+m(4 R)^{2}+m(6 R)^{2}+\ldots+m(14 R)^{2}\right)=\frac{2255}{2} m R^{2} .
$$

The generalization to N disks (where N is assumed to be an odd number) is

$$
I=\frac{1}{6}\left(2 N^{2}+1\right) N m R^{2}
$$

In terms of the total mass ($m=M / 15$) and the total length ($R=L / 30$), we obtain

$$
I=0.083519 M L^{2} \approx(0.08352)(0.1000 \mathrm{~kg})(1.0000 \mathrm{~m})^{2}=8.352 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) Comparing to the formula (e) in Table 10-2 (which gives roughly $I=0.08333 M L^{2}$), we find our answer to part (a) is 0.22% lower.
41. We use the parallel-axis theorem. According to Table 10-2(i), the rotational inertia of a uniform slab about an axis through the center and perpendicular to the large faces is given by

$$
I_{\mathrm{com}}=\frac{M}{12}\left(a^{2}+b^{2}\right)
$$

A parallel axis through the corner is a distance $h=\sqrt{(a / 2)^{2}+(b / 2)^{2}}$ from the center. Therefore,

$$
\begin{aligned}
I & =I_{\mathrm{com}}+M h^{2}=\frac{M}{12}\left(a^{2}+b^{2}\right)+\frac{M}{4}\left(a^{2}+b^{2}\right)=\frac{M}{3}\left(a^{2}+b^{2}\right) \\
& =\frac{0.172 \mathrm{~kg}}{3}\left[(0.035 \mathrm{~m})^{2}+(0.084 \mathrm{~m})^{2}\right]=4.7 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

42. (a) We show the figure with its axis of rotation (the thin horizontal line).

We note that each mass is $r=1.0 \mathrm{~m}$ from the axis. Therefore, using Eq. 10-26, we obtain

$$
I=\sum m_{i} r_{i}^{2}=4(0.50 \mathrm{~kg})(1.0 \mathrm{~m})^{2}=2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

(b) In this case, the two masses nearest the axis are $r=1.0 \mathrm{~m}$ away from it, but the two furthest from the axis are $r=\sqrt{1.0^{2}+2.0^{2}} \mathrm{~m}$ from it. Here, then, Eq. 10-33 leads to

$$
I=\sum m_{i} r_{i}^{2}=2(0.50 \mathrm{~kg})\left(1.0 \mathrm{~m}^{2}\right)+2(0.50 \mathrm{~kg})\left(5.0 \mathrm{~m}^{2}\right)=6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

(c) Now, two masses are on the axis (with $r=0$) and the other two are a distance $r=\sqrt{1.0^{2}+1.0^{2}} \mathrm{~m}$ away. Now we obtain $I=2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
43. (a) We apply Eq. 10-33:

$$
I_{x}=\sum_{i=1}^{4} m_{i} y_{i}^{2}=50(2.0)^{2}+(25)(4.0)^{2}+25(-3.0)^{2}+30(4.0)^{2}=1.3 \times 10^{3} \mathrm{~g} \cdot \mathrm{~cm}^{2}
$$

(b) For rotation about the y axis we obtain

$$
I_{y}=\sum_{i=1}^{4} m_{i} x_{i}^{2}=50(2.0)^{2}+(25)(0)^{2}+25(3.0)^{2}+30(2.0)^{2}=5.5 \times 10^{2} \mathrm{~g} \cdot \mathrm{~cm}^{2}
$$

(c) And about the z axis, we find (using the fact that the distance from the z axis is $\sqrt{x^{2}+y^{2}}$)

$$
I_{z}=\sum_{i=1}^{4} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)=I_{x}+I_{y}=1.3 \times 10^{3}+5.5 \times 10^{2}=1.9 \times 10^{2} \mathrm{~g} \cdot \mathrm{~cm}^{2}
$$

(d) Clearly, the answer to part (c) is $A+B$.
44. (a) Using Table 10-2(c) and Eq. 10-34, the rotational kinetic energy is

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2}=\frac{1}{4}(500 \mathrm{~kg})(200 \pi \mathrm{rad} / \mathrm{s})^{2}(1.0 \mathrm{~m})^{2}=4.9 \times 10^{7} \mathrm{~J} .
$$

(b) We solve $P=K / t$ (where P is the average power) for the operating time t.

$$
t=\frac{K}{P}=\frac{4.9 \times 10^{7} \mathrm{~J}}{8.0 \times 10^{3} \mathrm{~W}}=6.2 \times 10^{3} \mathrm{~s}
$$

which we rewrite as $t \approx 1.0 \times 10^{2} \mathrm{~min}$.
45. Two forces act on the ball, the force of the rod and the force of gravity. No torque about the pivot point is associated with the force of the rod since that force is along the line from the pivot point to the ball. As can be seen from the diagram, the component of the force of gravity that is perpendicular to the rod is $m g \sin \theta$. If ℓ is the length of the rod, then the torque associated with this force has magnitude

$$
\tau=m g \ell \sin \theta=(0.75)(9.8)(1.25) \sin 30^{\circ}=4.6 \mathrm{~N} \cdot \mathrm{~m} .
$$

For the position shown, the torque is counter-clockwise.

46. We compute the torques using $\tau=r F \sin \phi$.
(a) For $\phi=30^{\circ}, \tau_{a}=(0.152 \mathrm{~m})(111 \mathrm{~N}) \sin 30^{\circ}=8.4 \mathrm{~N} \cdot \mathrm{~m}$.
(b) For $\phi=90^{\circ}, \tau_{b}=(0.152 \mathrm{~m})(111 \mathrm{~N}) \sin 90^{\circ}=17 \mathrm{~N} \cdot \mathrm{~m}$.
(c) For $\phi=180^{\circ}, \tau_{c}=(0.152 \mathrm{~m})(111 \mathrm{~N}) \sin 180^{\circ}=0$.
47. We take a torque that tends to cause a counterclockwise rotation from rest to be positive and a torque tending to cause a clockwise rotation to be negative. Thus, a positive torque of magnitude $r_{1} F_{1} \sin \theta_{1}$ is associated with \vec{F}_{1} and a negative torque of magnitude $r_{2} F_{2} \sin \theta_{2}$ is associated with \vec{F}_{2}. The net torque is consequently

$$
\tau=r_{1} F_{1} \sin \theta_{1}-r_{2} F_{2} \sin \theta_{2} .
$$

Substituting the given values, we obtain

$$
\tau=(1.30 \mathrm{~m})(4.20 \mathrm{~N}) \sin 75^{\circ}-(2.15 \mathrm{~m})(4.90 \mathrm{~N}) \sin 60^{\circ}=-3.85 \mathrm{~N} \cdot \mathrm{~m} .
$$

48. The net torque is

$$
\begin{aligned}
\tau & =\tau_{A}+\tau_{B}+\tau_{C}=F_{A} r_{A} \sin \phi_{A}-F_{B} r_{B} \sin \phi_{B}+F_{C} r_{C} \sin \phi_{C} \\
& =(10)(8.0) \sin 135^{\circ}-(16)(4.0) \sin 90^{\circ}+(19)(3.0) \sin 160^{\circ} \\
& =12 \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

49. (a) We use the kinematic equation $\omega=\omega_{0}+\alpha t$, where ω_{0} is the initial angular velocity, ω is the final angular velocity, α is the angular acceleration, and t is the time. This gives

$$
\alpha=\frac{\omega-\omega_{0}}{t}=\frac{6.20 \mathrm{rad} / \mathrm{s}}{220 \times 10^{-3} \mathrm{~s}}=28.2 \mathrm{rad} / \mathrm{s}^{2} .
$$

(b) If I is the rotational inertia of the diver, then the magnitude of the torque acting on her is

$$
\tau=I \alpha=\left(12.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(28.2 \mathrm{rad} / \mathrm{s}^{2}\right)=3.38 \times 10^{2} \mathrm{~N} \cdot \mathrm{~m} .
$$

50. The rotational inertia is found from Eq. 10-45.

$$
I=\frac{\tau}{\alpha}=\frac{32.0}{25.0}=1.28 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

51. Combining Eq. $10-45\left(\tau_{\text {net }}=I \alpha\right)$ with Eq. $10-38$ gives $R F_{2}-R F_{1}=I \alpha$, where $\alpha=\omega / t$ by Eq. 10-12 (with $\omega_{0}=0$). Using item (c) in Table 10-2 and solving for F_{2} we find

$$
F_{2}=\frac{M R \omega}{2 t}+F_{1}=\frac{(0.02)(0.02)(250)}{2(1.25)}+0.1=0.140 \mathrm{~N} .
$$

52. (a) In this case, the force is $m g=(70)(9.8)$, and the "lever arm" (the perpendicular distance from point O to the line of action of the force) is 0.28 meter. Thus, the torque (in absolute value) is $(70)(9.8)(0.28)$. Since the moment-of-inertia is $I=65 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, then Eq. $10-45$ gives $|\alpha|=2.955 \approx 3.0 \mathrm{rad} / \mathrm{s}^{2}$.
(b) Now we have another contribution ($1.4 \mathrm{~m} \times 300 \mathrm{~N}$) to the net torque, so

$$
\left|\tau_{\text {net }}\right|=(70)(9.8)(0.28)+(1.4)(300 \mathrm{~N})=(65)|\alpha|
$$

which leads to $|\alpha|=9.4 \mathrm{rad} / \mathrm{s}^{2}$.
53. According to the sign conventions used in the book, the magnitude of the net torque exerted on the cylinder of mass m and radius R is

$$
\tau_{\text {net }}=F_{1} R-F_{2} R-F_{3} r=(6.0 \mathrm{~N})(0.12 \mathrm{~m})-(4.0 \mathrm{~N})(0.12 \mathrm{~m})-(2.0 \mathrm{~N})(0.050 \mathrm{~m})=71 \mathrm{~N} \cdot \mathrm{~m} .
$$

(a) The resulting angular acceleration of the cylinder (with $I=\frac{1}{2} M R^{2}$ according to Table $10-2(\mathrm{c})$) is

$$
\alpha=\frac{\tau_{\text {net }}}{I}=\frac{71 \mathrm{~N} \cdot \mathrm{~m}}{\frac{1}{2}(2.0 \mathrm{~kg})(0.12 \mathrm{~m})^{2}}=9.7 \mathrm{rad} / \mathrm{s}^{2} .
$$

(b) The direction is counterclockwise (which is the positive sense of rotation).
54. With counterclockwise positive, the angular acceleration α for both masses satisfies $\tau=m g L_{1}-m g L_{2}=I \alpha=\left(m L_{1}^{2}+m L_{2}^{2}\right) \alpha$, by combining Eq. $10-45$ with Eq. 10-39 and Eq. 10-33. Therefore, using SI units,

$$
\alpha=\frac{g\left(L_{1}-L_{2}\right)}{L_{1}^{2}+L_{2}^{2}}=\frac{(9.8)(0.20-0.80)}{(0.20)^{2}+(0.80)^{2}}=-8.65 \mathrm{rad} / \mathrm{s}^{2}
$$

where the negative sign indicates the system starts turning in the clockwise sense. The magnitude of the acceleration vector involves no radial component (yet) since it is evaluated at $t=0$ when the instantaneous velocity is zero. Thus, for the two masses, we apply Eq. 10-22:
(a) $\left|\vec{a}_{1}\right|=|\alpha| L_{1}=\left(8.65 \mathrm{rad} / \mathrm{s}^{2}\right)(0.20 \mathrm{~m})=1.7 \mathrm{~m} / \mathrm{s}$.
(b) $\left|\vec{a}_{2}\right|=|\alpha| L_{2}=\left(8.65 \mathrm{rad} / \mathrm{s}^{2}\right)(0.80 \mathrm{~m})=6.9 \mathrm{~m} / \mathrm{s}^{2}$.
55. (a) We use constant acceleration kinematics. If down is taken to be positive and a is the acceleration of the heavier block, then its coordinate is given by $y=\frac{1}{2} a t^{2}$, so

$$
a=\frac{2 y}{t^{2}}=\frac{2(0.750 \mathrm{~m})}{(5.00 \mathrm{~s})^{2}}=6.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
$$

The lighter block has an acceleration of $6.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$ upward.
(b) Newton's second law for the heavier block is $m_{h} g-T_{h}=m_{h} a$, where m_{h} is its mass and T_{h} is the tension force on the block. Thus,

$$
T_{h}=m_{h}(g-a)=(0.500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-6.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}\right)=4.87 \mathrm{~N} .
$$

(c) Newton's second law for the lighter block is $m_{l} g-T_{l}=-m_{l} a$, where T_{l} is the tension force on the block. Thus,

$$
T_{l}=m_{l}(g+a)=(0.460 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+6.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}\right)=4.54 \mathrm{~N}
$$

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the rim of the pulley must be the same as the acceleration of the blocks, so

$$
\alpha=\frac{a}{R}=\frac{6.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}}{5.00 \times 10^{-2} \mathrm{~m}}=1.20 \mathrm{rad} / \mathrm{s}^{2} .
$$

(e) The net torque acting on the pulley is $\tau=\left(T_{h}-T_{l}\right) R$. Equating this to $I \alpha$ we solve for the rotational inertia:

$$
I=\frac{\left(T_{h}-T_{l}\right) R}{\alpha}=\frac{(4.87 \mathrm{~N}-4.54 \mathrm{~N})\left(5.00 \times 10^{-2} \mathrm{~m}\right)}{1.20 \mathrm{rad} / \mathrm{s}^{2}}=1.38 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

56. Combining Eq. $10-34$ and Eq. $10-45$, we have $R F=I \alpha$, where α is given by ω / t (according to Eq. 10-12, since $\omega_{0}=0$ in this case). We also use the fact that

$$
I=I_{\mathrm{plate}}+I_{\mathrm{disk}}
$$

where $I_{\text {disk }}=\frac{1}{2} M R^{2}$ (item (c) in Table 10-2). Therefore,

$$
I_{\text {plate }}=\frac{R F t}{\omega}-\frac{1}{2} M R^{2}=2.51 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}
$$

57. Since the force acts tangentially at $r=0.10 \mathrm{~m}$, the angular acceleration (presumed positive) is

$$
\alpha=\frac{\tau}{I}=\frac{F r}{I}=\frac{\left(0.5 t+0.3 t^{2}\right)(0.10)}{1.0 \times 10^{-3}}=50 t+30 t^{2}
$$

in SI units $\left(\mathrm{rad} / \mathrm{s}^{2}\right)$.
(a) At $t=3 \mathrm{~s}$, the above expression becomes $\alpha=4.2 \times 10^{2} \mathrm{rad} / \mathrm{s}^{2}$.
(b) We integrate the above expression, noting that $\omega_{0}=0$, to obtain the angular speed at t $=3 \mathrm{~s}$:

$$
\omega=\int_{0}^{3} \alpha d t=\left.\left(25 t^{2}+10 t^{3}\right)\right|_{0} ^{3}=5.0 \times 10^{2} \mathrm{rad} / \mathrm{s} .
$$

58. With $\omega=(1800)(2 \pi / 60)=188.5 \mathrm{rad} / \mathrm{s}$, we apply Eq. $10-55$:

$$
P=\tau \omega \Rightarrow \tau=\frac{74600 \mathrm{~W}}{188.5 \mathrm{rad} / \mathrm{s}}=396 \mathrm{~N} \cdot \mathrm{~m} .
$$

59. (a) The speed of v of the mass m after it has descended $d=50 \mathrm{~cm}$ is given by $v^{2}=2 a d$ (Eq. 2-16). Thus, using $g=980 \mathrm{~cm} / \mathrm{s}^{2}$, we have

$$
v=\sqrt{2 a d}=\sqrt{\frac{2(2 m g) d}{M+2 m}}=\sqrt{\frac{4(50)(980)(50)}{400+2(50)}}=1.4 \times 10^{2} \mathrm{~cm} / \mathrm{s} .
$$

(b) The answer is still $1.4 \times 10^{2} \mathrm{~cm} / \mathrm{s}=1.4 \mathrm{~m} / \mathrm{s}$, since it is independent of R.
60. The initial angular speed is $\omega=(280)(2 \pi / 60)=29.3 \mathrm{rad} / \mathrm{s}$.
(a) Since the rotational inertia is (Table $10-2(a)) I=(32)(1.2)^{2}=46.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, the work done is

$$
W=\Delta K=0-\frac{1}{2} I \omega^{2}=-\frac{1}{2}(46.1)(29.3)^{2}
$$

which yields $|W|=19.8 \times 10^{3} \mathrm{~J}$.
(b) The average power (in absolute value) is therefore

$$
|P|=\frac{|W|}{\Delta t}=\frac{19.8 \times 10^{3}}{15}=1.32 \times 10^{3} \mathrm{~W} .
$$

61. (a) We apply Eq. 10-34:

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{3} m L^{2}\right) \omega^{2}=\frac{1}{6} m L^{2} \omega^{2}=\frac{1}{6}(0.42 \mathrm{~kg})(0.75 \mathrm{~m})^{2}(4.0 \mathrm{rad} / \mathrm{s})^{2}=0.63 \mathrm{~J} .
$$

(b) Simple conservation of mechanical energy leads to $K=m g h$. Consequently, the center of mass rises by

$$
h=\frac{K}{m g}=\frac{m L^{2} \omega^{2}}{6 m g}=\frac{L^{2} \omega^{2}}{6 g}=\frac{(0.75 \mathrm{~m})^{2}(4.0 \mathrm{rad} / \mathrm{s})^{2}}{6\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.153 \mathrm{~m} \approx 0.15 \mathrm{~m} .
$$

62. (a) Eq. 10-33 gives

$$
I_{\text {total }}=m d^{2}+m(2 d)^{2}+m(3 d)^{2}=14 m d^{2},
$$

where $d=0.020 \mathrm{~m}$ and $m=0.010 \mathrm{~kg}$. The work done is $W=\Delta K=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}$, where $\omega_{f}=20 \mathrm{rad} / \mathrm{s}$ and $\omega_{i}=0$. This gives $W=11.2 \mathrm{~mJ}$.
(b) Now, $\omega_{f}=40 \mathrm{rad} / \mathrm{s}$ and $\omega_{i}=20 \mathrm{rad} / \mathrm{s}$, and we get $W=33.6 \mathrm{~mJ}$.
(c) In this case, $\omega_{f}=60 \mathrm{rad} / \mathrm{s}$ and $\omega_{i}=40 \mathrm{rad} / \mathrm{s}$. This gives $W=56.0 \mathrm{~mJ}$.
(d) Eq. 10-34 indicates that the slope should be $\frac{1}{2} I$. Therefore, it should be

$$
7 m d^{2}=2.80 \times 10^{-5} \mathrm{~J}^{2}
$$

63. We use ℓ to denote the length of the stick. Since its center of mass is $\ell / 2$ from either end, its initial potential energy is $\frac{1}{2} m g \ell$, where m is its mass. Its initial kinetic energy is zero. Its final potential energy is zero, and its final kinetic energy is $\frac{1}{2} I \omega^{2}$, where I is its rotational inertia about an axis passing through one end of the stick and ω is the angular velocity just before it hits the floor. Conservation of energy yields

$$
\frac{1}{2} m g \ell=\frac{1}{2} I \omega^{2} \Rightarrow \omega=\sqrt{\frac{m g \ell}{I}}
$$

The free end of the stick is a distance ℓ from the rotation axis, so its speed as it hits the floor is (from Eq. 10-18)

$$
v=\omega \ell=\sqrt{\frac{m g \ell^{3}}{I}}
$$

Using Table 10-2 and the parallel-axis theorem, the rotational inertial is $I=\frac{1}{3} m \ell^{2}$, so

$$
v=\sqrt{3 g \ell}=\sqrt{3\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~m})}=5.42 \mathrm{~m} / \mathrm{s}
$$

64. (a) We use the parallel-axis theorem to find the rotational inertia:

$$
I=I_{\mathrm{com}}+M h^{2}=\frac{1}{2} M R^{2}+M h^{2}=\frac{1}{2}(20 \mathrm{~kg})(0.10 \mathrm{~m})^{2}+(20 \mathrm{~kg})(0.50 \mathrm{~m})^{2}=0.15 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

(b) Conservation of energy requires that $M g h=\frac{1}{2} I \omega^{2}$, where ω is the angular speed of the cylinder as it passes through the lowest position. Therefore,

$$
\omega=\sqrt{\frac{2 M g h}{I}}=\sqrt{\frac{2(20)(9.8)(0.050)}{0.15}}=11 \mathrm{rad} / \mathrm{s} .
$$

65. Using the parallel axis theorem and items (e) and (h) in Table 10-2, the rotational inertia is

$$
I=\frac{1}{12} m L^{2}+m(L / 2)^{2}+\frac{1}{2} m R^{2}+m(R+L)^{2}=10.83 m R^{2},
$$

where $L=2 R$ has been used. If we take the base of the rod to be at the coordinate origin $(x=0, y=0)$ then the center of mass is at

$$
y=\frac{m L / 2+m(L+R)}{m+m}=2 R .
$$

Comparing the position shown in the textbook figure to its upside down (inverted) position shows that the change in center of mass position (in absolute value) is $|\Delta y|=4 R$. The corresponding loss in gravitational potential energy is converted into kinetic energy. Thus

$$
K=(2 m) g(4 R) \quad \Rightarrow \quad \omega=9.82 \mathrm{rad} / \mathrm{s} .
$$

where Eq. 10-34 has been used.
66. (a) We use conservation of mechanical energy to find an expression for ω^{2} as a function of the angle θ that the chimney makes with the vertical. The potential energy of the chimney is given by $U=M g h$, where M is its mass and h is the altitude of its center of mass above the ground. When the chimney makes the angle θ with the vertical, $h=$ $(H / 2) \cos \theta$. Initially the potential energy is $U_{i}=M g(H / 2)$ and the kinetic energy is zero. The kinetic energy is $\frac{1}{2} I \omega^{2}$ when the chimney makes the angle θ with the vertical, where I is its rotational inertia about its bottom edge. Conservation of energy then leads to

$$
M g H / 2=M g(H / 2) \cos \theta+\frac{1}{2} I \omega^{2} \Rightarrow \omega^{2}=(M g H / I)(1-\cos \theta) .
$$

The rotational inertia of the chimney about its base is $I=M H^{2} / 3$ (found using Table 10-2(e) with the parallel axis theorem). Thus

$$
\omega=\sqrt{\frac{3 g}{H}(1-\cos \theta)}=\sqrt{\frac{3\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{55.0 \mathrm{~m}}\left(1-\cos 35.0^{\circ}\right)}=0.311 \mathrm{rad} / \mathrm{s} .
$$

(b) The radial component of the acceleration of the chimney top is given by $a_{r}=H \omega^{2}$, so

$$
a_{r}=3 g(1-\cos \theta)=3\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1-\cos 35.0^{\circ}\right)=5.32 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) The tangential component of the acceleration of the chimney top is given by $a_{t}=H \alpha$, where α is the angular acceleration. We are unable to use Table $10-1$ since the acceleration is not uniform. Hence, we differentiate

$$
\omega^{2}=(3 g / H)(1-\cos \theta)
$$

with respect to time, replacing $d \omega / d t$ with α, and $d \theta / d t$ with ω, and obtain

$$
\frac{d \omega^{2}}{d t}=2 \omega \alpha=(3 g / H) \omega \sin \theta \Rightarrow \alpha=(3 g / 2 H) \sin \theta
$$

Consequently,

$$
a_{t}=H \alpha=\frac{3 g}{2} \sin \theta=\frac{3\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2} \sin 35.0^{\circ}=8.43 \mathrm{~m} / \mathrm{s}^{2}
$$

(d) The angle θ at which $a_{t}=g$ is the solution to $\frac{3 g}{2} \sin \theta=g$. Thus, $\sin \theta=2 / 3$ and we obtain $\theta=41.8^{\circ}$.
67. From Table 10-2, the rotational inertia of the spherical shell is $2 M R^{2} / 3$, so the kinetic energy (after the object has descended distance h) is

$$
K=\frac{1}{2}\left(\frac{2}{3} M R^{2}\right) \omega_{\text {sphere }}^{2}+\frac{1}{2} I \omega_{\text {pulley }}^{2}+\frac{1}{2} m v^{2} .
$$

Since it started from rest, then this energy must be equal (in the absence of friction) to the potential energy $m g h$ with which the system started. We substitute v / r for the pulley's angular speed and v / R for that of the sphere and solve for v.

$$
\begin{aligned}
v & =\sqrt{\frac{m g h}{\frac{1}{2} m+\frac{1}{2} \frac{I}{r^{2}}+\frac{M}{3}}}=\sqrt{\frac{2 g h}{1+\left(I / m r^{2}\right)+(2 M / 3 m)}} \\
& =\sqrt{\frac{2(9.8)(0.82)}{1+3.0 \times 10^{-3} /\left((0.60)(0.050)^{2}\right)+2(4.5) / 3(0.60)}}=1.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

68. (a) We integrate (with respect to time) the $\alpha=6.0 t^{4}-4.0 t^{2}$ expression, taking into account that the initial angular velocity is $2.0 \mathrm{rad} / \mathrm{s}$. The result is

$$
\omega=1.2 t^{5}-1.33 t^{3}+2.0
$$

(b) Integrating again (and keeping in mind that $\theta_{0}=1$) we get

$$
\theta=0.20 t^{6}-0.33 t^{4}+2.0 t+1.0
$$

69. We choose positive coordinate directions (different choices for each item) so that each is accelerating positively, which will allow us to set $a_{2}=a_{1}=R \alpha$ (for simplicity, we denote this as a). Thus, we choose rightward positive for $m_{2}=M$ (the block on the table), downward positive for $m_{1}=M$ (the block at the end of the string) and (somewhat unconventionally) clockwise for positive sense of disk rotation. This means that we interpret θ given in the problem as a positive-valued quantity. Applying Newton's second law to m_{1}, m_{2} and (in the form of Eq. 10-45) to M, respectively, we arrive at the following three equations (where we allow for the possibility of friction f_{2} acting on m_{2}).

$$
\begin{aligned}
m_{1} g-T_{1} & =m_{1} a_{1} \\
T_{2}-f_{2} & =m_{2} a_{2} \\
T_{1} R-T_{2} R & =I \alpha
\end{aligned}
$$

(a) From Eq. 10-13 (with $\omega_{0}=0$) we find

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \Rightarrow \alpha=\frac{2 \theta}{t^{2}}=\frac{2(1.30 \mathrm{rad})}{(0.0910 \mathrm{~s})^{2}}=314 \mathrm{rad} / \mathrm{s}^{2}
$$

(b) From the fact that $a=R \alpha$ (noted above), we obtain

$$
a=\frac{2 R \theta}{t^{2}}=\frac{2(0.024 \mathrm{~m})(1.30 \mathrm{rad})}{(0.0910 \mathrm{~s})^{2}}=7.54 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) From the first of the above equations, we find

$$
T_{1}=m_{1}\left(g-a_{1}\right)=M\left(g-\frac{2 R \theta}{t^{2}}\right)=(6.20 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}-\frac{2(0.024 \mathrm{~m})(1.30 \mathrm{rad})}{(0.0910 \mathrm{~s})^{2}}\right)=14.0 \mathrm{~N} .
$$

(d) From the last of the above equations, we obtain the second tension:

$$
T_{2}=T_{1}-\frac{I \alpha}{R}=M\left(g-\frac{2 R \theta}{t^{2}}\right)-\frac{2 I \theta}{R t^{2}}=14.0 \mathrm{~N}-\frac{\left(7.40 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(314 \mathrm{rad} / \mathrm{s}^{2}\right)}{0.024 \mathrm{~m}}=4.36 \mathrm{~N} .
$$

70. The rotational inertia of the passengers is (to a good approximation) given by Eq. 1053: $I=\sum m R^{2}=N m R^{2}$ where N is the number of people and m is the (estimated) mass per person. We apply Eq. 10-52:

$$
W=\frac{1}{2} I \omega^{2}=\frac{1}{2} N m R^{2} \omega^{2}
$$

where $R=38 \mathrm{~m}$ and $N=36 \times 60=2160$ persons. The rotation rate is constant so that $\omega=$ θ / t which leads to $\omega=2 \pi / 120=0.052 \mathrm{rad} / \mathrm{s}$. The mass (in kg) of the average person is probably in the range $50 \leq m \leq 100$, so the work should be in the range

$$
\begin{aligned}
\frac{1}{2}(2160)(50)(38)^{2}(0.052)^{2} & \leq W \leq \frac{1}{2}(2160)(100)(38)^{2}(0.052)^{2} \\
2 \times 10^{5} \mathrm{~J} & \leq W \leq 4 \times 10^{5} \mathrm{~J} .
\end{aligned}
$$

71. The volume of each disk is $\pi r^{2} h$ where we are using h to denote the thickness (which equals 0.00500 m). If we use R (which equals 0.0400 m) for the radius of the larger disk and r (which equals 0.0200 m) for the radius of the smaller one, then the mass of each is $m=\rho \pi r^{2} h$ and $M=\rho \pi R^{2} h$ where $\rho=1400 \mathrm{~kg} / \mathrm{m}^{3}$ is the given density. We now use the parallel axis theorem as well as item (c) in Table 10-2 to obtain the rotation inertia of the two-disk assembly:

$$
I=\frac{1}{2} M R^{2}+\frac{1}{2} m r^{2}+m(r+R)^{2}=\rho \pi h\left[\frac{1}{2} R^{4}+\frac{1}{2} r^{4}+r^{2}(r+R)^{2}\right]=6.16 \times 10^{-5} \mathrm{~kg}^{2} .
$$

72. In the calculation below, M_{1} and M_{2} are the ring masses, $R_{1 \mathrm{i}}$ and $R_{2 \mathrm{i}}$ are their inner radii, and R_{10} and R_{20} are their outer radii. Referring to item (b) in Table 10-2, we compute

$$
I=\frac{1}{2} M_{1}\left(R_{1 \mathrm{i}}{ }^{2}+R_{1 \mathrm{o}}{ }^{2}\right)+\frac{1}{2} M_{2}\left(R_{2 \mathrm{i}}{ }^{2}+R_{2 \mathrm{o}}{ }^{2}\right)=0.00346 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

Thus, with Eq. 10-38 ($\tau=r F$ where $r=R_{2 \mathrm{o}}$) and $\tau=I \alpha$ (Eq. 10-45), we find

$$
\alpha=\frac{(0.140)(12.0)}{0.00346}=485 \mathrm{rad} / \mathrm{s}^{2} .
$$

Then Eq. 10-12 gives $\omega=\alpha t=146 \mathrm{rad} / \mathrm{s}$.
73. (a) The longitudinal separation between Helsinki and the explosion site is $\Delta \theta=102^{\circ}-25^{\circ}=77^{\circ}$. The spin of the earth is constant at

$$
\omega=\frac{1 \mathrm{rev}}{1 \mathrm{day}}=\frac{360^{\circ}}{24 \mathrm{~h}}
$$

so that an angular displacement of $\Delta \theta$ corresponds to a time interval of

$$
\Delta t=\left(77^{\circ}\right)\left(\frac{24 \mathrm{~h}}{360^{\circ}}\right)=5.1 \mathrm{~h} .
$$

(b) Now $\Delta \theta=102^{\circ}-\left(-20^{\circ}\right)=122^{\circ}$ so the required time shift would be

$$
\Delta t=\left(122^{\circ}\right)\left(\frac{24 \mathrm{~h}}{360^{\circ}}\right)=8.1 \mathrm{~h} .
$$

74. In the figure below, we show a pull tab of a beverage can.

Since the tab is pivoted, when pulling on one end upward with a force \vec{F}_{1}, a force \vec{F}_{2} will be exerted on the other end. The torque produced by \vec{F}_{1} must be balanced by the torque produced by \vec{F}_{2} so that the tab does not rotate. The two forces are related by

$$
r_{1} F_{1}=r_{2} F_{2}
$$

where $r_{1} \approx 1.8 \mathrm{~cm}$ and $r_{2} \approx 0.73 \mathrm{~cm}$. Thus, if $F_{1}=10 \mathrm{~N}$,

$$
F_{2}=\left(\frac{r_{1}}{r_{2}}\right) F_{1} \approx\left(\frac{1.8}{0.73}\right)(10 \mathrm{~N}) \approx 25 \mathrm{~N} .
$$

75. (a) We apply Eq. 10-18, using the subscript J for the Jeep.

$$
\omega=\frac{v_{J}}{r_{J}}=\frac{114 \mathrm{~km} / \mathrm{h}}{0.100 \mathrm{~km}}
$$

which yields $1140 \mathrm{rad} / \mathrm{h}$ or (dividing by 3600) $0.32 \mathrm{rad} / \mathrm{s}$ for the value of the angular speed ω.
(b) Since the cheetah has the same angular speed, we again apply Eq. 10-18, using the subscript c for the cheetah.

$$
v_{c}=r_{c} \omega=(92 \mathrm{~m})(1140 \mathrm{rad} / \mathrm{h})=1.048 \times 10^{5} \mathrm{~m} / \mathrm{h} \approx 1.0 \times 10^{2} \mathrm{~km} / \mathrm{h}
$$

for the cheetah's speed.
76. The angular displacements of disks A and B can be written as:

$$
\theta_{A}=\omega_{A} t, \quad \theta_{B}=\frac{1}{2} \alpha_{B} t^{2} .
$$

(a) The time when $\theta_{A}=\theta_{B}$ is given by

$$
\omega_{A} t=\frac{1}{2} \alpha_{B} t^{2} \Rightarrow t=\frac{2 \omega_{A}}{\alpha_{B}}=\frac{2(9.5 \mathrm{rad} / \mathrm{s})}{\left(2.2 \mathrm{rad} / \mathrm{s}^{2}\right)}=8.6 \mathrm{~s} .
$$

(b) The difference in the angular displacement is

$$
\Delta \theta=\theta_{A}-\theta_{B}=\omega_{A} t-\frac{1}{2} \alpha_{B} t^{2}=9.5 t-1.1 t^{2}
$$

For their reference lines to align momentarily, we only require $\Delta \theta=2 \pi N$, where N is an integer. The quadratic equation can be readily solve to yield

$$
t_{N}=\frac{9.5 \pm \sqrt{(9.5)^{2}-4(1.1)(2 \pi N)}}{2(1.1)}=\frac{9.5 \pm \sqrt{90.25-27.6 N}}{2.2} .
$$

The solution $t_{0}=8.63 \mathrm{~s}$ (taking the positive root) coincides with the result obtained in (a), while $t_{0}=0$ (taking the negative root) is the moment when both disks begin to rotate. In fact, two solutions exist for $N=0,1,2$, and 3 .
77. (a) The rotational inertia relative to the specified axis is

$$
I=\sum m_{i} r_{i}^{2}=(2 M) L^{2}+(2 M) L^{2}+M(2 L)^{2}
$$

which is found to be $I=4.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Then, with $\omega=1.2 \mathrm{rad} / \mathrm{s}$, we obtain the kinetic energy from Eq. 10-34:

$$
K=\frac{1}{2} I \omega^{2}=3.3 \mathrm{~J} .
$$

(b) In this case the axis of rotation would appear as a standard y axis with origin at P. Each of the $2 M$ balls are a distance of $r=L \cos 30^{\circ}$ from that axis. Thus, the rotational inertia in this case is

$$
I=\sum m_{i} r_{i}^{2}=(2 M) r^{2}+(2 M) r^{2}+M(2 L)^{2}
$$

which is found to be $I=4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Again, from Eq. 10-34 we obtain the kinetic energy

$$
K=\frac{1}{2} I \omega^{2}=2.9 \mathrm{~J} .
$$

78. We choose positive coordinate directions (different choices for each item) so that each is accelerating positively, which will allow us to set $a_{1}=a_{2}=R \alpha$ (for simplicity, we denote this as a). Thus, we choose upward positive for m_{1}, downward positive for m_{2} and (somewhat unconventionally) clockwise for positive sense of disk rotation. Applying Newton's second law to $m_{1} m_{2}$ and (in the form of Eq. 10-45) to M, respectively, we arrive at the following three equations.

$$
\begin{aligned}
T_{1}-m_{1} g & =m_{1} a_{1} \\
m_{2} g-T_{2} & =m_{2} a_{2} \\
T_{2} R-T_{1} R & =I \alpha
\end{aligned}
$$

(a) The rotational inertia of the disk is $I=\frac{1}{2} M R^{2}$ (Table 10-2(c)), so we divide the third equation (above) by R, add them all, and use the earlier equality among accelerations to obtain:

$$
m_{2} g-m_{1} g=\left(m_{1}+m_{2}+\frac{1}{2} M\right) a
$$

which yields $a=\frac{4}{25} g=1.57 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Plugging back in to the first equation, we find

$$
T_{1}=\frac{29}{25} m_{1} g=4.55 \mathrm{~N}
$$

where it is important in this step to have the mass in SI units: $m_{1}=0.40 \mathrm{~kg}$.
(c) Similarly, with $m_{2}=0.60 \mathrm{~kg}$, we find

$$
T_{2}=\frac{5}{6} m_{2} g=4.94 \mathrm{~N} .
$$

79. (a) Constant angular acceleration kinematics can be used to compute the angular acceleration α. If ω_{0} is the initial angular velocity and t is the time to come to rest, then

$$
0=\omega_{0}+\alpha t \Rightarrow \alpha=-\frac{\omega_{0}}{t}
$$

which yields $-39 / 32=-1.2 \mathrm{rev} / \mathrm{s}$ or (multiplying by 2π) $-7.66 \mathrm{rad} / \mathrm{s}^{2}$ for the value of α.
(b) We use $\tau=I \alpha$, where τ is the torque and I is the rotational inertia. The contribution of the rod to I is $M \ell^{2} / 12$ (Table $10-2(\mathrm{e})$), where M is its mass and ℓ is its length. The contribution of each ball is $m(\ell / 2)^{2}$, where m is the mass of a ball. The total rotational inertia is

$$
I=\frac{M \ell^{2}}{12}+2 \frac{m \ell^{2}}{4}=\frac{(6.40 \mathrm{~kg})(1.20 \mathrm{~m})^{2}}{12}+\frac{(1.06 \mathrm{~kg})(1.20 \mathrm{~m})^{2}}{2}
$$

which yields $I=1.53 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The torque, therefore, is

$$
\tau=\left(1.53 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(-7.66 \mathrm{rad} / \mathrm{s}^{2}\right)=-11.7 \mathrm{~N} \cdot \mathrm{~m} .
$$

(c) Since the system comes to rest the mechanical energy that is converted to thermal energy is simply the initial kinetic energy

$$
K_{i}=\frac{1}{2} I \omega_{0}^{2}=\frac{1}{2}\left(1.53 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)((2 \pi)(39) \mathrm{rad} / \mathrm{s})^{2}=4.59 \times 10^{4} \mathrm{~J} .
$$

(d) We apply Eq. 10-13:

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=((2 \pi)(39) \mathrm{rad} / \mathrm{s})(32.0 \mathrm{~s})+\frac{1}{2}\left(-7.66 \mathrm{rad} / \mathrm{s}^{2}\right)(32.0 \mathrm{~s})^{2}
$$

which yields 3920 rad or (dividing by 2π) 624 rev for the value of angular displacement θ.
(e) Only the mechanical energy that is converted to thermal energy can still be computed without additional information. It is $4.59 \times 10^{4} \mathrm{~J}$ no matter how τ varies with time, as long as the system comes to rest.
80. The Hint given in the problem would make the computation in part (a) very straightforward (without doing the integration as we show here), but we present this further level of detail in case that hint is not obvious or - simply - in case one wishes to see how the calculus supports our intuition.
(a) The (centripetal) force exerted on an infinitesimal portion of the blade with mass $d m$ located a distance r from the rotational axis is (Newton's second law) $d F=(d m) \omega^{2} r$, where $d m$ can be written as $(M / L) d r$ and the angular speed is

$$
\omega=(320)(2 \pi / 60)=33.5 \mathrm{rad} / \mathrm{s} .
$$

Thus for the entire blade of mass M and length L the total force is given by

$$
\begin{aligned}
F & =\int d F=\int \omega^{2} r d m=\frac{M}{L} \int_{0}^{L} \omega^{2} r d r=\frac{M \omega^{2} L}{2}=\frac{(110 \mathrm{~kg})(33.5 \mathrm{rad} / \mathrm{s})^{2}(7.80 \mathrm{~m})}{2} \\
& =4.81 \times 10^{5} \mathrm{~N} .
\end{aligned}
$$

(b) About its center of mass, the blade has $I=M L^{2} / 12$ according to Table 10-2(e), and using the parallel-axis theorem to "move" the axis of rotation to its end-point, we find the rotational inertia becomes $I=M L^{2} / 3$. Using Eq. 10-45, the torque (assumed constant) is

$$
\tau=I \alpha=\left(\frac{1}{3} M L^{2}\right)\left(\frac{\Delta \omega}{\Delta t}\right)=\frac{1}{3}(110 \mathrm{~kg})(7.8 \mathrm{~m})^{2}\left(\frac{33.5 \mathrm{rad} / \mathrm{s}}{6.7 \mathrm{~s}}\right)=1.12 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}
$$

(c) Using Eq. 10-52, the work done is

$$
W=\Delta K=\frac{1}{2} I \omega^{2}-0=\frac{1}{2}\left(\frac{1}{3} M L^{2}\right) \omega^{2}=\frac{1}{6}(110 \mathrm{~kg})(7.80 \mathrm{~m})^{2}(33.5 \mathrm{rad} / \mathrm{s})^{2}=1.25 \times 10^{6} \mathrm{~J} .
$$

81. (a) The linear speed of a point on belt 1 is

$$
v_{1}=r_{A} \omega_{A}=(15 \mathrm{~cm})(10 \mathrm{rad} / \mathrm{s})=1.5 \times 10^{2} \mathrm{~cm} / \mathrm{s} .
$$

(b) The angular speed of pulley B is

$$
r_{B} \omega_{B}=r_{A} \omega_{A} \Rightarrow \omega_{B}=\frac{r_{A} \omega_{A}}{r_{B}}=\left(\frac{15 \mathrm{~cm}}{10 \mathrm{~cm}}\right)(10 \mathrm{rad} / \mathrm{s})=15 \mathrm{rad} / \mathrm{s}
$$

(c) Since the two pulleys are rigidly attached to each other, the angular speed of pulley B^{\prime} is the same as that of pulley B, i.e., $\omega_{B}^{\prime}=15 \mathrm{rad} / \mathrm{s}$.
(d) The linear speed of a point on belt 2 is

$$
v_{2}=r_{B^{\prime}} \omega_{B}^{\prime}=(5 \mathrm{~cm})(15 \mathrm{rad} / \mathrm{s})=75 \mathrm{~cm} / \mathrm{s} .
$$

(e) The angular speed of pulley C is

$$
r_{C} \omega_{C}=r_{B^{\prime}} \omega_{B}^{\prime} \Rightarrow \omega_{C}=\frac{r_{B^{\prime}} \omega_{B}^{\prime}}{r_{C}}=\left(\frac{5 \mathrm{~cm}}{25 \mathrm{~cm}}\right)(15 \mathrm{rad} / \mathrm{s})=3 \mathrm{rad} / \mathrm{s}
$$

82. To get the time to reach the maximum height, we use Eq. 4-23, setting the left-hand side to zero. Thus, we find

$$
t=\frac{(60 \mathrm{~m} / \mathrm{s}) \sin \left(20^{\circ}\right)}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=2.094 \mathrm{~s} .
$$

Then (assuming $\alpha=0)$ Eq. 10-13 gives $\theta-\theta_{\mathrm{o}}=\omega_{0} t=(90 \mathrm{rad} / \mathrm{s})(2.094 \mathrm{~s})=188 \mathrm{rad}$, which is equivalent to roughly 30 rev .
83. With rightward positive for the block and clockwise negative for the wheel (as is conventional), then we note that the tangential acceleration of the wheel is of opposite sign from the block's acceleration (which we simply denote as a); that is, $a_{t}=-a$. Applying Newton's second law to the block leads to $P-T=m a$, where $m=2.0 \mathrm{~kg}$. Applying Newton's second law (for rotation) to the wheel leads to $-T R=I \alpha$, where $I=0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

Noting that $R \alpha=a_{t}=-a$, we multiply this equation by R and obtain

$$
-T R^{2}=-I a \Rightarrow T=a \frac{I}{R^{2}}
$$

Adding this to the above equation (for the block) leads to $P=\left(m+I / R^{2}\right) a$.
Thus, $a=0.92 \mathrm{~m} / \mathrm{s}^{2}$ and therefore $\alpha=-4.6 \mathrm{rad} / \mathrm{s}^{2}\left(\right.$ or $\left.|\alpha|=4.6 \mathrm{rad} / \mathrm{s}^{2}\right)$, where the negative sign in α should not be mistaken for a deceleration (it simply indicates the clockwise sense to the motion).
84. We use conservation of mechanical energy. The center of mass is at the midpoint of the cross bar of the \mathbf{H} and it drops by $L / 2$, where L is the length of any one of the rods. The gravitational potential energy decreases by $M g L / 2$, where M is the mass of the body. The initial kinetic energy is zero and the final kinetic energy may be written $\frac{1}{2} I \omega^{2}$, where I is the rotational inertia of the body and ω is its angular velocity when it is vertical. Thus,

$$
0=-M g L / 2+\frac{1}{2} I \omega^{2} \Rightarrow \omega=\sqrt{M g L / I} .
$$

Since the rods are thin the one along the axis of rotation does not contribute to the rotational inertia. All points on the other leg are the same distance from the axis of rotation, so that leg contributes $(M / 3) L^{2}$, where $M / 3$ is its mass. The cross bar is a rod that rotates around one end, so its contribution is $(M / 3) L^{2} / 3=M L^{2} / 9$. The total rotational inertia is

$$
I=\left(M L^{2} / 3\right)+\left(M L^{2} / 9\right)=4 M L^{2} / 9 .
$$

Consequently, the angular velocity is

$$
\omega=\sqrt{\frac{M g L}{I}}=\sqrt{\frac{M g L}{4 M L^{2} / 9}}=\sqrt{\frac{9 g}{4 L}}=\sqrt{\frac{9\left(9.800 \mathrm{~m} / \mathrm{s}^{2}\right)}{4(0.600 \mathrm{~m})}}=6.06 \mathrm{rad} / \mathrm{s} .
$$

85. (a) According to Table 10-2, the rotational inertia formulas for the cylinder (radius R) and the hoop (radius r) are given by

$$
I_{C}=\frac{1}{2} M R^{2} \text { and } I_{H}=M r^{2}
$$

Since the two bodies have the same mass, then they will have the same rotational inertia if

$$
R^{2} / 2=R_{H}^{2} \rightarrow R_{H}=R / \sqrt{2} .
$$

(b) We require the rotational inertia to be written as $I=M k^{2}$, where M is the mass of the given body and k is the radius of the "equivalent hoop." It follows directly that $k=\sqrt{I / M}$.
86. (a) The axis of rotation is at the bottom right edge of the rod along the ground, a horizontal distance of $d_{3}+d_{2}+d_{1} / 2$ from the middle of the table assembly (mass $m=90 \mathrm{~kg}$). The linebacker's center of mass at that critical moment was a horizontal distance of $d_{4}+d_{5}$ from the axis of rotation. For the clockwise torque caused by the linebacker (mass M) to overcome the counterclockwise torque of the table assembly, we require (using Eq. 10-41)

$$
M g\left(d_{4}+d_{5}\right)>m g\left(d_{3}+d_{2}+\frac{d_{1}}{2}\right)
$$

With the values given in the problem, we do indeed find the inequality is satisfied.
(b) Replacing our inequality with an equality and solving for M, we obtain

$$
M=m \frac{d_{3}+d_{2}+\frac{1}{2} d_{1}}{d_{4}+d_{5}}=114 \mathrm{~kg} \approx 1.1 \times 10^{2} \mathrm{~kg} .
$$

87. We choose \pm directions such that the initial angular velocity is $\omega_{0}=-317 \mathrm{rad} / \mathrm{s}$ and the values for α, τ and F are positive.
(a) Combining Eq. 10-12 with Eq. 10-45 and Table 10-2(f) (and using the fact that $\omega=0$) we arrive at the expression

$$
\tau=\left(\frac{2}{5} M R^{2}\right)\left(-\frac{\omega_{0}}{t}\right)=-\frac{2}{5} \frac{M R^{2} \omega_{0}}{t} .
$$

With $t=15.5 \mathrm{~s}, R=0.226 \mathrm{~m}$ and $M=1.65 \mathrm{~kg}$, we obtain $\tau=0.689 \mathrm{~N} \cdot \mathrm{~m}$.
(b) From Eq. 10-40, we find $F=\tau / R=3.05 \mathrm{~N}$.
(c) Using again the expression found in part (a), but this time with $R=0.854 \mathrm{~m}$, we get $\tau=9.84 \mathrm{~N} \cdot \mathrm{~m}$.
(d) Now, $F=\tau / R=11.5 \mathrm{~N}$.
88. We choose positive coordinate directions so that each is accelerating positively, which will allow us to set $a_{\mathrm{box}}=R \alpha$ (for simplicity, we denote this as a). Thus, we choose downhill positive for the $m=2.0 \mathrm{~kg}$ box and (as is conventional) counterclockwise for positive sense of wheel rotation. Applying Newton's second law to the box and (in the form of Eq. 10-45) to the wheel, respectively, we arrive at the following two equations (using θ as the incline angle 20°, not as the angular displacement of the wheel).

$$
\begin{aligned}
m g \sin \theta-T & =m a \\
T R & =I \alpha
\end{aligned}
$$

Since the problem gives $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$, the first equation gives the tension $T=m(g \sin \theta-$ $a)=2.7 \mathrm{~N}$. Plugging this and $R=0.20 \mathrm{~m}$ into the second equation (along with the fact that $\alpha=a / R$) we find the rotational inertia

$$
I=T R^{2} / a=0.054 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

89. The center of mass is initially at height $h=\frac{L}{2} \sin 40^{\circ}$ when the system is released (where $L=2.0 \mathrm{~m}$). The corresponding potential energy $M g h$ (where $M=1.5 \mathrm{~kg}$) becomes rotational kinetic energy $\frac{1}{2} I \omega^{2}$ as it passes the horizontal position (where I is the rotational inertia about the pin). Using Table 10-2 (e) and the parallel axis theorem, we find

$$
I=\frac{1}{12} M L^{2}+M(L / 2)^{2}=\frac{1}{3} M L^{2} .
$$

Therefore,

$$
M g \frac{L}{2} \sin 40^{\circ}=\frac{1}{2}\left(\frac{1}{3} M L^{2}\right) \omega^{2} \Rightarrow \omega=\sqrt{\frac{3 g \sin 40^{\circ}}{L}}=3.1 \mathrm{rad} / \mathrm{s}
$$

90. (a) The particle at A has $r=0$ with respect to the axis of rotation. The particle at B is r $=L=0.50 \mathrm{~m}$ from the axis; similarly for the particle directly above A in the figure. The particle diagonally opposite A is a distance $r=\sqrt{2} L=0.71 \mathrm{~m}$ from the axis. Therefore,

$$
I=\sum m_{i} r_{i}^{2}=2 m L^{2}+m(\sqrt{2} L)^{2}=0.20 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) One imagines rotating the figure (about point A) clockwise by 90° and noting that the center of mass has fallen a distance equal to L as a result. If we let our reference position for gravitational potential be the height of the center of mass at the instant $A B$ swings through vertical orientation, then

$$
K_{0}+U_{0}=K+U \Rightarrow 0+(4 m) g h_{0}=K+0
$$

Since $h_{0}=L=0.50 \mathrm{~m}$, we find $K=3.9 \mathrm{~J}$. Then, using Eq. 10-34, we obtain

$$
K=\frac{1}{2} I_{A} \omega^{2} \Rightarrow \omega=6.3 \mathrm{rad} / \mathrm{s} .
$$

91. (a) Eq. $10-12$ leads to $\alpha=-\omega_{\mathrm{o}} / t=-25.0 / 20.0=-1.25 \mathrm{rad} / \mathrm{s}^{2}$.
(b) Eq. 10-15 leads to $\theta=\frac{1}{2} \omega_{\mathrm{o}} t=\frac{1}{2}(25.0)(20.0)=250 \mathrm{rad}$.
(c) Dividing the previous result by 2π we obtain $\theta=39.8$ rev.
92. The centripetal acceleration at a point P which is r away from the axis of rotation is given by Eq. 10-23: $a=v^{2} / r=\omega^{2} r$, where $v=\omega r$, with $\omega=2000 \mathrm{rev} / \mathrm{min} \approx 209.4 \mathrm{rad} / \mathrm{s}$.
(a) If points A and P are at a radial distance $r_{A}=1.50 \mathrm{~m}$ and $r=0.150 \mathrm{~m}$ from the axis, the difference in their acceleration is

$$
\Delta a=a_{A}-a=\omega^{2}\left(r_{A}-r\right)=(209.4 \mathrm{rad} / \mathrm{s})^{2}(1.50 \mathrm{~m}-0.150 \mathrm{~m}) \approx 5.92 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The slope is given by $a / r=\omega^{2}=4.39 \times 10^{4} / \mathrm{s}^{2}$.
93. (a) With $r=0.780 \mathrm{~m}$, the rotational inertia is

$$
I=M r^{2}=(1.30 \mathrm{~kg})(0.780 \mathrm{~m})^{2}=0.791 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) The torque that must be applied to counteract the effect of the drag is

$$
\tau=r f=(0.780 \mathrm{~m})\left(2.30 \times 10^{-2} \mathrm{~N}\right)=1.79 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m} .
$$

94. Let T be the tension on the rope. From Newton's second law, we have

$$
T-m g=m a \Rightarrow T=m(g+a) .
$$

Since the box has an upward acceleration $a=0.80 \mathrm{~m} / \mathrm{s}^{2}$, the tension is given by

$$
T=(30 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+0.8 \mathrm{~m} / \mathrm{s}^{2}\right)=318 \mathrm{~N} .
$$

The rotation of the device is described by $F_{\text {app }} R-T r=I \alpha=I a / r$. The moment of inertia can then be obtained as

$$
I=\frac{r\left(F_{\text {app }} R-T r\right)}{a}=\frac{(0.20 \mathrm{~m})[(140 \mathrm{~N})(0.50 \mathrm{~m})-(318 \mathrm{~N})(0.20 \mathrm{~m})]}{0.80 \mathrm{~m} / \mathrm{s}^{2}}=1.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

95. The motion consists of two stages. The first, the interval $0 \leq t \leq 20 \mathrm{~s}$, consists of constant angular acceleration given by

$$
\alpha=\frac{5.0 \mathrm{rad} / \mathrm{s}}{2.0 \mathrm{~s}}=2.5 \mathrm{rad} / \mathrm{s}^{2}
$$

The second stage, $20<t \leq 40 \mathrm{~s}$, consists of constant angular velocity $\omega=\Delta \theta / \Delta t$. Analyzing the first stage, we find

$$
\theta_{1}=\left.\frac{1}{2} \alpha t^{2}\right|_{t=20}=500 \mathrm{rad}, \quad \omega=\left.\alpha t\right|_{t=20}=50 \mathrm{rad} / \mathrm{s}
$$

Analyzing the second stage, we obtain $\theta_{2}=\theta_{1}+\omega \Delta t=500+(50)(20)=1.5 \times 10^{3} \mathrm{rad}$.
96. Using Eq. 10-12, we have

$$
\omega=\omega_{0}+\alpha t \Rightarrow \alpha=\frac{2.6-8.0}{3.0}=-1.8 \mathrm{rad} / \mathrm{s}^{2} .
$$

Using this value in Eq. 10-14 leads to

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta \Rightarrow \theta=\frac{0^{2}-8.0^{2}}{2(-1.8)}=18 \mathrm{rad} .
$$

97. (a) Using Eq. $10-15$ with $\omega=0$, we have

$$
\theta=\frac{\omega_{0}+\omega}{2} t=2.8 \mathrm{rad} .
$$

(b) One ingredient in this calculation is

$$
\alpha=(0-3.5 \mathrm{rad} / \mathrm{s}) /(1.6 \mathrm{~s})=-2.2 \mathrm{rad} / \mathrm{s}^{2},
$$

so that the tangential acceleration is $r \alpha=0.33 \mathrm{~m} / \mathrm{s}^{2}$. Another ingredient is $\omega=\omega_{0}+\alpha t=$ $1.3 \mathrm{rad} / \mathrm{s}$ for $t=1.0 \mathrm{~s}$, so that the radial (centripetal) acceleration is $\omega^{2} r=0.26 \mathrm{~m} / \mathrm{s}^{2}$. Thus, the magnitude of the acceleration is

$$
|\vec{a}|=\sqrt{0.33^{2}+0.26^{2}}=0.42 \mathrm{~m} / \mathrm{s}^{2} .
$$

98. We make use of Table 10-2(e) as well as the parallel-axis theorem, Eq. 10-34, where needed. We use ℓ (as a subscript) to refer to the long rod and s to refer to the short rod.
(a) The rotational inertia is

$$
I=I_{s}+I_{\ell}=\frac{1}{12} m_{s} L_{s}^{2}+\frac{1}{3} m_{\ell} L_{\ell}^{2}=0.019 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) We note that the center of the short rod is a distance of $h=0.25 \mathrm{~m}$ from the axis. The rotational inertia is

$$
I=I_{s}+I_{\ell}=\frac{1}{12} m_{s} L_{s}^{2}+m_{s} h^{2}+\frac{1}{12} m_{\ell} L_{\ell}^{2}
$$

which again yields $I=0.019 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
99. (a) One particle is on the axis, so $r=0$ for it. For each of the others, the distance from the axis is

$$
r=(0.60 \mathrm{~m}) \sin 60^{\circ}=0.52 \mathrm{~m}
$$

Therefore, the rotational inertia is $I=\sum m_{i} r_{i}^{2}=0.27 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
(b) The two particles that are nearest the axis are each a distance of $r=0.30 \mathrm{~m}$ from it. The particle "opposite" from that side is a distance $r=(0.60 \mathrm{~m}) \sin 60^{\circ}=0.52 \mathrm{~m}$ from the axis. Thus, the rotational inertia is

$$
I=\sum m_{i} r_{i}^{2}=0.22 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(c) The distance from the axis for each of the particles is $r=\frac{1}{2}(0.60 \mathrm{~m}) \sin 60^{\circ}$. Now,

$$
I=3(0.50 \mathrm{~kg})(0.26 \mathrm{~m})^{2}=0.10 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

100. We use the rotational inertia formula for particles (or "point-masses"): $I=\sum m r^{2}$ (Eq. 10-33), being careful in each case to use the distances which are perpendicular to the axis of rotation.
(a) Here we use the y values (for r) and get $I=3.4 \times 10^{5} \mathrm{gcm}^{2}$.
(b) Now we use the x values (for r) and get $I=2.9 \times 10^{5} \mathrm{~g}^{\prime} \mathrm{cm}^{2}$.
(c) In this case, we use the Pythagorean theorem $\left(r^{2}=x^{2}+y^{2}\right)$ and get $I=6.3 \times 10^{5} \mathrm{~g} \mathrm{~cm}^{2}$.
(d) Eq. $9-8$ yields $(1.2 \mathrm{~cm}) \hat{i}+(5.9 \mathrm{~cm}) \hat{\mathrm{j}}$ for the center of mass position.
101. We employ energy methods in this solution; thus, considerations of positive versus negative sense (regarding the rotation of the wheel) are not relevant.
(a) The speed of the box is related to the angular speed of the wheel by $v=R \omega$, so that

$$
K_{\mathrm{box}}=\frac{1}{2} m_{\mathrm{box}} v^{2} \Rightarrow v=\sqrt{\frac{2 K_{\mathrm{box}}}{m_{\mathrm{box}}}}=1.41 \mathrm{~m} / \mathrm{s}
$$

implies that the angular speed is $\omega=1.41 / 0.20=0.71 \mathrm{rad} / \mathrm{s}$. Thus, the kinetic energy of rotation is $\frac{1}{2} I \omega^{2}=10.0 \mathrm{~J}$.
(b) Since it was released from rest at what we will consider to be the reference position for gravitational potential, then (with SI units understood) energy conservation requires

$$
K_{0}+U_{0}=K+U \quad \Rightarrow \quad 0+0=(6.0+10.0)+m_{\mathrm{box}} g(-h) .
$$

Therefore, $h=16.0 / 58.8=0.27 \mathrm{~m}$.
102. We make use of Table 10-2(e) and the parallel-axis theorem in Eq. 10-36.
(a) The moment of inertia is

$$
I=\frac{1}{12} m L^{2}+m h^{2}=\frac{1}{12}(2.0 \mathrm{~kg})(3.0 \mathrm{~m})^{2}+(2.0 \mathrm{~kg})(0.50 \mathrm{~m})^{2}=2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The maximum angular speed is attained when the rod is in a vertical position with all its potential energy transformed into kinetic energy.

Moving from horizontal to vertical position, the center of mass is lowered by $h=0.50 \mathrm{~m}$. Thus, the change (decrease) in potential energy is $\Delta U=m g h$. The maximum angular speed can be obtained as

$$
\Delta U=K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2}
$$

which yields

$$
\omega=\sqrt{\frac{2 \Delta U}{I}}=\sqrt{\frac{2 m g h}{m h^{2}+m L^{2} / 12}}=\sqrt{\frac{2 g h}{h^{2}+L^{2} / 12}}=\sqrt{\frac{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})}{(0.50 \mathrm{~m})^{2}+(3.0 \mathrm{~m})^{2} / 12}}=3.1 \mathrm{rad} / \mathrm{s}
$$

(b) The answer remains the same since ω is independent of the mass m.
103. Except for using the relation $v=\omega r$ (Eq. 10-18), this problem has already been analyzed in sample problem 6-9. Plugging $v=\omega r$ into Eq. 6-24, then, leads to

$$
\omega_{0}=\sqrt{\frac{\mu_{s} g}{R}}=\sqrt{\frac{(0.40)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.035 \mathrm{~m}}}=10.6 \mathrm{rad} / \mathrm{s} \approx 11 \mathrm{rad} / \mathrm{s} .
$$

104. The distances from P to the particles are as follows:

$$
\begin{aligned}
& r_{1}=a \text { for } m_{1}=2 M(\text { lower left }) \\
& r_{2}=\sqrt{b^{2}-a^{2}} \text { for } m_{2}=M(\text { top }) \\
& r_{3}=a \text { for } m_{1}=2 M(\text { lower right })
\end{aligned}
$$

The rotational inertia of the system about P is

$$
I=\sum_{i=1}^{3} m_{i} r_{i}^{2}=\left(3 a^{2}+b^{2}\right) M
$$

which yields $I=0.208 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ for $M=0.40 \mathrm{~kg}, a=0.30 \mathrm{~m}$ and $b=0.50 \mathrm{~m}$. Applying Eq. $10-52$, we find

$$
W=\frac{1}{2} I \omega^{2}=\frac{1}{2}(0.208)(5.0)^{2}=2.6 \mathrm{~J} .
$$

105. (a) Using Eq. $10-15$, we have $60.0 \mathrm{rad}=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right)(6.00 \mathrm{~s})$. With $\omega_{2}=15.0 \mathrm{rad} / \mathrm{s}$, then $\omega_{1}=5.00 \mathrm{rad} / \mathrm{s}$.
(b) Eq. $10-12$ gives $\alpha=(15.0-5.0) / 6.00=1.67 \mathrm{rad} / \mathrm{s}^{2}$.
(c) Interpreting ω now as ω_{1} and θ as $\theta_{1}=10.0 \mathrm{rad}$ (and $\omega_{0}=0$) Eq. 10-14 leads to

$$
\theta_{0}=-\frac{\omega_{1}^{2}}{2 \alpha}+\theta_{1}=2.50 \mathrm{rad}
$$

106. (a) The time for one revolution is the circumference of the orbit divided by the speed v of the Sun: $T=2 \pi R / v$, where R is the radius of the orbit. We convert the radius:

$$
R=\left(2.3 \times 10^{4} \mathrm{ly}\right)\left(9.46 \times 10^{12} \mathrm{~km} / \mathrm{ly}\right)=2.18 \times 10^{17} \mathrm{~km}
$$

where the ly $\leftrightarrow \mathrm{km}$ conversion can be found in Appendix D or figured "from basics" (knowing the speed of light). Therefore, we obtain

$$
T=\frac{2 \pi\left(2.18 \times 10^{17} \mathrm{~km}\right)}{250 \mathrm{~km} / \mathrm{s}}=5.5 \times 10^{15} \mathrm{~s}
$$

(b) The number of revolutions N is the total time t divided by the time T for one revolution; that is, $N=t / T$. We convert the total time from years to seconds and obtain

$$
N=\frac{\left(4.5 \times 10^{9} \mathrm{y}\right)\left(3.16 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}{5.5 \times 10^{15} \mathrm{~s}}=26 .
$$

107. We assume the sense of initial rotation is positive. Then, with $\omega_{0}>0$ and $\omega=0$ (since it stops at time t), our angular acceleration is negative-valued.
(a) The angular acceleration is constant, so we can apply Eq. 10-12 $\left(\omega=\omega_{0}+\alpha t\right)$. To obtain the requested units, we have $t=30 / 60=0.50 \mathrm{~min}$. Thus,

$$
\alpha=-\frac{33.33 \mathrm{rev} / \mathrm{min}}{0.50 \mathrm{~min}}=-66.7 \mathrm{rev} / \mathrm{min}^{2} \approx-67 \mathrm{rev} / \mathrm{min}^{2} .
$$

(b) We use Eq. 10-13:

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=(33.33)(0.50)+\frac{1}{2}(-66.7)(0.50)^{2}=8.3 \mathrm{rev} .
$$

108. (a) We use $\tau=I \alpha$, where τ is the net torque acting on the shell, I is the rotational inertia of the shell, and α is its angular acceleration. Therefore,

$$
I=\frac{\tau}{\alpha}=\frac{960 \mathrm{~N} \cdot \mathrm{~m}}{6.20 \mathrm{rad} / \mathrm{s}^{2}}=155 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) The rotational inertia of the shell is given by $I=(2 / 3) M R^{2}$ (see Table $10-2$ of the text). This implies

$$
M=\frac{3 I}{2 R^{2}}=\frac{3\left(155 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)}{2(1.90 \mathrm{~m})^{2}}=64.4 \mathrm{~kg} .
$$

109. (a) We integrate the angular acceleration (as a function of τ with respect to τ to find the angular velocity as a function of $t>0$.

$$
\omega=\omega_{0}+\int_{0}^{t}\left(4 a \tau^{3}-3 b \tau^{2}\right) d \tau=\omega_{0}+a t^{4}-b t^{3}
$$

(b) We integrate the angular velocity (as a function of τ) with respect to τ to find the angular position as a function of $t>0$.

$$
\theta=\theta_{0}+\int_{0}^{t}\left(4 a \tau^{3}-3 b \tau^{2}\right) d \tau=\theta_{0}+\omega_{0} t+\frac{a}{5} t^{5}-\frac{b}{4} t^{4}
$$

110. (a) Eq. 10-6 leads to

$$
\omega=\frac{d}{d t}\left(a t+b t^{3}-c t^{4}\right)=a+3 b t^{2}-4 c t^{3}
$$

(b) And Eq. 10-8 gives

$$
\alpha=\frac{d}{d t}\left(a+3 b t^{2}-4 c t^{3}\right)=6 b t-12 c t^{2} .
$$

111. Analyzing the forces tending to drag the $M=5124 \mathrm{~kg}$ stone down the oak beam, we find

$$
F=M g\left(\sin \theta+\mu_{s} \cos \theta\right)
$$

where $\mu_{s}=0.22$ (static friction is assumed to be at its maximum value) and the incline angle θ for the oak beam is $\sin ^{-1}(3.9 / 10)=23^{\circ}$ (but the incline angle for the spruce log is the complement of that). We note that the component of the weight of the workers (N of them) which is perpendicular to the spruce \log is $N m g \cos \left(90^{\circ}-\theta\right)=N m g \sin \theta$, where m $=85 \mathrm{~kg}$. The corresponding torque is therefore $N m g \ell \sin \theta$ where $\ell=4.5-0.7=3.8 \mathrm{~m}$. This must (at least) equal the magnitude of torque due to F, so with $r=0.7 \mathrm{~m}$, we have

$$
\operatorname{Mgr}\left(\sin \theta+\mu_{s} \cos \theta\right)=N g m \ell \sin \theta
$$

This expression yields $N \approx 17$ for the number of workers.
112. In SI unit, the moment of inertia can be written as

$$
I=14,000 \mathrm{u} \cdot \mathrm{pm}^{2}=(14,000)\left(1.6 \times 10^{-27} \mathrm{~kg}\right)\left(10^{-12} \mathrm{~m}\right)^{2}=2.24 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

Thus, the rotational kinetic energy is given by

$$
K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(2.2 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(4.3 \times 10^{12} \mathrm{rad} / \mathrm{s}\right)^{2}=2.1 \times 10^{-22} \mathrm{~J} .
$$

113. Eq. $10-40$ leads to $\tau=m g r=(70)(9.8)(0.20)=1.4 \times 10^{2} \mathrm{~N} \cdot \mathrm{~m}$.
114. (a) Eq. 10-15 gives

$$
90 \mathrm{rev}=\frac{1}{2}\left(\omega_{0}+10 \mathrm{rev} / \mathrm{s}\right)(15 \mathrm{~s})
$$

which leads to $\omega_{0}=2.0 \mathrm{rev} / \mathrm{s}$.
(b) From Eq. 10-12, the angular acceleration is

$$
\alpha=\frac{10 \mathrm{rev} / \mathrm{s}-2.0 \mathrm{rev} / \mathrm{s}}{15 \mathrm{~s}}=0.53 \mathrm{rev} / \mathrm{s}^{2} .
$$

Using the equation again (with the same value for α) we seek a negative value of t (meaning an earlier time than that when $\omega_{0}=2.0 \mathrm{rev} / \mathrm{s}$) such that $\omega=0$. Thus,

$$
t=-\frac{\omega_{0}}{\alpha}=-\frac{2.0 \mathrm{rev} / \mathrm{s}}{0.53 \mathrm{rev} / \mathrm{s}^{2}}=-3.8 \mathrm{~s}
$$

which means that the wheel was at rest 3.8 s before the 15 s interval began.
115. Using Eq. 10-7 and Eq. 10-18, the average angular acceleration is

$$
\alpha_{\mathrm{avg}}=\frac{\Delta \omega}{\Delta t}=\frac{\Delta v}{r \Delta t}=\frac{25-12}{(0.75 / 2)(6.2)}=5.6 \mathrm{rad} / \mathrm{s}^{2} .
$$

116. We make use of Table 10-2(e) and the parallel-axis theorem in Eq. 10-36.
(a) The moment of inertia is

$$
I=\frac{1}{12} M L^{2}+M h^{2}=\frac{1}{12}(3.0 \mathrm{~kg})(4.0 \mathrm{~m})^{2}+(3.0 \mathrm{~kg})(1.0 \mathrm{~m})^{2}=7.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) The rotational kinetic energy is

$$
K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2} \Rightarrow \omega=\sqrt{\frac{2 K_{\mathrm{rot}}}{I}}=\sqrt{\frac{2(20 \mathrm{~J})}{7 \mathrm{~kg} \cdot \mathrm{~m}^{2}}}=2.4 \mathrm{rad} / \mathrm{s}
$$

The linear speed of the end B is given by $v_{B}=\omega r_{A B}=(2.4 \mathrm{rad} / \mathrm{s})(3.00 \mathrm{~m})=7.2 \mathrm{~m} / \mathrm{s}$, where $r_{A B}$ is the distance between A and B.
(c) The maximum angle θ is attained when all the rotational kinetic energy is transformed into potential energy. Moving from the vertical position $(\theta=0)$ to the maximum angle θ, the center of mass is elevated by $\Delta y=d_{A C}(1-\cos \theta)$, where $d_{A C}=1.00 \mathrm{~m}$ is the distance between A and the center of mass of the rod. Thus, the change in potential energy is

$$
\Delta U=m g \Delta y=m g d_{A C}(1-\cos \theta) \quad \Rightarrow \quad 20 \mathrm{~J}=(3.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.0 \mathrm{~m})(1-\cos \theta)
$$

which yields $\cos \theta=0.32$, or $\theta \approx 71^{\circ}$.
117. (a) The linear speed at $t=15.0 \mathrm{~s}$ is

$$
v=a_{t} t=\left(0.500 \mathrm{~m} / \mathrm{s}^{2}\right)(15.0 \mathrm{~s})=7.50 \mathrm{~m} / \mathrm{s} .
$$

The radial (centripetal) acceleration at that moment is

$$
a_{r}=\frac{v^{2}}{r}=\frac{(7.50 \mathrm{~m} / \mathrm{s})^{2}}{30.0 \mathrm{~m}}=1.875 \mathrm{~m} / \mathrm{s}^{2} .
$$

Thus, the net acceleration has magnitude:

$$
a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{\left(0.500 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(1.875 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=1.94 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) We note that $\vec{a}_{t} \| \vec{v}$. Therefore, the angle between \vec{v} and \vec{a} is

$$
\tan ^{-1}\left(\frac{a_{r}}{a_{t}}\right)=\tan ^{-1}\left(\frac{1.875}{0.5}\right)=75.1^{\circ}
$$

so that the vector is pointing more toward the center of the track than in the direction of motion.
118. (a) Using Eq. 10-1, the angular displacement is

$$
\theta=\frac{5.6 \mathrm{~m}}{8.0 \times 10^{-2} \mathrm{~m}}=1.4 \times 10^{2} \mathrm{rad}
$$

(b) We use $\theta=\frac{1}{2} \alpha t^{2}$ (Eq. 10-13) to obtain t :

$$
t=\sqrt{\frac{2 \theta}{\alpha}}=\sqrt{\frac{2\left(1.4 \times 10^{2} \mathrm{rad}\right)}{1.5 \mathrm{rad} / \mathrm{s}^{2}}}=14 \mathrm{~s} .
$$

119. We apply Eq. 10-12 twice, assuming the sense of rotation is positive. We have $\omega>0$ and $\alpha<0$. Since the angular velocity at $t=1 \mathrm{~min}$ is $\omega_{1}=(0.90)(250)=225 \mathrm{rev} / \mathrm{min}$, we have

$$
\omega_{1}=\omega_{0}+\alpha t \Rightarrow a=\frac{225-250}{1}=-25 \mathrm{rev} / \mathrm{min}^{2}
$$

Next, between $t=1 \mathrm{~min}$ and $t=2 \mathrm{~min}$ we have the interval $\Delta t=1 \mathrm{~min}$. Consequently, the angular velocity at $t=2 \mathrm{~min}$ is

$$
\omega_{2}=\omega_{1}+\alpha \Delta t=225+(-25)(1)=200 \mathrm{rev} / \mathrm{min}
$$

120. (a) Using Table 10-2(c), the rotational inertia is

$$
I=\frac{1}{2} m R^{2}=\frac{1}{2}(1210 \mathrm{~kg})\left(\frac{1.21 \mathrm{~m}}{2}\right)^{2}=221 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) The rotational kinetic energy is, by Eq. 10-34,

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(2.21 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)[(1.52 \mathrm{rev} / \mathrm{s})(2 \pi \mathrm{rad} / \mathrm{rev})]^{2}=1.10 \times 10^{4} \mathrm{~J}
$$

121. (a) We obtain

$$
\omega=\frac{(33.33 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})}{60 \mathrm{~s} / \mathrm{min}}=3.5 \mathrm{rad} / \mathrm{s} .
$$

(b) Using Eq. 10-18, we have $v=r \omega=(15)(3.49)=52 \mathrm{~cm} / \mathrm{s}$.
(c) Similarly, when $r=7.4 \mathrm{~cm}$ we find $v=r \omega=26 \mathrm{~cm} / \mathrm{s}$. The goal of this exercise is to observe what is and is not the same at different locations on a body in rotational motion (ω is the same, v is not), as well as to emphasize the importance of radians when working with equations such as Eq. 10-18.
122. With $v=50(1000 / 3600)=13.9 \mathrm{~m} / \mathrm{s}$, Eq. $10-18$ leads to

$$
\omega=\frac{v}{r}=\frac{13.9}{110}=0.13 \mathrm{rad} / \mathrm{s} .
$$

123. The translational kinetic energy of the molecule is

$$
K_{t}=\frac{1}{2} m v^{2}=\frac{1}{2}\left(5.30 \times 10^{-26}\right)(500)^{2}=6.63 \times 10^{-21} \mathrm{~J} .
$$

With $I=1.94 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, we employ Eq. 10-34:

$$
K_{r}=\frac{2}{3} K_{t} \Rightarrow \frac{1}{2} I \omega^{2}=\frac{2}{3}\left(6.63 \times 10^{-21}\right)
$$

which leads to $\omega=6.75 \times 10^{12} \mathrm{rad} / \mathrm{s}$.
124. (a) The angular speed ω associated with Earth's spin is $\omega=2 \pi / T$, where $T=86400$ s (one day). Thus

$$
\omega=\frac{2 \pi}{86400 \mathrm{~s}}=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}
$$

and the angular acceleration α required to accelerate the Earth from rest to ω in one day is $\alpha=\omega / T$. The torque needed is then

$$
\tau=I \alpha=\frac{I \omega}{T}=\frac{\left(9.7 \times 10^{27}\right)\left(7.3 \times 10^{-5}\right)}{86400}=8.2 \times 10^{28} \mathrm{~N} \cdot \mathrm{~m}
$$

where we used

$$
I=\frac{2}{5} M R^{2}=\frac{2}{5}\left(5.98 \times 10^{24}\right)\left(6.37 \times 10^{6}\right)^{2}
$$

for Earth's rotational inertia.
(b) Using the values from part (a), the kinetic energy of the Earth associated with its rotation about its own axis is $K=\frac{1}{2} I \omega^{2}=2.6 \times 10^{29} \mathrm{~J}$. This is how much energy would need to be supplied to bring it (starting from rest) to the current angular speed.
(c) The associated power is

$$
P=\frac{K}{T}=\frac{2.57 \times 10^{29} \mathrm{~J}}{86400 \mathrm{~s}}=3.0 \times 10^{24} \mathrm{~W}
$$

125. The mass of the Earth is $M=5.98 \times 10^{24} \mathrm{~kg}$ and the radius is $R=6.37 \times 10^{6} \mathrm{~m}$.
(a) Assuming the Earth to be a sphere of uniform density, its moment of inertia is

$$
I=\frac{2}{5} M R^{2}=\frac{2}{5}\left(5.98 \times 10^{24} \mathrm{~kg}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}=9.71 \times 10^{37} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(b) The angular speed of the Earth is

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{24 \mathrm{hr}}=\frac{2 \pi}{8.64 \times 10^{4} \mathrm{~s}}=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}
$$

Thus, its rotational kinetic energy is

$$
K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(9.71 \times 10^{37} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}\right)^{2}=2.57 \times 10^{29} \mathrm{~J}
$$

(c) The amount of time the rotational energy could be supplied to at a rate of $P=1.0 \mathrm{~kW}=1.0 \times 10^{3} \mathrm{~J} / \mathrm{s}$ to a population of approximately $N=5.0 \times 10^{9}$ people is

$$
\Delta t=\frac{K_{\mathrm{rot}}}{N P}=\frac{2.57 \times 10^{29} \mathrm{~J}}{\left(5.0 \times 10^{9}\right)\left(1.0 \times 10^{3} \mathrm{~J} / \mathrm{s}\right)}=5.14 \times 10^{16} \mathrm{~s} \approx 1.6 \times 10^{9} \mathrm{y}
$$

1. The initial speed of the car is $v=(80.0)(1000 / 3600)=22.2 \mathrm{~m} / \mathrm{s}$. The tire radius is $R=$ $0.750 / 2=0.375 \mathrm{~m}$.
(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 11-2 leads to

$$
\omega_{0}=\frac{v_{\text {com } 0}}{R}=\frac{22.2}{0.375}=59.3 \mathrm{rad} / \mathrm{s} .
$$

(b) With $\theta=(30.0)(2 \pi)=188 \mathrm{rad}$ and $\omega=0$, Eq. $10-14$ leads to

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta \Rightarrow|\alpha|=\frac{59.3^{2}}{2(188)}=9.31 \mathrm{rad} / \mathrm{s}^{2}
$$

(c) Eq. 11-1 gives $R \theta=70.7 \mathrm{~m}$ for the distance traveled.
2. The velocity of the car is a constant $\vec{v}=+(80)(1000 / 3600)=(+22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$, and the radius of the wheel is $r=0.66 / 2=0.33 \mathrm{~m}$.
(a) In the car's reference frame (where the lady perceives herself to be at rest) the road is moving towards the rear at $\vec{v}_{\text {road }}=-v=-22 \mathrm{~m} / \mathrm{s}$, and the motion of the tire is purely rotational. In this frame, the center of the tire is "fixed" so $v_{\text {center }}=0$.
(b) Since the tire's motion is only rotational (not translational) in this frame, Eq. 10-18 gives $\vec{v}_{\text {top }}=(+22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
(c) The bottom-most point of the tire is (momentarily) in firm contact with the road (not skidding) and has the same velocity as the road: $\vec{v}_{\text {bottom }}=(-22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$. This also follows from Eq. 10-18.
(d) This frame of reference is not accelerating, so "fixed" points within it have zero acceleration; thus, $a_{\text {center }}=0$.
(e) Not only is the motion purely rotational in this frame, but we also have $\omega=$ constant, which means the only acceleration for points on the rim is radial (centripetal). Therefore, the magnitude of the acceleration is

$$
a_{\text {top }}=\frac{v^{2}}{r}=\frac{22^{2}}{0.33}=1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2} .
$$

(f) The magnitude of the acceleration is the same as in part (d): $a_{\text {bottom }}=1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
(g) Now we examine the situation in the road's frame of reference (where the road is "fixed" and it is the car that appears to be moving). The center of the tire undergoes purely translational motion while points at the rim undergo a combination of translational and rotational motions. The velocity of the center of the tire is $\vec{v}=(+22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$.
(h) In part (b), we found $\vec{v}_{\text {top, car }}=+v$ and we use Eq. 4-39:

$$
\vec{v}_{\text {top, ground }}=\vec{v}_{\text {top, car }}+\vec{v}_{\text {car, ground }}=v \hat{\mathrm{i}}+v \hat{\mathrm{i}}=2 v \hat{\mathrm{i}}
$$

which yields $2 v=+44 \mathrm{~m} / \mathrm{s}$. This is consistent with Fig. 11-3(c).
(i) We can proceed as in part (h) or simply recall that the bottom-most point is in firm contact with the (zero-velocity) road. Either way - the answer is zero.
(j) The translational motion of the center is constant; it does not accelerate.
(k) Since we are transforming between constant-velocity frames of reference, the accelerations are unaffected. The answer is as it was in part (e): $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
(1) As explained in part (k), $a=1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
3. By Eq. 10-52, the work required to stop the hoop is the negative of the initial kinetic energy of the hoop. The initial kinetic energy is $K=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$ (Eq. 11-5), where $I=$ $m R^{2}$ is its rotational inertia about the center of mass, $m=140 \mathrm{~kg}$, and $v=0.150 \mathrm{~m} / \mathrm{s}$ is the speed of its center of mass. Eq. 11-2 relates the angular speed to the speed of the center of mass: $\omega=v / R$. Thus,

$$
K=\frac{1}{2} m R^{2}\left(\frac{v^{2}}{R^{2}}\right)+\frac{1}{2} m v^{2}=m v^{2}=(140)(0.150)^{2}
$$

which implies that the work required is -3.15 J .
4. We use the results from section 11.3.
(a) We substitute $I=\frac{2}{5} M R^{2}$ (Table 10-2(f)) and $a=-0.10 g$ into Eq. 11-10:

$$
-0.10 g=-\frac{g \sin \theta}{1+\left(\frac{2}{5} M R^{2}\right) / M R^{2}}=-\frac{g \sin \theta}{7 / 5}
$$

which yields $\theta=\sin ^{-1}(0.14)=8.0^{\circ}$.
(b) The acceleration would be more. We can look at this in terms of forces or in terms of energy. In terms of forces, the uphill static friction would then be absent so the downhill acceleration would be due only to the downhill gravitational pull. In terms of energy, the rotational term in Eq. 11-5 would be absent so that the potential energy it started with would simply become $\frac{1}{2} m v^{2}$ (without it being "shared" with another term) resulting in a greater speed (and, because of Eq. 2-16, greater acceleration).
5. Let M be the mass of the car (presumably including the mass of the wheels) and v be its speed. Let I be the rotational inertia of one wheel and ω be the angular speed of each wheel. The kinetic energy of rotation is

$$
K_{\mathrm{rot}}=4\left(\frac{1}{2} I \omega^{2}\right)
$$

where the factor 4 appears because there are four wheels. The total kinetic energy is given by $K=\frac{1}{2} M v^{2}+4\left(\frac{1}{2} I \omega^{2}\right)$. The fraction of the total energy that is due to rotation is

$$
\text { fraction }=\frac{K_{\mathrm{rot}}}{K}=\frac{4 I \omega^{2}}{M v^{2}+4 I \omega^{2}} .
$$

For a uniform disk (relative to its center of mass) $I=\frac{1}{2} m R^{2}$ (Table 10-2(c)). Since the wheels roll without sliding $\omega=v / R$ (Eq. 11-2). Thus the numerator of our fraction is

$$
4 I \omega^{2}=4\left(\frac{1}{2} m R^{2}\right)\left(\frac{v}{R}\right)^{2}=2 m v^{2}
$$

and the fraction itself becomes

$$
\text { fraction }=\frac{2 m v^{2}}{M v^{2}+2 m v^{2}}=\frac{2 m}{M+2 m}=\frac{2(10)}{1000}=\frac{1}{50}=0.020 .
$$

The wheel radius cancels from the equations and is not needed in the computation.
6. With $\vec{F}_{\text {app }}=(10 \mathrm{~N}) \hat{\mathrm{i}}$, we solve the problem by applying Eq. 9-14 and Eq. 11-37.
(a) Newton's second law in the x direction leads to

$$
F_{\mathrm{app}}-f_{s}=m a \Rightarrow f_{s}=10 \mathrm{~N}-(10 \mathrm{~kg})\left(0.60 \mathrm{~m} / \mathrm{s}^{2}\right)=4.0 \mathrm{~N} .
$$

In unit vector notation, we have $\vec{f}_{s}=(-4.0 \mathrm{~N}) \hat{\mathrm{i}}$ which points leftward.
(b) With $R=0.30 \mathrm{~m}$, we find the magnitude of the angular acceleration to be

$$
|\alpha|=\left|a_{\mathrm{com}}\right| / R=2.0 \mathrm{rad} / \mathrm{s}^{2},
$$

from Eq. 11-6. The only force not directed towards (or away from) the center of mass is \vec{f}_{s}, and the torque it produces is clockwise:

$$
|\tau|=I|\alpha| \Rightarrow(0.30 \mathrm{~m})(4.0 \mathrm{~N})=I\left(2.0 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

which yields the wheel's rotational inertia about its center of mass: $I=0.60 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its initial kinetic energy is $K_{i}=0$ and its initial potential energy is $U_{i}=M g h$ where $h=6.0 \sin 30^{\circ}=3.0 \mathrm{~m}$ (we are using the edge of the roof as our reference level for computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5)

$$
K_{f}=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2} .
$$

Here we use v to denote the speed of its center of mass and ω is its angular speed - at the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we can set $v=R \omega=v$ where $R=0.10 \mathrm{~m}$. Using $I=\frac{1}{2} M R^{2}$ (Table 10-2(c)), conservation of energy leads to

$$
M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} M R^{2} \omega^{2}+\frac{1}{4} M R^{2} \omega^{2}=\frac{3}{4} M R^{2} \omega^{2} .
$$

The mass M cancels from the equation, and we obtain

$$
\omega=\frac{1}{R} \sqrt{\frac{4}{3} g h}=\frac{1}{0.10 \mathrm{~m}} \sqrt{\frac{4}{3}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~m})}=63 \mathrm{rad} / \mathrm{s} .
$$

(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the origin at the position of the center of mass when the ball leaves the track (the "initial" position for this part of the problem) and take $+x$ leftward and $+y$ downward. The result of part (a) implies $v_{0}=R \omega=6.3 \mathrm{~m} / \mathrm{s}$, and we see from the figure that (with these positive direction choices) its components are

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos 30^{\circ}=5.4 \mathrm{~m} / \mathrm{s} \\
& v_{0 y}=v_{0} \sin 30^{\circ}=3.1 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

The projectile motion equations become

$$
x=v_{0 x} t \quad \text { and } \quad y=v_{0 y} t+\frac{1}{2} g t^{2} .
$$

We first find the time when $y=H=5.0 \mathrm{~m}$ from the second equation (using the quadratic formula, choosing the positive root):

$$
t=\frac{-v_{0 y}+\sqrt{v_{0 y}^{2}+2 g H}}{g}=0.74 \mathrm{~s}
$$

Then we substitute this into the x equation and obtain $x=(5.4 \mathrm{~m} / \mathrm{s})(0.74 \mathrm{~s})=4.0 \mathrm{~m}$.
8. Using the floor as the reference position for computing potential energy, mechanical energy conservation leads to

$$
\begin{aligned}
U_{\text {release }} & =K_{\text {top }}+U_{\text {top }} \\
m g h & =\frac{1}{2} m v_{\mathrm{com}}^{2}+\frac{1}{2} I \omega^{2}+m g(2 R) .
\end{aligned}
$$

Substituting $I=\frac{2}{5} m r^{2}$ (Table 10-2(f)) and $\omega=v_{\text {com }} / r$ (Eq. 11-2), we obtain

$$
m g h=\frac{1}{2} m v_{\mathrm{com}}^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right)\left(\frac{v_{\mathrm{com}}}{r}\right)^{2}+2 m g R \quad \Rightarrow g h=\frac{7}{10} v_{\mathrm{com}}^{2}+2 g R
$$

where we have canceled out mass m in that last step.
(a) To be on the verge of losing contact with the loop (at the top) means the normal force is vanishingly small. In this case, Newton's second law along the vertical direction ($+y$ downward) leads to

$$
m g=m a_{r} \Rightarrow g=\frac{v_{\mathrm{com}}^{2}}{R-r}
$$

where we have used Eq. 10-23 for the radial (centripetal) acceleration (of the center of mass, which at this moment is a distance $R-r$ from the center of the loop). Plugging the result $v_{\text {com }}^{2}=g(R-r)$ into the previous expression stemming from energy considerations gives

$$
g h=\frac{7}{10}(g)(R-r)+2 g R
$$

which leads to $h=2.7 R-0.7 r \approx 2.7 R$. With $R=14.0 \mathrm{~cm}$, we have $h=(2.7)(14.0 \mathrm{~cm})=$ 37.8 cm .
(b) The energy considerations shown above (now with $h=6 R$) can be applied to point Q (which, however, is only at a height of R) yielding the condition

$$
g(6 R)=\frac{7}{10} v_{\mathrm{com}}^{2}+g R
$$

which gives us $v_{\text {com }}^{2}=50 g R / 7$. Recalling previous remarks about the radial acceleration, Newton's second law applied to the horizontal axis at Q leads to

$$
N=m \frac{v_{\mathrm{com}}^{2}}{R-r}=m \frac{50 g R}{7(R-r)}
$$

which (for $R \gg r$) gives

$$
N \approx \frac{50 \mathrm{mg}}{7}=\frac{50\left(2.80 \times 10^{-4} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{7}=1.96 \times 10^{-2} \mathrm{~N} .
$$

(b) The direction is toward the center of the loop.
9. To find where the ball lands, we need to know its speed as it leaves the track (using conservation of energy). Its initial kinetic energy is $K_{i}=0$ and its initial potential energy is $U_{i}=M g H$. Its final kinetic energy (as it leaves the track) is $K_{f}=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}$ (Eq. 11-5) and its final potential energy is $M g h$. Here we use v to denote the speed of its center of mass and ω is its angular speed - at the moment it leaves the track. Since (up to that moment) the ball rolls without sliding we can set $\omega=v / R$. Using $I=\frac{2}{5} M R^{2}$ (Table 10-2(f)), conservation of energy leads to

$$
M g H=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}+M g h=\frac{1}{2} M v^{2}+\frac{2}{10} M v^{2}+M g h=\frac{7}{10} M v^{2}+M g h .
$$

The mass M cancels from the equation, and we obtain

$$
v=\sqrt{\frac{10}{7} g(H-h)}=\sqrt{\frac{10}{7}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m}-2.0 \mathrm{~m})}=7.48 \mathrm{~m} / \mathrm{s} .
$$

Now this becomes a projectile motion of the type examined in Chapter 4. We put the origin at the position of the center of mass when the ball leaves the track (the "initial" position for this part of the problem) and take $+x$ rightward and $+y$ downward. Then (since the initial velocity is purely horizontal) the projectile motion equations become

$$
x=v t \text { and } y=-\frac{1}{2} g t^{2} .
$$

Solving for x at the time when $y=h$, the second equation gives $t=\sqrt{2 h / g}$. Then, substituting this into the first equation, we find

$$
x=v \sqrt{\frac{2 h}{g}}=(7.48) \sqrt{\frac{2(2.0)}{9.8}}=4.8 \mathrm{~m} .
$$

10. We plug $a=-3.5 \mathrm{~m} / \mathrm{s}^{2}$ (where the magnitude of this number was estimated from the "rise over run" in the graph), $\theta=30^{\circ}, M=0.50 \mathrm{~kg}$ and $R=0.060 \mathrm{~m}$ into Eq. 11-10 and solve for the rotational inertia. We find $I=7.2 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}$.
11. (a) Let the turning point be designated P. We use energy conservation with Eq. 11-5:

$$
\text { Mechanical Energy (at } x=7.0 \mathrm{~m} \text {) }=\text { Mechanical Energy at } P
$$

$$
\Rightarrow \quad 75 \mathrm{~J}=\frac{1}{2} m v_{\mathrm{p}}^{2}+\frac{1}{2} I_{\mathrm{com}} \omega_{\mathrm{p}}^{2}+U_{\mathrm{p}}
$$

Using item (f) of Table 10-2 and Eq. 11-2 (which means, if this is to be a turning point, that $\omega_{\mathrm{p}}=v_{\mathrm{p}}=0$), we find $U_{\mathrm{p}}=75 \mathrm{~J}$. On the graph, this seems to correspond to $x=2.0 \mathrm{~m}$, and we conclude that there is a turning point (and this is it). The ball, therefore, does not reach the origin.
(b) We note that there is no point (on the graph, to the right of $x=7.0 \mathrm{~m}$) which is shown "higher" than 75 J , so we suspect that there is no turning point in this direction, and we seek the velocity v_{p} at $x=13 \mathrm{~m}$. If we obtain a real, nonzero answer, then our suspicion is correct (that it does reach this point P at $x=13 \mathrm{~m}$).

Mechanical Energy (at $x=7.0 \mathrm{~m}$) $=$ Mechanical Energy at P

$$
\Rightarrow \quad 75 \mathrm{~J}=\frac{1}{2} m v_{\mathrm{p}}^{2}+\frac{1}{2} I_{\mathrm{com}} \omega_{\mathrm{p}}^{2}+U_{\mathrm{p}}
$$

Again, using item (f) of Table 11-2, Eq. 11-2 (less trivially this time) and $U_{\mathrm{p}}=60 \mathrm{~J}$ (from the graph), as well as the numerical data given in the problem, we find $v_{\mathrm{p}}=7.3 \mathrm{~m} / \mathrm{s}$.
12. To find the center of mass speed v on the plateau, we use the projectile motion equations of Chapter 4. With $v_{\mathrm{oy}}=0$ (and using " h " for h_{2}) Eq. 4-22 gives the time-offlight as $t=\sqrt{2 h / g}$. Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives $v^{2}=g d^{2} / 2 h$. Now, to find the speed v_{p} at point P, we use energy conservation with Eq. 11-5:

Mechanical Energy on the Plateau $=$ Mechanical Energy at P

$$
\frac{1}{2} m v^{2}+\frac{1}{2} I_{\mathrm{com}} \omega^{2}+m g h_{1}=\frac{1}{2} m v_{\mathrm{p}}^{2}+\frac{1}{2} I_{\mathrm{com}} \omega_{\mathrm{p}}^{2}
$$

Using item (f) of Table 10-2, Eq. 11-2, and our expression (above) $v^{2}=g d^{2} / 2 h$, we obtain

$$
g d^{2} / 2 h+10 g h_{1} / 7=v_{\mathrm{p}}^{2}
$$

which yields (using the values stated in the problem) $v_{\mathrm{p}}=1.34 \mathrm{~m} / \mathrm{s}$.
13. The physics of a rolling object usually requires a separate and very careful discussion (above and beyond the basics of rotation discussed in chapter 10); this is done in the first three sections of chapter 11. Also, the normal force on something (which is here the center of mass of the ball) following a circular trajectory is discussed in section 6-6 (see particularly sample problem 6-7). Adapting Eq. 6-19 to the consideration of forces at the bottom of an arc, we have

$$
F_{N}-M g=M v^{2} / r
$$

which tells us (since we are given $F_{N}=2 M g$) that the center of mass speed (squared) is v^{2} $=g r$, where r is the arc radius (0.48 m) Thus, the ball's angular speed (squared) is

$$
\omega^{2}=v^{2} / R^{2}=g r / R^{2},
$$

where R is the ball's radius. Plugging this into Eq. 10-5 and solving for the rotational inertia (about the center of mass), we find

$$
I_{\mathrm{com}}=2 M h R^{2} / r-M R^{2}=M R^{2}[2(0.36 / 0.48)-1]
$$

Thus, using the β notation suggested in the problem, we find $\beta=2(0.36 / 0.48)-1=0.50$.
14. The physics of a rolling object usually requires a separate and very careful discussion (above and beyond the basics of rotation discussed in chapter 11); this is done in the first three sections of Chapter 11. Using energy conservation with Eq. 11-5 and solving for the rotational inertia (about the center of mass), we find

$$
I_{\mathrm{com}}=2 M h R^{2} / r-M R^{2}=M R^{2}\left[2 g(H-h) / v^{2}-1\right] .
$$

Thus, using the β notation suggested in the problem, we find

$$
\beta=2 g(H-h) / v^{2}-1
$$

To proceed further, we need to find the center of mass speed v , which we do using the projectile motion equations of Chapter 4. With $v_{\mathrm{oy}}=0$, Eq. 4-22 gives the time-of-flight as $t=\sqrt{2 h / g}$. Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives $v^{2}=g d^{2} / 2 h$. Plugging this into our expression for β gives

$$
2 g(H-h) / v^{2}-1=4 h(H-h) / d^{2}-1
$$

Therefore, with the values given in the problem, we find $\beta=0.25$.
15. (a) The derivation of the acceleration is found in $\S 11-4$; Eq. 11-13 gives

$$
a_{\mathrm{com}}=-\frac{g}{1+I_{\mathrm{com}} / M R_{0}^{2}}
$$

where the positive direction is upward. We use $I_{\text {com }}=950 \mathrm{~g} \cdot \mathrm{~cm}^{2}, M=120 \mathrm{~g}, R_{0}=0.320$ cm and $g=980 \mathrm{~cm} / \mathrm{s}^{2}$ and obtain

$$
\left|a_{\mathrm{com}}\right|=\frac{980}{1+(950) /(120)(0.32)^{2}}=12.5 \mathrm{~cm} / \mathrm{s}^{2} \approx 13 \mathrm{~cm} / \mathrm{s}^{2}
$$

(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to $y_{\mathrm{com}}=\frac{1}{2} a_{\mathrm{com}} t^{2}$. Thus, we set $y_{\mathrm{com}}=-120 \mathrm{~cm}$, and find

$$
t=\sqrt{\frac{2 y_{\mathrm{com}}}{a_{\mathrm{com}}}}=\sqrt{\frac{2(-120 \mathrm{~cm})}{-12.5 \mathrm{~cm} / \mathrm{s}^{2}}}=4.38 \mathrm{~s} \approx 4.4 \mathrm{~s} .
$$

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11:

$$
v_{\mathrm{com}}=a_{\mathrm{com}} t=\left(-12.5 \mathrm{~cm} / \mathrm{s}^{2}\right)(4.38 \mathrm{~s})=-54.8 \mathrm{~cm} / \mathrm{s},
$$

so its linear speed then is approximately $55 \mathrm{~cm} / \mathrm{s}$.
(d) The translational kinetic energy is

$$
\frac{1}{2} m v_{\mathrm{com}}^{2}=\frac{1}{2}(0.120 \mathrm{~kg})(0.548 \mathrm{~m} / \mathrm{s})^{2}=1.8 \times 10^{-2} \mathrm{~J} .
$$

(e) The angular velocity is given by $\omega=-v_{\mathrm{com}} / R_{0}$ and the rotational kinetic energy is

$$
\frac{1}{2} I_{\mathrm{com}} \omega^{2}=\frac{1}{2} I_{\mathrm{com}} \frac{v_{\mathrm{com}}^{2}}{R_{0}^{2}}=\frac{1}{2} \frac{\left(9.50 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(0.548 \mathrm{~m} / \mathrm{s})^{2}}{\left(3.2 \times 10^{-3} \mathrm{~m}\right)^{2}}
$$

which yields $K_{\text {rot }}=1.4 \mathrm{~J}$.
(f) The angular speed is

$$
\omega=\left|v_{\mathrm{com}}\right| / R_{0}=(0.548 \mathrm{~m} / \mathrm{s}) /\left(3.2 \times 10^{-3} \mathrm{~m}\right)=1.7 \times 10^{2} \mathrm{rad} / \mathrm{s}=27 \mathrm{rev} / \mathrm{s} .
$$

16. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives

$$
a_{\mathrm{com}}=-\frac{g}{1+I_{\mathrm{com}} / M R_{0}^{2}}
$$

where the positive direction is upward. We use $I_{\text {com }}=\frac{1}{2} M R^{2}$ where the radius is $R=$ 0.32 m and $M=116 \mathrm{~kg}$ is the total mass (thus including the fact that there are two disks) and obtain

$$
a=-\frac{g}{1+\frac{1}{2} M R^{2} / M R_{0}^{2}}=\frac{g}{1+\frac{1}{2}\left(\frac{R}{R_{0}}\right)^{2}}
$$

which yields $a=-g / 51$ upon plugging in $R_{0}=R / 10=0.032 \mathrm{~m}$. Thus, the magnitude of the center of mass acceleration is $0.19 \mathrm{~m} / \mathrm{s}^{2}$.
(b) As observed in §11-4, our result in part (a) applies to both the descending and the rising yoyo motions.
(c) The external forces on the center of mass consist of the cord tension (upward) and the pull of gravity (downward). Newton's second law leads to

$$
T-M g=m a \Rightarrow T=M\left(g-\frac{g}{51}\right)=1.1 \times 10^{3} \mathrm{~N}
$$

(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the cord.
(e) As we saw in our acceleration computation, all that mattered was the ratio R / R_{0} (and, of course, g). So if it's a scaled-up version, then such ratios are unchanged and we obtain the same result.
(f) Since the tension also depends on mass, then the larger yoyo will involve a larger cord tension.
17. If we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}} .
$$

(a) In the above expression, we set (with SI units understood) $x=-2.0, y=0, z=4.0, F_{x}$ $=6.0, F_{y}=0$ and $F_{z}=0$. Then we obtain $\vec{\tau}=\vec{r} \times \vec{F}=(24 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}$.
(b) The values are just as in part (a) with the exception that now $F_{x}=-6.0$. We find $\vec{\tau}=\vec{r} \times \vec{F}=(-24 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}$.
(c) In the above expression, we set $x=-2.0, y=0, z=4.0, F_{x}=0, F_{y}=0$ and $F_{z}=6.0$. We get $\vec{\tau}=\vec{r} \times \vec{F}=(12 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}$.
(d) The values are just as in part (c) with the exception that now $F_{z}=-6.0$. We find $\vec{\tau}=\vec{r} \times \vec{F}=(-12 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}$.
18. If we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}} .
$$

(a) In the above expression, we set (with SI units understood) $x=0, y=-4.0, z=3.0, F_{x}$ $=2.0, F_{y}=0$ and $F_{z}=0$. Then we obtain

$$
\vec{\tau}=\vec{r} \times \vec{F}=(6.0 \hat{\mathrm{j}}+8.0 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

This has magnitude $\sqrt{6^{2}+8^{2}}=10 \mathrm{~N} \cdot \mathrm{~m}$ and is seen to be parallel to the $y z$ plane. Its angle (measured counterclockwise from the $+y$ direction) is $\tan ^{-1}(8 / 6)=53^{\circ}$.
(b) In the above expression, we set $x=0, y=-4.0, z=3.0, F_{x}=0, F_{y}=2.0$ and $F_{z}=4.0$. Then we obtain $\vec{\tau}=\vec{r} \times \vec{F}=(-22 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}$. This has magnitude $22 \mathrm{~N} \cdot \mathrm{~m}$ and points in the $-x$ direction.
19. If we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}} .
$$

With (using SI units) $x=0, y=-4.0, z=5.0, F_{x}=0, F_{y}=-2.0$ and $F_{z}=3.0$ (these latter terms being the individual forces that contribute to the net force), the expression above yields

$$
\vec{\tau}=\vec{r} \times \vec{F}=(-2.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}} .
$$

20. If we write $\vec{r}^{\prime}=x^{\prime} \hat{\mathrm{i}}+y^{\prime} \hat{\mathrm{j}}+z^{\prime} \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r}^{\prime} \times \vec{F}$ is equal to

$$
\left(y^{\prime} F_{z}-z^{\prime} F_{y}\right) \hat{\mathrm{i}}+\left(z^{\prime} F_{x}-x^{\prime} F_{z}\right) \hat{\mathrm{j}}+\left(x^{\prime} F_{y}-y^{\prime} F_{x}\right) \hat{\mathrm{k}}
$$

(a) Here, $\vec{r}^{\prime}=\vec{r}$ where $\vec{r}=3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+4.0 \hat{\mathrm{k}}$, and $\vec{F}=\vec{F}_{1}$. Thus, dropping the prime in the above expression, we set (with SI units understood) $x=3.0, y=-2.0, z=4.0, F_{x}=3.0$, $F_{y}=-4.0$ and $F_{z}=5.0$. Then we obtain

$$
\vec{\tau}=\vec{r} \times \vec{F}_{1}=(6.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

(b) This is like part (a) but with $\vec{F}=\vec{F}_{2}$. We plug in $F_{x}=-3.0, F_{y}=-4.0$ and $F_{z}=-5.0$ and obtain

$$
\vec{\tau}=\vec{r} \times \vec{F}_{2}=(26 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

(c) We can proceed in either of two ways. We can add (vectorially) the answers from parts (a) and (b), or we can first add the two force vectors and then compute $\vec{\tau}=\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}\right)$ (these total force components are computed in the next part). The result is

$$
\vec{\tau}=\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}\right)=(32 \hat{\mathrm{i}}-24 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

(d) Now $\vec{r}^{\prime}=\vec{r}-\vec{r}_{\mathrm{o}}$ where $\vec{r}_{\mathrm{o}}=3.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+4.0 \hat{\mathrm{k}}$. Therefore, in the above expression, we set $x^{\prime}=0, y^{\prime}=-4.0, z^{\prime}=0, F_{x}=3.0-3.0=0, F_{y}=-4.0-4.0=-8.0$ and $F_{z}=5.0-5.0=0$. We get $\vec{\tau}=\vec{r}^{\prime} \times\left(\vec{F}_{1}+\vec{F}_{2}\right)=0$.
21. If we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}} .
$$

(a) Plugging in, we find $\vec{\tau}=[(3.0 \mathrm{~m})(6.0 \mathrm{~N})-(4.0 \mathrm{~m})(-8.0 \mathrm{~N})] \hat{\mathrm{k}}=50 \hat{\mathrm{k}} \mathrm{N} \cdot \mathrm{m}$.
(b) We use Eq. 3-27, $|\vec{r} \times \vec{F}|=r F \sin \phi$, where ϕ is the angle between \vec{r} and \vec{F}. Now $r=\sqrt{x^{2}+y^{2}}=5.0 \mathrm{~m}$ and $F=\sqrt{F_{x}^{2}+F_{y}^{2}}=10 \mathrm{~N}$. Thus,

$$
r F=(5.0 \mathrm{~m})(10 \mathrm{~N})=50 \mathrm{~N} \cdot \mathrm{~m},
$$

the same as the magnitude of the vector product calculated in part (a). This implies $\sin \phi$ $=1$ and $\phi=90^{\circ}$.
22. We use the notation \vec{r}^{\prime} to indicate the vector pointing from the axis of rotation directly to the position of the particle. If we write $\vec{r}^{\prime}=x^{\prime} \hat{\mathrm{i}}+y^{\prime} \hat{\mathrm{j}}+z^{\prime} \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r}^{\prime} \times \vec{F}$ is equal to

$$
\left(y^{\prime} F_{z}-z^{\prime} F_{y}\right) \hat{\mathrm{i}}+\left(z^{\prime} F_{x}-x^{\prime} F_{z}\right) \hat{\mathrm{j}}+\left(x^{\prime} F_{y}-y^{\prime} F_{x}\right) \hat{\mathrm{k}} .
$$

(a) Here, $\vec{r}^{\prime}=\vec{r}$. Dropping the primes in the above expression, we set (with SI units understood) $x=0, y=0.5, z=-2.0, F_{x}=2.0, F_{y}=0$ and $F_{z}=-3.0$. Then we obtain

$$
\vec{\tau}=\vec{r} \times \vec{F}=(-1.5 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}-1.0 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

(b) Now $\vec{r}^{\prime}=\vec{r}-\vec{r}_{\mathrm{o}}$ where $\vec{r}_{\mathrm{o}}=2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{k}}$. Therefore, in the above expression, we set $x^{\prime}=-2.0, y^{\prime}=0.5, z^{\prime}=1.0, F_{x}=2.0, F_{y}=0$ and $F_{z}=-3.0$. Thus, we obtain

$$
\vec{\tau}=\vec{r}^{\prime} \times \vec{F}=(-1.5 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}-1.0 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

23. Eq. 11-14 (along with Eq. 3-30) gives

$$
\vec{\tau}=\vec{r} \times \vec{F}=4.00 \hat{\mathrm{i}}+\left(12.0+2.00 F_{x}\right) \hat{\mathrm{j}}+\left(14.0+3.00 F_{x}\right) \hat{\mathrm{k}}
$$

with SI units understood. Comparing this with the known expression for the torque (given in the problem statement), we see that F_{x} must satisfy two conditions:

$$
12.0+2.00 F_{x}=2.00 \text { and } 14.0+3.00 F_{x}=-1.00
$$

The answer $\left(F_{x}=-5.00 \mathrm{~N}\right)$ satisfies both conditions.
24. We note that the component of \vec{v} perpendicular to \vec{r} has magnitude $v \sin \theta_{2}$ where $\theta_{2}=30^{\circ}$. A similar observation applies to \vec{F}.
(a) Eq. 11-20 leads to $\ell=r m v_{\perp}=(3.0)(2.0)(4.0) \sin 30^{\circ}=12 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$.
(b) Using the right-hand rule for vector products, we find $\vec{r} \times \vec{p}$ points out of the page, or along the $+z$ axis, perpendicular to the plane of the figure.
(c) Eq. 10-38 leads to $\tau=r F \sin \theta_{2}=(3.0)(2.0) \sin 30^{\circ}=3.0 \mathrm{~N} \cdot \mathrm{~m}$.
(d) Using the right-hand rule for vector products, we find $\vec{r} \times \vec{F}$ is also out of the page, or along the $+z$ axis, perpendicular to the plane of the figure.
25. For the 3.1 kg particle, Eq. 11-21 yields

$$
\ell_{1}=r_{\perp 1} m v_{1}=(2.8)(3.1)(3.6)=31.2 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

Using the right-hand rule for vector products, we find this $\left(\vec{r}_{1} \times \vec{p}_{1}\right)$ is out of the page, or along the $+z$ axis, perpendicular to the plane of Fig. 11-40. And for the 6.5 kg particle, we find

$$
\ell_{2}=r_{\perp 2} m v_{2}=(1.5)(6.5)(2.2)=21.4 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

And we use the right-hand rule again, finding that this $\left(\vec{r}_{2} \times \vec{p}_{2}\right)$ is into the page, or in the $-z$ direction.
(a) The two angular momentum vectors are in opposite directions, so their vector sum is the difference of their magnitudes: $L=\ell_{1}-\ell_{2}=9.8 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$.
(b) The direction of the net angular momentum is along the $+z$ axis.
26. If we write $\vec{r}^{\prime}=x^{\prime} \hat{\mathrm{i}}+y^{\prime} \hat{\mathrm{j}}+z^{\prime} \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r}^{\prime}=\vec{v}$ is equal to

$$
\left(y^{\prime} v_{z}-z^{\prime} v_{y}\right) \hat{\mathrm{i}}+\left(z^{\prime} v_{x}-x^{\prime} v_{z}\right) \hat{\mathrm{j}}+\left(x^{\prime} v_{y}-y^{\prime} v_{x}\right) \hat{\mathrm{k}} .
$$

(a) Here, $\vec{r}^{\prime}=\vec{r}$ where $\vec{r}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$. Thus, dropping the primes in the above expression, we set (with SI units understood) $x=3.0, y=-4.0, z=0, v_{x}=30, v_{y}=60$ and $v_{z}=0$. Then (with $m=2.0 \mathrm{~kg}$) we obtain

$$
\vec{\ell}=m(\vec{r} \times \vec{v})=\left(6.0 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}} .
$$

(b) Now $\vec{r}^{\prime}=\vec{r}-\vec{r}_{\mathrm{o}}$ where $\vec{r}_{\mathrm{o}}=-2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}$. Therefore, in the above expression, we set $x^{\prime}=5.0, y^{\prime}=-2.0, z^{\prime}=0, v_{x}=30, v_{y}=60$ and $v_{z}=0$. We get

$$
\vec{\ell}=m\left(\vec{r}^{\prime} \times \vec{v}\right)=\left(7.2 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}} .
$$

27. (a) We use $\vec{\ell}=m \vec{r} \times \vec{v}$, where \vec{r} is the position vector of the object, \vec{v} is its velocity vector, and m is its mass. Only the x and z components of the position and velocity vectors are nonzero, so Eq. 3-30 leads to $\vec{r} \times \vec{v}=\left(-x v_{z}+z v_{z}\right) \hat{\mathrm{j}}$. Therefore,

$$
\vec{\ell}=m\left(-x v_{z}+z v_{x}\right) \hat{\mathrm{j}}=(0.25 \mathrm{~kg})(-(2.0 \mathrm{~m})(5.0 \mathrm{~m} / \mathrm{s})+(-2.0 \mathrm{~m})(-5.0 \mathrm{~m} / \mathrm{s})) \hat{\mathrm{j}}=0
$$

(b) If we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}} .
$$

With $x=2.0, z=-2.0, F_{y}=4.0$ and all other components zero (and SI units understood) the expression above yields

$$
\vec{\tau}=\vec{r} \times \vec{F}=(8.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{k}}) \mathrm{N} \cdot \mathrm{~m} .
$$

28. (a) Since the speed is (momentarily) zero when it reaches maximum height, the angular momentum is zero then.
(b) With the convention (used in several places in the book) that clockwise sense is to be associated with the negative sign, we have $L=-r_{\perp} m v$ where $r_{\perp}=2.00 \mathrm{~m}, m=0.400 \mathrm{~kg}$, and v is given by free-fall considerations (as in chapter 2). Specifically, $y_{\max }$ is determined by Eq. 2-16 with the speed at max height set to zero; we find $y_{\max }=v_{0}^{2} / 2 g$ where $v_{\mathrm{o}}=40.0 \mathrm{~m} / \mathrm{s}$. Then with $y=\frac{1}{2} y_{\text {max }}$, Eq. 2-16 can be used to give $v=v_{0} / \sqrt{2}$. In this way we arrive at $L=-22.6 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$.
(c) As mentioned in the previous part, we use the minus sign in writing $\tau=-r_{\perp} F$ with the force F being equal (in magnitude) to $m g$. Thus, $\tau=-7.84 \mathrm{Nm}$.
(d) Due to the way r_{\perp} is defined it does not matter how far up the ball is. The answer is the same as in part (c), $\tau=-7.84 \mathrm{~N} \cdot \mathrm{~m}$.
29. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) mass:

$$
\vec{a}=\vec{F} / m=\left(3.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}+\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{k}}
$$

(b) Use of Eq. 11-18 leads directly to

$$
\vec{L}=\left(42.0 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{i}}+\left(24.0 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{j}}+\left(60.0 \mathrm{~kg}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}
$$

(c) Similarly, the torque is

$$
\vec{\tau}=\vec{r} \times \vec{F}=(-8.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}-(26.0 \mathrm{Nm}) \hat{\mathrm{j}}-(40.0 \mathrm{Nm}) \hat{\mathrm{k}} .
$$

(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is $7.35 \mathrm{~m} / \mathrm{s}$ and that of the force is 10.8 N . The dot product of these two vectors is $\overrightarrow{\mathrm{v}} \cdot \vec{F}=-48$ (in SI units). Thus, Eq. 3-20 yields

$$
\theta=\cos ^{-1}[-48.0 /(7.35 \times 10.8)]=127^{\circ} .
$$

30. The rate of change of the angular momentum is

$$
\frac{d \vec{\ell}}{d t}=\vec{\tau}_{1}+\vec{\tau}_{2}=(2.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}} .
$$

Consequently, the vector $\overrightarrow{\ell \ell} / d t$ has a magnitude $\sqrt{2.0^{2}+(-4.0)^{2}}=4.5 \mathrm{~N} \cdot \mathrm{~m}$ and is at an angle θ (in the $x y$ plane, or a plane parallel to it) measured from the positive x axis, where

$$
\theta=\tan ^{-1}\left(\frac{-4.0}{2.0}\right)=-63^{\circ},
$$

the negative sign indicating that the angle is measured clockwise as viewed "from above" (by a person on the $+z$ axis).
31. If we write (for the general case) $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{v}$ is equal to

$$
\left(y v_{z}-z v_{y}\right) \hat{\mathrm{i}}+\left(z v_{x}-x v_{z}\right) \hat{\mathrm{j}}+\left(x v_{y}-y v_{x}\right) \hat{\mathrm{k}} .
$$

(a) The angular momentum is given by the vector product $\vec{\ell}=m \vec{r} \times \vec{v}$, where \vec{r} is the position vector of the particle, \vec{v} is its velocity, and $m=3.0 \mathrm{~kg}$ is its mass. Substituting (with SI units understood) $x=3, y=8, z=0, v_{x}=5, v_{y}=-6$ and $v_{z}=0$ into the above expression, we obtain

$$
\vec{\ell}=(3.0)[(3.0)(-6.0)-(8.0)(5.0)] \hat{\mathrm{k}}=\left(-1.7 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}} .
$$

(b) The torque is given by Eq. $11-14, \vec{\tau}=\vec{r} \times \vec{F}$. We write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}$ and $\vec{F}=F_{x} \hat{\mathrm{i}}$ and obtain

$$
\vec{\tau}=(x \hat{\mathrm{i}}+y \hat{\mathrm{j}}) \times\left(F_{x} \hat{\mathrm{i}}\right)=-y F_{x} \hat{\mathrm{k}}
$$

since $\hat{i} \times \hat{i}=0$ and $\hat{j} \times \hat{i}=-\hat{k}$. Thus, we find

$$
\vec{\tau}=-(8.0 \mathrm{~m})(-7.0 \mathrm{~N}) \hat{\mathrm{k}}=(56 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} .
$$

(c) According to Newton's second law $\vec{\tau}=\overrightarrow{d \ell} / d t$, so the rate of change of the angular momentum is $56 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$, in the positive z direction.
32. We use a right-handed coordinate system with $\hat{\mathrm{k}}$ directed out of the $x y$ plane so as to be consistent with counterclockwise rotation (and the right-hand rule). Thus, all the angular momenta being considered are along the $-\hat{\mathrm{k}}$ direction; for example, in part (b) $\vec{\ell}=-4.0 t^{2} \hat{\mathrm{k}}$ in SI units. We use Eq. 11-23.
(a) The angular momentum is constant so its derivative is zero. There is no torque in this instance.
(b) Taking the derivative with respect to time, we obtain the torque:

$$
\vec{\tau}=\frac{d \vec{\ell}}{d t}=(-4.0 \hat{\mathrm{k}}) \frac{d t^{2}}{d t}=(-8.0 t \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} .
$$

This vector points in the $-\hat{\mathrm{k}}$ direction (causing the clockwise motion to speed up) for all t >0.
(c) With $\vec{\ell}=(-4.0 \sqrt{t}) \hat{\mathrm{k}}$ in SI units, the torque is

$$
\vec{\tau}=(-4.0 \hat{\mathrm{k}}) \frac{d \sqrt{t}}{d t}=(-4.0 \hat{\mathrm{k}})\left(\frac{1}{2 \sqrt{t}}\right)
$$

which yields $\vec{\tau}=(-2.0 / \sqrt{t} \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$. This vector points in the $-\hat{\mathrm{k}}$ direction (causing the clockwise motion to speed up) for all $t>0$ (and it is undefined for $t<0$).
(d) Finally, we have

$$
\vec{\tau}=(-4.0 \hat{\mathrm{k}}) \frac{d t^{-2}}{d t}=(-4.0 \hat{\mathrm{k}})\left(\frac{-2}{t^{3}}\right)
$$

which yields $\vec{\tau}=\left(8.0 / t^{3} \mathrm{~N} \cdot \mathrm{~m}\right) \hat{\mathrm{k}}$. This vector points in the $+\hat{\mathrm{k}}$ direction (causing the initially clockwise motion to slow down) for all $t>0$.
33. (a) We note that

$$
\vec{v}=\frac{d \vec{r}}{d t}=8.0 t \hat{\mathrm{i}}-(2.0+12 t) \hat{\mathrm{j}}
$$

with SI units understood. From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we find the particle's angular momentum is $8 t^{2} \hat{\mathrm{k}}$. Using Eq. 11-23 (relating its timederivative to the (single) torque) then yields $\vec{\tau}=48 t \hat{\mathrm{k}}$.
(b) From our (intermediate) result in part (a), we see the angular momentum increases in proportion to t^{2}.
34. (a) Eq. 10-34 gives $\alpha=\tau / I$ and Eq. 10-12 leads to $\omega=\alpha t=\tau t / I$. Therefore, the angular momentum at $t=0.033 \mathrm{~s}$ is

$$
I \omega=\tau t=(16 \mathrm{~N} \cdot \mathrm{~m})(0.033 \mathrm{~s})=0.53 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

where this is essentially a derivation of the angular version of the impulse-momentum theorem.
(b) We find

$$
\omega=\frac{\tau t}{I}=\frac{(16)(0.033)}{1.2 \times 10^{-3}}=440 \mathrm{rad}
$$

which we convert as follows: $\omega=(440)(60 / 2 \pi) \approx 4.2 \times 10^{3} \mathrm{rev} / \mathrm{min}$.
35. (a) Since $\tau=d L / d t$, the average torque acting during any interval Δt is given by $\tau_{\text {avg }}=\left(L_{f}-L_{i}\right) / \Delta t$, where L_{i} is the initial angular momentum and L_{f} is the final angular momentum. Thus

$$
\tau_{\text {avg }}=\frac{0.800 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}-3.00 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{1.50 \mathrm{~s}}=-1.47 \mathrm{~N} \cdot \mathrm{~m},
$$

or $\left|\tau_{\text {avg }}\right|=1.47 \mathrm{~N} \cdot \mathrm{~m}$. In this case the negative sign indicates that the direction of the torque is opposite the direction of the initial angular momentum, implicitly taken to be positive.
(b) The angle turned is $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$. If the angular acceleration α is uniform, then so is the torque and $\alpha=\tau / I$. Furthermore, $\omega_{0}=L_{i} / I$, and we obtain

$$
\theta=\frac{L_{i} t+\frac{1}{2} \tau t^{2}}{I}=\frac{\left(3.00 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)(1.50 \mathrm{~s})+\frac{1}{2}(-1.467 \mathrm{~N} \cdot \mathrm{~m})(1.50 \mathrm{~s})^{2}}{0.140 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=20.4 \mathrm{rad}
$$

(c) The work done on the wheel is

$$
W=\tau \theta=(-1.47 \mathrm{~N} \cdot \mathrm{~m})(20.4 \mathrm{rad})=-29.9 \mathrm{~J}
$$

where more precise values are used in the calculation than what is shown here. An equally good method for finding W is Eq. 10-52, which, if desired, can be rewritten as $W=\left(L_{f}^{2}-L_{i}^{2}\right) / 2 I$.
(d) The average power is the work done by the flywheel (the negative of the work done on the flywheel) divided by the time interval:

$$
P_{\text {avg }}=-\frac{W}{\Delta t}=-\frac{-29.8 \mathrm{~J}}{1.50 \mathrm{~s}}=19.9 \mathrm{~W} .
$$

36. We relate the motions of the various disks by examining their linear speeds (using Eq. 10-18). The fact that the linear speed at the rim of disk A must equal the linear speed at the rim of disk C leads to $\omega_{A}=2 \omega_{C}$. The fact that the linear speed at the hub of disk A must equal the linear speed at the rim of disk B leads to $\omega_{A}=\frac{1}{2} \omega_{B}$. Thus, $\omega_{B}=4 \omega_{C}$. The ratio of their angular momenta depend on these angular velocities as well as their rotational inertias (see item (c) in Table 11-2), which themselves depend on their masses. If h is the thickness and ρ is the density of each disk, then each mass is $\rho \pi R^{2} h$. Therefore,

$$
\frac{L_{C}}{L_{B}}=\frac{(1 / 2) \rho \pi R_{C}^{2} h R_{C}^{2} \omega_{C}}{(1 / 2) \rho \pi R_{B}^{2} h R_{B}^{2} \omega_{B}}=1024 .
$$

37. (a) A particle contributes $m r_{2}$ to the rotational inertia. Here r is the distance from the origin O to the particle. The total rotational inertia is

$$
\begin{aligned}
I & =m(3 d)^{2}+m(2 d)^{2}+m(d)^{2}=14 m d^{2} \\
& =14\left(2.3 \times 10^{-2} \mathrm{~kg}\right)(0.12 \mathrm{~m})^{2}=4.6 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

(b) The angular momentum of the middle particle is given by $L_{m}=I_{m} \omega$, where $I_{m}=4 m d^{2}$ is its rotational inertia. Thus

$$
L_{m}=4 m d^{2} \omega=4\left(2.3 \times 10^{-2} \mathrm{~kg}\right)(0.12 \mathrm{~m})^{2}(0.85 \mathrm{rad} / \mathrm{s})=1.1 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

(c) The total angular momentum is

$$
I \omega=14 m d^{2} \omega=14\left(2.3 \times 10^{-2} \mathrm{~kg}\right)(0.12 \mathrm{~m})^{2}(0.85 \mathrm{rad} / \mathrm{s})=3.9 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

38. The results may be found by integrating Eq. 11-29 with respect to time, keeping in mind that $\vec{L}_{i}=0$ and that the integration may be thought of as "adding the areas" under the line-segments (in the plot of the torque versus time - with "areas" under the time axis contributing negatively). It is helpful to keep in mind, also, that the area of a triangle is $\frac{1}{2}$ (base)(height).
(a) We find that $\vec{L}=24 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$ at $t=7.0 \mathrm{~s}$.
(b) Similarly, $\vec{L}=1.5 \mathrm{kgm}^{2} / \mathrm{s}$ at $t=20 \mathrm{~s}$.
39. (a) For the hoop, we use Table 10-2(h) and the parallel-axis theorem to obtain

$$
I_{1}=I_{\mathrm{com}}+m h^{2}=\frac{1}{2} m R^{2}+m R^{2}=\frac{3}{2} m R^{2} .
$$

Of the thin bars (in the form of a square), the member along the rotation axis has (approximately) no rotational inertia about that axis (since it is thin), and the member farthest from it is very much like it (by being parallel to it) except that it is displaced by a distance h; it has rotational inertia given by the parallel axis theorem:

$$
I_{2}=I_{\mathrm{com}}+m h^{2}=0+m R^{2}=m R^{2} .
$$

Now the two members of the square perpendicular to the axis have the same rotational inertia (that is $I_{3}=I_{4}$). We find I_{3} using Table 10-2(e) and the parallel-axis theorem:

$$
I_{3}=I_{\mathrm{com}}+m h^{2}=\frac{1}{12} m R^{2}+m\left(\frac{R}{2}\right)^{2}=\frac{1}{3} m R^{2} .
$$

Therefore, the total rotational inertia is

$$
I_{1}+I_{2}+I_{3}+I_{4}=\frac{19}{6} m R^{2}=1.6 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

(b) The angular speed is constant:

$$
\omega=\frac{\Delta \theta}{\Delta t}=\frac{2 \pi}{2.5}=2.5 \mathrm{rad} / \mathrm{s} .
$$

Thus, $L=I_{\text {total }} \omega=4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$.
40. We use conservation of angular momentum:

$$
I_{m} \omega_{m}=I_{p} \omega_{p}
$$

The respective angles θ_{m} and θ_{p} by which the motor and probe rotate are therefore related by

$$
\int I_{m} \omega_{m} d t=I_{m} \theta_{m}=\int I_{p} \omega_{p} d t=I_{p} \theta_{p}
$$

which gives

$$
\theta_{m}=\frac{I_{p} \theta_{p}}{I_{m}}=\frac{\left(12 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(30^{\circ}\right)}{2.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}}=180000^{\circ} .
$$

The number of revolutions for the rotor is then $1.8 \times 10^{5} / 360=5.0 \times 10^{2}$ rev.
41. (a) No external torques act on the system consisting of the man, bricks, and platform, so the total angular momentum of the system is conserved. Let I_{i} be the initial rotational inertia of the system and let I_{f} be the final rotational inertia. Then $I_{i} \omega_{i}=I_{f} \omega_{f}$ and

$$
\omega_{f}=\left(\frac{I_{i}}{I_{f}}\right) \omega_{i}=\left(\frac{6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)(1.2 \mathrm{rev} / \mathrm{s})=3.6 \mathrm{rev} / \mathrm{s} .
$$

(b) The initial kinetic energy is $K_{i}=\frac{1}{2} I_{i} \omega_{i}^{2}$, the final kinetic energy is $K_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}$, and their ratio is

$$
\frac{K_{f}}{K_{i}}=\frac{I_{f} \omega_{f}^{2}}{I_{i} \omega_{i}^{2}}=\frac{\left(2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(3.6 \mathrm{rev} / \mathrm{s})^{2}}{\left(6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(1.2 \mathrm{rev} / \mathrm{s})^{2}}=3.0 .
$$

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to his body. This energy came from the man's store of internal energy.
42. (a) We apply conservation of angular momentum: $I_{1} \omega_{1}+I_{2} \omega_{2}=\left(I_{1}+I_{2}\right) \omega$. The angular speed after coupling is therefore

$$
\begin{aligned}
\omega & =\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}=\frac{\left(3.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(450 \mathrm{rev} / \mathrm{min})+\left(6.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(900 \mathrm{rev} / \mathrm{min})}{3.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}+6.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}} \\
& =750 \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

(b) In this case, we obtain

$$
\omega=\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}=\frac{(3.3)(450)+(6.6)(-900)}{3.3+6.6}=-450 \mathrm{rev} / \mathrm{min}
$$

or $|\omega|=450 \mathrm{rev} / \mathrm{min}$.
(c) The minus sign indicates that $\vec{\omega}$ is in the direction of the second disk's initial angular velocity - clockwise.
43. (a) No external torques act on the system consisting of the two wheels, so its total angular momentum is conserved. Let I_{1} be the rotational inertia of the wheel that is originally spinning (at ω_{i}) and I_{2} be the rotational inertia of the wheel that is initially at rest. Then $I_{1} \omega_{i}=\left(I_{1}+I_{2}\right) \omega_{f}$ and

$$
\omega_{f}=\frac{I_{1}}{I_{1}+I_{2}} \omega_{i}
$$

where ω_{f} is the common final angular velocity of the wheels. Substituting $I_{2}=2 I_{1}$ and $\omega_{i}=800 \mathrm{rev} / \mathrm{min}$, we obtain $\omega_{f}=267 \mathrm{rev} / \mathrm{min}$.
(b) The initial kinetic energy is $K_{i}=\frac{1}{2} I_{1} \omega_{i}^{2}$ and the final kinetic energy is $K_{f}=\frac{1}{2}\left(I_{1}+I_{2}\right) \omega_{f}^{2}$. We rewrite this as

$$
K_{f}=\frac{1}{2}\left(I_{1}+2 I_{1}\right)\left(\frac{I_{1} \omega_{i}}{I_{1}+2 I_{1}}\right)^{2}=\frac{1}{6} I \omega_{i}^{2} .
$$

Therefore, the fraction lost, $\left(K_{i}-K_{f}\right) / K_{i}$ is

$$
1-\frac{K_{f}}{K_{i}}=1-\frac{\frac{1}{6} I \omega_{i}^{2}}{\frac{1}{2} I \omega_{i}^{2}}=\frac{2}{3}=0.667 .
$$

44. Using Eq. 11-31 with angular momentum conservation, $\vec{L}_{i}=\vec{L}_{f}$ (Eq. 11-33) leads to the ratio of rotational inertias being inversely proportional to the ratio of angular velocities. Thus, $I_{f} / I_{i}=6 / 5=1.0+0.2$. We interpret the " 1.0 " as the ratio of disk rotational inertias (which does not change in this problem) and the " 0.2 " as the ratio of the roach rotational inertial to that of the disk. Thus, the answer is 0.20 .
45. No external torques act on the system consisting of the train and wheel, so the total angular momentum of the system (which is initially zero) remains zero. Let $I=M R^{2}$ be the rotational inertia of the wheel. Its final angular momentum is

$$
\vec{L}_{f}=I \omega \hat{\mathrm{k}}=-M R^{2}|\omega| \hat{\mathrm{k}}
$$

where $\hat{\mathrm{k}}$ is $u p$ in Fig. 11-47 and that last step (with the minus sign) is done in recognition that the wheel's clockwise rotation implies a negative value for ω. The linear speed of a point on the track is ωR and the speed of the train (going counterclockwise in Fig. 11-47 with speed v^{\prime} relative to an outside observer) is therefore $v^{\prime}=v-|\omega| R$ where v is its speed relative to the tracks. Consequently, the angular momentum of the train is $m(v-|\omega| R) R \hat{\mathrm{k}}$. Conservation of angular momentum yields

$$
0=-M R^{2}|\omega| \hat{\mathrm{k}}+m(v-|\omega| R) R \hat{\mathrm{k}} .
$$

When this equation is solved for the angular speed, the result is

$$
|\omega|=\frac{m v R}{(M+m) R^{2}}=\frac{v}{(M / m+1) R}=\frac{(0.15 \mathrm{~m} / \mathrm{s})}{(1.1+1)(0.43 \mathrm{~m})}=0.17 \mathrm{rad} / \mathrm{s} .
$$

46. Angular momentum conservation $I_{i} \omega_{i}=I_{f} \omega_{f}$ leads to

$$
\frac{\omega_{f}}{\omega_{i}}=\frac{I_{i}}{I_{f}} \omega_{i}=3
$$

which implies

$$
\frac{K_{f}}{K_{i}}=\frac{\frac{1}{2} I_{f} \omega_{f}^{2}}{\frac{1}{2} I_{i} \omega_{i}^{2}}=\frac{I_{f}}{I_{i}}\left(\frac{\omega_{f}}{\omega_{i}}\right)^{2}=3 .
$$

47. We assume that from the moment of grabbing the stick onward, they maintain rigid postures so that the system can be analyzed as a symmetrical rigid body with center of mass midway between the skaters.
(a) The total linear momentum is zero (the skaters have the same mass and equal-andopposite velocities). Thus, their center of mass (the middle of the 3.0 m long stick) remains fixed and they execute circular motion (of radius $r=1.5 \mathrm{~m}$) about it.
(b) Using Eq. 10-18, their angular velocity (counterclockwise as seen in Fig. 11-48) is

$$
\omega=\frac{v}{r}=\frac{1.4}{1.5}=0.93 \mathrm{rad} / \mathrm{s} .
$$

(c) Their rotational inertia is that of two particles in circular motion at $r=1.5 \mathrm{~m}$, so Eq. 10-33 yields

$$
I=\sum m r^{2}=2(50)(1.5)^{2}=225 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Therefore, Eq. 10-34 leads to

$$
K=\frac{1}{2} I \omega^{2} \frac{1}{2}(225)(0.93)^{2}=98 \mathrm{~J}
$$

(d) Angular momentum is conserved in this process. If we label the angular velocity found in part (a) ω_{i} and the rotational inertia of part (b) as I_{i}, we have

$$
I_{i} \omega_{i}=(225)(0.93)=I_{f} \omega_{f} .
$$

The final rotational inertia is $\sum m r_{f}^{2}$ where $r_{f}=0.5 \mathrm{~m}$ so $I_{f}=25 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Using this value, the above expression gives $\omega_{f}=8.4 \mathrm{rad} / \mathrm{s}$.
(e) We find

$$
K_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2}(25)(8.4)^{2}=8.8 \times 10^{2} \mathrm{~J} .
$$

(f) We account for the large increase in kinetic energy (part (e) minus part (c)) by noting that the skaters do a great deal of work (converting their internal energy into mechanical energy) as they pull themselves closer - "fighting" what appears to them to be large "centrifugal forces" trying to keep them apart.
48. So that we don't get confused about \pm signs, we write the angular speed to the lazy Susan as $|\omega|$ and reserve the ω symbol for the angular velocity (which, using a common convention, is negative-valued when the rotation is clockwise). When the roach "stops" we recognize that it comes to rest relative to the lazy Susan (not relative to the ground).
(a) Angular momentum conservation leads to

$$
m v R+I \omega_{0}=\left(m R^{2}+I\right) \omega_{f}
$$

which we can write (recalling our discussion about angular speed versus angular velocity) as

$$
m v R-I\left|\omega_{0}\right|=-\left(m R^{2}+I\right)\left|\omega_{f}\right| .
$$

We solve for the final angular speed of the system:

$$
\begin{aligned}
\left|\omega_{f}\right| & =\frac{m v R-I\left|\omega_{0}\right|}{m R^{2}+I}=\frac{(0.17 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})(0.15 \mathrm{~m})-\left(5.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(2.8 \mathrm{rad} / \mathrm{s})}{\left(5.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)+(0.17 \mathrm{~kg})(0.15 \mathrm{~m})^{2}} \\
& =4.2 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

(b) No, $K_{f} \neq K_{i}$ and - if desired - we can solve for the difference:

$$
K_{i}-K_{f}=\frac{m I}{2} \frac{v^{2}+\omega_{0}^{2} R^{2}+2 R v\left|\omega_{0}\right|}{m R^{2}+I}
$$

which is clearly positive. Thus, some of the initial kinetic energy is "lost" - that is, transferred to another form. And the culprit is the roach, who must find it difficult to stop (and "internalize" that energy).
49. For simplicity, we assume the record is turning freely, without any work being done by its motor (and without any friction at the bearings or at the stylus trying to slow it down). Before the collision, the angular momentum of the system (presumed positive) is $I_{i} \omega_{i}$ where $I_{i}=5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and $\omega_{i}=4.7 \mathrm{rad} / \mathrm{s}$. The rotational inertia afterwards is

$$
I_{f}=I_{i}+m R^{2}
$$

where $m=0.020 \mathrm{~kg}$ and $R=0.10 \mathrm{~m}$. The mass of the record $(0.10 \mathrm{~kg})$, although given in the problem, is not used in the solution. Angular momentum conservation leads to

$$
I_{i} \omega_{i}=I_{f} \omega_{f} \Rightarrow \omega_{f}=\frac{I_{i} \omega_{i}}{I_{i}+m R^{2}}=3.4 \mathrm{rad} / \mathrm{s} .
$$

50. (a) We consider conservation of angular momentum (Eq. 11-33) about the center of the rod:

$$
\vec{L}_{i}=\vec{L}_{f} \Rightarrow \quad-d m v+\frac{1}{12} M L^{2} \omega=0
$$

where negative is used for "clockwise." Item (e) in Table 01-2 and Eq. 11-21 (with $r_{\perp}=d$) have also been used. This leads to

$$
d=\frac{M L^{2} \omega}{12 m \mathrm{v}}=\frac{M(0.60 \mathrm{~m})^{2}(80 \mathrm{rad} / \mathrm{s})}{12(M / 3)(40 \mathrm{~m} / \mathrm{s})}=0.180 \mathrm{~m}
$$

(b) Increasing d causes the magnitude of the negative (clockwise) term in the above equation to increase. This would make the total angular momentum negative before the collision, and (by Eq. 11-33) also negative afterwards. Thus, the system would rotate clockwise if d were greater.
51. The axis of rotation is in the middle of the rod, with $r=0.25 \mathrm{~m}$ from either end. By Eq. 11-19, the initial angular momentum of the system (which is just that of the bullet, before impact) is $r m v \sin \theta$ where $m=0.003 \mathrm{~kg}$ and $\theta=60^{\circ}$. Relative to the axis, this is counterclockwise and thus (by the common convention) positive. After the collision, the moment of inertia of the system is

$$
I=I_{\mathrm{rod}}+m r^{2}
$$

where $I_{\mathrm{rod}}=M L^{2} / 12$ by Table $10-2(\mathrm{e})$, with $M=4.0 \mathrm{~kg}$ and $L=0.5 \mathrm{~m}$. Angular momentum conservation leads to

$$
r m v \sin \theta=\left(\frac{1}{12} M L^{2}+m r^{2}\right) \omega .
$$

Thus, with $\omega=10 \mathrm{rad} / \mathrm{s}$, we obtain

$$
v=\frac{\left(\frac{1}{12}(4.0)(0.5)^{2}+(0.003)(0.25)^{2}\right)(10)}{(0.25)(0.003) \sin 60^{\circ}}=1.3 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

52. We denote the cockroach with subscript 1 and the disk with subscript 2 . The cockroach has a mass $m_{1}=m$, while the mass of the disk is $m_{2}=4.00 \mathrm{~m}$.
(a) Initially the angular momentum of the system consisting of the cockroach and the disk is

$$
L_{i}=m_{1} v_{1 i} r_{1 i}+I_{2} \omega_{2 i}=m_{1} \omega_{0} R^{2}+\frac{1}{2} m_{2} \omega_{0} R^{2}
$$

After the cockroach has completed its walk, its position (relative to the axis) is $r_{1 f}=R / 2$ so the final angular momentum of the system is

$$
L_{f}=m_{1} \omega_{f}\left(\frac{R}{2}\right)^{2}+\frac{1}{2} m_{2} \omega_{f} R^{2}
$$

Then from $L_{f}=L_{i}$ we obtain

$$
\omega_{f}\left(\frac{1}{4} m_{1} R^{2}+\frac{1}{2} m_{2} R\right)=\omega_{0}\left(m_{1} R^{2}+\frac{1}{2} m_{2} R^{2}\right) .
$$

Thus,

$$
\omega_{f}=\left(\frac{m_{1} R^{2}+m_{2} R^{2} / 2}{m_{1} R^{2} / 4+m_{2} R^{2} / 2}\right) \omega_{0}=\left(\frac{1+\left(m_{2} / m_{1}\right) / 2}{1 / 4+\left(m_{2} / m_{1}\right) / 2}\right) \omega_{0}=\left(\frac{1+2}{1 / 4+2}\right) \omega_{0}=1.33 \omega_{0} .
$$

With $\omega_{0}=0.260 \mathrm{rad} / \mathrm{s}$, we have $\omega_{f}=0.347 \mathrm{rad} / \mathrm{s}$.
(b) We substitute $I=L / \omega$ into $K=\frac{1}{2} I \omega^{2}$ and obtain $K=\frac{1}{2} L \omega$. Since we have $L_{i}=L_{f}$, the kinetic energy ratio becomes

$$
\frac{K}{K_{0}}=\frac{\frac{1}{2} L_{f} \omega_{f}}{\frac{1}{2} L_{i} \omega_{i}}=\frac{\omega_{f}}{\omega_{0}}=1.33 .
$$

(c) The cockroach does positive work while walking toward the center of the disk, increasing the total kinetic energy of the system.
53. By angular momentum conservation (Eq. 11-33), the total angular momentum after the explosion must be equal to before the explosion:

$$
\begin{gathered}
L_{p}^{\prime}+L_{r}^{\prime}=L_{p}+L_{r} \\
\left(\frac{L}{2}\right) m v_{\mathrm{p}}+\frac{1}{12} M L^{2} \omega^{\prime}=I_{\mathrm{p}} \omega+\frac{1}{12} M L^{2} \omega
\end{gathered}
$$

where one must be careful to avoid confusing the length of the $\operatorname{rod}(L=0.800 \mathrm{~m})$ with the angular momentum symbol. Note that $I_{\mathrm{p}}=m(L / 2)^{2}$ by Eq.10-33, and

$$
\omega^{\prime}=v_{\mathrm{end}} / r=\left(v_{\mathrm{p}}-6\right) /(L / 2),
$$

where the latter relation follows from the penultimate sentence in the problem (and " 6 " stands for " $6.00 \mathrm{~m} / \mathrm{s}$ " here). Since $M=3 m$ and $\omega=20 \mathrm{rad} / \mathrm{s}$, we end up with enough information to solve for the particle speed: $v_{\mathrm{p}}=11.0 \mathrm{~m} / \mathrm{s}$.
54. The initial rotational inertia of the system is $I_{i}=I_{\text {disk }}+I_{\text {student }}$, where $I_{\text {disk }}=300$ $\mathrm{kg} \cdot \mathrm{m}^{2}$ (which, incidentally, does agree with Table $10-2(\mathrm{c})$) and $I_{\text {student }}=m R^{2}$ where $m=$ 60 kg and $R=2.0 \mathrm{~m}$.

The rotational inertia when the student reaches $r=0.5 \mathrm{~m}$ is $I_{f}=I_{\text {disk }}+m r^{2}$. Angular momentum conservation leads to

$$
I_{i} \omega_{i}=I_{f} \omega_{f} \Rightarrow \omega_{f}=\omega_{i} \frac{I_{\mathrm{disk}}+m R^{2}}{I_{\mathrm{disk}}+m r^{2}}
$$

which yields, for $\omega_{i}=1.5 \mathrm{rad} / \mathrm{s}$, a final angular velocity of $\omega_{f}=2.6 \mathrm{rad} / \mathrm{s}$.
55. Their angular velocities, when they are stuck to each other, are equal, regardless of whether they share the same central axis. The initial rotational inertia of the system is

$$
I_{0}=I_{\text {bigdisk }}+I_{\text {small disk }} \quad \text { where } \quad I_{\text {bigdisk }}=\frac{1}{2} M R^{2}
$$

using Table 10-2(c). Similarly, since the small disk is initially concentric with the big one, $I_{\text {smald disk }}=\frac{1}{2} m r^{2}$. After it slides, the rotational inertia of the small disk is found from the parallel axis theorem (using $h=R-r$). Thus, the new rotational inertia of the system is

$$
I=\frac{1}{2} M R^{2}+\frac{1}{2} m r^{2}+m(R-r)^{2} .
$$

(a) Angular momentum conservation, $I_{0} \omega_{0}=I \omega$, leads to the new angular velocity:

$$
\omega=\omega_{0} \frac{\frac{1}{2} M R^{2}+\frac{1}{2} m r^{2}}{\frac{1}{2} M R^{2}+\frac{1}{2} m r^{2}+m(R-r)^{2}} .
$$

Substituting $M=10 m$ and $R=3 r$, this becomes $\omega=\omega_{0}(91 / 99)$. Thus, with $\omega_{0}=20 \mathrm{rad} / \mathrm{s}$, we find $\omega=18 \mathrm{rad} / \mathrm{s}$.
(b) From the previous part, we know that

$$
\frac{I_{0}}{I}=\frac{91}{99} \quad \text { and } \quad \frac{\omega}{\omega_{0}}=\frac{91}{99} .
$$

Plugging these into the ratio of kinetic energies, we have

$$
\frac{K}{K_{0}}=\frac{\frac{1}{2} I \omega^{2}}{\frac{1}{2} I_{0} \omega_{0}^{2}}=\frac{I}{I_{0}}\left(\frac{\omega}{\omega_{0}}\right)^{2}=\frac{99}{91}\left(\frac{91}{99}\right)^{2}=0.92
$$

56. (a) With $r=0.60 \mathrm{~m}$, we obtain $I=0.060+(0.501) r^{2}=0.24 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
(b) Invoking angular momentum conservation, with SI units understood,

$$
\ell_{0}=L_{f} \Rightarrow m v_{0} r=I \omega \Rightarrow(0.001) v_{0}(0.60)=(0.24)(4.5)
$$

which leads to $v_{0}=1.8 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
57. We make the unconventional choice of clockwise sense as positive, so that the angular velocities in this problem are positive. With $r=0.60 \mathrm{~m}$ and $I_{0}=0.12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, the rotational inertia of the putty-rod system (after the collision) is

$$
I=I_{0}+(0.20) r^{2}=0.19 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Invoking angular momentum conservation, with SI units understood, we have

$$
L_{0}=L_{f} \Rightarrow I_{0} \omega_{0}=I \omega \quad \Rightarrow \quad(0.12)(2.4)=(0.19) \omega
$$

which yields $\omega=1.5 \mathrm{rad} / \mathrm{s}$.
58. This is a completely inelastic collision which we analyze using angular momentum conservation. Let m and v_{0} be the mass and initial speed of the ball and R the radius of the merry-go-round. The initial angular momentum is

$$
\vec{\ell}_{0}=\vec{r}_{0} \times \vec{p}_{0} \Rightarrow \ell_{0}=R\left(m v_{0}\right) \cos 37^{\circ}
$$

where $\phi=37^{\circ}$ is the angle between \vec{v}_{0} and the line tangent to the outer edge of the merry-go-around. Thus, $\ell_{0}=19 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$. Now, with SI units understood,

$$
\ell_{0}=L_{f} \Rightarrow 19=I \omega=\left(150+(30) R^{2}+(1.0) R^{2}\right) \omega
$$

so that $\omega=0.070 \mathrm{rad} / \mathrm{s}$.
59. (a) If we consider a short time interval from just before the wad hits to just after it hits and sticks, we may use the principle of conservation of angular momentum. The initial angular momentum is the angular momentum of the falling putty wad. The wad initially moves along a line that is $d / 2$ distant from the axis of rotation, where $d=0.500 \mathrm{~m}$ is the length of the rod. The angular momentum of the wad is $m v d / 2$ where $m=0.0500 \mathrm{~kg}$ and $v=3.00 \mathrm{~m} / \mathrm{s}$ are the mass and initial speed of the wad. After the wad sticks, the rod has angular velocity ω and angular momentum $I \omega$, where I is the rotational inertia of the system consisting of the rod with the two balls and the wad at its end. Conservation of angular momentum yields $m v d / 2=I \omega$ where

$$
I=(2 M+m)(d / 2)^{2}
$$

and $M=2.00 \mathrm{~kg}$ is the mass of each of the balls. We solve

$$
m v d / 2=(2 M+m)(d / 2)^{2} \omega
$$

for the angular speed:

$$
\omega=\frac{2 m v}{(2 M+m) d}=\frac{2(0.0500)(3.00)}{(2(2.00)+0.0500)(0.500)}=0.148 \mathrm{rad} / \mathrm{s} .
$$

(b) The initial kinetic energy is $K_{i}=\frac{1}{2} m v^{2}$, the final kinetic energy is $K_{f}=\frac{1}{2} I \omega^{2}$, and their ratio is $K_{f} / K_{i}=I \omega^{2} / m v^{2}$. When $I=(2 M+m) d^{2} / 4$ and $\omega=2 m v /(2 M+m) d$ are substituted, this becomes

$$
\frac{K_{f}}{K_{i}}=\frac{m}{2 M+m}=\frac{0.0500}{2(2.00)+0.0500}=0.0123 .
$$

(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of the balls is lowered a distance h, the other is raised the same distance and the sum of the potential energies of the balls does not change. We need consider only the potential energy of the putty wad. It moves through a 90° arc to reach the lowest point on its path, gaining kinetic energy and losing gravitational potential energy as it goes. It then swings up through an angle θ, losing kinetic energy and gaining potential energy, until it momentarily comes to rest. Take the lowest point on the path to be the zero of potential energy. It starts a distance $d / 2$ above this point, so its initial potential energy is $U_{i}=$ $m g d / 2$. If it swings up to the angular position θ, as measured from its lowest point, then its final height is $(d / 2)(1-\cos \theta)$ above the lowest point and its final potential energy is

$$
U_{f}=m g(d / 2)(1-\cos \theta) .
$$

The initial kinetic energy is the sum of that of the balls and wad:

$$
K_{i}=\frac{1}{2} I \omega^{2}=\frac{1}{2}(2 M+m)(d / 2)^{2} \omega^{2}
$$

At its final position, we have $K_{f}=0$. Conservation of energy provides the relation:

$$
m g \frac{d}{2}+\frac{1}{2}(2 M+m)\left(\frac{d}{2}\right)^{2} \omega^{2}=m g \frac{d}{2}(1-\cos \theta)
$$

When this equation is solved for $\cos \theta$, the result is

$$
\begin{aligned}
\cos \theta & =-\frac{1}{2}\left(\frac{2 M+m}{m g}\right)\left(\frac{d}{2}\right) \omega^{2}=-\frac{1}{2}\left(\frac{2(2.00 \mathrm{~kg})+0.0500 \mathrm{~kg}}{(0.0500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}\right)\left(\frac{0.500 \mathrm{~m}}{2}\right)(0.148 \mathrm{rad} / \mathrm{s})^{2} \\
& =-0.0226
\end{aligned}
$$

Consequently, the result for θ is 91.3°. The total angle through which it has swung is 90° $+91.3^{\circ}=181^{\circ}$.
60. We make the unconventional choice of clockwise sense as positive, so that the angular velocities (and angles) in this problem are positive. Mechanical energy conservation applied to the particle (before impact) leads to

$$
m g h=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{2 g h}
$$

for its speed right before undergoing the completely inelastic collision with the rod. The collision is described by angular momentum conservation:

$$
m v d=\left(I_{\mathrm{rod}}+m d^{2}\right) \omega
$$

where $I_{\text {rod }}$ is found using Table 10-2(e) and the parallel axis theorem:

$$
I_{\mathrm{rod}}=\frac{1}{12} M d^{2}+M\left(\frac{d}{2}\right)^{2}=\frac{1}{3} M d^{2}
$$

Thus, we obtain the angular velocity of the system immediately after the collision:

$$
\omega=\frac{m d \sqrt{2 g h}}{\frac{1}{3} M d^{2}+m d^{2}}
$$

which means the system has kinetic energy $\left(I_{\text {rod }}+m d^{2}\right) \omega^{2} / 2$ which will turn into potential energy in the final position, where the block has reached a height H (relative to the lowest point) and the center of mass of the stick has increased its height by $H / 2$. From trigonometric considerations, we note that $H=d(1-\cos \theta)$, so we have

$$
\frac{1}{2}\left(I_{\mathrm{rod}}+m d^{2}\right) \omega^{2}=m g H+M g \frac{H}{2} \Rightarrow \frac{1}{2} \frac{m^{2} d^{2}(2 g h)}{\left(M d^{2} / 3\right)+m d^{2}}=\left(m+\frac{M}{2}\right) g d(1-\cos \theta)
$$

from which we obtain

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(1-\frac{m^{2} h}{(m+M / 2)(m+M / 3)}\right)=\cos ^{-1}\left(1-\frac{h / d}{\left(1+\frac{1}{2} \frac{M}{m}\right)\left(1+\frac{1}{3} \frac{M}{m}\right)}\right) \\
& =\cos ^{-1}\left(1-\frac{(20 \mathrm{~cm} / 40 \mathrm{~cm})}{(1+1)(1+2 / 3)}\right)=\cos ^{-1}(0.85) \\
& =32^{\circ} .
\end{aligned}
$$

61. (a) The angular speed of the top is $\omega=30 \mathrm{rev} / \mathrm{s}=30(2 \pi) \mathrm{rad} / \mathrm{s}$. The precession rate of the top can be obtained by using Eq. 11-46:

$$
\Omega=\frac{M g r}{I \omega}=\frac{(0.50 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.040 \mathrm{~m})}{\left(5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(60 \pi \mathrm{rad} / \mathrm{s})}=2.08 \mathrm{rad} / \mathrm{s} \approx 0.33 \mathrm{rev} / \mathrm{s} .
$$

(b) The direction of the precession is clockwise as viewed from overhead.
62. The precession rate can be obtained by using Eq. 11-46 with $r=(11 / 2) \mathrm{cm}=0.055 \mathrm{~m}$. Noting that $I_{\text {disk }}=M R^{2} / 2$ and its angular speed is

$$
\omega=1000 \mathrm{rev} / \mathrm{min}=\frac{2 \pi(1000)}{60} \mathrm{rad} / \mathrm{s} \approx 1.0 \times 10^{2} \mathrm{rad} / \mathrm{s},
$$

we have

$$
\Omega=\frac{M g r}{\left(M R^{2} / 2\right) \omega}=\frac{2 g r}{R^{2} \omega}=\frac{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.055 \mathrm{~m})}{(0.50 \mathrm{~m})^{2}\left(1.0 \times 10^{2} \mathrm{rad} / \mathrm{s}\right)} \approx 0.041 \mathrm{rad} / \mathrm{s} .
$$

63. The total angular momentum (about the origin) before the collision (using Eq. 11-18 and Eq. 3-30 for each particle and then adding the terms) is

$$
\vec{L}_{i}=[(0.5 \mathrm{~m})(2.5 \mathrm{~kg})(3.0 \mathrm{~m} / \mathrm{s})+(0.1 \mathrm{~m})(4.0 \mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})] \hat{\mathrm{k}} .
$$

The final angular momentum of the stuck-together particles (after the collision) measured relative to the origin is (using Eq. 11-33) $\vec{L}_{f}=\vec{L}_{i}=\left(5.55 \mathrm{kgm}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}$.
64. (a) We choose clockwise as the negative rotational sense and rightwards as the positive translational direction. Thus, since this is the moment when it begins to roll smoothly, Eq. 11-2 becomes $v_{\mathrm{com}}=-R \omega=(-0.11 \mathrm{~m}) \omega$.

This velocity is positive-valued (rightward) since ω is negative-valued (clockwise) as shown in Fig. 11-57.
(b) The force of friction exerted on the ball of mass m is $-\mu_{k} m g$ (negative since it points left), and setting this equal to $m a_{\text {com }}$ leads to

$$
a_{\mathrm{com}}=-\mu g=-(0.21)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=-2.1 \mathrm{~m} / \mathrm{s}^{2}
$$

where the minus sign indicates that the center of mass acceleration points left, opposite to its velocity, so that the ball is decelerating.
(c) Measured about the center of mass, the torque exerted on the ball due to the frictional force is given by $\tau=-\mu m g R$. Using Table $10-2(\mathrm{f})$ for the rotational inertia, the angular acceleration becomes (using Eq. 10-45)

$$
\alpha=\frac{\tau}{I}=\frac{-\mu m g R}{2 m R^{2} / 5}=\frac{-5 \mu g}{2 R}=\frac{-5(0.21)(9.8)}{2(0.11)}=-47 \mathrm{rad} / \mathrm{s}^{2}
$$

where the minus sign indicates that the angular acceleration is clockwise, the same direction as ω (so its angular motion is "speeding up').
(d) The center-of-mass of the sliding ball decelerates from $v_{\text {com }, 0}$ to $v_{\text {com }}$ during time t according to Eq. 2-11: $v_{\text {com }}=v_{\text {com }, 0}-\mu g t$. During this time, the angular speed of the ball increases (in magnitude) from zero to $|\omega|$ according to Eq. 10-12:

$$
|\omega|=|\alpha| t=\frac{5 \mu g t}{2 R}=\frac{v_{\mathrm{com}}}{R}
$$

where we have made use of our part (a) result in the last equality. We have two equations involving $v_{\text {com }}$, so we eliminate that variable and find

$$
t=\frac{2 v_{\mathrm{com}, 0}}{7 \mu g}=\frac{2(8.5)}{7(0.21)(9.8)}=1.2 \mathrm{~s}
$$

(e) The skid length of the ball is (using Eq. 2-15)

$$
\Delta x=v_{\text {com }, 0} t-\frac{1}{2}(\mu g) t^{2}=(8.5)(1.2)-\frac{1}{2}(0.21)(9.8)(1.2)^{2}=8.6 \mathrm{~m} .
$$

(f) The center of mass velocity at the time found in part (d) is

$$
v_{\mathrm{com}}=v_{\mathrm{com}, 0}-\mu g t=8.5-(0.21)(9.8)(1.2)=6.1 \mathrm{~m} / \mathrm{s} .
$$

65. Item (i) in Table 10-2 gives the moment of inertia about the center of mass in terms of width $a(0.15 \mathrm{~m})$ and length $b(0.20 \mathrm{~m})$. In using the parallel axis theorem, the distance from the center to the point about which it spins (as described in the problem) is $\sqrt{(a / 4)^{2}+(b / 4)^{2}}$. If we denote the thickness as $h(0.012 \mathrm{~m})$ then the volume is $a b h$, which means the mass is $\rho a b h$ (where $\rho=2640 \mathrm{~kg} / \mathrm{m}^{3}$ is the density). We can write the kinetic energy in terms of the angular momentum by substituting $\omega=L / I$ into Eq. 10-34:

$$
K=\frac{1}{2} \frac{L^{2}}{I}=\frac{1}{2} \frac{(0.104)^{2}}{\rho a b h\left(\left(a^{2}+b^{2}\right) / 12+(a / 4)^{2}+(b / 4)^{2}\right)}=0.62 \mathrm{~J}
$$

66. We denote the cat with subscript 1 and the ring with subscript 2 . The cat has a mass $m_{1}=M / 4$, while the mass of the ring is $m_{2}=M=8.00 \mathrm{~kg}$. The moment of inertia of the ring is $I_{2}=m_{2}\left(R_{1}^{2}+R_{2}^{2}\right) / 2$ (Table 10-2), and $I_{1}=m_{1} r^{2}$ for the cat, where r is the perpendicular distance from the axis of rotation.

Initially the angular momentum of the system consisting of the cat (at $r=R_{2}$) and the ring is

$$
L_{i}=m_{1} v_{1 i} r_{1 i}+I_{2} \omega_{2 i}=m_{1} \omega_{0} R_{2}^{2}+\frac{1}{2} m_{2}\left(R_{1}^{2}+R_{2}^{2}\right) \omega_{0}=m_{1} R_{2}^{2} \omega_{0}\left[1+\frac{1}{2} \frac{m_{2}}{m_{1}}\left(\frac{R_{1}^{2}}{R_{2}^{2}}+1\right)\right] .
$$

After the cat has crawled to the inner edge at $r=R_{1}$ the final angular momentum of the system is

$$
L_{f}=m_{1} \omega_{f} R_{1}^{2}+\frac{1}{2} m_{2}\left(R_{1}^{2}+R_{2}^{2}\right) \omega_{f}=m_{1} R_{1}^{2} \omega_{f}\left[1+\frac{1}{2} \frac{m_{2}}{m_{1}}\left(1+\frac{R_{2}^{2}}{R_{1}^{2}}\right)\right]
$$

Then from $L_{f}=L_{i}$ we obtain

$$
\frac{\omega_{f}}{\omega_{0}}=\frac{R_{2}^{2}}{R_{1}^{2}} \frac{1+\frac{1}{2} \frac{m_{2}}{m_{1}}\left(\frac{R_{1}^{2}}{R_{2}^{2}}+1\right)}{1+\frac{1}{2} \frac{m_{2}}{m_{1}}\left(1+\frac{R_{2}^{2}}{R_{1}^{2}}\right)}=(2.0)^{2} \frac{1+2(0.25+1)}{1+2(1+4)}=1.273
$$

Thus, $\omega_{f}=1.273 \omega_{0}$. Using $\omega_{0}=8.00 \mathrm{rad} / \mathrm{s}$, we have $\omega_{f}=10.2 \mathrm{rad} / \mathrm{s}$. By substituting $I=$ L / ω into $K=\frac{1}{2} I \omega^{2}$, we obtain $K=\frac{1}{2} L \omega$. Since $L_{i}=L_{f}$, the kinetic energy ratio becomes

$$
\frac{K_{f}}{K_{i}}=\frac{\frac{1}{2} L_{f} \omega_{f}}{\frac{1}{2} L_{i} \omega_{i}}=\frac{\omega_{f}}{\omega_{0}}=1.273
$$

which implies $\Delta K=K_{f}-K_{i}=0.273 K_{i}$. The cat does positive work while walking toward the center of the ring, increasing the total kinetic energy of the system.

Since the initial kinetic energy is given by

$$
\begin{aligned}
K_{i} & =\frac{1}{2}\left[m_{1} R_{2}^{2}+\frac{1}{2} m_{2}\left(R_{1}^{2}+R_{2}^{2}\right)\right] \omega_{0}^{2}=\frac{1}{2} m_{1} R_{2}^{2} \omega_{0}^{2}\left[1+\frac{1}{2} \frac{m_{2}}{m_{1}}\left(\frac{R_{1}^{2}}{R_{2}^{2}}+1\right)\right] \\
& =\frac{1}{2}(2.00 \mathrm{~kg})(0.800 \mathrm{~m})^{2}(8.00 \mathrm{rad} / \mathrm{s})^{2}\left[1+(1 / 2)(4)\left(0.5^{2}+1\right)\right] \\
& =143.36 \mathrm{~J},
\end{aligned}
$$

the increase in kinetic energy is $\Delta K=(0.273)(143.36 \mathrm{~J})=39.1 \mathrm{~J}$.
67. (a) The diagram below shows the particles and their lines of motion. The origin is marked O and may be anywhere. The angular momentum of particle 1 has magnitude

$$
\ell_{1}=m v r_{1} \sin \theta_{1}=m v(d+h)
$$

and it is into the page. The angular momentum of particle 2 has magnitude

$$
\ell_{2}=m v r_{2} \sin \theta_{2}=m v h
$$

and it is out of the page. The net angular momentum has magnitude

$$
\begin{aligned}
L & =m v(d+h)-m v h=m v d \\
& =\left(2.90 \times 10^{-4} \mathrm{~kg}\right)(5.46 \mathrm{~m} / \mathrm{s})(0.042 \mathrm{~m}) \\
& =6.65 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\end{aligned}
$$

and is into the page. This result is independent of the location of the origin.

(b) As indicated above, the expression does not change.
(c) Suppose particle 2 is traveling to the right. Then

$$
L=m v(d+h)+m v h=m v(d+2 h) .
$$

This result depends on h, the distance from the origin to one of the lines of motion. If the origin is midway between the lines of motion, then $h=-d / 2$ and $L=0$.
(d) As we have seen in part (c), the result depends on the choice of origin.
68. (a) When the small sphere is released at the edge of the large "bowl" (the hemisphere of radius R), its center of mass is at the same height at that edge, but when it is at the bottom of the "bowl" its center of mass is a distance r above the bottom surface of the hemisphere. Since the small sphere descends by $R-r$, its loss in gravitational potential energy is $m g(R-r)$, which, by conservation of mechanical energy, is equal to its kinetic energy at the bottom of the track. Thus,

$$
\begin{aligned}
K & =m g(R-r) \\
& =\left(5.6 \times 10^{-4} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.15 \mathrm{~m}-0.0025 \mathrm{~m}) \\
& =8.1 \times 10^{-4} \mathrm{~J} .
\end{aligned}
$$

(b) Using Eq. 11-5 for K, the asked-for fraction becomes

$$
\frac{K_{\mathrm{rot}}}{K}=\frac{\frac{1}{2} I \omega^{2}}{\frac{1}{2} I \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}}=\frac{1}{1+\left(\frac{M}{I}\right)\left(\frac{v_{\mathrm{com}}}{\omega}\right)^{2}} .
$$

Substituting $v_{\text {com }}=R \omega$ (Eq. 11-2) and $I=\frac{2}{5} M R^{2}$ (Table 10-2(f)), we obtain

$$
\frac{K_{\mathrm{rot}}}{K}=\frac{1}{1+\left(\frac{5}{2 R^{2}}\right) R^{2}}=\frac{2}{7} \approx 0.29 .
$$

(c) The small sphere is executing circular motion so that when it reaches the bottom, it experiences a radial acceleration upward (in the direction of the normal force which the "bowl" exerts on it). From Newton's second law along the vertical axis, the normal force F_{N} satisfies $F_{N}-m g=m a_{\text {com }}$ where

$$
a_{\mathrm{com}}=v_{\mathrm{com}}^{2} /(R-r) .
$$

Therefore,

$$
F_{N}=m g+\frac{m v_{\mathrm{com}}^{2}}{R-r}=\frac{m g(R-r)+m v_{\mathrm{com}}^{2}}{R-r} .
$$

But from part (a), $m g(R-r)=K$, and from Eq. 11-5, $\frac{1}{2} m v_{\mathrm{com}}^{2}=K-K_{\mathrm{rot}}$. Thus,

$$
F_{N}=\frac{K+2\left(K-K_{\mathrm{rot}}\right)}{R-r}=3\left(\frac{K}{R-r}\right)-2\left(\frac{K_{\mathrm{rot}}}{R-r}\right) .
$$

We now plug in $R-r=K / m g$ and use the result of part (b):

$$
F_{N}=3 m g-2 m g\left(\frac{2}{7}\right)=\frac{17}{7} m g=\frac{17}{7}\left(5.6 \times 10^{-4} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.3 \times 10^{-2} \mathrm{~N} .
$$

69. Since we will be taking the vector cross product in the course of our calculations, below, we note first that when the two vectors in a cross product $\vec{A} \times \vec{B}$ are in the $x y$ plane, we have $\vec{A}=A_{x} \hat{\mathrm{i}}+A_{y} \hat{\mathrm{j}}$ and $\vec{B}=B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}$, and Eq. 3-30 leads to

$$
\vec{A} \times \vec{B}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathrm{k}} .
$$

Now, we choose coordinates centered on point O, with $+x$ rightwards and $+y$ upwards. In unit-vector notation, the initial position of the particle, then, is $\vec{r}_{0}=s \hat{\dot{i}}$ and its later position (halfway to the ground) is $\vec{r}=s \hat{\mathrm{i}}-\frac{1}{2} h \hat{\mathrm{j}}$. Using either the free-fall equations of Ch. 2 or the energy techniques of Ch .8 , we find the speed at its later position to be $v=\sqrt{2 g|\Delta y|}=\sqrt{g h}$. Its momentum there is $\vec{p}=-M \sqrt{g h} \hat{\mathrm{j}}$. We find the angular momentum using Eq. 11-18 and our observation, above, about the cross product of two vectors in the $x y$ plane.

$$
\vec{\ell}=\vec{r} \times \vec{p}=-s M \sqrt{g h} \hat{\mathrm{k}}
$$

Therefore, its magnitude is

$$
|\vec{\ell}|=s M \sqrt{g h}=(0.45 \mathrm{~m})(0.25 \mathrm{~kg}) \sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.8 \mathrm{~m})}=0.47 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

70. From $I=\frac{2}{3} M R^{2}$ (Table 10-2(g)) we find

$$
M=\frac{3 I}{2 R^{2}}=\frac{3(0.040)}{2(0.15)^{2}}=2.7 \mathrm{~kg} .
$$

It also follows from the rotational inertia expression that $\frac{1}{2} I \omega^{2}=\frac{1}{3} M R^{2} \omega^{2}$. Furthermore, it rolls without slipping, $v_{\mathrm{com}}=R \omega$, and we find

$$
\frac{K_{\mathrm{rot}}}{K_{\mathrm{com}}+K_{\mathrm{rot}}}=\frac{\frac{1}{3} M R^{2} \omega^{2}}{\frac{1}{2} m R^{2} \omega^{2}+\frac{1}{3} M R^{2} \omega^{2}}
$$

(a) Simplifying the above ratio, we find $K_{\mathrm{rot}} / K=0.4$. Thus, 40% of the kinetic energy is rotational, or

$$
K_{\mathrm{rot}}=(0.4)(20)=8.0 \mathrm{~J} .
$$

(b) From $K_{\text {rot }}=\frac{1}{3} M R^{2} \omega^{2}=8.0 \mathrm{~J}$ (and using the above result for M) we find

$$
\omega=\frac{1}{0.15 \mathrm{~m}} \sqrt{\frac{3(8.0 \mathrm{~J})}{2.7 \mathrm{~kg}}}=20 \mathrm{rad} / \mathrm{s}
$$

which leads to $v_{\text {com }}=(0.15)(20)=3.0 \mathrm{~m} / \mathrm{s}$.
(c) We note that the inclined distance of 1.0 m corresponds to a height $h=1.0 \sin 30^{\circ}=$ 0.50 m . Mechanical energy conservation leads to

$$
K_{i}=K_{f}+U_{f} \Rightarrow 20 \mathrm{~J}=K_{f}+M g h
$$

which yields (using the values of M and h found above) $K_{f}=6.9 \mathrm{~J}$.
(d) We found in part (a) that 40% of this must be rotational, so

$$
\frac{1}{3} M R^{2} \omega_{f}^{2}=(0.40) K_{f} \Rightarrow \omega_{f}=\frac{1}{0.15} \sqrt{\frac{3(0.40)(6.9)}{2.7}}
$$

which yields $\omega_{f}=12 \mathrm{rad} / \mathrm{s}$ and leads to

$$
v_{\mathrm{com} f}=R \omega_{f}=(0.15)(12)=1.8 \mathrm{~m} / \mathrm{s}
$$

71. Both \vec{r} and \vec{v} lie in the $x y$ plane. The position vector \vec{r} has an x component that is a function of time (being the integral of the x component of velocity, which is itself timedependent) and a y component that is constant $(y=-2.0 \mathrm{~m})$. In the cross product $\vec{r} \times \vec{v}$, all that matters is the y component of \vec{r} since $v_{x} \neq 0$ but $v_{y}=0$:

$$
\vec{r} \times \vec{v}=-y v_{x} \hat{\mathrm{k}} .
$$

(a) The angular momentum is $\vec{\ell}=m(\vec{r} \times \vec{v})$ where the mass is $m=2.0 \mathrm{~kg}$ in this case. With SI units understood and using the above cross-product expression, we have

$$
\vec{\ell}=(2.0)\left(-(-2.0)\left(-6.0 t^{2}\right)\right) \hat{\mathrm{k}}=-24 t^{2} \hat{\mathrm{k}}
$$

in $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$. This implies the particle is moving clockwise (as observed by someone on the $+z$ axis) for $t>0$.
(b) The torque is caused by the (net) force $\vec{F}=m \vec{a}$ where

$$
\vec{a}=\frac{d \vec{v}}{d t}=-12 t \hat{\mathrm{i}} \mathrm{~m} / \mathrm{s}^{2}
$$

The remark above that only the y component of \vec{r} still applies, since $a_{y}=0$. We use $\vec{\tau}=\vec{r} \times \vec{F}=m(\vec{r} \times \vec{a})$ and obtain

$$
\vec{\tau}=(2.0)(-(-2.0)(-12 t)) \hat{\mathrm{k}}=-48 t \hat{\mathrm{k}}
$$

in $\mathrm{N} \cdot \mathrm{m}$. The torque on the particle (as observed by someone on the $+z$ axis) is clockwise, causing the particle motion (which was clockwise to begin with) to increase.
(c) We replace \vec{r} with \vec{r}^{\prime} (measured relative to the new reference point) and note (again) that only its y component matters in these calculations. Thus, with $y^{\prime}=-2.0-(-3.0)=$ 1.0 m , we find

$$
\vec{\ell}^{\prime}=(2.0)\left(-(1.0)\left(-6.0 t^{2}\right)\right) \hat{\mathrm{k}}=\left(12 t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}} .
$$

The fact that this is positive implies that the particle is moving counterclockwise relative to the new reference point.
(d) Using $\vec{\tau}^{\prime}=\vec{r}^{\prime} \times \vec{F}=m\left(\vec{r}^{\prime} \times \vec{a}\right)$, we obtain

$$
\vec{\tau}=(2.0)(-(1.0)(-12 t)) \hat{\mathrm{k}}=(24 t \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} .
$$

The torque on the particle (as observed by someone on the $+z$ axis) is counterclockwise, relative to the new reference point.
72. Conservation of energy (with Eq. 11-5) gives
$($ Mechanical Energy at max height up the ramp $)=($ Mechanical Energy on the floor $)$

$$
\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I_{\mathrm{com}} \omega_{f}^{2}+m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I_{\mathrm{com}} \omega^{2}
$$

where $v_{f}=\omega_{f}=0$ at the point on the ramp where it (momentarily) stops. We note that the height h relates to the distance traveled along the ramp d by $h=d \sin \left(15^{\circ}\right)$. Using item (f) in Table 10-2 and Eq. 11-2, we obtain

$$
m g d \sin \left(15^{\circ}\right)=m v^{2}(1 / 2+1 / 5) .
$$

After canceling m and plugging in $d=1.5 \mathrm{~m}$, we find $v=2.33 \mathrm{~m} / \mathrm{s}$.
73. For a constant (single) torque, Eq. 11-29 becomes $\vec{\tau}=\frac{\mathrm{d} \vec{L}}{\mathrm{~d} t}=\frac{\Delta \vec{L}}{\Delta t}$. Thus, we obtain Δt $=600 / 50=12 \mathrm{~s}$.
74. The rotational kinetic energy is $K=\frac{1}{2} I \omega^{2}$, where $I=m R^{2}$ is its rotational inertia about the center of mass (Table $10-2(\mathrm{a})$), $m=140 \mathrm{~kg}$, and $\omega=v_{\text {com }} / R$ (Eq. 11-2). The asked-for ratio is

$$
\frac{K_{\text {transl }}}{K_{\mathrm{rot}}}=\frac{\frac{1}{2} m v_{\mathrm{com}}^{2}}{\frac{1}{2}\left(m R^{2}\right)\left(v_{\mathrm{com}} / R\right)^{2}}=1.00
$$

75. This problem involves the vector cross product of vectors lying in the $x y$ plane. For such vectors, if we write $\vec{r}^{\prime}=x^{\prime} \hat{\mathrm{i}}+y^{\prime} \mathrm{j}$, then (using Eq. 3-30) we find

$$
\vec{r}^{\prime} \times \vec{v}=\left(x^{\prime} v_{y}-y^{\prime} v_{x}\right) \hat{\mathrm{k}}
$$

(a) Here, \vec{r}^{\prime} points in either the $+\hat{\mathrm{i}}$ or the $-\hat{\mathrm{i}}$ direction (since the particle moves along the x axis). It has no y^{\prime} or z^{\prime} components, and neither does \vec{v}, so it is clear from the above expression (or, more simply, from the fact that $\hat{\mathrm{i}} \times \hat{\mathrm{i}}=0$) that $\vec{\ell}=m\left(\vec{r}^{\prime} \times \vec{v}\right)=0$ in this case.
(b) The net force is in the $-\hat{i}$ direction (as one finds from differentiating the velocity expression, yielding the acceleration), so, similar to what we found in part (a), we obtain $\tau=\vec{r}^{\prime} \times \vec{F}=0$.
(c) Now, $\vec{r}^{\prime}=\vec{r}-\vec{r}_{\mathrm{o}}$ where $\vec{r}_{\mathrm{o}}=2.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}$ (with SI units understood) and points from (2.0, $5.0,0)$ to the instantaneous position of the car (indicated by \vec{r} which points in either the $+x$ or $-x$ directions, or nowhere (if the car is passing through the origin)). Since $\vec{r} \times \vec{v}=0$ we have (plugging into our general expression above)

$$
\vec{\ell}=m\left(\vec{r}^{\prime} \times \vec{v}\right)=-m\left(\vec{r}_{\mathrm{o}} \times \vec{v}\right)=-(3.0)\left((2.0)(0)-(5.0)\left(-2.0 t^{3}\right)\right) \hat{\mathrm{k}}
$$

which yields $\vec{\ell}=-30 t^{3} \hat{\mathrm{k}}$ in SI units $\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)$.
(d) The acceleration vector is given by $\vec{a}=\frac{d \vec{v}}{d t}=-6.0 t^{2} \hat{\mathrm{i}}$ in SI units, and the net force on the car is $m \vec{a}$. In a similar argument to that given in the previous part, we have

$$
\vec{\tau}=m\left(\vec{r}^{\prime} \times \vec{a}\right)=-m\left(\vec{r}_{\mathrm{o}} \times \vec{a}\right)=-(3.0)\left((2.0)(0)-(5.0)\left(-6.0 t^{2}\right)\right) \hat{\mathrm{k}}
$$

which yields $\vec{\tau}=-90 t^{2} \hat{\mathrm{k}}$ in SI units $(\mathrm{N} \cdot \mathrm{m})$.
(e) In this situation, $\vec{r}^{\prime}=\vec{r}-\vec{r}_{\mathrm{o}}$ where $\vec{r}_{\mathrm{o}}=2.0 \hat{\mathrm{i}}-5.0 \hat{\mathrm{j}}$ (with SI units understood) and points from (2.0, $-5.0,0$) to the instantaneous position of the car (indicated by \vec{r} which points in either the $+x$ or $-x$ directions, or nowhere (if the car is passing through the origin)). Since $\vec{r} \times \vec{v}=0$ we have (plugging into our general expression above)

$$
\vec{\ell}=m\left(\vec{r}^{\prime} \times \vec{v}\right)=-m\left(\vec{r}_{0} \times \vec{v}\right)=-(3.0)\left((2.0)(0)-(-5.0)\left(-2.0 t^{3}\right)\right) \hat{\mathrm{k}}
$$

which yields $\vec{\ell}=30 t^{3} \hat{\mathrm{k}}$ in SI units $\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)$.
(f) Again, the acceleration vector is given by $\vec{a}=-6.0 t^{2} \hat{\mathrm{i}}$ in SI units, and the net force on the car is $m \vec{a}$. In a similar argument to that given in the previous part, we have

$$
\vec{\tau}=m\left(\vec{r}^{\prime} \times \vec{a}\right)=-m\left(\vec{r}_{\mathrm{o}} \times \vec{a}\right)=-(3.0)\left((2.0)(0)-(-5.0)\left(-6.0 t^{2}\right)\right) \hat{\mathrm{k}}
$$

which yields $\vec{\tau}=90 t^{2} \hat{\mathrm{k}}$ in SI units $(\mathrm{N} \cdot \mathrm{m})$.
76. We use $L=I \omega$ and $K=\frac{1}{2} I \omega^{2}$ and observe that the speed of points on the rim (corresponding to the speed of points on the belt) of wheels A and B must be the same (so $\left.\omega_{A} R_{A}=\omega_{B} r_{B}\right)$.
(a) If $L_{A}=L_{B}$ (call it L) then the ratio of rotational inertias is

$$
\frac{I_{A}}{I_{B}}=\frac{L / \omega_{A}}{L / \omega_{B}}=\frac{\omega_{A}}{\omega_{B}}=\frac{R_{A}}{R_{B}}=\frac{1}{3}=0.333 .
$$

(b) If we have $K_{A}=K_{B}$ (call it K) then the ratio of rotational inertias becomes

$$
\frac{I_{A}}{I_{B}}=\frac{2 K / \omega_{A}^{2}}{2 K / \omega_{B}^{2}}=\left(\frac{\omega_{B}}{\omega_{A}}\right)^{2}=\left(\frac{R_{A}}{R_{B}}\right)^{2}=\frac{1}{9}=0.111 .
$$

77. The initial angular momentum of the system is zero. The final angular momentum of the girl-plus-merry-go-round is $\left(I+M R^{2}\right) \omega$ which we will take to be positive. The final angular momentum we associate with the thrown rock is negative: $-m R v$, where v is the speed (positive, by definition) of the rock relative to the ground.
(a) Angular momentum conservation leads to

$$
0=\left(I+M R^{2}\right) \omega-m R v \Rightarrow \omega=\frac{m R v}{I+M R^{2}}
$$

(b) The girl's linear speed is given by Eq. 10-18:

$$
R \omega=\frac{m v R^{2}}{I+M R^{2}}
$$

78. (a) With $\vec{p}=m \vec{v}=-16 \hat{\mathrm{j}} \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$, we take the vector cross product (using either Eq. 3-30 or, more simply, Eq. 11-20 and the right-hand rule): $\vec{\ell}=\vec{r} \times \vec{p}=\left(-32 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}$.
(b) Now the axis passes through the point $\vec{R}=4.0 \hat{\mathrm{j}} \mathrm{m}$, parallel with the z axis. With $\vec{r}^{\prime}=\vec{r}-\vec{R}=2.0 \hat{i} \mathrm{~m}$, we again take the cross product and arrive at the same result as before: $\vec{\ell}^{\prime}=\vec{r}^{\prime} \times \vec{p}=\left(-32 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}$.
(c) Torque is defined in Eq. 11-14: $\vec{\tau}=\vec{r} \times \vec{F}=(12 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$.
(d) Using the notation from part (b), $\vec{\tau}^{\prime}=\vec{r}^{\prime} \times \vec{F}=0$.
79. This problem involves the vector cross product of vectors lying in the $x y$ plane. For such vectors, if we write $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}$, then (using Eq. 3-30) we find

$$
\vec{r} \times \vec{p}=\left(\Delta x p_{y}-\Delta y p_{x}\right) \hat{\mathrm{k}}
$$

The momentum components are

$$
\begin{aligned}
& p_{x}=p \cos \theta \\
& p_{y}=p \sin \theta
\end{aligned}
$$

where $p=2.4$ (SI units understood) and $\theta=115^{\circ}$. The mass (0.80 kg) given in the problem is not used in the solution. Thus, with $x=2.0, y=3.0$ and the momentum components described above, we obtain

$$
\vec{\ell}=\vec{r} \times \vec{p}=\left(7.4 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}
$$

80. We note that its mass is $M=36 / 9.8=3.67 \mathrm{~kg}$ and its rotational inertia is $I_{\text {com }}=\frac{2}{5} M R^{2}$ (Table 10-2(f)).
(a) Using Eq. 11-2, Eq. 11-5 becomes

$$
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right)\left(\frac{v_{\mathrm{com}}}{R}\right)^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}=\frac{7}{10} M v_{\mathrm{com}}^{2}
$$

which yields $K=61.7 \mathrm{~J}$ for $v_{\text {com }}=4.9 \mathrm{~m} / \mathrm{s}$.
(b) This kinetic energy turns into potential energy $M g h$ at some height $h=d \sin \theta$ where the sphere comes to rest. Therefore, we find the distance traveled up the $\theta=30^{\circ}$ incline from energy conservation:

$$
\frac{7}{10} M v_{\mathrm{com}}^{2}=M g d \sin \theta \Rightarrow d=\frac{7 v_{\mathrm{com}}^{2}}{10 g \sin \theta}=3.43 \mathrm{~m}
$$

(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is independent of mass, then, it is also independent of the sphere's weight.
81. (a) Interpreting h as the height increase for the center of mass of the body, then (using Eq. 11-5) mechanical energy conservation leads to

$$
\begin{aligned}
K_{i} & =U_{f} \\
\frac{1}{2} m v_{\mathrm{com}}^{2}+\frac{1}{2} I \omega^{2} & =m g h \\
\frac{1}{2} m v^{2}+\frac{1}{2} I\left(\frac{v}{R}\right)^{2} & =m g\left(\frac{3 v^{2}}{4 g}\right)
\end{aligned}
$$

from which v cancels and we obtain $I=\frac{1}{2} m R^{2}$.
(b) From Table 10-2(c), we see that the body could be a solid cylinder.
82. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find

$$
v^{2}=v_{0}^{2}+2 a \Delta x \Rightarrow a=-\frac{v_{0}^{2}}{2 \Delta x}
$$

which yields $a=-4.11$ for $v_{0}=43$ and $\Delta x=225$ (SI units understood). The magnitude of the linear acceleration of the center of mass is therefore $4.11 \mathrm{~m} / \mathrm{s}^{2}$.
(b) With $R=0.250 \mathrm{~m}$, Eq. 11-6 gives

$$
|\alpha|=|a| / R=16.4 \mathrm{rad} / \mathrm{s}^{2}
$$

If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing down, this angular acceleration is counterclockwise (opposite to ω) so (with the usual convention that counterclockwise is positive) there is no need for the absolute value signs for α.
(c) Eq. 11-8 applies with $R f_{s}$ representing the magnitude of the frictional torque. Thus,

$$
R f_{s}=I \alpha=(0.155)(16.4)=2.55 \mathrm{~N} \cdot \mathrm{~m} .
$$

83. As the wheel-axel system rolls down the inclined plane by a distance d, the decrease in potential energy is $\Delta U=m g d \sin \theta$. This must be equal to the total kinetic energy gained:

$$
m g d \sin \theta=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} .
$$

Since the axel rolls without slipping, the angular speed is given by $\omega=v / r$, where r is the radius of the axel. The above equation then becomes

$$
m g d \sin \theta=\frac{1}{2} I \omega^{2}\left(\frac{m r^{2}}{I}+1\right)=K_{\mathrm{rot}}\left(\frac{m r^{2}}{I}+1\right)
$$

(a) With $m=10.0 \mathrm{~kg}, d=2.00 \mathrm{~m}, r=0.200 \mathrm{~m}$, and $I=0.600 \mathrm{~kg} \cdot \mathrm{~m}^{2}, m r^{2} / I=2 / 3$, the rotational kinetic energy may be obtained as $98 \mathrm{~J}=K_{\text {rot }}(5 / 3)$, or $K_{\text {rot }}=58.8 \mathrm{~J}$.
(b) The translational kinetic energy is $K_{\text {trans }}=(98-58.8) \mathrm{J}=39.2 \mathrm{~J}$.
84. The speed of the center of mass of the car is $v=(40)(1000 / 3600)=11 \mathrm{~m} / \mathrm{s}$. The angular speed of the wheels is given by Eq. 11-2: $\omega=v / R$ where the wheel radius R is not given (but will be seen to cancel in these calculations).
(a) For one wheel of mass $M=32 \mathrm{~kg}$, Eq. 10-34 gives (using Table 10-2(c))

$$
K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)\left(\frac{v}{R}\right)^{2}=\frac{1}{4} M v^{2}
$$

which yields $K_{\text {rot }}=9.9 \times 10^{2} \mathrm{~J}$. The time given in the problem (10 s) is not used in the solution.
(b) Adding the above to the wheel's translational kinetic energy, $\frac{1}{2} M v^{2}$, leads to

$$
K_{\text {wheel }}=\frac{1}{2} M v^{2}+\frac{1}{4} M v^{2}=\frac{3}{4}(32)(11)^{2}=3.0 \times 10^{3} \mathrm{~J} .
$$

(c) With $M_{\text {car }}=1700 \mathrm{~kg}$ and the fact that there are four wheels, we have

$$
\frac{1}{2} M_{\mathrm{car}} v^{2}+4\left(\frac{3}{4} M v^{2}\right)=1.2 \times 10^{5} \mathrm{~J}
$$

85. We make the unconventional choice of clockwise sense as positive, so that the angular acceleration is positive (as is the linear acceleration of the center of mass, since we take rightwards as positive).
(a) We approach this in the manner of Eq. 11-3 (pure rotation about point P) but use torques instead of energy:

$$
\tau=I_{P} \alpha \text { where } I_{P}=\frac{1}{2} M R^{2}+M R^{2}
$$

where the parallel-axis theorem and Table 10-2(c) has been used. The torque (relative to point P) is due to the $F_{\text {app }}=12 \mathrm{~N}$ force and is $\tau=F_{\text {app }}(2 R)$. In this way, we find

$$
\alpha=\frac{(12)(0.20)}{0.05+0.10}=16 \mathrm{rad} / \mathrm{s}^{2}
$$

Hence, $a_{\mathrm{com}}=R \alpha=1.6 \mathrm{~m} / \mathrm{s}^{2}$.
(b) As shown above, $\alpha=16 \mathrm{rad} / \mathrm{s}^{2}$.
(c) Applying Newton's second law in its linear form yields $(12 \mathrm{~N})-f=M a_{\text {com }}$. Therefore, $f=-4.0 \mathrm{~N}$. Contradicting what we assumed in setting up our force equation, the friction force is found to point rightward with magnitude 4.0 N , i.e., $\vec{f}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}$.
86. Since we will be taking the vector cross product in the course of our calculations, below, we note first that when the two vectors in a cross product $\vec{A} \times \vec{B}$ are in the $x y$ plane, we have $\vec{A}=A_{x} \hat{\mathrm{i}}+A_{y} \hat{\mathrm{j}}$ and $\vec{B}=B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}$, and Eq. 3-30 leads to

$$
\vec{A} \times \vec{B}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathrm{k}}
$$

(a) We set up a coordinate system with its origin at the firing point, the positive x axis in the horizontal direction of motion of the projectile and the positive y axis vertically upward. The projectile moves in the $x y$ plane, and if $+x$ is to our right then the "rotation" sense will be clockwise. Thus, we expect our answer to be negative. The position vector for the projectile (as a function of time) is given by

$$
\vec{r}=\left(v_{0 x} t\right) \hat{\mathrm{i}}+\left(v_{0 y} t-\frac{1}{2} g t^{2}\right) \hat{\mathrm{j}}=\left(v_{0} \cos \theta_{0} t\right) \hat{\mathrm{i}}+\left(v_{0} \sin \theta_{0}-g t\right) \hat{\mathrm{j}}
$$

and the velocity vector is

$$
\vec{v}=v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}=\left(v_{0} \cos \theta_{0}\right) \hat{\mathrm{i}}+\left(v_{0} \sin \theta_{0}-g t\right) \hat{\mathrm{j}} .
$$

Thus (using the above observation about the cross product of vectors in the $x y$ plane) the angular momentum of the projectile as a function of time is

$$
\begin{aligned}
\vec{\ell} & =m \vec{r} \times \vec{v}=\left(-\frac{1}{2} m v_{0} \cos \theta_{0} g t^{2}\right) \hat{\mathrm{k}}=-\frac{1}{2}(0.320 \mathrm{~kg})(12.6 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \hat{\mathrm{k}} \\
& =\left(-17.1 t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}
\end{aligned}
$$

(b) We take the derivative of our result in part (a):

$$
\frac{d \vec{\ell}}{d t}=-v_{0} m g t \cos \theta_{0} \hat{\mathrm{k}}=\left(-34.2 t \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}\right) \hat{\mathrm{k}} .
$$

(c) Again using the above observation about the cross product of vectors in the $x y$ plane, we find

$$
\vec{r} \times \vec{F}=\left(\left(v_{0} \cos \theta_{0} t\right) \hat{\mathrm{i}}+r_{y} \hat{\mathrm{j}}\right) \times(-m g \hat{\mathrm{j}})=\left(-v_{0} m g t \cos \theta_{0}\right) \hat{\mathrm{k}}=(-34.2 t \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}
$$

which is the same as the result in part (b).
(d) They are the same because $\overrightarrow{d \ell} / d t=\tau=\vec{r} \times \vec{F}$.
87. We denote the wheel with subscript 1 and the whole system with subscript 2 . We take clockwise as the negative sense for rotation (as is the usual convention).
(a) Conservation of angular momentum gives $L=I_{1} \omega_{1}=I_{2} \omega_{2}$, where $I_{1}=m_{1} R_{1}^{2}$. Thus

$$
\omega_{2}=\omega_{1} \frac{I_{1}}{I_{2}}=(-57.7 \mathrm{rad} / \mathrm{s}) \frac{\left(37 \mathrm{~N} / 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.35 \mathrm{~m})^{2}}{2.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=-12.7 \mathrm{rad} / \mathrm{s}
$$

or $\left|\omega_{2}\right|=12.7 \mathrm{rad} / \mathrm{s}$.
(b) The system rotates clockwise (as seen from above) at the rate of $12.7 \mathrm{rad} / \mathrm{s}$.
88. The problem asks that we put the origin of coordinates at point O but compute all the angular momenta and torques relative to point A. This requires some care in defining \vec{r} (which occurs in the angular momentum and torque formulas). If \vec{r}_{O} locates the point (where the block is) in the prescribed coordinates, and $\vec{r}_{O A}=-1.2 \hat{\mathrm{j}}$ points from O to A, then $\vec{r}=\vec{r}_{O}-\vec{r}_{O A}$ gives the position of the block relative to point A. SI units are used throughout this problem.
(a) Here, the momentum is $\vec{p}_{0}=m \vec{v}_{0}=1.5 \hat{\mathrm{i}}$ and $\vec{r}_{0}=1.2 \hat{\mathrm{j}}$, so that

$$
\vec{\ell}_{0}=\vec{r}_{0} \times \vec{p}_{0}=\left(-1.8 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}} .
$$

(b) The horizontal component of momentum doesn't change in projectile motion (without friction), and its vertical component depends on how far it has fallen. From either the free-fall equations of Ch .2 or the energy techniques of Ch .8 , we find the vertical momentum component after falling a distance h to be $-m \sqrt{2 g h}$. Thus, with $m=0.50$ and $h=1.2$, the momentum just before the block hits the floor is $\vec{p}=1.5 \hat{\mathrm{i}}-2.4 \hat{\mathrm{j}}$. Now, $\vec{r}=R \hat{\mathrm{i}}$ where R is figured from the projectile motion equations of Ch. 4 to be

$$
R=v_{0} \sqrt{\frac{2 h}{g}}=1.5 \mathrm{~m}
$$

Consequently, $\vec{\ell}=\vec{r} \times \vec{p}=\left(-3.6 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}$.
(c) The only force on the object is its weight $m \vec{g}=-4.9 \hat{\mathrm{j}}$. Thus, just after the block leaves the table, we have $\vec{\tau}_{0}=\vec{r}_{0} \times \vec{F}=0$.
(d) Similarly, just before the block strikes the floor, we have $\vec{\tau}=\vec{r} \times \vec{F}=(-7.3 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$.
89. (a) The acceleration is given by Eq. 11-13:

$$
a_{\mathrm{com}}=\frac{g}{1+I_{\mathrm{com}} / M R_{0}^{2}}
$$

where upward is the positive translational direction. Taking the coordinate origin at the initial position, Eq. 2-15 leads to

$$
y_{\mathrm{com}}=v_{\mathrm{com}, 0} t+\frac{1}{2} a_{\mathrm{com}} t^{2}=v_{\mathrm{com}, 0} t-\frac{\frac{1}{2} g t^{2}}{1+I_{\mathrm{com}} / M R_{0}^{2}}
$$

where $y_{\mathrm{com}}=-1.2 \mathrm{~m}$ and $v_{\mathrm{com}, 0}=-1.3 \mathrm{~m} / \mathrm{s}$. Substituting $I_{\mathrm{com}}=0.000095 \mathrm{~kg} \cdot \mathrm{~m}^{2}, M=$ $0.12 \mathrm{~kg}, R_{0}=0.0032 \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, we use the quadratic formula and find

$$
\begin{aligned}
t & =\frac{\left(1+\frac{I_{\mathrm{com}}}{M R_{0}^{2}}\right)\left(v_{\mathrm{com}, 0} \mp \sqrt{v_{\mathrm{com}, 0}^{2}-\frac{2 g y_{\mathrm{com}}}{1+I_{\mathrm{com}} / M R_{0}^{2}}}\right)}{g} \\
& =\frac{\left(1+\frac{0.000095}{(0.12)(0.0032)^{2}}\right)\left(-1.3 \mp \sqrt{1.3^{2}-\frac{2(9.8)(-1.2)}{1+0.000095 /(0.12)(0.0032)^{2}}}\right)}{9.8} \\
& =-21.7 \text { or } 0.885
\end{aligned}
$$

where we choose $t=0.89 \mathrm{~s}$ as the answer.
(b) We note that the initial potential energy is $U_{i}=M g h$ and $h=1.2 \mathrm{~m}$ (using the bottom as the reference level for computing U). The initial kinetic energy is as shown in Eq. 11-5, where the initial angular and linear speeds are related by Eq. 11-2. Energy conservation leads to

$$
\begin{aligned}
K_{f} & =K_{i}+U_{i}=\frac{1}{2} m v_{\mathrm{com}, 0}^{2}+\frac{1}{2} I\left(\frac{v_{\mathrm{com}, 0}}{R_{0}}\right)^{2}+M g h \\
& =\frac{1}{2}(0.12)(1.3)^{2}+\frac{1}{2}\left(9.5 \times 10^{-5}\right)\left(\frac{1.3}{0.0032}\right)^{2}+(0.12)(9.8)(1.2) \\
& =9.4 \mathrm{~J} .
\end{aligned}
$$

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11:

$$
v_{\mathrm{com}}=v_{\mathrm{com}, 0}+a_{\mathrm{com}} t=v_{\mathrm{com}, 0}-\frac{g t}{1+I_{\mathrm{com}} / M R_{0}^{2}} .
$$

Thus, we obtain

$$
v_{\mathrm{com}}=-1.3-\frac{(9.8)(0.885)}{1+\frac{0.000095}{(0.12)(0.0032)^{2}}}=-1.41 \mathrm{~m} / \mathrm{s}
$$

so its linear speed at that moment is approximately $1.4 \mathrm{~m} / \mathrm{s}$.
(d) The translational kinetic energy is $\frac{1}{2} m v_{\mathrm{com}}^{2}=\frac{1}{2}(0.12)(1.41)^{2}=0.12 \mathrm{~J}$.
(e) The angular velocity at that moment is given by

$$
\omega=-\frac{v_{\text {com }}}{R_{0}}=-\frac{-1.41}{0.0032}=441
$$

or approximately $4.4 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(f) And the rotational kinetic energy is

$$
\frac{1}{2} I_{\mathrm{com}} \omega^{2}=\frac{1}{2}\left(9.50 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(441 \mathrm{rad} / \mathrm{s})^{2}=9.2 \mathrm{~J} .
$$

90. (a) We use Table 10-2(e) and the parallel-axis theorem to obtain the rod's rotational inertia about an axis through one end:

$$
I=I_{\mathrm{com}}+M h^{2}=\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2}=\frac{1}{3} M L^{2}
$$

where $L=6.00 \mathrm{~m}$ and $M=10.0 / 9.8=1.02 \mathrm{~kg}$. Thus, $I=12.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
(b) Using $\omega=(240)(2 \pi / 60)=25.1 \mathrm{rad} / \mathrm{s}$, Eq. 11-31 gives the magnitude of the angular momentum as

$$
I \omega=(12.2)(25.1)=308 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

Since it is rotating clockwise as viewed from above, then the right-hand rule indicates that its direction is down.
91. (a) Sample Problem $10-7$ gives $I=19.64 \mathrm{~kg} \mathrm{~m}^{2}$ and $\omega=1466 \mathrm{rad} / \mathrm{s}$. Thus, the angular momentum is

$$
L=I \omega=28792 \approx 2.9 \times 10^{4} \mathrm{~kg}^{2} / \mathrm{s} .
$$

(b) We rewrite Eq. 11-29 as $\left|\vec{\tau}_{\text {avg }}\right|=\frac{|\Delta \vec{L}|}{\Delta t}$ and plug in $|\Delta L|=2.9 \times 10^{4} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$ and $\Delta t=$ 0.025 s , which leads to $\left|\vec{\tau}_{\text {avg }}\right|=1.2 \times 10^{6} \mathrm{Nm}$.
92. If the polar cap melts, the resulting body of water will effectively increase the equatorial radius of the Earth from R_{e} to $R_{e}^{\prime}=R_{e}+\Delta R$, thereby increasing the moment of inertia of the Earth and slowing its rotation (by conservation of angular momentum), causing the duration T of a day to increase by ΔT. We note that (in $\mathrm{rad} / \mathrm{s}$) $\omega=2 \pi / T$ so

$$
\frac{\omega^{\prime}}{\omega}=\frac{2 \pi / T^{\prime}}{2 \pi / T}=\frac{T}{T^{\prime}}
$$

from which it follows that

$$
\frac{\Delta \omega}{\omega}=\frac{\omega^{\prime}}{\omega}-1=\frac{T}{T^{\prime}}-1=-\frac{\Delta T}{T^{\prime}} .
$$

We can approximate that last denominator as T so that we end up with the simple relationship $|\Delta \omega| / \omega=\Delta T / T$. Now, conservation of angular momentum gives us

$$
\Delta L=0=\Delta(I \omega) \approx I(\Delta \omega)+\omega(\Delta I)
$$

so that $|\Delta \omega| / \omega=\Delta I / I$. Thus, using our expectation that rotational inertia is proportional to the equatorial radius squared (supported by Table 10-2(f) for a perfect uniform sphere, but then this isn't a perfect uniform sphere) we have

$$
\frac{\Delta T}{T}=\frac{\Delta I}{I}=\frac{\Delta\left(R_{e}^{2}\right)}{R_{e}^{2}} \approx \frac{2 \Delta R_{e}}{R_{e}}=\frac{2(30 \mathrm{~m})}{6.37 \times 10^{6} \mathrm{~m}}
$$

so with $T=86400 \mathrm{~s}$ we find (approximately) that $\Delta T=0.8 \mathrm{~s}$. The radius of the earth can be found in Appendix C or on the inside front cover of the textbook.
93. We may approximate the planets and their motions as particles in circular orbits, and use Eq. 11-26

$$
L=\sum_{i=1}^{9} \ell_{i}=\sum_{i=1}^{9} m_{i} r_{i}^{2} \omega_{i}
$$

to compute the total angular momentum. Since we assume the angular speed of each one is constant, we have (in rad/s) $\omega_{i}=2 \pi / T_{i}$ where T_{i} is the time for that planet to go around the Sun (this and related information is found in Appendix C but there, the T_{i} are expressed in years and we'll need to convert with $3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}$, and the M_{i} are expressed as multiples of $M_{\text {earth }}$ which we'll convert by multiplying by $5.98 \times 10^{24} \mathrm{~kg}$).
(a) Using SI units, we find (with $i=1$ designating Mercury)

$$
\begin{aligned}
L & =\sum_{i=1}^{9} m_{i} r_{i}^{2}\left(\frac{2 \pi}{T_{i}}\right)=2 \pi \frac{3.34 \times 10^{23}}{7.61 \times 10^{6}}\left(57.9 \times 10^{9}\right)^{2}+2 \pi \frac{4.87 \times 10^{24}}{19.4 \times 10^{7}}\left(108 \times 10^{9}\right)^{2} \\
& +2 \pi \frac{5.98 \times 10^{24}}{3.156 \times 10^{7}}\left(150 \times 10^{9}\right)^{2}+2 \pi \frac{6.40 \times 10^{23}}{5.93 \times 10^{7}}\left(228 \times 10^{9}\right)^{2}+2 \pi \frac{1.9 \times 10^{27}}{3.76 \times 10^{8}}\left(778 \times 10^{9}\right)^{2} \\
& +2 \pi \frac{5.69 \times 10^{26}}{9.31 \times 10^{8}}\left(1430 \times 10^{9}\right)^{2}+2 \pi \frac{8.67 \times 10^{25}}{2.65 \times 10^{9}}\left(2870 \times 10^{9}\right)^{2}+2 \pi \frac{1.03 \times 10^{26}}{5.21 \times 10^{9}}\left(4500 \times 10^{9}\right)^{2} \\
& +2 \pi \frac{1.2 \times 10^{22}}{7.83 \times 10^{9}}\left(5900 \times 10^{9}\right)^{2} \\
& =3.14 \times 10^{43} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\end{aligned}
$$

(b) The fractional contribution of Jupiter is

$$
\frac{\ell_{5}}{L}=\frac{2 \pi\left(\frac{1.9 \times 10^{27}}{3.76 \times 10^{8}}\right)\left(778 \times 10^{9}\right)^{2}}{3.14 \times 10^{43}}=0.614
$$

94. With $r_{\perp}=1300 \mathrm{~m}$, Eq. 11-21 gives

$$
\ell=r_{\perp} m v=(1300)(1200)(80)=1.2 \times 10^{8} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

95. (a) In terms of the radius of gyration k, the rotational inertia of the merry-go-round is $I=M k^{2}$. We obtain

$$
I=(180 \mathrm{~kg})(0.910 \mathrm{~m})^{2}=149 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

(b) An object moving along a straight line has angular momentum about any point that is not on the line. The magnitude of the angular momentum of the child about the center of the merry-go-round is given by Eq. 11-21, $m v R$, where R is the radius of the merry-goround. Therefore,

$$
\left|\vec{L}_{\text {child }}\right|=(44.0 \mathrm{~kg})(3.00 \mathrm{~m} / \mathrm{s})(1.20 \mathrm{~m})=158 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

(c) No external torques act on the system consisting of the child and the merry-go-round, so the total angular momentum of the system is conserved. The initial angular momentum is given by $m \nu R$; the final angular momentum is given by $\left(I+m R^{2}\right) \omega$, where ω is the final common angular velocity of the merry-go-round and child. Thus $m v R=\left(I+m R^{2}\right) \omega$ and

$$
\omega=\frac{m v R}{I+m R^{2}}=\frac{158 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{149 \mathrm{~kg} \cdot \mathrm{~m}^{2}+(44.0 \mathrm{~kg})(1.20 \mathrm{~m})^{2}}=0.744 \mathrm{rad} / \mathrm{s} .
$$

96. The result follows immediately from Eq. 3-30. We consider all possible products and then simplify using relations such as $\hat{\imath} \times \hat{\imath}=0$ and the important fundamental products

$$
\begin{aligned}
& \hat{i} \times \hat{j}=-\hat{j} \times \hat{\mathrm{i}}=\hat{\mathrm{k}} \\
& \hat{\mathrm{j}} \times \hat{\mathrm{k}}=-\hat{\mathrm{k}} \times \hat{\mathrm{j}}=\hat{\mathrm{i}} \\
& \hat{\mathrm{k}} \times \hat{\mathrm{i}}=-\hat{\mathrm{i}} \times \hat{\mathrm{k}}=\hat{\mathrm{j}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\vec{r} \times \vec{F} & =(x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}) \times\left(F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}+F_{z} \hat{\mathrm{k}}\right) \\
& =x F_{x} \hat{\mathrm{i}} \times \hat{\mathrm{i}}+x F_{y} \hat{\mathrm{i}} \times \hat{\mathrm{j}}+x F_{z} \hat{\mathrm{i}} \times \hat{\mathrm{k}}+y F_{x} \hat{\mathrm{j}} \times \hat{\mathrm{i}}+y F_{y} \hat{\mathrm{j}} \times \hat{\mathrm{j}}+\cdots \\
& =x F_{x}(0)+x F_{y}(\hat{\mathrm{k}})+x F_{z}(-\hat{\mathrm{j}})+y F_{x}(-\hat{\mathrm{k}})+y F_{y}(0)+\cdots
\end{aligned}
$$

which is seen to simplify to the desired result.
97. Information relevant to this calculation can be found in Appendix C or on the inside front cover of the textbook. The angular speed is constant so

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{86400}=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}
$$

Thus, with $m=84 \mathrm{~kg}$ and $R=6.37 \times 10^{6} \mathrm{~m}$, we find $\ell=m R^{2} \omega=2.5 \times 10^{11} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$.
98. One method is to show that $\vec{r} \cdot(\vec{r} \times \vec{F})=\vec{F} \cdot(\vec{r} \times \vec{F})=0$, but we choose here a more pedestrian approach: without loss of generality we take \vec{r} and \vec{F} to be in the $x y$ plane and will show that $\vec{\tau}$ has no x and y components (that it is parallel to the $\hat{\mathrm{k}}$ direction). We proceed as follows: in the general expression $\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$, we will set $z=0$ to constrain \vec{r} to the $x y$ plane, and similarly for \vec{F}. Using Eq. 3-30, we find $\vec{r} \times \vec{F}$ is equal to

$$
\left(y F_{z}-z F_{y}\right) \hat{\mathrm{i}}+\left(z F_{x}-x F_{z}\right) \hat{\mathrm{j}}+\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}}
$$

and once we set $z=0$ and $F_{z}=0$ we obtain

$$
\vec{\tau}=\vec{r} \times \vec{F}=\left(x F_{y}-y F_{x}\right) \hat{\mathrm{k}}
$$

which demonstrates that $\vec{\tau}$ has no component in the $x y$ plane.
99. (a) This is easily derived from Eq. 11-18, using Eq. 3-30.
(b) If the z-components of \vec{r} and $\overrightarrow{\mathrm{v}}$ are zero, then the only non-zero component for the angular momentum is the z -component.
100. We integrate Eq. 11-29 (for a single torque) over the time interval (where the angular speed at the beginning is ω_{i} and at the end is ω_{f})

$$
\int \tau d t=\int \frac{d L}{d t} d t=L_{f}-L_{i}=I\left(\omega_{f}-\omega_{i}\right)
$$

and if we use the calculus-based notion of the average of a function f

$$
f_{\text {avg }}=\frac{1}{\Delta t} \int f d t
$$

then (using Eq. 11-16) we obtain

$$
\int \tau d t=\tau_{\mathrm{avg}} \Delta t=F_{\mathrm{avg}} R \Delta t
$$

Inserting this into the top line proves the relationship shown in the problem.

1. (a) The center of mass is given by

$$
x_{\mathrm{com}}=[0+0+0+(m)(2.00)+(m)(2.00)+(m)(2.00)] / 6.00 m=1.00 \mathrm{~m} .
$$

(b) Similarly, $y_{\mathrm{com}}=[0+(m)(2.00)+(m)(4.00)+(m)(4.00)+(m)(2.00)+0] / 6 m=2.00 \mathrm{~m}$.
(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different locations in this problem, we have

$$
x_{\mathrm{cog}}=\frac{x_{1} m_{1} g_{1}+x_{2} m_{2} g_{2}+x_{3} m_{3} g_{3}+x_{4} m_{4} g_{4}+x_{5} m_{5} g_{5}+x_{6} m_{6} g_{6}}{m_{1} g_{1}+m_{2} g_{2}+m_{3} g_{3}+m_{4} g_{4}+m_{5} g_{5}+m_{6} g_{6}}=0.987 \mathrm{~m} .
$$

(d) Similarly, $y_{\mathrm{cog}}=[0+(2.00)(m)(7.80)+(4.00)(m)(7.60)+(4.00)(m)(7.40)+$ $(2.00)(m)(7.60)+0] /(8.00 m+7.80 m+7.60 m+7.40 m+7.60 m+7.80 m)=1.97 \mathrm{~m}$.
2. From $\vec{\tau}=\vec{r} \times \vec{F}$, we note that persons 1 through 4 exert torques pointing out of the page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the page.
(a) Among persons 1 through 4, the largest magnitude of torque is $(330 \mathrm{~N})(3 \mathrm{~m})=990$ $\mathrm{N} \cdot \mathrm{m}$, due to the weight of person 2 .
(b) Among persons 5 through 8, the largest magnitude of torque is $(330 \mathrm{~N})(3 \mathrm{~m})=990$ $\mathrm{N} \cdot \mathrm{m}$, due to the weight of person 7 .
3. The object exerts a downward force of magnitude $F=3160 \mathrm{~N}$ at the midpoint of the rope, causing a "kink" similar to that shown for problem 10 (see the figure that accompanies that problem). By analyzing the forces at the "kink" where \vec{F} is exerted, we find (since the acceleration is zero) $2 T \sin \theta=F$, where θ is the angle (taken positive) between each segment of the string and its "relaxed" position (when the two segments are colinear). In this problem, we have

$$
\theta=\tan ^{-1}\left(\frac{0.35 \mathrm{~m}}{1.72 \mathrm{~m}}\right)=11.5^{\circ}
$$

Therefore, $T=F /(2 \sin \theta)=7.92 \times 10^{3} \mathrm{~N}$.
4. The situation is somewhat similar to that depicted for problem 10 (see the figure that accompanies that problem). By analyzing the forces at the "kink" where \vec{F} is exerted, we find (since the acceleration is zero) $2 T \sin \theta=F$, where θ is the angle (taken positive) between each segment of the string and its "relaxed" position (when the two segments are collinear). Setting $T=F$ therefore yields $\theta=30^{\circ}$. Since $\alpha=180^{\circ}-2 \theta$ is the angle between the two segments, then we find $\alpha=120^{\circ}$.
5. Three forces act on the sphere: the tension force \vec{T} of the rope (acting along the rope), the force of the wall \vec{F}_{N} (acting horizontally away from the wall), and the force of gravity $m \vec{g}$ (acting downward). Since the sphere is in equilibrium they sum to zero. Let θ be the angle between the rope and the vertical. Then, the vertical component of Newton's second law is $T \cos \theta-m g=0$. The horizontal component is $F_{N}-T \sin \theta=0$.

(a) We solve the first equation for the tension: $T=m g / \cos \theta$. We substitute $\cos \theta=L / \sqrt{L^{2}+r^{2}}$ to obtain

$$
T=\frac{m g \sqrt{L^{2}+r^{2}}}{L}=\frac{(0.85 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sqrt{(0.080 \mathrm{~m})^{2}+(0.042 \mathrm{~m})^{2}}}{0.080 \mathrm{~m}}=9.4 \mathrm{~N} .
$$

(b) We solve the second equation for the normal force: $F_{N}=T \sin \theta$. Using $\sin \theta=r / \sqrt{L^{2}+r^{2}}$, we obtain

$$
F_{N}=\frac{T r}{\sqrt{L^{2}+r^{2}}}=\frac{m g \sqrt{L^{2}+r^{2}}}{L} \frac{r}{\sqrt{L^{2}+r^{2}}}=\frac{m g r}{L}=\frac{(0.85 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.042 \mathrm{~m})}{(0.080 \mathrm{~m})}=4.4 \mathrm{~N} .
$$

6. Let $\ell_{1}=1.5 \mathrm{~m}$ and $\ell_{2}=(5.0-1.5) \mathrm{m}=3.5 \mathrm{~m}$. We denote tension in the cable closer to the window as F_{1} and that in the other cable as F_{2}. The force of gravity on the scaffold itself (of magnitude $m_{s} g$) is at its midpoint, $\ell_{3}=2.5 \mathrm{~m}$ from either end.
(a) Taking torques about the end of the plank farthest from the window washer, we find

$$
\begin{aligned}
F_{1} & =\frac{m_{w} g \ell_{2}+m_{s} g \ell_{3}}{\ell_{1}+\ell_{2}}=\frac{(80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.5 \mathrm{~m})+(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.5 \mathrm{~m})}{5.0 \mathrm{~m}} \\
& =8.4 \times 10^{2} \mathrm{~N}
\end{aligned}
$$

(b) Equilibrium of forces leads to

$$
F_{1}+F_{2}=m_{s} g+m_{w} g=(60 \mathrm{~kg}+80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.4 \times 10^{3} \mathrm{~N}
$$

which (using our result from part (a)) yields $F_{2}=5.3 \times 10^{2} \mathrm{~N}$.
7. We take the force of the left pedestal to be F_{1} at $x=0$, where the x axis is along the diving board. We take the force of the right pedestal to be F_{2} and denote its position as x $=d$. W is the weight of the diver, located at $x=L$. The following two equations result from setting the sum of forces equal to zero (with upwards positive), and the sum of torques (about x_{2}) equal to zero:

$$
\begin{array}{r}
F_{1}+F_{2}-W=0 \\
F_{1} d+W(L-d)=0
\end{array}
$$

(a) The second equation gives

$$
F_{1}=-\frac{L-d}{d} W=-\left(\frac{3.0 \mathrm{~m}}{1.5 \mathrm{~m}}\right)(580 \mathrm{~N})=-1160 \mathrm{~N}
$$

which should be rounded off to $F_{1}=-1.2 \times 10^{3} \mathrm{~N}$. Thus, $\left|F_{1}\right|=1.2 \times 10^{3} \mathrm{~N}$.
(b) Since F_{1} is negative, indicating that this force is downward.
(c) The first equation gives $F_{2}=W-F_{1}=580 \mathrm{~N}+1160 \mathrm{~N}=1740 \mathrm{~N}$
which should be rounded off to $F_{2}=1.7 \times 10^{3} \mathrm{~N}$. Thus, $\left|F_{2}\right|=1.7 \times 10^{3} \mathrm{~N}$.
(d) The result is positive, indicating that this force is upward.
(e) The force of the diving board on the left pedestal is upward (opposite to the force of the pedestal on the diving board), so this pedestal is being stretched.
(f) The force of the diving board on the right pedestal is downward, so this pedestal is being compressed.
8. Our notation is as follows: $M=1360 \mathrm{~kg}$ is the mass of the automobile; $L=3.05 \mathrm{~m}$ is the horizontal distance between the axles; $\ell=(3.05-1.78) \mathrm{m}=1.27 \mathrm{~m}$ is the horizontal distance from the rear axle to the center of mass; F_{1} is the force exerted on each front wheel; and, F_{2} is the force exerted on each back wheel.
(a) Taking torques about the rear axle, we find

$$
F_{1}=\frac{M g \ell}{2 L}=\frac{(1360 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.27 \mathrm{~m})}{2(3.05 \mathrm{~m})}=2.77 \times 10^{3} \mathrm{~N} .
$$

(b) Equilibrium of forces leads to $2 F_{1}+2 F_{2}=M g$, from which we obtain $F_{2}=3.89 \times 10^{3} \mathrm{~N}$.
9. The x axis is along the meter stick, with the origin at the zero position on the scale. The forces acting on it are shown on the diagram below. The nickels are at $x=x_{1}=0.120 \mathrm{~m}$, and m is their total mass. The knife edge is at $x=x_{2}=0.455 \mathrm{~m}$ and exerts force \vec{F}. The mass of the meter stick is M, and the force of gravity acts at the center of the stick, $x=x_{3}$ $=0.500 \mathrm{~m}$. Since the meter stick is in equilibrium, the sum of the torques about x_{2} must vanish: $M g\left(x_{3}-x_{2}\right)-m g\left(x_{2}-x_{1}\right)=0$.

Thus,

$$
M=\frac{x_{2}-x_{1}}{x_{3}-x_{2}} m=\left(\frac{0.455 \mathrm{~m}-0.120 \mathrm{~m}}{0.500 \mathrm{~m}-0.455 \mathrm{~m}}\right)(10.0 \mathrm{~g})=74.4 \mathrm{~g} .
$$

10. The angle of each half of the rope, measured from the dashed line, is

$$
\theta=\tan ^{-1}\left(\frac{0.30 \mathrm{~m}}{9.0 \mathrm{~m}}\right)=1.9^{\circ}
$$

Analyzing forces at the "kink" (where \vec{F} is exerted) we find

$$
T=\frac{F}{2 \sin \theta}=\frac{550 \mathrm{~N}}{2 \sin 1.9^{\circ}}=8.3 \times 10^{3} \mathrm{~N} .
$$

11. The forces on the ladder are shown in the diagram below. F_{1} is the force of the window, horizontal because the window is frictionless. F_{2} and F_{3} are components of the force of the ground on the ladder. M is the mass of the window cleaner and m is the mass of the ladder.

The force of gravity on the man acts at a point 3.0 m up the ladder and the force of gravity on the ladder acts at the center of the ladder. Let θ be the angle between the ladder and the ground. We use $\cos \theta=d / L$ or $\sin \theta=\sqrt{L^{2}-d^{2}} / L$ to find $\theta=60^{\circ}$. Here L is the length of the ladder $(5.0 \mathrm{~m})$ and d is the distance from the wall to the foot of the ladder (2.5 m).
(a) Since the ladder is in equilibrium the sum of the torques about its foot (or any other point) vanishes. Let ℓ be the distance from the foot of the ladder to the position of the window cleaner. Then, $M g \ell \cos \theta+m g(L / 2) \cos \theta-F_{1} L \sin \theta=0$, and

$$
\begin{aligned}
F_{1} & =\frac{(M \ell+m L / 2) g \cos \theta}{L \sin \theta}=\frac{[(75 \mathrm{~kg})(3.0 \mathrm{~m})+(10 \mathrm{~kg})(2.5 \mathrm{~m})]\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 60^{\circ}}{(5.0 \mathrm{~m}) \sin 60^{\circ}} \\
& =2.8 \times 10^{2} \mathrm{~N} .
\end{aligned}
$$

This force is outward, away from the wall. The force of the ladder on the window has the same magnitude but is in the opposite direction: it is approximately 280 N , inward.
(b) The sum of the horizontal forces and the sum of the vertical forces also vanish:

$$
\begin{array}{r}
F_{1}-F_{3}=0 \\
F_{2}-M g-m g=0
\end{array}
$$

The first of these equations gives $F_{3}=F_{1}=2.8 \times 10^{2} \mathrm{~N}$ and the second gives

$$
F_{2}=(M+m) g=(75 \mathrm{~kg}+10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=8.3 \times 10^{2} \mathrm{~N}
$$

The magnitude of the force of the ground on the ladder is given by the square root of the sum of the squares of its components:

$$
F=\sqrt{F_{2}^{2}+F_{3}^{2}}=\sqrt{\left(2.8 \times 10^{2} \mathrm{~N}\right)^{2}+\left(8.3 \times 10^{2} \mathrm{~N}\right)^{2}}=8.8 \times 10^{2} \mathrm{~N}
$$

(c) The angle ϕ between the force and the horizontal is given by $\tan \phi=F_{3} / F_{2}=830 / 280$ $=2.94$, so $\phi=71^{\circ}$. The force points to the left and upward, 71 ${ }^{\circ}$ above the horizontal. We note that this force is not directed along the ladder.
12. The forces exerted horizontally by the obstruction and vertically (upward) by the floor are applied at the bottom front corner C of the crate, as it verges on tipping. The center of the crate, which is where we locate the gravity force of magnitude $m g=500 \mathrm{~N}$, is a horizontal distance $\ell=0.375 \mathrm{~m}$ from C. The applied force of magnitude $F=350 \mathrm{~N}$ is a vertical distance h from C. Taking torques about C, we obtain

$$
h=\frac{m g \ell}{F}=\frac{(500 \mathrm{~N})(0.375 \mathrm{~m})}{350 \mathrm{~N}}=0.536 \mathrm{~m} .
$$

13. (a) Analyzing the horizontal forces (which add to zero) we find $F_{h}=F_{3}=5.0 \mathrm{~N}$.
(b) Equilibrium of vertical forces leads to $F_{v}=F_{1}+F_{2}=30 \mathrm{~N}$.
(c) Computing torques about point O, we obtain

$$
F_{v} d=F_{2} b+F_{3} a \Rightarrow d=\frac{(10 \mathrm{~N})(3.0 \mathrm{~m})+(5.0 \mathrm{~N})(2.0 \mathrm{~m})}{30 \mathrm{~N}}=1.3 \mathrm{~m} .
$$

14. (a) Analyzing vertical forces where string 1 and string 2 meet, we find

$$
T_{1}=\frac{w_{A}}{\cos \phi}=\frac{40 \mathrm{~N}}{\cos 35^{\circ}}=49 \mathrm{~N} .
$$

(b) Looking at the horizontal forces at that point leads to

$$
T_{2}=T_{1} \sin 35^{\circ}=(49 \mathrm{~N}) \sin 35^{\circ}=28 \mathrm{~N} .
$$

(c) We denote the components of T_{3} as T_{x} (rightward) and T_{y} (upward). Analyzing horizontal forces where string 2 and string 3 meet, we find $T_{x}=T_{2}=28 \mathrm{~N}$. From the vertical forces there, we conclude $T_{y}=w_{B}=50 \mathrm{~N}$. Therefore,

$$
T_{3}=\sqrt{T_{x}^{2}+T_{y}^{2}}=57 \mathrm{~N} .
$$

(d) The angle of string 3 (measured from vertical) is

$$
\theta=\tan ^{-1}\left(\frac{T_{x}}{T_{y}}\right)=\tan ^{-1}\left(\frac{28}{50}\right)=29^{\circ} .
$$

15. The (vertical) forces at points A, B and P are F_{A}, F_{B} and F_{P}, respectively. We note that $F_{P}=W$ and is upward. Equilibrium of forces and torques (about point B) lead to

$$
\begin{array}{r}
F_{A}+F_{B}+W=0 \\
b W-a F_{A}=0
\end{array}
$$

(a) From the second equation, we find

$$
F_{A}=b W / a=(15 / 5) W=3 W=3(900 \mathrm{~N})=2.7 \times 10^{3} \mathrm{~N} .
$$

(b) The direction is upward since $F_{A}>0$.
(c) Using this result in the first equation above, we obtain

$$
F_{B}=W-F_{A}=-4 W=-4(900 \mathrm{~N})=-3.6 \times 10^{3} \mathrm{~N},
$$

or $\left|F_{B}\right|=3.6 \times 10^{3} \mathrm{~N}$.
(d) F_{B} points downward, as indicated by the minus sign.
16. With pivot at the left end, Eq. 12-9 leads to

$$
-m_{\mathrm{s}} g \frac{L}{2}-M g x+T_{R} L=0
$$

where m_{s} is the scaffold's mass (50 kg) and M is the total mass of the paint cans (75 kg). The variable x indicates the center of mass of the paint can collection (as measured from the left end), and T_{R} is the tension in the right cable (722 N). Thus we obtain $x=0.702 \mathrm{~m}$.
17. (a) With the pivot at the hinge, Eq. 12-9 gives $T L \cos \theta-m g \frac{L}{2}=0$. This leads to $\theta=$ 78 . Then the geometric relation $\tan \theta=L / D$ gives $D=0.64 \mathrm{~m}$.
(b) A higher (steeper) slope for the cable results in a smaller tension. Thus, making D greater than the value of part (a) should prevent rupture.
18. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to

$$
-m_{2} g \frac{L_{2}}{2}-m g d+T_{R} L_{2}=0
$$

where m_{2} is the lower scaffold's mass (30 kg) and L_{2} is the lower scaffold's length (2.00 m). The mass of the package ($m=20 \mathrm{~kg}$) is a distance $d=0.50 \mathrm{~m}$ from the pivot, and T_{R} is the tension in the rope connecting the right end of the lower scaffold to the larger scaffold above it. This equation yields $T_{R}=196 \mathrm{~N}$. Then Eq. 12-8 determines T_{L} (the tension in the cable connecting the right end of the lower scaffold to the larger scaffold above it): $T_{L}=294 \mathrm{~N}$. Next, we analyze the larger scaffold (of length $L_{1}=L_{2}+2 d$ and mass m_{1}, given in the problem statement) placing our pivot at its left end and using Eq. 12-9:

$$
-m_{1} g \frac{L_{1}}{2}-T_{L} d-T_{R}\left(L_{1}-d\right)+T L_{1}=0
$$

This yields $T=457 \mathrm{~N}$.
19. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force on the wheel, and the only forces acting are the force F applied horizontally at the axle, the force of gravity $m g$ acting vertically at the center of the wheel, and the force of the step corner, shown as the two components f_{h} and f_{v}. If the minimum force is applied the wheel does not accelerate, so both the total force and the total torque acting on it are zero.

We calculate the torque around the step corner. The second diagram indicates that the distance from the line of F to the corner is $r-h$, where r is the radius of the wheel and h is the height of the step.
The distance from the line of $m g$ to the corner is $\sqrt{r^{2}+(r-h)^{2}}=\sqrt{2 r h-h^{2}}$.
Thus $F(r-h)-m g \sqrt{2 r h-h^{2}}=0$. The solution for F is

$$
\begin{aligned}
F & =\frac{\sqrt{2 r h-h^{2}}}{r-h} m g \\
& =\frac{\sqrt{2\left(6.00 \times 10^{-2} \mathrm{~m}\right)\left(3.00 \times 10^{-2} \mathrm{~m}\right)-\left(3.00 \times 10^{-2} \mathrm{~m}\right)^{2}}}{\left(6.00 \times 10^{-2} \mathrm{~m}\right)-\left(3.00 \times 10^{-2} \mathrm{~m}\right)}(0.800 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =13.6 \mathrm{~N} .
\end{aligned}
$$

20. (a) All forces are vertical and all distances are measured along an axis inclined at $\theta=$ 30°. Thus, any trigonometric factor cancels out and the application of torques about the contact point (referred to in the problem) leads to

$$
F_{\text {tripcep }}=\frac{(15 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(35 \mathrm{~cm})-(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~cm})}{2.5 \mathrm{~cm}}=1.9 \times 10^{3} \mathrm{~N}
$$

(b) The direction is upward since $F_{\text {tricep }}>0$
(c) Equilibrium of forces (with upwards positive) leads to

$$
F_{\text {tripcep }}+F_{\text {humer }}+(15 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=0
$$

and thus to $F_{\text {humer }}=-2.1 \times 10^{3} \mathrm{~N}$, or $\left|F_{\text {humer }}\right|=2.1 \times 10^{3} \mathrm{~N}$.
(d) The minus sign implies that $F_{\text {humer }}$ points downward.
21. The beam is in equilibrium: the sum of the forces and the sum of the torques acting on it each vanish. As we see in the figure, the beam makes an angle of 60° with the vertical and the wire makes an angle of 30° with the vertical.
(a) We calculate the torques around the hinge. Their sum is $T L \sin 30^{\circ}-W(L / 2) \sin 60^{\circ}=$ 0 . Here W is the force of gravity acting at the center of the beam, and T is the tension force of the wire. We solve for the tension:

$$
T=\frac{W \sin 60^{\circ}}{2 \sin 30^{\circ}}=\frac{(222 \mathrm{~N}) \sin 60^{\circ}}{2 \sin 30^{\circ}}=192 \mathrm{~N} .
$$

(b) Let F_{h} be the horizontal component of the force exerted by the hinge and take it to be positive if the force is outward from the wall. Then, the vanishing of the horizontal component of the net force on the beam yields $F_{h}-T \sin 30^{\circ}=0$ or

$$
F_{h}=T \sin 30^{\circ}=(192.3 \mathrm{~N}) \sin 30^{\circ}=96.1 \mathrm{~N} .
$$

(c) Let F_{v} be the vertical component of the force exerted by the hinge and take it to be positive if it is upward. Then, the vanishing of the vertical component of the net force on the beam yields $F_{v}+T \cos 30^{\circ}-W=0$ or

$$
F_{v}=W-T \cos 30^{\circ}=222 \mathrm{~N}-(192.3 \mathrm{~N}) \cos 30^{\circ}=55.5 \mathrm{~N} .
$$

22. (a) The sign is attached in two places: at $x_{1}=1.00 \mathrm{~m}$ (measured rightward from the hinge) and at $x_{2}=3.00 \mathrm{~m}$. We assume the downward force due to the sign's weight is equal at these two attachment points: each being half the sign's weight of $m g$. The angle where the cable comes into contact (also at x_{2}) is

$$
\theta=\tan ^{-1}\left(d_{v} / d_{h}\right)=\tan ^{-1}(4.00 \mathrm{~m} / 3.00 \mathrm{~m})
$$

and the force exerted there is the tension T. Computing torques about the hinge, we find

$$
\begin{aligned}
T & =\frac{\frac{1}{2} m g x_{1}+\frac{1}{2} m g x_{2}}{x_{2} \sin \theta}=\frac{\frac{1}{2}(50.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~m})+\frac{1}{2}(50.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.00 \mathrm{~m})}{(3.00 \mathrm{~m})(0.800)} \\
& =408 \mathrm{~N} .
\end{aligned}
$$

(b) Equilibrium of horizontal forces requires the (rightward) horizontal hinge force be

$$
F_{x}=T \cos \theta=245 \mathrm{~N} .
$$

(c) And equilibrium of vertical forces requires the (upward) vertical hinge force be

$$
F_{y}=m g-T \sin \theta=163 \mathrm{~N} .
$$

23. (a) We note that the angle between the cable and the strut is $\alpha=\theta-\phi=45^{\circ}-30^{\circ}=$ 15°. The angle between the strut and any vertical force (like the weights in the problem) is $\beta=90^{\circ}-45^{\circ}=45^{\circ}$. Denoting $M=225 \mathrm{~kg}$ and $m=45.0 \mathrm{~kg}$, and ℓ as the length of the boom, we compute torques about the hinge and find

$$
T=\frac{M g \ell \sin \beta+m g\left(\frac{\ell}{2}\right) \sin \beta}{\ell \sin \alpha}=\frac{M g \sin \beta+m g \sin \beta / 2}{\sin \alpha} .
$$

The unknown length ℓ cancels out and we obtain $T=6.63 \times 10^{3} \mathrm{~N}$.
(b) Since the cable is at 30° from horizontal, then horizontal equilibrium of forces requires that the horizontal hinge force be

$$
F_{x}=T \cos 30^{\circ}=5.74 \times 10^{3} \mathrm{~N} .
$$

(c) And vertical equilibrium of forces gives the vertical hinge force component:

$$
F_{y}=M g+m g+T \sin 30^{\circ}=5.96 \times 10^{3} \mathrm{~N} .
$$

24. (a) The problem asks for the person's pull (his force exerted on the rock) but since we are examining forces and torques on the person, we solve for the reaction force $F_{N 1}$ (exerted leftward on the hands by the rock). At that point, there is also an upward force of static friction on his hands f_{1} which we will take to be at its maximum value $\mu_{1} F_{N 1}$. We note that equilibrium of horizontal forces requires $F_{N 1}=F_{N 2}$ (the force exerted leftward on his feet); on this feet there is also an upward static friction force of magnitude $\mu_{2} F_{N 2}$. Equilibrium of vertical forces gives

$$
f_{1}+f_{2}-m g=0 \Rightarrow F_{N 1}=\frac{m g}{\mu_{1}+\mu_{2}}=3.4 \times 10^{2} \mathrm{~N} .
$$

(b) Computing torques about the point where his feet come in contact with the rock, we find

$$
m g(d+w)-f_{1} w-F_{N 1} h=0 \Rightarrow h=\frac{m g(d+w)-\mu_{1} F_{N 1} w}{F_{N 1}}=0.88 \mathrm{~m} .
$$

(c) Both intuitively and mathematically (since both coefficients are in the denominator) we see from part (a) that $F_{N 1}$ would increase in such a case.
(d) As for part (b), it helps to plug part (a) into part (b) and simplify:

$$
h=(d+w) \mu_{2}+d \mu_{1}
$$

from which it becomes apparent that h should decrease if the coefficients decrease.
25. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. Let T_{l} be the tension force of the left-hand cord, T_{r} be the tension force of the right-hand cord, and m be the mass of the bar. The equations for equilibrium are:

$$
\begin{array}{rr}
\text { vertical force components } & T_{l} \cos \theta+T_{r} \cos \phi-m g=0 \\
\text { horizontal force components } & -T_{l} \sin \theta+T_{r} \sin \phi=0 \\
\text { torques } & m g x-T_{r} L \cos \phi=0 .
\end{array}
$$

The origin was chosen to be at the left end of the bar for purposes of calculating the torque. The unknown quantities are T_{l}, T_{r}, and x. We want to eliminate T_{l} and T_{r}, then solve for x. The second equation yields $T_{l}=T_{r} \sin \phi / \sin \theta$ and when this is substituted into the first and solved for T_{r} the result is $T_{r}=m g \sin \theta /(\sin \phi \cos \theta+\cos \phi \sin \theta)$. This expression is substituted into the third equation and the result is solved for x :

$$
x=L \frac{\sin \theta \cos \phi}{\sin \phi \cos \theta+\cos \phi \sin \theta}=L \frac{\sin \theta \cos \phi}{\sin (\theta+\phi)} .
$$

The last form was obtained using the trigonometric identity $\sin (A+B)=\sin A \cos B+$ $\cos A \sin B$. For the special case of this problem $\theta+\phi=90^{\circ}$ and $\sin (\theta+\phi)=1$. Thus,

$$
x=L \sin \theta \cos \phi=(6.10 \mathrm{~m}) \sin 36.9^{\circ} \cos 53.1^{\circ}=2.20 \mathrm{~m} .
$$

26. The problem states that each hinge supports half the door's weight, so each vertical hinge force component is $F_{y}=m g / 2=1.3 \times 10^{2} \mathrm{~N}$. Computing torques about the top hinge, we find the horizontal hinge force component (at the bottom hinge) is

$$
F_{h}=\frac{(27 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.91 \mathrm{~m} / 2)}{2.1 \mathrm{~m}-2(0.30 \mathrm{~m})}=80 \mathrm{~N} .
$$

Equilibrium of horizontal forces demands that the horizontal component of the top hinge force has the same magnitude (though opposite direction).
(a) In unit-vector notation, the force on the door at the top hinge is

$$
F_{\text {top }}=(-80 \mathrm{~N}) \hat{\mathrm{i}}+\left(1.3 \times 10^{2} \mathrm{~N}\right) \hat{\mathrm{j}} .
$$

(b) Similarly, the force on the door at the bottom hinge is

$$
F_{\text {bottom }}=(+80 \mathrm{~N}) \hat{\mathrm{i}}+\left(1.3 \times 10^{2} \mathrm{~N}\right) \hat{\mathrm{j}}
$$

27. (a) Computing torques about point A, we find

$$
T_{\max } L \sin \theta=W x_{\max }+W_{b}\left(\frac{L}{2}\right) .
$$

We solve for the maximum distance:

$$
x_{\max }=\left(\frac{T_{\max } \sin \theta-W_{b} / 2}{W}\right) L=\left(\frac{500 \sin 30.0^{\circ}-200 / 2}{300}\right)(3.00)=1.50 \mathrm{~m} .
$$

(b) Equilibrium of horizontal forces gives $F_{x}=T_{\max } \cos \theta=433 \mathrm{~N}$.
(c) And equilibrium of vertical forces gives $F_{y}=W+W_{b}-T_{\max } \sin \theta=250 \mathrm{~N}$.
28. (a) Computing torques about the hinge, we find the tension in the wire:

$$
T L \sin \theta-W x=0 \Rightarrow T=\frac{W x}{L \sin \theta} .
$$

(b) The horizontal component of the tension is $T \cos \theta$, so equilibrium of horizontal forces requires that the horizontal component of the hinge force is

$$
F_{x}=\left(\frac{W x}{L \sin \theta}\right) \cos \theta=\frac{W x}{L \tan \theta} .
$$

(c) The vertical component of the tension is $T \sin \theta$, so equilibrium of vertical forces requires that the vertical component of the hinge force is

$$
F_{y}=W-\left(\frac{W x}{L \sin \theta}\right) \sin \theta=W\left(1-\frac{x}{L}\right) .
$$

29. We examine the box when it is about to tip. Since it will rotate about the lower right edge, that is where the normal force of the floor is exerted. This force is labeled F_{N} on the diagram below. The force of friction is denoted by f, the applied force by F, and the force of gravity by W. Note that the force of gravity is applied at the center of the box. When the minimum force is applied the box does not accelerate, so the sum of the horizontal force components vanishes: $F-f=0$, the sum of the vertical force components vanishes: $F_{N}-W=0$, and the sum of the torques vanishes:

$$
F L-W L / 2=0 .
$$

Here L is the length of a side of the box and the origin was chosen to be at the lower right edge.

(a) From the torque equation, we find

$$
F=\frac{W}{2}=\frac{890 \mathrm{~N}}{2}=445 \mathrm{~N} .
$$

(b) The coefficient of static friction must be large enough that the box does not slip. The box is on the verge of slipping if $\mu_{s}=f / F_{N}$. According to the equations of equilibrium F_{N} $=W=890 \mathrm{~N}$ and $f=F=445 \mathrm{~N}$, so

$$
\mu_{s}=\frac{445 \mathrm{~N}}{890 \mathrm{~N}}=0.50
$$

(c) The box can be rolled with a smaller applied force if the force points upward as well as to the right. Let θ be the angle the force makes with the horizontal. The torque equation then becomes

$$
F L \cos \theta+F L \sin \theta-W L / 2=0
$$

with the solution

$$
F=\frac{W}{2(\cos \theta+\sin \theta)} .
$$

We want $\cos \theta+\sin \theta$ to have the largest possible value. This occurs if $\theta=45^{\circ}$, a result we can prove by setting the derivative of $\cos \theta+\sin \theta$ equal to zero and solving for θ. The minimum force needed is

$$
F=\frac{W}{4 \cos 45^{\circ}}=\frac{890 \mathrm{~N}}{4 \cos 45^{\circ}}=315 \mathrm{~N}
$$

30. (a) With the pivot at the hinge, Eq. 12-9 yields

$$
T L \cos \theta-F_{a} y=0
$$

This leads to $T=\left(F_{a} / \cos \theta\right)(y / L)$ so that we can interpret $F_{a} / \cos \theta$ as the slope on the tension graph (which we estimate to be 600 in SI units). Regarding the F_{h} graph, we use Eq. 12-7 to get

$$
F_{h}=T \cos \theta-F_{a}=\left(-F_{a}\right)(y / L)-F_{a}
$$

after substituting our previous expression. The result implies that the slope on the F_{h} graph (which we estimate to be -300) is equal to $-F_{a}$, or $F_{a}=300 \mathrm{~N}$ and (plugging back in) $\theta=60.0^{\circ}$.
(b) As mentioned in the previous part, $F_{a}=300 \mathrm{~N}$.
31. The diagram below shows the forces acting on the plank. Since the roller is frictionless the force it exerts is normal to the plank and makes the angle θ with the vertical. Its magnitude is designated $F . W$ is the force of gravity; this force acts at the center of the plank, a distance $L / 2$ from the point where the plank touches the floor. F_{N} is the normal force of the floor and f is the force of friction. The distance from the foot of the plank to the wall is denoted by d. This quantity is not given directly but it can be computed using $d=h / \tan \theta$.

The equations of equilibrium are:

$$
\begin{aligned}
\text { horizontal force components } & F \sin \theta-f
\end{aligned}=0
$$

The point of contact between the plank and the roller was used as the origin for writing the torque equation.

When $\theta=70^{\circ}$ the plank just begins to slip and $f=\mu s F_{N}$, where μ_{s} is the coefficient of static friction. We want to use the equations of equilibrium to compute F_{N} and f for $\theta=$ 70°, then use $\mu_{s}=f / F_{N}$ to compute the coefficient of friction.

The second equation gives $F=\left(W-F_{N}\right) / \cos \theta$ and this is substituted into the first to obtain

$$
f=\left(W-F_{N}\right) \sin \theta / \cos \theta=\left(W-F_{N}\right) \tan \theta .
$$

This is substituted into the third equation and the result is solved for F_{N} :

$$
F_{N}=\frac{d-(L / 2) \cos \theta+h \tan \theta}{d+h \tan \theta} W=\frac{h\left(1+\tan ^{2} \theta\right)-(L / 2) \sin \theta}{h\left(1+\tan ^{2} \theta\right)} W,
$$

where we have use $d=h / \tan \theta$ and multiplied both numerator and denominator by $\tan \theta$. We use the trigonometric identity $1+\tan ^{2} \theta=1 / \cos ^{2} \theta$ and multiply both numerator and denominator by $\cos ^{2} \theta$ to obtain

$$
F_{N}=W\left(1-\frac{L}{2 h} \cos ^{2} \theta \sin \theta\right)
$$

Now we use this expression for F_{N} in $f=\left(W-F_{N}\right) \tan \theta$ to find the friction:

$$
f=\frac{W L}{2 h} \sin ^{2} \theta \cos \theta
$$

We substitute these expressions for f and F_{N} into $\mu_{s}=f / F_{N}$ and obtain

$$
\mu_{s}=\frac{L \sin ^{2} \theta \cos \theta}{2 h-L \sin \theta \cos ^{2} \theta} .
$$

Evaluating this expression for $\theta=70^{\circ}$, we obtain

$$
\mu_{s}=\frac{(6.1 \mathrm{~m}) \sin ^{2} 70^{\circ} \cos 70^{\circ}}{2(3.05 \mathrm{~m})-(6.1 \mathrm{~m}) \sin 70^{\circ} \cos ^{2} 70^{\circ}}=0.34
$$

32. The phrase "loosely bolted" means that there is no torque exerted by the bolt at that point (where A connects with B). The force exerted on A at the hinge has x and y components F_{x} and F_{y}. The force exerted on A at the bolt has components G_{x} and G_{y} and those exerted on B are simply $-G_{x}$ and $-G_{y}$ by Newton's third law. The force exerted on B at its hinge has components H_{x} and H_{y}. If a horizontal force is positive, it points rightward, and if a vertical force is positive it points upward.
(a) We consider the combined $A \cup B$ system, which has a total weight of $M g$ where $M=$ 122 kg and the line of action of that downward force of gravity is $x=1.20 \mathrm{~m}$ from the wall. The vertical distance between the hinges is $y=1.80 \mathrm{~m}$. We compute torques about the bottom hinge and find

$$
F_{x}=-\frac{M g x}{y}=-797 \mathrm{~N} .
$$

If we examine the forces on A alone and compute torques about the bolt, we instead find

$$
F_{y}=\frac{m_{A} g x}{\ell}=265 \mathrm{~N}
$$

where $m_{A}=54.0 \mathrm{~kg}$ and $\ell=2.40 \mathrm{~m}$ (the length of beam A). Thus, in unit-vector notation, we have

$$
\vec{F}=F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}=(-797 \mathrm{~N}) \hat{\mathrm{i}}+(265 \mathrm{~N}) \hat{\mathrm{j}} .
$$

(b) Equilibrium of horizontal and vertical forces on beam A readily yields $G_{x}=-F_{x}=$ 797 N and $G_{y}=m_{A} g-F_{y}=265 \mathrm{~N}$. In unit-vector notation, we have

$$
\vec{G}=G_{x} \hat{\mathrm{i}}+G_{y} \hat{\mathrm{j}}=(+797 \mathrm{~N}) \hat{\mathrm{i}}+(265 \mathrm{~N}) \hat{\mathrm{j}}
$$

(c) Considering again the combined $\mathrm{A} \cup \mathrm{B}$ system, equilibrium of horizontal and vertical forces readily yields $H_{x}=-F_{x}=797 \mathrm{~N}$ and $H_{y}=M g-F_{y}=931 \mathrm{~N}$. In unit-vector notation, we have

$$
\vec{H}=H_{x} \hat{i}+H_{y} \hat{\mathrm{j}}=(+797 \mathrm{~N}) \hat{\mathrm{i}}+(931 \mathrm{~N}) \hat{\mathrm{j}}
$$

(d) As mentioned above, Newton's third law (and the results from part (b)) immediately provide
$-G_{x}=-797 \mathrm{~N}$ and $-G_{y}=-265 \mathrm{~N}$ for the force components acting on B at the bolt. In unit-vector notation, we have

$$
-\vec{G}=-G_{x} \hat{\mathrm{i}}-G_{y} \hat{\mathrm{j}}=(-797 \mathrm{~N}) \hat{\mathrm{i}}-(265 \mathrm{~N}) \hat{\mathrm{j}}
$$

33. The force diagram shown below depicts the situation just before the crate tips, when the normal force acts at the front edge. However, it may also be used to calculate the angle for which the crate begins to slide. W is the force of gravity on the crate, F_{N} is the normal force of the plane on the crate, and f is the force of friction. We take the x axis to be down the plane and the y axis to be in the direction of the normal force. We assume the acceleration is zero but the crate is on the verge of sliding.

(a) The x and y components of Newton's second law are

$$
W \sin \theta-f=0 \text { and } F_{N}-W \cos \theta=0
$$

respectively. The y equation gives $F_{N}=W \cos \theta$. Since the crate is about to slide

$$
f=\mu_{s} F_{N}=\mu_{s} W \cos \theta,
$$

where μ_{s} is the coefficient of static friction. We substitute into the x equation and find

$$
W \sin \theta-\mu_{s} W \cos \theta=0 \Rightarrow \tan \theta=\mu_{s .} .
$$

This leads to $\theta=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.60=31.0^{\circ}$.
In developing an expression for the total torque about the center of mass when the crate is about to tip, we find that the normal force and the force of friction act at the front edge. The torque associated with the force of friction tends to turn the crate clockwise and has magnitude $f h$, where h is the perpendicular distance from the bottom of the crate to the center of gravity. The torque associated with the normal force tends to turn the crate counterclockwise and has magnitude $F_{N} \ell / 2$, where ℓ is the length of an edge. Since the total torque vanishes, $f h=F_{N} \ell / 2$. When the crate is about to tip, the acceleration of the center of gravity vanishes, so $f=W \sin \theta$ and $F_{N}=W \cos \theta$. Substituting these expressions into the torque equation, we obtain

$$
\theta=\tan ^{-1} \frac{\ell}{2 h}=\tan ^{-1} \frac{1.2 \mathrm{~m}}{2(0.90 \mathrm{~m})}=33.7^{\circ}
$$

As θ is increased from zero the crate slides before it tips.
(b) It starts to slide when $\theta=31^{\circ}$.
(c) The crate begins to slide when $\theta=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.70=35.0^{\circ}$ and begins to tip when $\theta=33.7^{\circ}$. Thus, it tips first as the angle is increased.
(d) Tipping begins at $\theta=33.7^{\circ} \approx 34^{\circ}$.
34. (a) Eq. 12-9 leads to

$$
T L \sin \theta-m_{p} g x-m_{b} g\left(\frac{L}{2}\right)=0 .
$$

This can be written in the form of a straight line (in the graph) with

$$
T=\left(" \text { slope" } \frac{x}{L}+" y\right. \text {-intercept", }
$$

where "slope" $=m_{p} g / \sin \theta$ and " y-intercept" $=m_{b} g / 2 \sin \theta$. The graph suggests that the slope (in SI units) is 200 and the y-intercept is 500 . These facts, combined with the given $m_{p}+m_{b}=61.2 \mathrm{~kg}$ datum, lead to the conclusion: $\sin \theta=61.22 \mathrm{~g} / 1200 \Rightarrow \theta=30.0^{\circ}$.
(b) It also follows that $m_{p}=51.0 \mathrm{~kg}$.
(c) Similarly, $m_{b}=10.2 \mathrm{~kg}$.
35. The diagrams below show the forces on the two sides of the ladder, separated. F_{A} and F_{E} are the forces of the floor on the two feet, T is the tension force of the tie rod, W is the force of the man (equal to his weight), F_{h} is the horizontal component of the force exerted by one side of the ladder on the other, and F_{ν} is the vertical component of that force. Note that the forces exerted by the floor are normal to the floor since the floor is frictionless. Also note that the force of the left side on the right and the force of the right side on the left are equal in magnitude and opposite in direction.

Since the ladder is in equilibrium, the vertical components of the forces on the left side of the ladder must sum to zero: $F_{v}+F_{A}-W=0$. The horizontal components must sum to zero: $T-F_{h}=0$. The torques must also sum to zero. We take the origin to be at the hinge and let L be the length of a ladder side. Then $F_{A} L \cos \theta-W(L / 4) \cos \theta-T(L / 2) \sin \theta=0$. Here we recognize that the man is one-fourth the length of the ladder side from the top and the tie rod is at the midpoint of the side.

The analogous equations for the right side are $F_{E}-F_{v}=0, F_{h}-T=0$, and $F_{E} L \cos \theta-$ $T(L / 2) \sin \theta=0$.

There are 5 different equations:

$$
\begin{aligned}
F_{v}+F_{A}-W & =0, \\
T-F_{h} & =0 \\
F_{A} L \cos \theta-W(L / 4) \cos \theta-T(L / 2) \sin \theta & =0 \\
F_{E}-F_{v} & =0 \\
F_{E} L \cos \theta-T(L / 2) \sin \theta & =0 .
\end{aligned}
$$

The unknown quantities are $F_{A}, F_{E}, F_{v}, F_{h}$, and T.
(a) First we solve for T by systematically eliminating the other unknowns. The first equation gives $F_{A}=W-F_{v}$ and the fourth gives $F_{v}=F_{E}$. We use these to substitute into the remaining three equations to obtain

$$
\begin{aligned}
T-F_{h} & =0 \\
W L \cos \theta-F_{E} L \cos \theta-W(L / 4) \cos \theta-T(L / 2) \sin \theta & =0 \\
F_{E} L \cos \theta-T(L / 2) \sin \theta & =0 .
\end{aligned}
$$

The last of these gives $F_{E}=T \sin \theta / 2 \cos \theta=(T / 2) \tan \theta$. We substitute this expression into the second equation and solve for T. The result is

$$
T=\frac{3 W}{4 \tan \theta}
$$

To find $\tan \theta$, we consider the right triangle formed by the upper half of one side of the ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side of the triangle has a length of 0.381 m , the hypotenuse has a length of 1.22 m , and the vertical side has a length of $\sqrt{(1.22 \mathrm{~m})^{2}-(0.381 \mathrm{~m})^{2}}=1.16 \mathrm{~m}$. This means

$$
\tan \theta=(1.16 \mathrm{~m}) /(0.381 \mathrm{~m})=3.04
$$

Thus,

$$
T=\frac{3(854 \mathrm{~N})}{4(3.04)}=211 \mathrm{~N} .
$$

(b) We now solve for F_{A}. Since $F_{v}=F_{E}$ and $F_{E}=T \sin \theta / 2 \cos \theta, F_{v}=3 W / 8$. We substitute this into $F_{v}+F_{A}-W=0$ and solve for F_{A}. We find

$$
F_{A}=W-F_{v}=W-3 W / 8=5 W / 8=5(884 \mathrm{~N}) / 8=534 \mathrm{~N} .
$$

(c) We have already obtained an expression for $F_{E}: F_{E}=3 \mathrm{~W} / 8$. Evaluating it, we get $F_{E}=$ 320 N .
36. (a) The Young's modulus is given by

$$
E=\frac{\text { stress }}{\text { strain }}=\text { slope of the stress-strain curve }=\frac{150 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}{0.002}=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
$$

(b) Since the linear range of the curve extends to about $2.9 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$, this is approximately the yield strength for the material.
37. (a) The shear stress is given by F / A, where F is the magnitude of the force applied parallel to one face of the aluminum rod and A is the cross-sectional area of the rod. In this case F is the weight of the object hung on the end: $F=m g$, where m is the mass of the object. If r is the radius of the rod then $A=\pi r^{2}$. Thus, the shear stress is

$$
\frac{F}{A}=\frac{m g}{\pi r^{2}}=\frac{(1200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\pi(0.024 \mathrm{~m})^{2}}=6.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

(b) The shear modulus G is given by

$$
G=\frac{F / A}{\Delta x / L}
$$

where L is the protrusion of the rod and Δx is its vertical deflection at its end. Thus,

$$
\Delta x=\frac{(F / A) L}{G}=\frac{\left(6.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)(0.053 \mathrm{~m})}{3.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}}=1.1 \times 10^{-5} \mathrm{~m} .
$$

38. Since the force is (stress x area) and the displacement is (strain x length), we can write the work integral (eq. 7-32) as

$$
W=\int F d x=\int(\text { stress }) A(\text { differential strain }) L=A L \int(\text { stress })(\text { differential strain })
$$

which means the work is (wire-area) \times (wire-length) \times (graph-area-under-curve). Since the area of a triangle (see the graph in the problem statement) is $\frac{1}{2}$ (base)(height) then we determine the work done to be

$$
W=\left(2.00 \times 10^{-6} \mathrm{~m}^{2}\right)(0.800 \mathrm{~m})\left(\frac{1}{2}\right)\left(1.0 \times 10^{-3}\right)\left(7.0 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}\right)=0.0560 \mathrm{~J}
$$

39. (a) Let F_{A} and F_{B} be the forces exerted by the wires on the \log and let m be the mass of the log. Since the \log is in equilibrium $F_{A}+F_{B}-m g=0$. Information given about the stretching of the wires allows us to find a relationship between F_{A} and F_{B}. If wire A originally had a length L_{A} and stretches by ΔL_{A}, then $\Delta L_{A}=F_{A} L_{A} / A E$, where A is the cross-sectional area of the wire and E is Young's modulus for steel ($200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$). Similarly, $\Delta L_{B}=F_{B} L_{B} / A E$. If ℓ is the amount by which B was originally longer than A then, since they have the same length after the \log is attached, $\Delta L_{A}=\Delta L_{B}+\ell$. This means

$$
\frac{F_{A} L_{A}}{A E}=\frac{F_{B} L_{B}}{A E}+\ell .
$$

We solve for F_{B} :

$$
F_{B}=\frac{F_{A} L_{A}}{L_{B}}-\frac{A E \ell}{L_{B}} .
$$

We substitute into $F_{A}+F_{B}-m g=0$ and obtain

$$
F_{A}=\frac{m g L_{B}+A E \ell}{L_{A}+L_{B}} .
$$

The cross-sectional area of a wire is $A=\pi r^{2}=\pi\left(1.20 \times 10^{-3} \mathrm{~m}\right)^{2}=4.52 \times 10^{-6} \mathrm{~m}^{2}$. Both L_{A} and L_{B} may be taken to be 2.50 m without loss of significance. Thus

$$
\begin{aligned}
F_{A} & =\frac{(103 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.50 \mathrm{~m})+\left(4.52 \times 10^{-6} \mathrm{~m}^{2}\right)\left(200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left(2.0 \times 10^{-3} \mathrm{~m}\right)}{2.50 \mathrm{~m}+2.50 \mathrm{~m}} \\
& =866 \mathrm{~N} .
\end{aligned}
$$

(b) From the condition $F_{A}+F_{B}-m g=0$, we obtain

$$
F_{B}=m g-F_{A}=(103 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-866 \mathrm{~N}=143 \mathrm{~N} .
$$

(c) The net torque must also vanish. We place the origin on the surface of the \log at a point directly above the center of mass. The force of gravity does not exert a torque about this point. Then, the torque equation becomes $F_{A} d_{A}-F_{B} d_{B}=0$, which leads to

$$
\frac{d_{A}}{d_{B}}=\frac{F_{B}}{F_{A}}=\frac{143 \mathrm{~N}}{866 \mathrm{~N}}=0.165
$$

40. (a) Since the brick is now horizontal and the cylinders were initially the same length ℓ, then both have been compressed an equal amount $\Delta \ell$. Thus,

$$
\frac{\Delta \ell}{\ell}=\frac{F A}{A_{A} E_{A}} \quad \text { and } \quad \frac{\Delta \ell}{\ell}=\frac{F_{B}}{A_{B} E_{B}}
$$

which leads to

$$
\frac{F_{A}}{F_{B}}=\frac{A_{A} E_{A}}{A_{B} E_{B}}=\frac{\left(2 A_{B}\right)\left(2 E_{B}\right)}{A_{B} E_{B}}=4
$$

When we combine this ratio with the equation $F_{A}+F_{B}=W$, we find $F_{A} / W=4 / 5=0.80$.
(b) This also leads to the result $F_{B} / W=1 / 5=0.20$.
(c) Computing torques about the center of mass, we find $F_{A} d_{A}=F_{B} d_{B}$ which leads to

$$
\frac{d_{A}}{d_{B}}=\frac{F_{B}}{F_{A}}=\frac{1}{4}=0.25 .
$$

41. The flat roof (as seen from the air) has area $A=150 \mathrm{~m} \times 5.8 \mathrm{~m}=870 \mathrm{~m}^{2}$. The volume of material directly above the tunnel (which is at depth $d=60 \mathrm{~m}$) is therefore $V=A \times d=$ $870 \mathrm{~m}^{2} \times 60 \mathrm{~m}=52200 \mathrm{~m}^{3}$. Since the density is $\rho=2.8 \mathrm{~g} / \mathrm{cm}^{3}=2800 \mathrm{~kg} / \mathrm{m}^{3}$, we find the mass of material supported by the steel columns to be $m=\rho V=1.46 \times 10^{8} \mathrm{~m}^{3}$.
(a) The weight of the material supported by the columns is $m g=1.4 \times 10^{9} \mathrm{~N}$.
(b) The number of columns needed is

$$
n=\frac{1.43 \times 10^{9} \mathrm{~N}}{\frac{1}{2}\left(400 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left(960 \times 10^{-4} \mathrm{~m}^{2}\right)}=75 .
$$

42. Let the forces that compress stoppers A and B be F_{A} and F_{B}, respectively. Then equilibrium of torques about the axle requires $F R=r_{A} F_{A}+r_{B} F_{B}$. If the stoppers are compressed by amounts $\left|\Delta y_{A}\right|$ and $\left|\Delta y_{B}\right|$ respectively, when the rod rotates a (presumably small) angle θ (in radians), then $\left|\Delta y_{A}\right|=r_{A} \theta$ and $\left|\Delta y_{B}\right|=r_{B} \theta$.

Furthermore, if their "spring constants" k are identical, then $k=|F / \Delta y|$ leads to the condition $F_{A} / r_{A}=F_{B} / r_{B}$ which provides us with enough information to solve.
(a) Simultaneous solution of the two conditions leads to

$$
F_{A}=\frac{R r_{A}}{r_{A}^{2}+r_{B}^{2}} F=\frac{(5.0 \mathrm{~cm})(7.0 \mathrm{~cm})}{(7.0 \mathrm{~cm})^{2}+(4.0 \mathrm{~cm})^{2}}(220 \mathrm{~N})=118 \mathrm{~N} \approx 1.2 \times 10^{2} \mathrm{~N} .
$$

(b) It also yields

$$
F_{B}=\frac{R r_{B}}{r_{A}^{2}+r_{B}^{2}} F=\frac{(5.0 \mathrm{~cm})(4.0 \mathrm{~cm})}{(7.0 \mathrm{~cm})^{2}+(4.0 \mathrm{~cm})^{2}}(220 \mathrm{~N})=68 \mathrm{~N} .
$$

43. With the x axis parallel to the incline (positive uphill), then

$$
\Sigma F_{x}=0 \Rightarrow T \cos 25^{\circ}-m g \sin 45^{\circ}=0
$$

where reference to Fig. 5-18 in the textbook is helpful. Therefore, $T=76 \mathrm{~N}$.
44. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives

$$
-m g x-M g \frac{L}{2}+F_{\mathrm{h}} h=0
$$

where m is the man's mass and M is that of the ramp; F_{h} is the leftward push of the right wall onto the right edge of the ramp. This equation can be written to be of the form (for a straight line in a graph)

$$
F_{\mathrm{h}}=(\text { "slope" }) x+(" y \text {-intercept") }
$$

where the "slope" is $m g / h$ and the " y-intercept" is $M g D / 2 h$. Since $h=0.480 \mathrm{~m}$ and $D=$ 4.00 m , and the graph seems to intercept the vertical axis at 20 kN , then we find $M=500$ kg.
(b) Since the "slope" (estimated from the graph) is $(5000 \mathrm{~N}) /(4 \mathrm{~m})$, then the man's mass must be $m=62.5 \mathrm{~kg}$.
45. (a) The forces acting on bucket are the force of gravity, down, and the tension force of cable A, up. Since the bucket is in equilibrium and its weight is

$$
W_{B}=m_{B} g=(817 \mathrm{k} g)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=8.01 \times 10^{3} \mathrm{~N},
$$

the tension force of cable A is $T_{A}=8.01 \times 10^{3} \mathrm{~N}$.
(b) We use the coordinates axes defined in the diagram. Cable A makes an angle of $\theta_{2}=$ 66.0° with the negative y axis, cable B makes an angle of 27.0° with the positive y axis, and cable C is along the x axis. The y components of the forces must sum to zero since the knot is in equilibrium. This means $T_{B} \cos 27.0^{\circ}-T_{A} \cos 66.0^{\circ}=0$ and

$$
T_{B}=\frac{\cos 66.0^{\circ}}{\cos 27.0^{\circ}} T_{A}=\left(\frac{\cos 66.0^{\circ}}{\cos 27.0^{\circ}}\right)\left(8.01 \times 10^{3} \mathrm{~N}\right)=3.65 \times 10^{3} \mathrm{~N} .
$$

(c) The x components must also sum to zero. This means $T_{C}+T_{B} \sin 27.0^{\circ}-T_{A} \sin 66.0^{\circ}$ $=0$ and

$$
\begin{aligned}
T_{C} & =T_{A} \sin 66.0^{\circ}-T_{B} \sin 27.0^{\circ}=\left(8.01 \times 10^{3} \mathrm{~N}\right) \sin 66.0^{\circ}-\left(3.65 \times 10^{3} \mathrm{~N}\right) \sin 27.0^{\circ} \\
& =5.66 \times 10^{3} \mathrm{~N} .
\end{aligned}
$$

46. The beam has a mass $M=40.0 \mathrm{~kg}$ and a length $L=0.800 \mathrm{~m}$. The mass of the package of tamale is $m=10.0 \mathrm{~kg}$.
(a) Since the system is in static equilibrium, the normal force on the beam from roller A is equal to half of the weight of the beam: $F_{A}=M g / 2=(40.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) / 2=196 \mathrm{~N}$.
(b) The normal force on the beam from roller B is equal to half of the weight of the beam plus the weight of the tamale:

$$
F_{B}=M g / 2+m g=(40.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) / 2+(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=294 \mathrm{~N} .
$$

(c) When the right-hand end of the beam is centered over roller B, the normal force on the beam from roller A is equal to the weight of the beam plus half of the weight of the tamale:

$$
F_{A}=M g+m g / 2=(40.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) / 2=441 \mathrm{~N} .
$$

(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of the tamale:

$$
F_{B}=m g / 2=(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) / 2=49.0 \mathrm{~N} .
$$

(e) We choose the rotational axis to pass through roller B. When the beam is on the verge of losing contact with roller A, the net torque is zero. The balancing equation may be written as

$$
\operatorname{mgx}=M g(L / 4-x) \Rightarrow x=\frac{L}{4} \frac{M}{M+m} .
$$

Substituting the values given, we obtain $x=0.160 \mathrm{~m}$.
47. The cable that goes around the lowest pulley is cable 1 and has tension $T_{1}=F$. That pulley is supported by the cable 2 (so $T_{2}=2 T_{1}=2 F$) and goes around the middle pulley. The middle pulley is supported by cable 3 (so $T_{3}=2 T_{2}=4 F$) and goes around the top pulley. The top pulley is supported by the upper cable with tension T, so $T=2 T_{3}=8 F$. Three cables are supporting the block (which has mass $m=6.40 \mathrm{~kg}$):

$$
T_{1}+T_{2}+T_{3}=m g \Rightarrow F=\frac{m g}{7}=8.96 \mathrm{~N} .
$$

Therefore, $T=8(8.96 \mathrm{~N})=71.7 \mathrm{~N}$.
48. (a) Eq. 12-8 leads to $T_{1} \sin 40^{\circ}+T_{2} \sin \theta=m g$. Also, Eq. 12-7 leads to

$$
T_{1} \cos 40^{\circ}-T_{2} \cos \theta=0 .
$$

Combining these gives the expression

$$
T_{2}=\frac{m g}{\cos \theta \tan 40^{\circ}+\sin \theta} .
$$

To minimize this, we can plot it or set its derivative equal to zero. In either case, we find that it is at its minimum at $\theta=50^{\circ}$.
(b) At $\theta=50^{\circ}$, we find $T_{2}=0.77 \mathrm{mg}$.
49. (a) Let $d=0.00600 \mathrm{~m}$. In order to achieve the same final lengths, wires 1 and 3 must stretch an amount d more than wire 2 stretches:

$$
\Delta L_{1}=\Delta L_{3}=\Delta L_{2}+d
$$

Combining this with Eq. 12-23 we obtain

$$
F_{1}=F_{3}=F_{2}+\frac{d A E}{L} .
$$

Now, Eq. 12-8 produces $F_{1}+F_{3}+F_{2}-m g=0$. Combining this with the previous relation (and using Table 12-1) leads to $F_{1}=1380 \mathrm{~N} \approx 1.38 \times 10^{3} \mathrm{~N}$,
(b) and $F_{2}=180 \mathrm{~N}$.
50. Since all surfaces are frictionless, the contact force \vec{F} exerted by the lower sphere on the upper one is along that 45° line, and the forces exerted by walls and floors are "normal" (perpendicular to the wall and floor surfaces, respectively). Equilibrium of forces on the top sphere leads to the two conditions

$$
F_{\text {wall }}=F \cos 45^{\circ} \text { and } F \sin 45^{\circ}=m g .
$$

And (using Newton's third law) equilibrium of forces on the bottom sphere leads to the two conditions

$$
F_{\text {wall }}^{\prime}=F \cos 45^{\circ} \quad \text { and } \quad F_{\text {floor }}^{\prime}=F \sin 45^{\circ}+m g .
$$

(a) Solving the above equations, we find F^{\prime} floor $=2 m g$.
(b) We obtain for the left side of the container, F^{\prime} wall $=m g$.
(c) We obtain for the right side of the container, $F_{\text {wall }}=m g$.
(d) We get $F=m g / \sin 45^{\circ}=m g \sqrt{2}$.
51. When it is about to move, we are still able to apply the equilibrium conditions, but (to obtain the critical condition) we set static friction equal to its maximum value and picture the normal force \vec{F}_{N} as a concentrated force (upward) at the bottom corner of the cube, directly below the point O where P is being applied. Thus, the line of action of \vec{F}_{N} passes through point O and exerts no torque about O (of course, a similar observation applied to the pull P). Since $F_{N}=m g$ in this problem, we have $f_{s \max }=\mu m g$ applied a distance h away from O. And the line of action of force of gravity (of magnitude $m g$), which is best pictured as a concentrated force at the center of the cube, is a distance $L / 2$ away from O. Therefore, equilibrium of torques about O produces

$$
\mu m g h=m g\left(\frac{L}{2}\right) \Rightarrow \mu=\frac{L}{2 h}=\frac{(8.0 \mathrm{~cm})}{2(7.0 \mathrm{~cm})}=0.57
$$

for the critical condition we have been considering. We now interpret this in terms of a range of values for μ.
(a) For it to slide but not tip, a value of μ less than that derived above is needed, since then - static friction will be exceeded for a smaller value of P, before the pull is strong enough to cause it to tip. Thus, $\mu<L / 2 h=0.57$ is required.
(b) And for it to tip but not slide, we need μ greater than that derived above is needed, since now - static friction will not be exceeded even for the value of P which makes the cube rotate about its front lower corner. That is, we need to have $\mu>L / 2 h=0.57$ in this case.
52. Since $G A$ exerts a leftward force T at the corner A, then (by equilibrium of horizontal forces at that point) the force $F_{\text {diag }}$ in $C A$ must be pulling with magnitude

$$
F_{\text {diag }}=\frac{T}{\sin 45^{\circ}}=T \sqrt{2} .
$$

This analysis applies equally well to the force in $D B$. And these diagonal bars are pulling on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar $C D$ is the "mirror image" of the top one (it is also under tension T). Since the figure is symmetrical (except for the presence of the turnbuckle) under 90° rotations, we conclude that the side bars ($D A$ and $B C$) also are under tension T (a conclusion that also follows from considering the vertical components of the pull exerted at the corners by the diagonal bars).
(a) Bars that are in tension are $B C, C D$ and $D A$.
(b) The magnitude of the forces causing tension is $T=535 \mathrm{~N}$.
(c) The magnitude of the forces causing compression on $C A$ and $D B$ is

$$
F_{\text {diag }}=\sqrt{2} T=(1.41) 535 \mathrm{~N}=757 \mathrm{~N} .
$$

53. (a) The center of mass of the top brick cannot be further (to the right) with respect to the brick below it (brick 2) than $L / 2$; otherwise, its center of gravity is past any point of support and it will fall. So $a_{1}=L / 2$ in the maximum case.
(b) With brick 1 (the top brick) in the maximum situation, then the combined center of mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge. That point (the combined com) must be supported, so in the maximum case, it is just above the right edge of brick 3 . Thus, $a_{2}=L / 4$.
(c) Now the total center of mass of bricks 1,2 and 3 is one-third of the way between the middle of brick 3 and its right edge, as shown by this calculation:

$$
x_{\mathrm{com}}=\frac{2 m(0)+m(-L / 2)}{3 m}=-\frac{L}{6}
$$

where the origin is at the right edge of brick 3 . This point is above the right edge of brick 4 in the maximum case, so $a_{3}=L / 6$.
(d) A similar calculation

$$
x_{\mathrm{com}}^{\prime}=\frac{3 m(0)+m(-L / 2)}{4 m}=-\frac{L}{8}
$$

shows that $a_{4}=L / 8$.
(e) We find $h=\sum_{i=1}^{4} a_{i}=25 L / 24$.
54. (a) With $F=m a=-\mu_{k} m g$ the magnitude of the deceleration is

$$
|a|=\mu_{\mathrm{k}} g=(0.40)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=3.92 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about the car's center of mass, and bearing in mind that the friction forces are acting horizontally at the bottom of the wheels; the total friction force there is $f_{k}=\mu_{k} g m=3.92 m$ (with SI units understood - and m is the car's mass), a vertical distance of 0.75 meter below the center of mass. Thus, torque equilibrium leads to

$$
(3.92 m)(0.75)+F_{N r}(2.4)-F_{N f}(1.8)=0 .
$$

Eq. 12-8 also holds (the acceleration is horizontal, not vertical), so we have $F_{N r}+F_{N f}=$ $m g$, which we can solve simultaneously with the above torque equation. The mass is obtained from the car's weight: $m=11000 / 9.8$, and we obtain $F_{N r}=3929 \approx 4000 \mathrm{~N}$. Since each involves two wheels then we have (roughly) $2.0 \times 10^{3} \mathrm{~N}$ on each rear wheel.
(c) From the above equation, we also have $F_{N f}=7071 \approx 7000 \mathrm{~N}$, or $3.5 \times 10^{3} \mathrm{~N}$ on each front wheel, as the values of the individual normal forces.
(d) Eq. 6-2 directly yields (approximately) $7.9 \times 10^{2} \mathrm{~N}$ of friction on each rear wheel,
(e) Similarly, Eq. 6-2 yields $1.4 \times 10^{3} \mathrm{~N}$ on each front wheel.
55. Analyzing forces at the knot (particularly helpful is a graphical view of the vector right-triangle with horizontal "side" equal to the static friction force f_{s} and vertical "side" equal to the weight $m_{B} g$ of block B), we find $f_{s}=m_{B} g \tan \theta$ where $\theta=30^{\circ}$. For f_{s} to be at its maximum value, then it must equal $\mu_{s} m_{A} g$ where the weight of block A is $m_{A} g=(10$ $\mathrm{kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$. Therefore,

$$
\mu_{s} m_{A} g=m_{B} g \tan \theta \Rightarrow \mu_{s}=\frac{5.0}{10} \tan 30^{\circ}=0.29 .
$$

56. One arm of the balance has length ℓ_{1} and the other has length ℓ_{2}. The two cases described in the problem are expressed (in terms of torque equilibrium) as

$$
m_{1} \ell_{1}=m \ell_{2} \quad \text { and } \quad m \ell_{1}=m_{2} \ell_{2} .
$$

We divide equations and solve for the unknown mass: $m=\sqrt{m_{1} m_{2}}$.
57. Setting up equilibrium of torques leads to a simple "level principle" ratio:

$$
F_{\perp}=(40 \mathrm{~N}) \frac{d}{L}=(40 \mathrm{~N}) \frac{2.6 \mathrm{~cm}}{12 \mathrm{~cm}}=8.7 \mathrm{~N} .
$$

58. The assumption stated in the problem (that the density does not change) is not meant to be realistic; those who are familiar with Poisson's ratio (and other topics related to the strengths of materials) might wish to think of this problem as treating a fictitious material (which happens to have the same value of E as aluminum, given in Table 12-1) whose density does not significantly change during stretching. Since the mass does not change, either, then the constant-density assumption implies the volume (which is the circular area times its length) stays the same:

$$
\left(\pi r^{2} L\right)_{\text {new }}=\left(\pi r^{2} L\right)_{\text {old }} \Rightarrow \Delta L=L\left[(1000 / 999.9)^{2}-1\right]
$$

Now, Eq. 12-23 gives

$$
F=\pi r^{2} E \Delta L / L=\pi r^{2}\left(7.0 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left[(1000 / 999.9)^{2}-1\right] .
$$

Using either the new or old value for r gives the answer $F=44 \mathrm{~N}$.
59. We denote the tension in the upper left string $(b c)$ as T^{\prime} and the tension in the lower right string ($a b$) as T. The supported weight is $M g=19.6 \mathrm{~N}$. The force equilibrium conditions lead to

$$
\begin{aligned}
T^{\prime} \cos 60^{\circ} & =T \cos 20^{\circ} & & \text { horizontal forces } \\
T^{\prime} \sin 60^{\circ} & =W+T \sin 20^{\circ} & & \text { vertical forces. }
\end{aligned}
$$

(a) We solve the above simultaneous equations and find

$$
T=\frac{W}{\tan 60^{\circ} \cos 20^{\circ}-\sin 20^{\circ}}=15 \mathrm{~N} .
$$

(b) Also, we obtain $T^{\prime}=T \cos 20^{\circ} / \cos 60^{\circ}=29 \mathrm{~N}$.
60. (a) Because of Eq. 12-3, we can write

$$
\vec{T}+\left(m_{B} g \angle-90^{\circ}\right)+\left(m_{A} g \angle-150^{\circ}\right)=0 .
$$

Solving the equation, we obtain $\vec{T}=\left(106.34 \angle 63.963^{\circ}\right)$. Thus, the magnitude of the tension in the upper cord is 106 N ,
(b) and its angle (measured ccw from the $+x$ axis) is 64.0°.
61. With the pivot at the hinge, Eq. 12-9 leads to

$$
-m g \sin \theta_{1} \frac{L}{2}+T L \sin \left(180^{\circ}-\theta_{1}-\theta_{2}\right)=0 .
$$

where $\theta_{1}=60^{\circ}$ and $T=m g / 2$. This yields $\theta_{2}=60^{\circ}$.
62. (a) The angle between the beam and the floor is $\sin ^{-1}(d / L) \sin ^{-1}(1.5 / 2.5)=37^{\circ}$, so that the angle between the beam and the weight vector \vec{W} of the beam is 53°. With $L=$ 2.5 m being the length of beam, and choosing the axis of rotation to be at the base,

$$
\Sigma \tau_{z}=0 \Rightarrow P L-W\left(\frac{L}{2}\right) \sin 53^{\circ}=0
$$

Thus, $P=1 / 2 W \sin 53^{\circ}=200 \mathrm{~N}$.
(b) Note that

$$
\vec{P}+\vec{W}=\left(200 \angle 90^{\circ}\right)+\left(500 \angle-127^{\circ}\right)=\left(360 \angle-146^{\circ}\right)
$$

using magnitude-angle notation (with angles measured relative to the beam, where "uphill" along the beam would correspond to 0°) with the unit Newton understood. The "net force of the floor" \vec{F}_{f} is equal and opposite to this (so that the total net force on the beam is zero), so that $\left|\vec{F}_{f}\right|=360 \mathrm{~N}$ and is directed 34° counterclockwise from the beam.
(c) Converting that angle to one measured from true horizontal, we have $\theta=34^{\circ}+37^{\circ}=$ 71°. Thus, $f_{s}=F_{f} \cos \theta$ and $F_{N}=F_{f} \sin \theta$. Since $f_{s}=f_{s, \max }$, we divide the equations to obtain

$$
\frac{F_{N}}{f_{s, \max }}=\frac{1}{\mu_{\mathrm{s}}}=\tan \theta
$$

Therefore, $\mu_{\mathrm{s}}=0.35$.
63. The cube has side length l and volume $V=l^{3}$. We use $p=B \Delta V / V$ for the pressure p. We note that

$$
\frac{\Delta V}{V}=\frac{\Delta l^{3}}{l^{3}}=\frac{(l+\Delta l)^{3}-l^{3}}{l^{3}} \approx \frac{3 l^{2} \Delta l}{l^{3}}=3 \frac{\Delta l}{l} .
$$

Thus, the pressure required is

$$
p=\frac{3 B \Delta l}{l}=\frac{3\left(1.4 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)(85.5 \mathrm{~cm}-85.0 \mathrm{~cm})}{85.5 \mathrm{~cm}}=2.4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}
$$

64. To support a load of $W=m g=(670)(9.8)=6566 \mathrm{~N}$, the steel cable must stretch an amount proportional to its "free" length:

$$
\Delta L=\left(\frac{W}{A Y}\right) L \quad \text { where } A=\pi r^{2}
$$

and $r=0.0125 \mathrm{~m}$.
(a) If $L=12 \mathrm{~m}$, then $\Delta L=\left(\frac{6566}{\pi(0.0125)^{2}\left(2.0 \times 10^{11}\right)}\right)(12)=8.0 \times 10^{-4} \mathrm{~m}$.
(b) Similarly, when $L=350 \mathrm{~m}$, we find $\Delta L=0.023 \mathrm{~m}$.
65. Where the crosspiece comes into contact with the beam, there is an upward force of $2 F$ (where F is the upward force exerted by each man). By equilibrium of vertical forces, $W=3 F$ where W is the weight of the beam. If the beam is uniform, its center of gravity is a distance $L / 2$ from the man in front, so that computing torques about the front end leads to

$$
W \frac{L}{2}=2 F x=2\left(\frac{W}{3}\right) x
$$

which yields $x=3 L / 4$ for the distance from the crosspiece to the front end. It is therefore a distance $L / 4$ from the rear end (the "free" end).
66. Adopting the usual convention that torques that would produce counterclockwise rotation are positive, we have (with axis at the hinge)

$$
\sum \tau_{z}=0 \Rightarrow T L \sin 60^{\circ}-M g\left(\frac{L}{2}\right)=0
$$

where $L=5.0 \mathrm{~m}$ and $M=53 \mathrm{~kg}$. Thus, $T=300 \mathrm{~N}$. Now (with F_{p} for the force of the hinge)

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow F_{p x}=-T \cos \theta=-150 \mathrm{~N} \\
& \sum F_{y}=0 \Rightarrow F_{p y}=M g-T \sin \theta=260 \mathrm{~N}
\end{aligned}
$$

where $\theta=60^{\circ}$. Therefore, $\vec{F}_{p}=\left(-1.5 \times 10^{2} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(2.6 \times 10^{2} \mathrm{~N}\right) \hat{\mathrm{j}}$.
67. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and taking torques that would cause counterclockwise rotation as positive, we require the net torque to vanish:

$$
F L \sin 90^{\circ}-T h \sin 65^{\circ}=0
$$

where the length of the beam is $L=3.2 \mathrm{~m}$ and the height at which the cable attaches is h $=2.0 \mathrm{~m}$. Note that the weight of the beam does not enter this equation since its line of action is directed towards the hinge. With $F=50 \mathrm{~N}$, the above equation yields $T=88 \mathrm{~N}$.
(b) To find the components of \vec{F}_{p} we balance the forces:

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow F_{p x}=T \cos 25^{\circ}-F \\
& \sum F_{y}=0 \Rightarrow F_{p y}=T \sin 25^{\circ}+W
\end{aligned}
$$

where W is the weight of the beam (60 N). Thus, we find that the hinge force components are $F_{p x}=30 \mathrm{~N}$ rightward and $F_{p y}=97 \mathrm{~N}$ upward. In unit-vector notation, $\vec{F}_{p}=(30 \mathrm{~N}) \hat{\mathrm{i}}+(97 \mathrm{~N}) \hat{\mathrm{j}}$.
68. (a) If L ($=1500 \mathrm{~cm}$) is the unstretched length of the rope and $\Delta L=2.8 \mathrm{~cm}$ is the amount it stretches then the strain is

$$
\Delta L / L=(2.8 \mathrm{~cm}) /(1500 \mathrm{~cm})=1.9 \times 10^{-3} .
$$

(b) The stress is given by F / A where F is the stretching force applied to one end of the rope and A is the cross-sectional area of the rope. Here F is the force of gravity on the rock climber. If m is the mass of the rock climber then $F=m g$. If r is the radius of the rope then $A=\pi r^{2}$. Thus the stress is

$$
\frac{F}{A}=\frac{m g}{\pi r^{2}}=\frac{(95 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\pi\left(4.8 \times 10^{-3} \mathrm{~m}\right)^{2}}=1.3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
$$

(c) Young's modulus is the stress divided by the strain:

$$
E=\left(1.3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}\right) /\left(1.9 \times 10^{-3}\right)=6.9 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}
$$

69. We denote the mass of the slab as m, its density as ρ, and volume as $V=L T W$. The angle of inclination is $\theta=26^{\circ}$.
(a) The component of the weight of the slab along the incline is

$$
\begin{aligned}
F_{1} & =m g \sin \theta=\rho V g \sin \theta \\
& =\left(3.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(43 \mathrm{~m})(2.5 \mathrm{~m})(12 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 26^{\circ} \approx 1.8 \times 10^{7} \mathrm{~N} .
\end{aligned}
$$

(b) The static force of friction is

$$
\begin{aligned}
f_{s} & =\mu_{s} F_{N}=\mu_{s} m g \cos \theta=\mu_{s} \rho V g \cos \theta \\
& =(0.39)\left(3.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(43 \mathrm{~m})(2.5 \mathrm{~m})(12 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 26^{\circ} \approx 1.4 \times 10^{7} \mathrm{~N} .
\end{aligned}
$$

(c) The minimum force needed from the bolts to stabilize the slab is

$$
F_{2}=F_{1}-f_{s}=1.77 \times 10^{7} \mathrm{~N}-1.42 \times 10^{7} \mathrm{~N}=3.5 \times 10^{6} \mathrm{~N} .
$$

If the minimum number of bolts needed is n, then $F_{2} / n A \leq 3.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$, or

$$
n \geq \frac{3.5 \times 10^{6} \mathrm{~N}}{\left(3.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)\left(6.4 \times 10^{-4} \mathrm{~m}^{2}\right)}=15.2
$$

Thus 16 bolts are needed.
70. The notation and coordinates are as shown in Fig. 12-6 in the textbook. Here, the ladder's center of mass is halfway up the ladder (unlike in the textbook figure). Also, we label the x and y forces at the ground f_{s} and F_{N}, respectively. Now, balancing forces, we have

$$
\begin{gathered}
\sum F_{x}=0 \Rightarrow f_{s}=F_{w} \\
\sum F_{y}=0 \Rightarrow F_{N}=m g
\end{gathered}
$$

Since $f_{s}=f_{s \text {, max }}$, we divide the equations to obtain

$$
\frac{f_{s, \max }}{F_{N}}=\mu_{s}=\frac{F_{w}}{m g}
$$

Now, from $\Sigma \tau_{z}=0$ (with axis at the ground) we have $m g(a / 2)-F_{w} h=0$. But from the Pythagorean theorem, $h=\sqrt{L^{2}-a^{2}}$, where $L=$ length of ladder. Therefore,

$$
\frac{F_{w}}{m g}=\frac{a / 2}{h}=\frac{a}{2 \sqrt{L^{2}-a^{2}}}
$$

In this way, we find

$$
\mu_{\mathrm{s}}=\frac{a}{2 \sqrt{L^{2}-a^{2}}} \Rightarrow a=\frac{2 \mu_{\mathrm{s}} L}{\sqrt{1+4 \mu_{\mathrm{s}}^{2}}}
$$

Therefore, $a=3.4 \mathrm{~m}$.
71. (a) Setting up equilibrium of torques leads to

$$
F_{\text {far end }} L=(73 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \frac{L}{4}+(2700 \mathrm{~N}) \frac{L}{2}
$$

which yields $F_{\text {far end }}=1.5 \times 10^{3} \mathrm{~N}$.
(b) Then, equilibrium of vertical forces provides

$$
F_{\text {near end }}=(73)(9.8)+2700-F_{\text {far end }}=1.9 \times 10^{3} \mathrm{~N} .
$$

72. (a) Setting up equilibrium of torques leads to a simple "level principle" ratio:

$$
F_{\text {catch }}=(11 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \frac{(91 / 2-10) \mathrm{cm}}{91 \mathrm{~cm}}=42 \mathrm{~N} .
$$

(b) Then, equilibrium of vertical forces provides

$$
F_{\text {hinge }}=(11 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-F_{\text {catch }}=66 \mathrm{~N} .
$$

73. (a) For computing torques, we choose the axis to be at support 2 and consider torques which encourage counterclockwise rotation to be positive. Let $m=$ mass of gymnast and $M=$ mass of beam. Thus, equilibrium of torques leads to

$$
M g(1.96 \mathrm{~m})-m g(0.54 \mathrm{~m})-F_{1}(3.92 \mathrm{~m})=0 .
$$

Therefore, the upward force at support 1 is $F_{1}=1163 \mathrm{~N}$ (quoting more figures than are significant - but with an eye toward using this result in the remaining calculation). In unit-vector notation, we have $\vec{F}_{1} \approx\left(1.16 \times 10^{3} \mathrm{~N}\right) \hat{\mathrm{j}}$.
(b) Balancing forces in the vertical direction, we have $F_{1}+F_{2}-M g-m g=0$, so that the upward force at support 2 is $F_{2}=1.74 \times 10^{3} \mathrm{~N}$. In unit-vector notation, we have $\vec{F}_{2} \approx\left(1.74 \times 10^{3} \mathrm{~N}\right) \hat{\mathrm{j}}$.
74. (a) Computing the torques about the hinge, we have $T L \sin 40^{\circ}=W \frac{L}{2} \sin 50^{\circ}$ where the length of the beam is $L=12 \mathrm{~m}$ and the tension is $T=400 \mathrm{~N}$. Therefore, the weight is $W=671 \mathrm{~N}$, which means that the gravitational force on the beam is $\vec{F}_{w}=(-671 \mathrm{~N}) \hat{\mathrm{j}}$.
(b) Equilibrium of horizontal and vertical forces yields, respectively,

$$
\begin{aligned}
& F_{\text {hinge } x}=T=400 \mathrm{~N} \\
& F_{\text {hinge } y}=W=671 \mathrm{~N}
\end{aligned}
$$

where the hinge force components are rightward (for x) and upward (for y). In unit-vector notation, we have $\vec{F}_{\text {hinge }}=(400 \mathrm{~N}) \hat{\mathrm{i}}+(671 \mathrm{~N}) \hat{\mathrm{j}}$
75. We choose an axis through the top (where the ladder comes into contact with the wall), perpendicular to the plane of the figure and take torques that would cause counterclockwise rotation as positive. Note that the line of action of the applied force \vec{F} intersects the wall at a height of $\frac{1}{5} 8.0=1.6 \mathrm{~m}$; in other words, the moment arm for the applied force (in terms of where we have chosen the axis) is $r_{\perp}=\frac{4}{5} 8.0=6.4 \mathrm{~m}$. The moment arm for the weight is half the horizontal distance from the wall to the base of the ladder; this works out to be $\frac{1}{2} \sqrt{10^{2}-8^{2}}=3.0 \mathrm{~m}$. Similarly, the moment arms for the x and y components of the force at the ground $\left(\vec{F}_{g}\right)$ are 8.0 m and 6.0 m , respectively. Thus, with lengths in meters, we have

$$
\sum \tau_{z}=F(6.4)+W(3.0)+F_{g x}(8.0)-F_{g y}(6.0)=0
$$

In addition, from balancing the vertical forces we find that $W=F_{g y}$ (keeping in mind that the wall has no friction). Therefore, the above equation can be written as

$$
\sum \tau_{z}=F(6.4)+W(3.0)+F_{g x}(8.0)-W(6.0)=0
$$

(a) With $F=50 \mathrm{~N}$ and $W=200 \mathrm{~N}$, the above equation yields $F_{g x}=35 \mathrm{~N}$. Thus, in unit vector notation we obtain $\vec{F}_{g}=(35 \mathrm{~N}) \hat{\mathrm{i}}+(200 \mathrm{~N}) \hat{\mathrm{j}}$.
(b) With $F=150 \mathrm{~N}$ and $W=200 \mathrm{~N}$, the above equation yields $F_{g x}=-45 \mathrm{~N}$. Therefore, in unit vector notation we obtain $\vec{F}_{g}=(-45 \mathrm{~N}) \hat{\mathrm{i}}+(200 \mathrm{~N}) \hat{\mathrm{j}}$.
(c) Note that the phrase "start to move towards the wall" implies that the friction force is pointed away from the wall (in the $-\hat{\mathrm{i}}$ direction). Now, if $f=-F_{g x}$ and $F_{N}=F_{g y}=200 \mathrm{~N}$ are related by the (maximum) static friction relation $\left(f=f_{s, \max }=\mu_{s} F_{N}\right)$ with $\mu_{s}=0.38$, then we find $F_{g x}=-76 \mathrm{~N}$. Returning this to the above equation, we obtain

$$
F=\frac{(200 \mathrm{~N}(3.0 \mathrm{~m})+(76 \mathrm{~N})(8.0 \mathrm{~m})}{6.4 \mathrm{~m}}=1.9 \times 10^{2} \mathrm{~N} .
$$

76. The force F exerted on the beam is $F=7900 \mathrm{~N}$, as computed in the Sample Problem. Let $F / A=S_{u} / 6$, then

$$
A=\frac{6 F}{S_{u}}=\frac{6(7900)}{50 \times 10^{6}}=9.5 \times 10^{-4} \mathrm{~m}^{2}
$$

Thus the thickness is $\sqrt{A}=\sqrt{9.5 \times 10^{-4}}=0.031 \mathrm{~m}$.
77. The total length of the board is $d_{1}+d_{2}=1.0 \mathrm{~m}+2.5 \mathrm{~m}=3.5 \mathrm{~m}$. The support force of 1200 N (down) is given so that we can infer the diver's weight. With the axis at the second support, and with $m=$ board mass located at a distance $d^{\prime}=d_{2}-\left(d_{1}+d_{2}\right) / 2=0.75 \mathrm{~m}$, and $M=$ diver's mass, $\Sigma \tau_{z}=0$ leads to

$$
M g(2.5 \mathrm{~m})+m g(0.75 \mathrm{~m})=(1200 \mathrm{~N})(1.0 \mathrm{~m})
$$

Therefore, $M=37 \mathrm{~kg}$. Now we consider a position for the diver (a distance d to the left of the second support) which will result in zero force at the leftmost support. Thus,

$$
\sum \tau_{z}=0 \Rightarrow m g(0.75 \mathrm{~m})=M g d
$$

so that $d=0.81 \mathrm{~m}$. Stated differently, the diver is now 0.19 m from the left end of the board.
78. (a) and (b) With $+x$ rightward and $+y$ upward (we assume the adult is pulling with force \vec{P} to the right), we have

$$
\begin{gathered}
\sum F_{y}=0 \Rightarrow W=T \cos \theta=270 \mathrm{~N} \\
\sum F_{x}=0 \Rightarrow P=T \sin \theta=72 \mathrm{~N}
\end{gathered}
$$

where $\theta=15^{\circ}$.
(c) Dividing the above equations leads to

$$
\frac{P}{W}=\tan \theta
$$

Thus, with $W=270 \mathrm{~N}$ and $P=93 \mathrm{~N}$, we find $\theta=19^{\circ}$.
79. We locate the origin of the x axis at the edge of the table and choose rightwards positive. The criterion (in part (a)) is that the center of mass of the block above another must be no further than the edge of the one below; the criterion in part (b) is more subtle and is discussed below. Since the edge of the table corresponds to $x=0$ then the total center of mass of the blocks must be zero.
(a) We treat this as three items: one on the upper left (composed of two bricks, one directly on top of the other) of mass $2 m$ whose center is above the left edge of the bottom brick; a single brick at the upper right of mass m which necessarily has its center over the right edge of the bottom brick (so $a_{1}=L / 2$ trivially); and, the bottom brick of mass m. The total center of mass is

$$
\frac{(2 m)\left(a_{2}-L\right)+m a_{2}+m\left(a_{2}-L / 2\right)}{4 m}=0
$$

which leads to $a_{2}=5 L / 8$. Consequently, $h=a_{2}+a_{1}=9 L / 8$.
(b) We have four bricks (each of mass m) where the center of mass of the top and the center of mass of the bottom one have the same value $x_{c m}=b_{2}-L / 2$. The middle layer consists of two bricks, and we note that it is possible for each of their centers of mass to be beyond the respective edges of the bottom one! This is due to the fact that the top brick is exerting downward forces (each equal to half its weight) on the middle blocks and in the extreme case, this may be thought of as a pair of concentrated forces exerted at the innermost edges of the middle bricks. Also, in the extreme case, the support force (upward) exerted on a middle block (by the bottom one) may be thought of as a concentrated force located at the edge of the bottom block (which is the point about which we compute torques, in the following).

If (as indicated in our sketch, where $\vec{F}_{\text {top }}$ has magnitude $m g / 2$) we consider equilibrium of torques on the rightmost brick, we obtain

$$
m g\left(b_{1}-\frac{1}{2} L\right)=\frac{m g}{2}\left(L-b_{1}\right)
$$

which leads to $b_{1}=2 L / 3$. Once we conclude from symmetry that $b_{2}=L / 2$ then we also arrive at $h=b_{2}+b_{1}=7 L / 6$.

80. When the log is on the verge of moving (just before its left edge begins to lift) we take the system to be in equilibrium with the static friction at its maximum value $f_{s, \max }=$ $\mu_{s} F_{N}$. Thus, our force and torque equations yield

$$
\begin{aligned}
F \cos \theta & =f_{s, \max } & & \text { horizontal forces } \\
F \sin \theta+F_{N} & =M g & & \text { vertical forces } \\
F L \sin \theta & =M g\left(\frac{L}{2}\right) & & \text { torques about rightmost edge }
\end{aligned}
$$

where L is the length of the \log (and cancels out of that last equation).
(a) Solving the three equations simultaneously yields

$$
\theta=\tan ^{-1}\left(\frac{1}{\mu_{s}}\right)=51^{\circ}
$$

when $\mu_{s}=0.8$.
(b) And the tension is found to be $T=\frac{M g}{2} \sqrt{1+\mu^{2}}=0.64 M g$.
81. (a) If it were not leaning (the ideal case), its center of mass would be directly above the center of its base - that is, 3.5 m from the edge. Thus, to move the center of mass from that ideal location to a point directly over the bottom edge requires moving the center of the tower 3.5 m horizontally. Measured at the top, this would correspond to a displacement of twice as much: 7.0 m . Now, the top of the tower is already displaced (according to the problem) by 4.5 m , so what is needed to put it on the verge of toppling is an additional shift of $7.0-4.5=2.5 \mathrm{~m}$.
(b) The angle measured from vertical is $\tan ^{-1}(7.0 / 55)=7.3^{\circ}$.
82. (a) The volume occupied by the sand within $r \leq \frac{1}{2} r_{m}$ is that of a cylinder of height h^{\prime} plus a cone atop that of height h. To find h, we consider

$$
\tan \theta=\frac{h}{\frac{1}{2} r_{m}} \Rightarrow h=\frac{1.82 \mathrm{~m}}{2} \tan 33^{\circ}=0.59 \mathrm{~m}
$$

Therefore, since $h^{\prime}=H-h$, the volume V contained within that radius is

$$
\pi\left(\frac{r_{m}}{2}\right)^{2}(H-h)+\frac{\pi}{3}\left(\frac{r_{m}}{2}\right)^{2} h=\pi\left(\frac{r_{m}}{2}\right)^{2}\left(H-\frac{2}{3} h\right)
$$

which yields $V=6.78 \mathrm{~m}^{3}$.
(b) Since weight W is $m g$, and mass m is ρV, we have

$$
W=\rho V g=\left(1800 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(6.78 \mathrm{~m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.20 \times 10^{5} \mathrm{~N} .
$$

(c) Since the slope is $\left(\sigma_{m}-\sigma_{\mathrm{o}}\right) / r_{m}$ and the y-intercept is σ_{0} we have

$$
\sigma=\left(\frac{\sigma_{m}-\sigma_{\mathrm{o}}}{r_{m}}\right) r+\sigma_{\mathrm{o}} \quad \text { for } r \leq r_{m}
$$

or (with numerical values, SI units assumed) $\sigma \approx 13 r+40000$.
(d) The length of the circle is $2 \pi r$ and its "thickness" is $d r$, so the infinitesimal area of the ring is $d A=2 \pi r d r$.
(e) The force results from the product of stress and area (if both are well-defined). Thus, with SI units understood,

$$
\begin{aligned}
d F & =\sigma d A=\left(\left(\frac{\sigma_{m}-\sigma_{\mathrm{o}}}{r_{m}}\right) r+\sigma_{\mathrm{o}}\right)(2 \pi r d r)=(13 r+40000)(2 \pi r d r) \\
& \approx 82 r^{2} d r+2.5 \times 10^{5} r d r
\end{aligned}
$$

(f) We integrate our expression (using the precise numerical values) for $d F$ and find

$$
F=\int_{0}^{r_{m} / 2}\left(82.855 r^{2}+251327 r\right) d r=\frac{82.855}{3}\left(\frac{r_{m}}{2}\right)^{3}+\frac{251327}{2}\left(\frac{r_{m}}{2}\right)^{2}
$$

which yields $F=104083 \approx 1.04 \times 10^{5} \mathrm{~N}$ for $r_{m}=1.82 \mathrm{~m}$.
(g) The fractional reduction is

$$
\frac{F-W}{W}=\frac{F}{W}-1=\frac{104083}{1.20 \times 10^{5}}-1=-0.13 .
$$

1. The magnitude of the force of one particle on the other is given by $F=G m_{1} m_{2} / r^{2}$, where m_{1} and m_{2} are the masses, r is their separation, and G is the universal gravitational constant. We solve for r :

$$
r=\sqrt{\frac{G m_{1} m_{2}}{F}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(5.2 \mathrm{~kg})(2.4 \mathrm{~kg})}{2.3 \times 10^{-12} \mathrm{~N}}}=19 \mathrm{~m}
$$

2. We use subscripts s , e, and m for the Sun, Earth and Moon, respectively.

$$
\frac{F_{s m}}{F_{e m}}=\frac{\frac{G m_{s} m_{m}}{r_{s m}^{2}}}{\frac{G m_{e} m_{m}}{r_{e m}^{2}}}=\frac{m_{s}}{m_{e}}\left(\frac{r_{e m}}{r_{s m}}\right)^{2}
$$

Plugging in the numerical values (say, from Appendix C) we find

$$
\frac{1.99 \times 10^{30}}{5.98 \times 10^{24}}\left(\frac{3.82 \times 10^{8}}{1.50 \times 10^{11}}\right)^{2}=2.16
$$

3. The gravitational force between the two parts is

$$
F=\frac{G m(M-m)}{r^{2}}=\frac{G}{r^{2}}\left(m M-m^{2}\right)
$$

which we differentiate with respect to m and set equal to zero:

$$
\frac{d F}{d m}=0=\frac{G}{r^{2}}(M-2 m) \Rightarrow M=2 m
$$

which leads to the result $m / M=1 / 2$.
4. Using $F=G m M / r^{2}$, we find that the topmost mass pulls upward on the one at the origin with $1.9 \times 10^{-8} \mathrm{~N}$, and the rightmost mass pulls rightward on the one at the origin with $1.0 \times 10^{-8} \mathrm{~N}$. Thus, the (x, y) components of the net force, which can be converted to polar components (here we use magnitude-angle notation), are

$$
\vec{F}_{\mathrm{net}}=\left(1.04 \times 10^{-8}, 1.85 \times 10^{-8}\right) \Rightarrow\left(2.13 \times 10^{-8} \angle 60.6^{\circ}\right)
$$

(a) The magnitude of the force is $2.13 \times 10^{-8} \mathrm{~N}$.
(b) The direction of the force relative to the $+x$ axis is 60.6°.
5. At the point where the forces balance $G M_{e} m / r_{1}^{2}=G M_{s} m / r_{2}^{2}$, where M_{e} is the mass of Earth, M_{s} is the mass of the Sun, m is the mass of the space probe, r_{1} is the distance from the center of Earth to the probe, and r_{2} is the distance from the center of the Sun to the probe. We substitute $r_{2}=d-r_{1}$, where d is the distance from the center of Earth to the center of the Sun, to find

$$
\frac{M_{e}}{r_{1}^{2}}=\frac{M_{s}}{\left(d-r_{1}\right)^{2}} .
$$

Taking the positive square root of both sides, we solve for r_{1}. A little algebra yields

$$
r_{1}=\frac{d \sqrt{M_{e}}}{\sqrt{M_{s}}+\sqrt{M_{e}}}=\frac{\left(150 \times 10^{9} \mathrm{~m}\right) \sqrt{5.98 \times 10^{24} \mathrm{~kg}}}{\sqrt{1.99 \times 10^{30} \mathrm{~kg}}+\sqrt{5.98 \times 10^{24} \mathrm{~kg}}}=2.60 \times 10^{8} \mathrm{~m} .
$$

Values for M_{e}, M_{s}, and d can be found in Appendix C.
6. The gravitational forces on m_{5} from the two 5.00 g masses m_{1} and m_{4} cancel each other. Contributions to the net force on m_{5} come from the remaining two masses:

$$
\begin{aligned}
F_{\text {net }} & =\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(2.50 \times 10^{-3} \mathrm{~kg}\right)\left(3.00 \times 10^{-3} \mathrm{~kg}-1.00 \times 10^{-3} \mathrm{~kg}\right)}{\left(\sqrt{2} \times 10^{-1} \mathrm{~m}\right)^{2}} \\
& =1.67 \times 10^{-14} \mathrm{~N} .
\end{aligned}
$$

The force is directed along the diagonal between m_{2} and m_{3}, towards m_{2}. In unit-vector notation, we have

$$
\vec{F}_{\text {net }}=F_{\text {net }}\left(\cos 45^{\circ} \hat{i}+\sin 45^{\circ} \hat{\mathrm{j}}\right)=\left(1.18 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(1.18 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{j}}
$$

7. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be equal to that exerted by B on A. Thus,

$$
\frac{G m_{A} m_{C}}{r^{2}}=\frac{G m_{A} m_{B}}{d^{2}} .
$$

We substitute in $m_{B}=3 m_{A}$ and $m_{B}=3 m_{A}$, and (after canceling " m_{A} ") solve for r. We find $r=5 d$. Thus, particle C is placed on the x axis, to left of particle A (so it is at a negative value of x), at $x=-5.00 d$.
8. (a) We are told the value of the force when particle C is removed (that is, as its position x goes to infinity), which is a situation in which any force caused by C vanishes (because Eq. 13-1 has r^{2} in the denominator). Thus, this situation only involves the force exerted by A on B :

$$
\frac{G m_{\mathrm{A}} m_{\mathrm{B}}}{(0.20 \mathrm{~m})^{2}}=4.17 \times 10^{-10} \mathrm{~N} .
$$

Since $m_{\mathrm{B}}=1.0 \mathrm{~kg}$, then this yields $m_{\mathrm{A}}=0.25 \mathrm{~kg}$.
(b) We note (from the graph) that the net force on B is zero when $x=0.40 \mathrm{~m}$. Thus, at that point, the force exerted by C must have the same magnitude (but opposite direction) as the force exerted by A (which is the one discussed in part (a)). Therefore

$$
\frac{G m_{\mathrm{C}} m_{\mathrm{B}}}{(0.40 \mathrm{~m})^{2}}=4.17 \times 10^{-10} \mathrm{~N} \quad \Rightarrow \quad m_{\mathrm{C}}=1.00 \mathrm{~kg}
$$

9. (a) The distance between any of the spheres at the corners and the sphere at the center is $r=\ell / 2 \cos 30^{\circ}=\ell / \sqrt{3}$ where ℓ is the length of one side of the equilateral triangle. The net (downward) contribution caused by the two bottom-most spheres (each of mass m) to the total force on m_{4} has magnitude

$$
2 F_{y}=2\left(\frac{G m_{4} m}{r^{2}}\right) \sin 30^{\circ}=3 \frac{G m_{4} m}{\ell^{2}} .
$$

This must equal the magnitude of the pull from M, so

$$
3 \frac{G m_{4} m}{\ell^{2}}=\frac{G m_{4} m}{(\ell / \sqrt{3})^{2}}
$$

which readily yields $m=M$.
(b) Since m_{4} cancels in that last step, then the amount of mass in the center sphere is not relevant to the problem. The net force is still zero.
10. All the forces are being evaluated at the origin (since particle A is there), and all forces (except the net force) are along the location-vectors \vec{r} which point to particles B and C. We note that the angle for the location-vector pointing to particle B is $180^{\circ}-$ $30.0^{\circ}=150^{\circ}$ (measured ccw from the $+x$ axis). The component along, say, the x axis of one of the force-vectors \vec{F} is simply $F x / r$ in this situation (where F is the magnitude of \vec{F}). Since the force itself (see Eq. 13-1) is inversely proportional to r^{2} then the aforementioned x component would have the form $G m M x / r^{3}$; similarly for the other components. With $m_{\mathrm{A}}=0.0060 \mathrm{~kg}, m_{\mathrm{B}}=0.0120 \mathrm{~kg}$, and $m_{\mathrm{C}}=0.0080 \mathrm{~kg}$, we therefore have

$$
F_{\text {net } x}=\frac{G m_{\mathrm{A}} m_{B} x_{\mathrm{B}}}{r_{\mathrm{B}}{ }^{3}}+\frac{G m_{\mathrm{A}} m_{\mathrm{C}} x_{\mathrm{C}}}{r_{\mathrm{C}}{ }^{3}}=\left(2.77 \times 10^{-14} \mathrm{~N}\right) \cos \left(-163.8^{\mathrm{o}}\right)
$$

and

$$
F_{\text {net } y}=\frac{G m_{\mathrm{A}} m_{B} y_{\mathrm{B}}}{r_{\mathrm{B}}{ }^{3}}+\frac{G m_{\mathrm{A}} m_{\mathrm{C}} y_{\mathrm{C}}}{r_{\mathrm{C}}{ }^{3}}=\left(2.77 \times 10^{-14} \mathrm{~N}\right) \sin \left(-163.8^{-}\right)
$$

where $r_{\mathrm{B}}=d_{\mathrm{AB}}=0.50 \mathrm{~m}$, and $\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)=\left(r_{\mathrm{B}} \cos \left(150^{\circ}\right), r_{\mathrm{B}} \sin \left(150^{\circ}\right)\right.$) (with SI units understood). A fairly quick way to solve for r_{C} is to consider the vector difference between the net force and the force exerted by A, and then employ the Pythagorean theorem. This yields $r_{\mathrm{C}}=0.40 \mathrm{~m}$.
(a) By solving the above equations, the x coordinate of particle C is $x_{\mathrm{C}}=-0.20 \mathrm{~m}$.
(b) Similarly, the y coordinate of particle C is $y_{\mathrm{C}}=-0.35 \mathrm{~m}$.
11. If the lead sphere were not hollowed the magnitude of the force it exerts on m would be $F_{1}=G M m / d^{2}$. Part of this force is due to material that is removed. We calculate the force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and subtract it from the force of the solid sphere.

The cavity has a radius $r=R / 2$. The material that fills it has the same density (mass to volume ratio) as the solid sphere. That is $M_{c} / r^{3}=M / R^{3}$, where M_{c} is the mass that fills the cavity. The common factor $4 \pi / 3$ has been canceled. Thus,

$$
M_{c}=\left(\frac{r^{3}}{R^{3}}\right) M=\left(\frac{R^{3}}{8 R^{3}}\right) M=\frac{M}{8} .
$$

The center of the cavity is $d-r=d-R / 2$ from m, so the force it exerts on m is

$$
F_{2}=\frac{G(M / 8) m}{(d-R / 2)^{2}}
$$

The force of the hollowed sphere on m is

$$
\begin{aligned}
F & =F_{1}-F_{2}=G M m\left(\frac{1}{d^{2}}-\frac{1}{8(d-R / 2)^{2}}\right)=\frac{G M m}{d^{2}}\left(1-\frac{1}{8(1-R / 2 d)^{2}}\right) \\
& =\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(2.95 \mathrm{~kg})(0.431 \mathrm{~kg})}{\left(9.00 \times 10^{-2} \mathrm{~m}\right)^{2}}\left(1-\frac{1}{8\left[1-\left(4 \times 10^{-2} \mathrm{~m}\right) /\left(2 \cdot 9 \times 10^{-2} \mathrm{~m}\right)\right]^{2}}\right) \\
& =8.31 \times 10^{-9} \mathrm{~N} .
\end{aligned}
$$

12. Using Eq. 13-1, we find

$$
\vec{F}_{\mathrm{AB}}=\frac{2 G m_{\mathrm{A}}^{2}}{d^{2}} \hat{\mathrm{j}} \quad \text { and } \quad \vec{F}_{\mathrm{AC}}=-\frac{4 G m_{\mathrm{A}}^{2}}{3 d^{2}} \hat{\mathrm{i}}
$$

Since the vector sum of all three forces must be zero, we find the third force (using magnitude-angle notation) is

$$
\vec{F}_{\mathrm{AD}}=\frac{G m_{\mathrm{A}}^{2}}{d^{2}}\left(2.404 \angle-56.3^{\mathrm{o}}\right)
$$

This tells us immediately the direction of the vector \vec{r} (pointing from the origin to particle D), but to find its magnitude we must solve (with $m_{D}=4 m_{\mathrm{A}}$) the following equation:

$$
2.404\left(\frac{G m_{\mathrm{A}}{ }^{2}}{d^{2}}\right)=\frac{G m_{\mathrm{A}} m_{D}}{r^{2}} .
$$

This yields $r=1.29 d$. In magnitude-angle notation, then, $\vec{r}=\left(1.29 \angle-56.3^{\circ}\right)$, with SI units understood. The "exact" answer without regard to significant figure considerations is

$$
\vec{r}=\left(2 \sqrt{\frac{6}{13 \sqrt{13}}},-3 \sqrt{\frac{6}{13 \sqrt{13}}}\right) .
$$

(a) In (x, y) notation, the x coordinate is $x=0.716 d$.
(b) Similarly, the y coordinate is $y=-1.07 d$.
13. All the forces are being evaluated at the origin (since particle A is there), and all forces are along the location-vectors \vec{r} which point to particles B, C and D. In three dimensions, the Pythagorean theorem becomes $r=\sqrt{x^{2}+y^{2}+z^{2}}$. The component along, say, the x axis of one of the force-vectors \vec{F} is simply $F x / r$ in this situation (where F is the magnitude of \vec{F}). Since the force itself (see Eq. 13-1) is inversely proportional to r^{2} then the aforementioned x component would have the form $G m M x / r^{3}$; similarly for the other components. For example, the z component of the force exerted on particle A by particle B is

$$
\frac{G m_{A} m_{B} z_{B}}{r_{B}^{3}}=\frac{G m_{A}\left(2 m_{A}\right)(2 d)}{\left((2 d)^{2}+d^{2}+(2 d)^{2}\right)^{3}}=\frac{4 G m_{\mathrm{A}}^{2}}{27 d^{2}} .
$$

In this way, each component can be written as some multiple of $G m_{\mathrm{A}}{ }^{2} / d^{2}$. For the z component of the force exerted on particle A by particle C, that multiple is $-9 \sqrt{14} / 196$. For the x components of the forces exerted on particle A by particles B and C, those multiples are $4 / 27$ and $-3 \sqrt{14} / 196$ and, respectively. And for the y components of the forces exerted on particle A by particles B and C, those multiples are $2 / 27$ and $3 \sqrt{14} / 98$ and, respectively. To find the distance r to particle D one method is to solve (using the fact that the vector add to zero)

$$
\left(\frac{G m_{\mathrm{A}} m_{D}}{r^{2}}\right)^{2}=\left[(4 / 27-3 \sqrt{14} / 196)^{2}+(2 / 27+3 \sqrt{14} / 98)^{2}+(4 / 27-9 \sqrt{14} / 196)^{2}\right]\left(\frac{G m_{\mathrm{A}}^{2}}{d^{2}}\right)^{2}
$$

(where $m_{D}=4 m_{\mathrm{A}}$) for r. This gives $r=4.357 d$. The individual values of x, y and z (locating the particle D) can then be found by considering each component of the $G m_{\mathrm{A}} m_{D} / r^{2}$ force separately.
(a) The x component of \vec{r} would be

$$
G m_{\mathrm{A}} m_{D} x / r^{3}=-(4 / 27-3 \sqrt{14} / 196) G m_{\mathrm{A}}^{2} / d^{2},
$$

which yields $x=-1.88 d$.
(b) Similarly, $y=-3.90 d$,
(c) and $z=0.489 d$.

In this way we are able to deduce that $(x, y, z)=(-1.88 d,-3.90 d, 0.49 d)$.
14. We follow the method shown in Sample Problem 13-3. Thus,

$$
a_{g}=\frac{G M_{E}}{r^{2}} \Rightarrow d a_{g}=-2 \frac{G M_{E}}{r^{3}} d r
$$

which implies that the change in weight is

$$
W_{\text {top }}-W_{\text {bottom }} \approx m\left(d a_{g}\right) .
$$

But since $W_{\text {bottom }}=G m M_{E} / R^{2}$ (where R is Earth's mean radius), we have

$$
m d a_{g}=-2 \frac{G m M_{E}}{R^{3}} d r=-2 W_{\text {bottom }} \frac{d r}{R}=-2(600 \mathrm{~N}) \frac{1.61 \times 10^{3} \mathrm{~m}}{6.37 \times 10^{6} \mathrm{~m}}=-0.303 \mathrm{~N}
$$

for the weight change (the minus sign indicating that it is a decrease in W). We are not including any effects due to the Earth's rotation (as treated in Eq. 13-13).
15. The acceleration due to gravity is given by $a_{g}=G M / r^{2}$, where M is the mass of Earth and r is the distance from Earth's center. We substitute $r=R+h$, where R is the radius of Earth and h is the altitude, to obtain $a_{g}=G M /(R+h)^{2}$. We solve for h and obtain $h=\sqrt{G M / a_{g}}-R$. According to Appendix C, $R=6.37 \times 10^{6} \mathrm{~m}$ and $M=5.98 \times 10^{24} \mathrm{~kg}$, so

$$
h=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right)}}-6.37 \times 10^{6} \mathrm{~m}=2.6 \times 10^{6} \mathrm{~m} .
$$

16. (a) The gravitational acceleration at the surface of the Moon is $g_{\text {moon }}=1.67 \mathrm{~m} / \mathrm{s}^{2}$ (see Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so

$$
W_{\text {moon }}=(100 \mathrm{~N})(1.67 / 9.8)=17 \mathrm{~N} .
$$

(b) For the force on that object caused by Earth's gravity to equal 17 N , then the free-fall acceleration at its location must be $a_{g}=1.67 \mathrm{~m} / \mathrm{s}^{2}$. Thus,

$$
a_{g}=\frac{G m_{E}}{r^{2}} \Rightarrow r=\sqrt{\frac{G m_{E}}{a_{g}}}=1.5 \times 10^{7} \mathrm{~m}
$$

so the object would need to be a distance of $r / R_{E}=2.4$ "radii" from Earth's center.
17. (a) The gravitational acceleration is

$$
a_{g}=\frac{G M}{R^{2}}=7.6 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) Note that the total mass is $5 M$. Thus,

$$
a_{g}=\frac{G(5 M)}{(3 R)^{2}}=4.2 \mathrm{~m} / \mathrm{s}^{2}
$$

18. (a) Plugging $R_{h}=2 G M_{h} / c^{2}$ into the indicated expression, we find

$$
a_{g}=\frac{G M_{h}}{\left(1.001 R_{h}\right)^{2}}=\frac{G M_{h}}{(1.001)^{2}\left(2 G M_{h} / c^{2}\right)^{2}}=\frac{c^{4}}{(2.002)^{2} G} \frac{1}{M_{h}}
$$

which yields $a_{g}=\left(3.02 \times 10^{43} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) / M_{h}$.
(b) Since M_{h} is in the denominator of the above result, a_{g} decreases as M_{h} increases.
(c) With $M_{h}=\left(1.55 \times 10^{12}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)$, we obtain $a_{g}=9.82 \mathrm{~m} / \mathrm{s}^{2}$.
(d) This part refers specifically to the very large black hole treated in the previous part. With that mass for M in Eq. 13-16, and $r=2.002 G M / c^{2}$, we obtain

$$
d a_{g}=-2 \frac{G M}{\left(2.002 G M / c^{2}\right)^{3}} d r=-\frac{2 c^{6}}{(2.002)^{3}(G M)^{2}} d r
$$

where $d r \rightarrow 1.70 \mathrm{~m}$ as in Sample Problem 13-3. This yields (in absolute value) an acceleration difference of $7.30 \times 10^{-15} \mathrm{~m} / \mathrm{s}^{2}$.
(e) The miniscule result of the previous part implies that, in this case, any effects due to the differences of gravitational forces on the body are negligible.
19. From Eq. 13-14, we see the extreme case is when " g " becomes zero, and plugging in Eq. 13-15 leads to

$$
0=\frac{G M}{R^{2}}-R \omega^{2} \Rightarrow M=\frac{R^{3} \omega^{2}}{G} .
$$

Thus, with $R=20000 \mathrm{~m}$ and $\omega=2 \pi \mathrm{rad} / \mathrm{s}$, we find $M=4.7 \times 10^{24} \mathrm{~kg} \approx 5 \times 10^{24} \mathrm{~kg}$.
20. (a) What contributes to the $G m M / r^{2}$ force on m is the (spherically distributed) mass M contained within r (where r is measured from the center of M). At point A we see that M_{1} $+M_{2}$ is at a smaller radius than $r=a$ and thus contributes to the force:

$$
\left|F_{\text {on } m}\right|=\frac{G\left(M_{1}+M_{2}\right) m}{a^{2}} .
$$

(b) In the case $r=b$, only M_{1} is contained within that radius, so the force on m becomes $G M_{1} m / b^{2}$.
(c) If the particle is at C, then no other mass is at smaller radius and the gravitational force on it is zero.
21. Using the fact that the volume of a sphere is $4 \pi R^{3} / 3$, we find the density of the sphere:

$$
\rho=\frac{M_{\text {total }}}{\frac{4}{3} \pi R^{3}}=\frac{1.0 \times 10^{4} \mathrm{~kg}}{\frac{4}{3} \pi(1.0 \mathrm{~m})^{3}}=2.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} .
$$

When the particle of mass m (upon which the sphere, or parts of it, are exerting a gravitational force) is at radius r (measured from the center of the sphere), then whatever mass M is at a radius less than r must contribute to the magnitude of that force $\left(G M m / r^{2}\right)$.
(a) At $r=1.5 \mathrm{~m}$, all of $M_{\text {total }}$ is at a smaller radius and thus all contributes to the force:

$$
\left|F_{\text {on } m}\right|=\frac{G m M_{\text {total }}}{r^{2}}=m\left(3.0 \times 10^{-7} \mathrm{~N} / \mathrm{kg}\right) .
$$

(b) At $r=0.50 \mathrm{~m}$, the portion of the sphere at radius smaller than that is

$$
M=\rho\left(\frac{4}{3} \pi r^{3}\right)=1.3 \times 10^{3} \mathrm{~kg}
$$

Thus, the force on m has magnitude $G M m / r^{2}=m\left(3.3 \times 10^{-7} \mathrm{~N} / \mathrm{kg}\right)$.
(c) Pursuing the calculation of part (b) algebraically, we find

$$
\left|F_{\text {on } m}\right|=\frac{G m \rho\left(\frac{4}{3} \pi r^{3}\right)}{r^{2}}=m r\left(6.7 \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~kg} \cdot \mathrm{~m}}\right)
$$

22. (a) Using Eq. 13-1, we set $G m M / r^{2}$ equal to $\frac{1}{2} G m M / R^{2}$, and we find $r=R \sqrt{2}$. Thus, the distance from the surface is $(\sqrt{2}-1) R=0.414 R$.
(b) Setting the density ρ equal to M / V where $V=\frac{4}{3} \pi R^{3}$, we use Eq. 13-19:

$$
\frac{4 \pi G m\left(\frac{M}{\frac{4}{3} \pi R^{3}}\right) r}{3}=\frac{1}{2} G m M / R^{2} \quad \Rightarrow \quad r=0.500 R
$$

23. (a) The magnitude of the force on a particle with mass m at the surface of Earth is given by $F=G M m / R^{2}$, where M is the total mass of Earth and R is Earth's radius. The acceleration due to gravity is

$$
a_{g}=\frac{F}{m}=\frac{G M}{R^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}=9.83 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) Now $a_{g}=G M / R^{2}$, where M is the total mass contained in the core and mantle together and R is the outer radius of the mantle $\left(6.345 \times 10^{6} \mathrm{~m}\right.$, according to Fig. 13-42). The total mass is $M=\left(1.93 \times 10^{24} \mathrm{~kg}+4.01 \times 10^{24} \mathrm{~kg}\right)=5.94 \times 10^{24} \mathrm{~kg}$. The first term is the mass of the core and the second is the mass of the mantle. Thus,

$$
a_{g}=\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.94 \times 10^{24} \mathrm{~kg}\right)}{\left(6.345 \times 10^{6} \mathrm{~m}\right)^{2}}=9.84 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) A point 25 km below the surface is at the mantle-crust interface and is on the surface of a sphere with a radius of $R=6.345 \times 10^{6} \mathrm{~m}$. Since the mass is now assumed to be uniformly distributed the mass within this sphere can be found by multiplying the mass per unit volume by the volume of the sphere: $M=\left(R^{3} / R_{e}^{3}\right) M_{e}$, where M_{e} is the total mass of Earth and R_{e} is the radius of Earth. Thus,

$$
M=\left(\frac{6.345 \times 10^{6} \mathrm{~m}}{6.37 \times 10^{6} \mathrm{~m}}\right)^{3}\left(5.98 \times 10^{24} \mathrm{~kg}\right)=5.91 \times 10^{24} \mathrm{~kg} .
$$

The acceleration due to gravity is

$$
a_{g}=\frac{G M}{R^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.91 \times 10^{24} \mathrm{~kg}\right)}{\left(6.345 \times 10^{6} \mathrm{~m}\right)^{2}}=9.79 \mathrm{~m} / \mathrm{s}^{2}
$$

24. (a) The gravitational potential energy is

$$
U=-\frac{G M m}{r}=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(5.2 \mathrm{~kg})(2.4 \mathrm{~kg})}{19 \mathrm{~m}}=-4.4 \times 10^{-11} \mathrm{~J}
$$

(b) Since the change in potential energy is

$$
\Delta U=-\frac{G M m}{3 r}-\left(-\frac{G M m}{r}\right)=-\frac{2}{3}\left(-4.4 \times 10^{-11} \mathrm{~J}\right)=2.9 \times 10^{-11} \mathrm{~J},
$$

the work done by the gravitational force is $W=-\Delta U=-2.9 \times 10^{-11} \mathrm{~J}$.
(c) The work done by you is $W^{\prime}=\Delta U=2.9 \times 10^{-11} \mathrm{~J}$.
25. (a) The density of a uniform sphere is given by $\rho=3 M / 4 \pi R^{3}$, where M is its mass and R is its radius. The ratio of the density of Mars to the density of Earth is

$$
\frac{\rho_{M}}{\rho_{E}}=\frac{M_{M}}{M_{E}} \frac{R_{E}^{3}}{R_{M}^{3}}=0.11\left(\frac{0.65 \times 10^{4} \mathrm{~km}}{3.45 \times 10^{3} \mathrm{~km}}\right)^{3}=0.74
$$

(b) The value of a_{g} at the surface of a planet is given by $a_{g}=G M / R^{2}$, so the value for Mars is

$$
a_{g} M=\frac{M_{M}}{M_{E}} \frac{R_{E}^{2}}{R_{M}^{2}} a_{g_{E}}=0.11\left(\frac{0.65 \times 10^{4} \mathrm{~km}}{3.45 \times 10^{3} \mathrm{~km}}\right)^{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=3.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) If v is the escape speed, then, for a particle of mass m

$$
\frac{1}{2} m v^{2}=G \frac{m M}{R} \Rightarrow v=\sqrt{\frac{2 G M}{R}}
$$

For Mars

$$
v=\sqrt{\frac{2\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(0.11)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{3.45 \times 10^{6} \mathrm{~m}}}=5.0 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

26. The gravitational potential energy is

$$
U=-\frac{G m(M-m)}{r}=-\frac{G}{r}\left(M m-m^{2}\right)
$$

which we differentiate with respect to m and set equal to zero (in order to minimize). Thus, we find $M-2 m=0$ which leads to the ratio $m / M=1 / 2$ to obtain the least potential energy.

Note that a second derivative of U with respect to m would lead to a positive result regardless of the value of m - which means its graph is everywhere concave upward and thus its extremum is indeed a minimum.
27. The amount of (kinetic) energy needed to escape is the same as the (absolute value of the) gravitational potential energy at its original position. Thus, an object of mass m on a planet of mass M and radius R needs $K=G m M / R$ in order to (barely) escape.
(a) Setting up the ratio, we find

$$
\frac{K_{m}}{K_{E}}=\frac{M_{m}}{M_{E}} \frac{R_{E}}{R_{m}}=0.0451
$$

using the values found in Appendix C.
(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain

$$
\frac{K_{J}}{K_{E}}=\frac{M_{J}}{M_{E}} \frac{R_{E}}{R_{J}}=28.5
$$

28. (a) The potential energy at the surface is (according to the graph) $-5.0 \times 10^{9} \mathrm{~J}$, so (since U is inversely proportional to r - see Eq. 13-21) at an r-value a factor of 5/4 times what it was at the surface then U must be a factor of $4 / 5$ what it was. Thus, at $r=1.25 R_{s}$ $U=-4.0 \times 10^{9} \mathrm{~J}$. Since mechanical energy is assumed to be conserved in this problem, we have $K+U=-2.0 \times 10^{9} \mathrm{~J}$ at this point. Since $U=-4.0 \times 10^{9} \mathrm{~J}$ here, then $K=2.0 \times 10^{9} \mathrm{~J}$ at this point.
(b) To reach the point where the mechanical energy equals the potential energy (that is, where $U=-2.0 \times 10^{9} \mathrm{~J}$) means that U must reduce (from its value at $r=1.25 R_{s}$) by a factor of 2 - which means the r value must increase (relative to $r=1.25 R_{s}$) by a corresponding factor of 2 . Thus, the turning point must be at $r=2.5 R_{s}$.
29. The equation immediately preceding Eq. 13-28 shows that $K=-U$ (with U evaluated at the planet's surface: $-5.0 \times 10^{9} \mathrm{~J}$) is required to "escape." Thus, $K=5.0 \times 10^{9} \mathrm{~J}$.
30. (a) From Eq. 13-28, we see that $v_{\mathrm{o}}=\sqrt{\frac{G M}{2 R_{\mathrm{E}}}}$ in this problem. Using energy conservation, we have

$$
\frac{1}{2} m v_{\mathrm{o}}^{2}-G M m / R_{\mathrm{E}}=-G M m / r
$$

which yields $r=4 R_{\mathrm{E}} / 3$. So the multiple of R_{E} is $4 / 3$ or 1.33 .
(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in this problem we have $K_{i}=G M m / 2 R_{\mathrm{E}}$, and the above manipulation (using energy conservation) in this case leads to $r=2 R_{\mathrm{E}}$. So the multiple of R_{E} is 2.00 .
(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we see that the mechanical energy $=0$ for the "escape condition."
31. (a) The work done by you in moving the sphere of mass m_{B} equals the change in the potential energy of the three-sphere system. The initial potential energy is

$$
U_{i}=-\frac{G m_{A} m_{B}}{d}-\frac{G m_{A} m_{C}}{L}-\frac{G m_{B} m_{C}}{L-d}
$$

and the final potential energy is

$$
U_{f}=-\frac{G m_{A} m_{B}}{L-d}-\frac{G m A m_{C}}{L}-\frac{G m_{B} m_{C}}{d} .
$$

The work done is

$$
\begin{aligned}
W & =U_{f}-U_{i}=G m_{B}\left(m_{A}\left(\frac{1}{d}-\frac{1}{L-d}\right)+m_{C}\left(\frac{1}{L-d}-\frac{1}{d}\right)\right) \\
& =\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(0.010 \mathrm{~kg})\left[(0.080 \mathrm{~kg})\left(\frac{1}{0.040 \mathrm{~m}}-\frac{1}{0.080 \mathrm{~m}}\right)\right. \\
& \left.+(0.020 \mathrm{~kg})\left(\frac{1}{0.080 \mathrm{~m}}-\frac{1}{0.040 \mathrm{~m}}\right)\right] \\
& =+5.0 \times 10^{-13} \mathrm{~J} .
\end{aligned}
$$

(b) The work done by the force of gravity is $-\left(U_{f}-U_{i}\right)=-5.0 \times 10^{-13} \mathrm{~J}$.
32. Energy conservation for this situation may be expressed as follows:

$$
\begin{gathered}
K_{1}+U_{1}=K_{2}+U_{2} \\
K_{1}-\frac{G m M}{r_{1}}=K_{2}-\frac{G m M}{r_{2}}
\end{gathered}
$$

where $M=5.0 \times 10^{23} \mathrm{~kg}, r_{1}=R=3.0 \times 10^{6} \mathrm{~m}$ and $m=10 \mathrm{~kg}$.
(a) If $K_{1}=5.0 \times 10^{7} \mathrm{~J}$ and $r_{2}=4.0 \times 10^{6} \mathrm{~m}$, then the above equation leads to

$$
K_{2}=K_{1}+G m M\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=2.2 \times 10^{7} \mathrm{~J}
$$

(b) In this case, we require $K_{2}=0$ and $r_{2}=8.0 \times 10^{6} \mathrm{~m}$, and solve for K_{1} :

$$
K_{1}=K_{2}+G m M\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)=6.9 \times 10^{7} \mathrm{~J}
$$

33. (a) We use the principle of conservation of energy. Initially the particle is at the surface of the asteroid and has potential energy $U_{i}=-G M m / R$, where M is the mass of the asteroid, R is its radius, and m is the mass of the particle being fired upward. The initial kinetic energy is $1 / 2 m v^{2}$. The particle just escapes if its kinetic energy is zero when it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. Conservation of energy yields $-G M m / R+1 / 2 m v^{2}=0$. We replace $G M / R$ with $a_{g} R$, where a_{g} is the acceleration due to gravity at the surface. Then, the energy equation becomes $-a_{g} R+1 / 2 v^{2}=0$. We solve for v :

$$
v=\sqrt{2 a_{g} R}=\sqrt{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(500 \times 10^{3} \mathrm{~m}\right)}=1.7 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

(b) Initially the particle is at the surface; the potential energy is $U_{i}=-G M m / R$ and the kinetic energy is $K_{i}=1 / 2 m v^{2}$. Suppose the particle is a distance h above the surface when it momentarily comes to rest. The final potential energy is $U_{f}=-G M m /(R+h)$ and the final kinetic energy is $K_{f}=0$. Conservation of energy yields

$$
-\frac{G M m}{R}+\frac{1}{2} m v^{2}=-\frac{G M m}{R+h} .
$$

We replace $G M$ with $a_{g} R^{2}$ and cancel m in the energy equation to obtain

$$
-a_{g} R+\frac{1}{2} v^{2}=-\frac{a_{g} R^{2}}{(R+h)} .
$$

The solution for h is

$$
\begin{aligned}
h & =\frac{2 a_{g} R^{2}}{2 a_{g} R-v^{2}}-R=\frac{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(500 \times 10^{3} \mathrm{~m}\right)^{2}}{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(500 \times 10^{3} \mathrm{~m}\right)-(1000 \mathrm{~m} / \mathrm{s})^{2}}-\left(500 \times 10^{3} \mathrm{~m}\right) \\
& =2.5 \times 10^{5} \mathrm{~m} .
\end{aligned}
$$

(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy is $U_{i}=-G M m /(R+h)$ and its initial kinetic energy is $K_{i}=0$. Just before it hits the asteroid its potential energy is $U_{f}=-G M m / R$. Write $1 / 2 m v_{f}^{2}$ for the final kinetic energy. Conservation of energy yields

$$
-\frac{G M m}{R+h}=-\frac{G M m}{R}+\frac{1}{2} m v^{2} .
$$

We substitute $a_{g} R^{2}$ for $G M$ and cancel m, obtaining

$$
-\frac{a_{g} R^{2}}{R+h}=-a_{g} R+\frac{1}{2} v^{2} .
$$

The solution for v is

$$
\begin{aligned}
v & =\sqrt{2 a_{g} R-\frac{2 a_{g} R^{2}}{R+h}}=\sqrt{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(500 \times 10^{3} \mathrm{~m}\right)-\frac{2\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(500 \times 10^{3} \mathrm{~m}\right)^{2}}{\left(500 \times 10^{3} \mathrm{~m}\right)+\left(1000 \times 10^{3} \mathrm{~m}\right)}} \\
& =1.4 \times 10^{3} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

34. (a) The initial gravitational potential energy is

$$
\begin{aligned}
U_{i} & =-\frac{G M_{A} M_{B}}{r_{i}}=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(20 \mathrm{~kg})(10 \mathrm{~kg})}{0.80 \mathrm{~m}} \\
& =-1.67 \times 10^{-8} \mathrm{~J} \approx-1.7 \times 10^{-8} \mathrm{~J} .
\end{aligned}
$$

(b) We use conservation of energy (with $K_{i}=0$):

$$
U_{i}=K+U \Rightarrow-1.7 \times 10^{-8}=K-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(20 \mathrm{~kg})(10 \mathrm{~kg})}{0.60 \mathrm{~m}}
$$

which yields $K=5.6 \times 10^{-9} \mathrm{~J}$. Note that the value of r is the difference between 0.80 m and 0.20 m .
35. (a) The momentum of the two-star system is conserved, and since the stars have the same mass, their speeds and kinetic energies are the same. We use the principle of conservation of energy. The initial potential energy is $U_{i}=-G M^{2} / r_{i}$, where M is the mass of either star and r_{i} is their initial center-to-center separation. The initial kinetic energy is zero since the stars are at rest. The final potential energy is $U_{f}=-2 G M^{2} / r_{i}$ since the final separation is $r_{i} / 2$. We write $M \nu^{2}$ for the final kinetic energy of the system. This is the sum of two terms, each of which is $1 / 2 M \nu^{2}$. Conservation of energy yields

$$
-\frac{G M^{2}}{r_{i}}=-\frac{2 G M^{2}}{r_{i}}+M v^{2}
$$

The solution for v is

$$
v=\sqrt{\frac{G M}{r_{i}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(10^{30} \mathrm{~kg}\right)}{10^{10} \mathrm{~m}}}=8.2 \times 10^{4} \mathrm{~m} / \mathrm{s} .
$$

(b) Now the final separation of the centers is $r_{f}=2 R=2 \times 10^{5} \mathrm{~m}$, where R is the radius of either of the stars. The final potential energy is given by $U_{f}=-G M^{2} / r_{f}$ and the energy equation becomes $-G M^{2} / r_{i}=-G M^{2} / r_{f}+M v^{2}$. The solution for v is

$$
\begin{aligned}
v & =\sqrt{G M\left(\frac{1}{r_{f}}-\frac{1}{r_{i}}\right)}=\sqrt{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(10^{30} \mathrm{~kg}\right)\left(\frac{1}{2 \times 10^{5} \mathrm{~m}}-\frac{1}{10^{10} \mathrm{~m}}\right)} \\
& =1.8 \times 10^{7} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

36. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to

$$
U=-\left(\frac{G M^{2}}{2 D}+\frac{2 G m M}{\sqrt{y^{2}+D^{2}}}\right)
$$

where M is the mass of particle B (also that of particle C) and m is the mass of particle A. The value given in the problem statement (for infinitely large y, for which the second term above vanishes) determines M, since D is given. Thus $M=0.50 \mathrm{~kg}$.
(b) We estimate (from the graph) the $y=0$ value to be $U_{\mathrm{o}}=-3.5 \times 10^{-10} \mathrm{~J}$. Using this, our expression above determines m. We obtain $m=1.5 \mathrm{~kg}$.
37. Let $m=0.020 \mathrm{~kg}$ and $d=0.600 \mathrm{~m}$ (the original edge-length, in terms of which the final edge-length is $d / 3$). The total initial gravitational potential energy (using Eq. 13-21 and some elementary trigonometry) is

$$
U_{i}=-\frac{4 G m^{2}}{d}-\frac{2 G m^{2}}{\sqrt{2} d}
$$

Since U is inversely proportional to r then reducing the size by $1 / 3$ means increasing the magnitude of the potential energy by a factor of 3 , so

$$
U_{f}=3 U_{i} \Rightarrow \Delta U=2 U_{i}=2(4+\sqrt{2})\left(-\frac{G m^{2}}{d}\right)=-4.82 \times 10^{-13} \mathrm{~J}
$$

38. From Eq. 13-37, we obtain $v=\sqrt{G M / r}$ for the speed of an object in circular orbit (of radius r) around a planet of mass M. In this case, $M=5.98 \times 10^{24} \mathrm{~kg}$ and $r=(700+$ $6370) \mathrm{m}=7070 \mathrm{~km}=7.07 \times 10^{6} \mathrm{~m}$. The speed is found to be $v=7.51 \times 10^{3} \mathrm{~m} / \mathrm{s}$. After multiplying by $3600 \mathrm{~s} / \mathrm{h}$ and dividing by $1000 \mathrm{~m} / \mathrm{km}$ this becomes $v=2.7 \times 10^{4} \mathrm{~km} / \mathrm{h}$.
(a) For a head-on collision, the relative speed of the two objects must be $2 v=5.4 \times 10^{4}$ km / h.
(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator and the other is following a longitudinal line. In this case, the relative speed is given by the Pythagorean theorem: $\sqrt{v^{2}+v^{2}}=3.8 \times 10^{4} \mathrm{~km} / \mathrm{h}$.
39. The period T and orbit radius r are related by the law of periods: $T^{2}=\left(4 \pi^{2} / G M\right) r^{3}$, where M is the mass of Mars. The period is 7 h 39 min , which is $2.754 \times 10^{4} \mathrm{~s}$. We solve for M :

$$
M=\frac{4 \pi^{2} r^{3}}{G T^{2}}=\frac{4 \pi^{2}\left(9.4 \times 10^{6} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(2.754 \times 10^{4} \mathrm{~s}\right)^{2}}=6.5 \times 10^{23} \mathrm{~kg}
$$

40. Kepler's law of periods, expressed as a ratio, is

$$
\left(\frac{a_{M}}{a_{E}}\right)^{3}=\left(\frac{T_{M}}{T_{E}}\right)^{2} \Rightarrow(1.52)^{3}=\left(\frac{T_{M}}{1 \mathrm{y}}\right)^{2}
$$

where we have substituted the mean-distance (from Sun) ratio for the semimajor axis ratio. This yields $T_{M}=1.87 \mathrm{y}$. The value in Appendix C (1.88 y) is quite close, and the small apparent discrepancy is not significant, since a more precise value for the semimajor axis ratio is $a_{M} / a_{E}=1.523$ which does lead to $T_{M}=1.88$ y using Kepler's law. A question can be raised regarding the use of a ratio of mean distances for the ratio of semimajor axes, but this requires a more lengthy discussion of what is meant by a "mean distance" than is appropriate here.
41. Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the radius of the galaxy. The total mass in the galaxy is $N M$ and the magnitude of the gravitational force acting on the Sun is $F=G N M^{2} / r^{2}$. The force points toward the galactic center. The magnitude of the Sun's acceleration is $a=v^{2} / R$, where v is its speed. If T is the period of the Sun's motion around the galactic center then $v=2 \pi R / T$ and $a=$ $4 \pi^{2} R / T^{2}$. Newton's second law yields $G N M^{2} / R^{2}=4 \pi^{2} M R / T^{2}$. The solution for N is

$$
N=\frac{4 \pi^{2} R^{3}}{G T^{2} M}
$$

The period is $2.5 \times 10^{8} \mathrm{y}$, which is $7.88 \times 10^{15} \mathrm{~s}$, so

$$
N=\frac{4 \pi^{2}\left(2.2 \times 10^{20} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(7.88 \times 10^{15} \mathrm{~s}\right)^{2}\left(2.0 \times 10^{30} \mathrm{~kg}\right)}=5.1 \times 10^{10}
$$

42. Kepler's law of periods, expressed as a ratio, is

$$
\left(\frac{r_{s}}{r_{m}}\right)^{3}=\left(\frac{T_{s}}{T_{m}}\right)^{2} \Rightarrow\left(\frac{1}{2}\right)^{3}=\left(\frac{T_{s}}{1 \text { lunar month }}\right)^{2}
$$

which yields $T_{s}=0.35$ lunar month for the period of the satellite.
43. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on the satellite is given by $G M m / r^{2}$, where M is the mass of Earth and m is the mass of the satellite. The magnitude of the acceleration of the satellite is given by v^{2} / r, where v is its speed. Newton's second law yields $G M m / r^{2}=m v^{2} / r$. Since the radius of Earth is $6.37 \times$ $10^{6} \mathrm{~m}$ the orbit radius is $r=\left(6.37 \times 10^{6} \mathrm{~m}+160 \times 10^{3} \mathrm{~m}\right)=6.53 \times 10^{6} \mathrm{~m}$. The solution for v is

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{6.53 \times 10^{6} \mathrm{~m}}}=7.82 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

(b) Since the circumference of the circular orbit is $2 \pi r$, the period is

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi\left(6.53 \times 10^{6} \mathrm{~m}\right)}{7.82 \times 10^{3} \mathrm{~m} / \mathrm{s}}=5.25 \times 10^{3} \mathrm{~s} .
$$

This is equivalent to 87.5 min .
44. (a) The distance from the center of an ellipse to a focus is $a e$ where a is the semimajor axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth's orbit) is

$$
2 a e=2\left(1.50 \times 10^{11} \mathrm{~m}\right)(0.0167)=5.01 \times 10^{9} \mathrm{~m} .
$$

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio:

$$
\frac{5.01 \times 10^{9} \mathrm{~m}}{6.96 \times 10^{8} \mathrm{~m}}=7.20
$$

45. (a) The greatest distance between the satellite and Earth's center (the apogee distance) is $R_{a}=\left(6.37 \times 10^{6} \mathrm{~m}+360 \times 10^{3} \mathrm{~m}\right)=6.73 \times 10^{6} \mathrm{~m}$. The least distance (perigee distance) is $R_{p}=\left(6.37 \times 10^{6} \mathrm{~m}+180 \times 10^{3} \mathrm{~m}\right)=6.55 \times 10^{6} \mathrm{~m}$. Here $6.37 \times 10^{6} \mathrm{~m}$ is the radius of Earth. From Fig. 13-14, we see that the semi-major axis is

$$
a=\frac{R_{a}+R_{p}}{2}=\frac{6.73 \times 10^{6} \mathrm{~m}+6.55 \times 10^{6} \mathrm{~m}}{2}=6.64 \times 10^{6} \mathrm{~m} .
$$

(b) The apogee and perigee distances are related to the eccentricity e by $R_{a}=a(1+e)$ and $R_{p}=a(1-e)$. Add to obtain $R_{a}+R_{p}=2 a$ and $a=\left(R_{a}+R_{p}\right) / 2$. Subtract to obtain $R_{a}-R_{p}$ $=2 a e$. Thus,

$$
e=\frac{R_{a}-R_{p}}{2 a}=\frac{R_{a}-R_{p}}{R_{a}+R_{p}}=\frac{6.73 \times 10^{6} \mathrm{~m}-6.55 \times 10^{6} \mathrm{~m}}{6.73 \times 10^{6} \mathrm{~m}+6.55 \times 10^{6} \mathrm{~m}}=0.0136 .
$$

46. To "hover" above Earth ($M_{E}=5.98 \times 10^{24} \mathrm{~kg}$) means that it has a period of 24 hours (86400 s). By Kepler's law of periods,

$$
(86400)^{2}=\left(\frac{4 \pi^{2}}{G M_{E}}\right) r^{3} \Rightarrow r=4.225 \times 10^{7} \mathrm{~m}
$$

Its altitude is therefore $r-R_{E}$ (where $R_{E}=6.37 \times 10^{6} \mathrm{~m}$) which yields $3.58 \times 10^{7} \mathrm{~m}$.
47. (a) The period of the comet is 1420 years (and one month), which we convert to $T=$ $4.48 \times 10^{10} \mathrm{~s}$. Since the mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$, then Kepler's law of periods gives

$$
\left(4.48 \times 10^{10}\right)^{2}=\left(\frac{4 \pi^{2}}{\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right)}\right) a^{3} \Rightarrow a=1.89 \times 10^{13} \mathrm{~m} .
$$

(b) Since the distance from the focus (of an ellipse) to its center is $e a$ and the distance from center to the aphelion is a, then the comet is at a distance of

$$
e a+a=(0.11+1)\left(1.89 \times 10^{13} \mathrm{~m}\right)=2.1 \times 10^{13} \mathrm{~m}
$$

when it is farthest from the Sun. To express this in terms of Pluto's orbital radius (found in Appendix C), we set up a ratio:

$$
\left(\frac{2.1 \times 10^{13}}{5.9 \times 10^{12}}\right) R_{P}=3.6 R_{P}
$$

48. (a) The period is $T=27(3600)=97200 \mathrm{~s}$, and we are asked to assume that the orbit is circular (of radius $r=100000 \mathrm{~m}$). Kepler's law of periods provides us with an approximation to the asteroid's mass:

$$
(97200)^{2}=\left(\frac{4 \pi^{2}}{G M}\right)(100000)^{3} \Rightarrow M=6.3 \times 10^{16} \mathrm{~kg} .
$$

(b) Dividing the mass M by the given volume yields an average density equal to $6.3 \times$ $10^{16} / 1.41 \times 10^{13}=4.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, which is about 20% less dense than Earth.
49. (a) If we take the logarithm of Kepler's law of periods, we obtain

$$
2 \log (T)=\log \left(4 \pi^{2} / G M\right)+3 \log (a) \Rightarrow \log (a)=\frac{2}{3} \log (T)-\frac{1}{3} \log \left(4 \pi^{2} / G M\right)
$$

where we are ignoring an important subtlety about units (the arguments of logarithms cannot have units, since they are transcendental functions). Although the problem can be continued in this way, we prefer to set it up without units, which requires taking a ratio. If we divide Kepler's law (applied to the Jupiter-moon system, where M is mass of Jupiter) by the law applied to Earth orbiting the Sun (of mass M_{o}), we obtain

$$
\left(T / T_{E}\right)^{2}=\left(\frac{M_{\mathrm{o}}}{M}\right)\left(\frac{a}{r_{E}}\right)^{3}
$$

where $T_{E}=365.25$ days is Earth's orbital period and $r_{E}=1.50 \times 10^{11} \mathrm{~m}$ is its mean distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain

$$
\log \left(\frac{r_{E}}{a}\right)=\frac{2}{3} \log \left(\frac{T_{E}}{T}\right)+\frac{1}{3} \log \left(\frac{M_{\mathrm{o}}}{M}\right)
$$

(written to make each term positive) which is the way we plot the data $\left(\log \left(r_{E} / a\right)\right.$ on the vertical axis and $\log \left(T_{E} / T\right)$ on the horizontal axis).

(b) When we perform a least-squares fit to the data, we obtain

$$
\log \left(r_{E} / a\right)=0.666 \log \left(T_{E} / T\right)+1.01,
$$

which confirms the expectation of slope $=2 / 3$ based on the above equation.
(c) And the 1.01 intercept corresponds to the term $1 / 3 \log \left(M_{0} / M\right)$ which implies

$$
\frac{M_{\mathrm{o}}}{M}=10^{3.03} \Rightarrow M=\frac{M_{\mathrm{o}}}{1.07 \times 10^{3}}
$$

Plugging in $M_{\mathrm{o}}=1.99 \times 10^{30} \mathrm{~kg}$ (see Appendix C), we obtain $M=1.86 \times 10^{27} \mathrm{~kg}$ for Jupiter's mass. This is reasonably consistent with the value $1.90 \times 10^{27} \mathrm{~kg}$ found in Appendix C.
50. From Kepler's law of periods (where $T=2.4(3600)=8640 \mathrm{~s}$), we find the planet's mass M :

$$
(8640 \mathrm{~s})^{2}=\left(\frac{4 \pi^{2}}{G M}\right)\left(8.0 \times 10^{6} \mathrm{~m}\right)^{3} \Rightarrow M=4.06 \times 10^{24} \mathrm{~kg}
$$

But we also know $a_{g}=G M / R^{2}=8.0 \mathrm{~m} / \mathrm{s}^{2}$ so that we are able to solve for the planet's radius:

$$
R=\sqrt{\frac{G M}{a_{g}}}=5.8 \times 10^{6} \mathrm{~m}
$$

51. In our system, we have $m_{1}=m_{2}=M$ (the mass of our Sun, $1.99 \times 10^{30} \mathrm{~kg}$). With $r=$ $2 r_{1}$ in this system (so r_{1} is one-half the Earth-to-Sun distance r), and $v=\pi r / T$ for the speed, we have

$$
\frac{G m_{1} m_{2}}{r^{2}}=m_{1} \frac{(\pi r / T)^{2}}{r / 2} \Rightarrow T=\sqrt{\frac{2 \pi^{2} r^{3}}{G M}}
$$

With $r=1.5 \times 10^{11} \mathrm{~m}$, we obtain $T=2.2 \times 10^{7} \mathrm{~s}$. We can express this in terms of Earthyears, by setting up a ratio:

$$
T=\left(\frac{T}{1 \mathrm{y}}\right)(1 \mathrm{y})=\left(\frac{2.2 \times 10^{7} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s}}\right)(1 \mathrm{y})=0.71 \mathrm{y}
$$

52. (a) We make use of

$$
\frac{m_{2}^{3}}{\left(m_{1}+m_{2}\right)^{2}}=\frac{v^{3} T}{2 \pi G}
$$

where $m_{1}=0.9 M_{\text {Sun }}$ is the estimated mass of the star. With $v=70 \mathrm{~m} / \mathrm{s}$ and $T=1500$ days (or $1500 \times 86400=1.3 \times 10^{8} \mathrm{~s}$), we find

$$
\frac{m_{2}^{3}}{\left(0.9 M_{\text {Sun }}+m_{2}\right)^{2}}=1.06 \times 10^{23} \mathrm{~kg} .
$$

Since $M_{\text {Sun }} \approx 2.0 \times 10^{30} \mathrm{~kg}$, we find $m_{2} \approx 7.0 \times 10^{27} \mathrm{~kg}$. Dividing by the mass of Jupiter (see Appendix C), we obtain $m \approx 3.7 m_{J}$.
(b) Since $v=2 \pi r_{1} / T$ is the speed of the star, we find

$$
r_{1}=\frac{v T}{2 \pi}=\frac{(70 \mathrm{~m} / \mathrm{s})\left(1.3 \times 10^{8} \mathrm{~s}\right)}{2 \pi}=1.4 \times 10^{9} \mathrm{~m}
$$

for the star's orbital radius. If r is the distance between the star and the planet, then $r_{2}=r$ $-r_{1}$ is the orbital radius of the planet, and is given by

$$
r_{2}=r_{1}\left(\frac{m_{1}+m_{2}}{m_{2}}-1\right)=r_{1} \frac{m_{1}}{m_{2}}=3.7 \times 10^{11} \mathrm{~m} .
$$

Dividing this by $1.5 \times 10^{11} \mathrm{~m}$ (Earth's orbital radius, r_{E}) gives $r_{2}=2.5 r_{E}$.
53. Each star is attracted toward each of the other two by a force of magnitude $G M^{2} / L^{2}$, along the line that joins the stars. The net force on each star has magnitude $2\left(G M^{2} / L^{2}\right) \cos$ 30° and is directed toward the center of the triangle. This is a centripetal force and keeps the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the orbit, Newton's second law yields $\left(G M^{2} / L^{2}\right) \cos 30^{\circ}=M v^{2} / R$.

The stars rotate about their center of mass (marked by a circled dot on the diagram above) at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the orbit is the distance from a star to the center of mass of the three-star system. We take the coordinate system to be as shown in the diagram, with its origin at the left-most star. The altitude of an equilateral triangle is $(\sqrt{3} / 2) L$, so the stars are located at $x=0, y=0 ; x=$ $L, y=0$; and $x=L / 2, y=\sqrt{3} L / 2$. The x coordinate of the center of mass is $x_{c}=(L+$ $L / 2) / 3=L / 2$ and the y coordinate is $y_{c}=(\sqrt{3} L / 2) / 3=L / 2 \sqrt{3}$. The distance from a star to the center of mass is

$$
R=\sqrt{x_{c}^{2}+y_{c}^{2}}=\sqrt{\left(L^{2} / 4\right)+\left(L^{2} / 12\right)}=L / \sqrt{3} .
$$

Once the substitution for R is made Newton's second law becomes $\left(2 G M^{2} / L^{2}\right) \cos 30^{\circ}=\sqrt{3} M v^{2} / L$. This can be simplified somewhat by recognizing that $\cos 30^{\circ}=\sqrt{3} / 2$, and we divide the equation by M. Then, $G M / L^{2}=v^{2} / L$ and $v=\sqrt{G M / L}$.
54. (a) Circular motion requires that the force in Newton's second law provide the necessary centripetal acceleration:

$$
\frac{G m M}{r^{2}}=m \frac{v^{2}}{r} .
$$

Since the left-hand side of this equation is the force given as 80 N , then we can solve for the combination $m v^{2}$ by multiplying both sides by $r=2.0 \times 10^{7} \mathrm{~m}$. Thus, $m v^{2}=\left(2.0 \times 10^{7}\right.$ m) $(80 \mathrm{~N})=1.6 \times 10^{9} \mathrm{~J}$. Therefore,

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.6 \times 10^{9} \mathrm{~J}\right)=8.0 \times 10^{8} \mathrm{~J}
$$

(b) Since the gravitational force is inversely proportional to the square of the radius, then

$$
\frac{F^{\prime}}{F}=\left(\frac{r}{r^{\prime}}\right)^{2}
$$

Thus, $F^{\prime}=(80 \mathrm{~N})(2 / 3)^{2}=36 \mathrm{~N}$.
55. (a) We use the law of periods: $T^{2}=\left(4 \pi^{2} / G M\right) r^{3}$, where M is the mass of the Sun (1.99 $\times 10^{30} \mathrm{~kg}$) and r is the radius of the orbit. The radius of the orbit is twice the radius of Earth's orbit: $r=2 r_{e}=2\left(150 \times 10^{9} \mathrm{~m}\right)=300 \times 10^{9} \mathrm{~m}$. Thus,

$$
T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}}=\sqrt{\frac{4 \pi^{2}\left(300 \times 10^{9} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)}}=8.96 \times 10^{7} \mathrm{~s} .
$$

Dividing by $(365 \mathrm{~d} / \mathrm{y})(24 \mathrm{~h} / \mathrm{d})(60 \mathrm{~min} / \mathrm{h})(60 \mathrm{~s} / \mathrm{min})$, we obtain $T=2.8 \mathrm{y}$.
(b) The kinetic energy of any asteroid or planet in a circular orbit of radius r is given by $K=G M m / 2 r$, where m is the mass of the asteroid or planet. We note that it is proportional to m and inversely proportional to r. The ratio of the kinetic energy of the asteroid to the kinetic energy of Earth is $K / K_{e}=\left(m / m_{e}\right)\left(r_{e} / r\right)$. We substitute $m=2.0 \times$ $10^{-4} m_{e}$ and $r=2 r_{e}$ to obtain $K / K_{e}=1.0 \times 10^{-4}$.
56. Although altitudes are given, it is the orbital radii which enter the equations. Thus, r_{A} $=(6370+6370) \mathrm{km}=12740 \mathrm{~km}$, and $r_{B}=(19110+6370) \mathrm{km}=25480 \mathrm{~km}$
(a) The ratio of potential energies is

$$
\frac{U_{B}}{U_{A}}=\frac{-\frac{G m M}{r_{B}}}{-\frac{G m M}{r_{A}}}=\frac{r_{A}}{r_{B}}=\frac{1}{2} .
$$

(b) Using Eq. 13-38, the ratio of kinetic energies is

$$
\frac{K_{B}}{K_{A}}=\frac{\frac{G m M}{2 r_{B}}}{\frac{G m M}{2 r_{A}}}=\frac{r_{A}}{r_{B}}=\frac{1}{2} .
$$

(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest value of $|E|$ (since r is in the denominator). And since the values of E are negative, then the smallest value of $|E|$ corresponds to the largest energy E. Thus, satellite B has the largest energy.
(d) The difference is

$$
\Delta E=E_{B}-E_{A}=-\frac{G m M}{2}\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right) .
$$

Being careful to convert the r values to meters, we obtain $\Delta E=1.1 \times 10^{8} \mathrm{~J}$. The mass M of Earth is found in Appendix C.
57. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by

$$
E_{1}=\Delta U=G M_{E} m\left(\frac{1}{R_{E}}-\frac{1}{R_{E}+h}\right)
$$

and the energy required to put it in circular orbit once it is there is

$$
E_{2}=\frac{1}{2} m v_{\mathrm{orb}}^{2}=\frac{G M_{E} m}{2\left(R_{E}+h\right)}
$$

Consequently, the energy difference is

$$
\Delta E=E_{1}-E_{2}=G M_{E} m\left[\frac{1}{R_{E}}-\frac{3}{2\left(R_{E}+h\right)}\right] .
$$

(a) Solving the above equation, the height h_{0} at which $\Delta E=0$ is given by

$$
\frac{1}{R_{E}}-\frac{3}{2\left(R_{E}+h_{0}\right)}=0 \Rightarrow h_{0}=\frac{R_{E}}{2}=3.19 \times 10^{6} \mathrm{~m} .
$$

(b) For greater height $h>h_{0}, \Delta E>0$ implying $E_{1}>E_{2}$. Thus, the energy of lifting is greater.
58. (a) From Eq. 13-40, we see that the energy of each satellite is $-G M_{E} m / 2 r$. The total energy of the two satellites is twice that result:

$$
\begin{aligned}
E & =E_{A}+E_{B}=-\frac{G M_{E} m}{r}=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(125 \mathrm{~kg})}{7.87 \times 10^{6} \mathrm{~m}} \\
& =-6.33 \times 10^{9} \mathrm{~J} .
\end{aligned}
$$

(b) We note that the speed of the wreckage will be zero (immediately after the collision), so it has no kinetic energy at that moment. Replacing m with $2 m$ in the potential energy expression, we therefore find the total energy of the wreckage at that instant is

$$
E=-\frac{G M_{E}(2 m)}{2 r}=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right) 2(125 \mathrm{~kg})}{2\left(7.87 \times 10^{6} \mathrm{~m}\right)}=-6.33 \times 10^{9} \mathrm{~J} .
$$

(c) An object with zero speed at that distance from Earth will simply fall towards the Earth, its trajectory being toward the center of the planet.
59. (a) From Kepler's law of periods, we see that T is proportional to $r^{3 / 2}$.
(b) Eq. 13-38 shows that K is inversely proportional to r.
(c) and (d) From the previous part, knowing that K is proportional to v^{2}, we find that v is proportional to $1 / \sqrt{r}$. Thus, by Eq. 13-31, the angular momentum (which depends on the product $r v$) is proportional to $r / \sqrt{r}=\sqrt{r}$.
60. (a) The pellets will have the same speed v but opposite direction of motion, so the relative speed between the pellets and satellite is $2 v$. Replacing v with $2 v$ in Eq. 13-38 is equivalent to multiplying it by a factor of 4 . Thus,

$$
K_{\mathrm{rel}}=4\left(\frac{G M_{E} m}{2 r}\right)=\frac{2\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(0.0040 \mathrm{~kg})}{(6370+500) \times 10^{3} \mathrm{~m}}=4.6 \times 10^{5} \mathrm{~J}
$$

(b) We set up the ratio of kinetic energies:

$$
\frac{K_{\text {rel }}}{K_{\text {bullet }}}=\frac{4.6 \times 10^{5} \mathrm{~J}}{\frac{1}{2}(0.0040 \mathrm{~kg})(950 \mathrm{~m} / \mathrm{s})^{2}}=2.6 \times 10^{2}
$$

61. (a) The force acting on the satellite has magnitude $G M m / r^{2}$, where M is the mass of Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points toward the center of the orbit. Since the acceleration of the satellite is v^{2} / r, where v is its speed, Newton's second law yields $G M m / r^{2}=m v^{2} / r$ and the speed is given by $v=$ $\sqrt{G M / r}$. The radius of the orbit is the sum of Earth's radius and the altitude of the satellite: $r=\left(6.37 \times 10^{6}+640 \times 10^{3}\right) \mathrm{m}=7.01 \times 10^{6} \mathrm{~m}$. Thus,

$$
v=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{7.01 \times 10^{6} \mathrm{~m}}}=7.54 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

(b) The period is $T=2 \pi r / v=2 \pi\left(7.01 \times 10^{6} \mathrm{~m}\right) /\left(7.54 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)=5.84 \times 10^{3} \mathrm{~s}$. This is 97 min.
(c) If E_{0} is the initial energy then the energy after n orbits is $E=E_{0}-n C$, where $C=1.4 \times$ $10^{5} \mathrm{~J} /$ orbit. For a circular orbit the energy and orbit radius are related by $E=-G M m / 2 r$, so the radius after n orbits is given by $r=-G M m / 2 E$.
The initial energy is

$$
E_{0}=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(220 \mathrm{~kg})}{2\left(7.01 \times 10^{6} \mathrm{~m}\right)}=-6.26 \times 10^{9} \mathrm{~J}
$$

the energy after 1500 orbits is

$$
E=E_{0}-n C=-6.26 \times 10^{9} \mathrm{~J}-(1500 \text { orbit })\left(1.4 \times 10^{5} \mathrm{~J} / \text { orbit }\right)=-6.47 \times 10^{9} \mathrm{~J},
$$

and the orbit radius after 1500 orbits is

$$
r=-\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(220 \mathrm{~kg})}{2\left(-6.47 \times 10^{9} \mathrm{~J}\right)}=6.78 \times 10^{6} \mathrm{~m}
$$

The altitude is $h=r-R=\left(6.78 \times 10^{6} \mathrm{~m}-6.37 \times 10^{6} \mathrm{~m}\right)=4.1 \times 10^{5} \mathrm{~m}$. Here R is the radius of Earth. This torque is internal to the satellite-Earth system, so the angular momentum of that system is conserved.
(d) The speed is

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{6.78 \times 10^{6} \mathrm{~m}}}=7.67 \times 10^{3} \mathrm{~m} / \mathrm{s} \approx 7.7 \mathrm{~km} / \mathrm{s}
$$

(e) The period is

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi\left(6.78 \times 10^{6} \mathrm{~m}\right)}{7.67 \times 10^{3} \mathrm{~m} / \mathrm{s}}=5.6 \times 10^{3} \mathrm{~s} \approx 93 \mathrm{~min} .
$$

(f) Let F be the magnitude of the average force and s be the distance traveled by the satellite. Then, the work done by the force is $W=-F s$. This is the change in energy: $-F s$ $=\Delta E$. Thus, $F=-\Delta E / s$. We evaluate this expression for the first orbit. For a complete orbit $s=2 \pi r=2 \pi\left(7.01 \times 10^{6} \mathrm{~m}\right)=4.40 \times 10^{7} \mathrm{~m}$, and $\Delta E=-1.4 \times 10^{5} \mathrm{~J}$. Thus,

$$
F=-\frac{\Delta E}{s}=\frac{1.4 \times 10^{5} \mathrm{~J}}{4.40 \times 10^{7} \mathrm{~m}}=3.2 \times 10^{-3} \mathrm{~N} .
$$

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not conserved.
(h) The satellite-Earth system is essentially isolated, so its momentum is very nearly conserved.
62. We define the "effective gravity" in his environment as $g_{\text {eff }}=220 / 60=3.67 \mathrm{~m} / \mathrm{s}^{2}$. Thus, using equations from Chapter 2 (and selecting downwards as the positive direction), we find the "fall-time" to be

$$
\Delta y=v_{0} t+\frac{1}{2} g_{\text {eff }} t^{2} \Rightarrow t=\sqrt{\frac{2(2.1 \mathrm{~m})}{3.67 \mathrm{~m} / \mathrm{s}^{2}}}=1.1 \mathrm{~s}
$$

63. Using energy conservation (and Eq. 13-21) we have

$$
K_{1}-\frac{G M m}{r_{1}}=K_{2}-\frac{G M m}{r_{2}} .
$$

Plugging in two pairs of values (for $\left(K_{1}, r_{1}\right)$ and $\left.\left(K_{2}, r_{2}\right)\right)$ from the graph and using the value of G and M (for earth) given in the book, we find
(a) $m \approx 1.0 \times 10^{3} \mathrm{~kg}$, and
(b) $v=(2 \mathrm{~K} / \mathrm{m})^{1 / 2} \approx 1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ (at $\left.r=1.945 \times 10^{7} \mathrm{~m}\right)$.
64. (a) The gravitational acceleration a_{g} is defined in Eq. 13-11. The problem is concerned with the difference between a_{g} evaluated at $r=50 R_{\mathrm{h}}$ and a_{g} evaluated at $r=$ $50 R_{\mathrm{h}}+h$ (where h is the estimate of your height). Assuming h is much smaller than $50 R_{\mathrm{h}}$ then we can approximate h as the $d r$ which is present when we consider the differential of Eq. 13-11:

$$
\left|d a_{g}\right|=\frac{2 G M}{r^{3}} d r \approx \frac{2 G M}{50^{3} R_{\mathrm{h}}^{3}} h=\frac{2 G M}{50^{3}\left(2 G M / c^{2}\right)^{3}} h .
$$

If we approximate $\left|d a_{g}\right|=10 \mathrm{~m} / \mathrm{s}^{2}$ and $h \approx 1.5 \mathrm{~m}$, we can solve this for M. Giving our results in terms of the Sun's mass means dividing our result for M by $2 \times 10^{30} \mathrm{~kg}$. Thus, admitting some tolerance into our estimate of h we find the "critical" black hole mass should in the range of 105 to 125 solar masses.
(b) Interestingly, this turns out to be lower limit (which will surprise many students) since the above expression shows $\left|d a_{g}\right|$ is inversely proportional to M. It should perhaps be emphasized that a distance of $50 R_{\mathrm{h}}$ from a small black hole is much smaller than a distance of $50 R_{\mathrm{h}}$ from a large black hole.
65. Consider that we are examining the forces on the mass in the lower left-hand corner of the square. Note that the mass in the upper right-hand corner is $20 \sqrt{2}=28 \mathrm{~cm}=0.28$ m away. Now, the nearest masses each pull with a force of $G m M / r^{2}=3.8 \times 10^{-9} \mathrm{~N}$, one upward and the other rightward. The net force caused by these two forces is (3.8×10^{-9}, $\left.3.8 \times 10^{-9}\right) \rightarrow\left(5.3 \times 10^{-9} \angle 45^{\circ}\right)$, where the rectangular components are shown first -and then the polar components (magnitude-angle notation). Now, the mass in the upper right-hand corner also pulls at 45°, so its force-magnitude $\left(1.9 \times 10^{-9}\right)$ will simply add to the magnitude just calculated. Thus, the final result is $7.2 \times 10^{-9} \mathrm{~N}$.
66. (a) It is possible to use $v^{2}=v_{0}^{2}+2 a \Delta y$ as we did for free-fall problems in Chapter 2 because the acceleration can be considered approximately constant over this interval. However, our approach will not assume constant acceleration; we use energy conservation:

$$
\frac{1}{2} m v_{0}^{2}-\frac{G M m}{r_{0}}=\frac{1}{2} m v^{2}-\frac{G M m}{r} \Rightarrow v=\sqrt{\frac{2 G M\left(r_{0}-r\right)}{r_{0} r}}
$$

which yields $v=1.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
(b) We estimate the height of the apple to be $h=7 \mathrm{~cm}=0.07 \mathrm{~m}$. We may find the answer by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius $r+h$, being careful not to round off, and then taking the difference of the two values, or we may take the differential of that equation - setting $d r$ equal to h. We illustrate the latter procedure:

$$
\left|d a_{g}\right|=\left|-2 \frac{G M}{r^{3}} d r\right| \approx 2 \frac{G M}{r^{3}} h=3 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}
$$

67. The magnitudes of the individual forces (acting on m_{C}, exerted by m_{A} and m_{B} respectively) are

$$
F_{A C}=\frac{G m_{A} m_{C}}{r_{A C}^{2}}=2.7 \times 10^{-8} \mathrm{~N} \quad \text { and } \quad F_{B C}=\frac{G m_{B} m_{C}}{r_{B C}^{2}}=3.6 \times 10^{-8} \mathrm{~N}
$$

where $r_{A C}=0.20 \mathrm{~m}$ and $r_{B C}=0.15 \mathrm{~m}$. With $r_{A B}=0.25 \mathrm{~m}$, the angle \vec{F}_{A} makes with the x axis can be obtained as

$$
\theta_{A}=\pi+\cos ^{-1}\left(\frac{r_{A C}^{2}+r_{A B}^{2}-r_{B C}^{2}}{2 r_{A C} r_{A B}}\right)=\pi+\cos ^{-1}(0.80)=217^{\circ} .
$$

Similarly, the angle \vec{F}_{B} makes with the x axis can be obtained as

$$
\theta_{B}=-\cos ^{-1}\left(\frac{r_{A B}^{2}+r_{B C}^{2}-r_{A C}^{2}}{2 r_{A B} r_{B C}}\right)=-\cos ^{-1}(0.60)=-53^{\circ} .
$$

The net force acting on m_{C} then becomes

$$
\begin{aligned}
\vec{F}_{C} & =F_{A C}\left(\cos \theta_{A} \hat{\mathrm{i}}+\sin \theta_{A} \hat{\mathrm{j}}\right)+F_{B C}\left(\cos \theta_{B} \hat{\mathrm{i}}+\sin \theta_{B} \hat{\mathrm{j}}\right) \\
& =\left(F_{A C} \cos \theta_{A}+F_{B C} \cos \theta_{B}\right) \hat{\mathrm{i}}+\left(F_{A C} \sin \theta_{A}+F_{B C} \sin \theta_{B}\right) \hat{\mathrm{j}} \\
& =0 \hat{\mathrm{i}}+\left(-4.5 \times 10^{-8} \mathrm{~N}\right) \hat{\mathrm{j}}
\end{aligned}
$$

68. The key point here is that angular momentum is conserved:

$$
I_{p} \omega_{p}=I_{a} \omega_{a}
$$

which leads to $\omega_{p}=\left(\frac{r_{a}}{r_{p}}\right)^{2} \omega_{a}$, but $r_{p}=2 a-r_{a}$ where a is determined by Eq. 13-34 (particularly, see the paragraph after that equation in the textbook). Therefore,

$$
\omega_{p}=\frac{r_{a}^{2} \omega_{a}}{\left(2\left(G M T^{2} / 4 \pi^{2}\right)^{1 / 3}-r_{a}\right)^{2}}=9.24 \times 10^{-5} \mathrm{rad} / \mathrm{s} .
$$

69. (a) Using Kepler's law of periods, we obtain

$$
T=\sqrt{\left(\frac{4 \pi^{2}}{G M}\right) r^{3}}=2.15 \times 10^{4} \mathrm{~s}
$$

(b) The speed is constant (before she fires the thrusters), so $v_{\mathrm{o}}=2 \pi r / T=1.23 \times 10^{4} \mathrm{~m} / \mathrm{s}$.
(c) A two percent reduction in the previous value gives $v=0.98 v_{0}=1.20 \times 10^{4} \mathrm{~m} / \mathrm{s}$.
(d) The kinetic energy is $K=1 / 2 m v^{2}=2.17 \times 10^{11} \mathrm{~J}$.
(e) The potential energy is $U=-G m M / r=-4.53 \times 10^{11} \mathrm{~J}$.
(f) Adding these two results gives $E=K+U=-2.35 \times 10^{11} \mathrm{~J}$.
(g) Using Eq. 13-42, we find the semi-major axis to be

$$
a=\frac{-G M m}{2 E}=4.04 \times 10^{7} \mathrm{~m} .
$$

(h) Using Kepler's law of periods for elliptical orbits (using a instead of r) we find the new period is

$$
T^{\prime}=\sqrt{\left(\frac{4 \pi^{2}}{G M}\right) a^{3}}=2.03 \times 10^{4} \mathrm{~s}
$$

This is smaller than our result for part (a) by $T-T^{\prime}=1.22 \times 10^{3} \mathrm{~s}$.
(i) Elliptical orbit has a smaller period.
70. We estimate the planet to have radius $r=10 \mathrm{~m}$. To estimate the mass m of the planet, we require its density equal that of Earth (and use the fact that the volume of a sphere is $4 \pi r^{3} / 3$).

$$
\frac{m}{4 \pi r^{3} / 3}=\frac{M_{E}}{4 \pi R_{E}^{3} / 3} \Rightarrow m=M_{E}\left(\frac{r}{R_{E}}\right)^{3}
$$

which yields (with $M_{E} \approx 6 \times 10^{24} \mathrm{~kg}$ and $R_{E} \approx 6.4 \times 10^{6} \mathrm{~m}$) $\mathrm{m}=2.3 \times 10^{7} \mathrm{~kg}$.
(a) With the above assumptions, the acceleration due to gravity is

$$
a_{g}=\frac{G m}{r^{2}}=\frac{\left(6.7 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(2.3 \times 10^{7} \mathrm{~kg}\right)}{(10 \mathrm{~m})^{2}}=1.5 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2} \approx 2 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) Eq. 13-28 gives the escape speed:

$$
v=\sqrt{\frac{2 G m}{r}} \approx 0.02 \mathrm{~m} / \mathrm{s} .
$$

71. (a) With $M=2.0 \times 10^{30} \mathrm{~kg}$ and $r=10000 \mathrm{~m}$, we find

$$
a_{g}=\frac{G M}{r^{2}}=1.3 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) Although a close answer may be gotten by using the constant acceleration equations of Chapter 2, we show the more general approach (using energy conservation):

$$
K_{\mathrm{o}}+U_{\mathrm{o}}=K+U
$$

where $K_{\mathrm{o}}=0, K=1 / 2 m v^{2}$ and U given by Eq. 13-21. Thus, with $r_{\mathrm{o}}=10001 \mathrm{~m}$, we find

$$
v=\sqrt{2 G M\left(\frac{1}{r}-\frac{1}{r_{\mathrm{o}}}\right)}=1.6 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

72. (a) Their initial potential energy is $-G m^{2} / R_{i}$ and they started from rest, so energy conservation leads to

$$
-\frac{G m^{2}}{R_{i}}=K_{\text {total }}-\frac{G m^{2}}{0.5 R_{i}} \Rightarrow K_{\text {total }}=\frac{G m^{2}}{R_{i}}
$$

(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their speeds are identical and their kinetic energies are the same. Thus,

$$
K=\frac{1}{2} K_{\text {total }}=\frac{G m^{2}}{2 R_{i}} .
$$

(c) With $K=1 / 2 m v^{2}$, we solve the above equation and find $v=\sqrt{G m / R_{i}}$.
(d) Their relative speed is $2 v=2 \sqrt{G m / R_{i}}$. This is the (instantaneous) rate at which the gap between them is closing.
(e) The premise of this part is that we assume we are not moving (that is, that body A acquires no kinetic energy in the process). Thus, $K_{\text {total }}=K_{B}$ and the logic of part (a) leads to $K_{B}=G m^{2} / R_{i}$.
(f) And $1 / 2 m v_{B}^{2}=K_{B}$ yields $v_{B}=\sqrt{2 G m / R_{i}}$.
(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of "our" frame (that of body A). Our computations were therefore carried out in a noninertial frame of reference, for which the energy equations of Chapter 8 are not directly applicable.
73. We note that r_{A} (the distance from the origin to sphere A, which is the same as the separation between A and B) is $0.5, r_{C}=0.8$, and $r_{D}=0.4$ (with SI units understood). The force \vec{F}_{k} that the $k^{\text {th }}$ sphere exerts on m_{B} has magnitude $G m_{k} m_{B} / r_{k}^{2}$ and is directed from the origin towards m_{k} so that it is conveniently written as

$$
\vec{F}_{k}=\frac{G m_{k} m_{B}}{r_{k}^{2}}\left(\frac{x_{k}}{r_{k}} \hat{\mathrm{i}}+\frac{y_{k}}{r_{k}} \hat{\mathrm{j}}\right)=\frac{G m_{k} m_{B}}{r_{k}^{3}}\left(x_{k} \hat{\mathrm{i}}+y_{k} \hat{\mathrm{j}}\right)
$$

Consequently, the vector addition (where k equals A, B and D) to obtain the net force on m_{B} becomes

$$
\vec{F}_{\text {net }}=\sum_{k} \vec{F}_{k}=G m_{B}\left(\left(\sum_{k} \frac{m_{k} x_{k}}{r_{k}^{3}}\right) \hat{\mathrm{i}}+\left(\sum_{k} \frac{m_{k} y_{k}}{r_{k}^{3}}\right) \hat{\mathrm{j}}\right)=\left(3.7 \times 10^{-5} \mathrm{~N}\right) \hat{\mathrm{j}} .
$$

74. (a) We note that r_{C} (the distance from the origin to sphere C, which is the same as the separation between C and B) is $0.8, r_{D}=0.4$, and the separation between spheres C and D is $r_{C D}=1.2$ (with SI units understood). The total potential energy is therefore

$$
-\frac{G M_{B} M_{C}}{r_{C}^{2}}-\frac{G M_{B} M_{D}}{r_{D}^{2}}-\frac{G M_{C} M_{D}}{r_{C D}^{2}}=-1.3 \times 10^{-4} \mathrm{~J}
$$

using the mass-values given in the previous problem.
(b) Since any gravitational potential energy term (of the sort considered in this chapter) is necessarily negative ($-G m M / r^{2}$ where all variables are positive) then having another mass to include in the computation can only lower the result (that is, make the result more negative).
(c) The observation in the previous part implies that the work I do in removing sphere A (to obtain the case considered in part (a)) must lead to an increase in the system energy; thus, I do positive work.
(d) To put sphere A back in, I do negative work, since I am causing the system energy to become more negative.
75. We use $F=G m_{s} m_{m} / r^{2}$, where m_{s} is the mass of the satellite, m_{m} is the mass of the meteor, and r is the distance between their centers. The distance between centers is $r=R$ $+d=15 \mathrm{~m}+3 \mathrm{~m}=18 \mathrm{~m}$. Here R is the radius of the satellite and d is the distance from its surface to the center of the meteor. Thus,

$$
F=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(20 \mathrm{~kg})(7.0 \mathrm{~kg})}{(18 \mathrm{~m})^{2}}=2.9 \times 10^{-11} \mathrm{~N} .
$$

76. (a) Since the volume of a sphere is $4 \pi R^{3} / 3$, the density is

$$
\rho=\frac{M_{\text {total }}}{\frac{4}{3} \pi R^{3}}=\frac{3 M_{\text {total }}}{4 \pi R^{3}} .
$$

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at radius r (measured from the center of the sphere), the mass M which is at radius less than r is what contributes to the reading $\left(G M / r^{2}\right)$. Since $M=\rho\left(4 \pi r^{3} / 3\right)$ for $r \leq R$ then we can write this result as

$$
\frac{G\left(\frac{3 M_{\text {total }}}{4 \pi R^{3}}\right)\left(\frac{4 \pi r^{3}}{3}\right)}{r^{2}}=\frac{G M_{\text {total }} r}{R^{3}}
$$

when we are considering points on or inside the sphere. Thus, the value a_{g} referred to in the problem is the case where $r=R$:

$$
a_{g}=\frac{G M_{\text {total }}}{R^{2}},
$$

and we solve for the case where the acceleration equals $a_{g} / 3$:

$$
\frac{G M_{\text {total }}}{3 R^{2}}=\frac{G M_{\text {total }} r}{R^{3}} \Rightarrow r=\frac{R}{3} .
$$

(b) Now we treat the case of an external test point. For points with $r>R$ the acceleration is $G M_{\text {total }} / r^{2}$, so the requirement that it equal $a_{g} / 3$ leads to

$$
\frac{G M_{\text {total }}}{3 R^{2}}=\frac{G M_{\text {total }}}{r^{2}} \Rightarrow r=R \sqrt{3} .
$$

77. Energy conservation for this situation may be expressed as follows:

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
\frac{1}{2} m v_{1}^{2}-\frac{G m M}{r_{1}} & =\frac{1}{2} m v_{2}^{2}-\frac{G m M}{r_{2}}
\end{aligned}
$$

where $M=5.98 \times 10^{24} \mathrm{~kg}, r_{1}=R=6.37 \times 10^{6} \mathrm{~m}$ and $v_{1}=10000 \mathrm{~m} / \mathrm{s}$. Setting $v_{2}=0$ to find the maximum of its trajectory, we solve the above equation (noting that m cancels in the process) and obtain $r_{2}=3.2 \times 10^{7} \mathrm{~m}$. This implies that its altitude is $r_{2}-R=2.5 \times 10^{7}$ m.
78. (a) Because it is moving in a circular orbit, F / m must equal the centripetal acceleration:

$$
\frac{80 \mathrm{~N}}{50 \mathrm{~kg}}=\frac{v^{2}}{r}
$$

But $v=2 \pi r / T$, where $T=21600 \mathrm{~s}$, so we are led to

$$
1.6 \mathrm{~m} / \mathrm{s}^{2}=\frac{4 \pi^{2}}{T^{2}} r
$$

which yields $r=1.9 \times 10^{7} \mathrm{~m}$.
(b) From the above calculation, we infer $v^{2}=\left(1.6 \mathrm{~m} / \mathrm{s}^{2}\right) r$ which leads to $v^{2}=3.0 \times 10^{7}$ $\mathrm{m}^{2} / \mathrm{s}^{2}$. Thus, $K=1 / 2 m v^{2}=7.6 \times 10^{8} \mathrm{~J}$.
(c) As discussed in § 13-4, F / m also tells us the gravitational acceleration:

$$
a_{g}=1.6 \mathrm{~m} / \mathrm{s}^{2}=\frac{G M}{r^{2}} .
$$

We therefore find $M=8.6 \times 10^{24} \mathrm{~kg}$.
79. (a) We write the centripetal acceleration (which is the same for each, since they have identical mass) as $r \omega^{2}$ where ω is the unknown angular speed. Thus,

$$
\frac{G(M)(M)}{(2 r)^{2}}=\frac{G M^{2}}{4 r^{2}}=M r \omega^{2}
$$

which gives $\omega=1 / 2 \sqrt{M G / r^{3}}=2.2 \times 10^{-7} \mathrm{rad} / \mathrm{s}$.
(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 13-28). If m is the mass of the meteoroid, then

$$
\frac{1}{2} m v^{2}-\frac{G m M}{r}-\frac{G m M}{r}=0 \Rightarrow v=\sqrt{\frac{4 G M}{r}}=8.9 \times 10^{4} \mathrm{~m} / \mathrm{s} .
$$

80. See Appendix C. We note that, since $v=2 \pi r / T$, the centripetal acceleration may be written as $a=4 \pi^{2} r / T^{2}$. To express the result in terms of g, we divide by $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) The acceleration associated with Earth's spin ($T=24 \mathrm{~h}=86400 \mathrm{~s}$) is

$$
a=g \frac{4 \pi^{2}\left(6.37 \times 10^{6} \mathrm{~m}\right)}{(86400 \mathrm{~s})^{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.0034 \mathrm{~g}
$$

(b) The acceleration associated with Earth's motion around the Sun ($T=1 \mathrm{y}=3.156 \times$ $10^{7} \mathrm{~s}$) is

$$
a=g \frac{4 \pi^{2}\left(1.5 \times 10^{11} \mathrm{~m}\right)}{\left(3.156 \times 10^{7} \mathrm{~s}\right)^{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.00061 g .
$$

(c) The acceleration associated with the Solar System's motion around the galactic center ($T=2.5 \times 10^{8} \mathrm{y}=7.9 \times 10^{15} \mathrm{~s}$) is

$$
a=g \frac{4 \pi^{2}\left(2.2 \times 10^{20} \mathrm{~m}\right)}{\left(7.9 \times 10^{15} \mathrm{~s}\right)^{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.4 \times 10^{-11} g .
$$

81. We use m_{1} for the 20 kg of the sphere at $\left(x_{1}, y_{1}\right)=(0.5,1.0)$ (SI units understood), m_{2} for the 40 kg of the sphere at $\left(x_{2}, y_{2}\right)=(-1.0,-1.0)$, and m_{3} for the 60 kg of the sphere at $\left(x_{3}, y_{3}\right)=(0,-0.5)$. The mass of the 20 kg object at the origin is simply denoted m. We note that $r_{1}=\sqrt{1.25}, r_{2}=\sqrt{2}$, and $r_{3}=0.5$ (again, with SI units understood). The force \vec{F}_{n} that the $n^{\text {th }}$ sphere exerts on m has magnitude $G m_{n} m / r_{n}^{2}$ and is directed from the origin towards m_{n}, so that it is conveniently written as

$$
\vec{F}_{n}=\frac{G m_{n} m}{r_{n}^{2}}\left(\frac{x_{n}}{r_{n}} \hat{\mathrm{i}}+\frac{y_{n}}{r_{n}} \hat{\mathrm{j}}\right)=\frac{G m_{n} m}{r_{n}^{3}}\left(x_{n} \hat{\mathrm{i}}+y_{n} \hat{\mathrm{j}}\right) .
$$

Consequently, the vector addition to obtain the net force on m becomes

$$
\vec{F}_{\mathrm{net}}=\sum_{n=1}^{3} \vec{F}_{n}=G m\left(\left(\sum_{n=1}^{3} \frac{m_{n} x_{n}}{r_{n}^{3}}\right) \hat{\mathrm{i}}+\left(\sum_{n=1}^{3} \frac{m_{n} y_{n}}{r_{n}^{3}}\right) \hat{\mathrm{j}}\right)=-9.3 \times 10^{-9} \hat{\mathrm{i}}-3.2 \times 10^{-7} \hat{\mathrm{j}}
$$

in SI units. Therefore, we find the net force magnitude is $\left|\vec{F}_{\text {net }}\right|=3.2 \times 10^{-7} \mathrm{~N}$.
82. (a) From Ch. 2, we have $v^{2}=v_{0}^{2}+2 a \Delta x$, where a may be interpreted as an average acceleration in cases where the acceleration is not uniform. With $v_{0}=0, v=11000 \mathrm{~m} / \mathrm{s}$ and $\Delta x=220 \mathrm{~m}$, we find $a=2.75 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$. Therefore,

$$
a=\left(\frac{2.75 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right) g=2.8 \times 10^{4} g
$$

(b) The acceleration is certainly deadly enough to kill the passengers.
(c) Again using $v^{2}=v_{0}^{2}+2 a \Delta x$, we find

$$
a=\frac{7000^{2}}{2(3500)}=7000 \mathrm{~m} / \mathrm{s}^{2}=714 \mathrm{~g} .
$$

(d) Energy conservation gives the craft's speed v (in the absence of friction and other dissipative effects) at altitude $h=700 \mathrm{~km}$ after being launched from $R=6.37 \times 10^{6} \mathrm{~m}$ (the surface of Earth) with speed $v_{0}=7000 \mathrm{~m} / \mathrm{s}$. That altitude corresponds to a distance from Earth's center of $r=R+h=7.07 \times 10^{6} \mathrm{~m}$.

$$
\frac{1}{2} m v_{0}^{2}-\frac{G M m}{R}=\frac{1}{2} m v^{2}-\frac{G M m}{r} .
$$

With $M=5.98 \times 10^{24} \mathrm{~kg}$ (the mass of Earth) we find $v=6.05 \times 10^{3} \mathrm{~m} / \mathrm{s}$. But to orbit at that radius requires (by Eq. 13-37) $v^{\prime}=\sqrt{G M / r}=7.51 \times 10^{3} \mathrm{~m} / \mathrm{s}$. The difference between these is $v^{\prime}-v=1.46 \times 10^{3} \mathrm{~m} / \mathrm{s} \approx 1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$, which presumably is accounted for by the action of the rocket engine.
83. (a) We note that height $=R-R_{\text {Earth }}$ where $R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}$. With $M=5.98 \times 10^{24}$ $\mathrm{kg}, R_{0}=6.57 \times 10^{6} \mathrm{~m}$ and $R=7.37 \times 10^{6} \mathrm{~m}$, we have

$$
K_{i}+U_{i}=K+U \Rightarrow \frac{1}{2} m\left(3.70 \times 10^{3}\right)^{2}-\frac{G m M}{R_{0}}=K-\frac{G m M}{R},
$$

which yields $K=3.83 \times 10^{7} \mathrm{~J}$.
(b) Again, we use energy conservation.

$$
K_{i}+U_{i}=K_{f}+U_{f} \Rightarrow \frac{1}{2} m\left(3.70 \times 10^{3}\right)^{2}-\frac{G m M}{R_{0}}=0-\frac{G m M}{R_{f}}
$$

Therefore, we find $R_{f}=7.40 \times 10^{6} \mathrm{~m}$. This corresponds to a distance of $1034.9 \mathrm{~km} \approx 1.03$ $\times 10^{3} \mathrm{~km}$ above the Earth's surface.
84. Energy conservation for this situation may be expressed as follows:

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
\frac{1}{2} m v_{1}^{2}-\frac{G m M}{r_{1}} & =\frac{1}{2} m v_{2}^{2}-\frac{G m M}{r_{2}}
\end{aligned}
$$

where $M=7.0 \times 10^{24} \mathrm{~kg}, r_{2}=R=1.6 \times 10^{6} \mathrm{~m}$ and $r_{1}=\infty$ (which means that $U_{1}=0$). We are told to assume the meteor starts at rest, so $v_{1}=0$. Thus, $K_{1}+U_{1}=0$ and the above equation is rewritten as

$$
\frac{1}{2} m v_{2}^{2}-\frac{G m M}{r_{2}} \Rightarrow v_{2}=\sqrt{\frac{2 G M}{R}}=2.4 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

85. (a) The total energy is conserved, so there is no difference between its values at aphelion and perihelion.
(b) Since the change is small, we use differentials:

$$
d U=\left(\frac{G M_{E} M_{S}}{r^{2}}\right) d r \approx\left(\frac{\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right)\left(5.98 \times 10^{24}\right)}{\left(1.5 \times 10^{11}\right)^{2}}\right)\left(5 \times 10^{9}\right)
$$

which yields $\Delta U \approx 1.8 \times 10^{32} \mathrm{~J}$. A more direct subtraction of the values of the potential energies leads to the same result.
(c) From the previous two parts, we see that the variation in the kinetic energy ΔK must also equal $1.8 \times 10^{32} \mathrm{~J}$.
(d) With $\Delta K \approx d K=m v d v$, where $v \approx 2 \pi R / T$, we have

$$
1.8 \times 10^{32} \approx\left(5.98 \times 10^{24}\right)\left(\frac{2 \pi\left(1.5 \times 10^{11}\right)}{3.156 \times 10^{7}}\right) \Delta v
$$

which yields a difference of $\Delta v \approx 0.99 \mathrm{~km} / \mathrm{s}$ in Earth's speed (relative to the Sun) between aphelion and perihelion.
86. (a) Converting T to seconds (by multiplying by 3.156×10^{7}) we do a linear fit of T^{2} versus a^{3} by the method of least squares. We obtain (with SI units understood)

$$
T^{2}=-7.4 \times 10^{15}+2.982 \times 10^{-19} a^{3}
$$

The coefficient of a^{3} should be $4 \pi^{2} / G M$ so that this result gives the mass of the Sun as

$$
M=\frac{4 \pi^{2}}{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(2.982 \times 10^{-19} \mathrm{~s}^{2} / \mathrm{m}^{3}\right)}=1.98 \times 10^{30} \mathrm{~kg} .
$$

(b) Since $\log T^{2}=2 \log T$ and $\log a^{3}=3 \log a$ then the coefficient of $\log a$ in this next fit should be close to $3 / 2$, and indeed we find $\log T=-9.264+1.50007 \log a$. In order to compute the mass, we recall the property $\log A B=\log A+\log B$, which when applied to Eq. 13-34 leads us to identify

$$
-9.264=\frac{1}{2} \log \left(\frac{4 \pi^{2}}{G M}\right) \Rightarrow M=1.996 \times 10^{30} \approx 2.00 \times 10^{30} \mathrm{~kg}
$$

87. (a) Kepler's law of periods is

$$
T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}
$$

With $M=6.0 \times 10^{30} \mathrm{~kg}$ and $T=300(86400)=2.6 \times 10^{7} \mathrm{~s}$, we obtain $r=1.9 \times 10^{11} \mathrm{~m}$.
(b) That its orbit is circular suggests that its speed is constant, so

$$
v=\frac{2 \pi r}{T}=4.6 \times 10^{4} \mathrm{~m} / \mathrm{s} .
$$

88. The initial distance from each fixed sphere to the ball is $r_{0}=\infty$, which implies the initial gravitational potential energy is zero. The distance from each fixed sphere to the ball when it is at $x=0.30 \mathrm{~m}$ is $r=0.50 \mathrm{~m}$, by the Pythagorean theorem.
(a) With $M=20 \mathrm{~kg}$ and $m=10 \mathrm{~kg}$, energy conservation leads to

$$
K_{i}+U_{i}=K+U \Rightarrow 0+0=K-2 \frac{G m M}{r}
$$

which yields $K=2 \mathrm{GmM} / \mathrm{r}=5.3 \times 10^{-8} \mathrm{~J}$.
(b) Since the y-component of each force will cancel, the net force points in the $-x$ direction, with a magnitude $2 F_{x}=2\left(G m M / r^{2}\right) \cos \theta$, where $\theta=\tan ^{-1}(4 / 3)=53^{\circ}$. Thus, the result is $\vec{F}_{\text {net }}=\left(-6.4 \times 10^{-8} \mathrm{~N}\right) \hat{\mathrm{i}}$.
89. We apply the work-energy theorem to the object in question. It starts from a point at the surface of the Earth with zero initial speed and arrives at the center of the Earth with final speed v_{f}. The corresponding increase in its kinetic energy, $1 / 2 m v_{f}^{2}$, is equal to the work done on it by Earth's gravity: $\int F d r=\int(-K r) d r$ (using the notation of that Sample Problem referred to in the problem statement). Thus,

$$
\frac{1}{2} m v_{f}^{2}=\int_{R}^{0} F d r=\int_{R}^{0}(-K r) d r=\frac{1}{2} K R^{2}
$$

where R is the radius of Earth. Solving for the final speed, we obtain $v_{f}=R \sqrt{K / m}$. We note that the acceleration of gravity $a_{g}=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of Earth is given by $a_{g}=G M / R^{2}=G\left(4 \pi R^{3} / 3\right) \rho / R^{2}$, where ρ is Earth's average density. This permits us to write $K / m=4 \pi G \rho / 3=g / R$. Consequently,

$$
v_{f}=R \sqrt{\frac{K}{m}}=R \sqrt{\frac{g}{R}}=\sqrt{g R}=\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)}=7.9 \times 10^{3} \mathrm{~m} / \mathrm{s} .
$$

90. The kinetic energy in its circular orbit is $\frac{1}{2} m v^{2}$ where $v=2 \pi r / T$. Using the values stated in the problem and using Eq. 13-41, we directly find $E=-1.87 \times 10^{9} \mathrm{~J}$.
91. Using Eq. 13-21, the potential energy of the dust particle is

$$
U=-G m M_{E} / R-G m M_{m} / r=-G m\left(M_{E} / R+M_{m} / r\right) .
$$

92. Let the distance from Earth to the spaceship be $r . R_{e m}=3.82 \times 10^{8} \mathrm{~m}$ is the distance from Earth to the moon. Thus,

$$
F_{m}=\frac{G M_{m} m}{\left(R_{e m}-r\right)^{2}}=F_{E}=\frac{G M_{e} m}{r^{2}},
$$

where m is the mass of the spaceship. Solving for r, we obtain

$$
r=\frac{R_{e m}}{\sqrt{M_{m} / M_{e}}+1}=\frac{3.82 \times 10^{8} \mathrm{~m}}{\sqrt{\left(7.36 \times 10^{22} \mathrm{~kg}\right) /\left(5.98 \times 10^{24} \mathrm{~kg}\right)}+1}=3.44 \times 10^{8} \mathrm{~m} .
$$

93. Gravitational acceleration is defined in Eq. 13-11 (which we are treating as a positive quantity). The problem, then, is asking for the magnitude difference of a_{g} net when the contributions from the Moon and the Sun are in the same direction ($a_{g \text { net }}=a_{g \text { Sun }}+a_{g \text { Moon }}$) as opposed to when they are in opposite directions ($a_{g \text { net }}=a_{g S \text { un }}-a_{g \mathrm{Moon}}$). The difference (in absolute value) is clearly $2 a_{g \text { Moon }}$. In specifically wanting the percentage change, the problem is requesting us to divide this difference by the average of the two a_{g} net values being considered (that average is easily seen to be equal to a_{g} Sun), and finally multiply by 100% in order to quote the result in the right format. Thus,

$$
\frac{2 a_{g \text { Moon }}}{a_{g \text { Sun }}}=2\left(\frac{M_{\text {Moon }}}{M_{\text {Sun }}}\right)\left(\frac{r_{\text {Sun to Eearth }}}{r_{\text {Moon to Earth }}}\right)^{2}=2\left(\frac{7.36 \times 10^{22}}{1.99 \times 10^{30}}\right)\left(\frac{1.50 \times 10^{11}}{3.82 \times 10^{8}}\right)^{2}=0.011=1.1 \% .
$$

94. (a) We partition the full range into arcs of 3° each: $360^{\circ} / 3^{\circ}=120$. Thus, the maximum number of geosynchronous satellites is 120 .
(b) Kepler's law of periods, applied to a satellite around Earth, gives

$$
T^{2}=\left(\frac{4 \pi^{2}}{G M_{E}}\right) r^{3}
$$

where $T=24 \mathrm{~h}=86400 \mathrm{~s}$ for the geosynchronous case. Thus, we obtain $r=4.23 \times 10^{7} \mathrm{~m}$.
(c) The arc length s is related to angle of arc θ (in radians) by $s=r \theta$. Thus, with $\theta=$ $3(\pi / 180)=0.052 \mathrm{rad}$, we find $s=2.2 \times 10^{6} \mathrm{~m}$.
(d) Points on the surface (which, of course, is not in orbit) are moving toward the east with a period of 24 h . If the satellite is found to be east of its expected position (above some point on the surface for which it used to stay directly overhead), then its period must now be smaller than 24 h .
(e) From Kepler's law of periods, it is evident that smaller T requires smaller r. The storm moved the satellite towards Earth.
95. We integrate Eq. 13-1 with respect to r from $3 R_{\mathrm{E}}$ to $4 R_{\mathrm{E}}$ and obtain the work equal to $-G M_{\mathrm{E}} m\left(1 /\left(4 R_{\mathrm{E}}\right)-1 /\left(3 R_{\mathrm{E}}\right)\right)=G M_{\mathrm{E}} m / 12 R_{\mathrm{E}}$.
96. (a) All points on the ring are the same distance ($r=\sqrt{x^{2}+R^{2}}$) from the particle, so the gravitational potential energy is simply $U=-G M m / \sqrt{x^{2}+R^{2}}$, from Eq. 13-21. The corresponding force (by symmetry) is expected to be along the x axis, so we take a (negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20). The result for the magnitude of the force is $\operatorname{GMmx}\left(x^{2}+R^{2}\right)^{-3 / 2}$.
(b) Using our expression for U, then the magnitude of the loss in potential energy as the particle falls to the center is $\operatorname{GMm}\left(1 / R-1 / \sqrt{x^{2}+R^{2}}\right)$. This must "turn into" kinetic energy ($\frac{1}{2} m v^{2}$), so we solve for the speed:

$$
v=\left[2 G M\left(R^{-1}-\left(R^{2}+x^{2}\right)^{-1 / 2}\right)\right]^{1 / 2} .
$$

97. Equating Eq. 13-19 with Eq. 13-11, we find

$$
a_{g s}-a_{g}=\frac{4 \pi G \rho R}{3}-\frac{4 \pi G \rho r}{3}=\frac{4 \pi G \rho(R-r)}{3}
$$

which yields $a_{g s}-a_{g}=4 \pi G \rho D / 3$. Since $4 \pi G \rho / 3=a_{g s} / R$ this is equivalent to

$$
a_{g s}-a_{g}=a_{g s} \frac{D}{R} \Rightarrow a_{g}=a_{g s}\left(1-\frac{D}{R}\right)
$$

98. If the angular velocity were any greater, loose objects on the surface would not go around with the planet but would travel out into space.
(a) The magnitude of the gravitational force exerted by the planet on an object of mass m at its surface is given by $F=G m M / R^{2}$, where M is the mass of the planet and R is its radius. According to Newton's second law this must equal $m v^{2} / R$, where v is the speed of the object. Thus,

$$
\frac{G M}{R^{2}}=\frac{v^{2}}{R} .
$$

Replacing M with ($4 \pi / 3$) ρR^{3} (where ρ is the density of the planet) and v with $2 \pi R / T$ (where T is the period of revolution), we find

$$
\frac{4 \pi}{3} G \rho R=\frac{4 \pi^{2} R}{T^{2}} .
$$

We solve for T and obtain

$$
T=\sqrt{\frac{3 \pi}{G \rho}}
$$

(b) The density is $3.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. We evaluate the equation for T :

$$
T=\sqrt{\frac{3 \pi}{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(3.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}}=6.86 \times 10^{3} \mathrm{~s}=1.9 \mathrm{~h} .
$$

99. Let v and V be the speeds of particles m and M, respectively. These are measured in the frame of reference described in the problem (where the particles are seen as initially at rest). Now, momentum conservation demands

$$
m v=M V \Rightarrow v+V=v\left(1+\frac{m}{M}\right)
$$

where $v+V$ is their relative speed (the instantaneous rate at which the gap between them is shrinking). Energy conservation applied to the two-particle system leads to

$$
\begin{aligned}
K_{i}+U_{i} & =K+U \\
0-\frac{G m M}{r} & =\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}-\frac{G m M}{d} \\
-\frac{G m M}{r} & =\frac{1}{2} m v^{2}\left(1+\frac{m}{M}\right)-\frac{G m M}{d} .
\end{aligned}
$$

If we take the initial separation r to be large enough that $G m M / r$ is approximately zero, then this yields a solution for the speed of particle m :

$$
v=\sqrt{\frac{2 G M}{d\left(1+\frac{m}{M}\right)}} .
$$

Therefore, the relative speed is

$$
v+V=\sqrt{\frac{2 G M}{d\left(1+\frac{m}{M}\right)}}\left(1+\frac{m}{M}\right)=\sqrt{\frac{2 G(M+m)}{d}} .
$$

100. Energy conservation leads to

$$
K_{i}+U_{i}=K+U \Rightarrow \frac{1}{2} m\left(\sqrt{\frac{G M}{r}}\right)^{2}-\frac{G m M}{R}=0-\frac{G m M}{R_{\max }}
$$

Consequently, we find $R_{\max }=2 R$.
101. He knew that some force F must point toward the center of the orbit in order to hold the Moon in orbit around Earth, and that the approximation of a circular orbit with constant speed means the acceleration must be

$$
a=\frac{v^{2}}{r}=\frac{(2 \pi r / T)^{2}}{r}=\frac{4 \pi^{2} r^{2}}{T^{2} r} .
$$

Plugging in $T^{2}=C r^{3}$ (where C is some constant) this leads to

$$
F=m a=m \frac{4 \pi^{2} r^{2}}{C r^{4}}=\frac{4 \pi^{2} m}{C r^{2}}
$$

which indicates a force inversely proportional to the square of r.
102. (a) When testing for a gravitational force at $r<b$, none is registered. But at points within the shell $b \leq r \leq a$, the force will increase according to how much mass M^{\prime} of the shell is at smaller radius. Specifically, for $b \leq r \leq a$, we find

$$
F=\frac{G m M^{\prime}}{r^{2}}=\frac{G m M\left(\frac{r^{3}-b^{3}}{a^{3}-b^{3}}\right)}{r^{2}}
$$

Once $r=a$ is reached, the force takes the familiar form $G m M / r^{2}$ and continues to have this form for $r>a$. We have chosen $m=1 \mathrm{~kg}, M=3 \times 10^{9} \mathrm{~kg}, b=2 \mathrm{~m}$ and $a=3 \mathrm{~m}$ in order to produce the following graph of F versus r (in SI units).

(b) Starting with the large r formula for force, we integrate and obtain the expected $U=$ $-G m M / r$ (for $r \geq a$). Integrating the force formula indicated above for $b \leq r \leq a$ produces

$$
U=\frac{G m M\left(r^{3}+2 b^{3}\right)}{2 r\left(a^{3}-b^{3}\right)}+C
$$

where C is an integration constant that we determine to be

$$
C=-\frac{3 G m M a^{2}}{2 a\left(a^{3}-b^{3}\right)}
$$

so that this U and the large r formula for U agree at $r=a$. Finally, the $r<a$ formula for U is a constant (since the corresponding force vanishes), and we determine its value by evaluating the previous U at $r=b$. The resulting graph is shown below.

103. The magnitude of the net gravitational force on one of the smaller stars (of mass m) is

$$
\frac{G M m}{r^{2}}+\frac{G m m}{(2 r)^{2}}=\frac{G m}{r^{2}}\left(M+\frac{m}{4}\right)
$$

This supplies the centripetal force needed for the motion of the star:

$$
\frac{G m}{r^{2}}\left(M+\frac{m}{4}\right)=m \frac{v^{2}}{r} \quad \text { where } v=\frac{2 \mathrm{p} r}{T}
$$

Plugging in for speed v, we arrive at an equation for period T :

$$
T=\frac{2 \pi r^{3 / 2}}{\sqrt{G(M+m / 4)}}
$$

104. (a) The gravitational force exerted on the baby (denoted with subscript b) by the obstetrician (denoted with subscript o) is given by

$$
F_{b o}=\sqrt{\frac{G m_{o} m_{b}}{r_{b o}^{2}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(70 \mathrm{~kg})(3 \mathrm{~kg})}{(1 \mathrm{~m})^{2}}}=1 \times 10^{-8} \mathrm{~N} .
$$

(b) The maximum (minimum) forces exerted by Jupiter on the baby occur when it is separated from the Earth by the shortest (longest) distance $r_{\text {min }}\left(r_{\max }\right)$, respectively. Thus

$$
F_{b J}^{\max }=\sqrt{\frac{G m_{J} m_{b}}{r_{\text {min }}^{2}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(2 \times 10^{27} \mathrm{~kg}\right)(3 \mathrm{~kg})}{\left(6 \times 10^{11} \mathrm{~m}\right)^{2}}}=1 \times 10^{-6} \mathrm{~N} .
$$

(c) And we obtain

$$
F_{b J}^{\min }=\sqrt{\frac{G m_{J} m_{b}}{r_{\max }^{2}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(2 \times 10^{27} \mathrm{~kg}\right)(3 \mathrm{~kg})}{\left(9 \times 10^{11} \mathrm{~m}\right)^{2}}}=5 \times 10^{-7} \mathrm{~N}
$$

(d) No. The gravitational force exerted by Jupiter on the baby is greater than that by the obstetrician by a factor of up to $1 \times 10^{-6} \mathrm{~N} / 1 \times 10^{-8} \mathrm{~N}=100$.

1. The air inside pushes outward with a force given by $p_{i} A$, where p_{i} is the pressure inside the room and A is the area of the window. Similarly, the air on the outside pushes inward with a force given by $p_{o} A$, where p_{o} is the pressure outside. The magnitude of the net force is $F=\left(p_{i}-p_{o}\right) A$. Since $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$,

$$
F=(1.0 \mathrm{~atm}-0.96 \mathrm{~atm})\left(1.013 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}\right)(3.4 \mathrm{~m})(2.1 \mathrm{~m})=2.9 \times 10^{4} \mathrm{~N} .
$$

2. We note that the container is cylindrical, the important aspect of this being that it has a uniform cross-section (as viewed from above); this allows us to relate the pressure at the bottom simply to the total weight of the liquids. Using the fact that $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$, we find the weight of the first liquid to be

$$
\begin{aligned}
W_{1} & =m_{1} g=\rho_{1} V_{1} g \\
& =\left(2.6 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.50 \mathrm{~L})\left(1000 \mathrm{~cm}^{3} / \mathrm{L}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)=1.27 \times 10^{6} \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}^{2}=12.7 \mathrm{~N} .
\end{aligned}
$$

In the last step, we have converted grams to kilograms and centimeters to meters. Similarly, for the second and the third liquids, we have

$$
W_{2}=m_{2} g=\rho_{2} V_{2} g=\left(1.0 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.25 \mathrm{~L})\left(1000 \mathrm{~cm}^{3} / \mathrm{L}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)=2.5 \mathrm{~N}
$$

and

$$
W_{3}=m_{3} g=\rho_{3} V_{3} g=\left(0.80 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.40 \mathrm{~L})\left(1000 \mathrm{~cm}^{3} / \mathrm{L}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)=3.1 \mathrm{~N} .
$$

The total force on the bottom of the container is therefore $F=W_{1}+W_{2}+W_{3}=18 \mathrm{~N}$.
3. The pressure increase is the applied force divided by the area: $\Delta p=F / A=F / \pi r^{2}$, where r is the radius of the piston. Thus $\Delta p=(42 \mathrm{~N}) / \pi(0.011 \mathrm{~m})^{2}=1.1 \times 10^{5} \mathrm{~Pa}$. This is equivalent to 1.1 atm .
4. The magnitude F of the force required to pull the lid off is $F=\left(p_{o}-p_{i}\right) A$, where p_{o} is the pressure outside the box, p_{i} is the pressure inside, and A is the area of the lid. Recalling that $1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}$, we obtain

$$
p_{i}=p_{o}-\frac{F}{A}=1.0 \times 10^{5} \mathrm{~Pa}-\frac{480 \mathrm{~N}}{77 \times 10^{-4} \mathrm{~m}^{2}}=3.8 \times 10^{4} \mathrm{~Pa} .
$$

5. Let the volume of the expanded air sacs be V_{a} and that of the fish with its air sacs collapsed be V. Then

$$
\rho_{\text {fish }}=\frac{m_{\text {fish }}}{V}=1.08 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { and } \quad \rho_{w}=\frac{m_{\text {fish }}}{V+V_{a}}=1.00 \mathrm{~g} / \mathrm{cm}^{3}
$$

where ρ_{w} is the density of the water. This implies $\rho_{\text {fish }} V=\rho_{w}\left(V+V_{a}\right)$ or $\left(V+V_{a}\right) / V=$ $1.08 / 1.00$, which gives $V_{a} /\left(V+V_{a}\right)=7.4 \%$.
6. Knowing the standard air pressure value in several units allows us to set up a variety of conversion factors:
(a) $P=\left(28 \mathrm{lb} / \mathrm{in} .^{2}\right)\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{14.7 \mathrm{lb} / \mathrm{in}^{2}}\right)=190 \mathrm{kPa}$
(b) $\quad(120 \mathrm{mmHg})\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{760 \mathrm{mmHg}}\right)=15.9 \mathrm{kPa}, \quad(80 \mathrm{mmHg})\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{760 \mathrm{mmHg}}\right)=10.6 \mathrm{kPa}$.
7. (a) The pressure difference results in forces applied as shown in the figure. We consider a team of horses pulling to the right. To pull the sphere apart, the team must exert a force at least as great as the horizontal component of the total force determined by "summing" (actually, integrating) these force vectors.

We consider a force vector at angle θ. Its leftward component is $\Delta p \cos \theta d A$, where $d A$ is the area element for where the force is applied. We make use of the symmetry of the problem and let $d A$ be that of a ring of constant θ on the surface. The radius of the ring is $r=R \sin \theta$, where R is the radius of the sphere. If the angular width of the ring is $d \theta$, in radians, then its width is $R d \theta$ and its area is $d A=2 \pi R^{2} \sin \theta d \theta$. Thus the net horizontal component of the force of the air is given by

$$
F_{h}=2 \pi R^{2} \Delta p \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta=\left.\pi R^{2} \Delta p \sin ^{2} \theta\right|_{0} ^{\pi / 2}=\pi R^{2} \Delta p .
$$

(b) We use $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$ to show that $\Delta p=0.90 \mathrm{~atm}=9.09 \times 10^{4} \mathrm{~Pa}$. The sphere radius is $R=0.30 \mathrm{~m}$, so

$$
F_{h}=\pi(0.30 \mathrm{~m})^{2}\left(9.09 \times 10^{4} \mathrm{~Pa}\right)=2.6 \times 10^{4} \mathrm{~N} .
$$

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. The force of the wall on the sphere would balance the force of the horses.
8. Note that 0.05 atm equals $5065 \mathrm{~N} / \mathrm{m}^{2}$. Application of Eq. 14-7 with the notation in this problem leads to

$$
d_{\max }=\frac{5065}{\rho_{\text {liquid }} g}
$$

with SI units understood. Thus the difference of this quantity between fresh water (998 $\mathrm{kg} / \mathrm{m}^{3}$) and Dead Sea water ($1500 \mathrm{~kg} / \mathrm{m}^{3}$) is

$$
\Delta d_{\max }=\frac{5065}{9.8}\left(\frac{1}{998}-\frac{1}{1500}\right)=0.17 \mathrm{~m} .
$$

9. We estimate the pressure difference (specifically due to hydrostatic effects) as follows:

$$
\Delta p=\rho g h=\left(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.83 \mathrm{~m})=1.90 \times 10^{4} \mathrm{~Pa}
$$

10. Recalling that $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$, Eq. $14-8$ leads to

$$
\rho g h=\left(1024 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(10.9 \times 10^{3} \mathrm{~m}\right)\left(\frac{1 \mathrm{~atm}}{1.01 \times 10^{5} \mathrm{~Pa}}\right) \approx 1.08 \times 10^{3} \mathrm{~atm} .
$$

11. The pressure p at the depth d of the hatch cover is $p_{0}+\rho g d$, where ρ is the density of ocean water and p_{0} is atmospheric pressure. The downward force of the water on the hatch cover is $\left(p_{0}+\rho g d\right) A$, where A is the area of the cover. If the air in the submarine is at atmospheric pressure then it exerts an upward force of $p_{0} A$. The minimum force that must be applied by the crew to open the cover has magnitude

$$
\begin{aligned}
F & =\left(p_{0}+\rho g d\right) A-p_{0} A=\rho g d A=\left(1024 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(100 \mathrm{~m})(1.2 \mathrm{~m})(0.60 \mathrm{~m}) \\
& =7.2 \times 10^{5} \mathrm{~N} .
\end{aligned}
$$

12. In this case, Bernoulli's equation reduces to Eq. 14-10. Thus,

$$
p_{g}=\rho g(-h)=-\left(1800 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~m})=-2.6 \times 10^{4} \mathrm{~Pa} .
$$

13. With $A=0.000500 \mathrm{~m}^{2}$ and $F=p A$ (with p given by Eq. 14-9), then we have $\rho g h A=$ 9.80 N . This gives $h \approx 2.0 \mathrm{~m}$, which means $d+h=2.80 \mathrm{~m}$.
14. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. The difference between the hydrostatic force and the weight is accounted for by the additional upward force exerted by water on the top of the barrel due to the increased pressure introduced by the water in the tube.
15. When the levels are the same the height of the liquid is $h=\left(h_{1}+h_{2}\right) / 2$, where h_{1} and h_{2} are the original heights. Suppose h_{1} is greater than h_{2}. The final situation can then be achieved by taking liquid with volume $A\left(h_{1}-h\right)$ and mass $\rho A\left(h_{1}-h\right)$, in the first vessel, and lowering it a distance $h-h_{2}$. The work done by the force of gravity is

$$
W=\rho A\left(h_{1}-h\right) g\left(h-h_{2}\right) .
$$

We substitute $h=\left(h_{1}+h_{2}\right) / 2$ to obtain

$$
\begin{aligned}
W & =\frac{1}{4} \rho g A\left(h_{1}-h_{2}\right)^{2}=\frac{1}{4}\left(1.30 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(4.00 \times 10^{-4} \mathrm{~m}^{2}\right)(1.56 \mathrm{~m}-0.854 \mathrm{~m})^{2} \\
& =0.635 \mathrm{~J}
\end{aligned}
$$

16. Letting $p_{a}=p_{b}$, we find

$$
\rho_{c} g(6.0 \mathrm{~km}+32 \mathrm{~km}+D)+\rho_{m}(y-D)=\rho_{c} g(32 \mathrm{~km})+\rho_{m} y
$$

and obtain

$$
D=\frac{(6.0 \mathrm{~km}) \rho_{c}}{\rho_{m}-\rho_{c}}=\frac{(6.0 \mathrm{~km})\left(2.9 \mathrm{~g} / \mathrm{cm}^{3}\right)}{3.3 \mathrm{~g} / \mathrm{cm}^{3}-2.9 \mathrm{~g} / \mathrm{cm}^{3}}=44 \mathrm{~km}
$$

17. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) over the area of the wall to find out the net force on it, and the result turns out fairly intuitive (because of that linear dependence): the force is the "average" water pressure multiplied by the area of the wall (or at least the part of the wall that is exposed to the water), where "average" pressure is taken to mean $\frac{1}{2}$ (pressure at surface + pressure at bottom). Assuming the pressure at the surface can be taken to be zero (in the gauge pressure sense explained in section 14-4), then this means the force on the wall is $\frac{1}{2} \rho g h$ multiplied by the appropriate area. In this problem the area is $h w$ (where w is the 8.00 m width), so the force is $\frac{1}{2} \rho g h^{2} w$, and the change in force (as h is changed) is

$$
\frac{1}{2} \rho g w\left({h_{f}}^{2}-h_{i}^{2}\right)=\frac{1}{2}\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(8.00 \mathrm{~m})\left(4.00^{2}-2.00^{2}\right) \mathrm{m}^{2}=4.69 \times 10^{5} \mathrm{~N} .
$$

18. (a) The force on face A of area A_{A} due to the water pressure alone is

$$
\begin{aligned}
F_{A} & =p_{A} A_{A}=\rho_{w} g h_{A} A_{A}=\rho_{w} g(2 d) d^{2}=2\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m})^{3} \\
& =2.5 \times 10^{6} \mathrm{~N} .
\end{aligned}
$$

Adding the contribution from the atmospheric pressure, $F_{0}=\left(1.0 \times 10^{5} \mathrm{~Pa}\right)(5.0 \mathrm{~m})^{2}=$ $2.5 \times 10^{6} \mathrm{~N}$, we have

$$
F_{A}{ }^{\prime}=F_{0}+F_{A}=2.5 \times 10^{6} \mathrm{~N}+2.5 \times 10^{6} \mathrm{~N}=5.0 \times 10^{6} \mathrm{~N} .
$$

(b) The force on face B due to water pressure alone is

$$
\begin{aligned}
F_{B} & =p_{\text {avg } B} A_{B}=\rho_{\omega} g\left(\frac{5 d}{2}\right) d^{2}=\frac{5}{2} \rho_{w} g d^{3}=\frac{5}{2}\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m})^{3} \\
& =3.1 \times 10^{6} \mathrm{~N} .
\end{aligned}
$$

Adding the contribution from the atmospheric pressure, $F_{0}=\left(1.0 \times 10^{5} \mathrm{~Pa}\right)(5.0 \mathrm{~m})^{2}=$ $2.5 \times 10^{6} \mathrm{~N}$, we have

$$
F_{B}{ }^{\prime}=F_{0}+F_{B}=2.5 \times 10^{6} \mathrm{~N}+3.1 \times 10^{6} \mathrm{~N}=5.6 \times 10^{6} \mathrm{~N} .
$$

19. (a) At depth y the gauge pressure of the water is $p=\rho g y$, where ρ is the density of the water. We consider a horizontal strip of width W at depth y, with (vertical) thickness $d y$, across the dam. Its area is $d A=W d y$ and the force it exerts on the dam is $d F=p d A=$ $\rho g y W d y$. The total force of the water on the dam is

$$
\begin{aligned}
F & =\int_{0}^{D} \rho g y W d y=\frac{1}{2} \rho g W D^{2} \\
& =\frac{1}{2}\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(314 \mathrm{~m})(35.0 \mathrm{~m})^{2}=1.88 \times 10^{9} \mathrm{~N}
\end{aligned}
$$

(b) Again we consider the strip of water at depth y. Its moment arm for the torque it exerts about O is $D-y$ so the torque it exerts is $d \tau=d F(D-y)=\rho g y W(D-y) d y$ and the total torque of the water is

$$
\begin{aligned}
\tau & =\int_{0}^{D} \rho g y W(D-y) d y=\rho g W\left(\frac{1}{2} D^{3}-\frac{1}{3} D^{3}\right)=\frac{1}{6} \rho g W D^{3} \\
& =\frac{1}{6}\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(314 \mathrm{~m})(35.0 \mathrm{~m})^{3}=2.20 \times 10^{10} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

(c) We write $\tau=r F$, where r is the effective moment arm. Then,

$$
r=\frac{\tau}{F}=\frac{\frac{1}{6} \rho g W D^{3}}{\frac{1}{2} \rho g W D^{2}}=\frac{D}{3}=\frac{35.0 \mathrm{~m}}{3}=11.7 \mathrm{~m} .
$$

20. The gauge pressure you can produce is

$$
p=-\rho g h=-\frac{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(4.0 \times 10^{-2} \mathrm{~m}\right)}{1.01 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}}=-3.9 \times 10^{-3} \mathrm{~atm}
$$

where the minus sign indicates that the pressure inside your lung is less than the outside pressure.
21. (a) We use the expression for the variation of pressure with height in an incompressible fluid: $p_{2}=p_{1}-\rho g\left(y_{2}-y_{1}\right)$. We take y_{1} to be at the surface of Earth, where the pressure is $p_{1}=1.01 \times 10^{5} \mathrm{~Pa}$, and y_{2} to be at the top of the atmosphere, where the pressure is $p_{2}=0$. For this calculation, we take the density to be uniformly $1.3 \mathrm{~kg} / \mathrm{m}^{3}$. Then,

$$
y_{2}-y_{1}=\frac{p_{1}}{\rho g}=\frac{1.01 \times 10^{5} \mathrm{~Pa}}{\left(1.3 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=7.9 \times 10^{3} \mathrm{~m}=7.9 \mathrm{~km} .
$$

(b) Let h be the height of the atmosphere. Now, since the density varies with altitude, we integrate

$$
p_{2}=p_{1}-\int_{0}^{h} \rho g d y .
$$

Assuming $\rho=\rho_{0}(1-y / h)$, where ρ_{0} is the density at Earth's surface and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for $0 \leq y \leq h$, the integral becomes

$$
p_{2}=p_{1}-\int_{0}^{h} \rho_{0} g\left(1-\frac{y}{h}\right) d y=p_{1}-\frac{1}{2} \rho_{0} g h .
$$

Since $p_{2}=0$, this implies

$$
h=\frac{2 p_{1}}{\rho_{0} g}=\frac{2\left(1.01 \times 10^{5} \mathrm{~Pa}\right)}{\left(1.3 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=16 \times 10^{3} \mathrm{~m}=16 \mathrm{~km} .
$$

22. (a) According to Pascal's principle $F / A=f / a \rightarrow F=(A / a) f$.
(b) We obtain

$$
f=\frac{a}{A} F=\frac{(3.80 \mathrm{~cm})^{2}}{(53.0 \mathrm{~cm})^{2}}\left(20.0 \times 10^{3} \mathrm{~N}\right)=103 \mathrm{~N} .
$$

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note that the area units cancel.
23. Eq. 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives

$$
m g=k x \frac{A_{1}}{A_{2}}
$$

With $A_{2}=18 A_{1}$ (and the other values given in the problem) we find $m=8.50 \mathrm{~kg}$.
24. (a) Archimedes' principle makes it clear that a body, in order to float, displaces an amount of the liquid which corresponds to the weight of the body. The problem (indirectly) tells us that the weight of the boat is $W=35.6 \mathrm{kN}$. In salt water of density $\rho^{\prime}=1100 \mathrm{~kg} / \mathrm{m}^{3}$, it must displace an amount of liquid having weight equal to 35.6 kN .
(b) The displaced volume of salt water is equal to

$$
V^{\prime}=\frac{W}{\rho^{\prime} g}=\frac{3.56 \times 10^{3} \mathrm{~N}}{\left(1.10 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=3.30 \mathrm{~m}^{3}
$$

In freshwater, it displaces a volume of $V=W / \rho g=3.63 \mathrm{~m}^{3}$, where $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The difference is $V-V^{\prime}=0.330 \mathrm{~m}^{3}$.
25. (a) The anchor is completely submerged in water of density ρ_{w}. Its effective weight is $W_{\text {eff }}=W-\rho_{w} g V$, where W is its actual weight $(m g)$. Thus,

$$
V=\frac{W-W_{\text {eff }}}{\rho_{w} g}=\frac{200 \mathrm{~N}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=2.04 \times 10^{-2} \mathrm{~m}^{3}
$$

(b) The mass of the anchor is $m=\rho V$, where ρ is the density of iron (found in Table 14-1). Its weight in air is

$$
W=m g=\rho V g=\left(7870 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(2.04 \times 10^{-2} \mathrm{~m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=1.57 \times 10^{3} \mathrm{~N} .
$$

26. (a) The pressure (including the contribution from the atmosphere) at a depth of $h_{\text {top }}=$ $L / 2$ (corresponding to the top of the block) is

$$
p_{\text {top }}=p_{\text {atm }}+\rho g h_{\text {top }}=\left[1.01 \times 10^{5}+(1030)(9.8)(0.300)\right] \mathrm{Pa}=1.04 \times 10^{5} \mathrm{~Pa}
$$

where the unit Pa (Pascal) is equivalent to $\mathrm{N} / \mathrm{m}^{2}$. The force on the top surface (of area A $=L^{2}=0.36 \mathrm{~m}^{2}$) is $F_{\text {top }}=p_{\text {top }} A=3.75 \times 10^{4} \mathrm{~N}$.
(b) The pressure at a depth of $h_{\text {bot }}=3 L / 2$ (that of the bottom of the block) is

$$
p_{\mathrm{bot}}=p_{\mathrm{atm}}+\rho g h_{\mathrm{bot}}=\left[1.01 \times 10^{5}+(1030)(9.8)(0.900)\right] \mathrm{Pa}=1.10 \times 10^{5} \mathrm{~Pa}
$$

where we recall that the unit Pa (Pascal) is equivalent to $\mathrm{N} / \mathrm{m}^{2}$. The force on the bottom surface is $F_{\text {bot }}=p_{\text {bot }} A=3.96 \times 10^{4} \mathrm{~N}$.
(c) Taking the difference $F_{\text {bot }}-F_{\text {top }}$ cancels the contribution from the atmosphere (including any numerical uncertainties associated with that value) and leads to

$$
F_{\mathrm{bot}}-F_{\mathrm{top}}=\rho g\left(h_{\mathrm{bot}}-h_{\mathrm{top}}\right) A=\rho g L^{3}=2.18 \times 10^{3} \mathrm{~N}
$$

which is to be expected on the basis of Archimedes' principle. Two other forces act on the block: an upward tension T and a downward pull of gravity $m g$. To remain stationary, the tension must be

$$
T=m g-\left(F_{\mathrm{bot}}-F_{\mathrm{top}}\right)=(450 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-2.18 \times 10^{3} \mathrm{~N}=2.23 \times 10^{3} \mathrm{~N}
$$

(d) This has already been noted in the previous part: $F_{b}=2.18 \times 10^{3} \mathrm{~N}$, and $T+F_{b}=m g$.
27. The problem intends for the children to be completely above water. The total downward pull of gravity on the system is

$$
3(356 \mathrm{~N})+N \rho_{\text {wood }} g V
$$

where N is the (minimum) number of logs needed to keep them afloat and V is the volume of each log: $V=\pi(0.15 \mathrm{~m})^{2}(1.80 \mathrm{~m})=0.13 \mathrm{~m}^{3}$. The buoyant force is $F_{b}=$ $\rho_{\text {water }} g V_{\text {submerged }}$ where we require $V_{\text {submerged }} \leq N V$. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. To obtain the minimum value of N we set $V_{\text {submerged }}=N V$ and then round our "answer" for N up to the nearest integer:

$$
3(356 \mathrm{~N})+N \rho_{\text {wood }} g V=\rho_{\text {water }} g N V \Rightarrow N=\frac{3(356 \mathrm{~N})}{g V\left(\rho_{\text {water }}-\rho_{\text {wood }}\right)}
$$

which yields $N=4.28 \rightarrow 5$ logs.
28. Work is the integral of the force (over distance - see Eq. 7-32), and referring to the equation immediately preceding Eq. 14-7, we see the work can be written as

$$
W=\int \rho_{\text {water }} g A(-y) d y
$$

where we are using $y=0$ to refer to the water surface (and the $+y$ direction is upward). Let $h=0.500 \mathrm{~m}$. Then, the integral has a lower limit of $-h$ and an upper limit of y_{f}, which can be determined by the condition described in Sample Problem 14-4 (which implies that $\left.y_{f} / h=-\rho_{\text {cylinder }} / \rho_{\text {water }}=-0.400\right)$. The integral leads to

$$
W=\frac{1}{2} \rho_{\text {water } g} A h^{2}\left(1-0.4^{2}\right)=4.11 \mathrm{~kJ} .
$$

29. (a) Let V be the volume of the block. Then, the submerged volume is $V_{s}=2 V / 3$. Since the block is floating, the weight of the displaced water is equal to the weight of the block, so $\rho_{w} V_{s}=\rho_{b} V$, where ρ_{w} is the density of water, and ρ_{b} is the density of the block. We substitute $V_{s}=2 \mathrm{~V} / 3$ to obtain

$$
\rho_{b}=2 \rho_{w} / 3=2\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right) / 3 \approx 6.7 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3} .
$$

(b) If ρ_{o} is the density of the oil, then Archimedes' principle yields $\rho_{o} V_{s}=\rho_{b} V$. We substitute $V_{s}=0.90 \mathrm{~V}$ to obtain $\rho_{o}=\rho_{b} / 0.90=7.4 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$.
30. Taking "down" as the positive direction, then using Eq. 14-16 in Newton's second law, we have $5 g-3 g=5 a$ (where " 5 " $=5.00 \mathrm{~kg}$, and " 3 " $=3.00 \mathrm{~kg}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$). This gives $a=\frac{2}{5} g$. Then (see Eq. 2-15) $\frac{1}{2} a t^{2}=0.0784 \mathrm{~m}$ (in the downward direction).
31. (a) The downward force of gravity $m g$ is balanced by the upward buoyant force of the liquid: $m g=\rho g V_{s}$. Here m is the mass of the sphere, ρ is the density of the liquid, and V_{s} is the submerged volume. Thus $m=\rho V_{s}$. The submerged volume is half the total volume of the sphere, so $V_{s}=\frac{1}{2}(4 \pi / 3) r_{o}^{3}$, where r_{o} is the outer radius. Therefore,

$$
m=\frac{2 \pi}{3} \rho r_{o}^{3}=\left(\frac{2 \pi}{3}\right)\left(800 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.090 \mathrm{~m})^{3}=1.22 \mathrm{~kg} .
$$

(b) The density ρ_{m} of the material, assumed to be uniform, is given by $\rho_{m}=m / V$, where m is the mass of the sphere and V is its volume. If r_{i} is the inner radius, the volume is

$$
V=\frac{4 \pi}{3}\left(r_{o}^{3}-r_{i}^{3}\right)=\frac{4 \pi}{3}\left((0.090 \mathrm{~m})^{3}-(0.080 \mathrm{~m})^{3}\right)=9.09 \times 10^{-4} \mathrm{~m}^{3} .
$$

The density is

$$
\rho_{m}=\frac{1.22 \mathrm{~kg}}{9.09 \times 10^{-4} \mathrm{~m}^{3}}=1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} .
$$

32. (a) An object of the same density as the surrounding liquid (in which case the "object" could just be a packet of the liquid itself) is not going to accelerate up or down (and thus won't gain any kinetic energy). Thus, the point corresponding to zero K in the graph must correspond to the case where the density of the object equals $\rho_{\text {liquid }}$. Therefore, $\rho_{\text {ball }}=1.5 \mathrm{~g} / \mathrm{cm}^{3}$ (or $1500 \mathrm{~kg} / \mathrm{m}^{3}$).
(b) Consider the $\rho_{\text {liquid }}=0$ point (where $K_{\text {gained }}=1.6 \mathrm{~J}$). In this case, the ball is falling through perfect vacuum, so that $v^{2}=2 g h$ (see Eq. 2-16) which means that $K=\frac{1}{2} m v^{2}=1.6$ J can be used to solve for the mass. We obtain $m_{\text {ball }}=4.082 \mathrm{~kg}$. The volume of the ball is then given by $m_{\text {ball }} / \rho_{\text {ball }}=2.72 \times 10^{-3} \mathrm{~m}^{3}$.
33. For our estimate of $V_{\text {submerged }}$ we interpret "almost completely submerged" to mean

$$
V_{\text {submerged }} \approx \frac{4}{3} \pi r_{o}^{3} \quad \text { where } r_{o}=60 \mathrm{~cm} .
$$

Thus, equilibrium of forces (on the iron sphere) leads to

$$
F_{b}=m_{\mathrm{iron}} g \Rightarrow \rho_{\text {water }} g V_{\text {submerged }}=\rho_{\mathrm{iron}} g\left(\frac{4}{3} \pi r_{o}^{3}-\frac{4}{3} \pi r_{i}^{3}\right)
$$

where r_{i} is the inner radius (half the inner diameter). Plugging in our estimate for $V_{\text {submerged }}$ as well as the densities of water $\left(1.0 \mathrm{~g} / \mathrm{cm}^{3}\right)$ and iron $\left(7.87 \mathrm{~g} / \mathrm{cm}^{3}\right)$, we obtain the inner diameter:

$$
2 r_{i}=2 r_{\mathrm{o}}\left(1-\frac{1}{7.87}\right)^{1 / 3}=57.3 \mathrm{~cm} .
$$

34. From the "kink" in the graph it is clear that $d=1.5 \mathrm{~cm}$. Also, the $h=0$ point makes it clear that the (true) weight is 0.25 N . We now use Eq. 14-19 at $h=d=1.5 \mathrm{~cm}$ to obtain $F_{b}=(0.25 \mathrm{~N}-0.10 \mathrm{~N})=0.15 \mathrm{~N}$. Thus, $\rho_{\text {liquid }} g V=0.15$, where $V=(1.5 \mathrm{~cm})\left(5.67 \mathrm{~cm}^{2}\right)$ $=8.5 \times 10^{-6} \mathrm{~m}^{3}$. Thus, $\rho_{\text {liquid }}=1800 \mathrm{~kg} / \mathrm{m}^{3}=1.8 \mathrm{~g} / \mathrm{cm}^{3}$.
35. The volume $V_{\text {cav }}$ of the cavities is the difference between the volume $V_{\text {cast }}$ of the casting as a whole and the volume $V_{\text {iron }}$ contained: $V_{\text {cav }}=V_{\text {cast }}-V_{\text {iron }}$. The volume of the iron is given by $V_{\text {iron }}=W / g \rho_{\text {iron }}$, where W is the weight of the casting and $\rho_{\text {iron }}$ is the density of iron. The effective weight in water (of density ρ_{w}) is $W_{\text {eff }}=W-g \rho_{w} V_{\text {cast. }}$. Thus, $V_{\text {cast }}=\left(W-W_{\text {eff }}\right) / g \rho_{w}$ and

$$
\begin{aligned}
V_{\text {cav }} & =\frac{W-W_{\text {eff }}}{g \rho_{w}}-\frac{W}{g \rho_{\text {iron }}}=\frac{6000 \mathrm{~N}-4000 \mathrm{~N}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)}-\frac{6000 \mathrm{~N}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(7.87 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =0.126 \mathrm{~m}^{3} .
\end{aligned}
$$

36. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a given by Newton's second law:

$$
\rho_{\text {water }} V g-\rho_{\text {ball }} V g=\rho_{\text {ball }} V a \quad \Rightarrow \quad \rho_{\text {ball }}=\rho_{\text {water }}(1+" a ")
$$

where - for simplicity - we are using in that last expression an acceleration " a " measured in "gees" (so that " a " $=2$, for example, means that $a=2(9.80)=19.6 \mathrm{~m} / \mathrm{s}^{2}$). In this problem, with $\rho_{\text {ball }}=0.300 \rho_{\text {water }}$, we find therefore that " a " $=7 / 3$. Using Eq. 2-16, then the speed of the ball as it emerges from the water is

$$
v=\sqrt{2 a \Delta y},
$$

were $a=(7 / 3) g$ and $\Delta y=0.600 \mathrm{~m}$. This causes the ball to reach a maximum height $h_{\max }$ (measured above the water surface) given by $h_{\max }=v^{2} / 2 g$ (see Eq. 2-16 again). Thus, $h_{\text {max }}=(7 / 3) \Delta y=1.40 \mathrm{~m}$.
37. (a) If the volume of the car below water is V_{1} then $F_{b}=\rho_{w} V_{1} g=W_{\text {car }}$, which leads to

$$
V_{1}=\frac{W_{\mathrm{car}}}{\rho_{w} g}=\frac{(1800 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.80 \mathrm{~m}^{3}
$$

(b) We denote the total volume of the car as V and that of the water in it as V_{2}. Then

$$
F_{b}=\rho_{w} V g=W_{\text {car }}+\rho_{w} V_{2} g
$$

which gives

$$
V_{2}=V-\frac{W_{\mathrm{car}}}{\rho_{w} g}=\left(0.750 \mathrm{~m}^{3}+5.00 \mathrm{~m}^{3}+0.800 \mathrm{~m}^{3}\right)-\frac{1800 \mathrm{~kg}}{1000 \mathrm{~kg} / \mathrm{m}^{3}}=4.75 \mathrm{~m}^{3} .
$$

38. (a) Since the lead is not displacing any water (of density ρ_{w}), the lead's volume is not contributing to the buoyant force F_{b}. If the immersed volume of wood is V_{i}, then

$$
F_{b}=\rho_{w} V_{i} g=0.900 \rho_{w} V_{\text {wood }} g=0.900 \rho_{w} g\left(\frac{m_{\text {wood }}}{\rho_{\text {wood }}}\right),
$$

which, when floating, equals the weights of the wood and lead:

$$
F_{b}=0.900 \rho_{w} g\left(\frac{m_{\text {wood }}}{\rho_{\text {wood }}}\right)=\left(m_{\text {wood }}+m_{\text {lead }}\right) g .
$$

Thus,

$$
m_{\text {lead }}=0.900 \rho_{w}\left(\frac{m_{\text {wood }}}{\rho_{\text {wood }}}\right)-m_{\text {wood }}=\frac{(0.900)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(3.67 \mathrm{~kg})}{600 \mathrm{~kg} / \mathrm{m}^{3}}-3.67 \mathrm{~kg}=1.84 \mathrm{~kg}
$$

(b) In this case, the volume $V_{\text {lead }}=m_{\text {lead }} / \rho_{\text {lead }}$ also contributes to F_{b}. Consequently,

$$
F_{b}=0.900 \rho_{w} g\left(\frac{m_{\text {wood }}}{\rho_{\text {wood }}}\right)+\left(\frac{\rho_{w}}{\rho_{\text {lead }}}\right) m_{\text {lead }} g=\left(m_{\text {wood }}+m_{\text {lead }}\right) g
$$

which leads to

$$
\begin{aligned}
m_{\text {lead }} & =\frac{0.900\left(\rho_{w} / \rho_{\text {wood }}\right) m_{\text {wood }}-m_{\text {wood }}}{1-\rho_{w} / \rho_{\text {lead }}}=\frac{1.84 \mathrm{~kg}}{1-\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} / 1.13 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =2.01 \mathrm{~kg} .
\end{aligned}
$$

39. (a) When the model is suspended (in air) the reading is F_{g} (its true weight, neglecting any buoyant effects caused by the air). When the model is submerged in water, the reading is lessened because of the buoyant force: $F_{g}-F_{b}$. We denote the difference in readings as Δm. Thus,

$$
F_{g}-\left(F_{g}-F_{b}\right)=\Delta m g
$$

which leads to $F_{b}=\Delta m g$. Since $F_{b}=\rho_{w} g V_{m}$ (the weight of water displaced by the model) we obtain

$$
V_{m}=\frac{\Delta m}{\rho_{w}}=\frac{0.63776 \mathrm{~kg}}{1000 \mathrm{~kg} / \mathrm{m}} \approx 6.378 \times 10^{-4} \mathrm{~m}^{3} .
$$

(b) The $\frac{1}{20}$ scaling factor is discussed in the problem (and for purposes of significant figures is treated as exact). The actual volume of the dinosaur is

$$
V_{\mathrm{dino}}=20^{3} V_{m}=5.102 \mathrm{~m}^{3} .
$$

(c) Using $\rho \approx \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$, we find

$$
\rho=\frac{m_{\mathrm{dino}}}{V_{\mathrm{dino}}} \Rightarrow m_{\mathrm{dino}}=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(5.102 \mathrm{~m}^{3}\right)
$$

which yields $5.102 \times 10^{3} \mathrm{~kg}$ for the T. rex mass.
40. Let ρ be the density of the cylinder $\left(0.30 \mathrm{~g} / \mathrm{cm}^{3}\right.$ or $\left.300 \mathrm{~kg} / \mathrm{m}^{3}\right)$ and ρ_{Fe} be the density of the iron $\left(7.9 \mathrm{~g} / \mathrm{cm}^{3}\right.$ or $\left.7900 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The volume of the cylinder is $V_{c}=(6 \times 12) \mathrm{cm}^{3}=$ $72 \mathrm{~cm}^{3}$ (or $0.000072 \mathrm{~m}^{3}$), and that of the ball is denoted V_{b}. The part of the cylinder that is submerged has volume $V_{s}=(4 \times 12) \mathrm{cm}^{3}=48 \mathrm{~cm}^{3}$ (or $0.000048 \mathrm{~m}^{3}$). Using the ideas of section 14-7, we write the equilibrium of forces as

$$
\rho g V_{c}+\rho_{\mathrm{Fe}} g V_{b}=\rho_{\mathrm{w}} g V_{s}+\rho_{\mathrm{w}} g V_{b} \Rightarrow V_{b}=3.8 \mathrm{~cm}^{3}
$$

where we have used $\rho_{\mathrm{w}}=998 \mathrm{~kg} / \mathrm{m}^{3}$ (for water, see Table 14-1). Using $V_{b}=\frac{4}{3} \pi r^{3}$ we find $r=9.7 \mathrm{~mm}$.
41. We use the equation of continuity. Let v_{1} be the speed of the water in the hose and v_{2} be its speed as it leaves one of the holes. $A_{1}=\pi R^{2}$ is the cross-sectional area of the hose. If there are N holes and A_{2} is the area of a single hole, then the equation of continuity becomes

$$
v_{1} A_{1}=v_{2}\left(N A_{2}\right) \Rightarrow v_{2}=\frac{A_{1}}{N A_{2}} v_{1}=\frac{R^{2}}{N r^{2}} v_{1}
$$

where R is the radius of the hose and r is the radius of a hole. Noting that $R / r=D / d$ (the ratio of diameters) we find

$$
v_{2}=\frac{D^{2}}{N d^{2}} v_{1}=\frac{(1.9 \mathrm{~cm})^{2}}{24(0.13 \mathrm{~cm})^{2}}(0.91 \mathrm{~m} / \mathrm{s})=8.1 \mathrm{~m} / \mathrm{s}
$$

42. We use the equation of continuity and denote the depth of the river as h. Then,

$$
(8.2 \mathrm{~m})(3.4 \mathrm{~m})(2.3 \mathrm{~m} / \mathrm{s})+(6.8 \mathrm{~m})(3.2 \mathrm{~m})(2.6 \mathrm{~m} / \mathrm{s})=h(10.5 \mathrm{~m})(2.9 \mathrm{~m} / \mathrm{s})
$$

which leads to $h=4.0 \mathrm{~m}$.
43. Suppose that a mass Δm of water is pumped in time Δt. The pump increases the potential energy of the water by $\Delta m g h$, where h is the vertical distance through which it is lifted, and increases its kinetic energy by $\frac{1}{2} \Delta m v^{2}$, where v is its final speed. The work it does is $\Delta W=\Delta m g h+\frac{1}{2} \Delta m v^{2}$ and its power is

$$
P=\frac{\Delta W}{\Delta t}=\frac{\Delta m}{\Delta t}\left(g h+\frac{1}{2} v^{2}\right) .
$$

Now the rate of mass flow is $\Delta m / \Delta t=\rho_{w} A v$, where ρ_{w} is the density of water and A is the area of the hose. The area of the hose is $A=\pi r^{2}=\pi(0.010 \mathrm{~m})^{2}=3.14 \times 10^{-4} \mathrm{~m}^{2}$ and

$$
\rho_{w} A v=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(3.14 \times 10^{-4} \mathrm{~m}^{2}\right)(5.00 \mathrm{~m} / \mathrm{s})=1.57 \mathrm{~kg} / \mathrm{s}
$$

Thus,

$$
P=\rho A v\left(g h+\frac{1}{2} v^{2}\right)=(1.57 \mathrm{~kg} / \mathrm{s})\left(\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~m})+\frac{(5.0 \mathrm{~m} / \mathrm{s})^{2}}{2}\right)=66 \mathrm{~W} .
$$

44. (a) The equation of continuity provides $(26+19+11) \mathrm{L} / \mathrm{min}=56 \mathrm{~L} / \mathrm{min}$ for the flow rate in the main (1.9 cm diameter) pipe.
(b) Using $v=R / A$ and $A=\pi d^{2} / 4$, we set up ratios:

$$
\frac{v_{56}}{v_{26}}=\frac{56 / \pi(1.9)^{2} / 4}{26 / \pi(1.3)^{2} / 4} \approx 1.0
$$

45. (a) We use the equation of continuity: $A_{1} v_{1}=A_{2} v_{2}$. Here A_{1} is the area of the pipe at the top and v_{1} is the speed of the water there; A_{2} is the area of the pipe at the bottom and v_{2} is the speed of the water there. Thus $v_{2}=\left(A_{1} / A_{2}\right) v_{1}=\left[\left(4.0 \mathrm{~cm}^{2}\right) /\left(8.0 \mathrm{~cm}^{2}\right)\right](5.0 \mathrm{~m} / \mathrm{s})=$ $2.5 \mathrm{~m} / \mathrm{s}$.
(b) We use the Bernoulli equation: $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$, where ρ is the density of water, h_{1} is its initial altitude, and h_{2} is its final altitude. Thus

$$
\begin{aligned}
p_{2} & =p_{1}+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)+\rho g\left(h_{1}-h_{2}\right) \\
& =1.5 \times 10^{5} \mathrm{~Pa}+\frac{1}{2}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(5.0 \mathrm{~m} / \mathrm{s})^{2}-(2.5 \mathrm{~m} / \mathrm{s})^{2}\right]+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m}) \\
& =2.6 \times 10^{5} \mathrm{~Pa} .
\end{aligned}
$$

46. We use Bernoulli's equation:

$$
p_{2}-p_{i}=\rho g D+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)
$$

where $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, D=180 \mathrm{~m}, v_{1}=0.40 \mathrm{~m} / \mathrm{s}$ and $v_{2}=9.5 \mathrm{~m} / \mathrm{s}$. Therefore, we find Δp $=1.7 \times 10^{6} \mathrm{~Pa}$, or 1.7 MPa . The SI unit for pressure is the Pascal (Pa) and is equivalent to $\mathrm{N} / \mathrm{m}^{2}$.
47. (a) The equation of continuity leads to

$$
v_{2} A_{2}=v_{1} A_{1} \Rightarrow v_{2}=v_{1}\left(\frac{r_{1}^{2}}{r_{2}^{2}}\right)
$$

which gives $v_{2}=3.9 \mathrm{~m} / \mathrm{s}$.
(b) With $h=7.6 \mathrm{~m}$ and $p_{1}=1.7 \times 10^{5} \mathrm{~Pa}$, Bernoulli's equation reduces to

$$
p_{2}=p_{1}-\rho g h+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=8.8 \times 10^{4} \mathrm{~Pa} .
$$

48. (a) We use $A v=$ const. The speed of water is

$$
v=\frac{(25.0 \mathrm{~cm})^{2}-(5.00 \mathrm{~cm})^{2}}{(25.0 \mathrm{~cm})^{2}}(2.50 \mathrm{~m} / \mathrm{s})=2.40 \mathrm{~m} / \mathrm{s}
$$

(b) Since $p+\frac{1}{2} \rho v^{2}=$ const., the pressure difference is

$$
\Delta p=\frac{1}{2} \rho \Delta v^{2}=\frac{1}{2}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(2.50 \mathrm{~m} / \mathrm{s})^{2}-(2.40 \mathrm{~m} / \mathrm{s})^{2}\right]=245 \mathrm{~Pa} .
$$

49. (a) We use the Bernoulli equation: $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$, where h_{1} is the height of the water in the tank, p_{1} is the pressure there, and v_{1} is the speed of the water there; h_{2} is the altitude of the hole, p_{2} is the pressure there, and v_{2} is the speed of the water there. ρ is the density of water. The pressure at the top of the tank and at the hole is atmospheric, so $p_{1}=p_{2}$. Since the tank is large we may neglect the water speed at the top; it is much smaller than the speed at the hole. The Bernoulli equation then becomes $\rho g h_{1}=\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$ and

$$
v_{2}=\sqrt{2 g\left(h_{1}-h_{2}\right)}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.30 \mathrm{~m})}=2.42 \mathrm{~m} / \mathrm{s} .
$$

The flow rate is $A_{2} v_{2}=\left(6.5 \times 10^{-4} \mathrm{~m}^{2}\right)(2.42 \mathrm{~m} / \mathrm{s})=1.6 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$.
(b) We use the equation of continuity: $A_{2} v_{2}=A_{3} v_{3}$, where $A_{3}=\frac{1}{2} A_{2}$ and v_{3} is the water speed where the area of the stream is half its area at the hole. Thus $v_{3}=\left(A_{2} / A_{3}\right) v_{2}=2 v_{2}=$ $4.84 \mathrm{~m} / \mathrm{s}$. The water is in free fall and we wish to know how far it has fallen when its speed is doubled to $4.84 \mathrm{~m} / \mathrm{s}$. Since the pressure is the same throughout the fall, $\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}=\frac{1}{2} \rho v_{3}^{2}+\rho g h_{3}$. Thus

$$
h_{2}-h_{3}=\frac{v_{3}^{2}-v_{2}^{2}}{2 g}=\frac{(4.84 \mathrm{~m} / \mathrm{s})^{2}-(2.42 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.90 \mathrm{~m} .
$$

50. The left and right sections have a total length of 60.0 m , so (with a speed of $2.50 \mathrm{~m} / \mathrm{s}$) it takes $60.0 / 2.50=24.0$ seconds to travel through those sections. Thus it takes ($88.8-$ 24.0) $\mathrm{s}=64.8 \mathrm{~s}$ to travel through the middle section. This implies that the speed in the middle section is $\mathrm{v}_{\text {mid }}=(110 \mathrm{~m}) /(64.8 \mathrm{~s})=0.772 \mathrm{~m} / \mathrm{s}$. Now Eq. 14-23 (plus that fact that $\left.A=\pi r^{2}\right)$ implies $r_{\text {mid }}=r_{\mathrm{A}} \sqrt{(2.5 \mathrm{~m} / \mathrm{s}) /(0.772 \mathrm{~m} / \mathrm{s})}$ where $r_{\mathrm{A}}=2.00 \mathrm{~cm}$. Therefore, $r_{\text {mid }}=$ 3.60 cm .
51. We rewrite the formula for work W (when the force is constant in a direction parallel to the displacement d) in terms of pressure:

$$
W=F d=\left(\frac{F}{A}\right)(A d)=p V
$$

where V is the volume of the water being forced through, and p is to be interpreted as the pressure difference between the two ends of the pipe. Thus,

$$
W=\left(1.0 \times 10^{5} \mathrm{~Pa}\right)\left(1.4 \mathrm{~m}^{3}\right)=1.4 \times 10^{5} \mathrm{~J}
$$

52. (a) The speed v of the fluid flowing out of the hole satisfies $\frac{1}{2} \rho v^{2}=\rho g h$ or $v=\sqrt{2 g h}$. Thus, $\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2}$, which leads to

$$
\rho_{1} \sqrt{2 g h} A_{1}=\rho_{2} \sqrt{2 g h} A_{2} \Rightarrow \frac{\rho_{1}}{\rho_{2}}=\frac{A_{2}}{A_{1}}=2 .
$$

(b) The ratio of volume flow is

$$
\frac{R_{1}}{R_{2}}=\frac{v_{1} A_{1}}{v_{2} A_{2}}=\frac{A_{1}}{A_{2}}=\frac{1}{2}
$$

(c) Letting $R_{1} / R_{2}=1$, we obtain $v_{1} / v_{2}=A_{2} / A_{1}=2=\sqrt{h_{1} / h_{2}}$ Thus

$$
h_{2}=h_{1} / 4=(12.0 \mathrm{~cm}) / 4=3.00 \mathrm{~cm} .
$$

53. (a) The friction force is

$$
f=A \Delta p=\rho_{\omega} g d A=\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m})\left(\frac{\pi}{4}\right)(0.040 \mathrm{~m})^{2}=74 \mathrm{~N} .
$$

(b) The speed of water flowing out of the hole is $v=\sqrt{2 g d}$. Thus, the volume of water flowing out of the pipe in $t=3.0 \mathrm{~h}$ is

$$
V=A v t=\frac{\pi^{2}}{4}(0.040 \mathrm{~m})^{2} \sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m})}(3.0 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})=1.5 \times 10^{2} \mathrm{~m}^{3}
$$

54. (a) The volume of water (during 10 minutes) is

$$
V=\left(v_{1} t\right) A_{1}=(15 \mathrm{~m} / \mathrm{s})(10 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})\left(\frac{\pi}{4}\right)(0.03 \mathrm{~m})^{2}=6.4 \mathrm{~m}^{3}
$$

(b) The speed in the left section of pipe is

$$
v_{2}=v_{1}\left(\frac{A_{1}}{A_{2}}\right)=v_{1}\left(\frac{d_{1}}{d_{2}}\right)^{2}=(15 \mathrm{~m} / \mathrm{s})\left(\frac{3.0 \mathrm{~cm}}{5.0 \mathrm{~cm}}\right)^{2}=5.4 \mathrm{~m} / \mathrm{s} .
$$

(c) Since $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$ and $h_{1}=h_{2}, p_{1}=p_{0}$, which is the atmospheric pressure,

$$
\begin{aligned}
p_{2} & =p_{0}+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=1.01 \times 10^{5} \mathrm{~Pa}+\frac{1}{2}\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(15 \mathrm{~m} / \mathrm{s})^{2}-(5.4 \mathrm{~m} / \mathrm{s})^{2}\right] \\
& =1.99 \times 10^{5} \mathrm{~Pa}=1.97 \mathrm{~atm} .
\end{aligned}
$$

Thus the gauge pressure is $(1.97 \mathrm{~atm}-1.00 \mathrm{~atm})=0.97 \mathrm{~atm}=9.8 \times 10^{4} \mathrm{~Pa}$.
55. (a) Since Sample Problem 14-8 deals with a similar situation, we use the final equation (labeled "Answer") from it:

$$
v=\sqrt{2 g h} \Rightarrow v=v_{0} \text { for the projectile motion. }
$$

The stream of water emerges horizontally ($\theta_{0}=0^{\circ}$ in the notation of Chapter 4), and setting $y-y_{0}=-(H-h)$ in Eq. 4-22, we obtain the "time-of-flight"

$$
t=\sqrt{\frac{-2(H-h)}{-g}}=\sqrt{\frac{2}{g}(H-h)} .
$$

Using this in Eq. 4-21, where $x_{0}=0$ by choice of coordinate origin, we find

$$
x=v_{0} t=\sqrt{2 g h} \sqrt{\frac{2(H-h)}{g}}=2 \sqrt{h(H-h)}=2 \sqrt{(10 \mathrm{~cm})(40 \mathrm{~cm}-10 \mathrm{~cm})}=35 \mathrm{~cm} .
$$

(b) The result of part (a) (which, when squared, reads $x^{2}=4 h(H-h)$) is a quadratic equation for h once x and H are specified. Two solutions for h are therefore mathematically possible, but are they both physically possible? For instance, are both solutions positive and less than H ? We employ the quadratic formula:

$$
h^{2}-H h+\frac{x^{2}}{4}=0 \Rightarrow h=\frac{H \pm \sqrt{H^{2}-x^{2}}}{2}
$$

which permits us to see that both roots are physically possible, so long as $x<H$. Labeling the larger root h_{1} (where the plus sign is chosen) and the smaller root as h_{2} (where the minus sign is chosen), then we note that their sum is simply

$$
h_{1}+h_{2}=\frac{H+\sqrt{H^{2}-x^{2}}}{2}+\frac{H-\sqrt{H^{2}-x^{2}}}{2}=H .
$$

Thus, one root is related to the other (generically labeled h^{\prime} and h) by $h^{\prime}=H-h$. Its numerical value is $h^{\prime}=40 \mathrm{~cm}-10 \mathrm{~cm}=30 \mathrm{~cm}$.
(c) We wish to maximize the function $f=x^{2}=4 h(H-h)$. We differentiate with respect to h and set equal to zero to obtain

$$
\frac{d f}{d h}=4 H-8 h=0 \Rightarrow h=\frac{H}{2}
$$

or $h=(40 \mathrm{~cm}) / 2=20 \mathrm{~cm}$, as the depth from which an emerging stream of water will travel the maximum horizontal distance.
56. (a) We note (from the graph) that the pressures are equal when the value of inverse-area-squared is 16 (in SI units). This is the point at which the areas of the two pipe sections are equal. Thus, if $A_{1}=1 / \sqrt{16}$ when the pressure difference is zero, then A_{2} is $0.25 \mathrm{~m}^{2}$.
(b) Using Bernoulli's equation (in the form Eq. 14-30) we find the pressure difference may be written in the form a straight line: $m x+b$ where x is inverse-area-squared (the horizontal axis in the graph), m is the slope, and b is the intercept (seen to be -300 $\mathrm{kN} / \mathrm{m}^{2}$). Specifically, Eq. $14-30$ predicts that b should be $-\frac{1}{2} \rho \mathrm{v}_{2}{ }^{2}$. Thus, with $\rho=1000$ $\mathrm{kg} / \mathrm{m}^{3}$ we obtain $\mathrm{v}_{2}=\sqrt{600} \mathrm{~m} / \mathrm{s}$. Then the volume flow rate (see Eq. 14-24) is $R=A_{2} \mathrm{v}_{2}$ $=\left(0.25 \mathrm{~m}^{2}\right)(\sqrt{600} \mathrm{~m} / \mathrm{s})=6.12 \mathrm{~m}^{3} / \mathrm{s}$. If the more accurate value (see Table 14-1) $\rho=998$ $\mathrm{kg} / \mathrm{m}^{3}$ is used, then the answer is $6.13 \mathrm{~m}^{3} / \mathrm{s}$.
57. (a) This is similar to the situation treated in Sample Problem 14-7, and we refer to some of its steps (and notation). Combining Eq. 14-35 and Eq. 14-36 in a manner very similar to that shown in the textbook, we find

$$
R=A_{1} A_{2} \sqrt{\frac{2 \Delta p}{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}
$$

for the flow rate expressed in terms of the pressure difference and the cross-sectional areas. Note that this reduces to Eq. 14-38 for the case $A_{2}=A_{1} / 2$ treated in the Sample Problem. Note that $\Delta p=p_{1}-p_{2}=-7.2 \times 10^{3} \mathrm{~Pa}$ and $A_{1}^{2}-A_{2}^{2}=-8.66 \times 10^{-3} \mathrm{~m}^{4}$, so that the square root is well defined. Therefore, we obtain $R=0.0776 \mathrm{~m}^{3} / \mathrm{s}$.
(b) The mass rate of flow is $\rho R=69.8 \mathrm{~kg} / \mathrm{s}$.
58. By Eq. $14-23$, we note that the speeds in the left and right sections are $\frac{1}{4} \mathrm{v}_{\text {mid }}$ and $\frac{1}{9}$ $\mathrm{v}_{\text {mid }}$, respectively, where $\mathrm{v}_{\text {mid }}=0.500 \mathrm{~m} / \mathrm{s}$. We also note that $0.400 \mathrm{~m}^{3}$ of water has a mass of 399 kg (see Table 14-1). Then Eq. 14-31 (and the equation below it) gives

$$
W=\frac{1}{2} m \mathrm{v}_{\mathrm{mid}}{ }^{2}\left(\frac{1}{9^{2}}-\frac{1}{4^{2}}\right)=-2.50 \mathrm{~J} .
$$

59. (a) The continuity equation yields $A v=a V$, and Bernoulli's equation yields $\Delta p+\frac{1}{2} \rho v^{2}=\frac{1}{2} \rho V^{2}$, where $\Delta p=p_{1}-p_{2}$. The first equation gives $V=(A / a) v$. We use this to substitute for V in the second equation, and obtain $\Delta p+\frac{1}{2} \rho v^{2}=\frac{1}{2} \rho(A / a)^{2} v^{2}$. We solve for v. The result is

$$
v=\sqrt{\frac{2 \Delta p}{\rho\left(\frac{A^{2}}{a^{2}}-1\right)}}=\sqrt{\frac{2 a^{2} \Delta p}{\rho\left(A^{2}-a^{2}\right)}}
$$

(b) We substitute values to obtain

$$
v=\sqrt{\frac{2\left(32 \times 10^{-4} \mathrm{~m}^{2}\right)^{2}\left(55 \times 10^{3} \mathrm{~Pa}-41 \times 10^{3} \mathrm{~Pa}\right)}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(\left(64 \times 10^{-4} \mathrm{~m}^{2}\right)^{2}-\left(32 \times 10^{-4} \mathrm{~m}^{2}\right)^{2}\right)}}=3.06 \mathrm{~m} / \mathrm{s} .
$$

Consequently, the flow rate is

$$
A v=\left(64 \times 10^{-4} \mathrm{~m}^{2}\right)(3.06 \mathrm{~m} / \mathrm{s})=2.0 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}
$$

60. We use the result of part (a) in the previous problem.
(a) In this case, we have $\Delta p=p_{1}=2.0 \mathrm{~atm}$. Consequently,

$$
v=\sqrt{\frac{2 \Delta p}{\rho\left((A / a)^{2}-1\right)}}=\sqrt{\frac{4\left(1.01 \times 10^{5} \mathrm{~Pa}\right)}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(5 a / a)^{2}-1\right]}}=4.1 \mathrm{~m} / \mathrm{s} .
$$

(b) And the equation of continuity yields $V=(A / a) v=(5 a / a) v=5 v=21 \mathrm{~m} / \mathrm{s}$.
(c) The flow rate is given by

$$
A v=\frac{\pi}{4}\left(5.0 \times 10^{-4} \mathrm{~m}^{2}\right)(4.1 \mathrm{~m} / \mathrm{s})=8.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} .
$$

61. (a) Bernoulli's equation gives $p_{A}=p_{B}+\frac{1}{2} \rho_{\text {air }} v^{2} \cdot$ But $\Delta p=p_{A}-p_{B}=\rho g h$ in order to balance the pressure in the two arms of the U-tube. Thus $\rho g h=\frac{1}{2} \rho_{\text {air }} \nu^{2}$, or

$$
v=\sqrt{\frac{2 \rho g h}{\rho_{\mathrm{air}}}}
$$

(b) The plane's speed relative to the air is

$$
v=\sqrt{\frac{2 \rho g h}{\rho_{\text {air }}}}=\sqrt{\frac{2\left(810 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.260 \mathrm{~m})}{1.03 \mathrm{~kg} / \mathrm{m}^{3}}}=63.3 \mathrm{~m} / \mathrm{s} .
$$

62. We use the formula for v obtained in the previous problem:

$$
v=\sqrt{\frac{2 \Delta p}{\rho_{\mathrm{air}}}}=\sqrt{\frac{2(180 \mathrm{~Pa})}{0.031 \mathrm{~kg} / \mathrm{m}^{3}}}=1.1 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

63. We use Bernoulli's equation $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$.

When the water level rises to height h_{2}, just on the verge of flooding, v_{2}, the speed of water in pipe M, is given by

$$
\rho g\left(h_{1}-h_{2}\right)=\frac{1}{2} \rho v_{2}^{2} \Rightarrow v_{2}=\sqrt{2 g\left(h_{1}-h_{2}\right)}=13.86 \mathrm{~m} / \mathrm{s}
$$

By continuity equation, the corresponding rainfall rate is

$$
v_{1}=\left(\frac{A_{2}}{A_{1}}\right) v_{2}=\frac{\pi(0.030 \mathrm{~m})^{2}}{(30 \mathrm{~m})(60 \mathrm{~m})}(13.86 \mathrm{~m} / \mathrm{s})=2.177 \times 10^{-5} \mathrm{~m} / \mathrm{s} \approx 7.8 \mathrm{~cm} / \mathrm{h} .
$$

64. The volume rate of flow is $R=v A$ where $A=\pi r^{2}$ and $r=d / 2$. Solving for speed, we obtain

$$
v=\frac{R}{A}=\frac{R}{\pi(d / 2)^{2}}=\frac{4 R}{\pi d^{2}} .
$$

(a) With $R=7.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ and $d=14 \times 10^{-3} \mathrm{~m}$, our formula yields $v=45 \mathrm{~m} / \mathrm{s}$, which is about 13% of the speed of sound (which we establish by setting up a ratio: v / v_{s} where $v_{s}=$ $343 \mathrm{~m} / \mathrm{s}$).
(b) With the contracted trachea ($d=5.2 \times 10^{-3} \mathrm{~m}$) we obtain $v=330 \mathrm{~m} / \mathrm{s}$, or 96% of the speed of sound.
65. This is very similar to Sample Problem 14-4, where the ratio of densities is shown equal to a particular ratio of volumes. With volume equal to area multiplied by height, then that result becomes $h_{\text {submerged }} / h_{\text {total }}=\rho_{\text {block }} / \rho_{\text {liquid. }}$. Applying this to the first liquid, then applying it again to the second liquid, and finally dividing the two applications we arrive at another ratio: $h_{\text {submerged in liquid } 2}$ divided by $h_{\text {submerged in liquid } 1}$ is equal to $\rho_{\text {liquid } 2}$ divided by $\rho_{\text {liquid } 1}$. Since the height submerged in liquid 1 is $(8.00-6.00) \mathrm{cm}=2 \mathrm{~cm}$, then this last ratio tells us that the height submerged in liquid 2 is twice as much (because liquid 2 is half as dense), so $h_{\text {submerged in liquid } 2}=4.00 \mathrm{~cm}$. Since the total height is 8 cm , then the height above the surface is also 4.00 cm .
66. The normal force \vec{F}_{N} exerted (upward) on the glass ball of mass m has magnitude 0.0948 N . The buoyant force exerted by the milk (upward) on the ball has magnitude

$$
F_{b}=\rho_{\mathrm{milk}} g V
$$

where $V=\frac{4}{3} \pi r^{3}$ is the volume of the ball. Its radius is $r=0.0200 \mathrm{~m}$. The milk density is $\rho_{\text {milk }}=1030 \mathrm{~kg} / \mathrm{m}^{3}$. The (actual) weight of the ball is, of course, downward, and has magnitude $F_{g}=m_{\text {glass }} g$. Application of Newton's second law (in the case of zero acceleration) yields

$$
F_{N}+\rho_{\text {milk }} g V-m_{\text {glass }} g=0
$$

which leads to $m_{\text {glass }}=0.0442 \mathrm{~kg}$. We note the above equation is equivalent to Eq. 14-19 in the textbook.
67. If we examine both sides of the U-tube at the level where the low-density liquid (with $\rho=0.800 \mathrm{~g} / \mathrm{cm}^{3}=800 \mathrm{~kg} / \mathrm{m}^{3}$) meets the water (with $\rho_{\mathrm{w}}=0.998 \mathrm{~g} / \mathrm{cm}^{3}=998 \mathrm{~kg} / \mathrm{m}^{3}$), then the pressures there on either side of the tube must agree:

$$
\rho g h=\rho_{\mathrm{w}} g h_{\mathrm{w}}
$$

where $h=8.00 \mathrm{~cm}=0.0800 \mathrm{~m}$, and Eq. $14-9$ has been used. Thus, the height of the water column (as measured from that level) is $h_{\mathrm{w}}=(800 / 998)(8.00 \mathrm{~cm})=6.41 \mathrm{~cm}$. The volume of water in that column is therefore $\pi r^{2} h_{\mathrm{w}}=\pi(1.50 \mathrm{~cm})^{2}(6.41 \mathrm{~cm})=45.3 \mathrm{~cm}^{3}$.
68. Since (using Eq. 5-8) $F_{g}=m g=\rho_{\text {skier }} g V$ and (Eq. 14-16) the buoyant force is $F_{b}=$ $\rho_{\text {snow }} g V$, then their ratio is

$$
\frac{F_{b}}{F_{g}}=\frac{\rho_{\text {snow }} g V}{\rho_{\text {skier }} g V}=\frac{\rho_{\text {snow }}}{\rho_{\text {skier }}}=\frac{96}{1020}=0.094 \text { (or } 9.4 \% \text {). }
$$

69. (a) We consider a point D on the surface of the liquid in the container, in the same tube of flow with points A, B and C. Applying Bernoulli's equation to points D and C, we obtain

$$
p_{D}+\frac{1}{2} \rho v_{D}^{2}+\rho g h_{D}=p_{C}+\frac{1}{2} \rho v_{C}^{2}+\rho g h_{C}
$$

which leads to

$$
v_{C}=\sqrt{\frac{2\left(p_{D}-p_{C}\right)}{\rho}+2 g\left(h_{D}-h_{C}\right)+v_{D}^{2}} \approx \sqrt{2 g\left(d+h_{2}\right)}
$$

where in the last step we set $p_{D}=p_{C}=p_{\text {air }}$ and $v_{D} / v_{C} \approx 0$. Plugging in the values, we obtain

$$
v_{c}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.40 \mathrm{~m}+0.12 \mathrm{~m})}=3.2 \mathrm{~m} / \mathrm{s}
$$

(b) We now consider points B and C :

$$
p_{B}+\frac{1}{2} \rho v_{B}^{2}+\rho g h_{B}=p_{C}+\frac{1}{2} \rho v_{C}^{2}+\rho g h_{C} .
$$

Since $v_{B}=v_{C}$ by equation of continuity, and $p_{C}=p_{\text {air }}$, Bernoulli's equation becomes

$$
\begin{aligned}
p_{B} & =p_{C}+\rho g\left(h_{C}-h_{B}\right)=p_{\text {air }}-\rho g\left(h_{1}+h_{2}+d\right) \\
& =1.0 \times 10^{5} \mathrm{~Pa}-\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.25 \mathrm{~m}+0.40 \mathrm{~m}+0.12 \mathrm{~m}) \\
& =9.2 \times 10^{4} \mathrm{~Pa} .
\end{aligned}
$$

(c) Since $p_{B} \geq 0$, we must let $p_{\text {air }}-\rho g\left(h_{1}+d+h_{2}\right) \geq 0$, which yields

$$
h_{1} \leq h_{1, \max }=\frac{p_{\text {air }}}{\rho}-d-h_{2} \leq \frac{p_{\text {air }}}{\rho}=10.3 \mathrm{~m} .
$$

70. To be as general as possible, we denote the ratio of body density to water density as f (so that $f=\rho / \rho_{w}=0.95$ in this problem). Floating involves an equilibrium of vertical forces acting on the body (Earth's gravity pulls down and the buoyant force pushes up). Thus,

$$
F_{b}=F_{g} \Rightarrow \rho_{w} g V_{w}=\rho g V
$$

where V is the total volume of the body and V_{w} is the portion of it which is submerged.
(a) We rearrange the above equation to yield

$$
\frac{V_{w}}{V}=\frac{\rho}{\rho_{w}}=f
$$

which means that 95% of the body is submerged and therefore 5% is above the water surface.
(b) We replace ρ_{w} with $1.6 \rho_{w}$ in the above equilibrium of forces relationship, and find

$$
\frac{V_{w}}{V}=\frac{\rho}{1.6 \rho_{w}}=\frac{f}{1.6}
$$

which means that 59% of the body is submerged and thus 41% is above the quicksand surface.
(c) The answer to part (b) suggests that a person in that situation is able to breathe.
71. (a) To avoid confusing weight with work, we write out the word instead of using the symbol W. Thus,

$$
\text { weight }=m g=\left(1.85 \times 10^{4} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \approx 1.8 \times 10^{2} \mathrm{kN} .
$$

(b) The buoyant force is $F_{b}=\rho_{w} g V_{w}$ where $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ is the density of water and V_{w} is the volume of water displaced by the dinosaur. If we use f for the fraction of the dinosaur's total volume V which is submerged, then $V_{w}=f V$. We can further relate V to the dinosaur's mass using the assumption that the density of the dinosaur is 90% that of water: $V=m /\left(0.9 \rho_{w}\right)$. Therefore, the apparent weight of the dinosaur is

$$
\text { weight }_{\text {app }}=\text { weight }-\rho_{w} g\left(f \frac{m}{0.9 \rho_{w}}\right)=\text { weight }-g f \frac{m}{0.9} .
$$

If $f=0.50$, this yields 81 kN for the apparent weight.
(c) If $f=0.80$, our formula yields 20 kN for the apparent weight.
(d) If $f=0.90$, we find the apparent weight is zero (it floats).
(e) Eq. 14-8 indicates that the water pressure at that depth is greater than standard air pressure (the assumed pressure at the surface) by $\rho_{w} g h=(1000)(9.8)(8)=7.8 \times 10^{4} \mathrm{~Pa}$. If we assume the pressure of air in the dinosaur's lungs is approximately standard air pressure, then this value represents the pressure difference which the lung muscles would have to work against.
(f) Assuming the maximum pressure difference the muscles can work with is 8 kPa , then our previous result (78 kPa) spells doom to the wading Diplodocus hypothesis.
72. We note that in "gees" (where acceleration is expressed as a multiple of g) the given acceleration is $0.225 / 9.8=0.02296$. Using $m=\rho V$, Newton's second law becomes

$$
\rho_{\text {wat }} V g-\rho_{\text {bub }} V g=\rho_{\text {bub }} V a \quad \Rightarrow \quad \rho_{\text {bub }}=\rho_{\text {wat }}(1+" a ")
$$

where in the final expression " a " is to be understood to be in "gees." Using $\rho_{\text {wat }}=998$ $\mathrm{kg} / \mathrm{m}^{3}$ (see Table 14-1) we find $\rho_{\text {bub }}=975.6 \mathrm{~kg} / \mathrm{m}^{3}$. Using volume $V=\frac{4}{3} \pi r^{3}$ for the bubble, we then find its mass: $m_{\text {bub }}=5.11 \times 10^{-7} \mathrm{~kg}$.
73. (a) We denote a point at the top surface of the liquid A and a point at the opening B. Point A is a vertical distance $h=0.50 \mathrm{~m}$ above B. Bernoulli's equation yields $p_{A}=p_{B}+\frac{1}{2} \rho v_{B}^{2}-\rho g h$. Noting that $p_{A}=p_{B}$ we obtain

$$
v_{B}=\sqrt{2 g h+\frac{2}{\rho}\left(p_{A}-p_{B}\right)}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})}=3.1 \mathrm{~m} / \mathrm{s} .
$$

(b)

$$
v_{B}=\sqrt{2 g h+\frac{2}{\rho}\left(p_{A}-p_{B}\right)}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})+\frac{2(1.40 \mathrm{~atm}-1.00 \mathrm{~atm})}{1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}}=9.5 \mathrm{~m} / \mathrm{s} .
$$

74. Since all the blood that passes through the capillaries must have also passed through the aorta, the volume flow rate through the aorta is equal to the total volume flow rate through the capillaries. Assuming that the capillaries are identical with cross-sectional area A and flow speed v, we then have $A_{0} v_{0}=n A v$, where n is the number of capillaries. Solving for n yields

$$
n=\frac{A_{0} v_{0}}{A v}=\frac{\left(3 \mathrm{~cm}^{2}\right)(30 \mathrm{~cm} / \mathrm{s})}{\left(3 \times 10^{-7} \mathrm{~cm}^{2}\right)(0.05 \mathrm{~cm} / \mathrm{s})}=6 \times 10^{9}
$$

75. We assume the fluid in the press is incompressible. Then, the work done by the output force is the same as the work done by the input force. If the large piston moves a distance D and the small piston moves a distance d, then $f d=F D$ and

$$
D=\frac{f d}{F}=\frac{(103 \mathrm{~N})(0.85 \mathrm{~m})}{20.0 \times 10^{3} \mathrm{~N}}=4.4 \times 10^{-3} \mathrm{~m}=4.4 \mathrm{~mm} .
$$

76. The downward force on the balloon is $m g$ and the upward force is $F_{b}=\rho_{\text {out }} V g$. Newton's second law (with $m=\rho_{\text {in }} V$) leads to

$$
\rho_{\text {out }} V g-\rho_{\text {in }} V g=\rho_{\text {in }} V a \Rightarrow\left(\frac{\rho_{\text {out }}}{\rho_{\text {in }}}-1\right) g=a .
$$

The problem specifies $\rho_{\text {out }} / \rho_{\text {in }}=1.39$ (the outside air is cooler and thus more dense than the hot air inside the balloon). Thus, the upward acceleration is $(1.39-1.00)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=$ $3.82 \mathrm{~m} / \mathrm{s}^{2}$.
77. The equation of continuity is $A_{i} v_{i}=A_{f} v_{f}$, where $A=\pi r^{2}$. Therefore,

$$
v_{f}=v_{i}\left(\frac{r_{i}}{r_{f}}\right)^{2}=(0.09 \mathrm{~m} / \mathrm{s})\left(\frac{0.2}{0.6}\right)^{2} .
$$

Consequently, $v_{f}=1.00 \times 10^{-2} \mathrm{~m} / \mathrm{s}$.
78. We equate the buoyant force F_{b} to the combined weight of the cork and sinker:

$$
\rho_{w} V_{w} g=\rho_{c} V_{c} g+\rho_{s} V_{s} g
$$

With $V_{w}=\frac{1}{2} V_{c}$ and $\rho_{w}=1.00 \mathrm{~g} / \mathrm{cm}^{3}$, we obtain

$$
V_{c}=\frac{2 \rho_{s} V_{s}}{\rho_{w}-2 \rho_{c}}=\frac{2(11.4)(0.400)}{1.00-2(0.200)}=15.2 \mathrm{~cm}^{3} .
$$

Using the formula for the volume of a sphere (Appendix E), we have

$$
r=\left(\frac{3 V_{c}}{4 \pi}\right)^{1 / 3}=1.54 \mathrm{~cm}
$$

79. (a) From Bernoulli equation $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$, the height of the water extended up into the standpipe for section B is related to that for section D by

$$
h_{B}=h_{D}+\frac{1}{2 g}\left(v_{D}^{2}-v_{B}^{2}\right)
$$

Equation of continuity further implies that $v_{D} A_{D}=v_{B} A_{B}$, or

$$
v_{B}=\left(\frac{A_{D}}{A_{B}}\right) v_{D}=\left(\frac{2 R_{B}}{R_{B}}\right)^{2} v_{D}=4 v_{D}
$$

where $v_{D}=R_{V} /\left(\pi R_{D}^{2}\right)=\left(2.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}\right) /\left(\pi(0.040 \mathrm{~m})^{2}\right)=0.40 \mathrm{~m} / \mathrm{s}$. With $h_{D}=0.50 \mathrm{~m}$, we have

$$
h_{B}=0.50 \mathrm{~m}+\frac{1}{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}(-15)(0.40 \mathrm{~m} / \mathrm{s})^{2}=0.38 \mathrm{~m} .
$$

(b) From the above result, we see that the greater the radius of the cross-sectional area, the greater the height. Thus, $h_{C}>h_{D}>h_{B}>h_{A}$.
80. The absolute pressure is

$$
\begin{aligned}
p & =p_{0}+\rho g h \\
& =1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}+\left(1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(150 \mathrm{~m})=1.62 \times 10^{6} \mathrm{~Pa} .
\end{aligned}
$$

81. We consider the can with nearly its total volume submerged, and just the rim above water. For calculation purposes, we take its submerged volume to be $V=1200 \mathrm{~cm}^{3}$. To float, the total downward force of gravity (acting on the tin mass m_{t} and the lead mass m_{ℓ}) must be equal to the buoyant force upward:

$$
\left(m_{t}+m_{\ell}\right) g=\rho_{w} V g \Rightarrow m_{\ell}=\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1200 \mathrm{~cm}^{3}\right)-130 \mathrm{~g}
$$

which yields $1.07 \times 10^{3} \mathrm{~g}$ for the (maximum) mass of the lead (for which the can still floats). The given density of lead is not used in the solution.
82. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x in the other arm. Thus, the net difference in mercury level between the two arms is $2 x$, causing a pressure difference of $\Delta p=2_{\rho \mathrm{Hg} g} g$, which should be compensated for by the water pressure $p_{w}=\rho_{w} g h$, where $h=11.2 \mathrm{~cm}$. In these units, $\rho_{w}=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ and $\rho_{\mathrm{Hg}}=$ $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ (see Table 14-1). We obtain

$$
x=\frac{\rho_{w} g h}{2 \rho_{\mathrm{Hg}} g}=\frac{\left(1.00 \mathrm{~g} / \mathrm{cm}^{3}\right)(11.2 \mathrm{~cm})}{2\left(13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)}=0.412 \mathrm{~cm} .
$$

83. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the true weight W of the object. The buoyant force of the water on the object is therefore $(30-20) \mathrm{N}=10 \mathrm{~N}$, which means

$$
F_{b}=\rho_{w} V g \Rightarrow V=\frac{10 \mathrm{~N}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.02 \times 10^{-3} \mathrm{~m}^{3}
$$

is the volume of the object. When the object is in the second liquid, the buoyant force is $(30-24) \mathrm{N}=6.0 \mathrm{~N}$, which implies

$$
\rho_{2}=\frac{6.0 \mathrm{~N}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.02 \times 10^{-3} \mathrm{~m}^{3}\right)}=6.0 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3} .
$$

84. (a) Using Eq. $14-10$, we have $p_{g}=\rho g h=1.21 \times 10^{7} \mathrm{~Pa}$.
(b) By definition, $p=p_{g}+p_{\mathrm{atm}}=1.22 \times 10^{7} \mathrm{~Pa}$.
(c) We interpret the question as asking for the total force compressing the sphere's surface, and we multiply the pressure by total area:

$$
p\left(4 \pi r^{2}\right)=3.82 \times 10^{5} \mathrm{~N}
$$

(d) The (upward) buoyant force exerted on the sphere by the seawater is

$$
F_{b}=\rho_{w} g V \quad \text { where } V=\frac{4}{3} \pi r^{3} .
$$

Therefore, $F_{b}=5.26 \mathrm{~N}$.
(e) Newton's second law applied to the sphere (of mass $m=7.00 \mathrm{~kg}$) yields

$$
F_{b}-m g=m a
$$

which results in $a=-9.04 \mathrm{~m} / \mathrm{s}^{2}$, which means the acceleration vector has a magnitude of $9.04 \mathrm{~m} / \mathrm{s}^{2}$.
(f) The direction is downward.
85. The volume of water that drains back into the river annually is $3 / 4(0.48 \mathrm{~m})\left(3.0 \times 10^{9}\right.$ m^{2}) $=1.08 \times 10^{9} \mathrm{~m}^{3}$. Dividing this (on a per unit time basis, according to Eq. 14-24) by area gives the (average) speed:

$$
v=\frac{1.08 \times 10^{9}}{20 \times 4}=1.35 \times 10^{7} \mathrm{~m} / \mathrm{y}=0.43 \mathrm{~m} / \mathrm{s}
$$

86. An object of mass $m=\rho V$ floating in a liquid of density $\rho_{\text {liquid }}$ is able to float if the downward pull of gravity $m g$ is equal to the upward buoyant force $F_{b}=\rho_{\text {liquid }} g V_{\text {sub }}$ where $V_{\text {sub }}$ is the portion of the object which is submerged. This readily leads to the relation:

$$
\frac{\rho}{\rho_{\text {liquid }}}=\frac{V_{\text {sub }}}{V}
$$

for the fraction of volume submerged of a floating object. When the liquid is water, as described in this problem, this relation leads to

$$
\frac{\rho}{\rho_{w}}=1
$$

since the object "floats fully submerged" in water (thus, the object has the same density as water). We assume the block maintains an "upright" orientation in each case (which is not necessarily realistic).
(a) For liquid A,

$$
\frac{\rho}{\rho_{A}}=\frac{1}{2}
$$

so that, in view of the fact that $\rho=\rho_{w}$, we obtain $\rho_{A} / \rho_{w}=2$.
(b) For liquid B, noting that two-thirds above means one-third below,

$$
\frac{\rho}{\rho_{B}}=\frac{1}{3}
$$

so that $\rho_{B} / \rho_{w}=3$.
(c) For liquid C, noting that one-fourth above means three-fourths below,

$$
\frac{\rho}{\rho_{C}}=\frac{3}{4}
$$

so that $\rho_{C} / \rho_{w}=4 / 3$.
87. The pressure (relative to standard air pressure) is given by Eq. 14-8:

$$
\rho g h=\left(1024 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.0 \times 10^{3} \mathrm{~m}\right)=6.02 \times 10^{7} \mathrm{~Pa} .
$$

88. Eq. 14-10 gives

$$
\rho_{\text {water }} g(-0.11 \mathrm{~m})=-1076 \mathrm{~N} / \mathrm{m}^{2}(\text { or }-1076 \mathrm{~Pa}) .
$$

Quoting the answer to two significant figures, we have the gauge pressure equal to $-1.1 \times 10^{3} \mathrm{~Pa}$.
89. (a) Bernoulli's equation implies $p_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h$, or

$$
p_{2}-p_{1}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)+\rho g h
$$

where $p_{1}=2.00 \mathrm{~atm}, p_{2}=1.00 \mathrm{~atm}$ and $h=9.40 \mathrm{~m}$. Using continuity equation $v_{1} A_{1}=v_{2} A_{2}$, the above equation may be rewritten as

$$
\left(p_{2}-p_{1}\right)-\rho g h=\frac{1}{2} \rho v_{2}^{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]=\frac{1}{2} \rho v_{2}^{2}\left[1-\left(\frac{R_{2}^{2}}{R_{1}^{2}}\right)^{2}\right]
$$

With $R_{2} / R_{1}=1 / 6$, we obtain $v_{2}=4.216 \mathrm{~m} / \mathrm{s}$. Thus, the amount of time required to fill up a 10.0 m by 10.0 m swimming pool to a height of 2.00 m is

$$
t=\frac{V}{A_{2} v_{2}}=\frac{(10.0 \mathrm{~m})(10.0 \mathrm{~m})(2.00 \mathrm{~m})}{\pi\left(1.00 \times 10^{-2} \mathrm{~m}\right)^{2}(4.216 \mathrm{~m} / \mathrm{s})}=1.51 \times 10^{5} \mathrm{~s} \approx 42 \mathrm{~h} .
$$

(b) Yes, the filling time is acceptable.
90. This is analogous to the same "weighted average" idea encountered in the discussion of centers of mass (in Chapter 9), particularly due to the assumption that the volume does not change:

$$
\rho_{\text {mix }}=\frac{d_{1} \rho_{1}+d_{2} \rho_{2}}{d_{1}+d_{2}}=\frac{(8)(1.2)+(4)(2.0)}{8+4}=1.5 \mathrm{~g} / \mathrm{cm}^{3}
$$

91. Equilibrium of forces (on the floating body) is expressed as

$$
F_{b}=m_{\text {body }} g \Rightarrow \rho_{\text {liquid }} g V_{\text {submerged }}=\rho_{\text {body }} g V_{\text {total }}
$$

which leads to

$$
\frac{V_{\text {submerged }}}{V_{\text {total }}}=\frac{\rho_{\text {body }}}{\rho_{\text {liquid }}} .
$$

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction above is $2 / 3$. Thus, with $\rho_{\text {body }}=0.98 \mathrm{~g} / \mathrm{cm}^{3}$, we find $\rho_{\text {liquid }} \approx 1.5 \mathrm{~g} / \mathrm{cm}^{3}$ - certainly much more dense than normal seawater (the Dead Sea is about seven times saltier than the ocean due to the high evaporation rate and low rainfall in that region).
92. (a) We assume that the top surface of the slab is at the surface of the water and that the automobile is at the center of the ice surface. Let M be the mass of the automobile, ρ_{i} be the density of ice, and ρ_{w} be the density of water. Suppose the ice slab has area A and thickness h. Since the volume of ice is $A h$, the downward force of gravity on the automobile and ice is $\left(M+\rho_{i} A h\right) g$. The buoyant force of the water is $\rho_{w} A h g$, so the condition of equilibrium is $\left(M+\rho_{i} A h\right) g-\rho_{w} A h g=0$ and

$$
A=\frac{M}{\left(\rho_{w}-\rho_{i}\right) h}=\frac{1100 \mathrm{~kg}}{\left(998 \mathrm{~kg} / \mathrm{m}^{3}-917 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.30 \mathrm{~m})}=45 \mathrm{~m}^{2}
$$

These density values are found in Table 14-1 of the text.
(b) It does matter where the car is placed since the ice tilts if the automobile is not at the center of its surface.
93. (a) The total weight is

$$
W=\rho g h A=\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(200 \mathrm{~m})\left(3000 \mathrm{~m}^{2}\right)=6.06 \times 10^{9} \mathrm{~N} .
$$

(b) The water pressure is

$$
p=\rho g h=\left(1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(200 \mathrm{~m})\left(\frac{1 \mathrm{~atm}}{1.01 \times 10^{5} \mathrm{~Pa}}\right)=20 \mathrm{~atm}
$$

(c) No, because the pressure is too much for anybody to endure without special equipment.
94. The area facing down (and up) is $A=(0.050 \mathrm{~m})(0.040 \mathrm{~m})=0.0020 \mathrm{~m}^{2}$. The submerged volume is $V=A d$ where $d=0.015 \mathrm{~m}$. In order to float, the downward pull of gravity $m g$ must equal the upward buoyant force exerted by the seawater of density ρ :

$$
m g=\rho V g \Rightarrow m=\rho V=(1025)(0.0020)(0.015)=0.031 \mathrm{~kg} .
$$

95. Note that "surface area" refers to the total surface area of all six faces, so that the area of each (square) face is $24 / 6=4 \mathrm{~m}^{2}$. From Archimedes' principle and the requirement that the cube (of total volume V and density ρ) floats, we find

$$
\rho V g=\rho_{w} V_{\mathrm{sub}} g \Rightarrow \frac{\rho}{\rho_{w}}=\frac{V_{\mathrm{sub}}}{V}
$$

for the fraction of volume submerged. The assumption that the cube floats upright, as described in this problem, simplifies this relation to

$$
\frac{\rho}{\rho_{w}}=\frac{h_{\mathrm{sub}}}{h}
$$

where h is the length of one side, and $\rho_{w} 4 \rho=$ is given. With $h=\sqrt{4}=2 \mathrm{~m}$, we find $h_{\text {sub }}$ $=h / 4=0.50 \mathrm{~m}$.
96. The beaker is indicated by the subscript b. The volume of the glass of which the beaker walls and base are made is $V_{b}=m_{b} / \rho_{b}$. We consider the case where the beaker is slightly more than half full (which, for calculation purposes, will be simply set equal to half-volume) and thus remains on the bottom of the sink - as the water around it reaches its rim. At this point, the force of buoyancy exerted on it is given by $F=\left(V_{b}+V\right) \rho_{w} g$, where V is the interior volume of the beaker. Thus $F=\left(V_{b}+V\right) \rho_{w} g=\rho_{w} g(V / 2)+m_{b}$, which we solve for ρ_{b} :

$$
\rho_{b}=\frac{2 m_{b} \rho_{w}}{2 m_{b}-\rho_{w} V}=\frac{2(390 \mathrm{~g})\left(1.00 \mathrm{~g} / \mathrm{cm}^{3}\right)}{2(390 \mathrm{~g})-\left(1.00 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(500 \mathrm{~cm}^{3}\right)}=2.79 \mathrm{~g} / \mathrm{cm}^{3} .
$$

97. (a) Since the pressure (due to the water) increases linearly with depth, we use its average (multiplied by the dam area) to compute the force exerted on the face of the dam, its average being simply half the pressure value near the bottom (at depth $d_{4}=48 \mathrm{~m}$). The maximum static friction will be μF_{N} where the normal force F_{N} (exerted upward by the portion of the bedrock directly underneath the concrete) is equal to the weight $m g$ of the dam. Since $m=\rho_{c} V$ with ρ_{c} being the density of the concrete and V being the volume (thickness times width times height: $d_{1} d_{2} d_{3}$), we write $F_{N}=\rho_{c} d_{1} d_{2} d_{3} g$. Thus, the safety factor is

$$
\frac{\mu \rho_{c} d_{1} d_{2} d_{3} g}{\frac{1}{2} \rho_{w} g d_{4} A_{\mathrm{face}}}=\frac{2 \mu \rho_{c} d_{1} d_{2} d_{3}}{\rho_{w} d_{4}\left(d_{1} d_{4}\right)}=\frac{2 \mu \rho_{c} d_{2} d_{3}}{\rho_{w} d_{4}^{2}}
$$

which (since $\rho_{w}=1 \mathrm{~g} / \mathrm{cm}^{3}$) yields $2(0.47)(3.2)(24)(71) /(48)^{2}=2.2$.
(b) To compute the torque due to the water pressure, we will need to integrate Eq. 14-7 (multiplied by $\left(d_{4}-y\right)$ and the dam width $\left.d_{1}\right)$ as shown below. The countertorque due to the weight of the concrete is the weight multiplied by half the thickness d_{3}, since we take the center of mass of the dam at its geometric center and the axis of rotation at A. Thus, the safety factor relative to rotation is

$$
\frac{m g\left(d_{3} / 2\right)}{\int_{0}^{d_{4}} \rho_{w} g y\left(d_{4}-y\right) d_{1} d y}=\frac{\rho_{c} d_{1} d_{2} d_{3} g\left(d_{3} / 2\right)}{\rho_{w} g d_{1} d_{4}^{3} / 6}=\frac{3 \rho_{c} d_{3}^{2} d_{2}}{\rho_{w} d_{4}^{3}}
$$

which yields $3(3.2)(24)^{2}(71) /(48)^{3}=3.6$.
98. Let F_{o} be the buoyant force of air exerted on the object (of mass m and volume V), and $F_{\text {brass }}$ be the buoyant force on the brass weights (of total mass $m_{\text {brass }}$ and volume $V_{\text {brass }}$). Then we have

$$
F_{o}=\rho_{\mathrm{air}} V g=\rho_{\mathrm{air}}\left(\frac{m g}{\rho}\right)
$$

and

$$
F_{\text {brass }}=\rho_{\text {air }} V_{\text {brass }} g=\rho_{\text {air }}\left(\frac{m_{\text {brass }}}{\rho_{\text {brass }}}\right) .
$$

For the two arms of the balance to be in mechanical equilibrium, we require $m g-F_{o}=$ $m_{\text {brass }} g-F_{\text {brass }}$, or

$$
m g-m g\left(\frac{\rho_{\text {air }}}{\rho}\right)=m_{\text {brass }} g-m_{\text {brass }} g\left(\frac{m_{\text {brass }}}{\rho_{\text {brass }}}\right),
$$

which leads to

$$
m_{\text {brass }}=\left(\frac{1-\rho_{\text {air }} / \rho}{1-\rho_{\text {air }} / \rho_{\text {brass }}}\right) m
$$

Therefore, the percent error in the measurement of m is

$$
\begin{aligned}
\frac{\Delta m}{m} & =\frac{m-m_{\text {brass }}}{m}=1-\frac{1-\rho_{\text {air }} / \rho}{1-\rho_{\text {air }} / \rho_{\text {brass }}}=\frac{\rho_{\text {air }}\left(1 / \rho-1 / \rho_{\text {brass }}\right.}{1-\rho_{\text {air }} / \rho_{\text {brass }}} \\
& =\frac{0.0012(1 / \rho-1 / 8.0)}{1-0.0012 / 8.0)} \approx 0.0012\left(\frac{1}{\rho}-\frac{1}{8.0}\right)
\end{aligned}
$$

where ρ is in $\mathrm{g} / \mathrm{cm}^{3}$. Stating this as a percent error, our result is 0.12% multiplied by ($1 / \rho-1 / 8.0$).

1. (a) The amplitude is half the range of the displacement, or $x_{m}=1.0 \mathrm{~mm}$.
(b) The maximum speed v_{m} is related to the amplitude x_{m} by $v_{m}=\omega x_{m}$, where ω is the angular frequency. Since $\omega=2 \pi f$, where f is the frequency,

$$
v_{m}=2 \pi f x_{m}=2 \pi(120 \mathrm{~Hz})\left(1.0 \times 10^{-3} \mathrm{~m}\right)=0.75 \mathrm{~m} / \mathrm{s}
$$

(c) The maximum acceleration is

$$
a_{m}=\omega^{2} x_{m}=(2 \pi f)^{2} x_{m}=(2 \pi(120 \mathrm{~Hz}))^{2}\left(1.0 \times 10^{-3} \mathrm{~m}\right)=5.7 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2} .
$$

2. (a) The acceleration amplitude is related to the maximum force by Newton's second law: $F_{\max }=m a_{m}$. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency ($\omega=2 \pi f$ since there are 2π radians in one cycle). The frequency is the reciprocal of the period: $f=1 / T=$ $1 / 0.20=5.0 \mathrm{~Hz}$, so the angular frequency is $\omega=10 \pi$ (understood to be valid to two significant figures). Therefore,

$$
F_{\max }=m \omega^{2} x_{m}=(0.12 \mathrm{~kg})(10 \pi \mathrm{rad} / \mathrm{s})^{2}(0.085 \mathrm{~m})=10 \mathrm{~N} .
$$

(b) Using Eq. 15-12, we obtain

$$
\omega=\sqrt{\frac{k}{m}} \Rightarrow k=(0.12 \mathrm{~kg})(10 \pi \mathrm{rad} / \mathrm{s})^{2}=1.2 \times 10^{2} \mathrm{~N} / \mathrm{m} .
$$

3. (a) The angular frequency ω is given by $\omega=2 \pi f=2 \pi / T$, where f is the frequency and T is the period. The relationship $f=1 / T$ was used to obtain the last form. Thus

$$
\omega=2 \pi /\left(1.00 \times 10^{-5} \mathrm{~s}\right)=6.28 \times 10^{5} \mathrm{rad} / \mathrm{s} .
$$

(b) The maximum speed v_{m} and maximum displacement x_{m} are related by $v_{m}=\omega x_{m}$, so

$$
x_{m}=\frac{v_{m}}{\omega}=\frac{1.00 \times 10^{3} \mathrm{~m} / \mathrm{s}}{6.28 \times 10^{5} \mathrm{rad} / \mathrm{s}}=1.59 \times 10^{-3} \mathrm{~m} .
$$

4. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency ($\omega=2 \pi f$ since there are 2π radians in one cycle). Therefore, in this circumstance, we obtain

$$
a_{m}=(2 \pi(6.60 \mathrm{~Hz}))^{2}(0.0220 \mathrm{~m})=37.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

5. (a) The motion repeats every 0.500 s so the period must be $T=0.500 \mathrm{~s}$.
(b) The frequency is the reciprocal of the period: $f=1 / T=1 /(0.500 \mathrm{~s})=2.00 \mathrm{~Hz}$.
(c) The angular frequency ω is $\omega=2 \pi f=2 \pi(2.00 \mathrm{~Hz})=12.6 \mathrm{rad} / \mathrm{s}$.
(d) The angular frequency is related to the spring constant k and the mass m by $\omega=\sqrt{k / m}$. We solve for k : $k=m \omega^{2}=(0.500 \mathrm{~kg})(12.6 \mathrm{rad} / \mathrm{s})^{2}=79.0 \mathrm{~N} / \mathrm{m}$.
(e) Let x_{m} be the amplitude. The maximum speed is $v_{m}=\omega x_{m}=(12.6 \mathrm{rad} / \mathrm{s})(0.350 \mathrm{~m})=$ $4.40 \mathrm{~m} / \mathrm{s}$.
(f) The maximum force is exerted when the displacement is a maximum and its magnitude is given by $F_{m}=k x_{m}=(79.0 \mathrm{~N} / \mathrm{m})(0.350 \mathrm{~m})=27.6 \mathrm{~N}$.
6. (a) The problem describes the time taken to execute one cycle of the motion. The period is $T=0.75 \mathrm{~s}$.
(b) Frequency is simply the reciprocal of the period: $f=1 / T \approx 1.3 \mathrm{~Hz}$, where the SI unit abbreviation Hz stands for Hertz, which means a cycle-per-second.
(c) Since 2π radians are equivalent to a cycle, the angular frequency ω (in radians-persecond) is related to frequency f by $\omega=2 \pi f$ so that $\omega \approx 8.4 \mathrm{rad} / \mathrm{s}$.
7. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is at a "turning point" (that is, when $x=+x_{m}$ or $x=-x_{m}$). Consider that it starts at $x=+x_{m}$ and we are told that $t=0.25$ second elapses until the object reaches $x=-x_{m}$. To execute a full cycle of the motion (which takes a period T to complete), the object which started at x $=+x_{m}$ must return to $x=+x_{m}$ (which, by symmetry, will occur 0.25 second after it was at $x=-x_{m}$). Thus, $T=2 t=0.50 \mathrm{~s}$.
(b) Frequency is simply the reciprocal of the period: $f=1 / T=2.0 \mathrm{~Hz}$.
(c) The 36 cm distance between $x=+x_{m}$ and $x=-x_{m}$ is $2 x_{m}$. Thus, $x_{m}=36 / 2=18 \mathrm{~cm}$.
8. (a) Since the problem gives the frequency $f=3.00 \mathrm{~Hz}$, we have $\omega=2 \pi f=6 \pi \mathrm{rad} / \mathrm{s}$ (understood to be valid to three significant figures). Each spring is considered to support one fourth of the mass $m_{\text {car }}$ so that Eq. 15-12 leads to

$$
\omega=\sqrt{\frac{k}{m_{\text {car }} / 4}} \Rightarrow k=\frac{1}{4}(1450 \mathrm{~kg})(6 \pi \mathrm{rad} / \mathrm{s})^{2}=1.29 \times 10^{5} \mathrm{~N} / \mathrm{m} .
$$

(b) If the new mass being supported by the four springs is $m_{\text {total }}=[1450+5(73)] \mathrm{kg}=$ 1815 kg , then Eq. 15-12 leads to

$$
\omega_{\text {new }}=\sqrt{\frac{k}{m_{\text {total }} / 4}} \Rightarrow f_{\text {new }}=\frac{1}{2 \pi} \sqrt{\frac{1.29 \times 10^{5} \mathrm{~N} / \mathrm{m}}{(1815 / 4) \mathrm{kg}}}=2.68 \mathrm{~Hz} .
$$

9. (a) Making sure our calculator is in radians mode, we find

$$
x=6.0 \cos \left(3 \pi(2.0)+\frac{\pi}{3}\right)=3.0 \mathrm{~m} .
$$

(b) Differentiating with respect to time and evaluating at $t=2.0 \mathrm{~s}$, we find

$$
v=\frac{d x}{d t}=-3 \pi(6.0) \sin \left(3 \pi(2.0)+\frac{\pi}{3}\right)=-49 \mathrm{~m} / \mathrm{s} .
$$

(c) Differentiating again, we obtain

$$
a=\frac{d v}{d t}=-(3 \pi)^{2}(6.0) \cos \left(3 \pi(2.0)+\frac{\pi}{3}\right)=-2.7 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2} .
$$

(d) In the second paragraph after Eq. 15-3, the textbook defines the phase of the motion. In this case (with $t=2.0 \mathrm{~s}$) the phase is $3 \pi(2.0)+\pi / 3 \approx 20 \mathrm{rad}$.
(e) Comparing with Eq. $15-3$, we see that $\omega=3 \pi \mathrm{rad} / \mathrm{s}$. Therefore, $f=\omega / 2 \pi=1.5 \mathrm{~Hz}$.
(f) The period is the reciprocal of the frequency: $T=1 / f \approx 0.67 \mathrm{~s}$.
10. We note (from the graph) that $x_{m}=6.00 \mathrm{~cm}$. Also the value at $t=0$ is $x_{\mathrm{o}}=-2.00 \mathrm{~cm}$. Then Eq. 15-3 leads to $\mathrm{f}=\cos ^{-1}(-2.00 / 6.00)=+1.91 \mathrm{rad}$ or -4.37 rad . The other "root" $(+4.37 \mathrm{rad})$ can be rejected on the grounds that it would lead to a positive slope at $t=0$.
11. When displaced from equilibrium, the net force exerted by the springs is $-2 k x$ acting in a direction so as to return the block to its equilibrium position $(x=0)$. Since the acceleration $a=d^{2} x / d t^{2}$, Newton's second law yields

$$
m \frac{d^{2} x}{d t^{2}}=-2 k x
$$

Substituting $x=x_{m} \cos (\omega t+\phi)$ and simplifying, we find

$$
\omega^{2}=\frac{2 k}{m}
$$

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f measures cycles per second, we obtain

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{2(7580 \mathrm{~N} / \mathrm{m})}{0.245 \mathrm{~kg}}}=39.6 \mathrm{~Hz} .
$$

12. We note (from the graph) that $\mathrm{v}_{\mathrm{m}}=\omega x_{m}=5.00 \mathrm{~cm} / \mathrm{s}$. Also the value at $t=0$ is $\mathrm{v}_{\mathrm{o}}=$ $4.00 \mathrm{~cm} / \mathrm{s}$. Then Eq. $15-6$ leads to $\phi=\sin ^{-1}(-4.00 / 5.00)=-0.927 \mathrm{rad}$ or +5.36 rad . The other "root" (+4.07 rad) can be rejected on the grounds that it would lead to a positive slope at $t=0$.
13. The magnitude of the maximum acceleration is given by $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency and x_{m} is the amplitude.
(a) The angular frequency for which the maximum acceleration is g is given by $\omega=\sqrt{g / x_{m}}$, and the corresponding frequency is given by

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{g}{x_{m}}}=\frac{1}{2 \pi} \sqrt{\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{1.0 \times 10^{-6} \mathrm{~m}}}=498 \mathrm{~Hz}
$$

(b) For frequencies greater than 498 Hz , the acceleration exceeds g for some part of the motion.
14. From highest level to lowest level is twice the amplitude x_{m} of the motion. The period is related to the angular frequency by Eq. 15-5. Thus, $x_{m}=\frac{1}{2} d$ and $\omega=0.503 \mathrm{rad} / \mathrm{h}$. The phase constant ϕ in Eq. 15-3 is zero since we start our clock when $x_{0}=x_{m}$ (at the highest point). We solve for t when x is one-fourth of the total distance from highest to lowest level, or (which is the same) half the distance from highest level to middle level (where we locate the origin of coordinates). Thus, we seek t when the ocean surface is at $x=\frac{1}{2} x_{m}=\frac{1}{4} d$.

$$
\begin{aligned}
& x=x_{m} \cos (\omega t+\phi) \\
& \frac{1}{4} d=\left(\frac{1}{2} d\right) \cos (0.503 t+0) \\
& \frac{1}{2}=\cos (0.503 t)
\end{aligned}
$$

which has $t=2.08 \mathrm{~h}$ as the smallest positive root. The calculator is in radians mode during this calculation.
15. The maximum force that can be exerted by the surface must be less than $\mu_{s} F_{N}$ or else the block will not follow the surface in its motion. Here, μ_{s} is the coefficient of static friction and F_{N} is the normal force exerted by the surface on the block. Since the block does not accelerate vertically, we know that $F_{N}=m g$, where m is the mass of the block. If the block follows the table and moves in simple harmonic motion, the magnitude of the maximum force exerted on it is given by $F=m a_{m}=m \omega^{2} x_{m}=m(2 \pi f)^{2} x_{m}$, where a_{m} is the magnitude of the maximum acceleration, ω is the angular frequency, and f is the frequency. The relationship $\omega=2 \pi f$ was used to obtain the last form. We substitute $F=$ $m(2 \pi f)^{2} x_{m}$ and $F_{N}=m g$ into $F<\mu_{s} F_{N}$ to obtain $m(2 \pi f)^{2} x_{m}<\mu_{s} m g$. The largest amplitude for which the block does not slip is

$$
x_{m}=\frac{\mu_{s} g}{(2 \pi f)^{2}}=\frac{(0.50)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(2 \pi \times 2.0 \mathrm{~Hz})^{2}}=0.031 \mathrm{~m} .
$$

A larger amplitude requires a larger force at the end points of the motion. The surface cannot supply the larger force and the block slips.
16. The statement that "the spring does not affect the collision" justifies the use of elastic collision formulas in section 10-5. We are told the period of SHM so that we can find the mass of block 2 :

$$
T=2 \pi \sqrt{\frac{m_{2}}{k}} \Rightarrow m_{2}=\frac{k T^{2}}{4 \pi^{2}}=0.600 \mathrm{~kg} .
$$

At this point, the rebound speed of block 1 can be found from Eq. 10-30:

$$
\left|v_{1 f}\right|=\left|\frac{0.200-0.600}{0.200+0.600}\right|(8.00 \mathrm{~m} / \mathrm{s})=4.00 \mathrm{~m} / \mathrm{s} .
$$

This becomes the initial speed v_{0} of the projectile motion of block 1. A variety of choices for the positive axis directions are possible, and we choose left as the $+x$ direction and down as the $+y$ direction, in this instance. With the "launch" angle being zero, Eq. 4-21 and Eq. 4-22 (with $-g$ replaced with $+g$) lead to

$$
x-x_{0}=v_{0} t=v_{0} \sqrt{\frac{2 h}{\mathrm{~g}}}=(4.00) \sqrt{\frac{2(4.90)}{9.8}}
$$

Since $x-x_{0}=d$, we arrive at $d=4.00 \mathrm{~m}$.
17. (a) Eq. 15-8 leads to

$$
a=-\omega^{2} x \Rightarrow \omega=\sqrt{\frac{-a}{x}}=\sqrt{\frac{123}{0.100}}
$$

which yields $\omega=35.07 \mathrm{rad} / \mathrm{s}$. Therefore, $f=\omega / 2 \pi=5.58 \mathrm{~Hz}$.
(b) Eq. 15-12 provides a relation between ω (found in the previous part) and the mass:

$$
\omega=\sqrt{\frac{k}{m}} \Rightarrow m=\frac{400 \mathrm{~N} / \mathrm{m}}{(35.07 \mathrm{rad} / \mathrm{s})^{2}}=0.325 \mathrm{~kg}
$$

(c) By energy conservation, $\frac{1}{2} k x_{m}^{2}$ (the energy of the system at a turning point) is equal to the sum of kinetic and potential energies at the time t described in the problem.

$$
\frac{1}{2} k x_{m}^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \Rightarrow x_{m}=\frac{m}{k} v^{2}+x^{2} .
$$

Consequently, $x_{m}=\sqrt{(0.325 / 400)(13.6)^{2}+(0.100)^{2}}=0.400 \mathrm{~m}$.
18. We note that the ratio of Eq. 15-6 and Eq. $15-3$ is $v / x=-\omega \tan (\omega t+\phi)$ where $\omega=1.20$ $\mathrm{rad} / \mathrm{s}$ in this problem. Evaluating this at $t=0$ and using the values from the graphs shown in the problem, we find

$$
\phi=\tan ^{-1}\left(-v_{0} / x_{0} \omega\right)=\tan ^{-1}(+4.00 /(2 \times 1.20))=1.03 \mathrm{rad}(\text { or }-5.25 \mathrm{rad}) .
$$

One can check that the other "root" (4.17 rad) is unacceptable since it would give the wrong signs for the individual values of v_{o} and x_{o}.
19. Eq. 15-12 gives the angular velocity:

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{100 \mathrm{~N} / \mathrm{m}}{2.00 \mathrm{~kg}}}=7.07 \mathrm{rad} / \mathrm{s}
$$

Energy methods (discussed in §15-4) provide one method of solution. Here, we use trigonometric techniques based on Eq. 15-3 and Eq. 15-6.
(a) Dividing Eq. 15-6 by Eq. 15-3, we obtain

$$
\frac{v}{x}=-\omega \tan (\omega t+\phi)
$$

so that the phase $(\omega t+\phi)$ is found from

$$
\omega t+\phi=\tan ^{-1}\left(\frac{-v}{\omega x}\right)=\tan ^{-1}\left(\frac{-3.415}{(7.07)(0.129)}\right)
$$

With the calculator in radians mode, this gives the phase equal to -1.31 rad . Plugging this back into Eq. $15-3$ leads to $0.129 \mathrm{~m}=x_{m} \cos (-1.31) \Rightarrow x_{m}=0.500 \mathrm{~m}$.
(b) Since $\omega t+\phi=-1.31 \mathrm{rad}$ at $t=1.00 \mathrm{~s}$, we can use the above value of ω to solve for the phase constant ϕ. We obtain $\phi=-8.38 \mathrm{rad}$ (though this, as well as the previous result, can have 2π or 4π (and so on) added to it without changing the physics of the situation). With this value of ϕ, we find $x_{0}=x_{m} \cos \phi=-0.251 \mathrm{~m}$.
(c) And we obtain $v_{\mathrm{o}}=-x_{m} \omega \sin \phi=3.06 \mathrm{~m} / \mathrm{s}$.
20. Both parts of this problem deal with the critical case when the maximum acceleration becomes equal to that of free fall. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency; this is the expression we set equal to $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Using Eq. $15-5$ and $T=1.0 \mathrm{~s}$, we have

$$
\left(\frac{2 \pi}{T}\right)^{2} x_{m}=g \Rightarrow x_{m}=\frac{g T^{2}}{4 \pi^{2}}=0.25 \mathrm{~m}
$$

(b) Since $\omega=2 \pi f$, and $x_{m}=0.050 \mathrm{~m}$ is given, we find

$$
(2 \pi f)^{2} x_{m}=g \quad \Rightarrow \quad f=\frac{1}{2 \pi} \sqrt{\frac{g}{x_{m}}}=2.2 \mathrm{~Hz}
$$

21. (a) Let

$$
x_{1}=\frac{A}{2} \cos \left(\frac{2 \pi t}{T}\right)
$$

be the coordinate as a function of time for particle 1 and

$$
x_{2}=\frac{A}{2} \cos \left(\frac{2 \pi t}{T}+\frac{\pi}{6}\right)
$$

be the coordinate as a function of time for particle 2. Here T is the period. Note that since the range of the motion is A, the amplitudes are both $A / 2$. The arguments of the cosine functions are in radians. Particle 1 is at one end of its path $\left(x_{1}=A / 2\right)$ when $t=0$. Particle 2 is at $A / 2$ when $2 \pi t / T+\pi / 6=0$ or $t=-T / 12$. That is, particle 1 lags particle 2 by onetwelfth a period. We want the coordinates of the particles 0.50 s later; that is, at $t=0.50 \mathrm{~s}$,

$$
x_{1}=\frac{A}{2} \cos \left(\frac{2 \pi \times 0.50 \mathrm{~s}}{1.5 \mathrm{~s}}\right)=-0.25 A
$$

and

$$
x_{2}=\frac{A}{2} \cos \left(\frac{2 \pi \times 0.50 \mathrm{~s}}{1.5 \mathrm{~s}}+\frac{\pi}{6}\right)=-0.43 \mathrm{~A} .
$$

Their separation at that time is $x_{1}-x_{2}=-0.25 A+0.43 A=0.18 A$.
(b) The velocities of the particles are given by

$$
v_{1}=\frac{d x_{1}}{d t}=\frac{\pi A}{T} \sin \left(\frac{2 \pi t}{T}\right)
$$

and

$$
v_{2}=\frac{d x_{2}}{d t}=\frac{\pi A}{T} \sin \left(\frac{2 \pi t}{T}+\frac{\pi}{6}\right) .
$$

We evaluate these expressions for $t=0.50 \mathrm{~s}$ and find they are both negative-valued, indicating that the particles are moving in the same direction.
22. They pass each other at time t, at $x_{1}=x_{2}=\frac{1}{2} x_{m}$ where

$$
x_{1}=x_{m} \cos \left(\omega t+\phi_{1}\right) \quad \text { and } \quad x_{2}=x_{m} \cos \left(\omega t+\phi_{2}\right) .
$$

From this, we conclude that $\cos \left(\omega t+\phi_{1}\right)=\cos \left(\omega t+\phi_{2}\right)=\frac{1}{2}$, and therefore that the phases (the arguments of the cosines) are either both equal to $\pi / 3$ or one is $\pi / 3$ while the other is $-\pi / 3$. Also at this instant, we have $v_{1}=-v_{2} \neq 0$ where

$$
v_{1}=-x_{m} \omega \sin \left(\omega t+\phi_{1}\right) \quad \text { and } \quad v_{2}=-x_{m} \omega \sin \left(\omega t+\phi_{2}\right)
$$

This leads to $\sin \left(\omega t+\phi_{1}\right)=-\sin \left(\omega t+\phi_{2}\right)$. This leads us to conclude that the phases have opposite sign. Thus, one phase is $\pi / 3$ and the other phase is $-\pi / 3$; the $w t$ term cancels if we take the phase difference, which is seen to be $\pi / 3-(-\pi / 3)=2 \pi / 3$.
23. (a) The object oscillates about its equilibrium point, where the downward force of gravity is balanced by the upward force of the spring. If ℓ is the elongation of the spring at equilibrium, then $k \ell=m g$, where k is the spring constant and m is the mass of the object. Thus $k / m=g / \ell$ and

$$
f=\omega / 2 \pi=(1 / 2 \pi) \sqrt{k / m}=(1 / 2 \pi) \sqrt{g / \ell} .
$$

Now the equilibrium point is halfway between the points where the object is momentarily at rest. One of these points is where the spring is unstretched and the other is the lowest point, 10 cm below. Thus $\ell=5.0 \mathrm{~cm}=0.050 \mathrm{~m}$ and

$$
f=\frac{1}{2 \pi} \sqrt{\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.050 \mathrm{~m}}}=2.2 \mathrm{~Hz} .
$$

(b) Use conservation of energy. We take the zero of gravitational potential energy to be at the initial position of the object, where the spring is unstretched. Then both the initial potential and kinetic energies are zero. We take the y axis to be positive in the downward direction and let $y=0.080 \mathrm{~m}$. The potential energy when the object is at this point is $U=\frac{1}{2} k y^{2}-m g y$. The energy equation becomes $0=\frac{1}{2} k y^{2}-m g y+\frac{1}{2} m v^{2}$. We solve for the speed.

$$
\begin{aligned}
v & =\sqrt{2 g y-\frac{k}{m} y^{2}}=\sqrt{2 g y-\frac{g}{\ell} y^{2}}=\sqrt{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.080 \mathrm{~m})-\left(\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.050 \mathrm{~m}}\right)}=(0.080 \mathrm{~m})^{2} \\
& =0.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) Let m be the original mass and Δm be the additional mass. The new angular frequency is $\omega^{\prime}=\sqrt{k /(m+\Delta m)}$. This should be half the original angular frequency, or $\frac{1}{2} \sqrt{k / m}$. We solve $\sqrt{k /(m+\Delta m)}=\frac{1}{2} \sqrt{k / m}$ for m. Square both sides of the equation, then take the reciprocal to obtain $m+\Delta m=4 m$. This gives $m=\Delta m / 3=(300 \mathrm{~g}) / 3=100 \mathrm{~g}=0.100 \mathrm{~kg}$.
(d) The equilibrium position is determined by the balancing of the gravitational and spring forces: $k y=(m+\Delta m) g$. Thus $y=(m+\Delta m) g / k$. We will need to find the value of the spring constant k. Use $k=m \omega^{2}=m(2 \pi f)^{2}$. Then

$$
y \frac{(m+\Delta m) g}{m(2 \pi f)^{2}}=\frac{(0.100 \mathrm{~kg}+0.300 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{(0.100 \mathrm{~kg})(2 \pi \times 2.24 \mathrm{~Hz})^{2}}=0.200 \mathrm{~m} .
$$

This is measured from the initial position.
24. Let the spring constants be k_{1} and k_{2}. When displaced from equilibrium, the magnitude of the net force exerted by the springs is $\left|k_{1} x+k_{2} x\right|$ acting in a direction so as to return the block to its equilibrium position $(x=0)$. Since the acceleration $a=d^{2} x / d^{2}$, Newton's second law yields

$$
m \frac{d^{2} x}{d t^{2}}=-k_{1} x-k_{2} x .
$$

Substituting $x=x_{m} \cos (\omega t+\phi)$ and simplifying, we find

$$
\omega^{2}=\frac{k_{1}+k_{2}}{m}
$$

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f measures cycles per second, we obtain

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{m}} .
$$

The single springs each acting alone would produce simple harmonic motions of frequency

$$
f_{1}=\frac{1}{2 \pi} \sqrt{\frac{k_{1}}{m}}=30 \mathrm{~Hz}, \quad f_{2}=\frac{1}{2 \pi} \sqrt{\frac{k_{2}}{m}}=45 \mathrm{~Hz}
$$

respectively. Comparing these expressions, it is clear that

$$
f=\sqrt{f_{1}^{2}+f_{2}^{2}}=\sqrt{(30 \mathrm{~Hz})^{2}+(45 \mathrm{~Hz})^{2}}=54 \mathrm{~Hz}
$$

25. To be on the verge of slipping means that the force exerted on the smaller block (at the point of maximum acceleration) is $f_{\max }=\mu_{s} m g$. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where $\omega=\sqrt{k /(m+M)}$ is the angular frequency (from Eq. 15-12). Therefore, using Newton's second law, we have

$$
m a_{m}=\mu_{s} m g \Rightarrow \frac{k}{m+M} x_{m}=\mu_{s} g
$$

which leads to $x_{m}=0.22 \mathrm{~m}$.
26. We wish to find the effective spring constant for the combination of springs shown in Fig. 15-35. We do this by finding the magnitude F of the force exerted on the mass when the total elongation of the springs is Δx. Then $k_{\text {eff }}=F / \Delta x$. Suppose the left-hand spring is elongated by Δx_{ℓ} and the right-hand spring is elongated by Δx_{r}. The left-hand spring exerts a force of magnitude $k \Delta x_{\ell}$ on the right-hand spring and the right-hand spring exerts a force of magnitude $k \Delta x_{r}$ on the left-hand spring. By Newton's third law these must be equal, so $\Delta x_{\ell}=\Delta x_{r}$. The two elongations must be the same and the total elongation is twice the elongation of either spring: $\Delta x=2 \Delta x_{\ell}$. The left-hand spring exerts a force on the block and its magnitude is $F=k \Delta x_{\ell}$. Thus $k_{\text {eff }}=k \Delta x_{\ell} / 2 \Delta x_{r}=k / 2$. The block behaves as if it were subject to the force of a single spring, with spring constant $k / 2$. To find the frequency of its motion replace $k_{\text {eff }}$ in $f=(1 / 2 \pi) \sqrt{k_{\text {eff }} / m}$ with $k / 2$ to obtain

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}}
$$

With $m=0.245 \mathrm{~kg}$ and $k=6430 \mathrm{~N} / \mathrm{m}$, the frequency is $f=18.2 \mathrm{~Hz}$.
27. (a) We interpret the problem as asking for the equilibrium position; that is, the block is gently lowered until forces balance (as opposed to being suddenly released and allowed to oscillate). If the amount the spring is stretched is x, then we examine force-components along the incline surface and find

$$
k x=m g \sin \theta \Rightarrow x=\frac{14.0 \sin 40.0^{\circ}}{120}=0.0750 \mathrm{~m}
$$

at equilibrium. The calculator is in degrees mode in the above calculation. The distance from the top of the incline is therefore $(0.450+0.75) \mathrm{m}=0.525 \mathrm{~m}$.
(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply to shift the equilibrium position; it does not change the characteristics (such as the period) of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain

$$
T=2 \pi \sqrt{\frac{14.0 / 9.80}{120}}=0.686 \mathrm{~s} .
$$

28. (a) The energy at the turning point is all potential energy: $E=\frac{1}{2} k x_{m}^{2}$ where $E=1.00 \mathrm{~J}$ and $x_{m}=0.100 \mathrm{~m}$. Thus,

$$
k=\frac{2 E}{x_{m}^{2}}=200 \mathrm{~N} / \mathrm{m} .
$$

(b) The energy as the block passes through the equilibrium position (with speed $v_{m}=1.20$ m / s) is purely kinetic:

$$
E=\frac{1}{2} m v_{m}^{2} \Rightarrow m=\frac{2 E}{v_{m}^{2}}=1.39 \mathrm{~kg} .
$$

(c) Eq. 15-12 (divided by 2π) yields

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=1.91 \mathrm{~Hz}
$$

29. When the block is at the end of its path and is momentarily stopped, its displacement is equal to the amplitude and all the energy is potential in nature. If the spring potential energy is taken to be zero when the block is at its equilibrium position, then

$$
E=\frac{1}{2} k x_{m}^{2}=\frac{1}{2}\left(1.3 \times 10^{2} \mathrm{~N} / \mathrm{m}\right)(0.024 \mathrm{~m})^{2}=3.7 \times 10^{-2} \mathrm{~J} .
$$

30. The total mechanical energy is equal to the (maximum) kinetic energy as it passes through the equilibrium position $(x=0): \frac{1}{2} m v^{2}=\frac{1}{2}(2.0 \mathrm{~kg})(0.85 \mathrm{~m} / \mathrm{s})^{2}=0.72 \mathrm{~J}$. Looking at the graph in the problem, we see that $U(x=10)=0.5 \mathrm{~J}$. Since the potential function has the form $U(x)=b x^{2}$, the constant is $b=5.0 \times 10^{-3} \mathrm{~J} / \mathrm{cm}^{2}$. Thus, $U(x)=0.72 \mathrm{~J}$ when $x=12$ cm .
(a) Thus, the mass does turn back before reaching $x=15 \mathrm{~cm}$.
(b) It turns back at $x=12 \mathrm{~cm}$.
31. The total energy is given by $E=\frac{1}{2} k x_{m}^{2}$, where k is the spring constant and x_{m} is the amplitude. We use the answer from part (b) to do part (a), so it is best to look at the solution for part (b) first.
(a) The fraction of the energy that is kinetic is

$$
\frac{K}{E}=\frac{E-U}{E}=1-\frac{U}{E}=1-\frac{1}{4}=\frac{3}{4}=0.75
$$

where the result from part (b) has been used.
(b) When $x=\frac{1}{2} x_{m}$ the potential energy is $U=\frac{1}{2} k x^{2}=\frac{1}{8} k x_{m}^{2}$. The ratio is

$$
\frac{U}{E}=\frac{\frac{1}{8} k x_{m}^{2}}{\frac{1}{2} k x_{m}^{2}}=\frac{1}{4}=0.25 .
$$

(c) Since $E=\frac{1}{2} k x_{m}^{2}$ and $U=\frac{1}{2} k x^{2}, U / E=x^{2} / x_{m}^{2}$. We solve $x^{2} / x_{m}^{2}=1 / 2$ for x. We should get $x=x_{m} / \sqrt{2}$.
32. We infer from the graph (since mechanical energy is conserved) that the total energy in the system is 6.0 J ; we also note that the amplitude is apparently $x_{m}=12 \mathrm{~cm}=0.12 \mathrm{~m}$. Therefore we can set the maximum potential energy equal to 6.0 J and solve for the spring constant k :

$$
\frac{1}{2} k x_{m}{ }^{2}=6.0 \mathrm{~J} \Rightarrow k=8.3 \times 10^{2} \mathrm{~N} / \mathrm{m} .
$$

33. (a) Eq. 15-12 (divided by 2π) yields

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{1000 \mathrm{~N} / \mathrm{m}}{5.00 \mathrm{~kg}}}=2.25 \mathrm{~Hz}
$$

(b) With $x_{\mathrm{o}}=0.500 \mathrm{~m}$, we have $U_{0}=\frac{1}{2} k x_{0}^{2}=125 \mathrm{~J}$.
(c) With $v_{0}=10.0 \mathrm{~m} / \mathrm{s}$, the initial kinetic energy is $K_{0}=\frac{1}{2} m v_{0}^{2}=250 \mathrm{~J}$.
(d) Since the total energy $E=K_{\mathrm{o}}+U_{\mathrm{o}}=375 \mathrm{~J}$ is conserved, then consideration of the energy at the turning point leads to

$$
E=\frac{1}{2} k x_{m}^{2} \Rightarrow x_{m}=\sqrt{\frac{2 E}{k}}=0.866 \mathrm{~m} .
$$

34. We note that the ratio of Eq. 15-6 and Eq. 15-3 is $v / x=-\omega \tan (\omega t+\phi)$ where ω is given by Eq. 15-12. Since the kinetic energy is $\frac{1}{2} m v^{2}$ and the potential energy is $\frac{1}{2} k x^{2}$ (which may be conveniently written as $\frac{1}{2} m \omega^{2} x^{2}$) then the ratio of kinetic to potential energy is simply

$$
(v / x)^{2} / \omega^{2}=\tan ^{2}(\omega t+\phi)
$$

which at $t=0$ is $\tan ^{2} \phi$. Since $\phi=\pi / 6$ in this problem, then the ratio of kinetic to potential energy at $t=0$ is $\tan ^{2}(\pi / 6)=1 / 3$.
35. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency and $x_{m}=0.0020 \mathrm{~m}$ is the amplitude. Thus, $a_{m}=8000 \mathrm{~m} / \mathrm{s}^{2}$ leads to $\omega=2000 \mathrm{rad} / \mathrm{s}$. Using Newton's second law with $m=0.010 \mathrm{~kg}$, we have

$$
F=m a=m\left(-a_{m} \cos (\omega t+\phi)\right)=-(80 \mathrm{~N}) \cos \left(2000 t-\frac{\pi}{3}\right)
$$

where t is understood to be in seconds.
(a) Eq. 15-5 gives $T=2 \pi / \omega=3.1 \times 10^{-3} \mathrm{~s}$.
(b) The relation $v_{m}=\omega x_{m}$ can be used to solve for v_{m}, or we can pursue the alternate (though related) approach of energy conservation. Here we choose the latter. By Eq. 1512 , the spring constant is $k=\omega^{2} m=40000 \mathrm{~N} / \mathrm{m}$. Then, energy conservation leads to

$$
\frac{1}{2} k x_{m}^{2}=\frac{1}{2} m v_{m}^{2} \Rightarrow v_{m}=x_{m} \sqrt{\frac{k}{m}}=4.0 \mathrm{~m} / \mathrm{s}
$$

(c) The total energy is $\frac{1}{2} k x_{m}^{2}=\frac{1}{2} m v_{m}^{2}=0.080 \mathrm{~J}$.
(d) At the maximum displacement, the force acting on the particle is

$$
F=k x=\left(4.0 \times 10^{4} \mathrm{~N} / \mathrm{m}\right)\left(2.0 \times 10^{-3} \mathrm{~m}\right)=80 \mathrm{~N} .
$$

(e) At half of the maximum displacement, $x=1.0 \mathrm{~mm}$, and the force is

$$
F=k x=\left(4.0 \times 10^{4} \mathrm{~N} / \mathrm{m}\right)\left(1.0 \times 10^{-3} \mathrm{~m}\right)=40 \mathrm{~N} .
$$

36. We note that the spring constant is $k=4 \pi^{2} m_{1} / T^{2}=1.97 \times 10^{5} \mathrm{~N} / \mathrm{m}$. It is important to determine where in its simple harmonic motion (which "phase" of its motion) block 2 is when the impact occurs. Since $\omega=2 \pi / T$ and the given value of t (when the collision takes place) is one-fourth of T, then $\omega t=\pi / 2$ and the location then of block 2 is $x=$ $x_{m} \cos (\omega t+\phi)$ where $\phi=\pi / 2$ which gives $x=x_{m} \cos (\pi / 2+\pi / 2)=-x_{m}$. This means block 2 is at a turning point in its motion (and thus has zero speed right before the impact occurs); this means, too, that the spring is stretched an amount of $1 \mathrm{~cm}=0.01 \mathrm{~m}$ at this moment. To calculate its after-collision speed (which will be the same as that of block 1 right after the impact, since they stick together in the process) we use momentum conservation and obtain $(4.0 \mathrm{~kg})(6.0 \mathrm{~m} / \mathrm{s}) /(6.0 \mathrm{~kg})=4.0 \mathrm{~m} / \mathrm{s}$. Thus, at the end of the impact itself (while block 1 is still at the same position as before the impact) the system (consisting now of a total mass $M=6.0 \mathrm{~kg}$) has kinetic energy $\frac{1}{2}(6.0 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})^{2}=48 \mathrm{~J}$ and potential energy $\frac{1}{2}\left(1.97 \times 10^{5} \mathrm{~N} / \mathrm{m}\right)(0.010 \mathrm{~m})^{2} \approx 10 \mathrm{~J}$, meaning the total mechanical energy in the system at this stage is approximately 58 J . When the system reaches its new turning point (at the new amplitude X) then this amount must equal its (maximum) potential energy there: $\frac{1}{2}\left(1.97 \times 10^{5}\right) X^{2}$. Therefore, we find

$$
X=\sqrt{2(58) /\left(1.97 \times 10^{5}\right)}=0.024 \mathrm{~m} .
$$

37. The problem consists of two distinct parts: the completely inelastic collision (which is assumed to occur instantaneously, the bullet embedding itself in the block before the block moves through significant distance) followed by simple harmonic motion (of mass $m+M$ attached to a spring of spring constant k).
(a) Momentum conservation readily yields $v^{\prime}=m v /(m+M)$. With $m=9.5 \mathrm{~g}, M=5.4 \mathrm{~kg}$ and $v=630 \mathrm{~m} / \mathrm{s}$, we obtain $v^{\prime}=1.1 \mathrm{~m} / \mathrm{s}$.
(b) Since v^{\prime} occurs at the equilibrium position, then $v^{\prime}=v_{m}$ for the simple harmonic motion. The relation $v_{m}=\omega x_{m}$ can be used to solve for x_{m}, or we can pursue the alternate (though related) approach of energy conservation. Here we choose the latter:

$$
\frac{1}{2}(m+M)\left(v^{\prime}\right)^{2}=\frac{1}{2} k x_{m}^{2} \Rightarrow \frac{1}{2}(m+M) \frac{m^{2} v^{2}}{(m+M)^{2}}=\frac{1}{2} k x_{m}^{2}
$$

which simplifies to

$$
x_{m}=\frac{m v}{\sqrt{k(m+M)}}=\frac{\left(9.5 \times 10^{-3} \mathrm{~kg}\right)(630 \mathrm{~m} / \mathrm{s})}{\sqrt{(6000 \mathrm{~N} / \mathrm{m})\left(9.5 \times 10^{-3} \mathrm{~kg}+5.4 \mathrm{~kg}\right)}}=3.3 \times 10^{-2} \mathrm{~m} .
$$

38. From Eq. 15-23 (in absolute value) we find the torsion constant:

$$
\kappa=\left|\frac{\tau}{\theta}\right|=\frac{0.20}{0.85}=0.235
$$

in SI units. With $I=2 m R^{2} / 5$ (the rotational inertia for a solid sphere - from Chapter 11), Eq. 15-23 leads to

$$
T=2 \pi \sqrt{\frac{\frac{2}{5} m R^{2}}{\kappa}}=2 \pi \sqrt{\frac{\frac{2}{5}(95)(0.15)^{2}}{0.235}}=12 \mathrm{~s} .
$$

39. (a) We take the angular displacement of the wheel to be $\theta=\theta_{m} \cos (2 \pi t / T)$, where θ_{m} is the amplitude and T is the period. We differentiate with respect to time to find the angular velocity: $\Omega=-(2 \pi / T) \theta_{m} \sin (2 \pi t / T)$. The symbol Ω is used for the angular velocity of the wheel so it is not confused with the angular frequency. The maximum angular velocity is

$$
\Omega_{m}=\frac{2 \pi \theta_{m}}{T}=\frac{(2 \pi)(\pi \mathrm{rad})}{0.500 \mathrm{~s}}=39.5 \mathrm{rad} / \mathrm{s} .
$$

(b) When $\theta=\pi / 2$, then $\theta / \theta_{m}=1 / 2, \cos (2 \pi t / T)=1 / 2$, and

$$
\sin (2 \pi t / T)=\sqrt{1-\cos ^{2}(2 \pi t / T)}=\sqrt{1-(1 / 2)^{2}}=\sqrt{3 / 2}
$$

where the trigonometric identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ is used. Thus,

$$
\Omega=-\frac{2 \pi}{T} \theta_{m} \sin \left(\frac{2 \pi t}{T}\right)=-\left(\frac{2 \pi}{0.500 \mathrm{~s}}\right)(\pi \mathrm{rad})\left(\frac{\sqrt{3}}{2}\right)=-34.2 \mathrm{rad} / \mathrm{s} .
$$

During another portion of the cycle its angular speed is $+34.2 \mathrm{rad} / \mathrm{s}$ when its angular displacement is $\pi / 2 \mathrm{rad}$.
(c) The angular acceleration is

$$
\alpha=\frac{d^{2} \theta}{d t^{2}}=-\left(\frac{2 \pi}{T}\right)^{2} \theta_{m} \cos (2 \pi t / T)=-\left(\frac{2 \pi}{T}\right)^{2} \theta
$$

When $\theta=\pi / 4$,

$$
\alpha=-\left(\frac{2 \pi}{0.500 \mathrm{~s}}\right)^{2}\left(\frac{\pi}{4}\right)=-124 \mathrm{rad} / \mathrm{s}^{2}
$$

or $|\alpha|=124 \mathrm{rad} / \mathrm{s}^{2}$.
40. (a) Referring to Sample Problem 15-5, we see that the distance between P and C is $h=\frac{2}{3} L-\frac{1}{2} L=\frac{1}{6} L$. The parallel axis theorem (see Eq. 15-30) leads to

$$
I=\frac{1}{12} m L^{2}+m h^{2}=\left(\frac{1}{12}+\frac{1}{36}\right) m L^{2}=\frac{1}{9} m L^{2} .
$$

And Eq. 15-29 gives

$$
T=2 \pi \sqrt{\frac{I}{m g h}}=2 \pi \sqrt{\frac{L^{2} / 9}{g L / 6}}=2 \pi \sqrt{\frac{2 L}{3 g}}
$$

which yields $T=1.64 \mathrm{~s}$ for $L=1.00 \mathrm{~m}$.
(b) We note that this T is identical to that computed in Sample Problem 15-5. As far as the characteristics of the periodic motion are concerned, the center of oscillation provides a pivot which is equivalent to that chosen in the Sample Problem (pivot at the edge of the stick).
41. We require

$$
T=2 \pi \sqrt{\frac{L_{o}}{g}}=2 \pi \sqrt{\frac{I}{m g h}}
$$

similar to the approach taken in part (b) of Sample Problem 15-5, but treating in our case a more general possibility for I. Canceling 2π, squaring both sides, and canceling g leads directly to the result; $L_{\mathrm{o}}=I / \mathrm{mh}$.
42. (a) Comparing the given expression to Eq. 15-3 (after changing notation $x \rightarrow \theta$), we see that $\omega=4.43 \mathrm{rad} / \mathrm{s}$. Since $\omega=\sqrt{g / L}$ then we can solve for the length: $L=0.499 \mathrm{~m}$.
(b) Since $v_{m}=\omega x_{m}=\omega L \theta_{m}=(4.43 \mathrm{rad} / \mathrm{s})(0.499 \mathrm{~m})(0.0800 \mathrm{rad})$ and $m=0.0600 \mathrm{~kg}$, then we can find the maximum kinetic energy: $\frac{1}{2} m v_{m}{ }^{2}=9.40 \times 10^{-4} \mathrm{~J}$.
43. (a) A uniform disk pivoted at its center has a rotational inertia of $\frac{1}{2} M r^{2}$, where M is its mass and r is its radius. The disk of this problem rotates about a point that is displaced from its center by $r+L$, where L is the length of the rod, so, according to the parallel-axis theorem, its rotational inertia is $\frac{1}{2} M r^{2}+\frac{1}{2} M(L+r)^{2}$. The rod is pivoted at one end and has a rotational inertia of $m L^{2} / 3$, where m is its mass. The total rotational inertia of the disk and rod is

$$
\begin{aligned}
& I=\frac{1}{2} M r^{2}+M(L+r)^{2}+\frac{1}{3} m L^{2} \\
& =\frac{1}{2}(0.500 \mathrm{~kg})(0.100 \mathrm{~m})^{2}+(0.500 \mathrm{~kg})(0.500 \mathrm{~m}+0.100 \mathrm{~m})^{2}+\frac{1}{3}(0.270 \mathrm{~kg})(0.500 \mathrm{~m})^{2} \\
& =0.205 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

(b) We put the origin at the pivot. The center of mass of the disk is

$$
\ell_{d}=L+r=0.500 \mathrm{~m}+0.100 \mathrm{~m}=0.600 \mathrm{~m}
$$

away and the center of mass of the rod is $\ell_{r}=L / 2=(0.500 \mathrm{~m}) / 2=0.250 \mathrm{~m}$ away, on the same line. The distance from the pivot point to the center of mass of the disk-rod system is

$$
d=\frac{M \ell_{d}+m \ell_{r}}{M+m}=\frac{(0.500 \mathrm{~kg})(0.600 \mathrm{~m})+(0.270 \mathrm{~kg})(0.250 \mathrm{~m})}{0.500 \mathrm{~kg}+0.270 \mathrm{~kg}}=0.477 \mathrm{~m} .
$$

(c) The period of oscillation is

$$
T=2 \pi \sqrt{\frac{I}{(M+m) g d}}=2 \pi \sqrt{\frac{0.205 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{(0.500 \mathrm{~kg}+0.270 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.447 \mathrm{~m})}}=1.50 \mathrm{~s} .
$$

44. We use Eq. 15-29 and the parallel-axis theorem $I=I_{\mathrm{cm}}+m h^{2}$ where $h=d$. For a solid disk of mass m, the rotational inertia about its center of mass is $I_{\mathrm{cm}}=m R^{2} / 2$. Therefore,

$$
T=2 \pi \sqrt{\frac{m R^{2} / 2+m d^{2}}{m g d}}=2 \pi \sqrt{\frac{R^{2}+2 d^{2}}{2 g d}}=2 \pi \sqrt{\frac{(2.35 \mathrm{~cm})^{2}+2(1.75 \mathrm{~cm})^{2}}{2\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)(1.75 \mathrm{~cm})}}=0.366 \mathrm{~s} .
$$

45. We use Eq. 15-29 and the parallel-axis theorem $I=I_{\mathrm{cm}}+m h^{2}$ where $h=d$, the unknown. For a meter stick of mass m, the rotational inertia about its center of mass is I_{cm} $=m L^{2} / 12$ where $L=1.0 \mathrm{~m}$. Thus, for $T=2.5 \mathrm{~s}$, we obtain

$$
T=2 \pi \sqrt{\frac{m L^{2} / 12+m d^{2}}{m g d}}=2 \pi \sqrt{\frac{L^{2}}{12 g d}+\frac{d}{g}} .
$$

Squaring both sides and solving for d leads to the quadratic formula:

$$
d=\frac{g(T / 2 \pi)^{2} \pm \sqrt{d^{2}(T / 2 \pi)^{4}-L^{2} / 3}}{2} .
$$

Choosing the plus sign leads to an impossible value for $d(d=1.5>L)$. If we choose the minus sign, we obtain a physically meaningful result: $d=0.056 \mathrm{~m}$.
46. From Eq. 15-28, we find the length of the pendulum when the period is $T=8.85 \mathrm{~s}$:

$$
L=\frac{g T^{2}}{4 \pi^{2}}
$$

The new length is $L^{\prime}=L-d$ where $d=0.350 \mathrm{~m}$. The new period is

$$
T^{\prime}=2 \pi \sqrt{\frac{L^{\prime}}{g}}=2 \pi \sqrt{\frac{L}{g}-\frac{d}{g}}=2 \pi \sqrt{\frac{T^{2}}{4 \pi^{2}}-\frac{d}{g}}
$$

which yields $T^{\prime}=8.77 \mathrm{~s}$.
47. To use Eq. 15-29 we need to locate the center of mass and we need to compute the rotational inertia about A. The center of mass of the stick shown horizontal in the figure is at A, and the center of mass of the other stick is 0.50 m below A. The two sticks are of equal mass so the center of mass of the system is $h=\frac{1}{2}(0.50 \mathrm{~m})=0.25 \mathrm{~m}$ below A, as shown in the figure. Now, the rotational inertia of the system is the sum of the rotational inertia I_{1} of the stick shown horizontal in the figure and the rotational inertia I_{2} of the stick shown vertical. Thus, we have

$$
I=I_{1}+I_{2}=\frac{1}{12} M L^{2}+\frac{1}{3} M L^{2}=\frac{5}{12} M L^{2}
$$

where $L=1.00 \mathrm{~m}$ and M is the mass of a meter stick (which cancels in the next step). Now, with $m=2 M$ (the total mass), Eq. 15-29 yields

$$
T=2 \pi \sqrt{\frac{\frac{5}{12} M L^{2}}{2 M g h}}=2 \pi \sqrt{\frac{5 L}{6 g}}
$$

where $h=L / 4$ was used. Thus, $T=1.83 \mathrm{~s}$.
48. (a) The rotational inertia of a uniform rod with pivot point at its end is $I=m L^{2} / 12+$ $m L^{2}=1 / 3 M L^{2}$. Therefore, Eq. 15-29 leads to

$$
T=2 \pi \sqrt{\frac{\frac{1}{3} M L^{2}}{M g(L / 2)}} \Rightarrow \frac{3 g T^{2}}{8 \pi^{2}}
$$

so that $L=0.84 \mathrm{~m}$.
(b) By energy conservation

$$
\begin{aligned}
E_{\text {bottom of swing }} & =E_{\text {end of swing }} \\
K_{m} & =U_{m}
\end{aligned}
$$

where $U=M g \ell(1-\cos \theta)$ with ℓ being the distance from the axis of rotation to the center of mass. If we use the small angle approximation $\left(\cos \theta \approx 1-\frac{1}{2} \theta^{2}\right.$ with θ in radians (Appendix E)), we obtain

$$
U_{m}=(0.5)(9.8)\left(\frac{L}{2}\right)\left(\frac{1}{2} \theta_{m}^{2}\right)
$$

where $\theta_{m}=0.17$ rad. Thus, $K_{m}=U_{m}=0.031 \mathrm{~J}$. If we calculate $(1-\cos \theta)$ straightforwardly (without using the small angle approximation) then we obtain within 0.3% of the same answer.
49. If the torque exerted by the spring on the rod is proportional to the angle of rotation of the rod and if the torque tends to pull the rod toward its equilibrium orientation, then the rod will oscillate in simple harmonic motion. If $\tau=-C \theta$, where τ is the torque, θ is the angle of rotation, and C is a constant of proportionality, then the angular frequency of oscillation is $\omega=\sqrt{C / I}$ and the period is $T=2 \pi / \omega=2 \pi \sqrt{I / C}$, where I is the rotational inertia of the rod. The plan is to find the torque as a function of θ and identify the constant C in terms of given quantities. This immediately gives the period in terms of given quantities. Let ℓ_{0} be the distance from the pivot point to the wall. This is also the equilibrium length of the spring. Suppose the rod turns through the angle θ, with the left end moving away from the wall. This end is now ($L / 2$) $\sin \theta$ further from the wall and has moved a distance $(L / 2)(1-\cos \theta)$ to the right. The length of the spring is now $\sqrt{(L / 2)^{2}(1-\cos \theta)^{2}+\left[\ell_{0}+(L / 2) \sin \theta\right]^{2}}$. If the angle θ is small we may approximate \cos θ with 1 and $\sin \theta$ with θ in radians. Then the length of the spring is given by $\ell_{0}+L \theta / 2$ and its elongation is $\Delta x=L \theta / 2$. The force it exerts on the rod has magnitude $F=k \Delta x=$ $k L \theta / 2$. Since θ is small we may approximate the torque exerted by the spring on the rod by $\tau=-F L / 2$, where the pivot point was taken as the origin. Thus $\tau=-\left(k L^{2} / 4\right) \theta$. The constant of proportionality C that relates the torque and angle of rotation is $C=k L^{2} / 4$. The rotational inertia for a rod pivoted at its center is $I=m L^{2} / 12$, where m is its mass. See Table 10-2. Thus the period of oscillation is

$$
T=2 \pi \sqrt{\frac{I}{C}}=2 \pi \sqrt{\frac{m L^{2} / 12}{k L^{2} / 4}}=2 \pi \sqrt{\frac{m}{3 k}} .
$$

With $m=0.600 \mathrm{~kg}$ and $k=1850 \mathrm{~N} / \mathrm{m}$, we obtain $T=0.0653 \mathrm{~s}$.
50. (a) For the "physical pendulum" we have

$$
T=2 \pi \sqrt{\frac{I}{m g h}}=2 \pi \sqrt{\frac{I_{\mathrm{com}}+m h^{2}}{m g h}} .
$$

If we substitute r for h and use item (i) in Table 10-2, we have

$$
T=\frac{2 \pi}{\sqrt{g}} \sqrt{\frac{a^{2}+b^{2}}{12 r}+r}
$$

In the figure below, we plot T as a function of r, for $a=0.35 \mathrm{~m}$ and $b=0.45 \mathrm{~m}$.

(b) The minimum of T can be located by setting its derivative to zero, $d T / d r=0$. This yields

$$
r=\sqrt{\frac{a^{2}+b^{2}}{12}}=\sqrt{\frac{(0.35 \mathrm{~m})^{2}+(0.45 \mathrm{~m})^{2}}{12}}=0.16 \mathrm{~m}
$$

(c) The direction from the center does not matter, so the locus of points is a circle around the center, of radius $\left[\left(a^{2}+b^{2}\right) / 12\right]^{1 / 2}$.
51. This is similar to the situation treated in Sample Problem 15-5, except that O is no longer at the end of the stick. Referring to the center of mass as C (assumed to be the geometric center of the stick), we see that the distance between O and C is $h=x$. The parallel axis theorem (see Eq. 15-30) leads to

$$
I=\frac{1}{12} m L^{2}+m h^{2}=m\left(\frac{L^{2}}{12}+x^{2}\right)
$$

And Eq. 15-29 gives

$$
T=2 \pi \sqrt{\frac{I}{m g h}}=2 \pi \sqrt{\frac{\left(\frac{L^{2}}{12}+x^{2}\right)}{g x}}=2 \pi \sqrt{\frac{\left(L^{2}+12 x^{2}\right)}{12 g x}} .
$$

(a) Minimizing T by graphing (or special calculator functions) is straightforward, but the standard calculus method (setting the derivative equal to zero and solving) is somewhat awkward. We pursue the calculus method but choose to work with $12 g T^{2} / 2 \pi$ instead of T (it should be clear that $12 g T^{2} / 2 \pi$ is a minimum whenever T is a minimum).

$$
\frac{d\left(\frac{12 g T^{2}}{2 \pi}\right)}{d x}=0=\frac{d\left(\frac{L^{2}}{x}+12 x\right)}{d x}=-\frac{L^{2}}{x^{2}}+12
$$

which yields $x=L / \sqrt{12}=(1.85 \mathrm{~m}) / \sqrt{12}=0.53 \mathrm{~m}$ as the value of x which should produce the smallest possible value of T.
(b) With $L=1.85 \mathrm{~m}$ and $x=0.53 \mathrm{~m}$, we obtain $T=2.1 \mathrm{~s}$ from the expression derived in part (a).
52. Consider that the length of the spring as shown in the figure (with one of the block's corners lying directly above the block's center) is some value L (its rest length). If the (constant) distance between the block's center and the point on the wall where the spring attaches is a distance r, then $r \cos \theta=d / \sqrt{2}$ and $r \cos \theta=L$ defines the angle θ measured from a line on the block drawn from the center to the top corner to the line of r (a straight line from the center of the block to the point of attachment of the spring on the wall). In terms of this angle, then, the problem asks us to consider the dynamics that results from increasing θ from its original value θ_{0} to $\theta_{0}+3^{\circ}$ and then releasing the system and letting it oscillate. If the new (stretched) length of spring is L^{\prime} (when $\theta=\theta_{0}+3^{\circ}$), then it is a straightforward trigonometric exercise to show that

$$
\left(L^{\prime}\right)^{2}=r^{2}+(d / \sqrt{2})^{2}-2 r(d / \sqrt{2}) \cos \left(\theta_{0}+3^{\circ}\right)=L^{2}+d^{2}-d^{2} \cos \left(3^{\circ}\right)+\sqrt{2} L d \sin \left(3^{\circ}\right) .
$$

since $\theta_{0}=45^{\circ}$. The difference between L^{\prime} (as determined by this expression) and the original spring length L is the amount the spring has been stretched (denoted here as x_{m}). If one plots x_{m} versus L over a range that seems reasonable considering the figure shown in the problem (say, from $L=0.03 \mathrm{~m}$ to $L=0.10 \mathrm{~m}$) one quickly sees that $x_{m} \approx 0.00222 \mathrm{~m}$ is an excellent approximation (and is very close to what one would get by approximating x_{m} as the arc length of the path made by that upper block corner as the block is turned through 3ㅇ, even though this latter procedure should in principle overestimate x_{m}). Using this value of x_{m} with the given spring constant leads to a potential energy of $\frac{1}{2} k x_{m}{ }^{2}=$ 0.00296 J. Setting this equal to the kinetic energy the block has as it passes back through the initial position, we have

$$
0.00296 \mathrm{~J}=\frac{1}{2} I \omega_{m}{ }^{2}
$$

where ω_{m} is the maximum angular speed of the block (and is not to be confused with the angular frequency ω of the oscillation, though they are related by $\omega_{m}=\theta_{0} \omega$ if θ_{0} is expressed in radians). The rotational inertia of the block is $I=\frac{1}{6} M d^{2}=0.0018 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Thus, we can solve the above relation for the maximum angular speed of the block:

$$
\omega_{m}=\sqrt{2(0.00296) / 0.0018}=1.81 \mathrm{rad} / \mathrm{s}
$$

Therefore the angular frequency of the oscillation is $\omega=\omega_{m} / \theta_{0}=34.6 \mathrm{rad} / \mathrm{s}$. Using Eq. $15-5$, then, the period is $T=0.18 \mathrm{~s}$.
53. Replacing x and v in Eq. 15-3 and Eq. 15-6 with θ and $d \theta / d t$, respectively, we identify $4.44 \mathrm{rad} / \mathrm{s}$ as the angular frequency ω. Then we evaluate the expressions at $t=0$ and divide the second by the first:

$$
\left(\frac{d \theta / d t}{\theta}\right)_{\mathrm{at} t=0}=-\omega \tan \phi
$$

(a) The value of θ at $t=0$ is 0.0400 rad , and the value of $d \theta / d t$ then is $-0.200 \mathrm{rad} / \mathrm{s}$, so we are able to solve for the phase constant: $\phi=\tan ^{-1}[0.200 /(0.0400 \times 4.44)]=0.845 \mathrm{rad}$.
(b) Once ϕ is determined we can plug back in to $\theta_{0}=\theta_{m} \cos \phi$ to solve for the angular amplitude. We find $\theta_{m}=0.0602 \mathrm{rad}$.
54. We note that the initial angle is $\theta_{0}=7{ }^{\circ}=0.122 \mathrm{rad}$ (though it turns out this value will cancel in later calculations). If we approximate the initial stretch of the spring as the arclength that the corresponding point on the plate has moved through $\left(x=r \theta_{0}\right.$ where $r=$ 0.025 m) then the initial potential energy is approximately $\frac{1}{2} k x^{2}=0.0093 \mathrm{~J}$. This should equal to the kinetic energy of the plate $\left(\frac{1}{2} I \omega_{m}{ }^{2}\right.$ where this ω_{m} is the maximum angular speed of the plate, not the angular frequency ω). Noting that the maximum angular speed of the plate is $\omega_{m}=\omega \theta_{0}$ where $\omega=2 \pi / T$ with $T=20 \mathrm{~ms}=0.02 \mathrm{~s}$ as determined from the graph, then we can find the rotational inertial from $\frac{1}{2} I \omega_{m}{ }^{2}=0.0093 \mathrm{~J}$. Thus, $I=1.3 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
55. (a) The period of the pendulum is given by $T=2 \pi \sqrt{I / m g d}$, where I is its rotational inertia, $m=22.1 \mathrm{~g}$ is its mass, and d is the distance from the center of mass to the pivot point. The rotational inertia of a rod pivoted at its center is $m L^{2} / 12$ with $L=2.20 \mathrm{~m}$. According to the parallel-axis theorem, its rotational inertia when it is pivoted a distance d from the center is $I=m L^{2} / 12+m d^{2}$. Thus,

$$
T=2 \pi \sqrt{\frac{m\left(L^{2} / 12+d^{2}\right)}{m g d}}=2 \pi \sqrt{\frac{L^{2}+12 d^{2}}{12 g d}} .
$$

Minimizing T with respect to $d, d T / d(d)=0$, we obtain $d=L / \sqrt{12}$. Therefore, the minimum period T is

$$
T_{\min }=2 \pi \sqrt{\frac{L^{2}+12(L / \sqrt{12})^{2}}{12 g(L / \sqrt{12})}}=2 \pi \sqrt{\frac{2 L}{\sqrt{12} g}}=2 \pi \sqrt{\frac{2(2.20 \mathrm{~m})}{\sqrt{12}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}}=2.26 \mathrm{~s}
$$

(b) If d is chosen to minimize the period, then as L is increased the period will increase as well.
(c) The period does not depend on the mass of the pendulum, so T does not change when m increases.
56. The table of moments of inertia in Chapter 11, plus the parallel axis theorem found in that chapter, leads to

$$
I_{P}=\frac{1}{2} M R^{2}+M h^{2}=\frac{1}{2}(2.5 \mathrm{~kg})(0.21 \mathrm{~m})^{2}+(2.5 \mathrm{~kg})(0.97 \mathrm{~m})^{2}=2.41 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

where P is the hinge pin shown in the figure (the point of support for the physical pendulum), which is a distance $h=0.21 \mathrm{~m}+0.76 \mathrm{~m}$ away from the center of the disk.
(a) Without the torsion spring connected, the period is

$$
T=2 \pi \sqrt{\frac{I_{P}}{M g h}}=2.00 \mathrm{~s} .
$$

(b) Now we have two "restoring torques" acting in tandem to pull the pendulum back to the vertical position when it is displaced. The magnitude of the torque-sum is ($M g h+$ к) $\theta=I_{P} \alpha$, where the small angle approximation ($\sin \theta \approx \theta$ in radians) and Newton's second law (for rotational dynamics) have been used. Making the appropriate adjustment to the period formula, we have

$$
T^{\prime}=2 \pi \sqrt{\frac{I_{P}}{M g h+\kappa}}
$$

The problem statement requires $T=T^{\prime}+0.50 \mathrm{~s}$. Thus, $T^{\prime}=(2.00-0.50) \mathrm{s}=1.50 \mathrm{~s}$. Consequently,

$$
\kappa=\frac{4 \pi^{2}}{T^{\prime 2}} I_{P}-M g h=18.5 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{rad}
$$

57. Referring to the numbers in Sample Problem 15-7, we have $m=0.25 \mathrm{~kg}, b=0.070$ kg / s and $T=0.34 \mathrm{~s}$. Thus, when $t=20 T$, the damping factor becomes

$$
e^{-b t / 2 m}=e^{-(0.070)(20)(0.34) / 2(0.25)}=0.39 .
$$

58. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the fractional change (assumed small) is

$$
\frac{E^{\prime}-E}{E} \approx \frac{d E}{E}=\frac{d x_{m}^{2}}{x_{m}^{2}}=\frac{2 x_{m} d x_{m}}{x_{m}^{2}}=2 \frac{d x_{m}}{x_{m}} .
$$

Thus, if we approximate the fractional change in x_{m} as $d x_{m} / x_{m}$, then the above calculation shows that multiplying this by 2 should give the fractional energy change. Therefore, if x_{m} decreases by 3%, then E must decrease by 6.0%.
59. (a) We want to solve $e^{-b t / 2 m}=1 / 3$ for t. We take the natural logarithm of both sides to obtain $-b t / 2 m=\ln (1 / 3)$. Therefore, $t=-(2 m / b) \ln (1 / 3)=(2 m / b) \ln 3$. Thus,

$$
t=\frac{2(1.50 \mathrm{~kg})}{0.230 \mathrm{~kg} / \mathrm{s}} \ln 3=14.3 \mathrm{~s} .
$$

(b) The angular frequency is

$$
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}=\sqrt{\frac{8.00 \mathrm{~N} / \mathrm{m}}{1.50 \mathrm{~kg}}-\frac{(0.230 \mathrm{~kg} / \mathrm{s})^{2}}{4(1.50 \mathrm{~kg})^{2}}}=2.31 \mathrm{rad} / \mathrm{s} .
$$

The period is $T=2 \pi / \omega^{\prime}=(2 \pi) /(2.31 \mathrm{rad} / \mathrm{s})=2.72 \mathrm{~s}$ and the number of oscillations is

$$
t / T=(14.3 \mathrm{~s}) /(2.72 \mathrm{~s})=5.27
$$

60. (a) From Hooke's law, we have

$$
k=\frac{(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{10 \mathrm{~cm}}=4.9 \times 10^{2} \mathrm{~N} / \mathrm{cm}
$$

(b) The amplitude decreasing by 50% during one period of the motion implies

$$
e^{-b T / 2 m}=\frac{1}{2} \quad \text { where } \quad T=\frac{2 \pi}{\omega^{\prime}} .
$$

Since the problem asks us to estimate, we let $\omega^{\prime} \approx \omega=\sqrt{k / m}$. That is, we let

$$
\omega^{\prime} \approx \sqrt{\frac{49000 \mathrm{~N} / \mathrm{m}}{500 \mathrm{~kg}}} \approx 9.9 \mathrm{rad} / \mathrm{s},
$$

so that $T \approx 0.63 \mathrm{~s}$. Taking the (natural) \log of both sides of the above equation, and rearranging, we find

$$
b=\frac{2 m}{T} \ln 2 \approx \frac{2(500)}{0.63}(0.69)=1.1 \times 10^{3} \mathrm{~kg} / \mathrm{s} .
$$

Note: if one worries about the $\omega^{\prime} \approx \omega$ approximation, it is quite possible (though messy) to use Eq. 15-43 in its full form and solve for b. The result would be (quoting more figures than are significant)

$$
b=\frac{2 \ln 2 \sqrt{m k}}{\sqrt{(\ln 2)^{2}+4 \pi^{2}}}=1086 \mathrm{~kg} / \mathrm{s}
$$

which is in good agreement with the value gotten "the easy way" above.
61. With $\omega=2 \pi / T$ then Eq. $15-28$ can be used to calculate the angular frequencies for the given pendulums. For the given range of $2.00<\omega<4.00(\mathrm{in} \mathrm{rad} / \mathrm{s})$, we find only two of the given pendulums have appropriate values of ω : pendulum (d) with length of 0.80 m (for which $\omega=3.5 \mathrm{rad} / \mathrm{s}$) and pendulum (e) with length of 1.2 m (for which $\omega=2.86$ $\mathrm{rad} / \mathrm{s}$).
62. (a) We set $\omega=\omega_{d}$ and find that the given expression reduces to $x_{m}=F_{m} / b \omega$ at resonance.
(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity amplitude $v_{m}=\omega x_{m}$. Thus, at resonance, we have $v_{m}=\omega F_{m} / b \omega=F_{m} / b$.
63. With $M=1000 \mathrm{~kg}$ and $m=82 \mathrm{~kg}$, we adapt Eq. $15-12$ to this situation by writing

$$
\omega=\frac{2 \pi}{T}=\sqrt{\frac{k}{M+4 m}} .
$$

If $d=4.0 \mathrm{~m}$ is the distance traveled (at constant car speed v) between impulses, then we may write $T=v / d$, in which case the above equation may be solved for the spring constant:

$$
\frac{2 \pi v}{d}=\sqrt{\frac{k}{M+4 m}} \Rightarrow k=(M+4 m)\left(\frac{2 \pi v}{d}\right)^{2}
$$

Before the people got out, the equilibrium compression is $x_{i}=(M+4 m) g / k$, and afterward it is $x_{f}=M g / k$. Therefore, with $v=16000 / 3600=4.44 \mathrm{~m} / \mathrm{s}$, we find the rise of the car body on its suspension is

$$
x_{i}-x_{f}=\frac{4 m g}{k}=\frac{4 m g}{M+4 m}\left(\frac{d}{2 \pi v}\right)^{2}=0.050 \mathrm{~m} .
$$

64. We note (from the graph) that $a_{\mathrm{m}}=\omega^{2} x_{m}=4.00 \mathrm{~cm} / \mathrm{s}^{2}$. Also the value at $t=0$ is $a_{0}=$ $1.00 \mathrm{~cm} / \mathrm{s}^{2}$. Then Eq. $15-7$ leads to $\phi=\cos ^{-1}(-1.00 / 4.00)=+1.82 \mathrm{rad}$ or -4.46 rad . The other "root" (+4.46 rad) can be rejected on the grounds that it would lead to a negative slope at $t=0$.
65. (a) From the graph, we find $x_{m}=7.0 \mathrm{~cm}=0.070 \mathrm{~m}$, and $T=40 \mathrm{~ms}=0.040 \mathrm{~s}$. Thus, the angular frequency is $\omega=2 \pi / T=157 \mathrm{rad} / \mathrm{s}$. Using $m=0.020 \mathrm{~kg}$, the maximum kinetic energy is then $\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2} x_{m}^{2}=1.2 \mathrm{~J}$.
(b) Using Eq. 15-5, we have $f=\omega / 2 \pi=50$ oscillations per second. Of course, Eq. 15-2 can also be used for this.
66. (a) From the graph we see that $x_{m}=7.0 \mathrm{~cm}=0.070 \mathrm{~m}$ and $T=40 \mathrm{~ms}=0.040 \mathrm{~s}$. The maximum speed is $x_{m} \omega=x_{m} 2 \pi / T=11 \mathrm{~m} / \mathrm{s}$.
(b) The maximum acceleration is $x_{m} \omega^{2}=x_{m}(2 \pi / T)^{2}=1.7 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
67. Setting $15 \mathrm{~mJ}(0.015 \mathrm{~J})$ equal to the maximum kinetic energy leads to $\mathrm{v}_{\max }=0.387$ m / s. Then one can use either an "exact" approach using $\mathrm{v}_{\max }=\sqrt{2 g L\left(1-\cos \left(\theta_{\max }\right)\right)}$ or the "SHM" approach where

$$
v_{\max }=L \omega_{\max }=L \omega \theta_{\max }=L \sqrt{g / L} \theta_{\max }
$$

to find L. Both approaches lead to $L=1.53 \mathrm{~m}$.
68. Its total mechanical energy is equal to its maximum potential energy $\frac{1}{2} k x_{m}{ }^{2}$, and its potential energy at $t=0$ is $\frac{1}{2} k x_{0}^{2}$ where $x_{0}=x_{m} \cos (\pi / 5)$ in this problem. The ratio is therefore $\cos ^{2}(\pi / 5)=0.655=65.5 \%$.
69. (a) We note that $\omega=\sqrt{k / m}=\sqrt{1500 / 0.055}=165.1 \mathrm{rad} / \mathrm{s}$. We consider the most direct path in each part of this problem. That is, we consider in part (a) the motion directly from $x_{1}=+0.800 x_{m}$ at time t_{1} to $x_{2}=+0.600 x_{m}$ at time $t_{2} \quad$ (as opposed to, say, the block moving from $x_{1}=+0.800 x_{m}$ through $x=+0.600 x_{m}$, through $x=0$, reaching $x=-x_{m}$ and after returning back through $x=0$ then getting to $x_{2}=+0.600 x_{m}$). Eq. 15-3 leads to

$$
\begin{aligned}
& \omega t_{1}+\phi=\cos ^{-1}(0.800)=0.6435 \mathrm{rad} \\
& \omega t_{2}+\phi=\cos ^{-1}(0.600)=0.9272 \mathrm{rad}
\end{aligned}
$$

Subtracting the first of these equations from the second leads to

$$
\omega\left(t_{2}-t_{1}\right)=0.9272-0.6435=0.2838 \mathrm{rad}
$$

Using the value for ω computed earlier, we find $t_{2}-t_{1}=1.72 \times 10^{-3} \mathrm{~s}$.
(b) Let t_{3} be when the block reaches $x=-0.800 x_{m}$ in the direct sense discussed above. Then the reasoning used in part (a) leads here to

$$
\omega\left(t_{3}-t_{1}\right)=(2.4981-0.6435) \mathrm{rad}=1.8546 \mathrm{rad}
$$

and thus to $t_{3}-t_{1}=11.2 \times 10^{-3} \mathrm{~s}$.
70. Since $\omega=2 \pi f$ where $f=2.2 \mathrm{~Hz}$, we find that the angular frequency is $\omega=13.8 \mathrm{rad} / \mathrm{s}$. Thus, with $x=0.010 \mathrm{~m}$, the acceleration amplitude is $a_{m}=x_{m} \omega^{2}=1.91 \mathrm{~m} / \mathrm{s}^{2}$. We set up a ratio:

$$
a_{m}=\left(\frac{a_{m}}{g}\right) g=\left(\frac{1.91}{9.8}\right) g=0.19 g .
$$

71. (a) Assume the bullet becomes embedded and moves with the block before the block moves a significant distance. Then the momentum of the bullet-block system is conserved during the collision. Let m be the mass of the bullet, M be the mass of the block, v_{0} be the initial speed of the bullet, and v be the final speed of the block and bullet. Conservation of momentum yields $m v_{0}=(m+M) v$, so

$$
v=\frac{m v_{0}}{m+M}=\frac{(0.050 \mathrm{~kg})(150 \mathrm{~m} / \mathrm{s})}{0.050 \mathrm{~kg}+4.0 \mathrm{~kg}}=1.85 \mathrm{~m} / \mathrm{s} .
$$

When the block is in its initial position the spring and gravitational forces balance, so the spring is elongated by Mg / k. After the collision, however, the block oscillates with simple harmonic motion about the point where the spring and gravitational forces balance with the bullet embedded. At this point the spring is elongated a distance $\ell=(M+m) g / k$, somewhat different from the initial elongation. Mechanical energy is conserved during the oscillation. At the initial position, just after the bullet is embedded, the kinetic energy is $\frac{1}{2}(M+m) v^{2}$ and the elastic potential energy is $\frac{1}{2} k(M g / k)^{2}$. We take the gravitational potential energy to be zero at this point. When the block and bullet reach the highest point in their motion the kinetic energy is zero. The block is then a distance y_{m} above the position where the spring and gravitational forces balance. Note that y_{m} is the amplitude of the motion. The spring is compressed by $y_{m}-\ell$, so the elastic potential energy is $\frac{1}{2} k\left(y_{m}-\ell\right)^{2}$. The gravitational potential energy is $(M+m) g y_{m}$. Conservation of mechanical energy yields

$$
\frac{1}{2}(M+m) v^{2}+\frac{1}{2} k\left(\frac{M g}{k}\right)^{2}=\frac{1}{2} k\left(y_{m}-\ell\right)^{2}+(M+m) g y_{m} .
$$

We substitute $\ell=(M+m) g / k$. Algebraic manipulation leads to

$$
\begin{aligned}
y_{m} & =\sqrt{\frac{(m+M) v^{2}}{k}-\frac{m g^{2}}{k^{2}}(2 M+m)} \\
& =\sqrt{\frac{(0.050 \mathrm{~kg}+4.0 \mathrm{~kg})(1.85 \mathrm{~m} / \mathrm{s})^{2}}{500 \mathrm{~N} / \mathrm{m}}-\frac{(0.050 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}{(500 \mathrm{~N} / \mathrm{m})^{2}}[2(4.0 \mathrm{~kg})+0.050 \mathrm{~kg}]} \\
& =0.166 \mathrm{~m} .
\end{aligned}
$$

(b) The original energy of the bullet is $E_{0}=\frac{1}{2} m v_{0}^{2}=\frac{1}{2}(0.050 \mathrm{~kg})(150 \mathrm{~m} / \mathrm{s})^{2}=563 \mathrm{~J}$. The kinetic energy of the bullet-block system just after the collision is

$$
E=\frac{1}{2}(m+M) v^{2}=\frac{1}{2}(0.050 \mathrm{~kg}+4.0 \mathrm{~kg})(1.85 \mathrm{~m} / \mathrm{s})^{2}=6.94 \mathrm{~J} .
$$

Since the block does not move significantly during the collision, the elastic and gravitational potential energies do not change. Thus, E is the energy that is transferred. The ratio is $E / E_{0}=(6.94 \mathrm{~J}) /(563 \mathrm{~J})=0.0123$ or 1.23%.
72. (a) The rotational inertia of a hoop is $I=m R^{2}$, and the energy of the system becomes

$$
E=\frac{1}{2} I \omega^{2}+\frac{1}{2} k x^{2}
$$

and θ is in radians. We note that $r \omega=v$ (where $v=d x / d t$). Thus, the energy becomes

$$
E=\frac{1}{2}\left(\frac{m R^{2}}{r^{2}}\right) v^{2}+\frac{1}{2} k x^{2}
$$

which looks like the energy of the simple harmonic oscillator discussed in §15-4 if we identify the mass m in that section with the term $m R^{2} / r^{2}$ appearing in this problem. Making this identification, Eq. 15-12 yields

$$
\omega=\sqrt{\frac{k}{m R^{2} / r^{2}}}=\frac{r}{R} \sqrt{\frac{k}{m}} .
$$

(b) If $r=R$ the result of part (a) reduces to $\omega=\sqrt{k / m}$.
(c) And if $r=0$ then $\omega=0$ (the spring exerts no restoring torque on the wheel so that it is not brought back towards its equilibrium position).
73. (a) The graphs suggest that $T=0.40 \mathrm{~s}$ and $\kappa=4 / 0.2=0.02 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{rad}$. With these values, Eq. 15-23 can be used to determine the rotational inertia:

$$
I=\kappa T^{2} / 4 \pi^{2}=8.11 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{2}
$$

(b) We note (from the graph) that $\theta_{\max }=0.20$ rad. Setting the maximum kinetic energy $\left(\frac{1}{2} I \omega_{\max }{ }^{2}\right.$) equal to the maximum potential energy (see the hint in the problem) leads to $\omega_{\max }=\theta_{\max } \sqrt{\kappa / I}=3.14 \mathrm{rad} / \mathrm{s}$.
74. (a) Let $\mathrm{v}_{\max }$ be the maximum speed attained during the first oscillation. By taking the derivative of Eq. 15-42 and using the approximations available to us from the fact that b $<\sqrt{k m}$ (see section $15-8$), then we have $\mathrm{v}_{\max } \approx \omega x_{m} \mathrm{e}^{-b t / 2 m}$ where $\omega=\sqrt{k / m}$. The maximum x occurs at a different time than the maximum speed so that when we consider the ratio $b \mathrm{v}_{\text {max }} / k x_{\max }=(b / k) \omega \mathrm{e}^{-b \Delta t / 2 m}$ we must account for that time difference through the Δt term (corresponding to a quarter-period) in the exponential. Thus, this expression can be reduced to

$$
\frac{b \mathrm{v}_{\max }}{k x_{\max }}=\frac{b}{\sqrt{k m}} \exp (-\pi b /(4 \sqrt{k m}))
$$

Using the data from that Sample Problem (converted to SI units) we get 0.015 for this ratio.
(b) Due to the small level of damping in this problem, the answer is no.
75. (a) Hooke's law readily yields $k=(15 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) /(0.12 \mathrm{~m})=1225 \mathrm{~N} / \mathrm{m}$. Rounding to three significant figures, the spring constant is therefore $1.23 \mathrm{kN} / \mathrm{m}$.
(b) We are told $f=2.00 \mathrm{~Hz}=2.00$ cycles $/ \mathrm{sec}$. Since a cycle is equivalent to 2π radians, we have $\omega=2 \pi(2.00)=4 \pi \mathrm{rad} / \mathrm{s}$ (understood to be valid to three significant figures). Using Eq. 15-12, we find

$$
\omega=\sqrt{\frac{k}{m}} \Rightarrow m=\frac{1225 \mathrm{~N} / \mathrm{m}}{(4 \pi \mathrm{rad} / \mathrm{s})^{2}}=7.76 \mathrm{~kg} .
$$

Consequently, the weight of the package is $m g=76.0 \mathrm{~N}$.
76. (a) The problem gives the frequency $f=440 \mathrm{~Hz}$, where the SI unit abbreviation Hz stands for Hertz, which means a cycle-per-second. The angular frequency ω is similar to frequency except that ω is in radians-per-second. Recalling that 2π radians are equivalent to a cycle, we have $\omega=2 \pi f \approx 2.8 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity amplitude $v_{m}=\omega x_{m}$. With $x_{m}=0.00075 \mathrm{~m}$ and the above value for ω, this expression yields $v_{m}=2.1 \mathrm{~m} / \mathrm{s}$.
(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration amplitude $a_{m}=\omega^{2} x_{m}$, which (if the more precise value $\omega=2765 \mathrm{rad} / \mathrm{s}$ is used) yields $a_{m}=$ $5.7 \mathrm{~km} / \mathrm{s}$.
77. We use $v_{m}=\omega x_{m}=2 \pi f x_{m}$, where the frequency is $180 /(60 \mathrm{~s})=3.0 \mathrm{~Hz}$ and the amplitude is half the stroke, or $x_{m}=0.38 \mathrm{~m}$. Thus, $v_{m}=2 \pi(3.0 \mathrm{~Hz})(0.38 \mathrm{~m})=7.2 \mathrm{~m} / \mathrm{s}$.
78. (a) The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is $a_{m}=\omega^{2} x_{m}$, where ω is the angular frequency ($\omega=2 \pi f$ since there are 2π radians in one cycle). Therefore, in this circumstance, we obtain

$$
a_{m}=(2 \pi(1000 \mathrm{~Hz}))^{2}(0.00040 \mathrm{~m})=1.6 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) Similarly, in the discussion after Eq. 15-6, we find $v_{m}=\omega x_{m}$ so that

$$
v_{m}=(2 \pi(1000 \mathrm{~Hz}))(0.00040 \mathrm{~m})=2.5 \mathrm{~m} / \mathrm{s} .
$$

(c) From Eq. 15-8, we have (in absolute value)

$$
|a|=(2 \pi(1000 \mathrm{~Hz}))^{2}(0.00020 \mathrm{~m})=7.9 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}
$$

(d) This can be approached with the energy methods of $\S 15-4$, but here we will use trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots stemming from the square root,

$$
\sin (\omega t+\phi)= \pm \sqrt{1-\cos ^{2}(\omega t+\phi)} \Rightarrow-\frac{v}{\omega x_{m}}= \pm \sqrt{1-\frac{x^{2}}{x_{m}^{2}}}
$$

Taking absolute values and simplifying, we obtain

$$
|v|=2 \pi f \sqrt{x_{m}^{2}-x^{2}}=2 \pi(1000) \sqrt{0.00040^{2}-0.00020^{2}}=2.2 \mathrm{~m} / \mathrm{s}
$$

79. The magnitude of the downhill component of the gravitational force acting on each ore car is

$$
w_{x}=(10000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin \theta
$$

where $\theta=30^{\circ}$ (and it is important to have the calculator in degrees mode during this problem). We are told that a downhill pull of $3 \omega_{x}$ causes the cable to stretch $x=0.15 \mathrm{~m}$. Since the cable is expected to obey Hooke's law, its spring constant is

$$
k=\frac{3 w_{x}}{x}=9.8 \times 10^{5} \mathrm{~N} / \mathrm{m} .
$$

(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 15-12 (divided by 2π).

$$
f=\frac{1}{2 \pi}=\sqrt{\frac{9.8 \times 10^{5} \mathrm{~N} / \mathrm{m}}{20000 \mathrm{~kg}}}=1.1 \mathrm{~Hz}
$$

(b) The difference between the equilibrium positions of the end of the cable when supporting two as opposed to three cars is

$$
\Delta x=\frac{3 w_{x}-2 w_{x}}{k}=0.050 \mathrm{~m} .
$$

80. (a) First consider a single spring with spring constant k and unstretched length L. One end is attached to a wall and the other is attached to an object. If it is elongated by Δx the magnitude of the force it exerts on the object is $F=k \Delta x$. Now consider it to be two springs, with spring constants k_{1} and k_{2}, arranged so spring 1 is attached to the object. If spring 1 is elongated by Δx_{1} then the magnitude of the force exerted on the object is $F=$ $k_{1} \Delta x_{1}$. This must be the same as the force of the single spring, so $k \Delta x=k_{1} \Delta x_{1}$. We must determine the relationship between Δx and Δx_{1}. The springs are uniform so equal unstretched lengths are elongated by the same amount and the elongation of any portion of the spring is proportional to its unstretched length. This means spring 1 is elongated by $\Delta x_{1}=C L_{1}$ and spring 2 is elongated by $\Delta x_{2}=C L_{2}$, where C is a constant of proportionality. The total elongation is

$$
\Delta x=\Delta x_{1}+\Delta x_{2}=C\left(L_{1}+L_{2}\right)=C L_{2}(n+1)
$$

where $L_{1}=n L_{2}$ was used to obtain the last form. Since $L_{2}=L_{1} / n$, this can also be written $\Delta x=C L_{1}(n+1) / n$. We substitute $\Delta x_{1}=C L_{1}$ and $\Delta x=C L_{1}(n+1) / n$ into $k \Delta x=k_{1} \Delta x_{1}$ and solve for k_{1}. With $k=8600 \mathrm{~N} / \mathrm{m}$ and $n=L_{1} / L_{2}=0.70$, we obtain

$$
k_{1}=\left(\frac{n+1}{n}\right) k=\left(\frac{0.70+1.0}{0.70}\right)(8600 \mathrm{~N} / \mathrm{m})=20886 \mathrm{~N} / \mathrm{m} \approx 2.1 \times 10^{4} \mathrm{~N} / \mathrm{m}
$$

(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 exerts a force on it. Now $k \Delta x=k_{2} \Delta x_{2}$. We use $\Delta x_{2}=C L_{2}$ and $\Delta x=C L_{2}(n+1)$, then solve for k_{2}. The result is $k_{2}=k(n+1)$.

$$
k_{2}=(n+1) k=(0.70+1.0)(8600 \mathrm{~N} / \mathrm{m})=14620 \mathrm{~N} / \mathrm{m} \approx 1.5 \times 10^{4} \mathrm{~N} / \mathrm{m}
$$

(c) To find the frequency when spring 1 is attached to mass m, we replace k in $(1 / 2 \pi) \sqrt{k / m}$ with $k(n+1) / n$. With $f=(1 / 2 \pi) \sqrt{k / m}$, we obtain, for $f=200 \mathrm{~Hz}$ and $n=$ 0.70

$$
f_{1}=\frac{1}{2 \pi} \sqrt{\frac{(n+1) k}{n m}}=\sqrt{\frac{n+1}{n}} f=\sqrt{\frac{0.70+1.0}{0.70}}(200 \mathrm{~Hz})=3.1 \times 10^{2} \mathrm{~Hz} .
$$

(d) To find the frequency when spring 2 is attached to the mass, we replace k with $k(n+1)$ to obtain

$$
f_{2}=\frac{1}{2 \pi} \sqrt{\frac{(n+1) k}{m}}=\sqrt{n+1} f=\sqrt{0.70+1.0}(200 \mathrm{~Hz})=2.6 \times 10^{2} \mathrm{~Hz}
$$

81. (a) The spring stretches until the magnitude of its upward force on the block equals the magnitude of the downward force of gravity: $k y=m g$, where $y=0.096 \mathrm{~m}$ is the elongation of the spring at equilibrium, k is the spring constant, and $m=1.3 \mathrm{~kg}$ is the mass of the block. Thus

$$
k=m g / y=(1.3)(9.8) / 0.096=1.3 \times 10^{2} \mathrm{~N} / \mathrm{m} .
$$

(b) The period is given by $T=1 / f=2 \pi / \omega=2 \pi \sqrt{m / k}=2 \pi \sqrt{1.3 / 133}=0.62 \mathrm{~s}$.
(c) The frequency is $f=1 / T=1 / 0.62 \mathrm{~s}=1.6 \mathrm{~Hz}$.
(d) The block oscillates in simple harmonic motion about the equilibrium point determined by the forces of the spring and gravity. It is started from rest 5.0 cm below the equilibrium point so the amplitude is 5.0 cm .
(e) The block has maximum speed as it passes the equilibrium point. At the initial position, the block is not moving but it has potential energy

$$
U_{i}=-m g y_{i}+\frac{1}{2} k y_{i}^{2}=-(1.3)(9.8)(0.146)+\frac{1}{2}(133)(0.146)^{2}=-0.44 \mathrm{~J} .
$$

When the block is at the equilibrium point, the elongation of the spring is $y=9.6 \mathrm{~cm}$ and the potential energy is

$$
U_{f}=-m g y+\frac{1}{2} k y^{2}=-(1.3)(9.8)(0.096)+\frac{1}{2}(133)(0.096)^{2}=-0.61 \mathrm{~J} .
$$

We write the equation for conservation of energy as $U_{i}=U_{f}+\frac{1}{2} m v^{2}$ and solve for v :

$$
v=\sqrt{\frac{2\left(U_{i}-U_{f}\right)}{m}}=\sqrt{\frac{2(-0.44 \mathrm{~J}+0.61 \mathrm{~J})}{1.3 \mathrm{~kg}}}=0.51 \mathrm{~m} / \mathrm{s}
$$

82. (a) The rotational inertia is $I=\frac{1}{2} M R^{2}=\frac{1}{2}(3.00 \mathrm{~kg})(0.700 \mathrm{~m})^{2}=0.735 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
(b) Using Eq. 15-22 (in absolute value), we find

$$
\kappa=\frac{\tau}{\theta}=\frac{0.0600 \mathrm{~N} \cdot \mathrm{~m}}{2.5 \mathrm{rad}}=0.0240 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{rad}
$$

(c) Using Eq. 15-5, Eq. 15-23 leads to

$$
\omega=\sqrt{\frac{\kappa}{I}}=\sqrt{\frac{0.024 \mathrm{~N} \cdot \mathrm{~m}}{0.735 \mathrm{~kg} \cdot \mathrm{~m}^{2}}}=0.181 \mathrm{rad} / \mathrm{s} .
$$

83. (a) We use Eq. 15-29 and the parallel-axis theorem $I=I_{\mathrm{cm}}+m h^{2}$ where $h=R=0.126$ m . For a solid disk of mass m, the rotational inertia about its center of mass is $I_{\mathrm{cm}}=m R^{2} / 2$. Therefore,

$$
T=2 \pi \sqrt{\frac{m R^{2} / 2+m R^{2}}{m g R}}=2 \pi \sqrt{\frac{3 R}{2 g}}=0.873 \mathrm{~s} .
$$

(b) We seek a value of $r \neq R$ such that

$$
2 \pi \sqrt{\frac{R^{2}+2 r^{2}}{2 g r}}=2 \pi \sqrt{\frac{3 R}{2 g}}
$$

and are led to the quadratic formula:

$$
r=\frac{3 R \pm \sqrt{(3 R)^{2}-8 R^{2}}}{4}=R \quad \text { or } \frac{R}{2} .
$$

Thus, our result is $r=0.126 / 2=0.0630 \mathrm{~m}$.
84. For simple harmonic motion, Eq. 15-24 must reduce to

$$
\tau=-L\left(F_{g} \sin \theta\right) \rightarrow-L\left(F_{g} \theta\right)
$$

where θ is in radians. We take the percent difference (in absolute value)

$$
\left|\frac{\left(-L F_{g} \sin \theta\right)-\left(-L F_{g} \theta\right)}{-L F_{g} \sin \theta}\right|=\left|1-\frac{\theta}{\sin \theta}\right|
$$

and set this equal to 0.010 (corresponding to 1.0%). In order to solve for θ (since this is not possible "in closed form"), several approaches are available. Some calculators have built-in numerical routines to facilitate this, and most math software packages have this capability. Alternatively, we could expand $\sin \theta \approx \theta-\theta^{3} / 6$ (valid for small θ) and thereby find an approximate solution (which, in turn, might provide a seed value for a numerical search). Here we show the latter approach:

$$
\left|1-\frac{\theta}{\theta-\theta^{3} / 6}\right| \approx 0.010 \Rightarrow \frac{1}{1-\theta^{2} / 6} \approx 1.010
$$

which leads to $\theta \approx \sqrt{6(0.01 / 1.01)}=0.24 \mathrm{rad}=14.0^{\circ}$. A more accurate value (found numerically) for the θ value which results in a 1.0% deviation is 13.986°.
85. (a) The frequency for small amplitude oscillations is $f=(1 / 2 \pi) \sqrt{g / L}$, where L is the length of the pendulum. This gives

$$
f=(1 / 2 \pi) \sqrt{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) /(2.0 \mathrm{~m})}=0.35 \mathrm{~Hz} .
$$

(b) The forces acting on the pendulum are the tension force \vec{T} of the rod and the force of gravity $m \vec{g}$. Newton's second law yields $\vec{T}+m \vec{g}=m \vec{a}$, where m is the mass and \vec{a} is the acceleration of the pendulum. Let $\vec{a}=\vec{a}_{e}+\vec{a}^{\prime}$, where \vec{a}_{e} is the acceleration of the elevator and \vec{a}^{\prime} is the acceleration of the pendulum relative to the elevator. Newton's second law can then be written $m\left(\vec{g}-\vec{a}_{e}\right)+\vec{T}=m \vec{a}^{\prime}$. Relative to the elevator the motion is exactly the same as it would be in an inertial frame where the acceleration due to gravity is $\vec{g}-\vec{a}_{e}$. Since \vec{g} and \vec{a}_{e} are along the same line and in opposite directions we can find the frequency for small amplitude oscillations by replacing g with $g+a_{e}$ in the expression $f=(1 / 2 \pi) \sqrt{g / L}$. Thus

$$
f=\frac{1}{2 \pi} \sqrt{\frac{g+a_{e}}{L}}=\frac{1}{2 \pi} \sqrt{\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}+2.0 \mathrm{~m} / \mathrm{s}^{2}}{2.0 \mathrm{~m}}}=0.39 \mathrm{~Hz}
$$

(c) Now the acceleration due to gravity and the acceleration of the elevator are in the same direction and have the same magnitude. That is, $\vec{g}-\vec{a}_{e}=0$. To find the frequency for small amplitude oscillations, replace g with zero in $f=(1 / 2 \pi) \sqrt{g / L}$. The result is zero. The pendulum does not oscillate.
86. Since the centripetal acceleration is horizontal and Earth's gravitational \vec{g} is downward, we can define the magnitude of an "effective" gravitational acceleration using the Pythagorean theorem:

$$
g_{\text {eff }}=\sqrt{g^{2}+\left(\frac{v^{2}}{R}\right)^{2}} .
$$

Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to

$$
f=\frac{1}{2 \pi} \sqrt{\frac{g_{e f f}}{L}}=\frac{1}{2 \pi} \sqrt{\frac{\sqrt{g^{2}+v^{4} / R^{2}}}{L}} .
$$

With $v=70 \mathrm{~m} / \mathrm{s}, R=50 \mathrm{~m}$, and $L=0.20 \mathrm{~m}$, we have $f=3.53 \mathrm{~s}^{-1}=3.53 \mathrm{~Hz}$.
87. Since the particle has zero speed (momentarily) at $x \neq 0$, then it must be at its turning point; thus, $x_{0}=x_{m}=0.37 \mathrm{~cm}$. It is straightforward to infer from this that the phase constant ϕ in Eq. $15-2$ is zero. Also, $f=0.25 \mathrm{~Hz}$ is given, so we have $\omega=2 \pi f=\pi / 2 \mathrm{rad} / \mathrm{s}$. The variable t is understood to take values in seconds.
(a) The period is $T=1 / f=4.0 \mathrm{~s}$.
(b) As noted above, $\omega=\pi / 2 \mathrm{rad} / \mathrm{s}$.
(c) The amplitude, as observed above, is 0.37 cm .
(d) Eq. 15-3 becomes $x=(0.37 \mathrm{~cm}) \cos (\pi t / 2)$.
(e) The derivative of x is $v=-(0.37 \mathrm{~cm} / \mathrm{s})(\pi / 2) \sin (\pi t / 2) \approx(-0.58 \mathrm{~cm} / \mathrm{s}) \sin (\pi t / 2)$.
(f) From the previous part, we conclude $v_{m}=0.58 \mathrm{~cm} / \mathrm{s}$.
(g) The acceleration-amplitude is $a_{m}=\omega^{2} x_{m}=0.91 \mathrm{~cm} / \mathrm{s}^{2}$.
(h) Making sure our calculator is in radians mode, we find $x=(0.37) \cos (\pi(3.0) / 2)=0$. It is important to avoid rounding off the value of π in order to get precisely zero, here.
(i) With our calculator still in radians mode, we obtain $v=-(0.58) \sin (\pi(3.0) / 2)=0.58$ cm / s.
88. Since $T=0.500 \mathrm{~s}$, we note that $\omega=2 \pi / T=4 \pi \mathrm{rad} / \mathrm{s}$. We work with SI units, so $m=$ 0.0500 kg and $v_{m}=0.150 \mathrm{~m} / \mathrm{s}$.
(a) Since $\omega=\sqrt{k / m}$, the spring constant is

$$
k=\omega^{2} m=(4 \pi)^{2}(0.0500)=7.90 \mathrm{~N} / \mathrm{m} .
$$

(b) We use the relation $v_{m}=x_{m} \omega$ and obtain

$$
x_{m}=\frac{v_{m}}{\omega}=\frac{0.150}{4 \pi}=0.0119 \mathrm{~m} .
$$

(c) The frequency is $f=\omega / 2 \pi=2.00 \mathrm{~Hz}$ (which is equivalent to $f=1 / T$).
89. (a) Hooke's law readily yields $(0.300 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) /(0.0200 \mathrm{~m})=147 \mathrm{~N} / \mathrm{m}$.
(b) With $m=2.00 \mathrm{~kg}$, the period is

$$
T=2 \pi \sqrt{\frac{m}{k}}=0.733 \mathrm{~s} \mathrm{.}
$$

90. Using $\Delta m=2.0 \mathrm{~kg}, T_{1}=2.0 \mathrm{~s}$ and $T_{2}=3.0 \mathrm{~s}$, we write

$$
T_{1}=2 \pi \sqrt{\frac{m}{k}} \quad \text { and } \quad T_{2}=2 \pi \sqrt{\frac{m+\Delta m}{k}}
$$

Dividing one relation by the other, we obtain

$$
\frac{T_{2}}{T_{1}}=\sqrt{\frac{m+\Delta m}{m}}
$$

which (after squaring both sides) simplifies to

$$
m=\frac{\Delta m}{\left(T_{2} / T_{1}\right)^{2}-1}=1.6 \mathrm{~kg} .
$$

91. (a) Comparing with Eq. $15-3$, we see $\omega=10 \mathrm{rad} / \mathrm{s}$ in this problem. Thus, $f=\omega / 2 \pi=$ 1.6 Hz .
(b) Since $v_{m}=\omega x_{m}$ and $x_{m}=10 \mathrm{~cm}$ (see Eq. 15-3), then $v_{m}=(10 \mathrm{rad} / \mathrm{s})(10 \mathrm{~cm})=100 \mathrm{~cm} / \mathrm{s}$ or $1.0 \mathrm{~m} / \mathrm{s}$.
(c) The maximum occurs at $t=0$.
(d) Since $a_{m}=\omega^{2} x_{m}$ then $v_{m}=(10 \mathrm{rad} / \mathrm{s})^{2}(10 \mathrm{~cm})=1000 \mathrm{~cm} / \mathrm{s}^{2}$ or $10 \mathrm{~m} / \mathrm{s}^{2}$.
(e) The acceleration extremes occur at the displacement extremes: $x= \pm x_{m}$ or $x= \pm 10 \mathrm{~cm}$.
(f) Using Eq. 15-12, we find

$$
\omega=\sqrt{\frac{k}{m}} \Rightarrow k=(0.10 \mathrm{~kg})(10 \mathrm{rad} / \mathrm{s})^{2}=10 \mathrm{~N} / \mathrm{m}
$$

Thus, Hooke's law gives $F=-k x=-10 x$ in SI units.
92. (a) The Hooke's law force (of magnitude $(100)(0.30)=30 \mathrm{~N}$) is directed upward and the weight $(20 \mathrm{~N})$ is downward. Thus, the net force is 10 N upward.
(b) The equilibrium position is where the upward Hooke's law force balances the weight, which corresponds to the spring being stretched (from unstretched length) by $20 \mathrm{~N} / 100$ $\mathrm{N} / \mathrm{m}=0.20 \mathrm{~m}$. Thus, relative to the equilibrium position, the block (at the instant described in part (a)) is at what one might call the bottom turning point (since $v=0$) at x $=-x_{m}$ where the amplitude is $x_{m}=0.30-0.20=0.10 \mathrm{~m}$.
(c) Using Eq. 15-13 with $m=W / g \approx 2.0 \mathrm{~kg}$, we have

$$
T=2 \pi \sqrt{\frac{m}{k}}=0.90 \mathrm{~s}
$$

(d) The maximum kinetic energy is equal to the maximum potential energy $\frac{1}{2} k x_{m}^{2}$. Thus,

$$
K_{m}=U_{m}=\frac{1}{2}(100 \mathrm{~N} / \mathrm{m})(0.10 \mathrm{~m})^{2}=0.50 \mathrm{~J} .
$$

93. (a) The graph makes it clear that the period is $T=0.20 \mathrm{~s}$.
(b) Eq. 15-13 states

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Thus, using the result from part (a) with $k=200 \mathrm{~N} / \mathrm{m}$, we obtain $m=0.203 \approx 0.20 \mathrm{~kg}$.
(c) The graph indicates that the speed is (momentarily) zero at $t=0$, which implies that the block is at $x_{0}= \pm x_{m}$. From the graph we also note that the slope of the velocity curve (hence, the acceleration) is positive at $t=0$, which implies (from $m a=-k x$) that the value of x is negative. Therefore, with $x_{m}=0.20 \mathrm{~m}$, we obtain $x_{0}=-0.20 \mathrm{~m}$.
(d) We note from the graph that $v=0$ at $t=0.10 \mathrm{~s}$, which implied $a= \pm a_{m}= \pm \omega^{2} x_{m}$. Since acceleration is the instantaneous slope of the velocity graph, then (looking again at the graph) we choose the negative sign. Recalling $\omega^{2}=k / m$ we obtain $a=-197 \approx-2.0 \times 10^{2}$ $\mathrm{m} / \mathrm{s}^{2}$.
(e) The graph shows $v_{m}=6.28 \mathrm{~m} / \mathrm{s}$, so

$$
K_{m}=\frac{1}{2} m v_{m}^{2}=4.0 \mathrm{~J}
$$

94. (a) From the graph, it is clear that $x_{m}=0.30 \mathrm{~m}$.
(b) With $F=-k x$, we see k is the (negative) slope of the graph — which is $75 / 0.30=250$ N / m. Plugging this into Eq. 15-13 yields

$$
T=2 \pi \sqrt{\frac{m}{k}}=0.28 \mathrm{~s} .
$$

(c) As discussed in §15-2, the maximum acceleration is

$$
a_{m}=\omega^{2} x_{m}=\frac{k}{m} x_{m}=1.5 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2} .
$$

Alternatively, we could arrive at this result using $a_{m}=(2 \pi / T)^{2} x_{m}$.
(d) Also in $\S 15-2$ is $v_{m}=\omega x_{m}$ so that the maximum kinetic energy is

$$
K_{m}=\frac{1}{2} m v_{m}^{2}=\frac{1}{2} m \omega^{2} x_{m}^{2}=\frac{1}{2} k x_{m}^{2}
$$

which yields $11.3 \approx 11 \mathrm{~J}$. We note that the above manipulation reproduces the notion of energy conservation for this system (maximum kinetic energy being equal to the maximum potential energy).
95. (a) We require $U=\frac{1}{2} E$ at some value of x. Using Eq. 15-21, this becomes

$$
\frac{1}{2} k x^{2}=\frac{1}{2}\left(\frac{1}{2} k x_{m}^{2}\right) \Rightarrow x=\frac{x_{m}}{\sqrt{2}} .
$$

We compare the given expression x as a function of t with Eq. 15-3 and find $x_{m}=5.0 \mathrm{~m}$. Thus, the value of x we seek is $x=5.0 / \sqrt{2} \approx 3.5 \mathrm{~m}$.
(b) We solve the given expression (with $x=5.0 / \sqrt{2}$), making sure our calculator is in radians mode:

$$
t=\frac{\pi}{4}+\frac{3}{\pi} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=1.54 \mathrm{~s}
$$

Since we are asked for the interval $t_{\mathrm{eq}}-t$ where t_{eq} specifies the instant the particle passes through the equilibrium position, then we set $x=0$ and find

$$
t_{\mathrm{eq}}=\frac{\pi}{4}+\frac{3}{\pi} \cos ^{-1}(0)=2.29 \mathrm{~s} .
$$

Consequently, the time interval is $t_{\mathrm{eq}}-t=0.75 \mathrm{~s}$.
96. (a) The potential energy at the turning point is equal (in the absence of friction) to the total kinetic energy (translational plus rotational) as it passes through the equilibrium position:

$$
\begin{aligned}
\frac{1}{2} k x_{m}^{2} & =\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{2} I_{\mathrm{cm}}^{2} \omega^{2}=\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)\left(\frac{v_{\mathrm{cm}}}{R}\right)^{2} \\
& =\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{4} M v_{\mathrm{cm}}^{2}=\frac{3}{4} M v_{\mathrm{cm}}^{2}
\end{aligned}
$$

which leads to $M v_{\mathrm{cm}}^{2}=2 k x_{m}^{2} / 3=0.125 \mathrm{~J}$. The translational kinetic energy is therefore $\frac{1}{2} M v_{\mathrm{cm}}^{2}=k x_{m}^{2} / 3=0.0625 \mathrm{~J}$.
(b) And the rotational kinetic energy is $\frac{1}{4} M v_{\mathrm{cm}}^{2}=k x_{m}^{2} / 6=0.03125 \mathrm{~J} \approx 3.13 \times 10^{-2} \mathrm{~J}$.
(c) In this part, we use v_{cm} to denote the speed at any instant (and not just the maximum speed as we had done in the previous parts). Since the energy is constant, then

$$
\frac{d E}{d t}=\frac{d}{d t}\left(\frac{3}{4} M v_{\mathrm{cm}}^{2}\right)+\frac{d}{d t}\left(\frac{1}{2} k x^{2}\right)=\frac{3}{2} M v_{\mathrm{cm}} a_{\mathrm{cm}}+k x v_{\mathrm{cm}}=0
$$

which leads to

$$
a_{\mathrm{cm}}=-\left(\frac{2 k}{3 M}\right) x .
$$

Comparing with Eq. $15-8$, we see that $\omega=\sqrt{2 k / 3 M}$ for this system. Since $\omega=2 \pi / T$, we obtain the desired result: $T=2 \pi \sqrt{3 M / 2 k}$.
97. We note that for a horizontal spring, the relaxed position is the equilibrium position (in a regular simple harmonic motion setting); thus, we infer that the given $v=5.2 \mathrm{~m} / \mathrm{s}$ at $x=0$ is the maximum value v_{m} (which equals ωx_{m} where $\omega=\sqrt{k / m}=20 \mathrm{rad} / \mathrm{s}$).
(a) Since $\omega=2 \pi f$, we find $f=3.2 \mathrm{~Hz}$.
(b) We have $v_{m}=5.2=(20) x_{m}$, which leads to $x_{m}=0.26 \mathrm{~m}$.
(c) With meters, seconds and radians understood,

$$
\begin{aligned}
& x=0.26 \cos (20 t+\phi) \\
& v=-5.2 \sin (20 t+\phi) .
\end{aligned}
$$

The requirement that $x=0$ at $t=0$ implies (from the first equation above) that either $\phi=$ $+\pi / 2$ or $\phi=-\pi / 2$. Only one of these choices meets the further requirement that $v>0$ when $t=0$; that choice is $\phi=-\pi / 2$. Therefore,

$$
x=0.26 \cos \left(20 t-\frac{\pi}{2}\right)=0.26 \sin (20 t)
$$

98. The distance from the relaxed position of the bottom end of the spring to its equilibrium position when the body is attached is given by Hooke's law:

$$
\Delta x=F / k=(0.20 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) /(19 \mathrm{~N} / \mathrm{m})=0.103 \mathrm{~m} .
$$

(a) The body, once released, will not only fall through the Δx distance but continue through the equilibrium position to a "turning point" equally far on the other side. Thus, the total descent of the body is $2 \Delta x=0.21 \mathrm{~m}$.
(b) Since $f=\omega / 2 \pi$, Eq. $15-12$ leads to

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=1.6 \mathrm{~Hz}
$$

(c) The maximum distance from the equilibrium position is the amplitude: $x_{m}=\Delta x=0.10$ m.
99. The time for one cycle is $T=(50 \mathrm{~s}) / 20=2.5 \mathrm{~s}$. Thus, from Eq. $15-23$, we find

$$
I=\kappa\left(\frac{T}{2 \pi}\right)^{2}=(0.50)\left(\frac{2.5}{2 \pi}\right)^{2}=0.079 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

100. (a) Eq. 15-21 leads to

$$
E=\frac{1}{2} k x_{m}^{2} \Rightarrow x_{m}=\sqrt{\frac{2 E}{k}}=\sqrt{\frac{2(4.0)}{200}}=0.20 \mathrm{~m} .
$$

(b) Since $T=2 \pi \sqrt{m / k}=2 \pi \sqrt{0.80 / 200} \approx 0.4 \mathrm{~s}$, then the block completes $10 / 0.4=25$ cycles during the specified interval.
(c) The maximum kinetic energy is the total energy, 4.0 J .
(d) This can be approached more than one way; we choose to use energy conservation:

$$
E=K+U \Rightarrow 4.0=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}
$$

Therefore, when $x=0.15 \mathrm{~m}$, we find $v=2.1 \mathrm{~m} / \mathrm{s}$.
101. (a) From Eq. $16-12, T=2 \pi \sqrt{m / k}=0.45 \mathrm{~s}$.
(b) For a vertical spring, the distance between the unstretched length and the equilibrium length (with a mass m attached) is $m g / k$, where in this problem $m g=10 \mathrm{~N}$ and $k=200$ N / m (so that the distance is 0.05 m). During simple harmonic motion, the convention is to establish $x=0$ at the equilibrium length (the middle level for the oscillation) and to write the total energy without any gravity term; i.e.,

$$
E=K+U \quad \text { where } \quad U=\frac{1}{2} k x^{2} .
$$

Thus, as the block passes through the unstretched position, the energy is $E=2.0+\frac{1}{2} k(0.05)^{2}=2.25 \mathrm{~J}$. At its topmost and bottommost points of oscillation, the energy (using this convention) is all elastic potential: $\frac{1}{2} k x_{m}^{2}$. Therefore, by energy conservation,

$$
2.25=\frac{1}{2} k x_{m}^{2} \Rightarrow x_{m}= \pm 0.15 \mathrm{~m} .
$$

This gives the amplitude of oscillation as 0.15 m , but how far are these points from the unstretched position? We add (or subtract) the 0.05 m value found above and obtain 0.10 m for the top-most position and 0.20 m for the bottom-most position.
(c) As noted in part (b), $x_{m}= \pm 0.15 \mathrm{~m}$.
(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) and is equal to 2.25 J .
102. The period formula, Eq. 15-29, requires knowing the distance h from the axis of rotation and the center of mass of the system. We also need the rotational inertia I about the axis of rotation. From Figure $15-59$, we see $h=L+R$ where $R=0.15 \mathrm{~m}$. Using the parallel-axis theorem, we find
$I=\frac{1}{2} M R^{2}+M(L+R)^{2} \quad$ where $\quad M=1.0 \mathrm{~kg}$. Thus, Eq. $15-29$, with $T=2.0 \mathrm{~s}$, leads to

$$
2.0=2 \pi \sqrt{\frac{\frac{1}{2} M R^{2}+M(L+R)^{2}}{M g(L+R)}}
$$

which leads to $L=0.8315 \mathrm{~m}$.
103. Using Eq. $15-12$, we find $\omega=\sqrt{k / m}=10 \mathrm{rad} / \mathrm{s}$. We also use $v_{m}=x_{m} \omega$ and $a_{m}=$ $x_{m} \omega^{2}$.
(a) The amplitude (meaning "displacement amplitude") is $x_{m}=v_{m} / \omega=3 / 10=0.30 \mathrm{~m}$.
(b) The acceleration-amplitude is $a_{m}=(0.30)(10)^{2}=30 \mathrm{~m} / \mathrm{s}^{2}$.
(c) One interpretation of this question is "what is the most negative value of the acceleration?" in which case the answer is $-a_{m}=-30 \mathrm{~m} / \mathrm{s}^{2}$. Another interpretation is "what is the smallest value of the absolute-value of the acceleration?" in which case the answer is zero.
(d) Since the period is $T=2 \pi / \omega=0.628 \mathrm{~s}$. Therefore, seven cycles of the motion requires $t=7 T=4.4 \mathrm{~s}$.
104. (a) By Eq. 15-13, the mass of the block is

$$
m_{b}=\frac{k T_{0}^{2}}{4 \pi^{2}}=2.43 \mathrm{~kg}
$$

Therefore, with $m_{p}=0.50 \mathrm{~kg}$, the new period is

$$
T=2 \pi \sqrt{\frac{m_{p}+m_{b}}{k}}=0.44 \mathrm{~s} .
$$

(b) The speed before the collision (since it is at its maximum, passing through equilibrium) is $v_{0}=x_{m} \omega_{0}$ where $\omega_{0}=2 \pi / T_{0}$; thus, $v_{0}=3.14 \mathrm{~m} / \mathrm{s}$. Using momentum conservation (along the horizontal direction) we find the speed after the collision.

$$
V=v_{0} \frac{m_{b}}{m_{p}+m_{b}}=2.61 \mathrm{~m} / \mathrm{s} .
$$

The equilibrium position has not changed, so (for the new system of greater mass) this represents the maximum speed value for the subsequent harmonic motion: $V=x^{\prime}{ }_{m} \omega$ where $\omega=2 \pi / T=14.3 \mathrm{rad} / \mathrm{s}$. Therefore, $x^{\prime}{ }_{m}=0.18 \mathrm{~m}$.
105. (a) Hooke's law provides the spring constant: $k=(4.00 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) /(0.160 \mathrm{~m})=$ 245 N/m.
(b) The attached mass is $m=0.500 \mathrm{~kg}$. Consequently, Eq. $15-13$ leads to

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.500}{245}}=0.284 \mathrm{~s} .
$$

106. $m=\frac{0.108 \mathrm{~kg}}{6.02 \times 10^{23}}=1.8 \times 10^{-25} \mathrm{~kg}$. Using Eq. $15-12$ and the fact that $f=\omega / 2 \pi$, we have

$$
1 \times 10^{13} \mathrm{~Hz}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \Rightarrow k=\left(2 \pi \times 10^{13}\right)^{2}\left(1.8 \times 10^{-25}\right) \approx 7 \times 10^{2} \mathrm{~N} / \mathrm{m} .
$$

107. (a) Hooke's law provides the spring constant: $k=(20 \mathrm{~N}) /(0.20 \mathrm{~m})=1.0 \times 10^{2} \mathrm{~N} / \mathrm{m}$.
(b) The attached mass is $m=(5.0 \mathrm{~N}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=0.51 \mathrm{~kg}$. Consequently, Eq. 15-13 leads to

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.51}{100}}=0.45 \mathrm{~s} .
$$

108. (a) We are told

$$
e^{-b t / 2 m}=\frac{3}{4} \quad \text { where } \quad t=4 T
$$

where $T=2 \pi / \omega^{\prime} \approx 2 \pi \sqrt{m / k}$ (neglecting the second term in Eq. 15-43). Thus,

$$
T \approx 2 \pi \sqrt{(2.00 \mathrm{~kg}) /(10.0 \mathrm{~N} / \mathrm{m})}=2.81 \mathrm{~s}
$$

and we find

$$
\frac{b(4 T)}{2 m}=\ln \left(\frac{4}{3}\right)=0.288 \Rightarrow b=\frac{2(2.00)(0.288)}{4(2.81)}=0.102 \mathrm{~kg} / \mathrm{s} .
$$

(b) Initially, the energy is $E_{o}=\frac{1}{2} k x_{m o}^{2}=\frac{1}{2}(10.0)(0.250)^{2}=0.313 \mathrm{~J}$. At $t=4 T$,

$$
E=\frac{1}{2} k\left(\frac{3}{4} x_{m o}\right)^{2}=0.176 \mathrm{~J} .
$$

Therefore, $E_{0}-E=0.137 \mathrm{~J}$.
109. (a) Eq. 15-28 gives

$$
T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{17 m}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=8.3 \mathrm{~s} .
$$

(b) Plugging $I=m L^{2}$ into Eq. 15-25, we see that the mass m cancels out. Thus, the characteristics (such as the period) of the periodic motion do not depend on the mass.
110. (a) The net horizontal force is F since the batter is assumed to exert no horizontal force on the bat. Thus, the horizontal acceleration (which applies as long as F acts on the bat) is $a=F / m$.
(b) The only torque on the system is that due to F, which is exerted at P, at a distance $L_{o}-\frac{1}{2} L$ from C. Since $L_{\mathrm{o}}=2 L / 3$ (see Sample Problem 15-5), then the distance from C to P is $\frac{2}{3} L-\frac{1}{2} L=\frac{1}{6} L$. Since the net torque is equal to the rotational inertia $\left(I=1 / 12 m L^{2}\right.$ about the center of mass) multiplied by the angular acceleration, we obtain

$$
\alpha=\frac{\tau}{I}=\frac{F\left(\frac{1}{6} L\right)}{\frac{1}{12} m L^{2}}=\frac{2 F}{m L} .
$$

(c) The distance from C to O is $r=L / 2$, so the contribution to the acceleration at O stemming from the angular acceleration (in the counterclockwise direction of Fig. 15-11) is $\alpha r=\frac{1}{2} \alpha L$ (leftward in that figure). Also, the contribution to the acceleration at O due to the result of part (a) is F / m (rightward in that figure). Thus, if we choose rightward as positive, then the net acceleration of O is

$$
a_{o}=\frac{F}{m}-\frac{1}{2} \alpha L=\frac{F}{m}-\frac{1}{2}\left(\frac{2 F}{m L}\right) L=0 .
$$

(d) Point O stays relatively stationary in the batting process, and that might be possible due to a force exerted by the batter or due to a finely tuned cancellation such as we have shown here. We assumed that the batter exerted no force, and our first expectation is that the impulse delivered by the impact would make all points on the bat go into motion, but for this particular choice of impact point, we have seen that the point being held by the batter is naturally stationary and exerts no force on the batter's hands which would otherwise have to "fight" to keep a good hold of it.
111. Since d_{m} is the amplitude of oscillation, then the maximum acceleration being set to $0.2 g$ provides the condition: $\omega^{2} d_{m}=0.2 g$. Since d_{s} is the amount the spring stretched in order to achieve vertical equilibrium of forces, then we have the condition $k d_{\mathrm{s}}=m g$. Since we can write this latter condition as $m \omega^{2} d_{\mathrm{s}}=m g$, then $\omega^{2}=g / d_{\mathrm{s}}$. Plugging this into our first condition, we obtain $d_{\mathrm{s}}=d_{m} / 0.2=(10 \mathrm{~cm}) / 0.2=50 \mathrm{~cm}$.
112. (a) A plot of x versus t (in SI units) is shown below:

If we expand the plot near the end of that time interval we have

This is close enough to a regular sine wave cycle that we can estimate its period ($T=0.18$ s , so $\omega=35 \mathrm{rad} / \mathrm{s}$) and its amplitude ($y_{m}=0.008 \mathrm{~m}$).
(b) Now, with the new driving frequency $\left(\omega_{\mathrm{d}}=13.2 \mathrm{rad} / \mathrm{s}\right)$, the x versus t graph (for the first one second of motion) is as shown below:

It is a little more difficult in this case to estimate a regular sine-curve-like amplitude and period (for the part of the above graph near the end of that time interval), but we arrive at roughly $y_{m}=0.07 \mathrm{~m}, T=0.48 \mathrm{~s}$, and $\omega=13 \mathrm{rad} / \mathrm{s}$.
(c) Now, with $\omega_{\mathrm{d}}=20 \mathrm{rad} / \mathrm{s}$, we obtain (for the behavior of the graph, below, near the end of the interval) the estimates: $y_{m}=0.03 \mathrm{~m}, T=0.31 \mathrm{~s}$, and $\omega=20 \mathrm{rad} / \mathrm{s}$.

113. The rotational inertia for an axis through A is $I_{\mathrm{cm}}+m h_{A}^{2}$ and that for an axis through B is $I_{\mathrm{cm}}+m h_{B}^{2}$. Using Eq. $15-29$, we require

$$
2 \pi \sqrt{\frac{I_{\mathrm{cm}}+m h_{A}^{2}}{m g h_{A}}}=2 \pi \sqrt{\frac{I_{\mathrm{cm}}+m h_{B}^{2}}{m g h_{B}}}
$$

which (after canceling 2π and squaring both sides) becomes

$$
\frac{I_{\mathrm{cm}}+m h_{A}^{2}}{m g h_{A}}=\frac{I_{\mathrm{cm}}+m h_{B}^{2}}{m g h_{B}} .
$$

Cross-multiplying and rearranging, we obtain

$$
I_{\mathrm{cm}}\left(h_{B}-h_{A}\right)=m\left(h_{A} h_{B}^{2}-h_{B} h_{A}^{2}\right)=m h_{A} h_{B}\left(h_{B}-h_{A}\right)
$$

which simplifies to $I_{\mathrm{cm}}=m h_{A} h_{B}$. We plug this back into the first period formula above and obtain

$$
T=2 \pi \sqrt{\frac{m h_{A} h_{B}+m h_{A}^{2}}{m g h_{A}}}=2 \pi \sqrt{\frac{h_{B}+h_{A}}{g}} .
$$

From the figure, we see that $h_{B}+h_{A}=L$, and (after squaring both sides) we can solve the above equation for the gravitational acceleration:

$$
g=\left(\frac{2 \pi}{T}\right)^{2} L=\frac{4 \pi^{2} L}{T^{2}}
$$

1. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s is one-fourth of a period. The period is $T=4(0.170 \mathrm{~s})=0.680 \mathrm{~s}$.
(b) The frequency is the reciprocal of the period:

$$
f=\frac{1}{T}=\frac{1}{0.680 \mathrm{~s}}=1.47 \mathrm{~Hz}
$$

(c) A sinusoidal wave travels one wavelength in one period:

$$
v=\frac{\lambda}{T}=\frac{1.40 \mathrm{~m}}{0.680 \mathrm{~s}}=2.06 \mathrm{~m} / \mathrm{s} .
$$

2. (a) The angular wave number is

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{1.80 \mathrm{~m}}=3.49 \mathrm{~m}^{-1} .
$$

(b) The speed of the wave is

$$
v=\lambda f=\frac{\lambda \omega}{2 \pi}=\frac{(1.80 \mathrm{~m})(110 \mathrm{rad} / \mathrm{s})}{2 \pi}=31.5 \mathrm{~m} / \mathrm{s} .
$$

3. Let $y_{1}=2.0 \mathrm{~mm}$ (corresponding to time t_{1}) and $y_{2}=-2.0 \mathrm{~mm}$ (corresponding to time t_{2}). Then we find

$$
k x+600 t_{1}+\phi=\sin ^{-1}(2.0 / 6.0)
$$

and

$$
k x+600 t_{2}+\phi=\sin ^{-1}(-2.0 / 6.0) .
$$

Subtracting equations gives $600\left(t_{1}-t_{2}\right)=\sin ^{-1}(2.0 / 6.0)-\sin ^{-1}(-2.0 / 6.0)$. Thus we find $t_{1}-t_{2}=0.011 \mathrm{~s}$ (or 1.1 ms).
4. Setting $x=0$ in $u=-\omega y_{\mathrm{m}} \cos (k x-\omega t+\phi)$ (see Eq. 16-21 or Eq. 16-28) gives $u=-\omega y_{\mathrm{m}} \cos (-\omega t+\phi)$ as the function being plotted in the graph. We note that it has a positive "slope" (referring to its t-derivative) at $t=0$:

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\mathrm{d}\left(-\omega y_{\mathrm{m}} \cos (-\omega t+\phi)\right)}{\mathrm{d} t}=-y_{\mathrm{m}} \omega^{2} \sin (-\omega t+\phi)>0 \text { at } t=0 .
$$

This implies that $-\sin \phi>0$ and consequently that ϕ is in either the third or fourth quadrant. The graph shows (at $\mathrm{t}=0$) $u=-4 \mathrm{~m} / \mathrm{s}$, and (at some later t) $u_{\max }=5 \mathrm{~m} / \mathrm{s}$. We note that $u_{\max }=y_{\mathrm{m}} \omega$. Therefore,

$$
u=-\left.u_{\max } \cos (-\omega t+\phi)\right|_{t=0} \Rightarrow \phi=\cos ^{-1}\left(\frac{4}{5}\right)= \pm 0.6435 \mathrm{rad}
$$

(bear in mind that $\cos \theta=\cos (-\theta)$), and we must choose $\phi=-0.64 \mathrm{rad}$ (since this is about -37° and is in fourth quadrant). Of course, this answer added to $2 n \pi$ is still a valid answer (where n is any integer), so that, for example, $\phi=-0.64+2 \pi=5.64 \mathrm{rad}$ is also an acceptable result.
5. Using $v=f \lambda$, we find the length of one cycle of the wave is $\lambda=350 / 500=0.700 \mathrm{~m}=$ 700 mm . From $f=1 / T$, we find the time for one cycle of oscillation is $T=1 / 500=2.00 \times$ $10^{-3} \mathrm{~s}=2.00 \mathrm{~ms}$.
(a) A cycle is equivalent to 2π radians, so that $\pi / 3 \mathrm{rad}$ corresponds to one-sixth of a cycle. The corresponding length, therefore, is $\lambda / 6=700 / 6=117 \mathrm{~mm}$.
(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of $2 \pi \mathrm{rad}$. Thus, the phase difference is $(1 / 2) 2 \pi=\pi \mathrm{rad}$.
6. (a) The amplitude is $y_{m}=6.0 \mathrm{~cm}$.
(b) We find λ from $2 \pi / \lambda=0.020 \pi$. $\lambda=1.0 \times 10^{2} \mathrm{~cm}$.
(c) Solving $2 \pi f=\omega=4.0 \pi$, we obtain $f=2.0 \mathrm{~Hz}$.
(d) The wave speed is $v=\lambda f=(100 \mathrm{~cm})(2.0 \mathrm{~Hz})=2.0 \times 10^{2} \mathrm{~cm} / \mathrm{s}$.
(e) The wave propagates in the $-x$ direction, since the argument of the trig function is $k x+$ ωt instead of $k x-\omega t$ (as in Eq. 16-2).
(f) The maximum transverse speed (found from the time derivative of y) is

$$
u_{\max }=2 \pi f y_{m}=\left(4.0 \pi \mathrm{~s}^{-1}\right)(6.0 \mathrm{~cm})=75 \mathrm{~cm} / \mathrm{s} .
$$

(g) $y(3.5 \mathrm{~cm}, 0.26 \mathrm{~s})=(6.0 \mathrm{~cm}) \sin [0.020 \pi(3.5)+4.0 \pi(0.26)]=-2.0 \mathrm{~cm}$.
7. (a) Recalling from Ch. 12 the simple harmonic motion relation $u_{m}=y_{m} \omega$, we have

$$
\omega=\frac{16}{0.040}=400 \mathrm{rad} / \mathrm{s}
$$

Since $\omega=2 \pi f$, we obtain $f=64 \mathrm{~Hz}$.
(b) Using $v=f \lambda$, we find $\lambda=80 / 64=1.26 \mathrm{~m} \approx 1.3 \mathrm{~m}$.
(c) The amplitude of the transverse displacement is $y_{m}=4.0 \mathrm{~cm}=4.0 \times 10^{-2} \mathrm{~m}$.
(d) The wave number is $k=2 \pi / \lambda=5.0 \mathrm{rad} / \mathrm{m}$.
(e) The angular frequency, as obtained in part (a), is $\omega=16 / 0.040=4.0 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(f) The function describing the wave can be written as

$$
y=0.040 \sin (5 x-400 t+\phi)
$$

where distances are in meters and time is in seconds. We adjust the phase constant ϕ to satisfy the condition $y=0.040$ at $x=t=0$. Therefore, $\sin \phi=1$, for which the "simplest" root is $\phi=\pi / 2$. Consequently, the answer is

$$
y=0.040 \sin \left(5 x-400 t+\frac{\pi}{2}\right)
$$

(g) The sign in front of ω is minus.
8. With length in centimeters and time in seconds, we have

$$
u=\frac{d u}{d t}=225 \pi \sin (\pi x-15 \pi t)
$$

Squaring this and adding it to the square of $15 \pi y$, we have

$$
u^{2}+(15 \pi y)^{2}=(225 \pi)^{2}\left[\sin ^{2}(\pi x-15 \pi t)+\cos ^{2}(\pi x-15 \pi t)\right]
$$

so that

$$
u=\sqrt{(225 \pi)^{2}-(15 \pi y)^{2}}=15 \pi \sqrt{15^{2}-y^{2}} .
$$

Therefore, where $y=12, u$ must be $\pm 135 \pi$. Consequently, the speed there is $424 \mathrm{~cm} / \mathrm{s}=$ $4.24 \mathrm{~m} / \mathrm{s}$.
9. (a) The amplitude y_{m} is half of the 6.00 mm vertical range shown in the figure, i.e., $y_{m}=3.0 \mathrm{~mm}$.
(b) The speed of the wave is $v=d / t=15 \mathrm{~m} / \mathrm{s}$, where $d=0.060 \mathrm{~m}$ and $t=0.0040 \mathrm{~s}$. The angular wave number is $k=2 \pi / \lambda$ where $\lambda=0.40 \mathrm{~m}$. Thus,

$$
k=\frac{2 \pi}{\lambda}=16 \mathrm{rad} / \mathrm{m}
$$

(c) The angular frequency is found from

$$
\omega=k v=(16 \mathrm{rad} / \mathrm{m})(15 \mathrm{~m} / \mathrm{s})=2.4 \times 10^{2} \mathrm{rad} / \mathrm{s} .
$$

(d) We choose the minus sign (between $k x$ and ωt) in the argument of the sine function because the wave is shown traveling to the right [in the $+x$ direction] - see section 16-5). Therefore, with SI units understood, we obtain

$$
y=y_{\mathrm{m}} \sin (k x-k v t) \approx 0.0030 \sin \left(16 x-2.4 \times 10^{2} t\right)
$$

10. The slope that they are plotting is the physical slope of sinusoidal waveshape (not to be confused with the more abstract "slope" of its time development; the physical slope is an x-derivative whereas the more abstract "slope" would be the t-derivative). Thus, where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the maximum of the following function:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y_{\mathrm{m}} \sin (k x-\omega t)}{\mathrm{d} x}=y_{\mathrm{m}} k \cos (k x-\omega t) .
$$

The problem additionally gives $t=0$, which we can substitute into the above expression if desired. In any case, the maximum of the above expression is $y_{\mathrm{m}} k$, where

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.40 \mathrm{~m}}=15.7 \mathrm{rad} / \mathrm{m}
$$

Therefore, setting $y_{\mathrm{m}} k$ equal to 0.20 allows us to solve for the amplitude y_{m}. We find

$$
y_{m}=\frac{0.20}{15.7 \mathrm{rad} / \mathrm{m}}=0.0127 \mathrm{~m} \approx 1.3 \mathrm{~cm}
$$

11. From Eq. (16.10), a general expression for a sinusoidal wave traveling along the $+x$ direction is

$$
y(x, t)=y_{m} \sin (k x-\omega t+\phi)
$$

(a) Figure 16.34 shows that at $x=0, y(0, t)=y_{m} \sin (-\omega t+\phi)$ is a positive sine function, i.e., $y(0, t)=+y_{m} \sin \omega t$. Therefore, the phase constant must be $\phi=\pi$. At $t=0$, we then have $y(x, 0)=y_{m} \sin (k x+\pi)=-y_{m} \sin k x$ which is a negative sine function. A plot of $y(\mathrm{x}, 0)$ is depicted below.

(b) From the figure we see that the amplitude is $y_{m}=4.0 \mathrm{~cm}$.
(c) The angular wave number is given by $k=2 \pi / \lambda=\pi / 10=0.31 \mathrm{rad} / \mathrm{cm}$.
(d) The angular frequency is $\omega=2 \pi / T=\pi / 5=0.63 \mathrm{rad} / \mathrm{s}$.
(e) As found in part (a), the phase is $\phi=\pi$.
(f) The sign is minus since the wave is traveling in the $+x$ direction.
(g) Since the frequency is $f=1 / T=0.10 \mathrm{~s}$, the speed of the wave is $v=f \lambda=2.0 \mathrm{~cm} / \mathrm{s}$.
(h) From the results above, the wave may be expressed as

$$
y(x, t)=4.0 \sin \left(\frac{\pi x}{10}-\frac{\pi t}{5}+\pi\right)=-4.0 \sin \left(\frac{\pi x}{10}-\frac{\pi t}{5}\right) .
$$

Taking the derivative of y with respect to t, we find

$$
u(x, t)=\frac{\partial y}{\partial t}=4.0\left(\frac{\pi}{t}\right) \cos \left(\frac{\pi x}{10}-\frac{\pi t}{5}\right)
$$

which yields $u(0,5.0)=-2.5 \mathrm{~cm} / \mathrm{s}$.
12. The volume of a cylinder of height ℓ is $V=\pi r^{2} \ell=\pi d^{2} \ell / 4$. The strings are long, narrow cylinders, one of diameter d_{1} and the other of diameter d_{2} (and corresponding linear densities μ_{1} and μ_{2}). The mass is the (regular) density multiplied by the volume: m $=\rho V$, so that the mass-per-unit length is

$$
\mu=\frac{m}{\ell}=\frac{\rho \pi d^{2} \ell / 4}{\ell}=\frac{\pi \rho d^{2}}{4}
$$

and their ratio is

$$
\frac{\mu_{1}}{\mu_{2}}=\frac{\pi \rho d_{1}^{2} / 4}{\pi \rho d_{2}^{2} / 4}=\left(\frac{d_{1}}{d_{2}}\right)^{2} .
$$

Therefore, the ratio of diameters is

$$
\frac{d_{1}}{d_{2}}=\sqrt{\frac{\mu_{1}}{\mu_{2}}}=\sqrt{\frac{3.0}{0.29}}=3.2
$$

13. The wave speed v is given by $v=\sqrt{\tau / \mu}$, where τ is the tension in the rope and μ is the linear mass density of the rope. The linear mass density is the mass per unit length of rope: $\mu=m / L=(0.0600 \mathrm{~kg}) /(2.00 \mathrm{~m})=0.0300 \mathrm{~kg} / \mathrm{m}$. Thus

$$
v=\sqrt{\frac{500 \mathrm{~N}}{0.0300 \mathrm{~kg} / \mathrm{m}}}=129 \mathrm{~m} / \mathrm{s}
$$

14. From $v=\sqrt{\tau / \mu}$, we have

$$
\frac{v_{\text {new }}}{v_{\text {old }}}=\frac{\sqrt{\tau_{\text {new }} / \mu_{\text {new }}}}{\sqrt{\tau_{\text {old }} / \mu_{\text {old }}}}=\sqrt{2} .
$$

15. (a) The wave speed is given by $v=\lambda / T=\omega / k$, where λ is the wavelength, T is the period, ω is the angular frequency $(2 \pi / T)$, and k is the angular wave number $(2 \pi / \lambda)$. The displacement has the form $y=y_{m} \sin (k x+\omega t)$, so $k=2.0 \mathrm{~m}^{-1}$ and $\omega=30 \mathrm{rad} / \mathrm{s}$. Thus

$$
v=(30 \mathrm{rad} / \mathrm{s}) /\left(2.0 \mathrm{~m}^{-1}\right)=15 \mathrm{~m} / \mathrm{s} .
$$

(b) Since the wave speed is given by $v=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string, the tension is

$$
\tau=\mu \nu^{2}=\left(1.6 \times 10^{-4} \mathrm{~kg} / \mathrm{m}\right)(15 \mathrm{~m} / \mathrm{s})^{2}=0.036 \mathrm{~N} .
$$

16. We use $v=\sqrt{\tau / \mu} \propto \sqrt{\tau}$ to obtain

$$
\tau_{2}=\tau_{1}\left(\frac{v_{2}}{v_{1}}\right)^{2}=(120 \mathrm{~N})\left(\frac{180 \mathrm{~m} / \mathrm{s}}{170 \mathrm{~m} / \mathrm{s}}\right)^{2}=135 \mathrm{~N} .
$$

17. (a) The amplitude of the wave is $y_{m}=0.120 \mathrm{~mm}$.
(b) The wave speed is given by $v=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string, so the wavelength is $\lambda=v / f=\sqrt{\tau / \mu} / f$ and the angular wave number is

$$
k=\frac{2 \pi}{\lambda}=2 \pi f \sqrt{\frac{\mu}{\tau}}=2 \pi(100 \mathrm{~Hz}) \sqrt{\frac{0.50 \mathrm{~kg} / \mathrm{m}}{10 \mathrm{~N}}}=141 \mathrm{~m}^{-1}
$$

(c) The frequency is $f=100 \mathrm{~Hz}$, so the angular frequency is

$$
\omega=2 \pi f=2 \pi(100 \mathrm{~Hz})=628 \mathrm{rad} / \mathrm{s} .
$$

(d) We may write the string displacement in the form $y=y_{m} \sin (k x+\omega t)$. The plus sign is used since the wave is traveling in the negative x direction. In summary, the wave can be expressed as

$$
y=(0.120 \mathrm{~mm}) \sin \left[\left(141 \mathrm{~m}^{-1}\right) x+\left(628 \mathrm{~s}^{-1}\right) t\right]
$$

18. (a) Comparing with Eq. $16-2$, we see that $k=20 / \mathrm{m}$ and $\omega=600 / \mathrm{s}$. Therefore, the speed of the wave is (see Eq. 16-13) $v=\omega / k=30 \mathrm{~m} / \mathrm{s}$.
(b) From Eq. 16-26, we find

$$
\mu=\frac{\tau}{v^{2}}=\frac{15}{30^{2}}=0.017 \mathrm{~kg} / \mathrm{m}=17 \mathrm{~g} / \mathrm{m} .
$$

19. (a) We read the amplitude from the graph. It is about 5.0 cm .
(b) We read the wavelength from the graph. The curve crosses $y=0$ at about $x=15 \mathrm{~cm}$ and again with the same slope at about $x=55 \mathrm{~cm}$, so

$$
\lambda=(55 \mathrm{~cm}-15 \mathrm{~cm})=40 \mathrm{~cm}=0.40 \mathrm{~m} .
$$

(c) The wave speed is $v=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string. Thus,

$$
v=\sqrt{\frac{3.6 \mathrm{~N}}{25 \times 10^{-3} \mathrm{~kg} / \mathrm{m}}}=12 \mathrm{~m} / \mathrm{s} .
$$

(d) The frequency is $f=v / \lambda=(12 \mathrm{~m} / \mathrm{s}) /(0.40 \mathrm{~m})=30 \mathrm{~Hz}$ and the period is

$$
T=1 / f=1 /(30 \mathrm{~Hz})=0.033 \mathrm{~s} .
$$

(e) The maximum string speed is

$$
u_{m}=\omega y_{m}=2 \pi f y_{m}=2 \pi(30 \mathrm{~Hz})(5.0 \mathrm{~cm})=940 \mathrm{~cm} / \mathrm{s}=9.4 \mathrm{~m} / \mathrm{s} .
$$

(f) The angular wave number is $k=2 \pi / \lambda=2 \pi /(0.40 \mathrm{~m})=16 \mathrm{~m}^{-1}$.
(g) The angular frequency is $\omega=2 \pi f=2 \pi(30 \mathrm{~Hz})=1.9 \times 10^{2} \mathrm{rad} / \mathrm{s}$
(h) According to the graph, the displacement at $x=0$ and $t=0$ is $4.0 \times 10^{-2} \mathrm{~m}$. The formula for the displacement gives $y(0,0)=y_{m} \sin \phi$. We wish to select ϕ so that $5.0 \times 10^{-}$ ${ }^{2} \sin \phi=4.0 \times 10^{-2}$. The solution is either 0.93 rad or 2.21 rad . In the first case the function has a positive slope at $x=0$ and matches the graph. In the second case it has negative slope and does not match the graph. We select $\phi=0.93 \mathrm{rad}$.
(i) The string displacement has the form $y(x, t)=y_{m} \sin (k x+\omega t+\phi)$. A plus sign appears in the argument of the trigonometric function because the wave is moving in the negative x direction. Using the results obtained above, the expression for the displacement is

$$
y(x, t)=\left(5.0 \times 10^{-2} \mathrm{~m}\right) \sin \left[\left(16 \mathrm{~m}^{-1}\right) x+\left(190 \mathrm{~s}^{-1}\right) t+0.93\right] .
$$

20. (a) The general expression for $y(x, t)$ for the wave is $y(x, t)=y_{m} \sin (k x-\omega t)$, which, at $x=10 \mathrm{~cm}$, becomes $y(x=10 \mathrm{~cm}, t)=y_{m} \sin [k(10 \mathrm{~cm}-\omega t)]$. Comparing this with the expression given, we find $\omega=4.0 \mathrm{rad} / \mathrm{s}$, or $f=\omega / 2 \pi=0.64 \mathrm{~Hz}$.
(b) Since $k(10 \mathrm{~cm})=1.0$, the wave number is $k=0.10 / \mathrm{cm}$. Consequently, the wavelength is $\lambda=2 \pi / k=63 \mathrm{~cm}$.
(c) The amplitude is $y_{m}=5.0 \mathrm{~cm}$.
(d) In part (b), we have shown that the angular wave number is $k=0.10 / \mathrm{cm}$.
(e) The angular frequency is $\omega=4.0 \mathrm{rad} / \mathrm{s}$.
(f) The sign is minus since the wave is traveling in the $+x$ direction.

Summarizing the results obtained above by substituting the values of k and ω into the general expression for $y(x, t)$, with centimeters and seconds understood, we obtain

$$
y(x, t)=5.0 \sin (0.10 x-4.0 t) .
$$

(g) Since $v=\omega / k=\sqrt{\tau / \mu}$, the tension is

$$
\tau=\frac{\omega^{2} \mu}{k^{2}}=\frac{(4.0 \mathrm{~g} / \mathrm{cm})\left(4.0 \mathrm{~s}^{-1}\right)^{2}}{\left(0.10 \mathrm{~cm}^{-1}\right)^{2}}=6400 \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}^{2}=0.064 \mathrm{~N} .
$$

21. The pulses have the same speed v. Suppose one pulse starts from the left end of the wire at time $t=0$. Its coordinate at time t is $x_{1}=v t$. The other pulse starts from the right end, at $x=L$, where L is the length of the wire, at time $t=30 \mathrm{~ms}$. If this time is denoted by t_{0} then the coordinate of this wave at time t is $x_{2}=L-v\left(t-t_{0}\right)$. They meet when $x_{1}=x_{2}$, or, what is the same, when $v t=L-v\left(t-t_{0}\right)$. We solve for the time they meet: $t=(L+$ $\left.v t_{0}\right) / 2 v$ and the coordinate of the meeting point is $x=v t=\left(L+v t_{0}\right) / 2$. Now, we calculate the wave speed:

$$
v=\sqrt{\frac{\tau L}{m}}=\sqrt{\frac{(250 \mathrm{~N})(10.0 \mathrm{~m})}{0.100 \mathrm{~kg}}}=158 \mathrm{~m} / \mathrm{s} .
$$

Here τ is the tension in the wire and L / m is the linear mass density of the wire. The coordinate of the meeting point is

$$
x=\frac{10.0 \mathrm{~m}+(158 \mathrm{~m} / \mathrm{s})\left(30.0 \times 10^{-3} \mathrm{~s}\right)}{2}=7.37 \mathrm{~m} .
$$

This is the distance from the left end of the wire. The distance from the right end is $L-x$ $=(10.0 \mathrm{~m}-7.37 \mathrm{~m})=2.63 \mathrm{~m}$.
22. (a) The tension in each string is given by $\tau=M g / 2$. Thus, the wave speed in string 1 is

$$
v_{1}=\sqrt{\frac{\tau}{\mu_{1}}}=\sqrt{\frac{M g}{2 \mu_{1}}}=\sqrt{\frac{(500 \mathrm{~g})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2(3.00 \mathrm{~g} / \mathrm{m})}}=28.6 \mathrm{~m} / \mathrm{s}
$$

(b) And the wave speed in string 2 is

$$
v_{2}=\sqrt{\frac{M g}{2 \mu_{2}}}=\sqrt{\frac{(500 \mathrm{~g})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2(5.00 \mathrm{~g} / \mathrm{m})}}=22.1 \mathrm{~m} / \mathrm{s} .
$$

(c) Let $v_{1}=\sqrt{M_{1} g /\left(2 \mu_{1}\right)}=v_{2}=\sqrt{M_{2} g /\left(2 \mu_{2}\right)}$ and $M_{1}+M_{2}=M$. We solve for M_{1} and obtain

$$
M_{1}=\frac{M}{1+\mu_{2} / \mu_{1}}=\frac{500 \mathrm{~g}}{1+5.00 / 3.00}=187.5 \mathrm{~g} \approx 188 \mathrm{~g} .
$$

(d) And we solve for the second mass: $M_{2}=M-M_{1}=(500 \mathrm{~g}-187.5 \mathrm{~g}) \approx 313 \mathrm{~g}$.
23. (a) The wave speed at any point on the rope is given by $v=\sqrt{\tau / \mu}$, where τ is the tension at that point and μ is the linear mass density. Because the rope is hanging the tension varies from point to point. Consider a point on the rope a distance y from the bottom end. The forces acting on it are the weight of the rope below it, pulling down, and the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight of the rope below is given by $\mu g y$, so the tension is $\tau=\mu g y$. The wave speed is $v=\sqrt{\mu g y / \mu}=\sqrt{g y .}$
(b) The time $\mathrm{d} t$ for the wave to move past a length $\mathrm{d} y$, a distance y from the bottom end, is $\mathrm{d} t=\mathrm{d} y / v=\mathrm{d} y / \sqrt{g y}$ and the total time for the wave to move the entire length of the rope is

$$
t=\int_{0}^{L} \frac{\mathrm{~d} y}{\sqrt{g y}}=\left.2 \sqrt{\frac{y}{g}}\right|_{0} ^{L}=2 \sqrt{\frac{L}{g}}
$$

24. Using Eq. 16-33 for the average power and Eq. 16-26 for the speed of the wave, we solve for $f=\omega / 2 \pi$:

$$
f=\frac{1}{2 \pi y_{m}} \sqrt{\frac{2 P_{\mathrm{avg}}}{\mu \sqrt{\tau / \mu}}}=\frac{1}{2 \pi\left(7.70 \times 10^{-3} \mathrm{~m}\right)} \sqrt{\frac{2(85.0 \mathrm{~W})}{\sqrt{(36.0 \mathrm{~N})(0.260 \mathrm{~kg} / 2.70 \mathrm{~m})}}}=198 \mathrm{~Hz}
$$

25. We note from the graph (and from the fact that we are dealing with a cosine-squared, see Eq. 16-30) that the wave frequency is $f=\frac{1}{2 \mathrm{~ms}}=500 \mathrm{~Hz}$, and that the wavelength $\lambda=$ 0.20 m . We also note from the graph that the maximum value of $d K / d t$ is 10 W . Setting this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 1) we find

$$
\frac{1}{2} \mu v \omega^{2} y_{m}^{2}=10
$$

with SI units understood. Substituting in $\mu=0.002 \mathrm{~kg} / \mathrm{m}, \omega=2 \pi f$ and $v=f \lambda$, we solve for the wave amplitude:

$$
y_{m}=\sqrt{\frac{10}{2 \pi^{2} \mu \lambda f^{3}}}=0.0032 \mathrm{~m} .
$$

26. Comparing $y(x, t)=(3.00 \mathrm{~mm}) \sin \left[\left(4.00 \mathrm{~m}^{-1}\right) x-\left(7.00 \mathrm{~s}^{-1}\right) t\right]$ to the general expression $y(x, t)=y_{m} \sin (k x-\omega t)$, we see that $k=4.00 \mathrm{~m}^{-1}$ and $\omega=7.00 \mathrm{rad} / \mathrm{s}$. The speed of the wave is $v=\omega / k=(7.00 \mathrm{rad} / \mathrm{s}) /\left(4.00 \mathrm{~m}^{-1}\right)=1.75 \mathrm{~m} / \mathrm{s}$.
27. The wave $y(x, t)=(2.00 \mathrm{~mm})\left[\left(20 \mathrm{~m}^{-1}\right) x-\left(4.0 \mathrm{~s}^{-1}\right) t\right]^{1 / 2}$ is of the form $h(k x-\omega t)$ with angular wave number $k=20 \mathrm{~m}^{-1}$ and angular frequency $\omega=4.0 \mathrm{rad} / \mathrm{s}$. Thus, the speed of the wave is $v=\omega / k=(4.0 \mathrm{rad} / \mathrm{s}) /\left(20 \mathrm{~m}^{-1}\right)=0.20 \mathrm{~m} / \mathrm{s}$.
28. The wave $y(x, t)=(4.00 \mathrm{~mm}) h\left[\left(30 \mathrm{~m}^{-1}\right) x+\left(6.0 \mathrm{~s}^{-1}\right) t\right]$ is of the form $h(k x-\omega t)$ with angular wave number $k=30 \mathrm{~m}^{-1}$ and angular frequency $\omega=6.0 \mathrm{rad} / \mathrm{s}$. Thus, the speed of the wave is $v=\omega / k=(6.0 \mathrm{rad} / \mathrm{s}) /\left(30 \mathrm{~m}^{-1}\right)=0.20 \mathrm{~m} / \mathrm{s}$.
29. The displacement of the string is given by

$$
y=y_{m} \sin (k x-\omega t)+y_{m} \sin (k x-\omega t+\phi)=2 y_{m} \cos \left(\frac{1}{2} \phi\right) \sin \left(k x-\omega t+\frac{1}{2} \phi\right),
$$

where $\phi=\pi / 2$. The amplitude is

$$
A=2 y_{m} \cos \left(\frac{1}{2} \phi\right)=2 y_{m} \cos (\pi / 4)=1.41 y_{m} .
$$

30. (a) Let the phase difference be ϕ. Then from Eq. $16-52,2 y_{m} \cos (\phi / 2)=1.50 y_{m}$, which gives

$$
\phi=2 \cos ^{-1}\left(\frac{1.50 y_{m}}{2 y_{m}}\right)=82.8^{\circ} .
$$

(b) Converting to radians, we have $\phi=1.45 \mathrm{rad}$.
(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π rad), this is equivalent to $1.45 \mathrm{rad} / 2 \pi=0.230$ wavelength.
31. (a) The amplitude of the second wave is $y_{m}=9.00 \mathrm{~mm}$, as stated in the problem.
(b) The figure indicates that $\lambda=40 \mathrm{~cm}=0.40 \mathrm{~m}$, which implies that the angular wave number is $k=2 \pi / 0.40=16 \mathrm{rad} / \mathrm{m}$.
(c) The figure (along with information in the problem) indicates that the speed of each wave is $v=d x / t=(56.0 \mathrm{~cm}) /(8.0 \mathrm{~ms})=70 \mathrm{~m} / \mathrm{s}$. This, in turn, implies that the angular frequency is $\omega=k v=1100 \mathrm{rad} / \mathrm{s}=1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(d) We observe that Figure 16-38 depicts two traveling waves (both going in the $-x$ direction) of equal amplitude y_{m}. The amplitude of their resultant wave, as shown in the figure, is $y_{\mathrm{m}}^{\prime}=4.00 \mathrm{~mm}$. Eq. 16-52 applies:

$$
y_{\mathrm{m}}^{\prime}=2 y_{\mathrm{m}} \cos \left(\frac{1}{2} \phi_{2}\right) \Rightarrow \phi_{2}=2 \cos ^{-1}(2.00 / 9.00)=2.69 \mathrm{rad} .
$$

(e) In making the plus-or-minus sign choice in $y=y_{\mathrm{m}} \sin (k x \pm \omega t+\phi)$, we recall the discussion in section 16-5, where it shown that sinusoidal waves traveling in the $-x$ direction are of the form $y=y_{\mathrm{m}} \sin (k x+\omega t+\phi)$. Here, ϕ should be thought of as the phase difference between the two waves (that is, $\phi_{1}=0$ for wave 1 and $\phi_{2}=2.69 \mathrm{rad}$ for wave 2).

In summary, the waves have the forms (with SI units understood):

$$
y_{1}=(0.00900) \sin (16 x+1100 t) \text { and } y_{2}=(0.00900) \sin (16 x+1100 t+2.7) .
$$

32. (a) We use Eq. 16-26 and Eq. 16-33 with $\mu=0.00200 \mathrm{~kg} / \mathrm{m}$ and $y_{m}=0.00300 \mathrm{~m}$. These give $v=\sqrt{\tau / \mu}=775 \mathrm{~m} / \mathrm{s}$ and

$$
P_{\mathrm{avg}}=\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2}=10 \mathrm{~W} .
$$

(b) In this situation, the waves are two separate string (no superposition occurs). The answer is clearly twice that of part (a); $P=20 \mathrm{~W}$.
(c) Now they are on the same string. If they are interfering constructively (as in Fig. 1616(a)) then the amplitude y_{m} is doubled which means its square $y_{m}{ }^{2}$ increases by a factor of 4. Thus, the answer now is four times that of part (a); $P=40 \mathrm{~W}$.
(d) Eq. 16-52 indicates in this case that the amplitude (for their superposition) is $2 y_{m} \cos (0.2 \pi)=1.618$ times the original amplitude y_{m}. Squared, this results in an increase in the power by a factor of 2.618 . Thus, $P=26 \mathrm{~W}$ in this case.
(e) Now the situation depicted in Fig. 16-16(b) applies, so $P=0$.
33. The phasor diagram is shown below: $y_{1 m}$ and $y_{2 m}$ represent the original waves and y_{m} represents the resultant wave. The phasors corresponding to the two constituent waves make an angle of 90° with each other, so the triangle is a right triangle. The Pythagorean theorem gives

$$
y_{m}^{2}=y_{1 m}^{2}+y_{2 m}^{2}=(3.0 \mathrm{~cm})^{2}+(4.0 \mathrm{~cm})^{2}=(25 \mathrm{~cm})^{2} .
$$

Thus $y_{m}=5.0 \mathrm{~cm}$.

34. The phasor diagram is shown below. We use the cosine theorem:

$$
y_{m}^{2}=y_{m 1}^{2}+y_{m 2}^{2}-2 y_{m 1} y_{m 2} \cos \theta=y_{m 1}^{2}+y_{m 2}^{2}+2 y_{m 1} y_{m 2} \cos \phi .
$$

We solve for $\cos \phi$:

$$
\cos \phi=\frac{y_{m}^{2}-y_{m 1}^{2}-y_{m 2}^{2}}{2 y_{m 1} y_{m 2}}=\frac{(9.0 \mathrm{~mm})^{2}-(5.0 \mathrm{~mm})^{2}-(7.0 \mathrm{~mm})^{2}}{2(5.0 \mathrm{~mm})(7.0 \mathrm{~mm})}=0.10 .
$$

The phase constant is therefore $\phi=84^{\circ}$.
35. (a) As shown in Figure 16-16(b) in the textbook, the least-amplitude resultant wave is obtained when the phase difference is $\pi \mathrm{rad}$.
(b) In this case, the amplitude is $(8.0 \mathrm{~mm}-5.0 \mathrm{~mm})=3.0 \mathrm{~mm}$.
(c) As shown in Figure 16-16(a) in the textbook, the greatest-amplitude resultant wave is obtained when the phase difference is 0 rad .
(d) In the part (c) situation, the amplitude is $(8.0 \mathrm{~mm}+5.0 \mathrm{~mm})=13 \mathrm{~mm}$.
(e) Using phasor terminology, the angle "between them" in this case is $\pi / 2 \mathrm{rad}\left(90^{\circ}\right)$, so the Pythagorean theorem applies:

$$
\sqrt{(8.0 \mathrm{~mm})^{2}+(5.0 \mathrm{~mm})^{2}}=9.4 \mathrm{~mm} .
$$

36. We see that y_{1} and y_{3} cancel (they are 180°) out of phase, and y_{2} cancels with y_{4} because their phase difference is also equal to $\pi \operatorname{rad}\left(180^{\circ}\right)$. There is no resultant wave in this case.
37. (a) Using the phasor technique, we think of these as two "vectors" (the first of "length" 4.6 mm and the second of "length" 5.60 mm) separated by an angle of $\phi=0.8 \pi$ radians (or 144°). Standard techniques for adding vectors then leads to a resultant vector of length 3.29 mm .
(b) The angle (relative to the first vector) is equal to 88.8° (or 1.55 rad).
(c) Clearly, it should in "in phase" with the result we just calculated, so its phase angle relative to the first phasor should be also 88.8° (or 1.55 rad).
38. The nth resonant frequency of string A is

$$
f_{n, A}=\frac{v_{A}}{2 l_{A}} n=\frac{n}{2 L} \sqrt{\frac{\tau}{\mu}},
$$

while for string B it is

$$
f_{n, B}=\frac{v_{B}}{2 l_{B}} n=\frac{n}{8 L} \sqrt{\frac{\tau}{\mu}}=\frac{1}{4} f_{n, A} .
$$

(a) Thus, we see $f_{1, A}=f_{4, B}$. That is, the fourth harmonic of B matches the frequency of A 's first harmonic.
(b) Similarly, we find $f_{2, A}=f_{8, B}$.
(c) No harmonic of B would match $f_{3, A}=\frac{3 v_{A}}{2 l_{A}}=\frac{3}{2 L} \sqrt{\frac{\tau}{\mu}}$,
39. Possible wavelengths are given by $\lambda=2 L / n$, where L is the length of the wire and n is an integer. The corresponding frequencies are given by $f=v / \lambda=n v / 2 L$, where v is the wave speed. The wave speed is given by $v=\sqrt{\tau / \mu}=\sqrt{\tau L / M}$, where τ is the tension in the wire, μ is the linear mass density of the wire, and M is the mass of the wire. $\mu=M / L$ was used to obtain the last form. Thus

$$
f_{n}=\frac{n}{2 L} \sqrt{\frac{\tau L}{M}}=\frac{n}{2} \sqrt{\frac{\tau}{L M}}=\frac{n}{2} \sqrt{\frac{250 \mathrm{~N}}{(10.0 \mathrm{~m})(0.100 \mathrm{~kg})}}=n(7.91 \mathrm{~Hz}) .
$$

(a) The lowest frequency is $f_{1}=7.91 \mathrm{~Hz}$.
(b) The second lowest frequency is $f_{2}=2(7.91 \mathrm{~Hz})=15.8 \mathrm{~Hz}$.
(c) The third lowest frequency is $f_{3}=3(7.91 \mathrm{~Hz})=23.7 \mathrm{~Hz}$.
40. (a) The wave speed is given by

$$
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{7.00 \mathrm{~N}}{2.00 \times 10^{-3} \mathrm{~kg} / 1.25 \mathrm{~m}}}=66.1 \mathrm{~m} / \mathrm{s} .
$$

(b) The wavelength of the wave with the lowest resonant frequency f_{1} is $\lambda_{1}=2 L$, where L $=125 \mathrm{~cm}$. Thus,

$$
f_{1}=\frac{v}{\lambda_{1}}=\frac{66.1 \mathrm{~m} / \mathrm{s}}{2(1.25 \mathrm{~m})}=26.4 \mathrm{~Hz} .
$$

41. (a) The wave speed is given by $v=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string. Since the mass density is the mass per unit length, μ $=M / L$, where M is the mass of the string and L is its length. Thus

$$
v=\sqrt{\frac{\tau L}{M}}=\sqrt{\frac{(96.0 \mathrm{~N})(8.40 \mathrm{~m})}{0.120 \mathrm{~kg}}}=82.0 \mathrm{~m} / \mathrm{s} .
$$

(b) The longest possible wavelength λ for a standing wave is related to the length of the string by $L=\lambda / 2$, so $\lambda=2 L=2(8.40 \mathrm{~m})=16.8 \mathrm{~m}$.
(c) The frequency is $f=v / \lambda=(82.0 \mathrm{~m} / \mathrm{s}) /(16.8 \mathrm{~m})=4.88 \mathrm{~Hz}$.
42. The string is flat each time the particles passes through its equilibrium position. A particle may travel up to its positive amplitude point and back to equilibrium during this time. This describes half of one complete cycle, so we conclude $T=2(0.50 \mathrm{~s})=1.0 \mathrm{~s}$. Thus, $f=1 / T=1.0 \mathrm{~Hz}$, and the wavelength is

$$
\lambda=\frac{v}{f}=\frac{10 \mathrm{~cm} / \mathrm{s}}{1.0 \mathrm{~Hz}}=10 \mathrm{~cm} .
$$

43. (a) Eq. 16-26 gives the speed of the wave:

$$
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{150 \mathrm{~N}}{7.20 \times 10^{-3} \mathrm{~kg} / \mathrm{m}}}=144.34 \mathrm{~m} / \mathrm{s} \approx 1.44 \times 10^{2} \mathrm{~m} / \mathrm{s}
$$

(b) From the Figure, we find the wavelength of the standing wave to be $\lambda=(2 / 3)(90.0 \mathrm{~cm})$ $=60.0 \mathrm{~cm}$.
(c) The frequency is

$$
f=\frac{v}{\lambda}=\frac{1.44 \times 10^{2} \mathrm{~m} / \mathrm{s}}{0.600 \mathrm{~m}}=241 \mathrm{~Hz}
$$

44. Use Eq. 16-66 (for the resonant frequencies) and Eq. 16-26 $(v=\sqrt{\tau / \mu})$ to find f_{n} :

$$
f_{n}=\frac{n v}{2 L}=\frac{n}{2 L} \sqrt{\frac{\tau}{\mu}}
$$

which gives $f_{3}=(3 / 2 L) \sqrt{\tau_{i} / \mu}$.
(a) When $\tau_{f}=4 \tau_{i}$, we get the new frequency

$$
f_{3}^{\prime}=\frac{3}{2 L} \sqrt{\frac{\tau_{f}}{\mu}}=2 f_{3}
$$

(b) And we get the new wavelength

$$
\lambda_{3}^{\prime}=\frac{v^{\prime}}{f_{3}^{\prime}}=\frac{2 L}{3}=\lambda_{3} .
$$

45. (a) The resonant wavelengths are given by $\lambda=2 L / n$, where L is the length of the string and n is an integer, and the resonant frequencies are given by $f=v / \lambda=n v / 2 L$, where v is the wave speed. Suppose the lower frequency is associated with the integer n. Then, since there are no resonant frequencies between, the higher frequency is associated with n +1 . That is, $f_{1}=n v / 2 L$ is the lower frequency and $f_{2}=(n+1) v / 2 L$ is the higher. The ratio of the frequencies is

$$
\frac{f_{2}}{f_{1}}=\frac{n+1}{n} .
$$

The solution for n is

$$
n=\frac{f_{1}}{f_{2}-f_{1}}=\frac{315 \mathrm{~Hz}}{420 \mathrm{~Hz}-315 \mathrm{~Hz}}=3 .
$$

The lowest possible resonant frequency is $f=v / 2 L=f_{1} / n=(315 \mathrm{~Hz}) / 3=105 \mathrm{~Hz}$.
(b) The longest possible wavelength is $\lambda=2 L$. If f is the lowest possible frequency then

$$
v=\lambda f=2 L f=2(0.75 \mathrm{~m})(105 \mathrm{~Hz})=158 \mathrm{~m} / \mathrm{s} .
$$

46. The harmonics are integer multiples of the fundamental, which implies that the difference between any successive pair of the harmonic frequencies is equal to the fundamental frequency. Thus, $f_{1}=(390 \mathrm{~Hz}-325 \mathrm{~Hz})=65 \mathrm{~Hz}$. This further implies that the next higher resonance above 195 Hz should be $(195 \mathrm{~Hz}+65 \mathrm{~Hz})=260 \mathrm{~Hz}$.
47. (a) The amplitude of each of the traveling waves is half the maximum displacement of the string when the standing wave is present, or 0.25 cm .
(b) Each traveling wave has an angular frequency of $\omega=40 \pi \mathrm{rad} / \mathrm{s}$ and an angular wave number of $k=\pi / 3 \mathrm{~cm}^{-1}$. The wave speed is

$$
v=\omega / k=(40 \pi \mathrm{rad} / \mathrm{s}) /\left(\pi / 3 \mathrm{~cm}^{-1}\right)=1.2 \times 10^{2} \mathrm{~cm} / \mathrm{s} .
$$

(c) The distance between nodes is half a wavelength: $d=\lambda / 2=\pi / k=\pi /\left(\pi / 3 \mathrm{~cm}^{-1}\right)=3.0$ cm . Here $2 \pi / k$ was substituted for λ.
(d) The string speed is given by $u(x, t)=\partial y / \partial t=-\omega y_{m} \sin (k x) \sin (\omega t)$. For the given coordinate and time,

$$
u=-(40 \pi \mathrm{rad} / \mathrm{s})(0.50 \mathrm{~cm}) \sin \left[\left(\frac{\pi}{3} \mathrm{~cm}^{-1}\right)(1.5 \mathrm{~cm})\right] \sin \left[\left(40 \pi \mathrm{~s}^{-1}\right)\left(\frac{9}{8} \mathrm{~s}\right)\right]=0
$$

48. Since the rope is fixed at both ends, then the phrase "second-harmonic standing wave pattern" describes the oscillation shown in Figure 16-23(b), where

$$
\lambda=L \quad \text { and } \quad f=\frac{v}{L}
$$

(see Eq. 16-65 and Eq. 16-69).
(a) Comparing the given function with Eq. 17-47, we obtain $k=\pi / 2$ and $\omega=12 \pi$ (SI units understood). Since $k=2 \pi / \lambda$ then

$$
\frac{2 \pi}{\lambda}=\frac{\pi}{2} \Rightarrow \lambda=4.0 \mathrm{~m} \Rightarrow L=4.0 \mathrm{~m} .
$$

(b) Since $\omega=2 \pi f$ then $2 \pi f=12 \pi \Rightarrow f=6.0 \mathrm{~Hz} \Rightarrow v=f \lambda=24 \mathrm{~m} / \mathrm{s}$.
(c) Using Eq. 17-25, we have

$$
v=\sqrt{\frac{\tau}{\mu}} \Rightarrow 24=\sqrt{\frac{200}{m / L}}
$$

which leads to $m=1.4 \mathrm{~kg}$.
(d) With

$$
f=\frac{3 v}{2 L}=\frac{3(24)}{2(4.0)}=9.0 \mathrm{~Hz}
$$

The period is $T=1 / f=0.11 \mathrm{~s}$.
49. (a) The waves have the same amplitude, the same angular frequency, and the same angular wave number, but they travel in opposite directions. We take them to be $y_{1}=$ $y_{m} \sin (k x-\omega t)$ and $y_{2}=y_{m} \sin (k x+\omega t)$. The amplitude y_{m} is half the maximum displacement of the standing wave, or $5.0 \times 10^{-3} \mathrm{~m}$.
(b) Since the standing wave has three loops, the string is three half-wavelengths long: $L=$ $3 \lambda / 2$, or $\lambda=2 L / 3$. With $L=3.0 \mathrm{~m}, \lambda=2.0 \mathrm{~m}$. The angular wave number is $k=2 \pi / \lambda=$ $2 \pi /(2.0 \mathrm{~m})=3.1 \mathrm{~m}^{-1}$.
(c) If v is the wave speed, then the frequency is

$$
f=\frac{v}{\lambda}=\frac{3 v}{2 L}=\frac{3(100 \mathrm{~m} / \mathrm{s})}{2(3.0 \mathrm{~m})}=50 \mathrm{~Hz}
$$

The angular frequency is the same as that of the standing wave, or $\omega=2 \pi f=2 \pi(50 \mathrm{~Hz})=$ $314 \mathrm{rad} / \mathrm{s}$.
(d) The two waves are

$$
y_{1}=\left(5.0 \times 10^{-3} \mathrm{~m}\right) \sin \left[\left(3.14 \mathrm{~m}^{-1}\right) x-\left(314 \mathrm{~s}^{-1}\right) t\right]
$$

and

$$
y_{2}=\left(5.0 \times 10^{-3} \mathrm{~m}\right) \sin \left[\left(3.14 \mathrm{~m}^{-1}\right) x+\left(314 \mathrm{~s}^{-1}\right) t\right] .
$$

Thus, if one of the waves has the form $y(x, t)=y_{m} \sin (k x+\omega t)$, then the other wave must have the form $y^{\prime}(x, t)=y_{m} \sin (k x-\omega t)$. The sign in front of ω for $y^{\prime}(x, t)$ is minus.
50. The nodes are located from vanishing of the spatial factor $\sin 5 \pi x=0$ for which the solutions are

$$
5 \pi x=0, \pi, 2 \pi, 3 \pi, \ldots \quad \Rightarrow \quad x=0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \cdots
$$

(a) The smallest value of x which corresponds to a node is $x=0$.
(b) The second smallest value of x which corresponds to a node is $x=0.20 \mathrm{~m}$.
(c) The third smallest value of x which corresponds to a node is $x=0.40 \mathrm{~m}$.
(d) Every point (except at a node) is in simple harmonic motion of frequency $f=\omega / 2 \pi=$ $40 \pi / 2 \pi=20 \mathrm{~Hz}$. Therefore, the period of oscillation is $T=1 / f=0.050 \mathrm{~s}$.
(e) Comparing the given function with Eq. 16-58 through Eq. 16-60, we obtain

$$
y_{1}=0.020 \sin (5 \pi x-40 \pi t) \quad \text { and } \quad y_{2}=0.020 \sin (5 \pi x+40 \pi t)
$$

for the two traveling waves. Thus, we infer from these that the speed is $v=\omega / k=40 \pi / 5 \pi$ $=8.0 \mathrm{~m} / \mathrm{s}$.
(f) And we see the amplitude is $y_{m}=0.020 \mathrm{~m}$.
(g) The derivative of the given function with respect to time is

$$
u=\frac{\partial y}{\partial t}=-(0.040)(40 \pi) \sin (5 \pi x) \sin (40 \pi t)
$$

which vanishes (for all x) at times such as $\sin (40 \pi t)=0$. Thus,

$$
40 \pi t=0, \pi, 2 \pi, 3 \pi, \ldots \quad \Rightarrow \quad t=0, \frac{1}{40}, \frac{2}{40}, \frac{3}{40}, \cdots
$$

Thus, the first time in which all points on the string have zero transverse velocity is when $t=0 \mathrm{~s}$.
(h) The second time in which all points on the string have zero transverse velocity is when $t=1 / 40 \mathrm{~s}=0.025 \mathrm{~s}$.
(i) The third time in which all points on the string have zero transverse velocity is when $t=2 / 40 \mathrm{~s}=0.050 \mathrm{~s}$.
51. From the $x=0$ plot (and the requirement of an anti-node at $x=0$), we infer a standing wave function of the form $y(x, t)=-(0.04) \cos (k x) \sin (\omega t)$, where $\omega=2 \pi / T=\pi \mathrm{rad} / \mathrm{s}$, with length in meters and time in seconds. The parameter k is determined by the existence of the node at $x=0.10$ (presumably the first node that one encounters as one moves from the origin in the positive x direction). This implies $k(0.10)=\pi / 2$ so that $k=5 \pi \mathrm{rad} / \mathrm{m}$.
(a) With the parameters determined as discussed above and $t=0.50 \mathrm{~s}$, we find

$$
y(0.20 \mathrm{~m}, 0.50 \mathrm{~s})=-0.04 \cos (k x) \sin (\omega t)=0.040 \mathrm{~m} .
$$

(b) The above equation yields $y(0.30 \mathrm{~m}, 0.50 \mathrm{~s})=-0.04 \cos (k x) \sin (\omega t)=0$.
(c) We take the derivative with respect to time and obtain, at $t=0.50 \mathrm{~s}$ and $x=0.20 \mathrm{~m}$,

$$
u=\frac{d y}{d t}=-0.04 \omega \cos (k x) \cos (\omega t)=0 .
$$

d) The above equation yields $u=-0.13 \mathrm{~m} / \mathrm{s}$ at $t=1.0 \mathrm{~s}$.
(e) The sketch of this function at $t=0.50 \mathrm{~s}$ for $0 \leq x \leq 0.40 \mathrm{~m}$ is shown below:

52. Recalling the discussion in section 16-12, we observe that this problem presents us with a standing wave condition with amplitude 12 cm . The angular wave number and frequency are noted by comparing the given waves with the form $y=y_{\mathrm{m}} \sin (k x \pm \omega t)$. The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a vertical spring would move from its upper turning point to its lower turning point - which occurs during a half-period. Since the period T is related to the angular frequency by Eq. 15-5, we have

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4.00 \pi}=0.500 \mathrm{~s}
$$

Thus, in a time of $t=\frac{1}{2} T=0.250 \mathrm{~s}$, the wave moves a distance $\Delta x=v t$ where the speed of the wave is $v=\frac{\omega}{k}=1.00 \mathrm{~m} / \mathrm{s}$. Therefore, $\Delta x=(1.00 \mathrm{~m} / \mathrm{s})(0.250 \mathrm{~s})=0.250 \mathrm{~m}$.
53. (a) The angular frequency is $\omega=8.00 \pi / 2=4.00 \pi \mathrm{rad} / \mathrm{s}$, so the frequency is $f=\omega / 2 \pi=$ $(4.00 \pi \mathrm{rad} / \mathrm{s}) / 2 \pi=2.00 \mathrm{~Hz}$.
(b) The angular wave number is $k=2.00 \pi / 2=1.00 \pi \mathrm{~m}^{-1}$, so the wavelength is $\lambda=2 \pi / k=$ $2 \pi /\left(1.00 \pi \mathrm{~m}^{-1}\right)=2.00 \mathrm{~m}$.
(c) The wave speed is

$$
v=\lambda f=(2.00 \mathrm{~m})(2.00 \mathrm{~Hz})=4.00 \mathrm{~m} / \mathrm{s}
$$

(d) We need to add two cosine functions. First convert them to sine functions using $\cos \alpha$ $=\sin (\alpha+\pi / 2)$, then apply

$$
\begin{aligned}
\cos \alpha+\cos \beta & =\sin \left(\alpha+\frac{\pi}{2}\right)+\sin \left(\beta+\frac{\pi}{2}\right)=2 \sin \left(\frac{\alpha+\beta+\pi}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right) \\
& =2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)
\end{aligned}
$$

Letting $\alpha=k x$ and $\beta=\omega t$, we find

$$
y_{m} \cos (k x+\omega t)+y_{m} \cos (k x-\omega t)=2 y_{m} \cos (k x) \cos (\omega t) .
$$

Nodes occur where $\cos (k x)=0$ or $k x=n \pi+\pi / 2$, where n is an integer (including zero). Since $k=1.0 \pi \mathrm{~m}^{-1}$, this means $x=\left(n+\frac{1}{2}\right)(1.00 \mathrm{~m})$. Thus, the smallest value of x which corresponds to a node is $x=0.500 \mathrm{~m}(n=0)$.
(e) The second smallest value of x which corresponds to a node is $x=1.50 \mathrm{~m}(n=1)$.
(f) The third smallest value of x which corresponds to a node is $x=2.50 \mathrm{~m}(n=2)$.
(g) The displacement is a maximum where $\cos (k x)= \pm 1$. This means $k x=n \pi$, where n is an integer. Thus, $x=n(1.00 \mathrm{~m})$. The smallest value of x which corresponds to an antinode (maximum) is $x=0(n=0)$.
(h) The second smallest value of x which corresponds to an anti-node (maximum) is $x=1.00 \mathrm{~m}(n=1)$.
(i) The third smallest value of x which corresponds to an anti-node (maximum) is $x=2.00 \mathrm{~m}(n=2)$.
54. Reference to point A as an anti-node suggests that this is a standing wave pattern and thus that the waves are traveling in opposite directions. Thus, we expect one of them to be of the form $y=y_{m} \sin (k x+\omega t)$ and the other to be of the form $y=y_{m} \sin (k x-\omega t)$.
(a) Because of Eq. 16-60, we conclude that $y_{m}=\frac{1}{2}(9.0 \mathrm{~mm})=4.5 \mathrm{~mm}$ due to the fact that the amplitude of the standing wave is $\frac{1}{2}(1.80 \mathrm{~cm})=0.90 \mathrm{~cm}=9.0 \mathrm{~mm}$.
(b) Since one full cycle of the wave (one wavelength) is $40 \mathrm{~cm}, k=2 \pi / \lambda \approx 16 \mathrm{~m}^{-1}$.
(c) The problem tells us that the time of half a full period of motion is 6.0 ms , so $T=12$ ms and Eq. $16-5$ gives $\omega=5.2 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(d) The two waves are therefore

$$
\begin{aligned}
& y_{1}(x, t)=(4.5 \mathrm{~mm}) \sin \left[\left(16 \mathrm{~m}^{-1}\right) x+\left(520 \mathrm{~s}^{-1}\right) t\right] \quad \text { and } \\
& y_{2}(x, t)=(4.5 \mathrm{~mm}) \sin \left[\left(16 \mathrm{~m}^{-1}\right) x-\left(520 \mathrm{~s}^{-1}\right) t\right]
\end{aligned}
$$

If one wave has the form $y(x, t)=y_{m} \sin (k x+\omega t)$ as in y_{1}, then the other wave must be of the form $y^{\prime}(x, t)=y_{m} \sin (k x-\omega t)$ as in y_{2}. Therefore, the sign in front of ω is minus.
55. (a) The frequency of the wave is the same for both sections of the wire. The wave speed and wavelength, however, are both different in different sections. Suppose there are n_{1} loops in the aluminum section of the wire. Then, $L_{1}=n_{1} \lambda_{1} / 2=n_{1} v_{1} / 2 f$, where λ_{1} is the wavelength and v_{1} is the wave speed in that section. In this consideration, we have substituted $\lambda_{1}=v_{1} / f$, where f is the frequency. Thus $f=n_{1} v_{1} / 2 L_{1}$. A similar expression holds for the steel section: $f=n_{2} v_{2} / 2 L_{2}$. Since the frequency is the same for the two sections, $n_{1} v_{1} / L_{1}=n_{2} v_{2} / L_{2}$. Now the wave speed in the aluminum section is given by $v_{1}=\sqrt{\tau / \mu_{1}}$, where μ_{1} is the linear mass density of the aluminum wire. The mass of aluminum in the wire is given by $m_{1}=\rho_{1} A L_{1}$, where ρ_{1} is the mass density (mass per unit volume) for aluminum and A is the cross-sectional area of the wire. Thus $\mu_{1}=\rho_{1} A L_{1} / L_{1}=$ $\rho_{1} A$ and $v_{1}=\sqrt{\tau / \rho_{1} A}$. A similar expression holds for the wave speed in the steel section: $\nu_{2}=\sqrt{\tau / \rho_{2} A}$. We note that the cross-sectional area and the tension are the same for the two sections. The equality of the frequencies for the two sections now leads to $n_{1} / L_{1} \sqrt{\rho_{1}}=n_{2} / L_{2} \sqrt{\rho_{2}}$, where A has been canceled from both sides. The ratio of the integers is

$$
\frac{n_{2}}{n_{1}}=\frac{L_{2} \sqrt{\rho_{2}}}{L_{1} \sqrt{\rho_{1}}}=\frac{(0.866 \mathrm{~m}) \sqrt{7.80 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}}{(0.600 \mathrm{~m}) \sqrt{2.60 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}}=2.50
$$

The smallest integers that have this ratio are $n_{1}=2$ and $n_{2}=5$. The frequency is $f=n_{1} v_{1} / 2 L_{1}=\left(n_{1} / 2 L_{1}\right) \sqrt{\tau / \rho_{1} A}$. The tension is provided by the hanging block and is $\tau=m g$, where m is the mass of the block. Thus

$$
f=\frac{n_{1}}{2 L_{1}} \sqrt{\frac{m g}{\rho_{1} A}}=\frac{2}{2(0.600 \mathrm{~m})} \sqrt{\frac{(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(2.60 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.00 \times 10^{-6} \mathrm{~m}^{2}\right)}}=324 \mathrm{~Hz}
$$

(b) The standing wave pattern has two loops in the aluminum section and five loops in the steel section, or seven loops in all. There are eight nodes, counting the end points.
56. According to Eq. 16-69, the block mass is inversely proportional to the harmonic number squared. Thus, if the 447 gram block corresponds to harmonic number n then

$$
\frac{447}{286.1}=\frac{(n+1)^{2}}{n^{2}}=\frac{n^{2}+2 n+1}{n^{2}}=1+\frac{2 n+1}{n^{2}} .
$$

Therefore, $\frac{447}{286.1}-1=0.5624$ must equal an odd integer $(2 n+1)$ divided by a squared integer $\left(n^{2}\right)$. That is, multiplying 0.5624 by a square (such as $1,4,9,16$, etc) should give us a number very close (within experimental uncertainty) to an odd number ($1,3,5, \ldots$). Trying this out in succession (starting with multiplication by 1 , then by $4, \ldots$), we find that multiplication by 16 gives a value very close to 9 ; we conclude $n=4$ (so $n^{2}=16$ and $2 n+1=9$). Plugging $m=0.447 \mathrm{~kg}, n=4$, and the other values from Sample Problem $16-8$ into Eq. $16-69$, we find $\mu=0.000845 \mathrm{~kg} / \mathrm{m}$, or $0.845 \mathrm{~g} / \mathrm{m}$.
57. Setting $x=0$ in $y=y_{\mathrm{m}} \sin (k x-\omega t+\phi)$ gives $y=y_{\mathrm{m}} \sin (-\omega t+\phi)$ as the function being plotted in the graph. We note that it has a positive "slope" (referring to its t derivative) at $t=0$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y_{\mathrm{m}} \sin (-\omega t+\phi)}{\mathrm{d} t}=-y_{\mathrm{m}} \omega \cos (-\omega t+\phi)>0 \text { at } t=0 .
$$

This implies that $-\cos (\phi)>0$ and consequently that ϕ is in either the second or third quadrant. The graph shows (at $t=0$) $y=2.00 \mathrm{~mm}$, and (at some later t) $y_{\mathrm{m}}=6.00 \mathrm{~mm}$. Therefore,

$$
y=\left.y_{\mathrm{m}} \sin (-\omega t+\phi)\right|_{t=0} \Rightarrow \phi=\sin ^{-1}\left(\frac{1}{3}\right)=0.34 \mathrm{rad} \text { or } 2.8 \mathrm{rad}
$$

(bear in mind that $\sin (\theta)=\sin (\pi-\theta)$), and we must choose $\phi=2.8 \mathrm{rad}$ because this is about 161° and is in second quadrant. Of course, this answer added to $2 \mathrm{n} \pi$ is still a valid answer (where n is any integer), so that, for example, $\phi=2.8-2 \pi=-3.48 \mathrm{rad}$ is also an acceptable result.
58. Setting $x=0$ in $a_{y}=-\omega^{2} y$ (see the solution to part (b) of Sample Problem 16-2) where $y=y_{\mathrm{m}} \sin (k x-\omega t+\phi)$ gives $a_{y}=-\omega^{2} y_{\mathrm{m}} \sin (-\omega t+\phi)$ as the function being plotted in the graph. We note that it has a negative "slope" (referring to its t-derivative) at $t=0$:

$$
\frac{\mathrm{d} a_{v}}{\mathrm{~d} t}=\frac{\mathrm{d}\left(-\omega^{2} y_{\mathrm{m}} \sin (-\omega t+\phi)\right)}{\mathrm{d} t}=y_{\mathrm{m}} \omega^{3} \cos (-\omega t+\phi)<0 \text { at } t=0 .
$$

This implies that $\cos \phi<0$ and consequently that ϕ is in either the second or third quadrant. The graph shows (at $\mathrm{t}=0$) $a_{y}=-100 \mathrm{~m} / \mathrm{s}^{2}$, and (at another t) $a_{\max }=400 \mathrm{~m} / \mathrm{s}^{2}$. Therefore,

$$
a_{y}=-\left.a_{\max } \sin (-\omega t+\phi)\right|_{t=0} \Rightarrow \phi=\sin ^{-1}\left(\frac{1}{4}\right)=0.25 \mathrm{rad} \text { or } 2.9 \mathrm{rad}
$$

(bear in mind that $\sin \theta=\sin (\pi-\theta)$), and we must choose $\phi=2.9 \mathrm{rad}$ because this is about 166° and is in the second quadrant. Of course, this answer added to $2 \mathrm{n} \pi$ is still a valid answer (where n is any integer), so that, for example, $\phi=2.9-2 \pi=-3.4 \mathrm{rad}$ is also an acceptable result.
59. (a) Recalling the discussion in §16-5, we see that the speed of the wave given by a function with argument $x-5.0 t$ (where x is in centimeters and t is in seconds) must be $5.0 \mathrm{~cm} / \mathrm{s}$.
(b) In part (c), we show several "snapshots" of the wave: the one on the left is as shown in Figure $16-45$ (at $t=0$), the middle one is at $t=1.0 \mathrm{~s}$, and the rightmost one is at $t=2.0 \mathrm{~s}$. It is clear that the wave is traveling to the right (the $+x$ direction).
(c) The third picture in the sequence below shows the pulse at 2.0 s . The horizontal scale (and, presumably, the vertical one also) is in centimeters.

(d) The leading edge of the pulse reaches $x=10 \mathrm{~cm}$ at $t=(10-4.0) / 5=1.2 \mathrm{~s}$. The particle (say, of the string that carries the pulse) at that location reaches a maximum displacement $h=2 \mathrm{~cm}$ at $t=(10-3.0) / 5=1.4 \mathrm{~s}$. Finally, the trailing edge of the pulse departs from $x=10 \mathrm{~cm}$ at $t=(10-1.0) / 5=1.8 \mathrm{~s}$. Thus, we find for $h(t)$ at $x=10 \mathrm{~cm}$ (with the horizontal axis, t, in seconds):

60. We compare the resultant wave given with the standard expression (Eq. 16-52) to obtain $k=20 \mathrm{~m}^{-1}=2 \pi / \lambda, 2 y_{m} \cos \left(\frac{1}{2} \phi\right)=3.0 \mathrm{~mm}$, and $\frac{1}{2} \phi=0.820 \mathrm{rad}$.
(a) Therefore, $\lambda=2 \pi / k=0.31 \mathrm{~m}$.
(b) The phase difference is $\phi=1.64 \mathrm{rad}$.
(c) And the amplitude is $y_{m}=2.2 \mathrm{~mm}$.
61. (a) The phasor diagram is shown here: y_{1}, y_{2}, and y_{3} represent the original waves and y_{m} represents the resultant wave. The horizontal component of the resultant is $y_{m h}=y_{1}-$ $y_{3}=y_{1}-y_{1} / 3=2 y_{1} / 3$. The vertical component is $y_{m v}=y_{2}=y_{1} / 2$. The amplitude of the resultant is

$$
y_{m}=\sqrt{y_{m h}^{2}+y_{m v}^{2}}=\sqrt{\left(\frac{2 y_{1}}{3}\right)^{2}+\left(\frac{y_{1}}{2}\right)^{2}}=\frac{5}{6} y_{1}=0.83 y_{1} .
$$

(b) The phase constant for the resultant is

$$
\begin{aligned}
\phi & =\tan ^{-1} \frac{y_{m v}}{y_{m h}}=\tan ^{-1}\left(\frac{y_{1} / 2}{2 y_{1} / 3}\right)=\tan ^{-1} \frac{3}{4} \\
& =0.644 \mathrm{rad}=37^{\circ} .
\end{aligned}
$$

(c) The resultant wave is

$$
y=\frac{5}{6} y_{1} \sin (k x-\omega t+0.644 \mathrm{rad})
$$

The graph below shows the wave at time $t=0$. As time goes on it moves to the right with speed $v=\omega / k$.

62. We use Eq. 16-52 in interpreting the figure.
(a) Since $y^{\prime}=6.0 \mathrm{~mm}$ when $\phi=0$, then Eq. 16-52 can be used to determine $y_{m}=3.0 \mathrm{~mm}$.
(b) We note that $y^{\prime}=0$ when the shift distance is 10 cm ; this occurs because $\cos (\phi / 2)=0$ there $\Rightarrow \phi=\pi \mathrm{rad}$ or $1 / 2$ cycle. Since a full cycle corresponds to a distance of one full wavelength, this $1 / 2$ cycle shift corresponds to a distance of $\lambda / 2$. Therefore, $\lambda=20 \mathrm{~cm} \Rightarrow$ $k=2 \pi / \lambda=31 \mathrm{~m}^{-1}$.
(c) Since $f=120 \mathrm{~Hz}, \omega=2 \pi f=754 \mathrm{rad} / \mathrm{s} \approx 7.5 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(d) The sign in front of ω is minus since the waves are traveling in the $+x$ direction.

The results may be summarized as $y=(3.0 \mathrm{~mm}) \sin \left[\left(31.4 \mathrm{~m}^{-1}\right) x-\left(754 \mathrm{~s}^{-1}\right) t\right]$ (this applies to each wave when they are in phase).
63. We note that $d y / d t=-\omega \cos (k x-\omega t+\phi)$, which we will refer to as $u(x, t)$. so that the ratio of the function $y(x, t)$ divided by $u(x, t)$ is $-\tan (k x-\omega t+\phi) / \omega$. With the given information (for $x=0$ and $t=0$) then we can take the inverse tangent of this ratio to solve for the phase constant:

$$
\phi=\tan ^{-1}\left(\frac{-\omega y(0,0)}{u(0,0)}\right)=\tan ^{-1}\left(\frac{-(440)(0.0045)}{-0.75}\right)=1.2 \mathrm{rad} .
$$

64. The plot (at $t=0$) is shown below. The curve that peaks around $x=-5$ and then descends like a staircase until about $x=+5$ is the resultant wave. This general shape is maintained as time increases, but moves towards the right at the wave speed (which in this example is set at $v=2$ units). The individual waves shown in this example are of the form:

$$
\begin{array}{ll}
y_{1}=-12 \sin (1 / 2 x-t), & y_{2}=6 \sin (x-2 t) \\
y_{3}=-4 \sin (3 / 2 x-3 t), & y_{4}=3 \sin (2 x-4 t)
\end{array}
$$

65. (a) From the frequency information, we find $\omega=2 \pi f=10 \pi \mathrm{rad} / \mathrm{s}$. A point on the rope undergoing simple harmonic motion (discussed in Chapter 15) has maximum speed as it passes through its "middle" point, which is equal to $y_{m} \omega$. Thus,

$$
5.0 \mathrm{~m} / \mathrm{s}=y_{m} \omega \Rightarrow y_{m}=0.16 \mathrm{~m} .
$$

(b) Because of the oscillation being in the fundamental mode (as illustrated in Fig. 1623(a) in the textbook), we have $\lambda=2 L=4.0 \mathrm{~m}$. Therefore, the speed of waves along the rope is $v=f \lambda=20 \mathrm{~m} / \mathrm{s}$. Then, with $\mu=m / L=0.60 \mathrm{~kg} / \mathrm{m}$, Eq. 16-26 leads to

$$
v=\sqrt{\frac{\tau}{\mu}} \Rightarrow \tau=\mu v^{2}=240 \mathrm{~N} \approx 2.4 \times 10^{2} \mathrm{~N}
$$

(c) We note that for the fundamental, $k=2 \pi / \lambda=\pi / L$, and we observe that the anti-node having zero displacement at $t=0$ suggests the use of sine instead of cosine for the simple harmonic motion factor. Now, if the fundamental mode is the only one present (so the amplitude calculated in part (a) is indeed the amplitude of the fundamental wave pattern) then we have

$$
y=(0.16 \mathrm{~m}) \sin \left(\frac{\pi x}{2}\right) \sin (10 \pi t)=(0.16 \mathrm{~m}) \sin \left[\left(1.57 \mathrm{~m}^{-1}\right) x\right] \sin [(31.4 \mathrm{rad} / \mathrm{s}) t]
$$

66. (a) The displacement of the string is assumed to have the form $y(x, t)=$ $y_{m} \sin (k x-\omega t)$. The velocity of a point on the string is

$$
u(x, t)=\partial y / \partial t=-\omega y_{m} \cos (k x-\omega t)
$$

and its maximum value is $u_{m}=\omega y_{m}$. For this wave the frequency is $f=120 \mathrm{~Hz}$ and the angular frequency is $\omega=2 \pi f=2 \pi(120 \mathrm{~Hz})=754 \mathrm{rad} / \mathrm{s}$. Since the bar moves through a distance of 1.00 cm , the amplitude is half of that, or $y_{m}=5.00 \times 10^{-3} \mathrm{~m}$. The maximum speed is

$$
u_{m}=(754 \mathrm{rad} / \mathrm{s})\left(5.00 \times 10^{-3} \mathrm{~m}\right)=3.77 \mathrm{~m} / \mathrm{s}
$$

(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with the x axis. The tension is along the string and makes the same angle with the x axis. Its transverse component is $\tau_{\text {rans }}=\tau \sin \theta$. Now θ is given by $\tan \theta=\partial y / \partial x=k y_{m} \cos (k x-\omega t)$ and its maximum value is given by $\tan \theta_{m}=k y_{m}$. We must calculate the angular wave number k. It is given by $k=\omega / v$, where v is the wave speed. The wave speed is given by $v=\sqrt{\tau / \mu}$, where τ is the tension in the rope and μ is the linear mass density of the rope. Using the data given,

$$
v=\sqrt{\frac{90.0 \mathrm{~N}}{0.120 \mathrm{~kg} / \mathrm{m}}}=27.4 \mathrm{~m} / \mathrm{s}
$$

and

$$
k=\frac{754 \mathrm{rad} / \mathrm{s}}{27.4 \mathrm{~m} / \mathrm{s}}=27.5 \mathrm{~m}^{-1}
$$

Thus

$$
\tan \theta_{m}=\left(27.5 \mathrm{~m}^{-1}\right)\left(5.00 \times 10^{-3} \mathrm{~m}\right)=0.138
$$

and $\theta=7.83^{\circ}$. The maximum value of the transverse component of the tension in the string is $\tau_{\text {trans }}=(90.0 \mathrm{~N}) \sin 7.83^{\circ}=12.3 \mathrm{~N}$. We note that $\sin \theta$ is nearly the same as $\tan \theta$ because θ is small. We can approximate the maximum value of the transverse component of the tension by $\tau k y_{m}$.
(c) We consider the string at x. The transverse component of the tension pulling on it due to the string to the left is $-\tau(\partial y / \partial x)=-\tau k y_{m} \cos (k x-\omega t)$ and it reaches its maximum value when $\cos (k x-\omega t)=-1$. The wave speed is $u=\partial y / \partial t=-\omega y_{m} \cos (k x-\omega t)$ and it also reaches its maximum value when $\cos (k x-\omega t)=-1$. The two quantities reach their
maximum values at the same value of the phase. When $\cos (k x-\omega t)=-1$ the value of $\sin (k x-\omega t)$ is zero and the displacement of the string is $y=0$.
(d) When the string at any point moves through a small displacement Δy, the tension does work $\Delta W=\tau_{\text {rans }} \Delta y$. The rate at which it does work is

$$
P=\frac{\Delta W}{\Delta t}=\tau_{\text {trans }} \frac{\Delta y}{\Delta t}=\tau_{\text {trans }} u .
$$

P has its maximum value when the transverse component $\tau_{\text {rans }}$ of the tension and the string speed u have their maximum values. Hence the maximum power is $(12.3 \mathrm{~N})(3.77$ m / s) $=46.4 \mathrm{~W}$.
(e) As shown above $y=0$ when the transverse component of the tension and the string speed have their maximum values.
(f) The power transferred is zero when the transverse component of the tension and the string speed are zero.
(g) $P=0$ when $\cos (k x-\omega t)=0$ and $\sin (k x-\omega t)= \pm 1$ at that time. The string displacement is $y= \pm y_{m}= \pm 0.50 \mathrm{~cm}$.
67. (a) We take the form of the displacement to be $y(x, t)=y_{m} \sin (k x-\omega t)$. The speed of a point on the cord is $u(x, t)=\partial y / \partial t=-\omega y_{m} \cos (k x-\omega t)$ and its maximum value is $u_{m}=$ ωy_{m}. The wave speed, on the other hand, is given by $v=\lambda / T=\omega / k$. The ratio is

$$
\frac{u_{m}}{v}=\frac{\omega y_{m}}{\omega / k}=k y_{m}=\frac{2 \pi y_{m}}{\lambda} .
$$

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. Different waves on different cords have the same ratio of speeds if they have the same amplitude and wavelength, regardless of the wave speeds, linear densities of the cords, and the tensions in the cords.
68. Let the cross-sectional area of the wire be A and the density of steel be ρ. The tensile stress is given by τA where τ is the tension in the wire. Also, $\mu=\rho A$. Thus,

$$
v_{\max }=\sqrt{\frac{\tau_{\max }}{\mu}}=\sqrt{\frac{\tau_{\max } / A}{\rho}}=\sqrt{\frac{7.00 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}}{7800 \mathrm{~kg} / \mathrm{m}^{3}}}=3.00 \times 10^{2} \mathrm{~m} / \mathrm{s}
$$

which is indeed independent of the diameter of the wire.
69. (a) The amplitude is $y_{m}=1.00 \mathrm{~cm}=0.0100 \mathrm{~m}$, as given in the problem.
(b) Since the frequency is $f=550 \mathrm{~Hz}$, the angular frequency is $\omega=2 \pi f=3.46 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(c) The angular wave number is $k=\omega / v=\left(3.46 \times 10^{3} \mathrm{rad} / \mathrm{s}\right) /(330 \mathrm{~m} / \mathrm{s})=10.5 \mathrm{rad} / \mathrm{m}$.
(d) Since the wave is traveling in the $-x$ direction, the sign in front of ω is plus and the argument of the trig function is $k x+\omega t$.

The results may be summarized as

$$
\begin{aligned}
y(x, t) & =y_{\mathrm{m}} \sin (k x+\omega t)=y_{\mathrm{m}} \sin \left[2 \pi f\left(\frac{x}{v}+t\right)\right]=(0.010 \mathrm{~m}) \sin \left[2 \pi(550 \mathrm{~Hz})\left(\frac{x}{330 \mathrm{~m} / \mathrm{s}}+t\right)\right] \\
& =(0.010 \mathrm{~m}) \sin \left[(10.5 \mathrm{rad} / \mathrm{s}) x+\left(3.46 \times 10^{3} \mathrm{rad} / \mathrm{s}\right) t\right] .
\end{aligned}
$$

70. We write the expression for the displacement in the form $y(x, t)=y_{m} \sin (k x-\omega t)$.
(a) The amplitude is $y_{m}=2.0 \mathrm{~cm}=0.020 \mathrm{~m}$, as given in the problem.
(b) The angular wave number k is $k=2 \pi / \lambda=2 \pi /(0.10 \mathrm{~m})=63 \mathrm{~m}^{-1}$
(c) The angular frequency is $\omega=2 \pi f=2 \pi(400 \mathrm{~Hz})=2510 \mathrm{rad} / \mathrm{s}=2.5 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(d) A minus sign is used before the ωt term in the argument of the sine function because the wave is traveling in the positive x direction.

Using the results above, the wave may be written as

$$
y(x, t)=(2.00 \mathrm{~cm}) \sin \left(\left(62.8 \mathrm{~m}^{-1}\right) x-\left(2510 \mathrm{~s}^{-1}\right) t\right)
$$

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y :

$$
u(x, t)=\frac{\partial y}{\partial t}=-\omega y_{m} \cos (k x-\omega t)
$$

which leads to a maximum speed of $u_{m}=\omega y_{m}=(2510 \mathrm{rad} / \mathrm{s})(0.020 \mathrm{~m})=50 \mathrm{~m} / \mathrm{s}$.
(f) The speed of the wave is

$$
v=\frac{\lambda}{T}=\frac{\omega}{k}=\frac{2510 \mathrm{rad} / \mathrm{s}}{62.8 \mathrm{rad} / \mathrm{m}}=40 \mathrm{~m} / \mathrm{s} .
$$

71. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 70° (in the first quadrant) with length 5.0 mm . Adding the components, we obtain

$$
\begin{aligned}
(3.0 \mathrm{~mm})+(5.0 \mathrm{~mm}) \cos \left(70^{\circ}\right) & =4.71 \mathrm{~mm} \text { along } x \text { axis } \\
(5.0 \mathrm{~mm}) \sin \left(70^{\circ}\right) & =4.70 \mathrm{~mm} \text { along } y \text { axis. }
\end{aligned}
$$

(a) Thus, amplitude of the resultant wave is $\sqrt{(4.71 \mathrm{~mm})^{2}+(4.70 \mathrm{~mm})^{2}}=6.7 \mathrm{~mm}$.
(b) And the angle (phase constant) is $\tan ^{-1}(4.70 / 4.71)=45^{\circ}$.
72. (a) With length in centimeters and time in seconds, we have

$$
u=\frac{d y}{d t}=-60 \pi \cos \left(\frac{\pi x}{8}-4 \pi t\right)
$$

Thus, when $x=6$ and $t=\frac{1}{4}$, we obtain

$$
u=-60 \pi \cos \frac{-\pi}{4}=\frac{-60 \pi}{\sqrt{2}}=-133
$$

so that the speed there is $1.33 \mathrm{~m} / \mathrm{s}$.
(b) The numerical coefficient of the cosine in the expression for u is -60π. Thus, the maximum speed is $1.88 \mathrm{~m} / \mathrm{s}$.
(c) Taking another derivative,

$$
a=\frac{d u}{d t}=-240 \pi^{2} \sin \left(\frac{\pi x}{8}-4 \pi t\right)
$$

so that when $x=6$ and $t=\frac{1}{4}$ we obtain $a=-240 \pi^{2} \sin (-\pi / 4)$ which yields $a=16.7 \mathrm{~m} / \mathrm{s}^{2}$.
(d) The numerical coefficient of the sine in the expression for a is $-240 \pi^{2}$. Thus, the maximum acceleration is $23.7 \mathrm{~m} / \mathrm{s}^{2}$.
73. (a) Using $v=f \lambda$, we obtain

$$
f=\frac{240 \mathrm{~m} / \mathrm{s}}{3.2 \mathrm{~m}}=75 \mathrm{~Hz}
$$

(b) Since frequency is the reciprocal of the period, we find

$$
T=\frac{1}{f}=\frac{1}{75 \mathrm{~Hz}}=0.0133 \mathrm{~s} \approx 13 \mathrm{~ms}
$$

74. By Eq. 16-69, the higher frequencies are integer multiples of the lowest (the fundamental).
(a) The frequency of the second harmonic is $f_{2}=2(440)=880 \mathrm{~Hz}$.
(b) The frequency of the third harmonic is and $f_{3}=3(440)=1320 \mathrm{~Hz}$.
75. We make use of Eq. 16-65 with $L=120 \mathrm{~cm}$.
(a) The longest wavelength for waves traveling on the string if standing waves are to be set up is $\lambda_{1}=2 L / 1=240 \mathrm{~cm}$.
(b) The second longest wavelength for waves traveling on the string if standing waves are to be set up is $\lambda_{2}=2 L / 2=120 \mathrm{~cm}$.
(c) The third longest wavelength for waves traveling on the string if standing waves are to be set up is $\lambda_{3}=2 L / 3=80.0 \mathrm{~cm}$.

The three standing waves are shown below:

76. (a) At $x=2.3 \mathrm{~m}$ and $t=0.16 \mathrm{~s}$ the displacement is

$$
y(x, t)=0.15 \sin [(0.79)(2.3)-13(0.16)] \mathrm{m}=-0.039 \mathrm{~m} .
$$

(b) We choose $y_{m}=0.15 \mathrm{~m}$, so that there would be nodes (where the wave amplitude is zero) in the string as a result.
(c) The second wave must be traveling with the same speed and frequency. This implies $k=0.79 \mathrm{~m}^{-1}$,
(d) and $\omega=13 \mathrm{rad} / \mathrm{s}$.
(e) The wave must be traveling in $-x$ direction, implying a plus sign in front of ω.

Thus, its general form is $y^{\prime}(x, t)=(0.15 \mathrm{~m}) \sin (0.79 x+13 t)$.
(f) The displacement of the standing wave at $x=2.3 \mathrm{~m}$ and $t=0.16 \mathrm{~s}$ is

$$
y(x, t)=-0.039 m+(0.15 m) \sin [(0.79)(2.3)+13(0.16)]=-0.14 m .
$$

77. (a) The wave speed is

$$
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{120 \mathrm{~N}}{8.70 \times 10^{-3} \mathrm{~kg} / 1.50 \mathrm{~m}}}=144 \mathrm{~m} / \mathrm{s} .
$$

(b) For the one-loop standing wave we have $\lambda_{1}=2 L=2(1.50 \mathrm{~m})=3.00 \mathrm{~m}$.
(c) For the two-loop standing wave $\lambda_{2}=L=1.50 \mathrm{~m}$.
(d) The frequency for the one-loop wave is $f_{1}=v / \lambda_{1}=(144 \mathrm{~m} / \mathrm{s}) /(3.00 \mathrm{~m})=48.0 \mathrm{~Hz}$.
(e) The frequency for the two-loop wave is $f_{2}=v / \lambda_{2}=(144 \mathrm{~m} / \mathrm{s}) /(1.50 \mathrm{~m})=96.0 \mathrm{~Hz}$.
78. We use $P=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \propto v f^{2} \propto \sqrt{\tau} f^{2}$.
(a) If the tension is quadrupled, then

$$
P_{2}=P_{1} \sqrt{\frac{\tau_{2}}{\tau_{1}}}=P_{1} \sqrt{\frac{4 \tau_{1}}{\tau_{1}}}=2 P_{1}
$$

(b) If the frequency is halved, then

$$
P_{2}=P_{1}\left(\frac{f_{2}}{f_{1}}\right)^{2}=P_{1}\left(\frac{f_{1} / 2}{f_{1}}\right)^{2}=\frac{1}{4} P_{1} .
$$

79. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the transverse speed u.
(a) The amplitude is $y_{m}=2.0 \mathrm{~mm}$.
(b) Since $\omega=600 \mathrm{rad} / \mathrm{s}$, the frequency is found to be $f=600 / 2 \pi \approx 95 \mathrm{~Hz}$.
(c) Since $k=20 \mathrm{rad} / \mathrm{m}$, the velocity of the wave is $v=\omega / k=600 / 20=30 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction.
(d) The wavelength is $\lambda=2 \pi / k \approx 0.31 \mathrm{~m}$, or 31 cm .
(e) We obtain

$$
u=\frac{d y}{d t}=-\omega y_{m} \cos (k x-\omega t) \Rightarrow u_{m}=\omega y_{m}
$$

so that the maximum transverse speed is $u_{m}=(600)(2.0)=1200 \mathrm{~mm} / \mathrm{s}$, or $1.2 \mathrm{~m} / \mathrm{s}$.
80. (a) The frequency is $f=1 / T=1 / 4 \mathrm{~Hz}$, so $v=f \lambda=5.0 \mathrm{~cm} / \mathrm{s}$.
(b) We refer to the graph to see that the maximum transverse speed (which we will refer to as u_{m}) is $5.0 \mathrm{~cm} / \mathrm{s}$. Recalling from Ch. 11 the simple harmonic motion relation $u_{m}=$ $y_{m} \omega=y_{m} 2 \pi f$, we have

$$
5.0=y_{m}\left(2 \pi \frac{1}{4}\right) \Rightarrow y_{m}=3.2 \mathrm{~cm} .
$$

(c) As already noted, $f=0.25 \mathrm{~Hz}$.
(d) Since $k=2 \pi / \lambda$, we have $k=10 \pi \mathrm{rad} / \mathrm{m}$. There must be a sign difference between the t and x terms in the argument in order for the wave to travel to the right. The figure shows that at $x=0$, the transverse velocity function is $0.050 \sin \frac{\pi}{2} t$. Therefore, the function $u(x, t)$ is

$$
u(x, t)=0.050 \sin \left(\frac{\pi}{2} t-10 \pi x\right)
$$

with lengths in meters and time in seconds. Integrating this with respect to time yields

$$
y(x, t)=-\frac{2(0.050)}{\pi} \cos \left(\frac{\pi}{2} t-10 \pi x\right)+C
$$

where C is an integration constant (which we will assume to be zero). The sketch of this function at $t=2.0 \mathrm{~s}$ for $0 \leq x \leq 0.20 \mathrm{~m}$ is shown below.

81. Using Eq. 16-50, we have

$$
y^{\prime}=\left[0.60 \cos \frac{\pi}{6}\right] \sin \left(5 \pi x-200 \pi t+\frac{\pi}{6}\right)
$$

with length in meters and time in seconds (see Eq. 16-55 for comparison).
(a) The amplitude is seen to be

$$
0.60 \cos \frac{\pi}{6}=0.3 \sqrt{3}=0.52 \mathrm{~m} .
$$

(b) Since $k=5 \pi$ and $\omega=200 \pi$, then (using Eq. 16-12) $v=\frac{\omega}{k}=40 \mathrm{~m} / \mathrm{s}$.
(c) $k=2 \pi / \lambda$ leads to $\lambda=0.40 \mathrm{~m}$.
82. (a) Since the string has four loops its length must be two wavelengths. That is, $\lambda=L / 2$, where λ is the wavelength and L is the length of the string. The wavelength is related to the frequency f and wave speed v by $\lambda=v / f$, so $L / 2=v / f$ and

$$
L=2 v / f=2(400 \mathrm{~m} / \mathrm{s}) /(600 \mathrm{~Hz})=1.3 \mathrm{~m} .
$$

(b) We write the expression for the string displacement in the form $y=y_{m} \sin (k x) \cos (\omega t)$, where y_{m} is the maximum displacement, k is the angular wave number, and ω is the angular frequency. The angular wave number is $k=2 \pi / \lambda=2 \pi f / v=2 \pi(600 \mathrm{~Hz}) /(400 \mathrm{~m} / \mathrm{s})$ $=9.4 \mathrm{~m}^{-1}$ and the angular frequency is $\omega=2 \pi f=2 \pi(600 \mathrm{~Hz})=3800 \mathrm{rad} / \mathrm{s} . y_{m}$ is 2.0 mm . The displacement is given by

$$
y(x, t)=(2.0 \mathrm{~mm}) \sin \left[\left(9.4 \mathrm{~m}^{-1}\right) x\right] \cos \left[\left(3800 \mathrm{~s}^{-1}\right) t\right] .
$$

83. To oscillate in four loops means $n=4$ in Eq. 16-65 (treating both ends of the string as effectively "fixed"). Thus, $\lambda=2(0.90 \mathrm{~m}) / 4=0.45 \mathrm{~m}$. Therefore, the speed of the wave is $v=f \lambda=27 \mathrm{~m} / \mathrm{s}$. The mass-per-unit-length is $\mu=m / L=(0.044 \mathrm{~kg}) /(0.90 \mathrm{~m})=0.049 \mathrm{~kg} / \mathrm{m}$. Thus, using Eq. 16-26, we obtain the tension:

$$
\tau=v^{2} \mu=(27)^{2}(0.049)=36 \mathrm{~N}
$$

84. Repeating the steps of Eq. 16-47 \rightarrow Eq. 16-53, but applying

$$
\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)
$$

(see Appendix E) instead of Eq. 16-50, we obtain $y^{\prime}=[0.10 \cos \pi x] \cos 4 \pi t$, with SI units understood.
(a) For non-negative x, the smallest value to produce $\cos \pi x=0$ is $x=1 / 2$, so the answer is $x=0.50 \mathrm{~m}$.
(b) Taking the derivative,

$$
u^{\prime}=\frac{d y^{\prime}}{d t}=[0.10 \cos \pi x](-4 \pi \sin 4 \pi t)
$$

We observe that the last factor is zero when $t=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots$ Thus, the value of the first time the particle at $x=0$ has zero velocity is $t=0$.
(c) Using the result obtained in (b), the second time where the velocity at $x=0$ vanishes would be $t=0.25 \mathrm{~s}$,
(d) and the third time is $t=0.50 \mathrm{~s}$.
85. (a) This distance is determined by the longitudinal speed:

$$
d_{\ell}=v_{\ell} t=(2000 \mathrm{~m} / \mathrm{s})\left(40 \times 10^{-6} \mathrm{~s}\right)=8.0 \times 10^{-2} \mathrm{~m}
$$

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a $=300 / 40 \times 10^{-6}$) we find the stopping distance d :

$$
v^{2}=v_{o}^{2}+2 a d \Rightarrow d=\frac{(300)^{2}\left(40 \times 10^{-6}\right)}{2(300)}
$$

which gives $d=6.0 \times 10^{-3} \mathrm{~m}$. This and the radius r form the legs of a right triangle (where r is opposite from $\theta=60^{\circ}$). Therefore,

$$
\tan 60^{\circ}=\frac{r}{d} \Rightarrow r=d \tan 60^{\circ}=1.0 \times 10^{-2} \mathrm{~m} .
$$

86. (a) Let the displacements of the wave at (y, t) be $z(y, t)$. Then $z(y, t)=z_{m} \sin (k y-\omega t)$, where $z_{m}=3.0 \mathrm{~mm}, k=60 \mathrm{~cm}^{-1}$, and $\omega=2 \pi / T=2 \pi / 0.20 \mathrm{~s}=10 \pi \mathrm{~s}^{-1}$. Thus

$$
z(y, t)=(3.0 \mathrm{~mm}) \sin \left[\left(60 \mathrm{~cm}^{-1}\right) y-\left(10 \pi \mathrm{~s}^{-1}\right) t\right] .
$$

(b) The maximum transverse speed is $u_{m}=\omega z_{m}=(2 \pi / 0.20 \mathrm{~s})(3.0 \mathrm{~mm})=94 \mathrm{~mm} / \mathrm{s}$.
87. (a) The wave speed is

$$
v=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{k \Delta \ell}{m /(\ell+\Delta \ell)}}=\sqrt{\frac{k \Delta \ell(\ell+\Delta \ell)}{m}} .
$$

(b) The time required is

$$
t=\frac{2 \pi(\ell+\Delta \ell)}{v}=\frac{2 \pi(\ell+\Delta \ell)}{\sqrt{k \Delta \ell(\ell+\Delta \ell) / m}}=2 \pi \sqrt{\frac{m}{k}} \sqrt{1+\frac{\ell}{\Delta \ell}} .
$$

Thus if $\ell / \Delta \ell \gg 1$, then $t \propto \sqrt{\ell / \Delta \ell} \propto 1 / \sqrt{\Delta \ell} ; \quad$ and \quad if $\quad \ell / \Delta \ell \ll 1$, then $t \simeq 2 \pi \sqrt{m / k}=$ const.
88. (a) The wave number for each wave is $k=25.1 / \mathrm{m}$, which means $\lambda=2 \pi / k=250.3 \mathrm{~mm}$. The angular frequency is $\omega=440 / \mathrm{s}$; therefore, the period is $T=2 \pi / \omega=14.3 \mathrm{~ms}$. We plot the superposition of the two waves $y=y_{1}+y_{2}$ over the time interval $0 \leq t \leq 15 \mathrm{~ms}$. The first two graphs below show the oscillatory behavior at $x=0$ (the graph on the left) and at $x=\lambda / 8 \approx 31 \mathrm{~mm}$. The time unit is understood to be the millisecond and vertical axis (y) is in millimeters.

The following three graphs show the oscillation at $x=\lambda / 4=62.6 \mathrm{~mm} \approx 63 \mathrm{~mm}$ (graph on the left), at $x=3 \lambda / 8 \approx 94 \mathrm{~mm}$ (middle graph), and at $x=\lambda / 2 \approx 125 \mathrm{~mm}$.

(b) We can think of wave y_{1} as being made of two smaller waves going in the same direction, a wave $y_{1 a}$ of amplitude 1.50 mm (the same as y_{2}) and a wave $y_{1 b}$ of amplitude 1.00 mm . It is made clear in §16-12 that two equal-magnitude oppositely-moving waves form a standing wave pattern. Thus, waves $y_{1 a}$ and y_{2} form a standing wave, which leaves $y_{1 b}$ as the remaining traveling wave. Since the argument of $y_{1 b}$ involves the subtraction $k x$ - ωt, then $y_{1 b}$ travels in the $+x$ direction.
(c) If y_{2} (which travels in the $-x$ direction, which for simplicity will be called "leftward") had the larger amplitude, then the system would consist of a standing wave plus a leftward moving wave. A simple way to obtain such a situation would be to interchange the amplitudes of the given waves.
(d) Examining carefully the vertical axes, the graphs above certainly suggest that the largest amplitude of oscillation is $y_{\text {max }}=4.0 \mathrm{~mm}$ and occurs at $x=\lambda / 4=62.6 \mathrm{~mm}$.
(e) The smallest amplitude of oscillation is $y_{\min }=1.0 \mathrm{~mm}$ and occurs at $x=0$ and at $x=$ $\lambda / 2=125 \mathrm{~mm}$.
(f) The largest amplitude can be related to the amplitudes of y_{1} and y_{2} in a simple way: $y_{\text {max }}=y_{1 m}+y_{2 m}$, where $y_{1 m}=2.5 \mathrm{~mm}$ and $y_{2 m}=1.5 \mathrm{~mm}$ are the amplitudes of the original traveling waves.
(g) The smallest amplitudes is $y_{\min }=y_{1 m}-y_{2 m}$, where $y_{1 m}=2.5 \mathrm{~mm}$ and $y_{2 m}=1.5 \mathrm{~mm}$ are the amplitudes of the original traveling waves.
89. (a) For visible light

$$
f_{\min }=\frac{c}{\lambda_{\max }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{700 \times 10^{-9} \mathrm{~m}}=4.3 \times 10^{14} \mathrm{~Hz}
$$

and

$$
f_{\max }=\frac{c}{\lambda_{\min }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{400 \times 10^{-9} \mathrm{~m}}=7.5 \times 10^{14} \mathrm{~Hz}
$$

(b) For radio waves

$$
\lambda_{\min }=\frac{c}{\lambda_{\max }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{300 \times 10^{6} \mathrm{~Hz}}=1.0 \mathrm{~m}
$$

and

$$
\lambda_{\max }=\frac{c}{\lambda_{\min }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.5 \times 10^{6} \mathrm{~Hz}}=2.0 \times 10^{2} \mathrm{~m}
$$

(c) For X rays

$$
f_{\min }=\frac{c}{\lambda_{\max }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5.0 \times 10^{-9} \mathrm{~m}}=6.0 \times 10^{16} \mathrm{~Hz}
$$

and

$$
f_{\max }=\frac{c}{\lambda_{\min }}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.0 \times 10^{-11} \mathrm{~m}}=3.0 \times 10^{19} \mathrm{~Hz}
$$

90. It is certainly possible to simplify (in the trigonometric sense) the expressions at $x=$ 3 m (since $k=1 / 2$ in inverse-meters), but there is no particular need to do so, if the goal is to plot the time-dependence of the wave superposition at this value of x. Still, it is worth mentioning the end result of such simplification if it provides some insight into the nature of the graph (shown below): $y_{1}+y_{2}=(0.10 \mathrm{~m}) \sin (40 \pi t)$ with t in seconds.

91. (a) Centimeters are to be understood as the length unit and seconds as the time unit. Making sure our (graphing) calculator is in radians mode, we find

(b) The previous graph is at $t=0$, and this next one is at $t=0.050 \mathrm{~s}$.

And the final one, shown below, is at $t=0.010 \mathrm{~s}$.

(c) The wave can be written as $y(x, t)=y_{m} \sin (k x+\omega t)$, where $v=\omega / k$ is the speed of propagation. From the problem statement, we see that $\omega=2 \pi / 0.40=5 \pi \mathrm{rad} / \mathrm{s}$ and $k=2 \pi / 80=\pi / 40 \mathrm{rad} / \mathrm{cm}$. This yields $v=2.0 \times 10^{2} \mathrm{~cm} / \mathrm{s}=2.0 \mathrm{~m} / \mathrm{s}$
(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is traveling in the $-x$ direction.
92. We consider an infinitesimal segment of a string oscillating in a standing wave pattern. Its length is $\mathrm{d} x$ and its mass is $\mathrm{d} m=\mu \mathrm{d} x$, where μ is its linear mass density. If it is moving with speed u its kinetic energy is $\mathrm{d} K=\frac{1}{2} u^{2} \mathrm{~d} m=\frac{1}{2} \mu u^{2} \mathrm{~d} x$. If the segment is located at x its displacement at time t is $y=2 y_{m} \sin (k x) \cos (\omega t)$ and its velocity is $u=$ $\partial y / \partial t=-2 \omega y_{m} \sin (k x) \sin (\omega t)$, so its kinetic energy is

$$
\mathrm{d} K=\left(\frac{1}{2}\right)\left(4 \mu \omega^{2} y_{m}^{2}\right) \sin ^{2}(k x) \sin ^{2}(\omega t)=2 \mu \omega^{2} y_{m}^{2} \sin ^{2}(k x) \sin ^{2}(\omega t)
$$

Here y_{m} is the amplitude of each of the traveling waves that combine to form the standing wave. The infinitesimal segment has maximum kinetic energy when $\sin ^{2}(\omega t)=1$ and the maximum kinetic energy is given by the differential amount

$$
d K_{m}=2 \mu \omega^{2} y_{m}^{2} \sin ^{2}(k x)
$$

Note that every portion of the string has its maximum kinetic energy at the same time although the values of these maxima are different for different parts of the string. If the string is oscillating with n loops, the length of string in any one loop is L / n and the kinetic energy of the loop is given by the integral

$$
K_{m}=2 \mu \omega^{2} y_{m}^{2} \int_{0}^{L / n} \sin ^{2}(k x) d x
$$

We use the trigonometric identity $\sin ^{2}(k x)=\frac{1}{2}[1+2 \cos (2 k x)]$ to obtain

$$
K_{m}=\mu \omega^{2} y_{m}^{2} \int_{0}^{L / n}[1+2 \cos (2 k x)] \mathrm{d} x=\mu \omega^{2} y_{m}^{2}\left[\frac{L}{n}+\frac{1}{k} \sin \frac{2 k L}{n}\right] .
$$

For a standing wave of n loops the wavelength is $\lambda=2 L / n$ and the angular wave number is $k=2 \pi / \lambda=n \pi / L$, so $2 k L / n=2 \pi$ and $\sin (2 k L / n)=0$, no matter what the value of n. Thus,

$$
K_{m}=\frac{\mu \omega^{2} y_{m}^{2} L}{n}
$$

To obtain the expression given in the problem statement, we first make the substitutions $\omega=2 \pi f$ and $L / n=\lambda / 2$, where f is the frequency and λ is the wavelength. This produces $K_{m}=2 \pi^{2} \mu y_{m}^{2} f^{2} \lambda$. We now substitute the wave speed v for $f \lambda$ and obtain $K_{m}=2 \pi^{2} \mu y_{m}^{2} f v$.
93. (a) We note that each pulse travels 1 cm during each $\Delta t=5 \mathrm{~ms}$ interval. Thus, in these first two pictures, their peaks are closer to each other by 2 cm , successively. And the next pictures show the (momentary) complete cancellation of the visible pattern at $t=15 \mathrm{~ms}$, and the pulses moving away from each other after that.

(b) The particles of the string are moving rapidly as they pass (transversely) through their equilibrium positions; the energy at $t=15 \mathrm{~ms}$ is purely kinetic.
94. We refer to the points where the rope is attached as A and B, respectively. When A and B are not displaced horizontal, the rope is in its initial state (neither stretched (under tension) nor slack). If they are displaced away from each other, the rope is clearly stretched. When A and B are displaced in the same direction, by amounts (in absolute value) $\left|\xi_{A}\right|$ and $\left|\xi_{B}\right|$, then if $\left|\xi_{A}\right|<\left|\xi_{B}\right|$ then the rope is stretched, and if $\left|\xi_{A}\right|>\left|\xi_{B}\right|$ the rope is slack. We must be careful about the case where one is displaced but the other is not, as will be seen below.
(a) The standing wave solution for the shorter cable, appropriate for the initial condition ξ $=0$ at $t=0$, and the boundary conditions $\xi=0$ at $x=0$ and $x=L$ (the x axis runs vertically here), is $\xi_{A}=\xi_{m} \sin \left(k_{A} x\right) \sin \left(\omega_{A} t\right)$. The angular frequency is $\omega_{A}=2 \pi / T_{A}$, and the wave number is $k_{A}=2 \pi / \lambda_{A}$ where $\lambda_{A}=2 L$ (it begins oscillating in its fundamental mode) where the point of attachment is $x=L / 2$. The displacement of what we are calling point A at time $t=\eta T_{A}$ (where η is a pure number) is

$$
\xi_{A}=\xi_{m} \sin \left(\frac{2 \pi}{2 L} \frac{L}{2}\right) \sin \left(\frac{2 \pi}{T_{A}} \eta T_{A}\right)=\xi_{m} \sin (2 \pi \eta)
$$

The fundamental mode for the longer cable has wavelength $\lambda_{B}=2 \lambda_{A}=2(2 L)=4 L$, which implies (by $v=f \lambda$ and the fact that both cables support the same wave speed v) that $f_{B}=\frac{1}{2} f_{A}$ or $\omega_{B}=\frac{1}{2} \omega_{A}$. Thus, the displacement for point B is

$$
\xi_{B}=\xi_{m} \sin \left(\frac{2 \pi}{4 L} \frac{L}{2}\right) \sin \left(\frac{1}{2}\left(\frac{2 \pi}{T_{A}}\right) \eta T_{A}\right)=\frac{\xi_{m}}{\sqrt{2}} \sin (\pi \eta)
$$

Running through the possibilities $\left(\eta=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}, \frac{7}{4}\right.$, and 2$)$ we find the rope is under tension in the following cases. The first case is one we must be very careful about in our reasoning, since A is not displaced but B is displaced in the positive direction; we interpret that as the direction away from A (rightwards in the figure) - thus making the rope stretch.

$$
\begin{array}{lll}
\eta=\frac{1}{2} & \xi_{A}=0 & \xi_{B}=\frac{\xi_{m}}{\sqrt{2}}>0 \\
\eta=\frac{3}{4} & \xi_{A}=-\xi_{m}<0 & \xi_{B}=\frac{\xi_{m}}{2}>0 \\
\eta=\frac{7}{4} & \xi_{A}=-\xi_{m}<0 & \xi_{B}=-\frac{\xi_{m}}{2}<0
\end{array}
$$

where in the last case they are both displaced leftward but A more so than B so that the rope is indeed stretched.
(b) The values of η (where we have defined $\eta=t / T_{A}$) which reproduce the initial state are

$$
\begin{array}{llll}
\eta=1 & \xi_{A}=0 & \xi_{B}=0 & \text { and } \\
\eta=2 & \xi_{B}=0 & \xi_{B}=0 . &
\end{array}
$$

(c) The values of η for which the rope is slack are given below. In the first case, both displacements are to the right, but point A is farther to the right than B. In the second case, they are displaced towards each other.

$$
\begin{array}{lll}
\eta=\frac{1}{4} & \xi_{A}=x_{m}>0 & \xi_{B}=\frac{\xi_{m}}{\sqrt{2}}>0 \\
\eta=\frac{5}{4} & \xi_{A}=\xi_{m}>0 & \xi_{B}=-\frac{\xi_{m}}{2}<0 \\
\eta=\frac{3}{2} & \xi_{A}=0 & \xi_{B}=-\frac{\xi_{m}}{\sqrt{2}}<0
\end{array}
$$

where in the third case B is displaced leftward toward the undisplaced point A.
(d) The first design works effectively to damp fundamental modes of vibration in the two cables (especially in the shorter one which would have an anti-node at that point), whereas the second one only damps the fundamental mode in the longer cable.

1. The time it takes for a soldier in the rear end of the column to switch from the left to the right foot to stride forward is $t=1 \mathrm{~min} / 120=1 / 120 \mathrm{~min}=0.50 \mathrm{~s}$. This is also the time for the sound of the music to reach from the musicians (who are in the front) to the rear end of the column. Thus the length of the column is

$$
l=v t=(343 \mathrm{~m} / \mathrm{s})(0.50 \mathrm{~s})=1.7 \times 10^{2} \mathrm{~m} .
$$

2. (a) When the speed is constant, we have $v=d / t$ where $v=343 \mathrm{~m} / \mathrm{s}$ is assumed. Therefore, with $t=15 / 2 \mathrm{~s}$ being the time for sound to travel to the far wall we obtain $d=$ $(343 \mathrm{~m} / \mathrm{s}) \times(15 / 2 \mathrm{~s})$ which yields a distance of 2.6 km .
(b) Just as the $\frac{1}{2}$ factor in part (a) was $1 /(n+1)$ for $n=1$ reflection, so also can we write

$$
d=(343 \mathrm{~m} / \mathrm{s})\left(\frac{15 \mathrm{~s}}{n+1}\right) \Rightarrow n=\frac{(343)(15)}{d}-1
$$

for multiple reflections (with d in meters). For $d=25.7 \mathrm{~m}$, we find $n=199 \approx 2.0 \times 10^{2}$.
3. (a) The time for the sound to travel from the kicker to a spectator is given by d / v, where d is the distance and v is the speed of sound. The time for light to travel the same distance is given by d / c, where c is the speed of light. The delay between seeing and hearing the kick is $\Delta t=(d / v)-(d / c)$. The speed of light is so much greater than the speed of sound that the delay can be approximated by $\Delta t=d / v$. This means $d=v \Delta t$. The distance from the kicker to spectator A is $d_{A}=v \Delta t_{A}=(343 \mathrm{~m} / \mathrm{s})(0.23 \mathrm{~s})=79 \mathrm{~m}$.
(b) The distance from the kicker to spectator B is $d_{B}=v \Delta t_{B}=(343 \mathrm{~m} / \mathrm{s})(0.12 \mathrm{~s})=41 \mathrm{~m}$.
(c) Lines from the kicker to each spectator and from one spectator to the other form a right triangle with the line joining the spectators as the hypotenuse, so the distance between the spectators is

$$
D=\sqrt{d_{A}^{2}+d_{B}^{2}}=\sqrt{(79 \mathrm{~m})^{2}+(41 \mathrm{~m})^{2}}=89 \mathrm{~m} .
$$

4. The density of oxygen gas is

$$
\rho=\frac{0.0320 \mathrm{~kg}}{0.0224 \mathrm{~m}^{3}}=1.43 \mathrm{~kg} / \mathrm{m}^{3} .
$$

From $v=\sqrt{B / \rho}$ we find

$$
B=v^{2} \rho=(317 \mathrm{~m} / \mathrm{s})^{2}\left(1.43 \mathrm{~kg} / \mathrm{m}^{3}\right)=1.44 \times 10^{5} \mathrm{~Pa} .
$$

5. Let t_{f} be the time for the stone to fall to the water and t_{s} be the time for the sound of the splash to travel from the water to the top of the well. Then, the total time elapsed from dropping the stone to hearing the splash is $t=t_{f}+t_{s}$. If d is the depth of the well, then the kinematics of free fall gives $d=\frac{1}{2} g t_{f}^{2}$, or $t_{f}=\sqrt{2 d / g}$. The sound travels at a constant speed v_{s}, so $d=v_{s} t_{s}$, or $t_{s}=d / v_{s}$. Thus the total time is $t=\sqrt{2 d / g}+d / v_{s}$. This equation is to be solved for d. Rewrite it as $\sqrt{2 d / g}=t-d / v_{s}$ and square both sides to obtain $2 d / g=$ $t^{2}-2\left(t / v_{s}\right) d+\left(1+v_{s}^{2}\right) d^{2}$. Now multiply by $g v_{s}^{2}$ and rearrange to get

$$
g d^{2}-2 v_{s}\left(g t+v_{s}\right) d+g v_{s}^{2} t^{2}=0
$$

This is a quadratic equation for d. Its solutions are

$$
d=\frac{2 v_{s}\left(g t+v_{s}\right) \pm \sqrt{4 v_{s}^{2}\left(g t+v_{s}\right)^{2}-4 g^{2} v_{s}^{2} t^{2}}}{2 g}
$$

The physical solution must yield $d=0$ for $t=0$, so we take the solution with the negative sign in front of the square root. Once values are substituted the result $d=40.7 \mathrm{~m}$ is obtained.
6. Let ℓ be the length of the rod. Then the time of travel for sound in air (speed v_{s}) will be $t_{s}=\ell / v_{s}$. And the time of travel for compressional waves in the rod (speed v_{r}) will be $t_{r}=\ell / v_{r}$. In these terms, the problem tells us that

$$
t_{s}-t_{r}=0.12 \mathrm{~s}=\ell\left(\frac{1}{v_{s}}-\frac{1}{v_{r}}\right) .
$$

Thus, with $v_{s}=343 \mathrm{~m} / \mathrm{s}$ and $v_{r}=15 v_{s}=5145 \mathrm{~m} / \mathrm{s}$, we find $\ell=44 \mathrm{~m}$.
7. If d is the distance from the location of the earthquake to the seismograph and v_{s} is the speed of the S waves then the time for these waves to reach the seismograph is $t_{s}=d / v_{s}$. Similarly, the time for P waves to reach the seismograph is $t_{p}=d / v_{p}$. The time delay is

$$
\Delta t=\left(d / v_{s}\right)-\left(d / v_{p}\right)=d\left(v_{p}-v_{s}\right) / v_{s} v_{p}
$$

so

$$
d=\frac{v_{s} v_{p} \Delta t}{\left(v_{p}-v_{s}\right)}=\frac{(4.5 \mathrm{~km} / \mathrm{s})(8.0 \mathrm{~km} / \mathrm{s})(3.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})}{8.0 \mathrm{~km} / \mathrm{s}-4.5 \mathrm{~km} / \mathrm{s}}=1.9 \times 10^{3} \mathrm{~km} .
$$

We note that values for the speeds were substituted as given, in km / s, but that the value for the time delay was converted from minutes to seconds.
8. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or cosine) function: $p_{m}=1.50 \mathrm{~Pa}$.
(b) We identify $k=0.9 \pi$ and $\omega=315 \pi$ (in SI units), which leads to $f=\omega / 2 \pi=158 \mathrm{~Hz}$.
(c) We also obtain $\lambda=2 \pi / k=2.22 \mathrm{~m}$.
(d) The speed of the wave is $v=\omega / k=350 \mathrm{~m} / \mathrm{s}$.
9. (a) Using $\lambda=v / f$, where v is the speed of sound in air and f is the frequency, we find

$$
\lambda=\frac{343 \mathrm{~m} / \mathrm{s}}{4.50 \times 10^{6} \mathrm{~Hz}}=7.62 \times 10^{-5} \mathrm{~m} .
$$

(b) Now, $\lambda=v / f$, where v is the speed of sound in tissue. The frequency is the same for air and tissue. Thus

$$
\lambda=(1500 \mathrm{~m} / \mathrm{s}) /\left(4.50 \times 10^{6} \mathrm{~Hz}\right)=3.33 \times 10^{-4} \mathrm{~m}
$$

10. Without loss of generality we take $x=0$, and let $t=0$ be when $s=0$. This means the phase is $\phi=-\pi / 2$ and the function is $s=(6.0 \mathrm{~nm}) \sin (\omega t)$ at $x=0$. Noting that $\omega=3000$ $\mathrm{rad} / \mathrm{s}$, we note that at $t=\sin ^{-1}(1 / 3) / \omega=0.1133 \mathrm{~ms}$ the displacement is $s=+2.0 \mathrm{~nm}$. Doubling that time (so that we consider the excursion from -2.0 nm to +2.0 nm) we conclude that the time required is $2(0.1133 \mathrm{~ms})=0.23 \mathrm{~ms}$.
11. (a) Consider a string of pulses returning to the stage. A pulse which came back just before the previous one has traveled an extra distance of $2 w$, taking an extra amount of time $\Delta t=2 w / v$. The frequency of the pulse is therefore

$$
f=\frac{1}{\Delta t}=\frac{v}{2 w}=\frac{343 \mathrm{~m} / \mathrm{s}}{2(0.75 \mathrm{~m})}=2.3 \times 10^{2} \mathrm{~Hz}
$$

(b) Since $f \propto 1 / w$, the frequency would be higher if w were smaller.
12. The problem says "At one instant.." and we choose that instant (without loss of generality) to be $t=0$. Thus, the displacement of "air molecule A " at that instant is

$$
s_{A}=+s_{m}=\left.s_{m} \cos \left(k x_{A}-\omega t+\phi\right)\right|_{t=0}=s_{m} \cos \left(k x_{A}+\phi\right),
$$

where $x_{A}=2.00 \mathrm{~m}$. Regarding "air molecule B " we have

$$
s_{B}=+\frac{1}{3} s_{m}=\left.s_{m} \cos \left(k x_{B}-\omega t+\phi\right)\right|_{t=0}=s_{m} \cos \left(k x_{B}+\phi\right) .
$$

These statements lead to the following conditions:

$$
\begin{aligned}
& k x_{A}+\phi=0 \\
& k x_{B}+\phi=\cos ^{-1}(1 / 3)=1.231
\end{aligned}
$$

where $x_{B}=2.07 \mathrm{~m}$. Subtracting these equations leads to

$$
k\left(x_{B}-x_{A}\right)=1.231 \Rightarrow k=17.6 \mathrm{rad} / \mathrm{m} .
$$

Using the fact that $k=2 \pi / \lambda$ we find $\lambda=0.357 \mathrm{~m}$, which means

$$
f=v / \lambda=343 / 0.357=960 \mathrm{~Hz} .
$$

Another way to complete this problem (once k is found) is to use $k v=\omega$ and then the fact that $\omega=2 \pi f$.
13. (a) The period is $T=2.0 \mathrm{~ms}$ (or 0.0020 s) and the amplitude is $\Delta p_{m}=8.0 \mathrm{mPa}$ (which is equivalent to $0.0080 \mathrm{~N} / \mathrm{m}^{2}$). From Eq. 17-15 we get

$$
s_{m}=\frac{\Delta p_{m}}{\mathrm{v} \rho \omega}=\frac{\Delta p_{m}}{\mathrm{v} \rho(2 \pi / T)}=6.1 \times 10^{-9} \mathrm{~m} .
$$

where $\rho=1.21 \mathrm{~kg} / \mathrm{m}^{3}$ and $v=343 \mathrm{~m} / \mathrm{s}$.
(b) The angular wave number is $k=\omega / v=2 \pi / v T=9.2 \mathrm{rad} / \mathrm{m}$.
(c) The angular frequency is $\omega=2 \pi / T=3142 \mathrm{rad} / \mathrm{s} \approx 3.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$.

The results may be summarized as $s(x, t)=(6.1 \mathrm{~nm}) \cos \left[\left(9.2 \mathrm{~m}^{-1}\right) x-\left(3.1 \times 10^{3} \mathrm{~s}^{-1}\right) t\right]$.
(d) Using similar reasoning, but with the new values for density ($\rho^{\prime}=1.35 \mathrm{~kg} / \mathrm{m}^{3}$) and speed ($v^{\prime}=320 \mathrm{~m} / \mathrm{s}$), we obtain

$$
s_{m}=\frac{\Delta p_{m}}{v^{\prime} \rho^{\prime} \omega}=\frac{\Delta p_{m}}{v^{\prime} \rho^{\prime}(2 \pi / T)}=5.9 \times 10^{-9} \mathrm{~m} .
$$

(e) The angular wave number is $k=\omega / v^{\prime}=2 \pi / v^{\prime} T=9.8 \mathrm{rad} / \mathrm{m}$.
(f) The angular frequency is $\omega=2 \pi / T=3142 \mathrm{rad} / \mathrm{s} \approx 3.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$.

The new displacement function is $s(x, t)=(5.9 \mathrm{~nm}) \cos \left[\left(9.8 \mathrm{~m}^{-1}\right) x-\left(3.1 \times 10^{3} \mathrm{~s}^{-1}\right) t\right]$.
14. Let the separation between the point and the two sources (labeled 1 and 2) be x_{1} and x_{2}, respectively. Then the phase difference is

$$
\begin{aligned}
\Delta \phi & =\phi_{1}-\phi_{2}=2 \pi\left(\frac{x_{1}}{\lambda}+f t\right)-2 \pi\left(\frac{x_{2}}{\lambda}+f t\right)=\frac{2 \pi\left(x_{1}-x_{2}\right)}{\lambda} \\
& =\frac{2 \pi(4.40 \mathrm{~m}-4.00 \mathrm{~m})}{(330 \mathrm{~m} / \mathrm{s}) / 540 \mathrm{~Hz}}=4.12 \mathrm{rad} .
\end{aligned}
$$

15. (a) The problem is asking at how many angles will there be "loud" resultant waves, and at how many will there be "quiet" ones? We note that at all points (at large distance from the origin) along the x axis there will be quiet ones; one way to see this is to note that the path-length difference (for the waves traveling from their respective sources) divided by wavelength gives the (dimensionless) value 3.5 , implying a half-wavelength (180°) phase difference (destructive interference) between the waves. To distinguish the destructive interference along the $+x$ axis from the destructive interference along the $-x$ axis, we label one with +3.5 and the other -3.5 . This labeling is useful in that it suggests that the complete enumeration of the quiet directions in the upper-half plane (including the x axis) is: $-3.5,-2.5,-1.5,-0.5,+0.5,+1.5,+2.5,+3.5$. Similarly, the complete enumeration of the loud directions in the upper-half plane is: $-3,-2,-1,0,+1,+2,+3$. Counting also the "other" $-3,-2,-1,0,+1,+2,+3$ values for the lower-half plane, then we conclude there are a total of $7+7=14$ "loud" directions.
(b) The discussion about the "quiet" directions was started in part (a). The number of values in the list: $-3.5,-2.5,-1.5,-0.5,+0.5,+1.5,+2.5,+3.5$ along with $-2.5,-1.5,-0.5$, $+0.5,+1.5,+2.5$ (for the lower-half plane) is 14 . There are 14 "quiet" directions.
16. At the location of the detector, the phase difference between the wave which traveled straight down the tube and the other one which took the semi-circular detour is

$$
\Delta \phi=k \Delta d=\frac{2 \pi}{\lambda}(\pi r-2 r)
$$

For $r=r_{\min }$ we have $\Delta \phi=\pi$, which is the smallest phase difference for a destructive interference to occur. Thus

$$
r_{\min }=\frac{\lambda}{2(\pi-2)}=\frac{40.0 \mathrm{~cm}}{2(\pi-2)}=17.5 \mathrm{~cm} .
$$

17. Let L_{1} be the distance from the closer speaker to the listener. The distance from the other speaker to the listener is $L_{2}=\sqrt{L_{1}^{2}+d^{2}}$, where d is the distance between the speakers. The phase difference at the listener is $\phi=2 \pi\left(L_{2}-L_{1}\right) / \lambda$, where λ is the wavelength.

For a minimum in intensity at the listener, $\phi=(2 n+1) \pi$, where n is an integer. Thus $\lambda=$ $2\left(L_{2}-L_{1}\right) /(2 n+1)$. The frequency is

$$
f=\frac{v}{\lambda}=\frac{(2 n+1) v}{2\left(\sqrt{L_{1}^{2}+d^{2}}-L_{1}\right)}=\frac{(2 n+1)(343 \mathrm{~m} / \mathrm{s})}{2\left(\sqrt{(3.75 \mathrm{~m})^{2}+(2.00 \mathrm{~m})^{2}}-3.75 \mathrm{~m}\right)}=(2 n+1)(343 \mathrm{~Hz}) .
$$

Now $20,000 / 343=58.3$, so $2 n+1$ must range from 0 to 57 for the frequency to be in the audible range. This means n ranges from 0 to 28 .
(a) The lowest frequency that gives minimum signal is $(n=0) f_{\text {min }, 1}=343 \mathrm{~Hz}$.
(b) The second lowest frequency is $(n=1) f_{\min , 2}=[2(1)+1] 343 \mathrm{~Hz}=1029 \mathrm{~Hz}=3 f_{\min , 1}$. Thus, the factor is 3 .
(c) The third lowest frequency is $(n=2) f_{\min , 3}=[2(2)+1] 343 \mathrm{~Hz}=1715 \mathrm{~Hz}=5 f_{\text {min, } 1}$. Thus, the factor is 5 .

For a maximum in intensity at the listener, $\phi=2 n \pi$, where n is any positive integer. Thus $\lambda=(1 / n)\left(\sqrt{L_{1}^{2}+d^{2}}-L_{1}\right)$ and

$$
f=\frac{v}{\lambda}=\frac{n v}{\sqrt{L_{1}^{2}+d^{2}}-L_{1}}=\frac{n(343 \mathrm{~m} / \mathrm{s})}{\sqrt{(3.75 \mathrm{~m})^{2}+(2.00 \mathrm{~m})^{2}}-3.75 \mathrm{~m}}=n(686 \mathrm{~Hz}) .
$$

Since $20,000 / 686=29.2, n$ must be in the range from 1 to 29 for the frequency to be audible.
(d) The lowest frequency that gives maximum signal is $(n=1) f_{\text {max, } 1}=686 \mathrm{~Hz}$.
(e) The second lowest frequency is $(n=2) f_{\text {max }, 2}=2(686 \mathrm{~Hz})=1372 \mathrm{~Hz}=2 f_{\text {max }, 1}$. Thus, the factor is 2 .
(f) The third lowest frequency is $(n=3) f_{\text {max }, 3}=3(686 \mathrm{~Hz})=2058 \mathrm{~Hz}=3 f_{\text {max }, 1}$. Thus, the factor is 3 .
18. (a) The problem indicates that we should ignore the decrease in sound amplitude which means that all waves passing through point P have equal amplitude. Their superposition at P if $d=\lambda / 4$ results in a net effect of zero there since there are four sources (so the first and third are $\lambda / 2$ apart and thus interfere destructively; similarly for the second and fourth sources).
(b) Their superposition at P if $d=\lambda / 2$ also results in a net effect of zero there since there are an even number of sources (so the first and second being $\lambda / 2$ apart will interfere destructively; similarly for the waves from the third and fourth sources).
(c) If $d=\lambda$ then the waves from the first and second sources will arrive at P in phase; similar observations apply to the second and third, and to the third and fourth sources. Thus, four waves interfere constructively there with net amplitude equal to $4 s_{m}$.
19. Building on the theory developed in $\S 17-5$, we set $\Delta L / \lambda=n-1 / 2, n=1,2, \ldots$ in order to have destructive interference. Since $v=f \lambda$, we can write this in terms of frequency:

$$
f_{\min , n}=\frac{(2 n-1) v}{2 \Delta L}=(n-1 / 2)(286 \mathrm{~Hz})
$$

where we have used $v=343 \mathrm{~m} / \mathrm{s}$ (note the remarks made in the textbook at the beginning of the exercises and problems section) and $\Delta L=(19.5-18.3) \mathrm{m}=1.2 \mathrm{~m}$.
(a) The lowest frequency that gives destructive interference is $(n=1)$

$$
f_{\min , 1}=(1-1 / 2)(286 \mathrm{~Hz})=143 \mathrm{~Hz}
$$

(b) The second lowest frequency that gives destructive interference is $(n=2)$

$$
f_{\min , 2}=(2-1 / 2)(286 \mathrm{~Hz})=429 \mathrm{~Hz}=3(143 \mathrm{~Hz})=3 f_{\min , 1} .
$$

So the factor is 3 .
(c) The third lowest frequency that gives destructive interference is $(n=3)$

$$
f_{\min , 3}=(3-1 / 2)(286 \mathrm{~Hz})=715 \mathrm{~Hz}=5(143 \mathrm{~Hz})=5 f_{\min , 1} .
$$

So the factor is 5 .

Now we set $\Delta L / \lambda=\frac{1}{2}$ (even numbers) - which can be written more simply as "(all integers $n=1,2, \ldots$)" - in order to establish constructive interference. Thus,

$$
f_{\max , n}=\frac{n v}{\Delta L}=n(286 \mathrm{~Hz}) .
$$

(d) The lowest frequency that gives constructive interference is $(n=1) f_{\text {max }, 1}=(286 \mathrm{~Hz})$.
(e) The second lowest frequency that gives constructive interference is $(n=2)$

$$
f_{\max , 2}=2(286 \mathrm{~Hz})=572 \mathrm{~Hz}=2 f_{\max , 1} .
$$

Thus, the factor is 2 .
(f) The third lowest frequency that gives constructive interference is $(n=3)$

$$
f_{\max , 3}=3(286 \mathrm{~Hz})=858 \mathrm{~Hz}=3 f_{\max , 1} .
$$

Thus, the factor is 3 .
20. (a) If point P is infinitely far away, then the small distance d between the two sources is of no consequence (they seem effectively to be the same distance away from P). Thus, there is no perceived phase difference.
(b) Since the sources oscillate in phase, then the situation described in part (a) produces constructive interference.
(c) For finite values of x, the difference in source positions becomes significant. The path lengths for waves to travel from S_{1} and S_{2} become now different. We interpret the question as asking for the behavior of the absolute value of the phase difference $|\Delta \phi|$, in which case any change from zero (the answer for part (a)) is certainly an increase.

The path length difference for waves traveling from S_{1} and S_{2} is

$$
\Delta \ell=\sqrt{d^{2}+x^{2}}-x \quad \text { for } \quad x>0
$$

The phase difference in "cycles" (in absolute value) is therefore

$$
|\Delta \phi|=\frac{\Delta \ell}{\lambda}=\frac{\sqrt{d^{2}+x^{2}}-x}{\lambda} .
$$

Thus, in terms of λ, the phase difference is identical to the path length difference: $|\Delta \phi|=\Delta \ell>0$. Consider $\Delta \ell=\mid / 2$. Then $\sqrt{d^{2}+x^{2}}=x+\lambda / 2$. Squaring both sides, rearranging, and solving, we find

$$
x=\frac{d^{2}}{\lambda}-\frac{\lambda}{4} .
$$

In general, if $\mathrm{D} \ell=x \mathrm{l}$ for some multiplier $\xi>0$, we find

$$
x=\frac{d^{2}}{2 \xi \lambda}-\frac{1}{2} \xi \lambda=\frac{64.0}{\xi}-\xi
$$

where we have used $d=16.0 \mathrm{~m}$ and $\lambda=2.00 \mathrm{~m}$.
(d) For $\mathrm{D} \ell=0.501$, or $\xi=0.50$, we have $x=(64.0 / 0.50-0.50) \mathrm{m}=127.5 \mathrm{~m} \approx 128 \mathrm{~m}$.
(e) For $\mathrm{D} \ell=1.001$, or $\xi=1.00$, we have $x=(64.0 / 1.00-1.00) \mathrm{m}=63.0 \mathrm{~m}$.
(f) For $\mathrm{D} \ell=1.501$, or $\xi=1.50$, we have $x=(64.0 / 1.50-1.50) \mathrm{m}=41.2 \mathrm{~m}$.

Note that since whole cycle phase differences are equivalent (as far as the wave superposition goes) to zero phase difference, then the $\xi=1,2$ cases give constructive interference. A shift of a half-cycle brings "troughs" of one wave in superposition with "crests" of the other, thereby canceling the waves; therefore, the $\xi=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ cases produce destructive interference.
21. The intensity is the rate of energy flow per unit area perpendicular to the flow. The rate at which energy flow across every sphere centered at the source is the same, regardless of the sphere radius, and is the same as the power output of the source. If P is the power output and I is the intensity a distance r from the source, then $P=I A=4 \pi r^{2} I$, where $A\left(=4 \pi r^{2}\right)$ is the surface area of a sphere of radius r. Thus

$$
P=4 \pi(2.50 \mathrm{~m})^{2}\left(1.91 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}\right)=1.50 \times 10^{-2} \mathrm{~W} .
$$

22. (a) Since intensity is power divided by area, and for an isotropic source the area may be written $A=4 \pi r^{2}$ (the area of a sphere), then we have

$$
I=\frac{P}{A}=\frac{1.0 \mathrm{~W}}{4 \pi(1.0 \mathrm{~m})^{2}}=0.080 \mathrm{~W} / \mathrm{m}^{2}
$$

(b) This calculation may be done exactly as shown in part (a) (but with $r=2.5 \mathrm{~m}$ instead of $r=1.0 \mathrm{~m}$), or it may be done by setting up a ratio. We illustrate the latter approach. Thus,

$$
\frac{I^{\prime}}{I}=\frac{P / 4 \pi\left(r^{\prime}\right)^{2}}{P / 4 \pi r^{2}}=\left(\frac{r}{r^{\prime}}\right)^{2}
$$

leads to $I^{\prime}=\left(0.080 \mathrm{~W} / \mathrm{m}^{2}\right)(1.0 / 2.5)^{2}=0.013 \mathrm{~W} / \mathrm{m}^{2}$.
23. The intensity is given by $I=\frac{1}{2} \rho \nu \omega^{2} s_{m}^{2}$, where ρ is the density of air, v is the speed of sound in air, ω is the angular frequency, and s_{m} is the displacement amplitude for the sound wave. Replace ω with $2 \pi f$ and solve for s_{m} :

$$
s_{m}=\sqrt{\frac{I}{2 \pi^{2} \rho v f^{2}}}=\sqrt{\frac{1.00 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{2 \pi^{2}\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})(300 \mathrm{~Hz})^{2}}}=3.68 \times 10^{-8} \mathrm{~m} .
$$

24. Sample Problem 17-5 shows that a decibel difference $\Delta \beta$ is directly related to an intensity ratio (which we write as $R=I^{\prime} / I$). Thus,

$$
\Delta \beta=10 \log (R) \Rightarrow R=10^{\Delta \beta / 10}=10^{0.1}=1.26
$$

25. (a) Let I_{1} be the original intensity and I_{2} be the final intensity. The original sound level is $\beta_{1}=(10 \mathrm{~dB}) \log \left(I_{1} / I_{0}\right)$ and the final sound level is $\beta_{2}=(10 \mathrm{~dB}) \log \left(I_{2} / I_{0}\right)$, where I_{0} is the reference intensity. Since $\beta_{2}=\beta_{1}+30 \mathrm{~dB}$ which yields

$$
(10 \mathrm{~dB}) \log \left(I_{2} / I_{0}\right)=(10 \mathrm{~dB}) \log \left(I_{1} / I_{0}\right)+30 \mathrm{~dB},
$$

or

$$
(10 \mathrm{~dB}) \log \left(I_{2} / I_{0}\right)-(10 \mathrm{~dB}) \log \left(I_{1} / I_{0}\right)=30 \mathrm{~dB} .
$$

Divide by 10 dB and use $\log \left(I_{2} / I_{0}\right)-\log \left(I_{1} / I_{0}\right)=\log \left(I_{2} / I_{1}\right)$ to obtain $\log \left(I_{2} / I_{1}\right)=3$. Now use each side as an exponent of 10 and recognize that $10^{\log \left(I_{2} / I_{1}\right)}=I_{2} / I_{1}$. The result is $I_{2} / I_{1}=$ 10^{3}. The intensity is increased by a factor of 1.0×10^{3}.
(b) The pressure amplitude is proportional to the square root of the intensity so it is increased by a factor of $\sqrt{1000}=32$.
26. (a) The intensity is given by $I=P / 4 \pi r^{2}$ when the source is "point-like." Therefore, at r $=3.00 \mathrm{~m}$,

$$
I=\frac{1.00 \times 10^{-6} \mathrm{~W}}{4 \pi(3.00 \mathrm{~m})^{2}}=8.84 \times 10^{-9} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) The sound level there is

$$
\beta=10 \log \left(\frac{8.84 \times 10^{-9} \mathrm{~W} / \mathrm{m}^{2}}{1.00 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right)=39.5 \mathrm{~dB} .
$$

27. (a) Eq. 17-29 gives the relation between sound level β and intensity I, namely

$$
I=I_{0} 10^{(\beta / 10 \mathrm{~dB})}=\left(10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right) 10^{(\beta / 10 \mathrm{~dB})}=10^{-12+(\beta / 10 \mathrm{~dB})} \mathrm{W} / \mathrm{m}^{2}
$$

Thus we find that for a $\beta=70 \mathrm{~dB}$ level we have a high intensity value of $I_{\text {high }}=10 \mu \mathrm{~W} / \mathrm{m}^{2}$.
(b) Similarly, for $\beta=50 \mathrm{~dB}$ level we have a low intensity value of $I_{\mathrm{low}}=0.10 \mu \mathrm{~W} / \mathrm{m}^{2}$.
(c) Eq. 17-27 gives the relation between the displacement amplitude and I. Using the values for density and wave speed, we find $s_{m}=70 \mathrm{~nm}$ for the high intensity case.
(d) Similarly, for the low intensity case we have $s_{m}=7.0 \mathrm{~nm}$.

We note that although the intensities differed by a factor of 100, the amplitudes differed by only a factor of 10 .
28. (a) Since $\omega=2 \pi f$, Eq. 17-15 leads to

$$
\Delta p_{m}=v \rho(2 \pi f) s_{m} \Rightarrow s_{m}=\frac{1.13 \times 10^{-3} \mathrm{~Pa}}{2 \pi(1665 \mathrm{~Hz})(343 \mathrm{~m} / \mathrm{s})\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)}
$$

which yields $s_{m}=0.26 \mathrm{~nm}$. The nano prefix represents 10^{-9}. We use the speed of sound and air density values given at the beginning of the exercises and problems section in the textbook.
(b) We can plug into Eq. 17-27 or into its equivalent form, rewritten in terms of the pressure amplitude:

$$
I=\frac{1}{2} \frac{\left(\Delta p_{m}\right)^{2}}{\rho v}=\frac{1}{2} \frac{\left(1.13 \times 10^{-3} \mathrm{~Pa}\right)^{2}}{\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})}=1.5 \mathrm{nW} / \mathrm{m}^{2}
$$

29. Combining Eqs.17-28 and 17-29 we have $\beta=10 \log \left(\frac{P}{I_{0} 4 \pi r^{2}}\right)$. Taking differences (for sounds A and B) we find

$$
\Delta \beta=10 \log \left(\frac{P_{A}}{I_{0} 4 \pi r^{2}}\right)-10 \log \left(\frac{P_{B}}{I_{0} 4 \pi r^{2}}\right)=10 \log \left(\frac{P_{A}}{P_{B}}\right)
$$

using well-known properties of logarithms. Thus, we see that $\Delta \beta$ is independent of r and can be evaluated anywhere.
(a) At $r=1000 \mathrm{~m}$ it is easily seen (in the graph) that $\Delta \beta=5.0 \mathrm{~dB}$. This is the same $\Delta \beta$ we expect to find, then, at $r=10 \mathrm{~m}$.
(b) We can also solve the above relation (once we know $\Delta \beta=5.0$) for the ratio of powers; we find $P_{A} / P_{B} \approx 3.2$.
30. (a) The intensity is

$$
I=\frac{P}{4 \pi r^{2}}=\frac{30.0 \mathrm{~W}}{(4 \pi)(200 \mathrm{~m})^{2}}=5.97 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) Let $A\left(=0.750 \mathrm{~cm}^{2}\right)$ be the cross-sectional area of the microphone. Then the power intercepted by the microphone is

$$
P^{\prime}=I A=0=\left(6.0 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}\right)\left(0.750 \mathrm{~cm}^{2}\right)\left(10^{-4} \mathrm{~m}^{2} / \mathrm{cm}^{2}\right)=4.48 \times 10^{-9} \mathrm{~W}
$$

31. (a) As discussed on page 408, the average potential energy transport rate is the same as that of the kinetic energy. This implies that the (average) rate for the total energy is

$$
\left(\frac{d E}{d t}\right)_{\mathrm{avg}}=2\left(\frac{d K}{d t}\right)_{\mathrm{avg}}=2\left(1 / 4 \rho A v \omega^{2} s_{m}{ }^{2}\right)
$$

using Eq. 17-44. In this equation, we substitute (with SI units understood) $\rho=1.21, A=$ $\pi r^{2}=\pi(0.02)^{2}, v=343, \omega=3000, s_{m}=12 \times 10^{-9}$, and obtain the answer $3.4 \times 10^{-10} \mathrm{~W}$.
(b) The second string is in a separate tube, so there is no question about the waves superposing. The total rate of energy, then, is just the addition of the two: $2\left(3.4 \times 10^{-10}\right.$ $\mathrm{W})=6.8 \times 10^{-10} \mathrm{~W}$.
(c) Now we $d o$ have superposition, with $\phi=0$, so the resultant amplitude is twice that of the individual wave which leads to the energy transport rate being four times that of part (a). We obtain $4\left(3.4 \times 10^{-10} \mathrm{~W}\right)=1.4 \times 10^{-9} \mathrm{~W}$.
(d) In this case $\phi=0.4 \pi$, which means (using Eq. 17-39) $s_{m}{ }^{\prime}=2 s_{m} \cos (\phi / 2)=1.618 s_{m}$. This means the energy transport rate is $(1.618)^{2}=2.618$ times that of part (a). We obtain $2.618\left(3.4 \times 10^{-10} \mathrm{~W}\right)=8.8 \times 10^{-10} \mathrm{~W}$.
(e) The situation is as shown in Fig. 17-14(b). The answer is zero.
32. (a) Using Eq. 17-39 with $v=343 \mathrm{~m} / \mathrm{s}$ and $n=1$, we find $f=n v / 2 L=86 \mathrm{~Hz}$ for the fundamental frequency in a nasal passage of length $L=2.0 \mathrm{~m}$ (subject to various assumptions about the nature of the passage as a "bent tube open at both ends").
(b) The sound would be perceptible as sound (as opposed to just a general vibration) of very low frequency.
(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of higher pitch (frequency).
33. (a) We note that $1.2=6 / 5$. This suggests that both even and odd harmonics are present, which means the pipe is open at both ends (see Eq. 17-39).
(b) Here we observe $1.4=7 / 5$. This suggests that only odd harmonics are present, which means the pipe is open at only one end (see Eq. 17-41).
34. The distance between nodes referred to in the problem means that $\lambda / 2=3.8 \mathrm{~cm}$, or $\lambda=0.076 \mathrm{~m}$. Therefore, the frequency is

$$
f=v / \lambda=1500 / 0.076 \approx 20 \times 10^{3} \mathrm{~Hz}
$$

35. (a) From Eq. 17-53, we have

$$
f=\frac{n v}{2 L}=\frac{(1)(250 \mathrm{~m} / \mathrm{s})}{2(0.150 \mathrm{~m})}=833 \mathrm{~Hz}
$$

(b) The frequency of the wave on the string is the same as the frequency of the sound wave it produces during its vibration. Consequently, the wavelength in air is

$$
\lambda=\frac{v_{\text {sound }}}{f}=\frac{348 \mathrm{~m} / \mathrm{s}}{833 \mathrm{~Hz}}=0.418 \mathrm{~m} .
$$

36. At the beginning of the exercises and problems section in the textbook, we are told to assume $v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ unless told otherwise. The second harmonic of pipe A is found from Eq. 17-39 with $n=2$ and $L=L_{A}$, and the third harmonic of pipe B is found from Eq. $17-41$ with $n=3$ and $L=L_{B}$. Since these frequencies are equal, we have

$$
\frac{2 v_{\text {sound }}}{2 L_{A}}=\frac{3 v_{\text {sound }}}{4 L_{B}} \Rightarrow L_{B}=\frac{3}{4} L_{A} .
$$

(a) Since the fundamental frequency for pipe A is 300 Hz , we immediately know that the second harmonic has $f=2(300)=600 \mathrm{~Hz}$. Using this, Eq. 17-39 gives

$$
L_{A}=(2)(343) / 2(600)=0.572 \mathrm{~m} .
$$

(b) The length of pipe B is $L_{B}=\frac{3}{4} L_{A}=0.429 \mathrm{~m}$.
37. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, exactly one-half of a wavelength fits between the ends. Thus, $\lambda=2 L$. We obtain

$$
v=f \lambda=2 L f=2(0.220 \mathrm{~m})(920 \mathrm{~Hz})=405 \mathrm{~m} / \mathrm{s} .
$$

(b) The wave speed is given by $\nu=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string. If M is the mass of the (uniform) string, then $\mu=M / L$. Thus

$$
\tau=\mu \nu^{2}=(M / L) \nu^{2}=\left[\left(800 \times 10^{-6} \mathrm{~kg}\right) /(0.220 \mathrm{~m})\right](405 \mathrm{~m} / \mathrm{s})^{2}=596 \mathrm{~N} .
$$

(c) The wavelength is $\lambda=2 L=2(0.220 \mathrm{~m})=0.440 \mathrm{~m}$.
(d) The frequency of the sound wave in air is the same as the frequency of oscillation of the string. The wavelength is different because the wave speed is different. If v_{a} is the speed of sound in air the wavelength in air is $\lambda_{a}=v_{a} / f=(343 \mathrm{~m} / \mathrm{s}) /(920 \mathrm{~Hz})=0.373 \mathrm{~m}$.
38. The frequency is $f=686 \mathrm{~Hz}$ and the speed of sound is $v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$. If L is the length of the air-column, then using Eq. 17-41, the water height is (in unit of meters)

$$
h=1.00-L=1.00-\frac{n v}{4 f}=1.00-\frac{n(343)}{4(686)}=(1.00-0.125 n) \mathrm{m}
$$

where $n=1,3,5, \ldots$ with only one end closed.
(a) There are 4 values of $n(n=1,3,5,7)$ which satisfies $h>0$.
(b) The smallest water height for resonance to occur corresponds to $n=7$ with $h=0.125 \mathrm{~m}$.
(c) The second smallest water height corresponds to $n=5$ with $h=0.375 \mathrm{~m}$.
39. (a) Since the pipe is open at both ends there are displacement antinodes at both ends and an integer number of half-wavelengths fit into the length of the pipe. If L is the pipe length and λ is the wavelength then $\lambda=2 L / n$, where n is an integer. If v is the speed of sound then the resonant frequencies are given by $f=v / \lambda=n v / 2 L$. Now $L=0.457 \mathrm{~m}$, so

$$
f=n(344 \mathrm{~m} / \mathrm{s}) / 2(0.457 \mathrm{~m})=376.4 n \mathrm{~Hz}
$$

To find the resonant frequencies that lie between 1000 Hz and 2000 Hz , first set $f=1000$ Hz and solve for n, then set $f=2000 \mathrm{~Hz}$ and again solve for n. The results are 2.66 and 5.32 , which imply that $n=3,4$, and 5 are the appropriate values of n. Thus, there are 3 frequencies.
(b) The lowest frequency at which resonance occurs is $(n=3) f=3(376.4 \mathrm{~Hz})=1129 \mathrm{~Hz}$.
(c) The second lowest frequency at which resonance occurs is $(n=4)$

$$
f=4(376.4 \mathrm{~Hz})=1506 \mathrm{~Hz} .
$$

40. (a) Since the difference between consecutive harmonics is equal to the fundamental frequency (see section 17-6) then $f_{1}=(390-325) \mathrm{Hz}=65 \mathrm{~Hz}$. The next harmonic after 195 Hz is therefore $(195+65) \mathrm{Hz}=260 \mathrm{~Hz}$.
(b) Since $f_{n}=n f_{1}$ then $n=260 / 65=4$.
(c) Only odd harmonics are present in tube B so the difference between consecutive harmonics is equal to twice the fundamental frequency in this case (consider taking differences of Eq. 17-41 for various values of n). Therefore,

$$
f_{1}=\frac{1}{2}(1320-1080) \mathrm{Hz}=120 \mathrm{~Hz} .
$$

The next harmonic after 600 Hz is consequently $[600+2(120)] \mathrm{Hz}=840 \mathrm{~Hz}$.
(d) Since $f_{n}=n f_{1}$ (for n odd) then $n=840 / 120=7$.
41. The top of the water is a displacement node and the top of the well is a displacement anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into the depth of the well. If d is the depth and λ is the wavelength then $\lambda=4 d$. The frequency is $f=v / \lambda=v / 4 d$, where v is the speed of sound. The speed of sound is given by $\nu=\sqrt{B / \rho}$, where B is the bulk modulus and ρ is the density of air in the well. Thus $f=(1 / 4 d) \sqrt{B / \rho}$ and

$$
d=\frac{1}{4 f} \sqrt{\frac{B}{\rho}}=\frac{1}{4(7.00 \mathrm{~Hz})} \sqrt{\frac{1.33 \times 10^{5} \mathrm{~Pa}}{1.10 \mathrm{~kg} / \mathrm{m}^{3}}}=12.4 \mathrm{~m} .
$$

42. (a) Using Eq. 17-39 with $n=1$ (for the fundamental mode of vibration) and $343 \mathrm{~m} / \mathrm{s}$ for the speed of sound, we obtain

$$
f=\frac{(1) v_{\text {sound }}}{4 L_{\text {tube }}}=\frac{343 \mathrm{~m} / \mathrm{s}}{4(1.20 \mathrm{~m})}=71.5 \mathrm{~Hz}
$$

(b) For the wire (using Eq. 17-53) we have

$$
f^{\prime}=\frac{n v_{\text {wire }}}{2 L_{\text {wire }}}=\frac{1}{2 L_{\text {wire }}} \sqrt{\frac{\tau}{\mu}}
$$

where $\mu=m_{\text {wire }} / L_{\text {wire }}$. Recognizing that $f=f^{\prime}$ (both the wire and the air in the tube vibrate at the same frequency), we solve this for the tension τ.

$$
\tau=\left(2 L_{\text {wire }} f\right)^{2}\left(\frac{m_{\text {wire }}}{L_{\text {wire }}}\right)=4 f^{2} m_{\text {wire }} L_{\text {wire }}=4(71.5 \mathrm{~Hz})^{2}\left(9.60 \times 10^{-3} \mathrm{~kg}\right)(0.330 \mathrm{~m})=64.8 \mathrm{~N} .
$$

43. The string is fixed at both ends so the resonant wavelengths are given by $\lambda=2 L / n$, where L is the length of the string and n is an integer. The resonant frequencies are given by $f=\nu / \lambda=n v / 2 L$, where v is the wave speed on the string. Now $v=\sqrt{\tau / \mu}$, where τ is the tension in the string and μ is the linear mass density of the string. Thus $f=(n / 2 L) \sqrt{\tau / \mu}$. Suppose the lower frequency is associated with $n=n_{1}$ and the higher frequency is associated with $n=n_{1}+1$. There are no resonant frequencies between so you know that the integers associated with the given frequencies differ by 1 . Thus $f_{1}=\left(n_{1} / 2 L\right) \sqrt{\tau / \mu}$ and

$$
f_{2}=\frac{n_{1}+1}{2 L} \sqrt{\frac{\tau}{\mu}}=\frac{n_{1}}{2 L} \sqrt{\frac{\tau}{\mu}}+\frac{1}{2 L} \sqrt{\frac{\tau}{\mu}}=f_{1}+\frac{1}{2 L} \sqrt{\frac{\tau}{\mu}} .
$$

This means $f_{2}-f_{1}=(1 / 2 L) \sqrt{\tau / \mu}$ and

$$
\tau=4 L^{2} \mu\left(f_{2}-f_{1}\right)^{2}=4(0.300 \mathrm{~m})^{2}\left(0.650 \times 10^{-3} \mathrm{~kg} / \mathrm{m}\right)(1320 \mathrm{~Hz}-880 \mathrm{~Hz})^{2}=45.3 \mathrm{~N} .
$$

44. We observe that "third lowest \ldots frequency" corresponds to harmonic number $n=3$ for a pipe open at both ends. Also, "second lowest ... frequency" corresponds to harmonic number $n=3$ for a pipe closed at one end.
(a) Since $\lambda=2 L / n$ for pipe A, where $L=1.2 \mathrm{~m}$, then $\lambda=0.80 \mathrm{~m}$ for this mode. The change from node to anti-node requires a distance of $\lambda / 4$ so that every increment of 0.20 m along the x axis involves a switch between node and anti-node. Since the opening is a displacement anti-node, then the locations for displacement nodes are at $x=0.20 \mathrm{~m}, x=$ 0.60 m , and $x=1.0 \mathrm{~m}$. So there are 3 nodes.
(b) The smallest value of x where a node is present is $x=0.20 \mathrm{~m}$.
(c) The second smallest value of x where a node is present is $x=0.60 \mathrm{~m}$.
(d) The waves in both pipes have the same wave speed (sound in air) and frequency, so the standing waves in both pipes have the same wavelength $(0.80 \mathrm{~m})$. Therefore, using Eq. $17-38$ for pipe B, we find $L=3 \lambda / 4=0.60 \mathrm{~m}$.
(e) Using $v=343 \mathrm{~m} / \mathrm{s}$, we find $f_{3}=v / \lambda=429 \mathrm{~Hz}$. Now, we find the fundamental resonant frequency by dividing by the harmonic number, $f_{1}=f_{3} / 3=143 \mathrm{~Hz}$.
45. Since the beat frequency equals the difference between the frequencies of the two tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz . When mass is added to this fork its frequency decreases (recall, for example, that the frequency of a mass-spring oscillator is proportional to $1 / \sqrt{m}$). Since the beat frequency also decreases the frequency of the first fork must be greater than the frequency of the second. It must be 387 Hz .
46. Let the period be T. Then the beat frequency is $1 / T-440 \mathrm{~Hz}=4.00$ beats/s. Therefore, $T=2.25 \times 10^{-3} \mathrm{~s}$. The string that is "too tightly stretched" has the higher tension and thus the higher (fundamental) frequency.
47. Each wire is vibrating in its fundamental mode so the wavelength is twice the length of the wire $(\lambda=2 L)$ and the frequency is $f=v / \lambda=(1 / 2 L) \sqrt{\tau / \mu}$, where $v(=\sqrt{\tau / \mu})$ is the wave speed for the wire, τ is the tension in the wire, and μ is the linear mass density of the wire. Suppose the tension in one wire is τ and the oscillation frequency of that wire is f_{1}. The tension in the other wire is $\tau+\Delta \tau$ and its frequency is f_{2}. You want to calculate $\Delta \tau / \tau$ for $f_{1}=600 \mathrm{~Hz}$ and $f_{2}=606 \mathrm{~Hz}$. Now, $f_{1}=(1 / 2 L) \sqrt{\tau / \mu}$ and $f_{2}=(1 / 2 L) \sqrt{(\tau+\Delta \tau / \mu}$, so

$$
f_{2} / f_{1}=\sqrt{(\tau+\Delta \tau) / \tau}=\sqrt{1+(\Delta \tau / \tau)}
$$

This leads to $\Delta \tau / \tau=\left(f_{2} / f_{1}\right)^{2}-1=[(606 \mathrm{~Hz}) /(600 \mathrm{~Hz})]^{2}-1=0.020$.
48. (a) The number of different ways of picking up a pair of tuning forks out of a set of five is $5!/(2!3!)=10$. For each of the pairs selected, there will be one beat frequency. If these frequencies are all different from each other, we get the maximum possible number of 10 .
(b) First, we note that the minimum number occurs when the frequencies of these forks, labeled 1 through 5, increase in equal increments: $f_{n}=f_{1}+n \Delta f$, where $n=2,3,4,5$. Now, there are only 4 different beat frequencies: $f_{\text {beat }}=n \Delta f$, where $n=1,2,3,4$.
49. We use $v_{S}=r \omega$ (with $r=0.600 \mathrm{~m}$ and $\omega=15.0 \mathrm{rad} / \mathrm{s}$) for the linear speed during circular motion, and Eq. 17-47 for the Doppler effect (where $f=540 \mathrm{~Hz}$, and $v=343 \mathrm{~m} / \mathrm{s}$ for the speed of sound).
(a) The lowest frequency is

$$
f^{\prime}=f\left(\frac{v+0}{v+v_{S}}\right)=526 \mathrm{~Hz}
$$

(b) The highest frequency is

$$
f^{\prime}=f\left(\frac{v+0}{v-v_{S}}\right)=555 \mathrm{~Hz} .
$$

50. The Doppler effect formula, Eq. 17-47, and its accompanying rule for choosing \pm signs, are discussed in §17-10. Using that notation, we have $v=343 \mathrm{~m} / \mathrm{s}$,

$$
v_{D}=v_{S}=160000 / 3600=44.4 \mathrm{~m} / \mathrm{s},
$$

and $f=500 \mathrm{~Hz}$. Thus,

$$
f^{\prime}=(500 \mathrm{~Hz})\left(\frac{343-44.4}{343-44.4}\right)=500 \mathrm{~Hz} \Rightarrow \Delta f=0
$$

51. The Doppler effect formula, Eq. 17-47, and its accompanying rule for choosing \pm signs, are discussed in §17-10. Using that notation, we have $v=343 \mathrm{~m} / \mathrm{s}, v_{D}=2.44 \mathrm{~m} / \mathrm{s}$, $f^{\prime}=1590 \mathrm{~Hz}$ and $f=1600 \mathrm{~Hz}$. Thus,

$$
f^{\prime}=f\left(\frac{v+v_{D}}{v+v_{S}}\right) \Rightarrow v_{S}=\frac{f}{f^{\prime}}\left(v+v_{D}\right)-v=4.61 \mathrm{~m} / \mathrm{s}
$$

52. We are combining two effects: the reception of a moving object (the truck of speed u $=45.0 \mathrm{~m} / \mathrm{s}$) of waves emitted by a stationary object (the motion detector), and the subsequent emission of those waves by the moving object (the truck) which are picked up by the stationary detector. This could be figured in two steps, but is more compactly computed in one step as shown here:

$$
f_{\text {final }}=f_{\text {initial }}\left(\frac{v+u}{v-u}\right)=(0.150 \mathrm{MHz})\left(\frac{343 \mathrm{~m} / \mathrm{s}+45 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}-45 \mathrm{~m} / \mathrm{s}}\right)=0.195 \mathrm{MHz} .
$$

53. In this case, the intruder is moving away from the source with a speed u satisfying u / v $\ll 1$. The Doppler shift (with $u=-0.950 \mathrm{~m} / \mathrm{s}$) leads to

$$
\left.f_{\text {beat }}=\left|f_{r}-f_{s}\right| \approx \frac{2|u|}{v} f_{s}=\frac{2(0.95 \mathrm{~m} / \mathrm{s})(28.0 \mathrm{kHz})}{343 \mathrm{~m} / \mathrm{s}}\right)=155 \mathrm{~Hz} .
$$

54. We denote the speed of the French submarine by u_{1} and that of the U.S. sub by u_{2}.
(a) The frequency as detected by the U.S. sub is

$$
f_{1}^{\prime}=f_{1}\left(\frac{v+u_{2}}{v-u_{1}}\right)=(1000 \mathrm{~Hz})\left(\frac{5470+70}{5470-50}\right)=1.02 \times 10^{3} \mathrm{~Hz}
$$

(b) If the French sub were stationary, the frequency of the reflected wave would be $f_{r}=$ $f_{1}\left(v+u_{2}\right) /\left(v-u_{2}\right)$. Since the French sub is moving towards the reflected signal with speed u_{1}, then

$$
\begin{aligned}
f_{r}^{\prime} & =f_{r}\left(\frac{v+u_{1}}{v}\right)=f_{1} \frac{\left(v+u_{1}\right)\left(v+u_{2}\right)}{v\left(v-u_{2}\right)}=\frac{(1000 \mathrm{~Hz})(5470+50)(5470+70)}{(5470)(5470-70)} \\
& =1.04 \times 10^{3} \mathrm{~Hz} .
\end{aligned}
$$

55. We use Eq. 17-47 with $f=1200 \mathrm{~Hz}$ and $v=329 \mathrm{~m} / \mathrm{s}$.
(a) In this case, $v_{D}=65.8 \mathrm{~m} / \mathrm{s}$ and $v_{S}=29.9 \mathrm{~m} / \mathrm{s}$, and we choose signs so that f^{\prime} is larger than f :

$$
f^{\prime}=f\left(\frac{329+65.8}{329-29.9}\right)=1.58 \times 10^{3} \mathrm{~Hz}
$$

(b) The wavelength is $\lambda=v / f^{\prime}=0.208 \mathrm{~m}$.
(c) The wave (of frequency f^{\prime}) "emitted" by the moving reflector (now treated as a "source," so $v_{S}=65.8 \mathrm{~m} / \mathrm{s}$) is returned to the detector (now treated as a detector, so $v_{D}=$ $29.9 \mathrm{~m} / \mathrm{s}$) and registered as a new frequency $f^{\prime \prime}$:

$$
f^{\prime \prime}=f^{\prime}\left(\frac{329+29.9}{329-65.8}\right)=2.16 \times 10^{3} \mathrm{~Hz}
$$

(d) This has wavelength $v / f^{\prime \prime}=0.152 \mathrm{~m}$.
56. When the detector is stationary (with respect to the air) then Eq. 17-47 gives

$$
f^{\prime}=f \frac{1}{1-\mathrm{v}_{\mathrm{s}} / \mathrm{v}}
$$

where v_{s} is the speed of the source (assumed to be approaching the detector in the way we've written it, above). The difference between the approach and the recession is

$$
f^{\prime}-f^{\prime \prime}=f\left(\frac{1}{1-\mathrm{v}_{\mathrm{s}} / \mathrm{v}}-\frac{1}{1+\mathrm{v}_{\mathrm{s}} / \mathrm{v}}\right)=f\left(\frac{2 \mathrm{v}_{\mathrm{s}} / \mathrm{v}}{1-\left(\mathrm{v}_{\mathrm{s}} / \mathrm{v}\right)^{2}}\right)
$$

which, after setting $\left(f^{\prime}-f^{\prime \prime}\right) / f=1 / 2$, leads to an equation which can be solved for the ratio v_{s} / v. The result is $\sqrt{5}-2=0.236$. Thus, $\mathrm{v}_{\mathrm{s}} / \mathrm{v}=0.236$.
57. As a result of the Doppler effect, the frequency of the reflected sound as heard by the bat is

$$
f_{r}=f^{\prime}\left(\frac{v+u_{\text {bat }}}{v-u_{\text {bat }}}\right)=\left(3.9 \times 10^{4} \mathrm{~Hz}\right)\left(\frac{v+v / 40}{v-v / 40}\right)=4.1 \times 10^{4} \mathrm{~Hz} .
$$

58. The "third harmonic" refers to a resonant frequency $f_{3}=3 f_{1}$, where f_{1} is the fundamental lowest resonant frequency. When the source is stationary, with respect to the air, then Eq. 17-47 gives

$$
f^{\prime}=f\left(1-\frac{v_{d}}{v}\right)
$$

where v_{d} is the speed of the detector (assumed to be moving away from the source, in the way we've written it, above). The problem, then, wants us to find v_{d} such that $f^{\prime}=f_{1}$ when the emitted frequency is $f=f_{3}$. That is, we require $1-v_{d} / v=1 / 3$. Clearly, the solution to this is $v_{d} / v=2 / 3$ (independent of length and whether one or both ends are open [the latter point being due to the fact that the odd harmonics occur in both systems]). Thus,
(a) For tube $1, v_{d}=2 v / 3$.
(b) For tube 2, $v_{d}=2 v / 3$.
(c) For tube $3, v_{d}=2 v / 3$.
(d) For tube $4, v_{d}=2 v / 3$.
59. (a) The expression for the Doppler shifted frequency is

$$
f^{\prime}=f \frac{v \pm v_{D}}{v \mp v_{S}}
$$

where f is the unshifted frequency, v is the speed of sound, v_{D} is the speed of the detector (the uncle), and v_{S} is the speed of the source (the locomotive). All speeds are relative to the air. The uncle is at rest with respect to the air, so $v_{D}=0$. The speed of the source is v_{S} $=10 \mathrm{~m} / \mathrm{s}$. Since the locomotive is moving away from the uncle the frequency decreases and we use the plus sign in the denominator. Thus

$$
f^{\prime}=f \frac{v}{v+v_{S}}=(500.0 \mathrm{~Hz})\left(\frac{343 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}+10.00 \mathrm{~m} / \mathrm{s}}\right)=485.8 \mathrm{~Hz}
$$

(b) The girl is now the detector. Relative to the air she is moving with speed $v_{D}=10.00$ m / s toward the source. This tends to increase the frequency and we use the plus sign in the numerator. The source is moving at $v_{S}=10.00 \mathrm{~m} / \mathrm{s}$ away from the girl. This tends to decrease the frequency and we use the plus sign in the denominator. Thus $\left(v+v_{D}\right)=$ $\left(v+v_{S}\right)$ and $f^{\prime}=f=500.0 \mathrm{~Hz}$.
(c) Relative to the air the locomotive is moving at $v_{S}=20.00 \mathrm{~m} / \mathrm{s}$ away from the uncle. Use the plus sign in the denominator. Relative to the air the uncle is moving at $v_{D}=$ $10.00 \mathrm{~m} / \mathrm{s}$ toward the locomotive. Use the plus sign in the numerator. Thus

$$
f^{\prime}=f \frac{v+v_{D}}{v+v_{S}}=(500.0 \mathrm{~Hz})\left(\frac{343 \mathrm{~m} / \mathrm{s}+10.00 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}+20.00 \mathrm{~m} / \mathrm{s}}\right)=486.2 \mathrm{~Hz}
$$

(d) Relative to the air the locomotive is moving at $v_{S}=20.00 \mathrm{~m} / \mathrm{s}$ away from the girl and the girl is moving at $v_{D}=20.00 \mathrm{~m} / \mathrm{s}$ toward the locomotive. Use the plus signs in both the numerator and the denominator. Thus $\left(v+v_{D}\right)=\left(v+v_{S}\right)$ and $f^{\prime}=f=500.0 \mathrm{~Hz}$.
60. The Doppler shift formula, Eq. 17-47, is valid only when both u_{S} and u_{D} are measured with respect to a stationary medium (i.e., no wind). To modify this formula in the presence of a wind, we switch to a new reference frame in which there is no wind.
(a) When the wind is blowing from the source to the observer with a speed w, we have $u^{\prime} s$ $=u_{D}^{\prime}=w$ in the new reference frame that moves together with the wind. Since the observer is now approaching the source while the source is backing off from the observer, we have, in the new reference frame,

$$
f^{\prime}=f\left(\frac{v+u_{D}^{\prime}}{v+u_{S}^{\prime}}\right)=f\left(\frac{v+w}{v+w}\right)=2.0 \times 10^{3} \mathrm{~Hz}
$$

In other words, there is no Doppler shift.
(b) In this case, all we need to do is to reverse the signs in front of both u_{D}^{\prime} and u_{S}^{\prime}. The result is that there is still no Doppler shift:

$$
f^{\prime}=f\left(\frac{v-u_{D}^{\prime}}{v-u_{S}^{\prime}}\right)=f\left(\frac{v-w}{v-w}\right)=2.0 \times 10^{3} \mathrm{~Hz}
$$

In general, there will always be no Doppler shift as long as there is no relative motion between the observer and the source, regardless of whether a wind is present or not.
61. We use Eq. $17-47$ with $f=500 \mathrm{~Hz}$ and $v=343 \mathrm{~m} / \mathrm{s}$. We choose signs to produce $f^{\prime}>f$.
(a) The frequency heard in still air is

$$
f^{\prime}=(500 \mathrm{~Hz})\left(\frac{343+30.5}{343-30.5}\right)=598 \mathrm{~Hz}
$$

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 $30.5=0$, and that of the source is $2(30.5)$. Therefore,

$$
f^{\prime}=500\left(\frac{343+0}{343-2(30.5)}\right)=608 \mathrm{~Hz} .
$$

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the source is $30.5-30.5=0$, and that of the detector is $2(30.5)$. Consequently,

$$
f^{\prime}=(500 \mathrm{~Hz})\left(\frac{343+2(30.5)}{343-0)}\right)=589 \mathrm{~Hz}
$$

62. We note that $1350 \mathrm{~km} / \mathrm{h}$ is $v_{S}=375 \mathrm{~m} / \mathrm{s}$. Then, with $\theta=60^{\circ}$, Eq. $17-57$ gives $v=$ $3.3 \times 10^{2} \mathrm{~m} / \mathrm{s}$.
63. (a) The half angle θ of the Mach cone is given by $\sin \theta=v / v_{S}$, where v is the speed of sound and v_{S} is the speed of the plane. Since $v_{S}=1.5 v, \sin \theta=v / 1.5 v=1 / 1.5$. This means $\theta=42^{\circ}$.
(b) Let h be the altitude of the plane and suppose the Mach cone intersects Earth's surface a distance d behind the plane. The situation is shown on the diagram below, with P indicating the plane and O indicating the observer. The cone angle is related to h and d by $\tan \theta=h / d$, so $d=h / \tan \theta$. The shock wave reaches O in the time the plane takes to fly the distance d :

$$
t=d / v=h / v \tan \theta=(5000 \mathrm{~m}) / 1.5(331 \mathrm{~m} / \mathrm{s}) \tan 42^{\circ}=11 \mathrm{~s} .
$$

64. The altitude H and the horizontal distance x for the legs of a right triangle, so we have

$$
H=x \tan \theta=v_{p} t \tan \theta=1.25 v t \sin \theta
$$

where v is the speed of sound, v_{p} is the speed of the plane and

$$
\theta=\sin ^{-1}\left(\frac{v}{v_{p}}\right)=\sin ^{-1}\left(\frac{v}{1.25 v}\right)=53.1^{\circ} .
$$

Thus the altitude is

$$
H=x \tan \theta=(1.25)(330 \mathrm{~m} / \mathrm{s})(60 \mathrm{~s})\left(\tan 53.1^{\circ}\right)=3.30 \times 10^{4} \mathrm{~m}
$$

65. When the source is stationary (with respect to the air) then Eq. 17-47 gives

$$
f^{\prime}=f\left(1-\frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{v}}\right)
$$

where v_{d} is the speed of the detector (assumed to be moving away from the source, in the way we've written it, above). The difference between the approach and the recession is

$$
f^{\prime \prime}-f^{\prime}=f\left[\left(1+\frac{v_{d}}{v}\right)-\left(1-\frac{v_{d}}{v}\right)\right]=f\left(2 \frac{v_{d}}{v}\right)
$$

which, after setting $\left(f^{\prime \prime}-f^{\prime}\right) / f=1 / 2$, leads to an equation which can be solved for the ratio v_{d} / v. The result is $1 / 4$. Thus, $v_{d} / v=0.250$.
66. (a) The separation distance between points A and B is one-quarter of a wavelength; therefore, $\lambda=4(0.15 \mathrm{~m})=0.60 \mathrm{~m}$. The frequency, then, is

$$
f=v / \lambda=343 / 0.60=572 \mathrm{~Hz} .
$$

(b) The separation distance between points C and D is one-half of a wavelength; therefore, $\lambda=2(0.15 \mathrm{~m})=0.30 \mathrm{~m}$. The frequency, then, is

$$
f=v / \lambda=343 / 0.30=1144 \mathrm{~Hz}(\text { or } 1.14 \mathrm{kHz}) .
$$

67. Since they oscillate out of phase, then their waves will cancel (producing a node) at a point exactly midway between them (the midpoint of the system, where we choose $x=0$). We note that Figure 17-14, and the $n=3$ case of Figure 17-15(a) have this property (of a node at the midpoint). The distance Δx between nodes is $\lambda / 2$, where $\lambda=v / f$ and $f=300$ Hz and $v=343 \mathrm{~m} / \mathrm{s}$. Thus, $\Delta x=v / 2 f=0.572 \mathrm{~m}$.

Therefore, nodes are found at the following positions:

$$
x=n \Delta x=n(0.572 \mathrm{~m}), n=0, \pm 1, \pm 2, \ldots
$$

(a) The shortest distance from the midpoint where nodes are found is $\Delta x=0$.
(b) The second shortest distance from the midpoint where nodes are found is $\Delta x=0.572 \mathrm{~m}$.
(c) The third shortest distance from the midpoint where nodes are found is $2 \Delta x=1.14 \mathrm{~m}$.
68. (a) Adapting Eq. 17-39 to the notation of this chapter, we have

$$
s_{m}{ }^{\prime}=2 s_{m} \cos (\phi / 2)=2(12 \mathrm{~nm}) \cos (\pi / 6)=20.78 \mathrm{~nm} .
$$

Thus, the amplitude of the resultant wave is roughly 21 nm .
(b) The wavelength $(\lambda=35 \mathrm{~cm})$ does not change as a result of the superposition.
(c) Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we conclude that the standing wave amplitude is $2(12 \mathrm{~nm})=24 \mathrm{~nm}$ when they are traveling in opposite directions.
(d) Again, the wavelength $(\lambda=35 \mathrm{~cm})$ does not change as a result of the superposition.
69. We note that waves 1 and 3 differ in phase by π radians (so they cancel upon superposition). Waves 2 and 4 also differ in phase by π radians (and also cancel upon superposition). Consequently, there is no resultant wave.
70. Let r stand for the ratio of the source speed to the speed of sound. Then, Eq. 17-55 (plus the fact that frequency is inversely proportional to wavelength) leads to

$$
2\left(\frac{1}{1+r}\right)=\frac{1}{1-r} .
$$

Solving, we find $r=1 / 3$. Thus, $v_{s} / v=0.33$.
71. Pipe A (which can only support odd harmonics - see Eq. 17-41) has length L_{A}. Pipe B (which supports both odd and even harmonics [any value of n] - see Eq. 17-39) has length $L_{B}=4 L_{A}$. Taking ratios of these equations leads to the condition:

$$
\left(\frac{n}{2}\right)_{B}=\left(n_{\mathrm{odd}}\right)_{A}
$$

Solving for n_{B} we have $n_{B}=2 n_{\text {odd }}$.
(a) Thus, the smallest value of n_{B} at which a harmonic frequency of B matches that of A is $n_{B}=2(1)=2$.
(b) The second smallest value of n_{B} at which a harmonic frequency of B matches that of A is $n_{B}=2(3)=6$.
(c) The third smallest value of n_{B} at which a harmonic frequency of B matches that of A is $n_{B}=2(5)=10$.
72. (a) Incorporating a term ($\lambda / 2$) to account for the phase shift upon reflection, then the path difference for the waves (when they come back together) is

$$
\sqrt{L^{2}+(2 d)^{2}}-L+\lambda / 2=\Delta(\text { path }) .
$$

Setting this equal to the condition needed to destructive interference ($\lambda / 2,3 \lambda / 2,5 \lambda / 2 \ldots$) leads to $d=0,2.10 \mathrm{~m}, \ldots \quad$ Since the problem explicitly excludes the $d=0$ possibility, then our answer is $d=2.10 \mathrm{~m}$.
(b) Setting this equal to the condition needed to constructive interference ($\lambda, 2 \lambda, 3 \lambda \ldots$) leads to $d=1.47 \mathrm{~m}, \ldots$ Our answer is $d=1.47 \mathrm{~m}$.
73. Any phase changes associated with the reflections themselves are rendered inconsequential by the fact that there are an even number of reflections. The additional path length traveled by wave A consists of the vertical legs in the zig-zag path: $2 L$. To be (minimally) out of phase means, therefore, that $2 L=\lambda / 2$ (corresponding to a half-cycle, or 180°, phase difference). Thus, $L=\lambda / 4$, or $L / \lambda=1 / 4=0.25$.
74. (a) To be out of phase (and thus result in destructive interference if they superpose) means their path difference must be $\lambda / 2$ (or $3 \lambda / 2$ or $5 \lambda / 2$ or \ldots). Here we see their path difference is L, so we must have (in the least possibility) $L=\lambda / 2$, or $q=L / \lambda=0.5$.
(b) As noted above, the next possibility is $L=3 \lambda / 2$, or $q=L / \lambda=1.5$.
75. (a) The time it takes for sound to travel in air is $t_{a}=L / v$, while it takes $t_{m}=L / v_{m}$ for the sound to travel in the metal. Thus

$$
t=t_{a}-t_{m}=\frac{L}{v}-\frac{L}{v_{m}}=\frac{L\left(v_{m}-v\right)}{v_{m} v} .
$$

(b) Using the values indicated (see Table 17-1), we obtain

$$
L=\frac{t}{1 / v-1 / v_{m}}=\frac{1.00 \mathrm{~s}}{1 /(343 \mathrm{~m} / \mathrm{s})-1 /(5941 \mathrm{~m} / \mathrm{s})}=364 \mathrm{~m} .
$$

76. (a) We observe that "third lowest ... frequency" corresponds to harmonic number $n=$ 5 for such a system. Using Eq. 17-41, we have

$$
f=\frac{n v}{4 L} \Rightarrow 750=\frac{5 v}{4(0.60)}
$$

so that $v=3.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$.
(b) As noted, $n=5$; therefore, $f_{1}=750 / 5=150 \mathrm{~Hz}$.
77. The siren is between you and the cliff, moving away from you and towards the cliff. Both "detectors" (you and the cliff) are stationary, so $v_{D}=0$ in Eq. 17-47 (and see the discussion in the textbook immediately after that equation regarding the selection of \pm signs). The source is the siren with $v_{S}=10 \mathrm{~m} / \mathrm{s}$. The problem asks us to use $v=330 \mathrm{~m} / \mathrm{s}$ for the speed of sound.
(a) With $f=1000 \mathrm{~Hz}$, the frequency f_{y} you hear becomes

$$
f_{y}=f\left(\frac{v+0}{v+v_{S}}\right)=970.6 \approx 9.7 \times 10^{2} \mathrm{~Hz}
$$

(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is

$$
f_{c}=f\left(\frac{v+0}{v-v_{S}}\right)=1031.3 \approx 1.0 \times 10^{3} \mathrm{~Hz} .
$$

(c) The beat frequency is $f_{c}-f_{y}=60$ beats/s (which, due to specific features of the human ear, is too large to be perceptible).
78. Since they are approaching each other, the sound produced (of emitted frequency f) by the flatcar-trumpet received by an observer on the ground will be of higher pitch f^{\prime}. In these terms, we are told $f^{\prime}-f=4.0 \mathrm{~Hz}$, and consequently that f ' $/ f=444 / 440=1.0091$. With v_{S} designating the speed of the flatcar and $v=343 \mathrm{~m} / \mathrm{s}$ being the speed of sound, the Doppler equation leads to

$$
\frac{f^{\prime}}{f}=\frac{v+0}{v-v_{S}} \Rightarrow v_{S}=(343 \mathrm{~m} / \mathrm{s}) \frac{1.0091-1}{1.0091}=3.1 \mathrm{~m} / \mathrm{s}
$$

79. The points and the least-squares fit is shown in the graph that follows.

The graph has frequency in Hertz along the vertical axis and $1 / L$ in inverse meters along the horizontal axis. The function found by the least squares fit procedure is $f=276(1 / L)+$ 0.037 . We shall assume that this fits either the model of an open organ pipe (mathematically similar to a string fixed at both ends) or that of a pipe closed at one end.
(a) In a tube with two open ends, $f=v / 2 L$. If the least-squares slope of 276 fits the first model, then a value of $v=2(276 \mathrm{~m} / \mathrm{s})=553 \mathrm{~m} / \mathrm{s} \approx 5.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$ is implied.
(b) In a tube with only one open end, $f=v / 4 L$, and we find $v=4(276 \mathrm{~m} / \mathrm{s})=1106 \mathrm{~m} / \mathrm{s}$ $\approx 1.1 \times 10^{3} \mathrm{~m} / \mathrm{s}$ which is more "in the ballpark" of the $1400 \mathrm{~m} / \mathrm{s}$ value cited in the problem.
(c) This suggests that the acoustic resonance involved in this situation is more closely related to the $n=1$ case of Figure 17-15(b) than to Figure 17-14.
80. The source being isotropic means $A_{\text {sphere }}=4 \pi r^{2}$ is used in the intensity definition $I=$ P / A, which further implies

$$
\frac{I_{2}}{I_{1}}=\frac{P / 4 \pi r_{2}^{2}}{P / 4 \pi r_{1}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2} .
$$

(a) With $I_{1}=9.60 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}, r_{1}=6.10 \mathrm{~m}$, and $r_{2}=30.0 \mathrm{~m}$, we find

$$
I_{2}=\left(9.60 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}\right)(6.10 / 30.0)^{2}=3.97 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) Using Eq. 17-27 with $I_{1}=9.60 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}, \omega=2 \pi(2000 \mathrm{~Hz}), v=343 \mathrm{~m} / \mathrm{s}$ and $\rho=$ $1.21 \mathrm{~kg} / \mathrm{m}^{3}$, we obtain

$$
s_{m}=\sqrt{\frac{2 I}{\rho v \omega^{2}}}=1.71 \times 10^{-7} \mathrm{~m} .
$$

(c) Eq. 17-15 gives the pressure amplitude:

$$
\Delta p_{m}=\rho v \omega s_{m}=0.893 \mathrm{~Pa} .
$$

81. When $\phi=0$ it is clear that the superposition wave has amplitude $2 \Delta p_{m}$. For the other cases, it is useful to write

$$
\Delta p_{1}+\Delta p_{2}=\Delta p_{m}(\sin (\omega t)+\sin (\omega t-\phi))=\left(2 \Delta p_{m} \cos \frac{\phi}{2}\right) \sin \left(\omega t-\frac{\phi}{2}\right)
$$

The factor in front of the sine function gives the amplitude Δp_{r}. Thus, $\Delta p_{r} / \Delta p_{m}=2 \cos (\phi / 2)$.
(a) When $\phi=0, \Delta p_{r} / \Delta p_{m}=2 \cos (0)=2.00$.
(b) When $\phi=\pi / 2, \Delta p_{r} / \Delta p_{m}=2 \cos (\pi / 4)=\sqrt{2}=1.41$.
(c) When $\phi=\pi / 3, \Delta p_{r} / \Delta p_{m}=2 \cos (\pi / 6)=\sqrt{3}=1.73$.
(d) When $\phi=\pi / 4, \Delta p_{r} / \Delta p_{m}=2 \cos (\pi / 8)=1.85$.
82. We use $v=\sqrt{B / \rho}$ to find the bulk modulus B :

$$
B=v^{2} \rho=\left(5.4 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}\left(2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)=7.9 \times 10^{10} \mathrm{~Pa}
$$

83. (a) With $r=10 \mathrm{~m}$ in Eq. 17-28, we have

$$
I=\frac{P}{4 \pi r^{2}} \Rightarrow P=10 \mathrm{~W}
$$

(b) Using that value of P in Eq. 17-28 with a new value for r, we obtain

$$
I=\frac{P}{4 \pi(5.0)^{2}}=0.032 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
$$

Alternatively, a ratio $I^{\prime} I I=\left(r / r^{\prime}\right)^{2}$ could have been used.
(c) Using Eq. 17-29 with $I=0.0080 \mathrm{~W} / \mathrm{m}^{2}$, we have

$$
\beta=10 \log \frac{I}{I_{0}}=99 \mathrm{~dB}
$$

where $I_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$.
84. (a) Since the source is moving toward the wall, the frequency of the sound as received at the wall is

$$
f^{\prime}=f\left(\frac{v}{v-v_{S}}\right)=(440 \mathrm{~Hz})\left(\frac{343 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}-20.0 \mathrm{~m} / \mathrm{s}}\right)=467 \mathrm{~Hz}
$$

(b) Since the person is moving with a speed u toward the reflected sound with frequency f^{\prime}, the frequency registered at the source is

$$
f_{r}=f^{\prime}\left(\frac{v+u}{v}\right)=(467 \mathrm{~Hz})\left(\frac{343 \mathrm{~m} / \mathrm{s}+20.0 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}\right)=494 \mathrm{~Hz}
$$

85. Let the frequencies of sound heard by the person from the left and right forks be f_{l} and f_{r}, respectively.
(a) If the speeds of both forks are u, then $f_{l, r}=f v /(v \pm u)$ and

$$
\begin{aligned}
f_{\text {beat }} & =\left|f_{r}-f_{l}\right|=f v\left(\frac{1}{v-u}-\frac{1}{v+u}\right)=\frac{2 f u v}{v^{2}-u^{2}}=\frac{2(440 \mathrm{~Hz})(3.00 \mathrm{~m} / \mathrm{s})(343 \mathrm{~m} / \mathrm{s})}{(343 \mathrm{~m} / \mathrm{s})^{2}-(3.00 \mathrm{~m} / \mathrm{s})^{2}} \\
& =7.70 \mathrm{~Hz}
\end{aligned}
$$

(b) If the speed of the listener is u, then $f_{l, r}=f(v \pm u) / v$ and

$$
f_{\text {beat }}=\left|f_{l}-f_{r}\right|=2 f\left(\frac{u}{v}\right)=2(440 \mathrm{~Hz})\left(\frac{3.00 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}\right)=7.70 \mathrm{~Hz} .
$$

86. (a) The period is the reciprocal of the frequency: $T=1 / f=1 /(90 \mathrm{~Hz})=1.1 \times 10^{-2} \mathrm{~s}$.
(b) Using $v=343 \mathrm{~m} / \mathrm{s}$, we find $\lambda=v / f=3.8 \mathrm{~m}$.
87. We use $\beta=10 \log \left(I / I_{\mathrm{o}}\right)$ with $I_{\mathrm{o}}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ and Eq. $17-27$ with $\omega=2 \pi f=$ $2 \pi(260 \mathrm{~Hz}), \nu=343 \mathrm{~m} / \mathrm{s}$ and $\rho=1.21 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
I=I_{\mathrm{o}}\left(10^{8.5}\right)=\frac{1}{2} \rho v(2 \pi f)^{2} s_{m}^{2} \quad \Rightarrow \quad s_{m}=7.6 \times 10^{-7} \mathrm{~m}=0.76 \mu \mathrm{~m}
$$

88. We use $\beta=10 \log \left(I / I_{\mathrm{o}}\right)$ with $I_{\mathrm{o}}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ and $I=P / 4 \pi r^{2}$ (an assumption we are asked to make in the problem). We estimate $r \approx 0.3 \mathrm{~m}$ (distance from knuckle to ear) and find

$$
P \approx 4 \pi(0.3 \mathrm{~m})^{2}\left(1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right) 10^{6.2}=2 \times 10^{-6} \mathrm{~W}=2 \mu \mathrm{~W}
$$

89. Using Eq. 17-47 with great care (regarding its \pm sign conventions), we have

$$
f^{\prime}=(440 \mathrm{~Hz})\left(\frac{340 \mathrm{~m} / \mathrm{s}-80.0 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}-54.0 \mathrm{~m} / \mathrm{s}}\right)=400 \mathrm{~Hz}
$$

90. (a) It is clear from the last sentence (before part (a)) that the distance between the sources must be 5.0λ.
(b) Point P_{1} is equidistant from the sources so the waves are fully constructive when they superpose there.
(c) We add $2(\lambda / 2) \sin \left(30^{\circ}\right)$ to the aforementioned 5.0λ and obtain 5.5λ.
(d) The " 0.5 " part of that " 5.5λ " means the superposition is fully destructive there.
91. The rule: if you divide the time (in seconds) by 3 , then you get (approximately) the straight-line distance d. We note that the speed of sound we are to use is given at the beginning of the problem section in the textbook, and that the speed of light is very much larger than the speed of sound. The proof of our rule is as follows:

$$
t=t_{\text {sound }}-t_{\text {light }} \approx t_{\text {sound }}=\frac{d}{v_{\text {sound }}}=\frac{d}{343 \mathrm{~m} / \mathrm{s}}=\frac{d}{0.343 \mathrm{~km} / \mathrm{s}} .
$$

Cross-multiplying yields (approximately) $(0.3 \mathrm{~km} / \mathrm{s}) t=d$ which (since $1 / 3 \approx 0.3$) demonstrates why the rule works fairly well.
92. The wave is written as $s(x, t)=s_{m} \cos (k x \pm \omega t)$.
(a) The amplitude s_{m} is equal to the maximum displacement: $s_{m}=0.30 \mathrm{~cm}$.
(b) Since $\lambda=24 \mathrm{~cm}$, the angular wave number is $k=2 \pi / \lambda=0.26 \mathrm{~cm}^{-1}$.
(c) The angular frequency is $\omega=2 \pi f=2 \pi(25 \mathrm{~Hz})=1.6 \times 10^{2} \mathrm{rad} / \mathrm{s}$.
(d) The speed of the wave is $v=\lambda f=(24 \mathrm{~cm})(25 \mathrm{~Hz})=6.0 \times 10^{2} \mathrm{~cm} / \mathrm{s}$.
(e) Since the direction of propagation is $-x$, the sign is plus, i.e., $s(x, t)=s_{m} \cos (k x+\omega t)$.
93. (a) The intensity is given by $I=\frac{1}{2} \rho v \omega^{2} s_{m}^{2}$, where ρ is the density of the medium, v is the speed of sound, ω is the angular frequency, and s_{m} is the displacement amplitude. The displacement and pressure amplitudes are related by $\Delta p_{m}=\rho v \omega s_{m}$, so $s_{m}=\Delta p_{m} / \rho v \omega$ and I $=\left(\Delta p_{m}\right)^{2} / 2 \rho v$. For waves of the same frequency the ratio of the intensity for propagation in water to the intensity for propagation in air is

$$
\frac{I_{w}}{I_{a}}=\left(\frac{\Delta p_{m w}}{\Delta p_{m a}}\right)^{2} \frac{\rho_{a} v_{a}}{\rho_{w} v_{w}},
$$

where the subscript a denotes air and the subscript w denotes water. Since $I_{a}=I_{w}$,

$$
\frac{\Delta p_{m w}}{\Delta p_{m a}}=\sqrt{\frac{\rho_{w} v_{w}}{\rho_{a} v_{a}}}=\sqrt{\frac{\left(0.998 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1482 \mathrm{~m} / \mathrm{s})}{\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})}}=59.7
$$

The speeds of sound are given in Table 17-1 and the densities are given in Table 15-1.
(b) Now, $\Delta p_{m w}=\Delta p_{m a}$, so

$$
\frac{I_{w}}{I_{a}}=\frac{\rho_{a} v_{a}}{\rho_{w} v_{w}}=\frac{\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})}{\left(0.998 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1482 \mathrm{~m} / \mathrm{s})}=2.81 \times 10^{-4} .
$$

94. (a) Let P be the power output of the source. This is the rate at which energy crosses the surface of any sphere centered at the source and is therefore equal to the product of the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P $=4 \pi r^{2} I$ and $I=P / 4 \pi r^{2}$. The intensity is proportional to the square of the displacement amplitude s_{m}. If we write $I=C s_{m}^{2}$, where C is a constant of proportionality, then $C s_{m}^{2}=P / 4 \pi r^{2}$. Thus

$$
s_{m}=\sqrt{P / 4 \pi r^{2} C}=(\sqrt{P / 4 \pi C})(1 / r) .
$$

The displacement amplitude is proportional to the reciprocal of the distance from the source. We take the wave to be sinusoidal. It travels radially outward from the source, with points on a sphere of radius r in phase. If ω is the angular frequency and k is the angular wave number then the time dependence is $\sin (k r-\omega t)$. Letting $b=\sqrt{P / 4 \pi C}$, the displacement wave is then given by

$$
s(r, t)=\sqrt{\frac{P}{4 \pi C}} \frac{1}{r} \sin (k r-\omega t)=\frac{b}{r} \sin (k r-\omega t)
$$

(b) Since s and r both have dimensions of length and the trigonometric function is dimensionless, the dimensions of b must be length squared.
95. (a) When the right side of the instrument is pulled out a distance d the path length for sound waves increases by $2 d$. Since the interference pattern changes from a minimum to the next maximum, this distance must be half a wavelength of the sound. So $2 d=\lambda / 2$, where λ is the wavelength. Thus $\lambda=4 d$ and, if v is the speed of sound, the frequency is

$$
f=v / \lambda=v / 4 d=(343 \mathrm{~m} / \mathrm{s}) / 4(0.0165 \mathrm{~m})=5.2 \times 10^{3} \mathrm{~Hz} .
$$

(b) The displacement amplitude is proportional to the square root of the intensity (see Eq. 17-27). Write $\sqrt{I}=C s_{m}$, where I is the intensity, s_{m} is the displacement amplitude, and C is a constant of proportionality. At the minimum, interference is destructive and the displacement amplitude is the difference in the amplitudes of the individual waves: $s_{m}=$ $s_{S A D}-s_{S B D}$, where the subscripts indicate the paths of the waves. At the maximum, the waves interfere constructively and the displacement amplitude is the sum of the amplitudes of the individual waves: $s_{m}=s_{S A D}+s_{S B D}$. Solve

$$
\sqrt{100}=C\left(s_{S A D}-s_{S B D}\right) \text { and } \sqrt{900}=C\left(s_{S A D}-s_{S B D}\right)
$$

for $s_{S A D}$ and $s_{S B D}$. Add the equations to obtain

$$
s_{S A D}=(\sqrt{100}+\sqrt{900} / 2 C=20 / C
$$

then subtract them to obtain

$$
s_{S B D}=(\sqrt{900}-\sqrt{100}) / 2 C=10 / C .
$$

The ratio of the amplitudes is $s_{S A D} / s_{S B D}=2$.
(c) Any energy losses, such as might be caused by frictional forces of the walls on the air in the tubes, result in a decrease in the displacement amplitude. Those losses are greater on path B since it is longer than path A.
96. We use $\Delta \beta_{12}=\beta_{1}-\beta_{2}=(10 \mathrm{~dB}) \log \left(I_{1} / I_{2}\right)$.
(a) Since $\Delta \beta_{12}=(10 \mathrm{~dB}) \log \left(I_{1} / I_{2}\right)=37 \mathrm{~dB}$, we get

$$
I_{1} / I_{2}=10^{37 \mathrm{~dB} / 10 \mathrm{~dB}}=10^{3.7}=5.0 \times 10^{3}
$$

(b) Since $\Delta p_{m} \propto s_{m} \propto \sqrt{I}$, we have

$$
\Delta p_{m 1} / \Delta p_{m 2}=\sqrt{I_{1} / I_{2}}=\sqrt{5.0 \times 10^{3}}=71 .
$$

(c) The displacement amplitude ratio is $s_{m 1} / s_{m 2}=\sqrt{I_{1} / I_{2}}=71$.
97. The angle is $\sin ^{-1}\left(v / v_{s}\right)=\sin ^{-1}(343 / 685)=30^{\circ}$.
98. The difference between the sound waves that travel along R_{1} and thus that bounce and travel along R_{2} is

$$
\Delta d=\sqrt{25.0^{2}+12.5^{2}}-\sqrt{20.0^{2}+12.5^{2}}+\frac{1}{2} \lambda
$$

where the last term is included for the reflection effect (mentioned in the problem). To produce constructive interference at D then we require $\Delta d=m \lambda$ where m is an integer. Since λ relates to frequency by the relation $\lambda=v / f$ (with $v=343 \mathrm{~m} / \mathrm{s}$) then we have an equation for a set of values (depending on m) for the frequency. We find

$$
\begin{aligned}
& f=39.3 \mathrm{~Hz} \text { for } m=1 \\
& f=118 \mathrm{~Hz} \text { for } m=2 \\
& f=196 \mathrm{~Hz} \text { for } m=3 \\
& f=275 \mathrm{~Hz} \text { for } m=4
\end{aligned}
$$

and so on.
(a) The lowest frequency is $f=39.3 \mathrm{~Hz}$.
(b) The second lowest frequency is $f=118 \mathrm{~Hz}$.
99. (a) With $f=686 \mathrm{~Hz}$ and $v=343 \mathrm{~m} / \mathrm{s}$, then the "separation between adjacent wavefronts" is $\lambda=v / f=0.50 \mathrm{~m}$.
(b) This is one of the effects which are part of the Doppler phenomena. Here, the wavelength shift (relative to its "true" value in part (a)) equals the source speed v_{s} (with appropriate \pm sign) relative to the speed of sound v :

$$
\frac{\Delta \lambda}{\lambda}= \pm \frac{v_{s}}{v} .
$$

In front of the source, the shift in wavelength is $-(0.50 \mathrm{~m})(110 \mathrm{~m} / \mathrm{s}) /(343 \mathrm{~m} / \mathrm{s})=-0.16 \mathrm{~m}$, and the wavefront separation is $0.50-0.16=0.34 \mathrm{~m}$.
(c) Behind the source, the shift in wavelength is $+(0.50 \mathrm{~m})(110 \mathrm{~m} / \mathrm{s}) /(343 \mathrm{~m} / \mathrm{s})=+0.16 \mathrm{~m}$, and the wavefront separation is $0.50+0.16=0.66 \mathrm{~m}$.
100. (a) The problem is asking at how many angles will there be "loud" resultant waves, and at how many will there be "quiet" ones? We consider the resultant wave (at large distance from the origin) along the $+x$ axis; we note that the path-length difference (for the waves traveling from their respective sources) divided by wavelength gives the (dimensionless) value $n=3.2$, implying a sort of intermediate condition between constructive interference (which would follow if, say, $n=3$) and destructive interference (such as the $n=3.5$ situation found in the solution to the previous problem) between the waves. To distinguish this resultant along the $+x$ axis from the similar one along the $-x$ axis, we label one with $n=+3.2$ and the other $n=-3.2$. This labeling facilitates the complete enumeration of the loud directions in the upper-half plane: $n=-3,-2,-1,0,+1$, $+2,+3$. Counting also the "other" $-3,-2,-1,0,+1,+2,+3$ values for the lower-half plane, then we conclude there are a total of $7+7=14$ "loud" directions.
(b) The labeling also helps us enumerate the quiet directions. In the upper-half plane we find: $n=-2.5,-1.5,-0.5,+0.5,+1.5,+2.5$. This is duplicated in the lower half plane, so the total number of quiet directions is $6+6=12$.
101. The source being isotropic means $A_{\text {sphere }}=4 \pi r^{2}$ is used in the intensity definition $I=$ P / A. Since intensity is proportional to the square of the amplitude (see Eq. 17-27), this further implies

$$
\frac{I_{2}}{I_{1}}=\left(\frac{s_{m 2}}{s_{m 1}}\right)^{2}=\frac{P / 4 \pi r_{2}^{2}}{P / 4 \pi r_{1}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}
$$

or $s_{m 2} / s_{m 1}=r_{1} / r_{2}$.
(a) $I=P / 4 \pi r^{2}=(10 \mathrm{~W}) / 4 \pi(3.0 \mathrm{~m})^{2}=0.088 \mathrm{~W} / \mathrm{m}^{2}$.
(b) Using the notation A instead of s_{m} for the amplitude, we find

$$
\frac{A_{4}}{A_{3}}=\frac{3.0 \mathrm{~m}}{4.0 \mathrm{~m}}=0.75
$$

102. (a) Using $m=7.3 \times 10^{7} \mathrm{~kg}$, the initial gravitational potential energy is $U=m g y=3.9 \times 10^{11} \mathrm{~J}$, where $h=550 \mathrm{~m}$. Assuming this converts primarily into kinetic energy during the fall, then $K=3.9 \times 10^{11} \mathrm{~J}$ just before impact with the ground. Using instead the mass estimate $m=1.7 \times 10^{8} \mathrm{~kg}$, we arrive at $K=9.2 \times 10^{11} \mathrm{~J}$.
(b) The process of converting this kinetic energy into other forms of energy (during the impact with the ground) is assumed to take $\Delta t=0.50 \mathrm{~s}$ (and in the average sense, we take the "power" P to be wave-energy/ Δt). With 20% of the energy going into creating a seismic wave, the intensity of the body wave is estimated to be

$$
I=\frac{P}{A_{\text {hemisphere }}}=\frac{(0.20) K / \Delta t}{\frac{1}{2}\left(4 \pi r^{2}\right)}=0.63 \mathrm{~W} / \mathrm{m}^{2}
$$

using $r=200 \times 10^{3} \mathrm{~m}$ and the smaller value for K from part (a). Using instead the larger estimate for K, we obtain $I=1.5 \mathrm{~W} / \mathrm{m}^{2}$.
(c) The surface area of a cylinder of "height" d is $2 \pi r d$, so the intensity of the surface wave is

$$
I=\frac{P}{A_{\text {cylinder }}}=\frac{(0.20) K / \Delta t}{(2 \pi r d)}=25 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}
$$

using $d=5.0 \mathrm{~m}, r=200 \times 10^{3} \mathrm{~m}$ and the smaller value for K from part (a). Using instead the larger estimate for K, we obtain $I=58 \mathrm{~kW} / \mathrm{m}^{2}$.
(d) Although several factors are involved in determining which seismic waves are most likely to be detected, we observe that on the basis of the above findings we should expect the more intense waves (the surface waves) to be more readily detected.
103. The round-trip time is $t=2 L / v$ where we estimate from the chart that the time between clicks is 3 ms . Thus, with $v=1372 \mathrm{~m} / \mathrm{s}$, we find $L=\frac{1}{2} v t=2.1 \mathrm{~m}$.
104. (a) The problem asks for the source frequency f. We use Eq. 17-47 with great care (regarding its \pm sign conventions).

$$
f^{\prime}=f\left(\frac{340-16}{340-40}\right)
$$

Therefore, with $f^{\prime}=950 \mathrm{~Hz}$, we obtain $f=880 \mathrm{~Hz}$.
(b) We now have

$$
f^{\prime}=f\left(\frac{340+16}{340+40}\right)
$$

so that with $f=880 \mathrm{~Hz}$, we find $f^{\prime}=824 \mathrm{~Hz}$.
105. We use $I \propto r^{-2}$ appropriate for an isotropic source. We have

$$
\frac{I_{r=d}}{I_{r=D-d}}=\frac{(D-d)^{2}}{D^{2}}=\frac{1}{2},
$$

where $d=50.0 \mathrm{~m}$. We solve for

$$
D: D=\sqrt{2} d /(\sqrt{2}-1)=\sqrt{2}(50.0 \mathrm{~m}) /(\sqrt{2}-1)=171 \mathrm{~m} .
$$

106. (a) In regions where the speed is constant, it is equal to distance divided by time. Thus, we conclude that the time difference is

$$
\Delta t=\left(\frac{L-d}{V}+\frac{d}{V-\Delta V}\right)-\frac{L}{V}
$$

where the first term is the travel time through bone and rock and the last term is the expected travel time purely through rock. Solving for d and simplifying, we obtain

$$
d=\Delta t \frac{V(V-\Delta V)}{\Delta V} \approx \Delta t \frac{V^{2}}{\Delta V} .
$$

(b) If we estimate $d \approx 10 \mathrm{~cm}$ (as the lower limit of a range that goes up to a diameter of 20 cm), then the above expression (with the numerical values given in the problem) leads to $\Delta t=0.8 \mu \mathrm{~s}$ (as the lower limit of a range that goes up to a time difference of $1.6 \mu \mathrm{~s}$).
107. (a) The blood is moving towards the right (towards the detector), because the Doppler shift in frequency is an increase: $\Delta f>0$.
(b) The reception of the ultrasound by the blood and the subsequent remitting of the signal by the blood back toward the detector is a two step process which may be compactly written as

$$
f+\Delta f=f\left(\frac{v+v_{x}}{v-v_{x}}\right) \quad \text { where } v_{x}=v_{\text {blood }} \cos \theta
$$

If we write the ratio of frequencies as $R=(f+\Delta f) / f$, then the solution of the above equation for the speed of the blood is

$$
v_{\text {blood }}=\frac{(R-1) v}{(R+1) \cos \theta}=0.90 \mathrm{~m} / \mathrm{s}
$$

where $v=1540 \mathrm{~m} / \mathrm{s}, \theta=20^{\circ}$, and $R=1+5495 / 5 \times 10^{6}$.
(c) We interpret the question as asking how Δf (still taken to be positive, since the detector is in the "forward" direction) changes as the detection angle θ changes. Since larger θ means smaller horizontal component of velocity v_{x} then we expect Δf to decrease towards zero as θ is increased towards 90°.
108. (a) We expect the center of the star to be a displacement node. The star has spherical symmetry and the waves are spherical. If matter at the center moved it would move equally in all directions and this is not possible.
(b) We assume the oscillation is at the lowest resonance frequency. Then, exactly onefourth of a wavelength fits the star radius. If λ is the wavelength and R is the star radius then $\lambda=4 R$. The frequency is $f=v / \lambda=v / 4 R$, where v is the speed of sound in the star. The period is $T=1 / f=4 R / v$.
(c) The speed of sound is $v=\sqrt{B / \rho}$, where B is the bulk modulus and ρ is the density of stellar material. The radius is $R=9.0 \times 10^{-3} R_{s}$, where R_{s} is the radius of the Sun (6.96 $\times 10^{8} \mathrm{~m}$). Thus

$$
T=4 R \sqrt{\frac{\rho}{B}}=4\left(9.0 \times 10^{-3}\right)\left(6.96 \times 10^{8} \mathrm{~m}\right) \sqrt{\frac{1.0 \times 10^{10} \mathrm{~kg} / \mathrm{m}^{3}}{1.33 \times 10^{22} \mathrm{~Pa}}}=22 \mathrm{~s}
$$

109. The source being a "point source" means $A_{\text {sphere }}=4 \pi r^{2}$ is used in the intensity definition $I=P / A$, which further implies

$$
\frac{I_{2}}{I_{1}}=\frac{P / 4 \pi r_{2}^{2}}{P / 4 \pi r_{1}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2} .
$$

From the discussion in $\S 17-5$, we know that the intensity ratio between "barely audible" and the "painful threshold" is $10^{-12}=I_{2} / I_{1}$. Thus, with $r_{2}=10000 \mathrm{~m}$, we find

$$
r_{1}=r_{2} \sqrt{10^{-12}}=0.01 \mathrm{~m}=1 \mathrm{~cm} .
$$

110. We find the difference in the two applications of the Doppler formula:

$$
f_{2}-f_{1}=37=f\left(\frac{340+25}{340-15}-\frac{340}{340-15}\right)=f\left(\frac{25}{340-15}\right)
$$

which leads to $f=4.8 \times 10^{2} \mathrm{~Hz}$.
111. (a) We proceed by dividing the (velocity) equation involving the new (fundamental) frequency f^{\prime} by the equation when the frequency f is 440 Hz to obtain

$$
\frac{f^{\prime} \lambda}{f \lambda}=\sqrt{\frac{\tau^{\prime} / \mu}{\tau / \mu}} \Rightarrow \frac{f^{\prime}}{f}=\sqrt{\frac{\tau^{\prime}}{\tau}}
$$

where we are making an assumption that the mass-per-unit-length of the string does not change significantly. Thus, with $\tau^{\prime}=1.2 \tau$, we have $f^{\prime} / 440=\sqrt{1.2}$. Therefore, $f^{\prime}=482 \mathrm{~Hz}$.
(b) In this case, neither tension nor mass-per-unit-length change, so the wave speed v is unchanged. Hence, using Eq. 17-38 with $n=1$,

$$
f^{\prime} \lambda^{\prime}=f \lambda \Rightarrow f^{\prime}\left(2 L^{\prime}\right)=f(2 L)
$$

Since $L^{\prime}=\frac{2}{3} L$, we obtain $f^{\prime}=\frac{3}{2}(440)=660 \mathrm{~Hz}$.

1. We take p_{3} to be 80 kPa for both thermometers. According to Fig. 18-6, the nitrogen thermometer gives 373.35 K for the boiling point of water. Use Eq. $18-5$ to compute the pressure:

$$
p_{\mathrm{N}}=\frac{T}{273.16 \mathrm{~K}} p_{3}=\left(\frac{373.35 \mathrm{~K}}{273.16 \mathrm{~K}}\right)(80 \mathrm{kPa})=109.343 \mathrm{kPa} .
$$

The hydrogen thermometer gives 373.16 K for the boiling point of water and

$$
p_{\mathrm{H}}=\left(\frac{373.16 \mathrm{~K}}{273.16 \mathrm{~K}}\right)(80 \mathrm{kPa})=109.287 \mathrm{kPa} .
$$

(a) The difference is $p_{\mathrm{N}}-p_{\mathrm{H}}=0.056 \mathrm{kPa} \approx 0.06 \mathrm{kPa}$.
(b) The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen thermometer.
2. From Eq. 18-6, we see that the limiting value of the pressure ratio is the same as the absolute temperature ratio: $(373.15 \mathrm{~K}) /(273.16 \mathrm{~K})=1.366$.
3. Let T_{L} be the temperature and p_{L} be the pressure in the left-hand thermometer. Similarly, let T_{R} be the temperature and p_{R} be the pressure in the right-hand thermometer. According to the problem statement, the pressure is the same in the two thermometers when they are both at the triple point of water. We take this pressure to be p_{3}. Writing Eq. 18-5 for each thermometer,

$$
T_{L}=(273.16 \mathrm{~K})\left(\frac{p_{L}}{p_{3}}\right) \quad \text { and } \quad T_{R}=(273.16 \mathrm{~K})\left(\frac{p_{R}}{p_{3}}\right)
$$

we subtract the second equation from the first to obtain

$$
T_{L}-T_{R}=(273.16 \mathrm{~K})\left(\frac{p_{L}-p_{R}}{p_{3}}\right)
$$

First, we take $T_{L}=373.125 \mathrm{~K}$ (the boiling point of water) and $T_{R}=273.16 \mathrm{~K}$ (the triple point of water). Then, $p_{L}-p_{R}=120$ torr. We solve

$$
373.125 \mathrm{~K}-273.16 \mathrm{~K}=(273.16 \mathrm{~K})\left(\frac{120 \text { torr }}{p_{3}}\right)
$$

for p_{3}. The result is $p_{3}=328$ torr. Now, we let $T_{L}=273.16 \mathrm{~K}$ (the triple point of water) and T_{R} be the unknown temperature. The pressure difference is $p_{L}-p_{R}=90.0$ torr. Solving

$$
273.16 \mathrm{~K}-T_{R}=(273.16 \mathrm{~K})\left(\frac{90.0 \text { torr }}{328 \text { torr }}\right)
$$

for the unknown temperature, we obtain $T_{R}=348 \mathrm{~K}$.
4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be y. Then $y=\frac{9}{5} x+32$. If we require $y=2 x$, then we have

$$
2 x=\frac{9}{5} x+32 \Rightarrow x=(5)(32)=160^{\circ} \mathrm{C}
$$

which yields $y=2 x=320^{\circ} \mathrm{F}$.
(b) In this case, we require $y=\frac{1}{2} x$ and find

$$
\frac{1}{2} x=\frac{9}{5} x+32 \Rightarrow x=-\frac{(10)(32)}{13} \approx-24.6^{\circ} \mathrm{C}
$$

which yields $y=x / 2=-12.3^{\circ} \mathrm{F}$.
5. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be y. Then $y=\frac{9}{5} x+32$. For $x=-71^{\circ} \mathrm{C}$, this gives $y=-96^{\circ} \mathrm{F}$.
(b) The relationship between y and x may be inverted to yield $x=\frac{5}{9}(y-32)$. Thus, for y $=134$ we find $x \approx 56.7$ on the Celsius scale.
6. We assume scales X and Y are linearly related in the sense that reading x is related to reading y by a linear relationship $y=m x+b$. We determine the constants m and b by solving the simultaneous equations:

$$
\begin{aligned}
& -70.00=m(-125.0)+b \\
& -30.00=m(375.0)+b
\end{aligned}
$$

which yield the solutions $m=40.00 / 500.0=8.000 \times 10^{-2}$ and $b=-60.00$. With these values, we find x for $y=50.00$:

$$
x=\frac{y-b}{m}=\frac{50.00+60.00}{0.08000}=1375^{\circ} \mathrm{X}
$$

7. We assume scale X is a linear scale in the sense that if its reading is x then it is related to a reading y on the Kelvin scale by a linear relationship $y=m x+b$. We determine the constants m and b by solving the simultaneous equations:

$$
\begin{aligned}
& 373.15=m(-53.5)+b \\
& 273.15=m(-170)+b
\end{aligned}
$$

which yield the solutions $m=100 /(170-53.5)=0.858$ and $b=419$. With these values, we find x for $y=340$:

$$
x=\frac{y-b}{m}=\frac{340-419}{0.858}=-92.1^{\circ} \mathrm{X} .
$$

8. (a) The coefficient of linear expansion α for the alloy is

$$
\alpha=\Delta L / L \Delta T=\frac{10.015 \mathrm{~cm}-10.000 \mathrm{~cm}}{(10.01 \mathrm{~cm})\left(100^{\circ} \mathrm{C}-20.000^{\circ} \mathrm{C}\right)}=1.88 \times 10^{-5} / \mathrm{C}^{\circ}
$$

Thus, from $100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ we have

$$
\Delta L=L \alpha \Delta T=(10.015 \mathrm{~cm})\left(1.88 \times 10^{-5} / \mathrm{C}^{\circ}\right)\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)=-1.88 \times 10^{-2} \mathrm{~cm}
$$

The length at $0^{\circ} \mathrm{C}$ is therefore $L^{\prime}=L+\Delta L=(10.015 \mathrm{~cm}-0.0188 \mathrm{~cm})=9.996 \mathrm{~cm}$.
(b) Let the temperature be T_{x}. Then from $20^{\circ} \mathrm{C}$ to T_{x} we have

$$
\Delta L=10.009 \mathrm{~cm}-10.000 \mathrm{~cm}=\alpha L \Delta T=\left(1.88 \times 10^{-5} / \mathrm{C}^{\circ}\right)(10.000 \mathrm{~cm}) \Delta T
$$

giving $\Delta T=48^{\circ} \mathrm{C}$. Thus, $T_{x}=\left(20^{\circ} \mathrm{C}+48^{\circ} \mathrm{C}\right)=68^{\circ} \mathrm{C}$.
9. The new diameter is

$$
D=D_{0}\left(1+\alpha_{A 1} \Delta T\right)=(2.725 \mathrm{~cm})\left[1+\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(100.0^{\circ} \mathrm{C}-0.000^{\circ} \mathrm{C}\right)\right]=2.731 \mathrm{~cm} .
$$

10. The change in length for the aluminum pole is

$$
\Delta \ell=\ell_{0} \alpha_{A 1} \Delta T=(33 \mathrm{~m})\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(15^{\circ} \mathrm{C}\right)=0.011 \mathrm{~m}
$$

11. Since a volume is the product of three lengths, the change in volume due to a temperature change ΔT is given by $\Delta V=3 \alpha V \Delta T$, where V is the original volume and α is the coefficient of linear expansion. See Eq. 18-11. Since $V=(4 \pi / 3) R^{3}$, where R is the original radius of the sphere, then

$$
\Delta V=3 \alpha\left(\frac{4 \pi}{3} R^{3}\right) \Delta T=\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)(4 \pi)(10 \mathrm{~cm})^{3}\left(100^{\circ} \mathrm{C}\right)=29 \mathrm{~cm}^{3}
$$

The value for the coefficient of linear expansion is found in Table 18-2.
12. The volume at $30^{\circ} \mathrm{C}$ is given by

$$
\begin{aligned}
V^{\prime} & =V(1+\beta \Delta T)=V(1+3 \alpha \Delta T)=\left(50.00 \mathrm{~cm}^{3}\right)\left[1+3\left(29.00 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(30.00^{\circ} \mathrm{C}-60.00^{\circ} \mathrm{C}\right)\right] \\
& =49.87 \mathrm{~cm}^{3}
\end{aligned}
$$

where we have used $\beta=3 \alpha$.
13. The increase in the surface area of the brass cube (which has six faces), which had side length is L at 20°, is

$$
\begin{aligned}
\Delta A & =6(L+\Delta L)^{2}-6 L^{2} \approx 12 L \Delta L=12 \alpha_{\mathrm{b}} L^{2} \Delta T=12\left(19 \times 10^{-6} / \mathrm{C}^{\circ}\right)(30 \mathrm{~cm})^{2}\left(75^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
& =11 \mathrm{~cm}^{2} .
\end{aligned}
$$

14. The change in length for the section of the steel ruler between its 20.05 cm mark and 20.11 cm mark is

$$
\Delta L_{s}=L_{s} \alpha_{s} \Delta T=(20.11 \mathrm{~cm})\left(11 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(270^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=0.055 \mathrm{~cm} .
$$

Thus, the actual change in length for the rod is $\Delta L=(20.11 \mathrm{~cm}-20.05 \mathrm{~cm})+0.055 \mathrm{~cm}=$ 0.115 cm . The coefficient of thermal expansion for the material of which the rod is made is then

$$
\alpha=\frac{\Delta L}{\Delta T}=\frac{0.115 \mathrm{~cm}}{270^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}}=23 \times 10^{-6} / \mathrm{C}^{\circ} .
$$

15. If V_{c} is the original volume of the cup, α_{a} is the coefficient of linear expansion of aluminum, and ΔT is the temperature increase, then the change in the volume of the cup is $\Delta V_{c}=3 \alpha_{a} V_{c} \Delta T$. See Eq. 18-11. If β is the coefficient of volume expansion for glycerin then the change in the volume of glycerin is $\Delta V_{g}=\beta V_{c} \Delta T$. Note that the original volume of glycerin is the same as the original volume of the cup. The volume of glycerin that spills is

$$
\begin{aligned}
\Delta V_{g}-\Delta V_{c} & =\left(\beta-3 \alpha_{a}\right) V_{c} \Delta T=\left[\left(5.1 \times 10^{-4} / \mathrm{C}^{\circ}\right)-3\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\right]\left(100 \mathrm{~cm}^{3}\right)\left(6.0^{\circ} \mathrm{C}\right) \\
& =0.26 \mathrm{~cm}^{3}
\end{aligned}
$$

16. (a) We use $\rho=m / V$ and

$$
\Delta \rho=\Delta(m / V)=m \Delta(1 / V) \simeq-m \Delta V / V^{2}=-\rho(\Delta V / V)=-3 \rho(\Delta L / L) .
$$

The percent change in density is

$$
\frac{\Delta \rho}{\rho}=-3 \frac{\Delta L}{L}=-3(0.23 \%)=-0.69 \%
$$

(b) Since $\alpha=\Delta L /(L \Delta T)=\left(0.23 \times 10^{-2}\right) /\left(100^{\circ} \mathrm{C}-0.0^{\circ} \mathrm{C}\right)=23 \times 10^{-6} / \mathrm{C}^{\circ}$, the metal is aluminum (using Table 18-2).
17. After the change in temperature the diameter of the steel rod is $D_{s}=D_{s 0}+\alpha_{s} D_{s 0} \Delta T$ and the diameter of the brass ring is $D_{b}=D_{b 0}+\alpha_{b} D_{b 0} \Delta T$, where $D_{s 0}$ and $D_{b 0}$ are the original diameters, α_{s} and α_{b} are the coefficients of linear expansion, and ΔT is the change in temperature. The rod just fits through the ring if $D_{s}=D_{b}$. This means $D_{s 0}+$ $\alpha_{s} D_{s 0} \Delta T=D_{b 0}+\alpha_{b} D_{b 0} \Delta T$. Therefore,

$$
\begin{aligned}
\Delta T & =\frac{D_{s 0}-D_{b 0}}{\alpha_{b} D_{b 0}-\alpha_{s} D_{s 0}}=\frac{3.000 \mathrm{~cm}-2.992 \mathrm{~cm}}{\left(19.00 \times 10^{-6} / \mathrm{C}^{\circ}\right)(2.992 \mathrm{~cm})-\left(11.00 \times 10^{-6} / \mathrm{C}^{\circ}\right)(3.000 \mathrm{~cm})} \\
& =335.0^{\circ} \mathrm{C} .
\end{aligned}
$$

The temperature is $T=\left(25.00^{\circ} \mathrm{C}+335.0^{\circ} \mathrm{C}\right)=360.0^{\circ} \mathrm{C}$.
18. (a) Since $A=\pi D^{2} / 4$, we have the differential $d A=2(\pi D / 4) d D$. Dividing the latter relation by the former, we obtain $d A / A=2 d D / D$. In terms of Δ 's, this reads

$$
\frac{\Delta A}{A}=2 \frac{\Delta D}{D} \quad \text { for } \quad \frac{\Delta D}{D} \ll 1
$$

We can think of the factor of 2 as being due to the fact that area is a two-dimensional quantity. Therefore, the area increases by $2(0.18 \%)=0.36 \%$.
(b) Assuming that all dimensions are allowed to freely expand, then the thickness increases by 0.18%.
(c) The volume (a three-dimensional quantity) increases by $3(0.18 \%)=0.54 \%$.
(d) The mass does not change.
(e) The coefficient of linear expansion is

$$
\alpha=\frac{\Delta D}{D \Delta T}=\frac{0.18 \times 10^{-2}}{100^{\circ} \mathrm{C}}=1.8 \times 10^{-5} / \mathrm{C}^{\circ} .
$$

19. The initial volume V_{0} of the liquid is $h_{0} A_{0}$ where A_{0} is the initial cross-section area and $h_{0}=0.64 \mathrm{~m}$. Its final volume is $V=h A$ where $h-h_{0}$ is what we wish to compute. Now, the area expands according to how the glass expands, which we analyze as follows: Using $A=\pi r^{2}$, we obtain

$$
d A=2 \pi r d r=2 \pi r(r \alpha d T)=2 \alpha\left(\pi r^{2}\right) d T=2 \alpha A d T .
$$

Therefore, the height is

$$
h=\frac{V}{A}=\frac{V_{0}\left(1+\beta_{\text {liquid }} \Delta T\right)}{A_{0}\left(1+2 \alpha_{\text {glass }} \Delta T\right)} .
$$

Thus, with $V_{0} / A_{0}=h_{0}$ we obtain

$$
h-h_{0}=h_{0}\left(\frac{1+\beta_{\text {liquid }} \Delta T}{1+2 \alpha_{\text {glass }} \Delta T}-1\right)=(0.64)\left(\frac{1+\left(4 \times 10^{-5}\right)\left(10^{\circ}\right)}{1+2\left(1 \times 10^{-5}\right)\left(10^{\circ}\right)}\right)=1.3 \times 10^{-4} \mathrm{~m} .
$$

20. We divide Eq. 18-9 by the time increment Δt and equate it to the (constant) speed $v=$ $100 \times 10^{-9} \mathrm{~m} / \mathrm{s}$.

$$
v=\alpha L_{0} \frac{\Delta T}{\Delta t}
$$

where $L_{0}=0.0200 \mathrm{~m}$ and $\alpha=23 \times 10^{-6} / \mathrm{C}^{\circ}$. Thus, we obtain

$$
\frac{\Delta T}{\Delta t}=0.217 \frac{\mathrm{C}^{\circ}}{\mathrm{s}}=0.217 \frac{\mathrm{~K}}{\mathrm{~s}} .
$$

21. Consider half the bar. Its original length is $\ell_{0}=L_{0} / 2$ and its length after the temperature increase is $\ell=\ell_{0}+\alpha \ell_{0} \Delta T$. The old position of the half-bar, its new position, and the distance x that one end is displaced form a right triangle, with a hypotenuse of length ℓ, one side of length ℓ_{0}, and the other side of length x. The Pythagorean theorem yields $x^{2}=\ell^{2}-\ell_{0}^{2}=\ell_{0}^{2}(1+\alpha \Delta T)^{2}-\ell_{0}^{2}$. Since the change in length is small we may approximate $(1+\alpha \Delta T)^{2}$ by $1+2 \alpha \Delta T$, where the small term $(\alpha \Delta T)^{2}$ was neglected. Then,

$$
x^{2}=\ell_{0}^{2}+2 \ell_{0}^{2} \alpha \Delta T-\ell_{0}^{2}=2 \ell_{0}^{2} \alpha \Delta T
$$

and

$$
x=\ell_{0} \sqrt{2 \alpha \Delta T}=\frac{3.77 \mathrm{~m}}{2} \sqrt{2\left(25 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(32^{\circ} \mathrm{C}\right)}=7.5 \times 10^{-2} \mathrm{~m} .
$$

22. The amount of water m which is frozen is

$$
m=\frac{Q}{L_{F}}=\frac{50.2 \mathrm{~kJ}}{333 \mathrm{~kJ} / \mathrm{kg}}=0.151 \mathrm{~kg}=151 \mathrm{~g} .
$$

Therefore the amount of water which remains unfrozen is $260 \mathrm{~g}-151 \mathrm{~g}=109 \mathrm{~g}$.
23. (a) The specific heat is given by $c=Q / m\left(T_{f}-T_{i}\right)$, where Q is the heat added, m is the mass of the sample, T_{i} is the initial temperature, and T_{f} is the final temperature. Thus, recalling that a change in Celsius degrees is equal to the corresponding change on the Kelvin scale,

$$
c=\frac{314 \mathrm{~J}}{\left(30.0 \times 10^{-3} \mathrm{~kg}\right)\left(45.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}\right)}=523 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} .
$$

(b) The molar specific heat is given by

$$
c_{m}=\frac{Q}{N\left(T_{f}-T_{i}\right)}=\frac{314 \mathrm{~J}}{(0.600 \mathrm{~mol})\left(45.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}\right)}=26.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} .
$$

(c) If N is the number of moles of the substance and M is the mass per mole, then $m=$ $N M$, so

$$
N=\frac{m}{M}=\frac{30.0 \times 10^{-3} \mathrm{~kg}}{50 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}}=0.600 \mathrm{~mol} .
$$

24. We use $Q=c m \Delta T$. The textbook notes that a nutritionist's "Calorie" is equivalent to 1000 cal . The mass m of the water that must be consumed is

$$
m=\frac{Q}{c \Delta T}=\frac{3500 \times 10^{3} \mathrm{cal}}{\left(1 \mathrm{~g} / \mathrm{cal} \cdot \mathrm{C}^{\circ}\right)\left(37.0^{\circ} \mathrm{C}-0.0^{\circ} \mathrm{C}\right)}=94.6 \times 10^{4} \mathrm{~g},
$$

which is equivalent to $9.46 \times 10^{4} \mathrm{~g} /(1000 \mathrm{~g} /$ liter $)=94.6$ liters of water. This is certainly too much to drink in a single day!
25. The melting point of silver is 1235 K , so the temperature of the silver must first be raised from $15.0^{\circ} \mathrm{C}(=288 \mathrm{~K})$ to 1235 K . This requires heat

$$
Q=c m\left(T_{f}-T_{i}\right)=(236 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.130 \mathrm{~kg})\left(1235^{\circ} \mathrm{C}-288^{\circ} \mathrm{C}\right)=2.91 \times 10^{4} \mathrm{~J}
$$

Now the silver at its melting point must be melted. If L_{F} is the heat of fusion for silver this requires

$$
Q=m L_{F}=(0.130 \mathrm{~kg})\left(105 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)=1.36 \times 10^{4} \mathrm{~J}
$$

The total heat required is $\left(2.91 \times 10^{4} \mathrm{~J}+1.36 \times 10^{4} \mathrm{~J}\right)=4.27 \times 10^{4} \mathrm{~J}$.
26. The work the man has to do to climb to the top of Mt. Everest is given by

$$
W=m g y=(73.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(8840 \mathrm{~m})=6.32 \times 10^{6} \mathrm{~J} .
$$

Thus, the amount of butter needed is

$$
m=\frac{\left(6.32 \times 10^{6} \mathrm{~J}\right)\left(\frac{1.00 \mathrm{cal}}{4.186 \mathrm{~J}}\right)}{6000 \mathrm{cal} / \mathrm{g}} \approx 250 \mathrm{~g} .
$$

27. The mass $m=0.100 \mathrm{~kg}$ of water, with specific heat $c=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$, is raised from an initial temperature $T_{i}=23^{\circ} \mathrm{C}$ to its boiling point $T_{f}=100^{\circ} \mathrm{C}$. The heat input is given by Q $=\operatorname{cm}\left(T_{f}-T_{i}\right)$. This must be the power output of the heater P multiplied by the time $t ; Q=$ Pt. Thus,

$$
t=\frac{Q}{P}=\frac{c m\left(T_{f}-T_{i}\right)}{P}=\frac{(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.100 \mathrm{~kg})\left(100^{\circ} \mathrm{C}-23^{\circ} \mathrm{C}\right)}{200 \mathrm{~J} / \mathrm{s}}=160 \mathrm{~s}
$$

28. (a) The water (of mass m) releases energy in two steps, first by lowering its temperature from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, and then by freezing into ice. Thus the total energy transferred from the water to the surroundings is

$$
Q=c_{w} m \Delta T+L_{F} m=(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(125 \mathrm{~kg})\left(20^{\circ} \mathrm{C}\right)+(333 \mathrm{~kJ} / \mathrm{kg})(125 \mathrm{~kg})=5.2 \times 10^{7} \mathrm{~J}
$$

(b) Before all the water freezes, the lowest temperature possible is $0^{\circ} \mathrm{C}$, below which the water must have already turned into ice.
29. We note from Eq. $18-12$ that $1 \mathrm{Btu}=252 \mathrm{cal}$. The heat relates to the power, and to the temperature change, through $Q=P t=c m \Delta T$. Therefore, the time t required is

$$
\begin{aligned}
t & =\frac{c m \Delta T}{P}=\frac{\left(1000 \mathrm{cal} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)(40 \mathrm{gal})(1000 \mathrm{~kg} / 264 \mathrm{gal})\left(100^{\circ} \mathrm{F}-70^{\circ} \mathrm{F}\right)\left(5^{\circ} \mathrm{C} / 9^{\circ} \mathrm{F}\right)}{\left(2.0 \times 10^{5} \mathrm{Btu} / \mathrm{h}\right)(252.0 \mathrm{cal} / \mathrm{Btu})(1 \mathrm{~h} / 60 \mathrm{~min})} \\
& =3.0 \mathrm{~min} .
\end{aligned}
$$

The metric version proceeds similarly:

$$
\begin{aligned}
t & =\frac{c \rho V \Delta T}{P}=\frac{\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(150 \mathrm{~L})\left(1 \mathrm{~m}^{3} / 1000 \mathrm{~L}\right)\left(38^{\circ} \mathrm{C}-21^{\circ} \mathrm{C}\right)}{(59000 \mathrm{~J} / \mathrm{s})(60 \mathrm{~s} / 1 \mathrm{~min})} \\
& =3.0 \mathrm{~min} .
\end{aligned}
$$

30. (a) Using Eq. 18-17, the heat transferred to the water is

$$
\begin{aligned}
Q_{w} & =c_{w} m_{w} \Delta T+L_{V} m_{s}=\left(1 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}\right)(220 \mathrm{~g})\left(100^{\circ} \mathrm{C}-20.0^{\circ} \mathrm{C}\right)+(539 \mathrm{cal} / \mathrm{g})(5.00 \mathrm{~g}) \\
& =20.3 \mathrm{kcal} .
\end{aligned}
$$

(b) The heat transferred to the bowl is

$$
Q_{b}=c_{b} m_{b} \Delta T=\left(0.0923 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}\right)(150 \mathrm{~g})\left(100^{\circ} \mathrm{C}-20.0^{\circ} \mathrm{C}\right)=1.11 \mathrm{kcal} .
$$

(c) If the original temperature of the cylinder be T_{i}, then $Q_{w}+Q_{b}=c_{c} m_{c}\left(T_{i}-T_{f}\right)$, which leads to

$$
T_{i}=\frac{Q_{w}+Q_{b}}{c_{c} m_{c}}+T_{f}=\frac{20.3 \mathrm{kcal}+1.11 \mathrm{kcal}}{\left(0.0923 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}\right)(300 \mathrm{~g})}+100^{\circ} \mathrm{C}=873^{\circ} \mathrm{C}
$$

31. Let the mass of the steam be m_{s} and that of the ice be m_{i}. Then

$$
L_{F} m_{c}+c_{w} m_{c}\left(T_{f}-0.0^{\circ} \mathrm{C}\right)=L_{s} m_{s}+c_{w} m_{s}\left(100^{\circ} \mathrm{C}-T_{f}\right),
$$

where $T_{f}=50^{\circ} \mathrm{C}$ is the final temperature. We solve for m_{s} :

$$
\begin{aligned}
m_{s} & =\frac{L_{F} m_{c}+c_{w} m_{c}\left(T_{f}-0.0^{\circ} \mathrm{C}\right)}{L_{s}+c_{w}\left(100^{\circ} \mathrm{C}-T_{f}\right)}=\frac{(79.7 \mathrm{cal} / \mathrm{g})(150 \mathrm{~g})+\left(1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)(150 \mathrm{~g})\left(50^{\circ} \mathrm{C}-0.0^{\circ} \mathrm{C}\right)}{539 \mathrm{cal} / \mathrm{g}+\left(1 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}\right)\left(100^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\right)} \\
& =33 \mathrm{~g} .
\end{aligned}
$$

32. While the sample is in its liquid phase, its temperature change (in absolute values) is $|\Delta T|=30^{\circ} \mathrm{C}$. Thus, with $m=0.40 \mathrm{~kg}$, the absolute value of Eq. $18-14$ leads to

$$
|Q|=c m|\Delta T|=(3000)(0.40)(30)=36000 \mathrm{~J} .
$$

The rate (which is constant) is $P=|Q| / t=36000 / 40=900 \mathrm{~J} / \mathrm{min}$, which is equivalent to 15 Watts.
(a) During the next 30 minutes, a phase change occurs which is described by Eq. 18-16:

$$
|Q|=P t=(900 \mathrm{~J} / \mathrm{min})(30 \mathrm{~min})=27000 \mathrm{~J}=L m .
$$

Thus, with $m=0.40 \mathrm{~kg}$, we find $L=67500 \mathrm{~J} / \mathrm{kg} \approx 68 \mathrm{~kJ} / \mathrm{kg}$.
(b) During the final 20 minutes, the sample is solid and undergoes a temperature change (in absolute values) of $|\Delta T|=20 \mathrm{C}^{\circ}$. Now, the absolute value of Eq. 18-14 leads to

$$
c=\frac{|Q|}{m|\Delta T|}=\frac{P t}{m|\Delta T|}=\frac{(900)(20)}{(0.40)(20)}=2250 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{C}^{\circ}} \approx 2.3 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{C}^{\circ}} .
$$

33. The power consumed by the system is

$$
\begin{aligned}
P & =\left(\frac{1}{20 \%}\right) \frac{c m \Delta T}{t}=\left(\frac{1}{20 \%}\right) \frac{\left(4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(200 \times 10^{3} \mathrm{~cm}^{3}\right)\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(40^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)}{(1.0 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})} \\
& =2.3 \times 10^{4} \mathrm{~W} .
\end{aligned}
$$

The area needed is then

$$
A=\frac{2.3 \times 10^{4} \mathrm{~W}}{700 \mathrm{~W} / \mathrm{m}^{2}}=33 \mathrm{~m}^{2}
$$

34. We note that the heat capacity of sample B is given by the reciprocal of the slope of the line in Figure 18-32(b) (compare with Eq. 18-14). Since the reciprocal of that slope is $16 / 4=4 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$, then $c_{B}=4000 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}=4000 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ (since a change in Celsius is equivalent to a change in Kelvins). Now, following the same procedure as shown in Sample Problem 18-4, we find

$$
\begin{array}{r}
c_{A} m_{A}\left(T_{f}-T_{A}\right)+c_{B} m_{B}\left(T_{f}-T_{B}\right)=0 \\
c_{A}(5.0 \mathrm{~kg})\left(40^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)+\left(4000 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)(1.5 \mathrm{~kg})\left(40^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=0
\end{array}
$$

which leads to $c_{A}=4.0 \times 10^{2} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.
35. To accomplish the phase change at $78^{\circ} \mathrm{C}, Q=L_{V} m=(879)(0.510)=448.29 \mathrm{~kJ}$ must be removed. To cool the liquid to $-114^{\circ} \mathrm{C}, Q=c m|\Delta T|=(2.43)(0.510)(192)=237.95 \mathrm{~kJ}$, must be removed. Finally, to accomplish the phase change at $-114^{\circ} \mathrm{C}$,

$$
Q=L_{F} m=(109)(0.510)=55.59 \mathrm{~kJ}
$$

must be removed. The grand total of heat removed is therefore $(448.29+237.95+55.59)$ $\mathrm{kJ}=742 \mathrm{~kJ}$.
36. (a) Eq. 18-14 (in absolute value) gives $|Q|=(4190)(0.530)\left(40^{\circ}\right)=88828$ J. Since $\frac{\mathrm{d} Q}{\mathrm{~d} t}$ is assumed constant (we will call it P) then we have

$$
P=\frac{88828 \mathrm{~J}}{40 \mathrm{~min}}=\frac{88828 \mathrm{~J}}{2400 \mathrm{~s}}=37 \mathrm{~W}
$$

(b) During that same time (used in part (a)) the ice warms by $20 \mathrm{C}^{\circ}$. Using Table 18-3 and Eq. 18-14 again we have

$$
m_{\mathrm{ice}}=\frac{Q}{c_{\mathrm{ice}} \Delta T}=\frac{88828}{(2220)\left(20^{\circ}\right)}=2.0 \mathrm{~kg} .
$$

(c) To find the ice produced (by freezing the water that has already reached $0^{\circ} \mathrm{C}-$ so we concerned with the $40 \mathrm{~min}<t<60 \mathrm{~min}$ time span), we use Table 18-4 and Eq. 18-16:

$$
m_{\text {water becoming ice }}=\frac{Q_{20 \min }}{L_{F}}=\frac{44414}{333000}=0.13 \mathrm{~kg} .
$$

37. We compute with Celsius temperature, which poses no difficulty for the $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$ values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is numerically equal to the corresponding change on the Celsius scale. If the equilibrium temperature is T_{f} then the energy absorbed as heat by the ice is

$$
Q_{I}=L_{F} m_{I}+c_{w} m_{I}\left(T_{f}-0^{\circ} \mathrm{C}\right),
$$

while the energy transferred as heat from the water is $Q_{w}=c_{w} m_{w}\left(T_{f}-T_{i}\right)$. The system is insulated, so $Q_{w}+Q_{I}=0$, and we solve for T_{f} :

$$
T_{f}=\frac{c_{w} m_{w} T_{i}-L_{F} m_{I}}{\left(m_{I}+m_{C}\right) c_{w}} .
$$

(a) Now $T_{i}=90^{\circ} \mathrm{C}$ so

$$
T_{f}=\frac{\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)(0.500 \mathrm{~kg})\left(90^{\circ} \mathrm{C}\right)-\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)(0.500 \mathrm{~kg})}{(0.500 \mathrm{~kg}+0.500 \mathrm{~kg})\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)}=5.3^{\circ} \mathrm{C} .
$$

(b) Since no ice has remained at $T_{f}=5.3^{\circ} \mathrm{C}$, we have $m_{f}=0$.
(c) If we were to use the formula above with $T_{i}=70^{\circ} \mathrm{C}$, we would get $T_{f}<0$, which is impossible. In fact, not all the ice has melted in this case and the equilibrium temperature is $T_{f}=0^{\circ} \mathrm{C}$.
(d) The amount of ice that melts is given by

$$
m_{I}^{\prime}=\frac{c_{w} m_{w}\left(T_{i}-0^{\circ} \mathrm{C}\right)}{L_{F}}=\frac{\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)(0.500 \mathrm{~kg})\left(70 \mathrm{C}^{\circ}\right)}{333 \times 10^{3} \mathrm{~J} / \mathrm{kg}}=0.440 \mathrm{~kg}
$$

Therefore, the amount of (solid) ice remaining is $m_{f}=m_{I}-m_{I}^{\prime}=500 \mathrm{~g}-440 \mathrm{~g}=60.0 \mathrm{~g}$, and (as mentioned) we have $T_{f}=0^{\circ} \mathrm{C}$ (because the system is an ice-water mixture in thermal equilibrium).
38. The heat needed is found by integrating the heat capacity:

$$
\begin{aligned}
Q & =\int_{T_{i}}^{T_{f}} c m d T=m \int_{T_{i}}^{T_{f}} c d T=(2.09) \int_{5.0^{\circ} \mathrm{C}}^{15 . \mathrm{C}^{\mathrm{C}}}\left(0.20+0.14 T+0.023 T^{2}\right) d T \\
& =\left.(2.0)\left(0.20 T+0.070 T^{2}+0.00767 T^{3}\right)\right|_{5.0} ^{15.0}(\mathrm{cal}) \\
& =82 \mathrm{cal} .
\end{aligned}
$$

39. (a) We work in Celsius temperature, which poses no difficulty for the $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$ values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is numerically equal to the corresponding change on the Celsius scale. There are three possibilities:

- None of the ice melts and the water-ice system reaches thermal equilibrium at a temperature that is at or below the melting point of ice.
- The system reaches thermal equilibrium at the melting point of ice, with some of the ice melted.
- All of the ice melts and the system reaches thermal equilibrium at a temperature at or above the melting point of ice.

First, suppose that no ice melts. The temperature of the water decreases from $T_{W i}=25^{\circ} \mathrm{C}$ to some final temperature T_{f} and the temperature of the ice increases from $T_{I i}=-15^{\circ} \mathrm{C}$ to $T_{f .}$ If m_{W} is the mass of the water and c_{W} is its specific heat then the water rejects heat

$$
|Q|=c_{W} m_{W}\left(T_{W i}-T_{f}\right)
$$

If m_{I} is the mass of the ice and c_{I} is its specific heat then the ice absorbs heat

$$
Q=c_{I} m_{I}\left(T_{f}-T_{I i}\right) .
$$

Since no energy is lost to the environment, these two heats (in absolute value) must be the same. Consequently,

$$
c_{W} m_{W}\left(T_{W i}-T_{f}\right)=c_{I} m_{I}\left(T_{f}-T_{I i}\right) .
$$

The solution for the equilibrium temperature is

$$
\begin{aligned}
T_{f} & =\frac{c_{W} m_{W} T_{W i}+c_{I} m_{I} T_{\text {Ii }}}{c_{W} m_{W}+c_{I} m_{I}} \\
& =\frac{(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.200 \mathrm{~kg})\left(25^{\circ} \mathrm{C}\right)+(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.100 \mathrm{~kg})\left(-15^{\circ} \mathrm{C}\right)}{(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.200 \mathrm{~kg})+(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.100 \mathrm{~kg})} \\
& =16.6^{\circ} \mathrm{C} .
\end{aligned}
$$

This is above the melting point of ice, which invalidates our assumption that no ice has melted. That is, the calculation just completed does not take into account the melting of the ice and is in error. Consequently, we start with a new assumption: that the water and ice reach thermal equilibrium at $T_{f}=0^{\circ} \mathrm{C}$, with mass $m\left(<m_{I}\right)$ of the ice melted. The magnitude of the heat rejected by the water is

$$
|Q|=c_{W} m_{W} T_{W i},
$$

and the heat absorbed by the ice is

$$
Q=c_{I} m_{I}\left(0-T_{I I}\right)+m L_{F},
$$

where L_{F} is the heat of fusion for water. The first term is the energy required to warm all the ice from its initial temperature to $0^{\circ} \mathrm{C}$ and the second term is the energy required to melt mass m of the ice. The two heats are equal, so

$$
c_{W} m_{W} T_{W i}=-c_{I} m_{I} T_{I i}+m L_{F} .
$$

This equation can be solved for the mass m of ice melted:

$$
\begin{aligned}
m & =\frac{c_{W} m_{W} T_{W i}+c_{I} m_{I} T_{\text {Ii }}}{L_{F}} \\
& =\frac{(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.200 \mathrm{~kg})\left(25^{\circ} \mathrm{C}\right)+(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.100 \mathrm{~kg})\left(-15^{\circ} \mathrm{C}\right)}{333 \times 10^{3} \mathrm{~J} / \mathrm{kg}} \\
& =5.3 \times 10^{-2} \mathrm{~kg}=53 \mathrm{~g} .
\end{aligned}
$$

Since the total mass of ice present initially was 100 g , there is enough ice to bring the water temperature down to $0^{\circ} \mathrm{C}$. This is then the solution: the ice and water reach thermal equilibrium at a temperature of $0^{\circ} \mathrm{C}$ with 53 g of ice melted.
(b) Now there is less than 53 g of ice present initially. All the ice melts and the final temperature is above the melting point of ice. The heat rejected by the water is

$$
|Q|=c_{W} m_{W}\left(T_{W i}-T_{f}\right)
$$

and the heat absorbed by the ice and the water it becomes when it melts is

$$
Q=c_{I} m_{I}\left(0-T_{I i}\right)+c_{W} m_{I}\left(T_{f}-0\right)+m_{I} L_{F} .
$$

The first term is the energy required to raise the temperature of the ice to $0^{\circ} \mathrm{C}$, the second term is the energy required to raise the temperature of the melted ice from $0^{\circ} \mathrm{C}$ to T_{f}, and the third term is the energy required to melt all the ice. Since the two heats are equal,

$$
c_{W} m_{W}\left(T_{W i}-T_{f}\right)=c_{I} m_{I}\left(-T_{I i}\right)+c_{W} m_{I} T_{f}+m_{I} L_{F} .
$$

The solution for T_{f} is

$$
T_{f}=\frac{c_{W} m_{W} T_{W i}+c_{I} m_{I} T_{I i}-m_{I} L_{F}}{c_{W}\left(m_{W}+m_{I}\right)} .
$$

Inserting the given values, we obtain $T_{f}=2.5^{\circ} \mathrm{C}$.
40. We denote the ice with subscript I and the coffee with c, respectively. Let the final temperature be T_{f}. The heat absorbed by the ice is $Q_{I}=\lambda_{F} m_{I}+m_{I} c_{w}\left(T_{f}-0^{\circ} \mathrm{C}\right)$, and the heat given away by the coffee is $\left|Q_{c}\right|=m_{w} c_{w}\left(T_{I}-T_{f}\right)$. Setting $Q_{I}=\left|Q_{c}\right|$, we solve for T_{f} :

$$
\begin{aligned}
T_{f} & =\frac{m_{w} c_{w} T_{I}-\lambda_{F} m_{I}}{\left(m_{I}+m_{c}\right) c_{w}}=\frac{(130 \mathrm{~g})\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\left(80.0^{\circ} \mathrm{C}\right)-\left(333 \times 10^{3} \mathrm{~J} / \mathrm{g}\right)(12.0 \mathrm{~g})}{(12.0 \mathrm{~g}+130 \mathrm{~g})\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)} \\
& =66.5^{\circ} \mathrm{C}
\end{aligned}
$$

Note that we work in Celsius temperature, which poses no difficulty for the $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$ values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is numerically equal to the corresponding change on the Celsius scale. Therefore, the temperature of the coffee will cool by $|\Delta T|=80.0^{\circ} \mathrm{C}-66.5^{\circ} \mathrm{C}=13.5 \mathrm{C}^{\circ}$.
41. If the ring diameter at $0.000^{\circ} \mathrm{C}$ is $D_{r 0}$ then its diameter when the ring and sphere are in thermal equilibrium is

$$
D_{r}=D_{r 0}\left(1+\alpha_{c} T_{f}\right),
$$

where T_{f} is the final temperature and α_{c} is the coefficient of linear expansion for copper. Similarly, if the sphere diameter at $T_{i}\left(=100.0^{\circ} \mathrm{C}\right)$ is $D_{s 0}$ then its diameter at the final temperature is

$$
D_{s}=D_{s 0}\left[1+\alpha_{a}\left(T_{f}-T_{i}\right)\right],
$$

where α_{a} is the coefficient of linear expansion for aluminum. At equilibrium the two diameters are equal, so

$$
D_{r 0}\left(1+\alpha_{c} T_{f}\right)=D_{s 0}\left[1+\alpha_{a}\left(T_{f}-T_{i}\right)\right] .
$$

The solution for the final temperature is

$$
\begin{aligned}
T_{f} & =\frac{D_{r 0}-D_{s 0}+D_{s 0} \alpha_{a} T_{i}}{D_{s 0} \alpha_{a}-D_{r 0} \alpha_{c}} \\
& =\frac{2.54000 \mathrm{~cm}-2.54508 \mathrm{~cm}+(2.54508 \mathrm{~cm})\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(100.0^{\circ} \mathrm{C}\right)}{(2.54508 \mathrm{~cm})\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)-(2.54000 \mathrm{~cm})\left(17 \times 10^{-6} / \mathrm{C}^{\circ}\right)} \\
& =50.38^{\circ} \mathrm{C} .
\end{aligned}
$$

The expansion coefficients are from Table 18-2 of the text. Since the initial temperature of the ring is $0^{\circ} \mathrm{C}$, the heat it absorbs is $Q=c_{c} m_{r} T_{f}$, where c_{c} is the specific heat of copper and m_{r} is the mass of the ring. The heat rejected up by the sphere is

$$
|Q|=c_{a} m_{s}\left(T_{i}-T_{f}\right)
$$

where c_{a} is the specific heat of aluminum and m_{s} is the mass of the sphere. Since these two heats are equal,

$$
c_{c} m_{r} T_{f}=c_{a} m_{s}\left(T_{i}-T_{f}\right),
$$

we use specific heat capacities from the textbook to obtain

$$
m_{s}=\frac{c_{c} m_{r} T_{f}}{c_{a}\left(T_{i}-T_{f}\right)}=\frac{(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.0200 \mathrm{~kg})\left(50.38^{\circ} \mathrm{C}\right)}{(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(100^{\circ} \mathrm{C}-50.38^{\circ} \mathrm{C}\right)}=8.71 \times 10^{-3} \mathrm{~kg} .
$$

42. During process $A \rightarrow B$, the system is expanding, doing work on its environment, so W >0, and since $\Delta E_{\text {int }}>0$ is given then $Q=W+\Delta E_{\text {int }}$ must also be positive.
(a) $Q>0$.
(b) $W>0$.

During process $B \rightarrow C$, the system is neither expanding nor contracting. Thus,
(c) $W=0$.
(d) The sign of $\Delta E_{\text {int }}$ must be the same (by the first law of thermodynamics) as that of Q which is given as positive. Thus, $\Delta E_{\text {int }}>0$.

During process $C \rightarrow A$, the system is contracting. The environment is doing work on the system, which implies $W<0$. Also, $\Delta E_{\text {int }}<0$ because $\sum \Delta E_{\text {int }}=0$ (for the whole cycle) and the other values of $\Delta E_{\text {int }}$ (for the other processes) were positive. Therefore, $Q=W+$ $\Delta E_{\text {int }}$ must also be negative.
(e) $Q<0$.
(f) $W<0$.
(g) $\Delta E_{\text {int }}<0$.
(h) The area of a triangle is $\frac{1}{2}$ (base)(height). Applying this to the figure, we find $\left|W_{\text {net }}\right|=\frac{1}{2}\left(2.0 \mathrm{~m}^{3}\right)(20 \mathrm{~Pa})=20 \mathrm{~J}$. Since process $C \rightarrow A$ involves larger negative work (it occurs at higher average pressure) than the positive work done during process $A \rightarrow B$, then the net work done during the cycle must be negative. The answer is therefore $W_{\text {net }}$ $=-20 \mathrm{~J}$.
43. (a) One part of path A represents a constant pressure process. The volume changes from $1.0 \mathrm{~m}^{3}$ to $4.0 \mathrm{~m}^{3}$ while the pressure remains at 40 Pa . The work done is

$$
W_{A}=p \Delta V=(40 \mathrm{~Pa})\left(4.0 \mathrm{~m}^{3}-1.0 \mathrm{~m}^{3}\right)=1.2 \times 10^{2} \mathrm{~J}
$$

(b) The other part of the path represents a constant volume process. No work is done during this process. The total work done over the entire path is 120 J . To find the work done over path B we need to know the pressure as a function of volume. Then, we can evaluate the integral $W=\int p d V$. According to the graph, the pressure is a linear function of the volume, so we may write $p=a+b V$, where a and b are constants. In order for the pressure to be 40 Pa when the volume is $1.0 \mathrm{~m}^{3}$ and 10 Pa when the volume is $4.00 \mathrm{~m}^{3}$ the values of the constants must be $a=50 \mathrm{~Pa}$ and $b=-10 \mathrm{~Pa} / \mathrm{m}^{3}$. Thus $p=$ $50 \mathrm{~Pa}-\left(10 \mathrm{~Pa} / \mathrm{m}^{3}\right) V$ and

$$
W_{B}=\int_{1}^{4} p d V=\int_{1}^{4}(50-10 V) d V=\left.\left(50 V-5 V^{2}\right)\right|_{1} ^{4}=200 \mathrm{~J}-50 \mathrm{~J}-80 \mathrm{~J}+5.0 \mathrm{~J}=75 \mathrm{~J} .
$$

(c) One part of path C represents a constant pressure process in which the volume changes from $1.0 \mathrm{~m}^{3}$ to $4.0 \mathrm{~m}^{3}$ while p remains at 10 Pa . The work done is

$$
W_{C}=p \Delta V=(10 \mathrm{~Pa})\left(4.0 \mathrm{~m}^{3}-1.0 \mathrm{~m}^{3}\right)=30 \mathrm{~J} .
$$

The other part of the process is at constant volume and no work is done. The total work is 30 J . We note that the work is different for different paths.
44. (a) Since work is done on the system (perhaps to compress it) we write $W=-200 \mathrm{~J}$.
(b) Since heat leaves the system, we have $Q=-70.0 \mathrm{cal}=-293 \mathrm{~J}$.
(c) The change in internal energy is $\Delta E_{\text {int }}=Q-W=-293 \mathrm{~J}-(-200 \mathrm{~J})=-93 \mathrm{~J}$.
45. Over a cycle, the internal energy is the same at the beginning and end, so the heat Q absorbed equals the work done: $Q=W$. Over the portion of the cycle from A to B the pressure p is a linear function of the volume V and we may write

$$
p=\frac{10}{3} \mathrm{~Pa}+\left(\frac{20}{3} \mathrm{~Pa} / \mathrm{m}^{3}\right) V,
$$

where the coefficients were chosen so that $p=10 \mathrm{~Pa}$ when $V=1.0 \mathrm{~m}^{3}$ and $p=30 \mathrm{~Pa}$ when $V=4.0 \mathrm{~m}^{3}$. The work done by the gas during this portion of the cycle is

$$
\begin{aligned}
W_{A B} & =\int_{1}^{4} p d V=\int_{1}^{4}\left(\frac{10}{3}+\frac{20}{3} V\right) d V=\left.\left(\frac{10}{3} V+\frac{10}{3} V^{2}\right)\right|_{1} ^{4} \\
& =\left(\frac{40}{3}+\frac{160}{3}-\frac{10}{3}-\frac{10}{3}\right) \mathrm{J}=60 \mathrm{~J} .
\end{aligned}
$$

The $B C$ portion of the cycle is at constant pressure and the work done by the gas is $W_{B C}=$ $p \Delta V=(30 \mathrm{~Pa})\left(1.0 \mathrm{~m}^{3}-4.0 \mathrm{~m}^{3}\right)=-90 \mathrm{~J}$. The $C A$ portion of the cycle is at constant volume, so no work is done. The total work done by the gas is $W=W_{A B}+W_{B C}+W_{C A}=$ $60 \mathrm{~J}-90 \mathrm{~J}+0=-30 \mathrm{~J}$ and the total heat absorbed is $Q=W=-30 \mathrm{~J}$. This means the gas loses 30 J of energy in the form of heat.
46. (a) We note that process a to b is an expansion, so $W>0$ for it. Thus, $W_{a b}=+5.0 \mathrm{~J}$. We are told that the change in internal energy during that process is +3.0 J , so application of the first law of thermodynamics for that process immediately yields $Q_{a b}=+8.0 \mathrm{~J}$.
(b) The net work $(+1.2 \mathrm{~J})$ is the same as the net heat $\left(Q_{a b}+Q_{b c}+Q_{c a}\right)$, and we are told that $Q_{c a}=+2.5 \mathrm{~J}$. Thus we readily find $Q_{b c}=(1.2-8.0-2.5) \mathrm{J}=-9.3 \mathrm{~J}$.
47. We note that there is no work done in the process going from d to a, so $Q_{d a}=\Delta E_{\text {int } d a}$ $=80 \mathrm{~J}$. Also, since the total change in internal energy around the cycle is zero, then

$$
\begin{gathered}
\Delta E_{\text {int } a c}+\Delta E_{\text {int } c d}+\Delta E_{\text {int } d a}=0 \\
-200 \mathrm{~J}+\Delta E_{\text {int } c d}+80 \mathrm{~J}=0
\end{gathered}
$$

which yields $\Delta E_{\text {int } c d}=120 \mathrm{~J}$. Thus, applying the first law of thermodynamics to the c to d process gives the work done as $W_{c d}=Q_{c d}-\Delta E_{\text {int } c d}=180 \mathrm{~J}-120 \mathrm{~J}=60 \mathrm{~J}$.
48. Since the process is a complete cycle (beginning and ending in the same thermodynamic state) the change in the internal energy is zero and the heat absorbed by the gas is equal to the work done by the gas: $Q=W$. In terms of the contributions of the individual parts of the cycle $Q_{A B}+Q_{B C}+Q_{C A}=W$ and

$$
Q_{C A}=W-Q_{A B}-Q_{B C}=+15.0 \mathrm{~J}-20.0 \mathrm{~J}-0=-5.0 \mathrm{~J} .
$$

This means 5.0 J of energy leaves the gas in the form of heat.
49. (a) The change in internal energy $\Delta E_{\text {int }}$ is the same for path iaf and path ibf. According to the first law of thermodynamics, $\Delta E_{\text {int }}=Q-W$, where Q is the heat absorbed and W is the work done by the system. Along iaf

$$
\Delta E_{\mathrm{int}}=Q-W=50 \mathrm{cal}-20 \mathrm{cal}=30 \mathrm{cal} .
$$

Along ibf

$$
W=Q-\Delta E_{\text {int }}=36 \mathrm{cal}-30 \mathrm{cal}=6.0 \mathrm{cal} .
$$

(b) Since the curved path is traversed from f to i the change in internal energy is -30 cal and $Q=\Delta E_{\text {int }}+W=-30 \mathrm{cal}-13 \mathrm{cal}=-43 \mathrm{cal}$.
(c) Let $\Delta E_{\mathrm{int}}=E_{\mathrm{int}, f}-E_{\mathrm{int}}, i$. Then, $E_{\mathrm{int}}, f=\Delta E_{\mathrm{int}}+E_{\mathrm{int},}=30 \mathrm{cal}+10 \mathrm{cal}=40 \mathrm{cal}$.
(d) and (e) The work $W_{b f}$ for the path $b f$ is zero, so $Q_{b f}=E_{\text {int }}, f-E_{\text {int }}, b=40 \mathrm{cal}-22 \mathrm{cal}=$ 18 cal . For the path $\operatorname{ibf} Q=36 \mathrm{cal}$ so $Q_{i b}=Q-Q_{b f}=36 \mathrm{cal}-18 \mathrm{cal}=18 \mathrm{cal}$.
50. We refer to the polyurethane foam with subscript p and silver with subscript s. We use Eq. $18-32$ to find $L=k R$.
(a) From Table 18-6 we find $k_{p}=0.024 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ so

$$
\begin{aligned}
L_{p} & =k_{p} R_{p} \\
& =(0.024 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(30 \mathrm{ft}^{2} \cdot \mathrm{~F}^{\circ} \cdot \mathrm{h} / \mathrm{Btu}\right)(1 \mathrm{~m} / 3.281 \mathrm{ft})^{2}\left(5 \mathrm{C}^{\circ} / 9 \mathrm{~F}^{\circ}\right)(3600 \mathrm{~s} / \mathrm{h})(1 \mathrm{Btu} / 1055 \mathrm{~J}) \\
& =0.13 \mathrm{~m} .
\end{aligned}
$$

(b) For silver $k_{s}=428 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, so

$$
L_{s}=k_{s} R_{s}=\left(\frac{k_{s} R_{s}}{k_{p} R_{p}}\right) L_{p}=\left[\frac{428(30)}{0.024(30)}\right](0.13 \mathrm{~m})=2.3 \times 10^{3} \mathrm{~m} .
$$

51. The rate of heat flow is given by

$$
P_{\text {cond }}=k A \frac{T_{H}-T_{C}}{L},
$$

where k is the thermal conductivity of copper ($401 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$), A is the cross-sectional area (in a plane perpendicular to the flow), L is the distance along the direction of flow between the points where the temperature is T_{H} and T_{C}. Thus,

$$
P_{\text {cond }}=\frac{(401 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(90.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(125^{\circ} \mathrm{C}-10.0^{\circ} \mathrm{C}\right)}{0.250 \mathrm{~m}}=1.66 \times 10^{3} \mathrm{~J} / \mathrm{s} .
$$

The thermal conductivity is found in Table 18-6 of the text. Recall that a change in Kelvin temperature is numerically equivalent to a change on the Celsius scale.
52. (a) We estimate the surface area of the average human body to be about $2 \mathrm{~m}^{2}$ and the skin temperature to be about 300 K (somewhat less than the internal temperature of $310 \mathrm{~K})$. Then from Eq. 18-37

$$
P_{r}=\sigma \varepsilon A T^{4} \approx\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(0.9)\left(2.0 \mathrm{~m}^{2}\right)(300 \mathrm{~K})^{4}=8 \times 10^{2} \mathrm{~W}
$$

(b) The energy lost is given by

$$
\Delta E=P_{r} \Delta t=\left(8 \times 10^{2} \mathrm{~W}\right)(30 \mathrm{~s})=2 \times 10^{4} \mathrm{~J}
$$

53. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a change on the Celsius scale, we find that the rate of heat conduction is

$$
P_{\text {cond }}=\frac{k A\left(T_{H}-T_{C}\right)}{L}=\frac{(401 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(4.8 \times 10^{-4} \mathrm{~m}^{2}\right)\left(100^{\circ} \mathrm{C}\right)}{1.2 \mathrm{~m}}=16 \mathrm{~J} / \mathrm{s}
$$

(b) Using Table 18-4, the rate at which ice melts is

$$
\left|\frac{d m}{d t}\right|=\frac{P_{\text {cond }}}{L_{F}}=\frac{16 \mathrm{~J} / \mathrm{s}}{333 \mathrm{~J} / \mathrm{g}}=0.048 \mathrm{~g} / \mathrm{s} .
$$

54. We use Eqs. 18-38 through 18-40. Note that the surface area of the sphere is given by $A=4 \pi r^{2}$, where $r=0.500 \mathrm{~m}$ is the radius.
(a) The temperature of the sphere is $T=(273.15+27.00) \mathrm{K}=300.15 \mathrm{~K}$. Thus

$$
\begin{aligned}
P_{r} & =\sigma \varepsilon A T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(0.850)(4 \pi)(0.500 \mathrm{~m})^{2}(300.15 \mathrm{~K})^{4} \\
& =1.23 \times 10^{3} \mathrm{~W} .
\end{aligned}
$$

(b) Now, $T_{\text {env }}=273.15+77.00=350.15 \mathrm{~K}$ so

$$
\begin{aligned}
P_{a} & =\sigma \varepsilon A T_{\text {env }}^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(0.850)(4 \pi)(0.500 \mathrm{~m})^{2}(350.15 \mathrm{~K})^{4} \\
& =2.28 \times 10^{3} \mathrm{~W} .
\end{aligned}
$$

(c) From Eq. 18-40, we have

$$
P_{n}=P_{a}-P_{r}=2.28 \times 10^{3} \mathrm{~W}-1.23 \times 10^{3} \mathrm{~W}=1.05 \times 10^{3} \mathrm{~W}
$$

55. We use $P_{\text {cond }}=k A \Delta T / L \propto A / L$. Comparing cases (a) and (b) in Figure 18-42, we have

$$
P_{\text {cond } b}=\left(\frac{A_{b} L_{a}}{A_{a} L_{b}}\right) P_{\operatorname{cond} a}=4 P_{\operatorname{cond} a} .
$$

Consequently, it would take $2.0 \mathrm{~min} / 4=0.50 \mathrm{~min}$ for the same amount of heat to be conducted through the rods welded as shown in Fig. 18-42(b).
56. (a) The surface area of the cylinder is given by

$$
A_{1}=2 \pi r_{1}^{2}+2 \pi r_{1} h_{1}=2 \pi\left(2.5 \times 10^{-2} \mathrm{~m}\right)^{2}+2 \pi\left(2.5 \times 10^{-2} \mathrm{~m}\right)\left(5.0 \times 10^{-2} \mathrm{~m}\right)=1.18 \times 10^{-2} \mathrm{~m}^{2},
$$

its temperature is $T_{1}=273+30=303 \mathrm{~K}$, and the temperature of the environment is $T_{\text {env }}=$ $273+50=323$ K. From Eq. 18-39 we have

$$
P_{1}=\sigma \varepsilon A_{1}\left(T_{\mathrm{env}}^{4}-T^{4}\right)=(0.85)\left(1.18 \times 10^{-2} \mathrm{~m}^{2}\right)\left((323 \mathrm{~K})^{4}-(303 \mathrm{~K})^{4}\right)=1.4 \mathrm{~W} .
$$

(b) Let the new height of the cylinder be h_{2}. Since the volume V of the cylinder is fixed, we must have $V=\pi r_{1}^{2} h_{1}=\pi r_{2}^{2} h_{2}$. We solve for h_{2} :

$$
h_{2}=\left(\frac{r_{1}}{r_{2}}\right)^{2} h_{1}=\left(\frac{2.5 \mathrm{~cm}}{0.50 \mathrm{~cm}}\right)^{2}(5.0 \mathrm{~cm})=125 \mathrm{~cm}=1.25 \mathrm{~m} .
$$

The corresponding new surface area A_{2} of the cylinder is

$$
A_{2}=2 \pi r_{2}^{2}+2 \pi r_{2} h_{2}=2 \pi\left(0.50 \times 10^{-2} \mathrm{~m}\right)^{2}+2 \pi\left(0.50 \times 10^{-2} \mathrm{~m}\right)(1.25 \mathrm{~m})=3.94 \times 10^{-2} \mathrm{~m}^{2}
$$

Consequently,

$$
\frac{P_{2}}{P_{1}}=\frac{A_{2}}{A_{1}}=\frac{3.94 \times 10^{-2} \mathrm{~m}^{2}}{1.18 \times 10^{-2} \mathrm{~m}^{2}}=3.3 .
$$

57. (a) We use

$$
P_{\mathrm{cond}}=k A \frac{T_{H}-T_{C}}{L}
$$

with the conductivity of glass given in Table $18-6$ as $1.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. We choose to use the Celsius scale for the temperature: a temperature difference of

$$
T_{H}-T_{C}=72^{\circ} \mathrm{F}-\left(-20^{\circ} \mathrm{F}\right)=92^{\circ} \mathrm{F}
$$

is equivalent to $\frac{5}{9}(92)=51.1 \mathrm{C}^{\circ}$. This, in turn, is equal to 51.1 K since a change in Kelvin temperature is entirely equivalent to a Celsius change. Thus,

$$
\frac{P_{\text {cond }}}{A}=k \frac{T_{H}-T_{C}}{L}=(1.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(\frac{51.1^{\circ} \mathrm{C}}{3.0 \times 10^{-3} \mathrm{~m}}\right)=1.7 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2} .
$$

(b) The energy now passes in succession through 3 layers, one of air and two of glass. The heat transfer rate P is the same in each layer and is given by

$$
P_{\mathrm{cond}}=\frac{A\left(T_{H}-T_{C}\right)}{\sum L / k}
$$

where the sum in the denominator is over the layers. If L_{g} is the thickness of a glass layer, L_{a} is the thickness of the air layer, k_{g} is the thermal conductivity of glass, and k_{a} is the thermal conductivity of air, then the denominator is

$$
\sum \frac{L}{k}=\frac{2 L_{g}}{k_{g}}+\frac{L_{a}}{k_{a}}=\frac{2 L_{g} k_{a}+L_{a} k_{g}}{k_{a} k_{g}} .
$$

Therefore, the heat conducted per unit area occurs at the following rate:

$$
\begin{aligned}
\frac{P_{\text {cond }}}{A} & =\frac{\left(T_{H}-T_{C}\right) k_{a} k_{g}}{2 L_{g} k_{a}+L_{a} k_{g}}=\frac{\left(51.1^{\circ} \mathrm{C}\right)(0.026 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(1.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})}{2\left(3.0 \times 10^{-3} \mathrm{~m}\right)(0.026 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})+(0.075 \mathrm{~m})(1.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})} \\
& =18 \mathrm{~W} / \mathrm{m}^{2} .
\end{aligned}
$$

58. (a) As in Sample Problem 18-6, we take the rate of conductive heat transfer through each layer to be the same. Thus, the rate of heat transfer across the entire wall P_{w} is equal to the rate across layer $2\left(P_{2}\right)$. Using Eq. 18-37 and canceling out the common factor of area A, we obtain

$$
\frac{T_{\mathrm{H}}-T_{\mathrm{c}}}{\left(L_{1} / k_{1}+L_{2} / k_{2}+L_{3} / k_{3}\right)}=\frac{\Delta T_{2}}{\left(L_{2} / k_{2}\right)} \Rightarrow \frac{45 \mathrm{C}^{\circ}}{(1+7 / 9+35 / 80)}=\frac{\Delta T_{2}}{(7 / 9)}
$$

which leads to $\Delta T_{2}=15.8^{\circ} \mathrm{C}$.
(b) We expect (and this is supported by the result in the next part) that greater conductivity should mean a larger rate of conductive heat transfer.
(c) Repeating the calculation above with the new value for k_{2}, we have

$$
\frac{45 \mathrm{C}^{\circ}}{(1+7 / 11+35 / 80)}=\frac{\Delta T_{2}}{(7 / 11)}
$$

which leads to $\Delta T_{2}=13.8^{\circ} \mathrm{C}$. This is less than our part (a) result which implies that the temperature gradients across layers 1 and 3 (the ones where the parameters did not change) are greater than in part (a); those larger temperature gradients lead to larger conductive heat currents (which is basically a statement of "Ohm's law as applied to heat conduction").
59. We divide both sides of Eq. 18-32 by area A, which gives us the (uniform) rate of heat conduction per unit area:

$$
\frac{P_{\text {cond }}}{A}=k_{1} \frac{T_{H}-T_{1}}{L_{1}}=k_{4} \frac{T-T_{C}}{L_{4}}
$$

where $T_{H}=30^{\circ} \mathrm{C}, T_{1}=25^{\circ} \mathrm{C}$ and $T_{C}=-10^{\circ} \mathrm{C}$. We solve for the unknown T.

$$
T=T_{C}+\frac{k_{1} L_{4}}{k_{4} L_{1}}\left(T_{H}-T_{1}\right)=-4.2^{\circ} \mathrm{C} .
$$

60. We assume (although this should be viewed as a "controversial" assumption) that the top surface of the ice is at $T_{C}=-5.0^{\circ} \mathrm{C}$. Less controversial are the assumptions that the bottom of the body of water is at $T_{H}=4.0^{\circ} \mathrm{C}$ and the interface between the ice and the water is at $T_{X}=0.0^{\circ} \mathrm{C}$. The primary mechanism for the heat transfer through the total distance $L=1.4 \mathrm{~m}$ is assumed to be conduction, and we use Eq. 18-34:

$$
\frac{k_{\mathrm{water}} A\left(T_{H}-T_{X}\right)}{L-L_{\mathrm{ice}}}=\frac{k_{\mathrm{ice}} A\left(T_{X}-T_{C}\right)}{L_{\mathrm{ice}}} \Rightarrow \frac{(0.12) A\left(4.0^{\circ}-0.0^{\circ}\right)}{1.4-L_{\mathrm{ice}}}=\frac{(0.40) A\left(0.0^{\circ}+5.0^{\circ}\right)}{L_{\mathrm{ice}}} .
$$

We cancel the area A and solve for thickness of the ice layer: $L_{\text {ice }}=1.1 \mathrm{~m}$.
61. Let h be the thickness of the slab and A be its area. Then, the rate of heat flow through the slab is

$$
P_{\text {cond }}=\frac{k A\left(T_{H}-T_{C}\right)}{h}
$$

where k is the thermal conductivity of ice, T_{H} is the temperature of the water $\left(0^{\circ} \mathrm{C}\right)$, and T_{C} is the temperature of the air above the ice $\left(-10^{\circ} \mathrm{C}\right)$. The heat leaving the water freezes it, the heat required to freeze mass m of water being $Q=L_{F} m$, where L_{F} is the heat of fusion for water. Differentiate with respect to time and recognize that $d Q / d t=P_{\text {cond }}$ to obtain

$$
P_{\text {cond }}=L_{F} \frac{d m}{d t}
$$

Now, the mass of the ice is given by $m=\rho A h$, where ρ is the density of ice and h is the thickness of the ice slab, so $d m / d t=\rho A(d h / d t)$ and

$$
P_{\text {cond }}=L_{F} \rho A \frac{d h}{d t} .
$$

We equate the two expressions for $P_{\text {cond }}$ and solve for $d h / d t$:

$$
\frac{d h}{d t}=\frac{k\left(T_{H}-T_{C}\right)}{L_{F} \rho h} .
$$

Since $1 \mathrm{cal}=4.186 \mathrm{~J}$ and $1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$, the thermal conductivity of ice has the SI value

$$
k=(0.0040 \mathrm{cal} / \mathrm{s} \cdot \mathrm{~cm} \cdot \mathrm{~K})(4.186 \mathrm{~J} / \mathrm{cal}) /\left(1 \times 10^{-2} \mathrm{~m} / \mathrm{cm}\right)=1.674 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K} .
$$

The density of ice is $\rho=0.92 \mathrm{~g} / \mathrm{cm}^{3}=0.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Thus,

$$
\frac{d h}{d t}=\frac{(1.674 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(0^{\circ} \mathrm{C}+10^{\circ} \mathrm{C}\right)}{\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)\left(0.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(0.050 \mathrm{~m})}=1.1 \times 10^{-6} \mathrm{~m} / \mathrm{s}=0.40 \mathrm{~cm} / \mathrm{h}
$$

62. We denote the total mass M and the melted mass m. The problem tells us that Work $/ M=p / \rho$, and that all the work is assumed to contribute to the phase change $Q=$ $L m$ where $L=150 \times 10^{3} \mathrm{~J} / \mathrm{kg}$. Thus,

$$
\frac{p}{\rho} M=L m \Rightarrow m=\frac{5.5 \times 10^{6}}{1200} \frac{M}{150 \times 10^{3}}
$$

which yields $m=0.0306 M$. Dividing this by 0.30 M (the mass of the fats, which we are told is equal to 30% of the total mass), leads to a percentage $0.0306 / 0.30=10 \%$.
63. Since the combination " $p_{1} V_{1}$ " appears frequently in this derivation we denote it as " x. Thus for process 1 , the heat transferred is $Q_{1}=5 x=\Delta E_{\text {int } 1}+W_{1}$, and for path 2 (which consists of two steps, one at constant volume followed by an expansion accompanied by a linear pressure decrease) it is $Q_{2}=5.5 x=\Delta E_{\text {int } 2}+W_{2}$. If we subtract these two expressions and make use of the fact that internal energy is state function (and thus has the same value for path 1 as for path 2) then we have

$$
5.5 x-5 x=W_{2}-W_{1}=\text { "area" inside the triangle }=\frac{1}{2}\left(2 V_{1}\right)\left(p_{2}-p_{1}\right)
$$

Thus, dividing both sides by $x\left(=p_{1} V_{1}\right)$, we find

$$
0.5=\frac{p_{2}}{p_{1}}-1
$$

which leads immediately to the result: $p_{2} / p_{1}=1.5$.
64. The orientation of the block is such that its top and bottom faces are parallel to the liquid surface, so that we have (using "sub" to indicate the submerged portion of the block)

$$
\frac{\ell_{\mathrm{sub}}}{\ell}=\frac{V_{\mathrm{sub}}}{V}
$$

where ℓ is the length of a side, equal to 20.0 cm for $T_{0}=270 \mathrm{~K}$, and $\ell_{\text {sub }}$ is the vertical distance from the mercury surface to the bottom of the block. We interpret the problem as seeking the difference $\Delta \ell_{\text {sub }}$. As a consequence of Archimedes' principle, the extent to which a floating object is submerged depends on the ratio of its density and the density of the liquid.

$$
\frac{V_{\text {sub }}}{V}=\frac{\rho_{\text {alum }}}{\rho_{\mathrm{Hg}}} .
$$

Thus, we have, using $\ell_{\text {sub }}=\frac{\rho_{\text {alum }}}{\rho_{\mathrm{Hg}}} \ell$,

$$
\begin{aligned}
d \ell_{\text {sub }} & =\frac{\rho_{\text {alum }}}{\rho_{\mathrm{Hg}}} d \ell+\frac{\ell}{\rho_{\mathrm{Hg}}} d \rho_{\text {alum }}-\frac{\ell \rho_{\text {alum }}}{\rho_{\mathrm{Hg}}^{2}} d \rho_{\mathrm{Hg}} \\
& =\frac{\rho_{\text {alum }}}{\rho_{\mathrm{Hg}}}(\ell \alpha d T)+\frac{\ell}{\rho_{\mathrm{Hg}}}\left(-3 \alpha \rho_{\text {alum }}\right) d T-\frac{\ell \rho_{\text {alum }}}{\rho_{\mathrm{Hg}}^{2}}\left(-\beta \rho_{\mathrm{Hg}}\right) d T
\end{aligned}
$$

With $d T \rightarrow \Delta T=50 \mathrm{~K}$, we find, using $\rho_{\text {alum } 0}=2710 \mathrm{~kg} / \mathrm{m}^{3}$ (Table 13-1) and $\rho_{\mathrm{Hg} 0}=13600$ $\mathrm{kg} / \mathrm{m}^{3}$ (Table 15-1), that $d \ell_{\text {sub }}=2.7 \times 10^{-4} \mathrm{~m}$.
65. (a) We denote the 3.000000 m length as L_{1}. Combining Eq. 18-14 and Eq. 18-9 we have

$$
\Delta L=\frac{\alpha L_{1} Q}{m c}=\frac{\left(17 \times 10^{-6}\right)(3.000000)(20000.00)}{(0.400000)(386)}=0.006606 \mathrm{~m} .
$$

(b) The new length (denoted L_{2}) is $L_{1}+\Delta L=3.006606 \mathrm{~m}$.
(c) We now combine Eq. 18-14 and Eq. 18-9 in absolute value and obtain

$$
|\Delta L|=\frac{\alpha L_{2}|Q|}{m c}=\frac{\left(17 \times 10^{-6}\right)(3.006606)(20000.00)}{(0.400000)(386)}=0.006621 \mathrm{~m}
$$

(d) Now, the length (denoted L_{3}) is $L_{3}=L_{2}-\Delta L=2.999985 \mathrm{~m}$.
(e) We expect L_{3} to equal L_{1}, of course, but due to having used an approximate formula for thermal length expansion/contraction (Eq. 18-9, with L interpreted as the initial length for each process) and having treated the "constants" as exact constants, we have found an "error" of $L_{1}-L_{3}=14.5 \mu \mathrm{~m}$.
66. As is shown in the textbook for Sample Problem 18-4, we can express the final temperature in the following way:

$$
T_{f}=\frac{m_{A} c_{A} T_{A}+m_{B} c_{B} T_{B}}{m_{A} c_{A}+m_{B} c_{B}}=\frac{c_{A} T_{A}+c_{B} T_{B}}{c_{A}+c_{B}}
$$

where the last equality is made possible by the fact that $m_{A}=m_{B}$. Thus, in a graph of T_{f} versus T_{A}, the "slope" must be $c_{A} /\left(c_{A}+c_{B}\right)$, and the " y intercept" is $c_{B} /\left(c_{A}+c_{B}\right) T_{B}$. From the observation that the "slope" is equal to $2 / 5$ we can determine, then, not only the ratio of the heat capacities but also the coefficient of T_{B} in the " y intercept"; that is,

$$
c_{B} /\left(c_{A}+c_{B}\right) T_{B}=(1-\text { "slope" }) T_{B} .
$$

(a) We observe that the " y intercept" is 150 K , so

$$
T_{B}=150 /(1-\text { "slope") }=150 /(3 / 5)
$$

which yields $T_{B}=2.5 \times 10^{2} \mathrm{~K}$.
(b) As noted already, $c_{A} /\left(c_{A}+c_{B}\right)=\frac{2}{5}$, so $5 c_{A}=2 c_{A}+2 c_{B}$, which leads to $c_{B} / c_{A}=\frac{3}{2}=1.5$.
67. For a cylinder of height h, the surface area is $A_{c}=2 \pi r h$, and the area of a sphere is A_{o} $=4 \pi R^{2}$. The net radiative heat transfer is given by Eq. 18-40.
(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and radius $r=0.15 \mathrm{~m}$ plus that of a sphere of radius $R=0.10 \mathrm{~m}$. Thus, we have $A \approx A_{c}+A_{\mathrm{o}}=$ $1.8 \mathrm{~m}^{2}$. The emissivity $\mathcal{E}=0.80$ is given in the problem, and the Stefan-Boltzmann constant is found in $\S 18-11: \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$. The "environment" temperature is $T_{\text {env }}=303 \mathrm{~K}$, and the skin temperature is $T=\frac{5}{9}(102-32)+273=312 \mathrm{~K}$. Therefore,

$$
P_{\text {net }}=\sigma \varepsilon A\left(T_{\text {env }}^{4}-T^{4}\right)=-86 \mathrm{~W} .
$$

The corresponding sign convention is discussed in the textbook immediately after Eq. 1840. We conclude that heat is being lost by the body at a rate of roughly 90 W .
(b) Half the body surface area is roughly $A=1.8 / 2=0.9 \mathrm{~m}^{2}$. Now, with $T_{\text {env }}=248 \mathrm{~K}$, we find

$$
\left|P_{\text {net }}\right|=\left|\sigma \varepsilon A\left(T_{\text {env }}^{4}-T^{4}\right)\right| \approx 2.3 \times 10^{2} \mathrm{~W} .
$$

(c) Finally, with $T_{\text {env }}=193 \mathrm{~K}$ (and still with $A=0.9 \mathrm{~m}^{2}$) we obtain $\left|P_{\text {net }}\right|=3.3 \times 10^{2} \mathrm{~W}$.
68. The graph shows that the absolute value of the temperature change is $|\Delta T|=25^{\circ} \mathrm{C}$. Since a Watt is a Joule per second, we reason that the energy removed is

$$
|Q|=(2.81 \mathrm{~J} / \mathrm{s})(20 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=3372 \mathrm{~J} .
$$

Thus, with $m=0.30 \mathrm{~kg}$, the absolute value of Eq. 18-14 leads to

$$
c=\frac{|Q|}{m|\Delta T|}=4.5 \times 10^{2} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} .
$$

69. We use $T_{C}=T_{K}-273=(5 / 9)\left(T_{F}-32\right)$. The results are:
(a) $T=10000^{\circ} \mathrm{F}$;
(b) $T=37.0^{\circ} \mathrm{C}$;
(c) $T=-57^{\circ} \mathrm{C}$;
(d) $T=-297^{\circ} \mathrm{F}$;
70. Its initial volume is $5^{3}=125 \mathrm{~cm}^{3}$, and using Table 18-2, Eq. 18-10 and Eq. 18-11, we find

$$
\Delta V=\left(125 \mathrm{~m}^{3}\right)\left(3 \times 23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(50.0 \mathrm{C}^{\circ}\right)=0.432 \mathrm{~cm}^{3} .
$$

71. Let $m_{w}=14 \mathrm{~kg}, m_{c}=3.6 \mathrm{~kg}, m_{m}=1.8 \mathrm{~kg}, T_{i 1}=180^{\circ} \mathrm{C}, T_{i 2}=16.0^{\circ} \mathrm{C}$, and $T_{f}=18.0^{\circ} \mathrm{C}$. The specific heat c_{m} of the metal then satisfies

$$
\left(m_{w} c_{w}+m_{c} c_{m}\right)\left(T_{f}-T_{i 2}\right)+m_{m} c_{m}\left(T_{f}-T_{i 1}\right)=0
$$

which we solve for c_{m} :

$$
\begin{aligned}
c_{m} & =\frac{m_{w} c_{w}\left(T_{i 2}-T_{f}\right)}{m_{c}\left(T_{f}-T_{i 2}\right)+m_{m}\left(T_{f}-T_{i 1}\right)}=\frac{(14 \mathrm{~kg})(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})\left(16.0^{\circ} \mathrm{C}-18.0^{\circ} \mathrm{C}\right)}{(3.6 \mathrm{~kg})\left(18.0^{\circ} \mathrm{C}-16.0^{\circ} \mathrm{C}\right)+(1.8 \mathrm{~kg})\left(18.0^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}\right)} \\
& =0.41 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C}^{\circ}=0.41 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} .
\end{aligned}
$$

72. The net work may be computed as a sum of works (for the individual processes involved) or as the "area" (with appropriate \pm sign) inside the figure (representing the cycle). In this solution, we take the former approach (sum over the processes) and will need the following fact related to processes represented in $p V$ diagrams:

$$
\text { for straight line Work }=\frac{p_{i}+p_{f}}{2} \Delta V
$$

which is easily verified using the definition Eq. 18-25. The cycle represented by the "triangle" $B C$ consists of three processes:

- "tilted" straight line from $\left(1.0 \mathrm{~m}^{3}, 40 \mathrm{~Pa}\right)$ to $\left(4.0 \mathrm{~m}^{3}, 10 \mathrm{~Pa}\right)$, with

$$
\text { Work }=\frac{40 \mathrm{~Pa}+10 \mathrm{~Pa}}{2}\left(4.0 \mathrm{~m}^{3}-1.0 \mathrm{~m}^{3}\right)=75 \mathrm{~J}
$$

- horizontal line from $\left(4.0 \mathrm{~m}^{3}, 10 \mathrm{~Pa}\right)$ to $\left(1.0 \mathrm{~m}^{3}, 10 \mathrm{~Pa}\right)$, with

$$
\text { Work }=(10 \mathrm{~Pa})\left(1.0 \mathrm{~m}^{3}-4.0 \mathrm{~m}^{3}\right)=-30 \mathrm{~J}
$$

- vertical line from $\left(1.0 \mathrm{~m}^{3}, 10 \mathrm{~Pa}\right)$ to $\left(1.0 \mathrm{~m}^{3}, 40 \mathrm{~Pa}\right)$, with

$$
\text { Work }=\frac{10 \mathrm{~Pa}+40 \mathrm{~Pa}}{2}\left(1.0 \mathrm{~m}^{3}-1.0 \mathrm{~m}^{3}\right)=0
$$

(a) and (b) Thus, the total work during the $B C$ cycle is $(75-30) \mathrm{J}=45 \mathrm{~J}$. During the $B A$ cycle, the "tilted" part is the same as before, and the main difference is that the horizontal portion is at higher pressure, with Work $=(40 \mathrm{~Pa})\left(-3.0 \mathrm{~m}^{3}\right)=-120 \mathrm{~J}$. Therefore, the total work during the $B A$ cycle is $(75-120) \mathrm{J}=-45 \mathrm{~J}$.
73. (a) Let the number of weight lift repetitions be N. Then $\mathrm{Nmgh}=Q$, or (using Eq. 1812 and the discussion preceding it)

$$
N=\frac{Q}{m g h}=\frac{(3500 \mathrm{Cal})(4186 \mathrm{~J} / \mathrm{Cal})}{(80.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~m})} \approx 1.87 \times 10^{4}
$$

(b) The time required is

$$
t=(18700)(2.00 \mathrm{~s})\left(\frac{1.00 \mathrm{~h}}{3600 \mathrm{~s}}\right)=10.4 \mathrm{~h} .
$$

74. (a) We denote $T_{H}=100^{\circ} \mathrm{C}, T_{C}=0^{\circ} \mathrm{C}$, the temperature of the copper-aluminum junction by T_{1}. and that of the aluminum-brass junction by T_{2}. Then,

$$
P_{\text {cond }}=\frac{k_{c} A}{L}\left(T_{H}-T_{1}\right)=\frac{k_{a} A}{L}\left(T_{1}-T_{2}\right)=\frac{k_{b} A}{L}\left(T_{2}-T_{c}\right) .
$$

We solve for T_{1} and T_{2} to obtain

$$
T_{1}=T_{H}+\frac{T_{C}-T_{H}}{1+k_{c}\left(k_{a}+k_{b}\right) / k_{a} k_{b}}=100^{\circ} \mathrm{C}+\frac{0.00^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}}{1+401(235+109) /[(235)(109)]}=84.3^{\circ} \mathrm{C}
$$

(b) and

$$
\begin{aligned}
T_{2} & =T_{c}+\frac{T_{H}-T_{C}}{1+k_{b}\left(k_{c}+k_{a}\right) / k_{c} k_{a}}=0.00^{\circ} \mathrm{C}+\frac{100^{\circ} \mathrm{C}-0.00^{\circ} \mathrm{C}}{1+109(235+401) /[(235)(401)]} \\
& =57.6^{\circ} \mathrm{C} .
\end{aligned}
$$

75. For isotropic materials, the coefficient of linear expansion α is related to that for volume expansion by $\alpha=\frac{1}{3} \beta$ (Eq. 18-11). The radius of Earth may be found in the Appendix. With these assumptions, the radius of the Earth should have increased by approximately

$$
\Delta R_{E}=R_{E} \alpha \Delta T=\left(6.4 \times 10^{3} \mathrm{~km}\right)\left(\frac{1}{3}\right)\left(3.0 \times 10^{-5} / \mathrm{K}\right)(3000 \mathrm{~K}-300 \mathrm{~K})=1.7 \times 10^{2} \mathrm{~km}
$$

76. The heat needed is

$$
\begin{aligned}
Q & =(10 \%) m L_{F}=\left(\frac{1}{10}\right)(200,000 \text { metric tons })(1000 \mathrm{~kg} / \text { metric ton })(333 \mathrm{~kJ} / \mathrm{kg}) \\
& =6.7 \times 10^{12} \mathrm{~J}
\end{aligned}
$$

77. The work (the "area under the curve") for process 1 is $4 p_{i} V_{i}$, so that

$$
U_{b}-U_{a}=Q_{1}-W_{1}=6 p_{i} V_{i}
$$

by the First Law of Thermodynamics.
(a) Path 2 involves more work than path 1 (note the triangle in the figure of area $\left.\frac{1}{2}\left(4 V_{i}\right)\left(p_{i} / 2\right)=p_{i} V_{i}\right)$. With $W_{2}=4 p_{i} V_{i}+p_{i} V_{i}=5 p_{i} V_{i}$, we obtain

$$
Q_{2}=W_{2}+U_{b}-U_{a}=5 p_{i} V_{i}+6 p_{i} V_{i}=11 p_{i} V_{i}
$$

(b) Path 3 starts at a and ends at b so that $\Delta U=U_{b}-U_{a}=6 p_{i} V_{i}$.
78. We use $P_{\text {cond }}=k A\left(T_{H}-T_{C}\right) / L$. The temperature T_{H} at a depth of 35.0 km is

$$
T_{H}=\frac{P_{\text {cond }} L}{k A}+T_{C}=\frac{\left(54.0 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(35.0 \times 10^{3} \mathrm{~m}\right)}{2.50 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}+10.0^{\circ} \mathrm{C}=766^{\circ} \mathrm{C} .
$$

79. The volume of the disk (thought of as a short cylinder) is $\pi r^{2} L$ where $L=0.50 \mathrm{~cm}$ is its thickness and $r=8.0 \mathrm{~cm}$ is its radius. Eq. 18-10, Eq. 18-11 and Table 18-2 (which gives $\alpha=3.2 \times 10^{-6} / \mathrm{C}^{\circ}$) lead to

$$
\Delta V=\left(\pi r^{2} L\right)(3 \alpha)\left(60^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)=4.83 \times 10^{-2} \mathrm{~cm}^{3}
$$

80. We use $Q=c m \Delta T$ and $m=\rho V$. The volume of water needed is

$$
V=\frac{m}{\rho}=\frac{Q}{\rho C \Delta T}=\frac{\left(1.00 \times 10^{6} \mathrm{kcal} / \mathrm{day}\right)(5 \text { days })}{\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.00 \mathrm{kcal} / \mathrm{kg})\left(50.0^{\circ} \mathrm{C}-22.0^{\circ} \mathrm{C}\right)}=35.7 \mathrm{~m}^{3} .
$$

81. We have $W=\int p d V$ (Eq. 18-24). Therefore,

$$
W=a \int V^{2} d V=\frac{a}{3}\left(V_{f}^{3}-V_{i}^{3}\right)=23 \mathrm{~J} .
$$

82. We note that there is no work done in process $c \rightarrow b$, since there is no change of volume. We also note that the magnitude of work done in process $b \rightarrow c$ is given, but not its sign (which we identify as negative as a result of the discussion in §18-8). The total (or net) heat transfer is $Q_{\text {net }}=[(-40)+(-130)+(+400)] \mathrm{J}=230 \mathrm{~J}$. By the First Law of Thermodynamics (or, equivalently, conservation of energy), we have

$$
\begin{aligned}
Q_{\text {net }} & =W_{\text {net }} \\
230 \mathrm{~J} & =W_{a \rightarrow c}+W_{c \rightarrow b}+W_{b \rightarrow a} \\
& =W_{a \rightarrow c}+0+(-80 \mathrm{~J})
\end{aligned}
$$

Therefore, $W_{a \rightarrow c}=3.1 \times 10^{2} \mathrm{~J}$.
83. (a) Regarding part (a), it is important to recognize that the problem is asking for the total work done during the two-step "path": $a \rightarrow b$ followed by $b \rightarrow c$. During the latter part of this "path" there is no volume change and consequently no work done. Thus, the answer to part (b) is also the answer to part (a). Since ΔU for process $c \rightarrow a$ is -160 J , then $U_{c}-U_{a}=160 \mathrm{~J}$. Therefore, using the First Law of Thermodynamics, we have

$$
\begin{aligned}
160 & =U_{c}-U_{b}+U_{b}-U_{a} \\
& =Q_{b \rightarrow c}-W_{b \rightarrow c}+Q_{a \rightarrow b}-W_{a \rightarrow b} \\
& =40-0+200-W_{a \rightarrow b}
\end{aligned}
$$

Therefore, $W_{a \rightarrow b \rightarrow c}=W_{a \rightarrow b}=80 \mathrm{~J}$.
(b) $W_{a \rightarrow b}=80 \mathrm{~J}$.
84. The change in length of the rod is

$$
\Delta L=L \alpha \Delta T=(20 \mathrm{~cm})\left(11 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(50^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\right)=4.4 \times 10^{-3} \mathrm{~cm} .
$$

85. Consider the object of mass m_{1} falling through a distance h. The loss of its mechanical energy is $\Delta E=m_{1} g h$. This amount of energy is then used to heat up the temperature of water of mass $m_{2}: \Delta E=m_{1} g h=Q=m_{2} c \Delta T$. Thus, the maximum possible rise in water temperature is

$$
\Delta T=\frac{m_{1} g h}{m_{2} c}=\frac{(6.00 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(50.0 \mathrm{~m})}{(0.600 \mathrm{~kg})\left(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)}=1.17^{\circ} \mathrm{C} .
$$

86. (a) The rate of heat flow is

$$
P_{\text {cond }}=\frac{k A\left(T_{H}-T_{C}\right)}{L}=\frac{(0.040 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(1.8 \mathrm{~m}^{2}\right)\left(33^{\circ} \mathrm{C}-1.0^{\circ} \mathrm{C}\right)}{1.0 \times 10^{-2} \mathrm{~m}}=2.3 \times 10^{2} \mathrm{~J} / \mathrm{s} .
$$

(b) The new rate of heat flow is

$$
P_{\text {cond }}^{\prime}=\frac{k^{\prime} P_{\text {cond }}}{k}=\frac{(0.60 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(230 \mathrm{~J} / \mathrm{s})}{0.040 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}=3.5 \times 10^{3} \mathrm{~J} / \mathrm{s},
$$

which is about 15 times as fast as the original heat flow.
87. The cube has six faces, each of which has an area of $\left(6.0 \times 10^{-6} \mathrm{~m}\right)^{2}$. Using Kelvin temperatures and Eq. 18-40, we obtain

$$
\begin{aligned}
P_{\text {net }} & =\sigma \varepsilon A\left(T_{\text {env }}^{4}-T^{4}\right) \\
& =\left(5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}^{4}}\right)(0.75)\left(2.16 \times 10^{-10} \mathrm{~m}^{2}\right)\left((123.15 \mathrm{~K})^{4}-(173.15 \mathrm{~K})^{4}\right) \\
& =-6.1 \times 10^{-9} \mathrm{~W} .
\end{aligned}
$$

88. If the window is L_{1} high and L_{2} wide at the lower temperature and $L_{1}+\Delta L_{1}$ high and $L_{2}+\Delta L_{2}$ wide at the higher temperature then its area changes from $A_{1}=L_{1} L_{2}$ to

$$
A_{2}=\left(L_{1}+\Delta L_{1}\right)\left(L_{2}+\Delta L_{2}\right) \approx L_{1} L_{2}+L_{1} \Delta L_{2}+L_{2} \Delta L_{1}
$$

where the term $\Delta L_{1} \Delta L_{2}$ has been omitted because it is much smaller than the other terms, if the changes in the lengths are small. Consequently, the change in area is

$$
\Delta A=A_{2}-A_{1}=L_{1} \Delta L_{2}+L_{2} \Delta L_{1} .
$$

If ΔT is the change in temperature then $\Delta L_{1}=\alpha L_{1} \Delta T$ and $\Delta L_{2}=\alpha L_{2} \Delta T$, where α is the coefficient of linear expansion. Thus

$$
\begin{aligned}
\Delta A & =\alpha\left(L_{1} L_{2}+L_{1} L_{2}\right) \Delta T=2 \alpha L_{1} L_{2} \Delta T \\
& =2\left(9 \times 10^{-6} / \mathrm{C}^{\circ}\right)(30 \mathrm{~cm})(20 \mathrm{~cm})\left(30^{\circ} \mathrm{C}\right) \\
& =0.32 \mathrm{~cm}^{2} .
\end{aligned}
$$

89. Following the method of Sample Problem 18-4 (particularly its third Key Idea), we have

$$
\left(900 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{C}^{\circ}}\right)(2.50 \mathrm{~kg})\left(T_{f}-92.0^{\circ} \mathrm{C}\right)+\left(4190 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{C}^{\circ}}\right)(8.00 \mathrm{~kg})\left(T_{f}-5.0^{\circ} \mathrm{C}\right)=0
$$

where Table 18-3 has been used. Thus we find $T_{f}=10.5^{\circ} \mathrm{C}$.
90. We use $Q=-\lambda_{F} m_{i c e}=W+\Delta E_{\text {int }}$. In this case $\Delta E_{\text {int }}=0$. Since $\Delta T=0$ for the ideal gas, then the work done on the gas is

$$
W^{\prime}=-W=\lambda_{F} m_{i}=(333 \mathrm{~J} / \mathrm{g})(100 \mathrm{~g})=33.3 \mathrm{~kJ} .
$$

91. Using Table 18-6, the heat conducted is

$$
\begin{aligned}
Q & =P_{\text {cond }} t=\frac{k A t \Delta T}{L}=\frac{(67 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(\pi / 4)(1.7 \mathrm{~m})^{2}(5.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})\left(2.3 \mathrm{C}^{\circ}\right)}{5.2 \times 10^{-3} \mathrm{~m}} \\
& =2.0 \times 10^{7} \mathrm{~J} .
\end{aligned}
$$

92. We take absolute values of Eq. 18-9 and Eq. 12-25:

$$
|\Delta L|=L \alpha|\Delta T| \quad \text { and } \quad\left|\frac{F}{A}\right|=E\left|\frac{\Delta L}{L}\right|
$$

The ultimate strength for steel is $(F / A)_{\text {rupture }}=S_{u}=400 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ from Table 12-1. Combining the above equations (eliminating the ratio $\Delta L / L$), we find the rod will rupture if the temperature change exceeds

$$
|\Delta T|=\frac{S_{u}}{E \alpha}=\frac{400 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}{\left(200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left(11 \times 10^{-6} / \mathrm{C}^{\circ}\right)}=182^{\circ} \mathrm{C} .
$$

Since we are dealing with a temperature decrease, then, the temperature at which the rod will rupture is $T=25.0^{\circ} \mathrm{C}-182^{\circ} \mathrm{C}=-157^{\circ} \mathrm{C}$.
93. This is similar to Sample Problem 18-3. An important difference with part (b) of that sample problem is that, in this case, the final state of the $\mathrm{H}_{2} \mathrm{O}$ is all liquid at $T_{f}>0$. As discussed in part (a) of that sample problem, there are three steps to the total process:

$$
Q=m\left(c_{\text {ice }}\left(0 \mathrm{C}^{\circ}-\left(-150 \mathrm{C}^{\circ}\right)\right)+L_{F}+c_{\text {liquid }}\left(T_{f}-0 \mathrm{C}^{\circ}\right)\right)
$$

Thus,

$$
T_{f}=\frac{Q / m-\left(c_{\mathrm{ice}}\left(150^{\circ}\right)+L_{F}\right)}{c_{\text {liquid }}}=79.5^{\circ} \mathrm{C}
$$

94. The problem asks for 0.5% of E, where $E=P t$ with $t=120 \mathrm{~s}$ and P given by Eq. 18-
95. Therefore, with $A=4 \pi r^{2}=5.0 \times 10^{-3} \mathrm{~m}^{2}$, we obtain

$$
(0.005) P t=(0.005) \sigma \varepsilon A T^{4} t=8.6 \mathrm{~J} .
$$

95. (a) A change of five Celsius degrees is equivalent to a change of nine Fahrenheit degrees. Using Table 18-2,

$$
\alpha=\left(23 \times 10^{-6} / \mathrm{C}^{\circ}\right)\left(\frac{5 \mathrm{C}^{\circ}}{9 \mathrm{~F}^{\circ}}\right)=13 \times 10^{-6} / \mathrm{F}^{\circ} .
$$

(b) For $\Delta T=55 \mathrm{~F}^{\circ}$ and $L=6.0 \mathrm{~m}$, we find $\Delta L=L \alpha \Delta T=0.0042 \mathrm{~m}=4.2 \mathrm{~mm}$.
96. (a) Recalling that a Watt is a Joule-per-second, and that a change in Celsius temperature is equivalent (numerically) to a change in Kelvin temperature, we convert the value of k to SI units, using Eq. 18-12.

$$
\left(2.9 \times 10^{-3} \frac{\mathrm{cal}}{\mathrm{~cm} \cdot \mathrm{C}^{\circ} \cdot \mathrm{s}}\right)\left(\frac{4.186 \mathrm{~J}}{1 \mathrm{cal}}\right)\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)=1.2 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
$$

(b) Now, a change in Celsius is equivalent to five-ninths of a Fahrenheit change, so

$$
\left(2.9 \times 10^{-3} \frac{\mathrm{cal}}{\mathrm{~cm} \cdot \mathrm{C}^{\circ} \cdot \mathrm{s}}\right)\left(\frac{0.003969 \mathrm{Btu}}{1 \mathrm{cal}}\right)\left(\frac{5 \mathrm{C}^{\circ}}{9 \mathrm{~F}^{\circ}}\right)\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right)\left(\frac{30.48 \mathrm{~cm}}{1 \mathrm{ft}}\right)=0.70 \frac{\mathrm{Btu}}{\mathrm{ft} \cdot \mathrm{~F}^{\circ} \cdot \mathrm{h}} .
$$

(c) Using Eq. 18-33, we obtain

$$
R=\frac{L}{k}=\frac{0.0064 \mathrm{~m}}{1.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}=5.3 \times 10^{-3} \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}
$$

97. One method is to simply compute the change in length in each edge ($x_{0}=0.200 \mathrm{~m}$ and $\left.y_{0}=0.300 \mathrm{~m}\right)$ from Eq. 18-9 $\left(\Delta x=3.6 \times 10^{-5} \mathrm{~m}\right.$ and $\left.\Delta y=5.4 \times 10^{-5} \mathrm{~m}\right)$ and then compute the area change:

$$
A-A_{0}=\left(x_{0}+\Delta x\right)\left(y_{0}+\Delta y\right)-x_{0} y_{0}=2.16 \times 10^{-5} \mathrm{~m}^{2}
$$

Another (though related) method uses $\Delta A=2 \alpha A_{0} \Delta T$ (valid for $\left.\Delta A / A \ll 1\right)$ which can be derived by taking the differential of $A=x y$ and replacing d 's with Δ 's.
98. Let the initial water temperature be $T_{w i}$ and the initial thermometer temperature be $T_{t i}$. Then, the heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the water:

$$
c_{t} m_{t}\left(T_{f}-T_{t i}\right)=c_{w} m_{w}\left(T_{w i}-T_{f}\right) .
$$

We solve for the initial temperature of the water:

$$
\begin{aligned}
T_{w i} & =\frac{c_{t} m_{t}\left(T_{f}-T_{t i}\right)}{c_{w} m_{w}}+T_{f}=\frac{(0.0550 \mathrm{~kg})(0.837 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(44.4-15.0) \mathrm{K}}{\left(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C}^{\circ}\right)(0.300 \mathrm{~kg})}+44.4^{\circ} \mathrm{C} \\
& =45.5^{\circ} \mathrm{C} .
\end{aligned}
$$

99. (a) The 8.0 cm thick layer of air in front of the glass conducts heat at a rate of

$$
P_{\text {cond }}=k A \frac{T_{H}-T_{C}}{L}=(0.026)(0.36) \frac{15}{0.08}=1.8 \mathrm{~W}
$$

which must be the same as the heat conduction current through the glass if a steady-state heat transfer situation is assumed.
(b) For the glass pane,

$$
P_{\text {cond }}=k A \frac{T_{H}-T_{C}}{L} \Rightarrow 1.8=(1.0)(0.36) \frac{T_{H}-T_{C}}{0.005}
$$

which yields $T_{H}-T_{C}=0.024 \mathrm{C}^{\circ}$.
100. From the law of cosines, with $\phi=59.95^{\circ}$, we have

$$
L_{\text {Invar }}^{2}=L_{\text {alum }}^{2}+L_{\text {steel }}^{2}-2 L_{\text {alum }} L_{\text {steel }} \cos \phi
$$

Plugging in $L=L_{0}(1+\alpha \Delta T)$, dividing by L_{0} (which is the same for all sides) and ignoring terms of order $(\Delta T)^{2}$ or higher, we obtain

$$
1+2 \alpha_{\text {Invar }} \Delta T=2+2\left(\alpha_{\text {alum }}+\alpha_{\text {steel }}\right) \Delta T-2\left(1+\left(\alpha_{\text {alum }}+\alpha_{\text {steel }}\right) \Delta T\right) \cos \phi .
$$

This is rearranged to yield

$$
\Delta T=\frac{\cos \phi-1 / 2}{\left(\alpha_{\text {alum }}+\alpha_{\text {steel }}\right)(1-\cos \phi)-\alpha_{\text {Invar }}}=\approx 46^{\circ} \mathrm{C}
$$

so that the final temperature is $T=20.0^{\circ}+\Delta T=66^{\circ} \mathrm{C}$. Essentially the same argument, but arguably more elegant, can be made in terms of the differential of the above cosine law expression.
101. We assume the ice is at $0^{\circ} \mathrm{C}$ to being with, so that the only heat needed for melting is that described by Eq. 18-16 (which requires information from Table 18-4). Thus,

$$
Q=L m=(333 \mathrm{~J} / \mathrm{g})(1.00 \mathrm{~g})=333 \mathrm{~J} .
$$

102. We denote the density of the liquid as ρ, the rate of liquid flowing in the calorimeter as μ, the specific heat of the liquid as c, the rate of heat flow as P, and the temperature change as ΔT. Consider a time duration $d t$, during this time interval, the amount of liquid being heated is $d m=\mu \rho d t$. The energy required for the heating is

$$
d Q=P d t=c(d m) \Delta T=c \mu \Delta T d t .
$$

Thus,

$$
\begin{aligned}
c & =\frac{P}{\rho \mu \Delta T}=\frac{250 \mathrm{~W}}{\left(8.0 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}\right)\left(0.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(15^{\circ} \mathrm{C}\right)} \\
& =2.5 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}=2.5 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} .
\end{aligned}
$$

1. Each atom has a mass of $m=M / N_{\mathrm{A}}$, where M is the molar mass and N_{A} is the Avogadro constant. The molar mass of arsenic is $74.9 \mathrm{~g} / \mathrm{mol}$ or $74.9 \times 10^{-3} \mathrm{~kg} / \mathrm{mol} .7 .50$ $\times 10^{24}$ arsenic atoms have a total mass of $\left(7.50 \times 10^{24}\right)\left(74.9 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right) /\left(6.02 \times 10^{23}\right.$ mol^{-1}) $=0.933 \mathrm{~kg}$.
2. (a) Eq. 19-3 yields $n=M_{\text {sam }} / M=2.5 / 197=0.0127 \mathrm{~mol}$.
(b) The number of atoms is found from Eq. 19-2:

$$
N=n N_{\mathrm{A}}=(0.0127)\left(6.02 \times 10^{23}\right)=7.64 \times 10^{21} .
$$

3. (a) We solve the ideal gas law $p V=n R T$ for n :

$$
n=\frac{p V}{R T}=\frac{(100 \mathrm{~Pa})\left(1.0 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(220 \mathrm{~K})}=5.47 \times 10^{-8} \mathrm{~mol}
$$

(b) Using Eq. 19-2, the number of molecules N is

$$
N=n N_{\mathrm{A}}=\left(5.47 \times 10^{-6} \mathrm{~mol}\right)\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)=3.29 \times 10^{16} \text { molecules }
$$

4. With $V=1.0 \times 10^{-6} \mathrm{~m}^{3}, p=1.01 \times 10^{-13} \mathrm{~Pa}$, and $T=293 \mathrm{~K}$, the ideal gas law gives

$$
n=\frac{p V}{R T}=\frac{\left(1.01 \times 10^{-13} \mathrm{~Pa}\right)\left(1.0 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(293 \mathrm{~K})}=4.1 \times 10^{-23} \mathrm{~mole}
$$

Consequently, Eq. 19-2 yields $N=n N_{\mathrm{A}}=25$ molecules. We can express this as a ratio (with V now written as $1 \mathrm{~cm}^{3}$) $N / V=25$ molecules $/ \mathrm{cm}^{3}$.
5. (a) In solving $p V=n R T$ for n, we first convert the temperature to the Kelvin scale: $T=(40.0+273.15) \mathrm{K}=313.15 \mathrm{~K}$. And we convert the volume to SI units: $1000 \mathrm{~cm}^{3}=$ $1000 \times 10^{-6} \mathrm{~m}^{3}$. Now, according to the ideal gas law,

$$
n=\frac{p V}{R T}=\frac{\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(1000 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(313.15 \mathrm{~K})}=3.88 \times 10^{-2} \mathrm{~mol}
$$

(b) The ideal gas law $p V=n R T$ leads to

$$
T=\frac{p V}{n R}=\frac{\left(1.06 \times 10^{5} \mathrm{~Pa}\right)\left(1500 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(3.88 \times 10^{-2} \mathrm{~mol}\right)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=493 \mathrm{~K}
$$

We note that the final temperature may be expressed in degrees Celsius as $220^{\circ} \mathrm{C}$.
6. Since (standard) air pressure is 101 kPa , then the initial (absolute) pressure of the air is $p_{i}=266 \mathrm{kPa}$. Setting up the gas law in ratio form (where $n_{i}=n_{f}$ and thus cancels out see Sample Problem 19-1), we have

$$
\frac{p_{f} V_{f}}{p_{i} V_{i}}=\frac{T_{f}}{T_{i}} \Rightarrow p_{f}=(266 \mathrm{kPa})\left(\frac{1.64 \times 10^{-2} \mathrm{~m}^{3}}{1.67 \times 10^{-2} \mathrm{~m}^{3}}\right)\left(\frac{300 \mathrm{~K}}{273 \mathrm{~K}}\right)
$$

which yields $p_{f}=287 \mathrm{kPa}$. Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa .
7. (a) With $T=283 \mathrm{~K}$, we obtain

$$
n=\frac{p V}{R T}=\frac{\left(100^{\prime} 10^{3} \mathrm{~Pa}\right)\left(2.50 \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \times \mathrm{K})(283 \mathrm{~K})}=106 \mathrm{~mol} .
$$

(b) We can use the answer to part (a) with the new values of pressure and temperature, and solve the ideal gas law for the new volume, or we could set up the gas law in ratio form as in Sample Problem 19-1 (where $n_{i}=n_{f}$ and thus cancels out):

$$
\frac{p_{f} V_{f}}{p_{i} V_{i}}=\frac{T_{f}}{T_{i}} \Rightarrow V_{f}=\left(2.50 \mathrm{~m}^{3}\right)\left(\frac{100 \mathrm{kPa}}{300 \mathrm{kPa}}\right)\left(\frac{303 \mathrm{~K}}{283 \mathrm{~K}}\right)
$$

which yields a final volume of $V_{f}=0.892 \mathrm{~m}^{3}$.
8. (a) Eq. 19-45 (which gives 0) implies $Q=W$. Then Eq. $19-14$, with $T=(273+30.0) \mathrm{K}$ leads to gives $Q=-3.14 \times 10^{3} \mathrm{~J}$, or $|Q|=3.14 \times 10^{3} \mathrm{~J}$.
(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas.
9. The pressure p_{1} due to the first gas is $p_{1}=n_{1} R T / V$, and the pressure p_{2} due to the second gas is $p_{2}=n_{2} R T / V$. So the total pressure on the container wall is

$$
p=p_{1}+p_{2}=\frac{n_{1} R T}{V}+\frac{n_{2} R T}{V}=\left(n_{1}+n_{2}\right) \frac{R T}{V} .
$$

The fraction of P due to the second gas is then

$$
\frac{p_{2}}{p}=\frac{n_{2} R T / V}{\left(n_{1}+n_{2}\right)(R T / V)}=\frac{n_{2}}{n_{1}+n_{2}}=\frac{0.5}{2+0.5}=0.2 .
$$

10. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas) then

$$
Q=W=n R T \ln \left(V_{f} / V_{i}\right)
$$

applies at any point on the graph. An easy one to read is $Q=1000 \mathrm{~J}$ and $V_{f}=0.30 \mathrm{~m}^{3}$, and we can also infer from the graph that $V_{i}=0.20 \mathrm{~m}^{3}$. We are told that $n=0.825 \mathrm{~mol}$, so the above relation immediately yields $T=360 \mathrm{~K}$.
11. Since the pressure is constant the work is given by $W=p\left(V_{2}-V_{1}\right)$. The initial volume is $V_{1}=\left(A T_{1}-B T_{1}^{2}\right) / p$, where $T_{1}=315 \mathrm{~K}$ is the initial temperature, $A=24.9 \mathrm{~J} / \mathrm{K}$ and $B=0.00662 \mathrm{~J} / \mathrm{K}^{2}$. The final volume is $V_{2}=\left(A T_{2}-B T_{2}^{2}\right) / p$, where $T_{2}=315 \mathrm{~K}$. Thus

$$
\begin{aligned}
W & =A\left(T_{2}-T_{1}\right)-B\left(T_{2}^{2}-T_{1}^{2}\right) \\
& =(24.9 \mathrm{~J} / \mathrm{K})(325 \mathrm{~K}-315 \mathrm{~K})-\left(0.00662 \mathrm{~J} / \mathrm{K}^{2}\right)\left[(325 \mathrm{~K})^{2}-(315 \mathrm{~K})^{2}\right]=207 \mathrm{~J} .
\end{aligned}
$$

12. (a) At point a, we know enough information to compute n :

$$
n=\frac{p V}{R T}=\frac{(2500 \mathrm{~Pa})\left(1.0 \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(200 \mathrm{~K})}=1.5 \mathrm{~mol}
$$

(b) We can use the answer to part (a) with the new values of pressure and volume, and solve the ideal gas law for the new temperature, or we could set up the gas law as in Sample Problem 19-1 in terms of ratios (note: $n_{a}=n_{b}$ and cancels out):

$$
\frac{p_{b} V_{b}}{p_{a} V_{a}}=\frac{T_{b}}{T_{a}} \Rightarrow T_{b}=(200 \mathrm{~K})\left(\frac{7.5 \mathrm{kPa}}{2.5 \mathrm{kPa}}\right)\left(\frac{3.0 \mathrm{~m}^{3}}{1.0 \mathrm{~m}^{3}}\right)
$$

which yields an absolute temperature at b of $T_{b}=1.8 \times 10^{3} \mathrm{~K}$.
(c) As in the previous part, we choose to approach this using the gas law in ratio form (see Sample Problem 19-1):

$$
\frac{p_{c} V_{c}}{p_{a} V_{a}}=\frac{T_{c}}{T_{a}} \Rightarrow T_{c}=(200 \mathrm{~K})\left(\frac{2.5 \mathrm{kPa}}{2.5 \mathrm{kPa}}\right)\left(\frac{3.0 \mathrm{~m}^{3}}{1.0 \mathrm{~m}^{3}}\right)
$$

which yields an absolute temperature at c of $T_{c}=6.0 \times 10^{2} \mathrm{~K}$.
(d) The net energy added to the gas (as heat) is equal to the net work that is done as it progresses through the cycle (represented as a right triangle in the $p V$ diagram shown in Fig. 19-19). This, in turn, is related to \pm "area" inside that triangle (with area $=\frac{1}{2}($ base $)($ height $)$), where we choose the plus sign because the volume change at the largest pressure is an increase. Thus,

$$
Q_{\text {net }}=W_{\text {net }}=\frac{1}{2}\left(2.0 \mathrm{~m}^{3}\right)\left(5.0 \times 10^{3} \mathrm{~Pa}\right)=5.0 \times 10^{3} \mathrm{~J} .
$$

13. Suppose the gas expands from volume V_{i} to volume V_{f} during the isothermal portion of the process. The work it does is

$$
W=\grave{\mathrm{O}}_{V_{i}}^{V_{f}} p d V=n R T \grave{\mathrm{O}}_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T \ln \frac{V_{f}}{V_{i}},
$$

where the ideal gas law $p V=n R T$ was used to replace p with $n R T / V$. Now $V_{i}=n R T / p_{i}$ and $V_{f}=n R T / p_{f}$, so $V_{f} / V_{i}=p_{i} / p_{f}$. Also replace $n R T$ with $p_{i} V_{i}$ to obtain

$$
W=p_{i} V_{i} \ln \frac{p_{i}}{p_{f}}
$$

Since the initial gauge pressure is $1.03 \times 10^{5} \mathrm{~Pa}, p_{i}=1.03 \times 10^{5} \mathrm{~Pa}+1.013 \times 10^{5} \mathrm{~Pa}=$ $2.04 \times 10^{5} \mathrm{~Pa}$. The final pressure is atmospheric pressure: $p_{f}=1.013 \times 10^{5} \mathrm{~Pa}$. Thus

$$
W=\left(2.04 \times 10^{5} \mathrm{~Pa}\right)\left(0.14 \mathrm{~m}^{3}\right) \ln \left(\frac{2.04 \times 10^{5} \mathrm{~Pa}}{1.013 \times 10^{5} \mathrm{~Pa}}\right)=2.00 \times 10^{4} \mathrm{~J}
$$

During the constant pressure portion of the process the work done by the gas is $W=$ $p_{f}\left(V_{i}-V_{f}\right)$. The gas starts in a state with pressure p_{f}, so this is the pressure throughout this portion of the process. We also note that the volume decreases from V_{f} to V_{i}. Now $V_{f}=$ $p_{i} V_{i} / p_{f}$, so

$$
\begin{aligned}
& =-1.44^{\prime} 10^{4} \mathrm{~J} \text {. }
\end{aligned}
$$

The total work done by the gas over the entire process is

$$
W=2.00 \times 10^{4} \mathrm{~J}-1.44 \times 10^{4} \mathrm{~J}=5.60 \times 10^{3} \mathrm{~J}
$$

14. We assume that the pressure of the air in the bubble is essentially the same as the pressure in the surrounding water. If d is the depth of the lake and ρ is the density of water, then the pressure at the bottom of the lake is $p_{1}=p_{0}+\rho g d$, where p_{0} is atmospheric pressure. Since $p_{1} V_{1}=n R T_{1}$, the number of moles of gas in the bubble is $n=$ $p_{1} V_{1} / R T_{1}=\left(p_{0}+\rho g d\right) V_{1} / R T_{1}$, where V_{1} is the volume of the bubble at the bottom of the lake and T_{1} is the temperature there. At the surface of the lake the pressure is p_{0} and the volume of the bubble is $V_{2}=n R T_{2} / p_{0}$. We substitute for n to obtain

$$
\begin{aligned}
V_{2} & =\frac{T_{2}}{T_{1}} \frac{p_{0}+\rho g d}{p_{0}} V_{1} \\
& =\left(\frac{293 \mathrm{~K}}{277 \mathrm{~K}}\right)\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}+\left(0.998 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(40 \mathrm{~m})}{1.013 \times 10^{5} \mathrm{~Pa}}\right)\left(20 \mathrm{~cm}^{3}\right) \\
& =1.0 \times 10^{2} \mathrm{~cm}^{3} .
\end{aligned}
$$

15. When the valve is closed the number of moles of the gas in container A is $n_{A}=$ $p_{A} V_{A} / R T_{A}$ and that in container B is $n_{B}=4 p_{B} V_{A} / R T_{B}$. The total number of moles in both containers is then

$$
n=n_{A}+n_{B}=\frac{V_{A}}{R}\left(\frac{p_{A}}{T_{A}}+\frac{4 p_{B}}{T_{B}}\right)=\text { const. }
$$

After the valve is opened the pressure in container A is $p_{A}^{\prime}=R n_{A}^{\prime} T_{A} / V_{A}$ and that in container B is $p^{\prime}{ }_{B}=R n_{B}^{\prime} T_{B} / 4 V_{A}$. Equating $p^{\prime}{ }_{A}$ and p_{B}^{\prime}, we obtain $R n_{A}^{\prime} T_{A} / V_{A}=R n_{B}^{\prime} T_{B} / 4 V_{A}$, or $n^{\prime}{ }_{B}=\left(4 T_{A} / T_{B}\right) n_{A}^{\prime}$. Thus,

$$
n=n_{A}^{\prime}+n_{B}^{\prime}=n_{A}^{\prime}\left(1+\frac{4 T_{A}}{T_{B}}\right)=n_{A}+n_{B}=\frac{V_{A}}{R}\left(\frac{p_{A}}{T_{A}}+\frac{4 p_{B}}{T_{B}}\right) .
$$

We solve the above equation for n_{A}^{\prime} :

$$
n \phi=\frac{V}{R} \frac{\left(p_{A} / T_{A}+4 p_{B} / T_{B}\right)}{\left(1+4 T_{A} / T_{B}\right)} .
$$

Substituting this expression for n_{A}^{\prime} into $p^{\prime} V_{A}=n_{A}^{\prime} R T_{A}$, we obtain the final pressure:

$$
p^{\prime}=\frac{n_{A}^{\prime} R T_{A}}{V_{A}}=\frac{p_{A}+4 p_{B} T_{A} / T_{B}}{1+4 T_{A} / T_{B}}=2.0 \times 10^{5} \mathrm{~Pa} .
$$

16. The molar mass of argon is $39.95 \mathrm{~g} / \mathrm{mol}$. Eq. $19-22$ gives

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(313 \mathrm{~K})}{39.95 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}}}=442 \mathrm{~m} / \mathrm{s} .
$$

17. According to kinetic theory, the rms speed is

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

where T is the temperature and M is the molar mass. See Eq. 19-34. According to Table $19-1$, the molar mass of molecular hydrogen is $2.02 \mathrm{~g} / \mathrm{mol}=2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, so

$$
v_{\mathrm{rms}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(2.7 \mathrm{~K})}{2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}}}=1.8 \times 10^{2} \mathrm{~m} / \mathrm{s}
$$

18. Appendix F gives $M=4.00 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$ (Table $19-1$ gives this to fewer significant figures). Using Eq. 19-22, we obtain

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \times \mathrm{K})(1000 \mathrm{~K})}{4.00^{\prime} 10^{-3} \mathrm{~kg} / \mathrm{mol}}}=2.50^{\prime} 10^{3} \mathrm{~m} / \mathrm{s}
$$

19. Table $19-1$ gives $M=28.0 \mathrm{~g} / \mathrm{mol}$ for nitrogen. This value can be used in Eq. 19-22 with T in Kelvins to obtain the results. A variation on this approach is to set up ratios, using the fact that Table $19-1$ also gives the rms speed for nitrogen gas at 300 K (the value is $517 \mathrm{~m} / \mathrm{s}$). Here we illustrate the latter approach, using v for v_{rms} :

$$
\frac{v_{2}}{v_{1}}=\frac{\sqrt{3 R T_{2} / M}}{\sqrt{3 R T_{1} / M}}=\sqrt{\frac{T_{2}}{T_{1}}} .
$$

(a) With $T_{2}=(20.0+273.15) \mathrm{K} \approx 293 \mathrm{~K}$, we obtain

$$
v_{2}=(517 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{293 \mathrm{~K}}{300 \mathrm{~K}}}=511 \mathrm{~m} / \mathrm{s}
$$

(b) In this case, we set $v_{3}=\frac{1}{2} v_{2}$ and solve $v_{3} / v_{2}=\sqrt{T_{3} / T_{2}}$ for T_{3} :

$$
T_{3}=T_{2}\left(\frac{v_{3}}{v_{2}}\right)^{2}=(293 \mathrm{~K})\left(\frac{1}{2}\right)^{2}=73.0 \mathrm{~K}
$$

which we write as $73.0-273=-200^{\circ} \mathrm{C}$.
(c) Now we have $v_{4}=2 v_{2}$ and obtain

$$
T_{4}=T_{2}\left(\frac{v_{4}}{v_{2}}\right)^{2}=(293 \mathrm{~K})(4)=1.17 \times 10^{3} \mathrm{~K}
$$

which is equivalent to 899°.
20. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7:

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3\left(k N_{\mathrm{A}}\right) T}{\left(m N_{\mathrm{A}}\right)}}=\sqrt{\frac{3 k T}{M}} .
$$

The mass of the electron is given in the problem, and $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is given in the textbook. With $T=2.00 \times 10^{6} \mathrm{~K}$, the above expression gives $v_{\mathrm{rms}}=9.53 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The pressure value given in the problem is not used in the solution.
21. In the reflection process, only the normal component of the momentum changes, so for one molecule the change in momentum is $2 m v \cos \theta$, where m is the mass of the molecule, v is its speed, and θ is the angle between its velocity and the normal to the wall. If N molecules collide with the wall, then the change in their total momentum is 2 Nmv $\cos \theta$, and if the total time taken for the collisions is Δt, then the average rate of change of the total momentum is $2(N / \Delta t) m v \cos \theta$. This is the average force exerted by the N molecules on the wall, and the pressure is the average force per unit area:

$$
\begin{aligned}
p & =\frac{2}{A}\left(\frac{N}{\Delta t}\right) m v \cos \theta \\
& =\left(\frac{2}{2.0 \times 10^{-4} \mathrm{~m}^{2}}\right)\left(1.0 \times 10^{23} \mathrm{~s}^{-1}\right)\left(3.3 \times 10^{-27} \mathrm{~kg}\right)\left(1.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right) \cos 55^{\circ} \\
& =1.9 \times 10^{3} \mathrm{~Pa} .
\end{aligned}
$$

We note that the value given for the mass was converted to kg and the value given for the area was converted to m^{2}.
22. We can express the ideal gas law in terms of density using $n=M_{\text {sam }} / M$:

$$
p V=\frac{M_{\mathrm{sam}} R T}{M} \Rightarrow \rho=\frac{p M}{R T} .
$$

We can also use this to write the rms speed formula in terms of density:

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3(p M / \rho)}{M}}=\sqrt{\frac{3 p}{\rho}} .
$$

(a) We convert to SI units: $\rho=1.24 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}$ and $p=1.01 \times 10^{3} \mathrm{~Pa}$. The rms speed is $\sqrt{3(1010) / 0.0124}=494 \mathrm{~m} / \mathrm{s}$.
(b) We find M from $\rho=p M / R T$ with $T=273 \mathrm{~K}$.

$$
M=\frac{r R T}{p}=\frac{\left(0.0124 \mathrm{~kg} / \mathrm{m}^{3}\right)(8.31 \mathrm{~J} / \mathrm{mol} \times \mathrm{K})(273 \mathrm{~K})}{1.01^{\prime} 10^{3} \mathrm{~Pa}}=0.0279 \mathrm{~kg} / \mathrm{mol}=27.9 \mathrm{~g} / \mathrm{mol}
$$

(c) From Table 19.1, we identify the gas to be N_{2}.
23. The average translational kinetic energy is given by $K_{\text {avg }}=\frac{3}{2} k T$, where k is the Boltzmann constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$ and T is the temperature on the Kelvin scale. Thus

$$
K_{\text {avg }}=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(1600 \mathrm{~K})=3.31 \times 10^{-20} \mathrm{~J}
$$

24. (a) Eq. $19-24$ gives $K_{\text {avg }}=\frac{3}{2}\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right)(273 \mathrm{~K})=5.65 \times 10^{-21} \mathrm{~J}$.
(b) Similarly, for $T=373 \mathrm{~K}$, the average translational kinetic energy is $K_{\text {avg }}=7.72 \times 10^{-21} \mathrm{~J}$.
(c) The unit mole may be thought of as a (large) collection: 6.02×10^{23} molecules of ideal gas, in this case. Each molecule has energy specified in part (a), so the large collection has a total kinetic energy equal to

$$
K_{\text {mole }}=N_{\mathrm{A}} K_{\text {avg }}=\left(6.02 \times 10^{23}\right)\left(5.65 \times 10^{-21} \mathrm{~J}\right)=3.40 \times 10^{3} \mathrm{~J}
$$

(d) Similarly, the result from part (b) leads to

$$
K_{\text {mole }}=\left(6.02 \times 10^{23}\right)\left(7.72 \times 10^{-21} \mathrm{~J}\right)=4.65 \times 10^{3} \mathrm{~J} .
$$

25. (a) We use $\varepsilon=L_{V} / N$, where L_{V} is the heat of vaporization and N is the number of molecules per gram. The molar mass of atomic hydrogen is $1 \mathrm{~g} / \mathrm{mol}$ and the molar mass of atomic oxygen is $16 \mathrm{~g} / \mathrm{mol}$ so the molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(1.0+1.0+16)=18 \mathrm{~g} / \mathrm{mol}$. There are $N_{\mathrm{A}}=6.02 \times 10^{23}$ molecules in a mole so the number of molecules in a gram of water is $\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right) /(18 \mathrm{~g} / \mathrm{mol})=3.34 \times 10^{22}$ molecules $/ \mathrm{g}$. Thus

$$
\varepsilon=(539 \mathrm{cal} / \mathrm{g}) /\left(3.34 \times 10^{22} / \mathrm{g}\right)=1.61 \times 10^{-20} \mathrm{cal}=6.76 \times 10^{-20} \mathrm{~J}
$$

(b) The average translational kinetic energy is

$$
K_{\text {avg }}=\frac{3}{2} k T=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)[(32.0+273.15) \mathrm{K}]=6.32 \times 10^{-21} \mathrm{~J} .
$$

The ratio $\varepsilon / K_{\text {avg }}$ is $\left(6.76 \times 10^{-20} \mathrm{~J}\right) /\left(6.32 \times 10^{-21} \mathrm{~J}\right)=10.7$.
26. Using $v=f \lambda$ with $v=331 \mathrm{~m} / \mathrm{s}$ (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to

$$
\begin{aligned}
f & =\frac{v}{\left(\frac{1}{\sqrt{2} \pi d^{2}(N / V)}\right)}=(331 \mathrm{~m} / \mathrm{s}) \pi \sqrt{2}\left(3.0 \times 10^{-10} \mathrm{~m}\right)^{2}\left(\frac{n N_{\mathrm{A}}}{V}\right) \\
& =\left(8.0 \times 10^{7} \frac{\mathrm{~m}^{3}}{\mathrm{~s} \cdot \mathrm{~mol}}\right)\left(\frac{n}{V}\right)=\left(8.0 \times 10^{7} \frac{\mathrm{~m}^{3}}{\mathrm{~s} \cdot \mathrm{~mol}}\right)\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273.15 \mathrm{~K})}\right) \\
& =3.5 \times 10^{9} \mathrm{~Hz} .
\end{aligned}
$$

where we have used the ideal gas law and substituted $n / V=p / R T$. If we instead use $v=$ $343 \mathrm{~m} / \mathrm{s}$ (the "default value" for speed of sound in air, used repeatedly in Ch. 17), then the answer is $3.7 \times 10^{9} \mathrm{~Hz}$.
27. (a) According to Eq. 19-25, the mean free path for molecules in a gas is given by

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V}
$$

where d is the diameter of a molecule and N is the number of molecules in volume V. Substitute $d=2.0 \times 10^{-10} \mathrm{~m}$ and $N / V=1 \times 10^{6}$ molecules $/ \mathrm{m}^{3}$ to obtain

$$
\lambda=\frac{1}{\sqrt{2} \pi\left(2.0 \times 10^{-10} \mathrm{~m}\right)^{2}\left(1 \times 10^{6} \mathrm{~m}^{-3}\right)}=6 \times 10^{12} \mathrm{~m} .
$$

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer randomizing collisions. The mean free path has little physical significance.
28. We solve Eq. 19-25 for d :

$$
d=\sqrt{\frac{1}{\lambda \pi \sqrt{2}(N / V)}}=\sqrt{\frac{1}{\left(0.80 \times 10^{5} \mathrm{~cm}\right) \pi \sqrt{2}\left(2.7 \times 10^{19} / \mathrm{cm}^{3}\right)}}
$$

which yields $d=3.2 \times 10^{-8} \mathrm{~cm}$, or 0.32 nm .
29. (a) We use the ideal gas law $p V=n R T=N k T$, where p is the pressure, V is the volume, T is the temperature, n is the number of moles, and N is the number of molecules. The substitutions $N=n N_{\mathrm{A}}$ and $k=R / N_{\mathrm{A}}$ were made. Since 1 cm of mercury $=1333 \mathrm{~Pa}$, the pressure is $p=\left(10^{-7}\right)(1333 \mathrm{~Pa})=1.333 \times 10^{-4} \mathrm{~Pa}$. Thus,

$$
\frac{N}{V}=\frac{p}{k T}=\frac{1.333 \times 10^{-4} \mathrm{~Pa}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(295 \mathrm{~K})}=3.27 \times 10^{16} \text { molecules } / \mathrm{m}^{3}=3.27 \times 10^{10} \text { molecules } / \mathrm{cm}^{3}
$$

(b) The molecular diameter is $d=2.00 \times 10^{-10} \mathrm{~m}$, so, according to Eq. 19-25, the mean free path is

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V}=\frac{1}{\sqrt{2} \pi\left(2.00 \times 10^{-10} \mathrm{~m}\right)^{2}\left(3.27 \times 10^{16} \mathrm{~m}^{-3}\right)}=172 \mathrm{~m}
$$

30. (a) We set up a ratio using Eq. 19-25:

$$
\frac{\lambda_{\mathrm{Ar}}}{\lambda_{\mathrm{N}_{2}}}=\frac{1 /\left(\pi \sqrt{2} d_{\mathrm{Ar}}^{2}(N / V)\right)}{1 /\left(\pi \sqrt{2} d_{\mathrm{N}_{2}}^{2}(N / V)\right)}=\left(\frac{d_{\mathrm{N}_{2}}}{d_{\mathrm{Ar}}}\right)^{2} .
$$

Therefore, we obtain

$$
\frac{d_{\mathrm{Ar}}}{d_{\mathrm{N}_{2}}}=\sqrt{\frac{\lambda_{\mathrm{N}_{2}}}{\lambda_{\mathrm{Ar}}}}=\sqrt{\frac{27.5}{9.9}}=1.7
$$

(b) Using Eq. 19-2 and the ideal gas law, we substitute $N / V=N_{\mathrm{A}} n / V=N_{\mathrm{A}} p / R T$ into Eq. 19-25 and find

$$
\lambda=\frac{R T}{\pi \sqrt{2} d^{2} p N_{\mathrm{A}}} .
$$

Comparing (for the same species of molecule) at two different pressures and temperatures, this leads to

$$
\frac{\lambda_{2}}{\lambda_{1}}=\left(\frac{T_{2}}{T_{1}}\right)\left(\frac{p_{1}}{p_{2}}\right) .
$$

With $\lambda_{1}=9.9 \times 10^{-6} \mathrm{~cm}, T_{1}=293 \mathrm{~K}$ (the same as T_{2} in this part), $p_{1}=750$ torr and $p_{2}=$ 150 torr, we find $\lambda_{2}=5.0 \times 10^{-5} \mathrm{~cm}$.
(c) The ratio set up in part (b), using the same values for quantities with subscript 1 , leads to $\lambda_{2}=7.9 \times 10^{-6} \mathrm{~cm}$ for $T_{2}=233 \mathrm{~K}$ and $p_{2}=750$ torr.
31. (a) The average speed is

$$
\bar{v}=\frac{\sum v}{N}
$$

where the sum is over the speeds of the particles and N is the number of particles. Thus

$$
\bar{v}=\frac{(2.0+3.0+4.0+5.0+6.0+7.0+8.0+9.0+10.0+11.0) \mathrm{km} / \mathrm{s}}{10}=6.5 \mathrm{~km} / \mathrm{s} .
$$

(b) The rms speed is given by

$$
v_{\mathrm{rms}}=\sqrt{\frac{\sum v^{2}}{N}} .
$$

Now

$$
\begin{aligned}
\sum v^{2}= & {\left[(2.0)^{2}+(3.0)^{2}+(4.0)^{2}+(5.0)^{2}+(6.0)^{2}\right.} \\
& \left.+(7.0)^{2}+(8.0)^{2}+(9.0)^{2}+(10.0)^{2}+(11.0)^{2}\right] \mathrm{km}^{2} / \mathrm{s}^{2}=505 \mathrm{~km}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

so

$$
v_{\mathrm{rms}}=\sqrt{\frac{505 \mathrm{~km}^{2} / \mathrm{s}^{2}}{10}}=7.1 \mathrm{~km} / \mathrm{s}
$$

32. (a) The average speed is

$$
v_{\mathrm{avg}}=\frac{\sum n_{i} v_{i}}{\sum n_{i}}=\frac{[2(1.0)+4(2.0)+6(3.0)+8(4.0)+2(5.0)] \mathrm{cm} / \mathrm{s}}{2+4+6+8+2}=3.2 \mathrm{~cm} / \mathrm{s} .
$$

(b) From $v_{\mathrm{rms}}=\sqrt{\sum n_{i} v_{i}^{2} / \sum n_{i}}$ we get

$$
v_{\mathrm{rms}}=\sqrt{\frac{2(1.0)^{2}+4(2.0)^{2}+6(3.0)^{2}+8(4.0)^{2}+2(5.0)^{2}}{2+4+6+8+2}} \mathrm{~cm} / \mathrm{s}=3.4 \mathrm{~cm} / \mathrm{s}
$$

(c) There are eight particles at $v=4.0 \mathrm{~cm} / \mathrm{s}$, more than the number of particles at any other single speed. So $4.0 \mathrm{~cm} / \mathrm{s}$ is the most probable speed.
33. (a) The average speed is

$$
v_{\mathrm{avg}}=\frac{1}{N} \sum_{i=1}^{N} v_{i}=\frac{1}{10}[4(200 \mathrm{~m} / \mathrm{s})+2(500 \mathrm{~m} / \mathrm{s})+4(600 \mathrm{~m} / \mathrm{s})]=420 \mathrm{~m} / \mathrm{s} .
$$

(b) The rms speed is

$$
v_{\mathrm{rms}}=\sqrt{\frac{1}{N} \sum_{i=1}^{N} v_{i}^{2}}=\sqrt{\frac{1}{10}\left[4(200 \mathrm{~m} / \mathrm{s})^{2}+2(500 \mathrm{~m} / \mathrm{s})^{2}+4(600 \mathrm{~m} / \mathrm{s})^{2}\right]}=458 \mathrm{~m} / \mathrm{s}
$$

(c) Yes, $v_{\text {rms }}>v_{\text {avg }}$.
34. (a) From the graph we see that $v_{\mathrm{p}}=400 \mathrm{~m} / \mathrm{s}$. Using the fact that $M=28 \mathrm{~g} / \mathrm{mol}=$ $0.028 \mathrm{~kg} / \mathrm{mol}$ for nitrogen $\left(\mathrm{N}_{2}\right)$ gas, Eq. 19-35 can then be used to determine the absolute temperature. We obtain $T=\frac{1}{2} M v_{\mathrm{p}}^{2} / R=2.7 \times 10^{2} \mathrm{~K}$.
(b) Comparing with Eq. 19-34, we conclude $v_{\mathrm{rms}}=\sqrt{3 / 2} v_{\mathrm{p}}=4.9 \times 10^{2} \mathrm{~m} / \mathrm{s}$.
35. The rms speed of molecules in a gas is given by $v_{r m s}=\sqrt{3 R T / M}$, where T is the temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for escape from Earth's gravitational pull is $v=\sqrt{2 g r_{e}}$, where g is the acceleration due to gravity at Earth's surface and $r_{e}\left(=6.37 \times 10^{6} \mathrm{~m}\right)$ is the radius of Earth. To derive this expression, take the zero of gravitational potential energy to be at infinity. Then, the gravitational potential energy of a particle with mass m at Earth's surface is $U=-G M m / r_{e}^{2}=-m g r_{e}$, where $g=G M / r_{e}^{2}$ was used. If v is the speed of the particle, then its total energy is $E=-m g r_{e}+\frac{1}{2} m v^{2}$. If the particle is just able to travel far away, its kinetic energy must tend toward zero as its distance from Earth becomes large without bound. This means $E=0$ and $v=\sqrt{2 g r_{e}}$. We equate the expressions for the speeds to obtain $\sqrt{3 R T / M}=\sqrt{2 g r_{e}}$. The solution for T is $T=2 g r_{e} M / 3 R$.
(a) The molar mass of hydrogen is $2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, so for that gas

$$
T=\frac{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)\left(2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)}{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=1.0 \times 10^{4} \mathrm{~K}
$$

(b) The molar mass of oxygen is $32.0 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, so for that gas

$$
T=\frac{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)\left(32.0 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)}{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=1.6 \times 10^{5} \mathrm{~K} .
$$

(c) Now, $T=2 g_{m} r_{m} M / 3 R$, where $r_{m}\left(=1.74 \times 10^{6} \mathrm{~m}\right)$ is the radius of the Moon and $g_{m}(=$ $0.16 \mathrm{~g})$ is the acceleration due to gravity at the Moon's surface. For hydrogen

$$
T=\frac{2(0.16)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.74 \times 10^{6} \mathrm{~m}\right)\left(2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)}{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=4.4 \times 10^{2} \mathrm{~K}
$$

(d) For oxygen

$$
T=\frac{2(0.16)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.74 \times 10^{6} \mathrm{~m}\right)\left(32.0 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)}{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=7.0 \times 10^{3} \mathrm{~K}
$$

(e) The temperature high in Earth's atmosphere is great enough for a significant number of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result the atmosphere is depleted of hydrogen.
(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen high in Earth's upper atmosphere.
36. We divide Eq. 19-35 by Eq. 19-22:

$$
\frac{v_{P}}{v_{\mathrm{rms}}}=\frac{\sqrt{2 R T_{2} / M}}{\sqrt{3 R T_{1} / M}}=\sqrt{\frac{2 T_{2}}{3 T_{1}}}
$$

which leads to

$$
\frac{T_{2}}{T_{1}}=\frac{3}{2}\left(\frac{v_{P}}{v_{\mathrm{rms}}}\right)^{2}=\frac{3}{2} \quad \text { if } v_{P}=v_{\mathrm{rms}}
$$

37. (a) The root-mean-square speed is given by $v_{\mathrm{rms}}=\sqrt{3 R T / M}$. See Eq. 19-34. The molar mass of hydrogen is $2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, so

$$
v_{\mathrm{rms}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(4000 \mathrm{~K})}{2.02 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}}}=7.0 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

(b) When the surfaces of the spheres that represent an H_{2} molecule and an Ar atom are touching, the distance between their centers is the sum of their radii:

$$
d=r_{1}+r_{2}=0.5 \times 10^{-8} \mathrm{~cm}+1.5 \times 10^{-8} \mathrm{~cm}=2.0 \times 10^{-8} \mathrm{~cm} .
$$

(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all the argon atoms in a cylinder of radius d and length $v t$, where v is its speed. That is, the number of collisions is $\pi d^{2} v t N / V$, where, N / V is the concentration of argon atoms. The number of collisions per unit time is

$$
\frac{\pi d^{2} v N}{V}=\pi\left(2.0 \times 10^{-10} \mathrm{~m}\right)^{2}\left(7.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)\left(4.0 \times 10^{25} \mathrm{~m}^{-3}\right)=3.5 \times 10^{10} \text { collisions } / \mathrm{s}
$$

38. We divide Eq. 19-31 by Eq. 19-22:

$$
\frac{v_{\mathrm{avg} 2}}{v_{\mathrm{rms} 1}}=\frac{\sqrt{8 R T / \pi M_{2}}}{\sqrt{3 R T / M_{1}}}=\sqrt{\frac{8 M_{1}}{3 \pi M_{2}}}
$$

which leads to

$$
\frac{m_{1}}{m_{2}}=\frac{M_{1}}{M_{2}}=\frac{3 \pi}{8}\left(\frac{v_{\mathrm{avg} 2}}{v_{\mathrm{rms1}}}\right)^{2}=\frac{3 \pi}{2}=4.7 \quad \text { if } \quad v_{\mathrm{avg} 2}=2 v_{\mathrm{rms} 1} .
$$

39. (a) The distribution function gives the fraction of particles with speeds between v and $v+d v$, so its integral over all speeds is unity: $\int P(v) d v=1$. Evaluate the integral by calculating the area under the curve in Fig. 19-22. The area of the triangular portion is half the product of the base and altitude, or $\frac{1}{2} a v_{0}$. The area of the rectangular portion is the product of the sides, or $a v_{0}$. Thus $\int P(v) d v=\frac{1}{2} a v_{0}+a v_{0}=\frac{3}{2} a v_{0}$, so $\frac{3}{2} a v_{0}=1$ and $a v_{0}$ $=2 / 3=0.67$.
(b) The average speed is given by $v_{\text {avg }}=\int v P(v) d v$. For the triangular portion of the distribution $P(v)=a v / v_{0}$, and the contribution of this portion is

$$
\frac{a}{v_{0}} \int_{0}^{v_{0}} v^{2} d v=\frac{a}{3 v_{0}} v_{0}^{3}=\frac{a v_{0}^{2}}{3}=\frac{2}{9} v_{0}
$$

where $2 / 3 v_{0}$ was substituted for $a . P(v)=a$ in the rectangular portion, and the contribution of this portion is

$$
a \int_{v_{0}}^{2 v_{0}} v d v=\frac{a}{2}\left(4 v_{0}^{2}-v_{0}^{2}\right)=\frac{3 a}{2} v_{0}^{2}=v_{0} .
$$

Therefore,

$$
v_{\text {avg }}=\frac{2}{9} v_{0}+v_{0}=1.22 v_{0} \Rightarrow \frac{v_{\text {avg }}}{v_{0}}=1.22 .
$$

(c) The mean-square speed is given by

$$
v_{\mathrm{rms}}^{2}=\int v^{2} P(v) d v
$$

The contribution of the triangular section is

$$
\frac{a}{v_{0}} \int_{0}^{v_{0}} v^{3} d v=\frac{a}{4 v_{0}} v_{0}^{4}=\frac{1}{6} v_{0}^{2} .
$$

The contribution of the rectangular portion is

$$
a \int_{v_{0}}^{2 v_{0}} v^{2} d v=\frac{a}{3}\left(8 v_{0}^{3}-v_{0}^{3}\right)=\frac{7 a}{3} v_{0}^{3}=\frac{14}{9} v_{0}^{2}
$$

Thus,

$$
v_{\mathrm{rms}}=\sqrt{\frac{1}{6} v_{0}^{2}+\frac{14}{9} v_{0}^{2}}=1.31 v_{0} \Rightarrow \frac{v_{\mathrm{rms}}}{v_{0}}=1.31 .
$$

(d) The number of particles with speeds between $1.5 v_{0}$ and $2 v_{0}$ is given by $N \int_{1.5 v_{0}}^{2 v_{0}} P(v) d v$. The integral is easy to evaluate since $P(v)=a$ throughout the range of integration. Thus the number of particles with speeds in the given range is $N a\left(2.0 v_{0}-1.5 v_{0}\right)=0.5 N a v_{0}=$ $N / 3$, where $2 / 3 v_{0}$ was substituted for a. In other words, the fraction of particles in this range is $1 / 3$ or 0.33 .
40. The internal energy is

$$
E_{\text {int }}=\frac{3}{2} n R T=\frac{3}{2}(1.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})=3.4 \times 10^{3} \mathrm{~J} .
$$

41. (a) The work is zero in this process since volume is kept fixed.
(b) Since $C_{V}=\frac{3}{2} R$ for an ideal monatomic gas, then Eq. 19-39 gives $Q=+374 \mathrm{~J}$.
(c) $\Delta E_{\text {int }}=Q-W=+374 \mathrm{~J}$.
(d) Two moles are equivalent to $N=12 \times 10^{23}$ particles. Dividing the result of part (c) by N gives the average translational kinetic energy change per atom: $3.11 \times 10^{-22} \mathrm{~J}$.
42. (a) Since the process is a constant-pressure expansion,

$$
W=p \Delta V=n R \Delta T=(2.02 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(15 \mathrm{~K})=249 \mathrm{~J}
$$

(b) Now, $C_{p}=\frac{5}{2} R$ in this case, so $Q=n C_{p} \Delta T=+623 \mathrm{~J}$ by Eq. 19-46.
(c) The change in the internal energy is $\Delta E_{\text {int }}=Q-W=+374 \mathrm{~J}$.
(d) The change in the average kinetic energy per atom is $\Delta K_{\text {avg }}=\Delta E_{\text {int }} / N=+3.11 \times 10^{-22} \mathrm{~J}$.
43. When the temperature changes by ΔT the internal energy of the first gas changes by $n_{1} C_{1} \Delta T$, the internal energy of the second gas changes by $n_{2} C_{2} \Delta T$, and the internal energy of the third gas changes by $n_{3} C_{3} \Delta T$. The change in the internal energy of the composite gas is

$$
\Delta E_{\text {int }}=\left(n_{1} C_{1}+n_{2} C_{2}+n_{3} C_{3}\right) \Delta T .
$$

This must be $\left(n_{1}+n_{2}+n_{3}\right) C_{V} \Delta T$, where C_{V} is the molar specific heat of the mixture. Thus

$$
C_{V}=\frac{n_{1} C_{1}+n_{2} C_{2}+n_{3} C_{3}}{n_{1}+n_{2}+n_{3}} .
$$

With $n_{1}=2.40 \mathrm{~mol}, C_{V 1}=12.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for gas $1, n_{2}=1.50 \mathrm{~mol}, C_{V 2}=12.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for gas 2 , and $n_{3}=3.20 \mathrm{~mol}, C_{V 3}=20.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for gas 3 , we obtain $C_{V}=15.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for the mixture.
44. (a) According to the first law of thermodynamics $Q=\Delta E_{\mathrm{int}}+W$. When the pressure is a constant $W=p \Delta V$. So

$$
\Delta E_{\mathrm{int}}=Q-p \Delta V=20.9 \mathrm{~J}-\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(100 \mathrm{~cm}^{3}-50 \mathrm{~cm}^{3}\right)\left(\frac{1 \times 10^{-6} \mathrm{~m}^{3}}{1 \mathrm{~cm}^{3}}\right)=15.9 \mathrm{~J} .
$$

(b) The molar specific heat at constant pressure is

$$
C_{p}=\frac{Q}{n \Delta T}=\frac{Q}{n(p \Delta V / n R)}=\frac{R}{p} \frac{Q}{\Delta V}=\frac{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(20.9 \mathrm{~J})}{\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(50 \times 10^{-6} \mathrm{~m}^{3}\right)}=34.4 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

(c) Using Eq. 19-49, $C_{V}=C_{p}-R=26.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.
45. Argon is a monatomic gas, so $f=3$ in Eq. 19-51, which provides

$$
C_{V}=\frac{3}{2} R=\frac{3}{2}(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(\frac{1 \mathrm{cal}}{4.186 \mathrm{~J}}\right)=2.98 \frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{C}^{\circ}}
$$

where we have converted Joules to calories, and taken advantage of the fact that a Celsius degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M is effectively a conversion factor between grams and moles, we see that c_{V} (see units specified in the problem statement) is related to C_{V} by $C_{V}=c_{V} M$ where $M=m N_{\mathrm{A}}$, and m is the mass of a single atom (see Eq. 19-4).
(a) From the above discussion, we obtain

$$
m=\frac{M}{N_{\mathrm{A}}}=\frac{C_{V} / c_{V}}{N_{\mathrm{A}}}=\frac{2.98 / 0.075}{6.02 \times 10^{23}}=6.6 \times 10^{-23} \mathrm{~g}
$$

(b) The molar mass is found to be $M=C_{V} / c_{V}=2.98 / 0.075=39.7 \mathrm{~g} / \mathrm{mol}$ which should be rounded to 40 since the given value of c_{V} is specified to only two significant figures.
46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is straightforward to show, from Eq. 19-11, that for any process that is depicted as a straight line on the $p V$ diagram - the work is

$$
W_{\text {striaght }}=\left(\frac{p_{i}+p_{f}}{2}\right) \Delta V
$$

which includes, as special cases, $W=p \Delta V$ for constant-pressure processes and $W=0$ for constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives

$$
E_{\mathrm{int}}=n\left(\frac{f}{2}\right) R T=\left(\frac{f}{2}\right) p V
$$

where we have used the ideal gas law in the last step. We emphasize that, in order to obtain work and energy in Joules, pressure should be in Pascals ($\mathrm{N} / \mathrm{m}^{2}$) and volume should be in cubic meters. The degrees of freedom for a diatomic gas is $f=5$.
(a) The internal energy change is

$$
\begin{aligned}
E_{\text {int } c}-E_{\text {int } a} & =\frac{5}{2}\left(p_{c} V_{c}-p_{a} V_{a}\right)=\frac{5}{2}\left(\left(2.0 \times 10^{3} \mathrm{~Pa}\right)\left(4.0 \mathrm{~m}^{3}\right)-\left(5.0 \times 10^{3} \mathrm{~Pa}\right)\left(2.0 \mathrm{~m}^{3}\right)\right) \\
& =-5.0 \times 10^{3} \mathrm{~J} .
\end{aligned}
$$

(b) The work done during the process represented by the diagonal path is

$$
W_{\text {diag }}=\left(\frac{p_{a}+p_{c}}{2}\right)\left(V_{c}-V_{a}\right)=\left(3.5 \times 10^{3} \mathrm{~Pa}\right)\left(2.0 \mathrm{~m}^{3}\right)
$$

which yields $W_{\text {diag }}=7.0 \times 10^{3} \mathrm{~J}$. Consequently, the first law of thermodynamics gives

$$
Q_{\text {diag }}=\Delta E_{\text {int }}+W_{\text {diag }}=\left(-5.0 \times 10^{3}+7.0 \times 10^{3}\right) \mathrm{J}=2.0 \times 10^{3} \mathrm{~J} .
$$

(c) The fact that $\Delta E_{\text {int }}$ only depends on the initial and final states, and not on the details of the "path" between them, means we can write $\Delta E_{\text {int }}=E_{\text {int } c}-E_{\text {int } a}=-5.0 \times 10^{3} \mathrm{~J}$ for the indirect path, too. In this case, the work done consists of that done during the constant pressure part (the horizontal line in the graph) plus that done during the constant volume part (the vertical line):

$$
W_{\text {indirect }}=\left(5.0 \times 10^{3} \mathrm{~Pa}\right)\left(2.0 \mathrm{~m}^{3}\right)+0=1.0 \times 10^{4} \mathrm{~J} .
$$

Now, the first law of thermodynamics leads to

$$
Q_{\text {indirect }}=\Delta E_{\text {int }}+W_{\text {indirect }}=\left(-5.0 \times 10^{3}+1.0 \times 10^{4}\right) \mathrm{J}=5.0 \times 10^{3} \mathrm{~J} .
$$

47. To model the "uniform rates" described in the problem statement, we have expressed the volume and the temperature functions as follows:

$$
V=V_{i}+\left(\frac{V_{f}-V_{i}}{\tau_{f}}\right) t \quad \text { and } \quad T=T_{i}+\left(\frac{T_{f}-T_{i}}{\tau_{f}}\right) t
$$

where $V_{i}=0.616 \mathrm{~m}^{3}, V_{f}=0.308 \mathrm{~m}^{3}, \tau_{f}=7200 \mathrm{~s}, T_{i}=300 \mathrm{~K}$ and $T_{f}=723 \mathrm{~K}$.
(a) We can take the derivative of V with respect to t and use that to evaluate the cumulative work done (from $t=0$ until $t=\tau$):

$$
W=\int p d V=\int\left(\frac{n R T}{V}\right)\left(\frac{d V}{d t}\right) d t=12.2 \tau+238113 \ln (14400-\tau)-2.28 \times 10^{6}
$$

with SI units understood. With $\tau=\tau_{f}$ our result is $W=-77169 \mathrm{~J} \approx-77.2 \mathrm{~kJ}$, or $|W| \approx$ 77.2 kJ .

The graph of cumulative work is shown below. The graph for work done is purely negative because the gas is being compressed (work is being done on the gas).

(b) With $C_{V}=\frac{3}{2} R$ (since it's a monatomic ideal gas) then the (infinitesimal) change in internal energy is $n C_{V} d T=\frac{3}{2} n R\left(\frac{d T}{d t}\right) d t$ which involves taking the derivative of the temperature expression listed above. Integrating this and adding this to the work done gives the cumulative heat absorbed (from $t=0$ until $t=\tau$):

$$
Q=\int\left(\frac{n R T}{V}\right)\left(\frac{d V}{d t}\right)+\frac{3}{2} n R\left(\frac{d T}{d t}\right) d t=30.5 \tau+238113 \ln (14400-\tau)-2.28 \times 10^{6}
$$

with SI units understood. With $\tau=\tau_{f}$ our result is $Q_{\text {total }}=54649 \mathrm{~J} \approx 5.46 \times 10^{4} \mathrm{~J}$.
The graph cumulative heat is shown below. We see that $Q>0$ since the gas is absorbing heat.

(c) Defining $C=\frac{Q_{\text {total }}}{n\left(T_{f}-T_{i}\right)}$ we obtain $C=5.17 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. We note that this is considerably smaller than the constant-volume molar heat C_{V}.

We are now asked to consider this to be a two-step process (time dependence is no longer an issue) where the first step is isothermal and the second step occurs at constant volume (the ending values of pressure, volume and temperature being the same as before).
(d) Eq. 19-14 readily yields $W=-43222 \mathrm{~J} \approx-4.32 \times 10^{4} \mathrm{~J}$ (or $|W| \approx 4.32 \times 10^{4} \mathrm{~J}$), where it is important to keep in mind that no work is done in a process where the volume is held constant.
(e) In step 1 the heat is equal to the work (since the internal energy does not change during an isothermal ideal gas process), and step 2 the heat is given by Eq. 19-39. The total heat is therefore $88595 \approx 8.86 \times 10^{4} \mathrm{~J}$.
(f) Defining a molar heat capacity in the same manner as we did in part (c), we now arrive at $C=8.38 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.
48. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have

$$
\begin{aligned}
\Delta E_{\mathrm{int}} & =n C_{V} \Delta T=\frac{5}{2} n R \Delta T \\
Q & =n C_{p} \Delta T=\frac{7}{2} n R \Delta T
\end{aligned}
$$

Dividing the equations, we obtain

$$
\frac{\Delta E_{\mathrm{int}}}{Q}=\frac{5}{7} .
$$

Thus, the given value $Q=70 \mathrm{~J}$ leads to $\Delta E_{\text {int }}=50 \mathrm{~J}$.
49. The fact that they rotate but do not oscillate means that the value of f given in Table 19-3 is relevant. Thus, Eq. 19-46 leads to

$$
Q=n C_{p} \Delta T=n\left(\frac{7}{2} R\right)\left(T_{f}-T_{i}\right)=n R T_{i}\left(\frac{7}{2}\right)\left(\frac{T_{f}}{T_{i}}-1\right)
$$

where $T_{i}=273 \mathrm{~K}$ and $n=1.0 \mathrm{~mol}$. The ratio of absolute temperatures is found from the gas law in ratio form (see Sample Problem 19-1). With $p_{f}=p_{i}$ we have

$$
\frac{T_{f}}{T_{i}}=\frac{V_{f}}{V_{i}}=2
$$

Therefore, the energy added as heat is

$$
Q=(1.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})\left(\frac{7}{2}\right)(2-1) \approx 8.0 \times 10^{3} \mathrm{~J}
$$

50. (a) Using $M=32.0 \mathrm{~g} / \mathrm{mol}$ from Table 19-1 and Eq. 19-3, we obtain

$$
n=\frac{M_{\text {sam }}}{M}=\frac{12.0 \mathrm{~g}}{32.0 \mathrm{~g} / \mathrm{mol}}=0.375 \mathrm{~mol} .
$$

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and Table 19-3. We note that a change of Kelvin temperature is numerically the same as a change of Celsius degrees.

$$
Q=n C_{p} \Delta T=n\left(\frac{7}{2} R\right) \Delta T=(0.375 \mathrm{~mol})\left(\frac{7}{2}\right)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(100 \mathrm{~K})=1.09 \times 10^{3} \mathrm{~J}
$$

(c) We could compute a value of $\Delta E_{\text {int }}$ from Eq. 19-45 and divide by the result from part (b), or perform this manipulation algebraically to show the generality of this answer (that is, many factors will be seen to cancel). We illustrate the latter approach:

$$
\frac{\Delta E_{\text {int }}}{Q}=\frac{n\left(\frac{5}{2} R\right) \Delta T}{n\left(\frac{7}{2} R\right) \Delta T}=\frac{5}{7} \approx 0.714
$$

51. (a) Since the process is at constant pressure, energy transferred as heat to the gas is given by $Q=n C_{p} \Delta T$, where n is the number of moles in the gas, C_{p} is the molar specific heat at constant pressure, and ΔT is the increase in temperature. For a diatomic ideal gas $C_{p}=\frac{7}{2} R$. Thus

$$
Q=\frac{7}{2} n R \Delta T=\frac{7}{2}(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(60.0 \mathrm{~K})=6.98 \times 10^{3} \mathrm{~J}
$$

(b) The change in the internal energy is given by $\Delta E_{\text {int }}=n C_{V} \Delta T$, where C_{V} is the specific heat at constant volume. For a diatomic ideal gas $C_{V}=\frac{5}{2} R$, so

$$
\Delta E_{\mathrm{int}}=\frac{5}{2} n R \Delta T=\frac{5}{2}(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})(60.0 \mathrm{~K})=4.99 \times 10^{3} \mathrm{~J} .
$$

(c) According to the first law of thermodynamics, $\Delta E_{\mathrm{int}}=Q-W$, so

$$
W=Q-\Delta E_{\text {int }}=6.98 \times 10^{3} \mathrm{~J}-4.99 \times 10^{3} \mathrm{~J}=1.99 \times 10^{3} \mathrm{~J} .
$$

(d) The change in the total translational kinetic energy is

$$
\Delta K=\frac{3}{2} n R \Delta T=\frac{3}{2}(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(60.0 \mathrm{~K})=2.99 \times 10^{3} \mathrm{~J}
$$

52. The fact that they rotate but do not oscillate means that the value of f given in Table $19-3$ is relevant. In $\S 19-11$, it is noted that $\gamma=C_{p} / C_{V}$ so that we find $\gamma=7 / 5$ in this case. In the state described in the problem, the volume is

$$
. V=\frac{n R T}{p}=\frac{(2.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}=0.049 \mathrm{~m}^{3}
$$

Consequently,

$$
p V^{\gamma}=\left(1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)\left(0.049 \mathrm{~m}^{3}\right)^{1.4}=1.5 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2.2}
$$

53. (a) Let p_{i}, V_{i}, and T_{i} represent the pressure, volume, and temperature of the initial state of the gas. Let p_{f}, V_{f}, and T_{f} represent the pressure, volume, and temperature of the final state. Since the process is adiabatic $p_{i} V_{i}^{\gamma}=p_{f} V_{f}{ }^{\gamma}$, so

$$
p_{f}=\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} p_{i}=\left(\frac{4.3 \mathrm{~L}}{0.76 \mathrm{~L}}\right)^{1.4}(1.2 \mathrm{~atm})=13.6 \mathrm{~atm} \approx 14 \mathrm{~atm} .
$$

We note that since V_{i} and V_{f} have the same units, their units cancel and p_{f} has the same units as p_{i}.
(b) The gas obeys the ideal gas law $p V=n R T$, so $p_{i} V_{i} / p_{f} V_{f}=T_{i} / T_{f}$ and

$$
T_{f}=\frac{p_{f} V_{f}}{p_{i} V_{i}} T_{i}=\left[\frac{(13.6 \mathrm{~atm})(0.76 \mathrm{~L})}{(1.2 \mathrm{~atm})(4.3 \mathrm{~L})}\right](310 \mathrm{~K})=6.2 \times 10^{2} \mathrm{~K} .
$$

54. (a) We use Eq. 19-54 with $V_{f} / V_{i}=\frac{1}{2}$ for the gas (assumed to obey the ideal gas law).

$$
p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma} \Rightarrow \frac{p_{f}}{p_{i}}=\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=(2.00)^{1.3}
$$

which yields $p_{f}=(2.46)(1.0 \mathrm{~atm})=2.46 \mathrm{~atm}$.
(b) Similarly, Eq. 19-56 leads to

$$
T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=(273 \mathrm{~K})(1.23)=336 \mathrm{~K} .
$$

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when $p_{1}=$ p_{2} then the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, with the subscript 1 referring to the situation (of small volume, high pressure, and high temperature) the system is in at the end of part (a), we obtain

$$
\frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}}=\frac{273 \mathrm{~K}}{336 \mathrm{~K}}=0.813 .
$$

The volume V_{1} is half the original volume of one liter, so

$$
V_{2}=0.813(0.500 \mathrm{~L})=0.406 \mathrm{~L} .
$$

55. Since $\Delta E_{\text {int }}$ does not depend on the type of process,

$$
\left(\Delta E_{\text {int }}\right)_{\text {path } 2}=\left(\Delta E_{\text {int }}\right)_{\text {path } 1} .
$$

Also, since (for an ideal gas) it only depends on the temperature variable (so $\Delta E_{\text {int }}=0$ for isotherms), then

$$
\left(\Delta E_{\text {int }}\right)_{\text {path1 }}=\sum\left(\Delta E_{\text {int }}\right)_{\text {adiabat }} .
$$

Finally, since $Q=0$ for adiabatic processes, then (for path 1)

$$
\begin{aligned}
& \left(\Delta E_{\text {int }}\right)_{\text {adiabatic expansion }}=-W=-40 \mathrm{~J} \\
& \left(\Delta E_{\text {int }}\right)_{\text {adiabatic compression }}=-W=-(-25) \mathrm{J}=25 \mathrm{~J} .
\end{aligned}
$$

Therefore, $\left(\Delta E_{\text {int }}\right)_{\text {path } 2}=-40 \mathrm{~J}+25 \mathrm{~J}=-15 \mathrm{~J}$.
56. (a) Eq. 19-54 leads to

$$
4=\left(\frac{200}{74.3}\right)^{\gamma} \Rightarrow \gamma=\log (4) / \log (200 / 74.3)=1.4=7 / 5
$$

This implies that the gas is diatomic (see Table 19-3).
(b) One can now use either Eq. 19-56 (as illustrated in part (a) of Sample Problem 19-9) or use the ideal gas law itself. Here we illustrate the latter approach:

$$
\frac{P_{f} V_{f}}{P_{i} V_{i}}=\frac{n R T_{f}}{n R T_{i}} \quad \Rightarrow \quad T_{f}=446 \mathrm{~K}
$$

(c) Again using the ideal gas law: $n=P_{i} V_{i} / R T_{i}=8.10$ moles. The same result would, of course, follow from $n=P_{f} V_{f} / R T_{f}$.
57. The aim of this problem is to emphasize what it means for the internal energy to be a state function. Since path 1 and path 2 start and stop at the same places, then the internal energy change along path 1 is equal to that along path 2 . Now, during isothermal processes (involving an ideal gas) the internal energy change is zero, so the only step in path 1 that we need to examine is step 2. Eq. 19-28 then immediately yields -20 J as the answer for the internal energy change.
58. (a) In the free expansion from state 0 to state 1 we have $Q=W=0$, so $\Delta E_{\text {int }}=0$, which means that the temperature of the ideal gas has to remain unchanged. Thus the final pressure is

$$
p_{1}=\frac{p_{0} V_{0}}{V_{1}}=\frac{p_{0} V_{0}}{3.00 V_{0}}=\frac{1}{3.00} p_{0} \Rightarrow \frac{p_{1}}{p_{0}}=\frac{1}{3.00}=0.333 .
$$

(b) For the adiabatic process from state 1 to 2 we have $p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma}$, i.e.,

$$
\frac{1}{3.00} p_{0}\left(3.00 V_{0}\right)^{\gamma}=(3.00)^{\frac{1}{3}} p_{0} V_{0}^{\gamma}
$$

which gives $\gamma=4 / 3$. The gas is therefore polyatomic.
(c) From $T=p V / n R$ we get

$$
\frac{\bar{K}_{2}}{\bar{K}_{1}}=\frac{T_{2}}{T_{1}}=\frac{p_{2}}{p_{1}}=(3.00)^{\frac{1}{3}}=1.44 .
$$

59. In the following $C_{V}=\frac{3}{2} R$ is the molar specific heat at constant volume, $C_{p}=\frac{5}{2} R$ is the molar specific heat at constant pressure, ΔT is the temperature change, and n is the number of moles.

The process $1 \rightarrow 2$ takes place at constant volume.
(a) The heat added is

$$
Q=n C_{V} \Delta T=\frac{3}{2} n R \Delta T=\frac{3}{2}(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(600 \mathrm{~K}-300 \mathrm{~K})=3.74 \times 10^{3} \mathrm{~J} .
$$

(b) Since the process takes place at constant volume the work W done by the gas is zero, and the first law of thermodynamics tells us that the change in the internal energy is

$$
\Delta E_{\mathrm{int}}=Q=3.74 \times 10^{3} \mathrm{~J} .
$$

(c) The work W done by the gas is zero.

The process $2 \rightarrow 3$ is adiabatic.
(d) The heat added is zero.
(e) The change in the internal energy is

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T=\frac{3}{2} n R \Delta T=\frac{3}{2}(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(455 \mathrm{~K}-600 \mathrm{~K})=-1.81 \times 10^{3} \mathrm{~J} .
$$

(f) According to the first law of thermodynamics the work done by the gas is

$$
W=Q-\Delta E_{\mathrm{int}}=+1.81 \times 10^{3} \mathrm{~J} .
$$

The process $3 \rightarrow 1$ takes place at constant pressure.
(g) The heat added is

$$
Q=n C_{p} \Delta T=\frac{5}{2} n R \Delta T=\frac{5}{2}(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K}-455 \mathrm{~K})=-3.22 \times 10^{3} \mathrm{~J}
$$

(h) The change in the internal energy is

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T=\frac{3}{2} n R \Delta T=\frac{3}{2}(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K}-455 \mathrm{~K})=-1.93 \times 10^{3} \mathrm{~J}
$$

(i) According to the first law of thermodynamics the work done by the gas is

$$
W=Q-\Delta E_{\text {int }}=-3.22 \times 10^{3} \mathrm{~J}+1.93 \times 10^{3} \mathrm{~J}=-1.29 \times 10^{3} \mathrm{~J}
$$

(j) For the entire process the heat added is

$$
Q=3.74 \times 10^{3} \mathrm{~J}+0-3.22 \times 10^{3} \mathrm{~J}=520 \mathrm{~J} .
$$

(k) The change in the internal energy is

$$
\Delta E_{\text {int }}=3.74 \times 10^{3} \mathrm{~J}-1.81 \times 10^{3} \mathrm{~J}-1.93 \times 10^{3} \mathrm{~J}=0
$$

(1) The work done by the gas is

$$
W=0+1.81 \times 10^{3} \mathrm{~J}-1.29 \times 10^{3} \mathrm{~J}=520 \mathrm{~J} .
$$

(m) We first find the initial volume. Use the ideal gas law $p_{1} V_{1}=n R T_{1}$ to obtain

$$
V_{1}=\frac{n R T_{1}}{p_{1}}=\frac{(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}{\left(1.013 \times 10^{5} \mathrm{~Pa}\right)}=2.46 \times 10^{-2} \mathrm{~m}^{3} .
$$

(n) Since $1 \rightarrow 2$ is a constant volume process $V_{2}=V_{1}=2.46 \times 10^{-2} \mathrm{~m}^{3}$. The pressure for state 2 is

$$
p_{2}=\frac{n R T_{2}}{V_{2}}=\frac{(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(600 \mathrm{~K})}{2.46 \times 10^{-2} \mathrm{~m}^{3}}=2.02 \times 10^{5} \mathrm{~Pa} .
$$

This is approximately equal to 2.00 atm .
(o) $3 \rightarrow 1$ is a constant pressure process. The volume for state 3 is

$$
V_{3}=\frac{n R T_{3}}{p_{3}}=\frac{(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(455 \mathrm{~K})}{1.013 \times 10^{5} \mathrm{~Pa}}=3.73 \times 10^{-2} \mathrm{~m}^{3} .
$$

(p) The pressure for state 3 is the same as the pressure for state 1: $p_{3}=p_{1}=1.013 \times 10^{5}$ $\mathrm{Pa}(1.00 \mathrm{~atm})$
60. (a) The $p-V$ diagram is shown below:

Note that o obtain the above graph, we have chosen $n=0.37$ moles for concreteness, in which case the horizontal axis (which we note starts not at zero but at 1) is to be interpreted in units of cubic centimeters, and the vertical axis (the absolute pressure) is in kilopascals. However, the constant volume temp-increase process described in the third step (see problem statement) is difficult to see in this graph since it coincides with the pressure axis.
(b) We note that the change in internal energy is zero for an ideal gas isothermal process, so (since the net change in the internal energy must be zero for the entire cycle) the increase in internal energy in step 3 must equal (in magnitude) its decease in step 1 . By Eq. 19-28, we see this number must be 125 J .
(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas.
61. (a) The ideal gas law leads to

$$
V=\frac{n R T}{p}=\frac{(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~Pa}}
$$

which yields $V=0.0225 \mathrm{~m}^{3}=22.5 \mathrm{~L}$. If we use the standard pressure value given in Appendix $\mathrm{D}, 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$, then our answer rounds more properly to 22.4 L .
(b) From Eq. 19-2, we have $N=6.02 \times 10^{23}$ molecules in the volume found in part (a) (which may be expressed as $V=2.24 \times 10^{4} \mathrm{~cm}^{3}$), so that

$$
\frac{N}{V}=\frac{6.02 \times 10^{23}}{2.24 \times 10^{4} \mathrm{~cm}^{3}}=2.69 \times 10^{19} \mathrm{molecules} / \mathrm{cm}^{3}
$$

62. Using the ideal gas law, one mole occupies a volume equal to

$$
V=\frac{n R T}{p}=\frac{(1)(8.31)(50.0)}{1.00 \times 10^{-8}}=4.16 \times 10^{10} \mathrm{~m}^{3}
$$

Therefore, the number of molecules per unit volume is

$$
\frac{N}{V}=\frac{n N_{\mathrm{A}}}{V}=\frac{(1)\left(6.02 \times 10^{23}\right)}{4.16 \times 10^{10}}=1.45 \times 10^{13} \frac{\text { molecules }}{\mathrm{m}^{3}}
$$

Using $d=20.0 \times 10^{-9} \mathrm{~m}$, Eq. 19-25 yields

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2}\left(\frac{N}{V}\right)}=38.8 \mathrm{~m} .
$$

63. In this solution we will use non-standard notation: writing ρ for weight-density (instead of mass-density), where ρ_{c} refers to the cool air and ρ_{h} refers to the hot air. Then the condition required by the problem is

$$
F_{\text {net }}=F_{\text {buoyant }}-\text { hot-air-weight }- \text { balloon-weight }
$$

$$
2.67 \times 10^{3} \mathrm{~N}=\rho_{\mathrm{c}} V-\rho_{\mathrm{h}} V-2.45 \times 10^{3} \mathrm{~N}
$$

where $V=2.18 \times 10^{3} \mathrm{~m}^{3}$ and $\rho_{\mathrm{c}}=11.9 \mathrm{~N} / \mathrm{m}^{3}$. This condition leads to $\rho_{\mathrm{h}}=9.55 \mathrm{~N} / \mathrm{m}^{3}$. Using the ideal gas law to write ρ_{h} as $P M g / R T$ where $P=101000$ Pascals and $M=0.028$ $\mathrm{kg} / \mathrm{m}^{3}$ (as suggested in the problem), we conclude that the temperature of the enclosed air should be 349 K .
64. (a) Using the atomic mass value in Appendix F, we compute that the molecular mass for the (diatomic) hydrogen gas is $M=2.016 \mathrm{~g} / \mathrm{mol}=0.002016 \mathrm{~kg} / \mathrm{mol}$. Eq. 19-35 then gives $v_{\mathrm{p}}=1.44 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
(b) At that value of speed the Maxwell distribution (Eq. 19-27) has the value $P\left(v_{\mathrm{p}}\right)=5.78$ $\times 10^{-4}$.
(c) Eq. 19-29, with the limits indicated in the problem, yields frac $=0.707=71 \%$.
(d) For $T=500 \mathrm{~K}$, the result is $v_{\mathrm{p}}=2.03 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
(e) Now the Maxwell distribution (Eq. 19-27) has the value $P\left(v_{p}\right)=4.09 \times 10^{-4}$.
(f) As expected (from Eq. 19-35) the value of v_{p} increased.
(g) We also found that the value of $P\left(v_{\mathrm{p}}\right)$ decreased. One way to think of this is that the curve (see Fig 19-7(b)) widens as temperature increases (but must maintain the same total area, by Eq. 19-28), thus causing the peak value to lower.
65. We note that $\Delta K=n\left(\frac{3}{2} R\right) \Delta T$ according to the discussion in §19-5 and §19-9. Also, $\Delta E_{\text {int }}=n C_{V} \Delta T$ can be used for each of these processes (since we are told this is an ideal gas). Finally, we note that Eq. 19-49 leads to $C_{p}=C_{V}+R \approx 8.0 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$ after we convert Joules to calories in the ideal gas constant value (Eq. 19-6): $R \approx 2.0 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$. The first law of thermodynamics $Q=\Delta E_{\text {int }}+W$ applies to each process.

- Constant volume process with $\Delta T=50 \mathrm{~K}$ and $n=3.0 \mathrm{~mol}$.
(a) Since the change in the internal energy is $\Delta E_{\text {int }}=(3.0)(6.00)(50)=900 \mathrm{cal}$, and the work done by the gas is $W=0$ for constant volume processes, the first law gives $Q=900$ $+0=900 \mathrm{cal}$.
(b) As shown in part (a), $W=0$.
(c) The change in the internal energy is, from part (a), $\Delta E_{\text {int }}=(3.0)(6.00)(50)=900 \mathrm{cal}$.
(d) The change in the total translational kinetic energy is

$$
\Delta K=(3.0)\left(\frac{3}{2}(2.0)\right)(50)=450 \mathrm{cal} .
$$

- Constant pressure process with $\Delta T=50 \mathrm{~K}$ and $n=3.0 \mathrm{~mol}$.
(e) $W=p \Delta V$ for constant pressure processes, so (using the ideal gas law)

$$
W=n R \Delta T=(3.0)(2.0)(50)=300 \mathrm{cal} .
$$

The first law gives $Q=(900+300) \mathrm{cal}=1200 \mathrm{cal}$.
(f) From (e), we have $W=300 \mathrm{cal}$.
(g) The change in the internal energy is $\Delta E_{\mathrm{int}}=(3.0)(6.00)(50)=900 \mathrm{cal}$.
(h) The change in the translational kinetic energy is $\Delta K=(3.0)\left(\frac{3}{2}(2.0)\right)(50)=450 \mathrm{cal}$.

- Adiabiatic process with $\Delta T=50 \mathrm{~K}$ and $n=3.0 \mathrm{~mol}$.
(i) $Q=0$ by definition of "adiabatic."
(j) The first law leads to $W=Q-E_{\mathrm{int}}=0-900 \mathrm{cal}=-900 \mathrm{cal}$.
(k) The change in the internal energy is $\Delta E_{\text {int }}=(3.0)(6.00)(50)=900 \mathrm{cal}$.
(l) As in part (d) and (h), $\Delta K=(3.0)\left(\frac{3}{2}(2.0)\right)(50)=450 \mathrm{cal}$.

66. (a) Since an ideal gas is involved, then $\Delta E_{\text {int }}=0$ implies $T_{1}=T_{0}$ (see Eq. 19-62). Consequently, the ideal gas law leads to

$$
p_{1}=p_{0}\left(\frac{V_{0}}{V_{1}}\right)=\frac{p_{0}}{5.00}
$$

for the pressure at the end of the sudden expansion. Now, the (slower) adiabatic process is described by Eq. 19-54:

$$
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=p_{1}(5.00)^{\gamma}
$$

as a result of the fact that $V_{2}=V_{0}$. Therefore,

$$
p_{2}=\left(\frac{p_{0}}{5.00}\right)(5.00)^{\gamma}=(5.00)^{\gamma-1} p_{0}
$$

which is compared with the problem requirement that $p_{2}=(5.00)^{0.4} p_{0}$. Thus, we find that $\gamma=1.4=7 / 5$. Since $\gamma=C_{p} / C_{V}$, we see from Table 19-3 that this is a diatomic gas with rotation of the molecules.
(b) The direct connection between $E_{\text {int }}$ and $K_{\text {avg }}$ is explained at the beginning of §19-8. Since $\Delta E_{\text {int }}=0$ in the free expansion, then $K_{1}=K_{0}$, or $K_{1} / K_{0}=1.00$.
(c) In the (slower) adiabatic process, Eq. 19-56 indicates

$$
T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=(5.00)^{0.4} T_{0} \Rightarrow \frac{\left(E_{\text {int }}\right)_{2}}{\left(E_{\text {int }}\right)_{0}}=\frac{T_{2}}{T_{0}}=(5.00)^{0.4} \approx 1.90
$$

Therefore, $K_{2} / K_{0}=1.90$.
67. (a) Differentiating Eq. 19-53, we obtain

$$
\frac{d p}{d V}=(\text { constant }) \frac{-\gamma}{V^{\gamma+1}} \Rightarrow B=-V \frac{d p}{d V}=(\text { constant }) \frac{\gamma}{V^{\gamma}}
$$

which produces the desired result upon using Eq. 19-53 again $\left(p=(\right.$ constant $\left.) / V^{\gamma}\right)$.
(b) Due to the fact that $v=\sqrt{B / \rho}$ (from Chapter 17) and $p=n R T / V=\left(M_{\mathrm{sam}} / M\right) R T / V$ (from this chapter) with $\rho=M_{\mathrm{sam}} / V$ (the definition of density), the speed of sound in an ideal gas becomes

$$
v=\sqrt{\frac{\gamma p}{\rho}}=\sqrt{\frac{\gamma\left(M_{\mathrm{sam}} / M\right) R T / V}{M_{\mathrm{sam}} / V}}=\sqrt{\frac{\gamma R T}{M}} .
$$

68. With $p=1.01 \times 10^{5} \mathrm{~Pa}$ and $\rho=1.29 \mathrm{~kg} / \mathrm{m}^{3}$, we use the result of part (b) of the previous problem to obtain

$$
\gamma=\frac{\rho v^{2}}{p}=\frac{\left(1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)(331 \mathrm{~m} / \mathrm{s})^{2}}{1.01 \times 10^{5} \mathrm{~Pa}}=1.40
$$

69. (a) We use the result of exercise 58 to express γ in terms of the speed of sound $v=f \lambda$.

$$
\gamma=\frac{M v^{2}}{R T}=\frac{M \lambda^{2} f^{2}}{R T} .
$$

The distance between nodes is half of a wavelength $\lambda=2 \times 0.0677 \mathrm{~m}$, and the molar mass in SI units is $M=0.127 \mathrm{~kg} / \mathrm{mol}$. Consequently,

$$
\gamma=\frac{(0.127)(2 \times 0.0677)^{2}(1400)^{2}}{(8.31)(400)}=1.37
$$

(b) Using Table 19-3, we find $\gamma=5 / 3 \approx 1.7$ for monatomic gases, $\gamma=7 / 5=1.4$ for diatomic gases, and $\gamma=4 / 3 \approx 1.3$ for polyatomic gases. Our result in part (a) suggests that iodine is a diatomic gas.
70. The ratio is

$$
\frac{m g h}{\frac{1}{2} m \mathrm{v}_{\mathrm{rms}}{ }^{2}}=\frac{2 g h}{\mathrm{v}_{\mathrm{rms}}^{2}}=\frac{2 M g h}{3 R T}
$$

where we have used Eq. 19-22 in that last step. With $T=273 \mathrm{~K}, h=0.10 \mathrm{~m}$ and $M=32$ $\mathrm{g} / \mathrm{mol}=0.032 \mathrm{~kg} / \mathrm{mol}$, we find the ratio equals 9.2×10^{-6}.
71. (a) By Eq. 19-28, $W=-374 \mathrm{~J}$ (since the process is an adiabatic compression).
(b) $Q=0$ since the process is adiabatic.
(c) By first law of thermodynamics, the change in internal energy is $\Delta E_{\text {int }}=Q-W=+374$ J.
(d) The change in the average kinetic energy per atom is $\Delta K_{\text {avg }}=\Delta E_{\text {int }} / N=+3.11 \times 10^{-22} \mathrm{~J}$.
72. Using Eq. 19-53 in Eq. 18-25 gives

$$
W=P_{i} V_{i}^{\gamma} \int V^{-\gamma} d V=P_{i} V_{i}^{\gamma} \frac{V_{f}^{1-\gamma}-V_{i}^{1-\gamma}}{1-\gamma}
$$

Using Eq. 19-54 we can write this as

$$
W=P_{i} V_{i}\left(\frac{1-\left(\frac{P_{f}}{P_{i}}\right)^{1-1 / \gamma}}{1-\gamma}\right)
$$

In this problem, $\gamma=7 / 5$ (see Table 19-3) and $P_{f} / P_{i}=2$. Converting the initial pressure to Pascals we find $P_{i} V_{i}=24240 \mathrm{~J}$. Plugging in, then, we obtain $W=-1.33 \times 10^{4} \mathrm{~J}$.
73. (a) With work being given by $W=p \Delta V=(250)(-0.60) \mathrm{J}=-150 \mathrm{~J}$, and the heat transfer given as -210 J , then the change in internal energy is found from the first law of thermodynamics to be $[-210-(-150)] \mathrm{J}=-60 \mathrm{~J}$.
(b) Since the pressures (and also the number of moles) don't change in this process, then the volume is simply proportional to the (absolute) temperature. Thus, the final temperature is $1 / 4$ of the initial temperature. The answer is 90 K .
74. Eq. 19-25 gives the mean free path:

$$
\lambda=\frac{1}{\sqrt{2} d^{2} \pi \varepsilon_{0}(N / V)}=\frac{n R T}{\sqrt{2} d^{2} \pi \varepsilon_{0} P N}
$$

where we have used the ideal gas law in that last step. Thus, the change in the mean free path is

$$
\Delta \lambda=\frac{n R \Delta T}{\sqrt{2} d^{2} \pi \varepsilon_{\mathrm{o}} P N}=\frac{R Q}{\sqrt{2} d^{2} \pi \varepsilon_{\mathrm{o}} P N C_{\mathrm{p}}}
$$

where we have used Eq. 19-46. The constant pressure molar heat capacity is (7/2)R in this situation, so (with $N=9 \times 10^{23}$ and $d=250 \times 10^{-12} \mathrm{~m}$) we find

$$
\Delta \lambda=1.52 \times 10^{-9} \mathrm{~m}=1.52 \mathrm{~nm} .
$$

75. This is very similar to Sample Problem 19-4 (and we use similar notation here) except for the use of Eq. 19-31 for $v_{\text {avg }}$ (whereas in that Sample Problem, its value was just assumed). Thus,

$$
f=\frac{\text { speed }}{\text { distance }}=\frac{v_{\mathrm{avg}}}{\lambda}=\frac{p d^{2}}{k}\left(\frac{16 \pi R}{M T}\right) .
$$

Therefore, with $p=2.02 \times 10^{3} \mathrm{~Pa}, d=290 \times 10^{-12} \mathrm{~m}$ and $M=0.032 \mathrm{~kg} / \mathrm{mol}$ (see Table 19-1), we obtain $f=7.03 \times 10^{9} \mathrm{~s}^{-1}$.
76. (a) The volume has increased by a factor of 3 , so the pressure must decrease accordingly (since the temperature does not change in this process). Thus, the final pressure is one-third of the original 6.00 atm . The answer is 2.00 atm .
(b) We note that Eq. 19-14 can be written as $P_{i} V_{i} \ln \left(V_{f} / V_{i}\right)$. Converting "atm" to "Pa" (a Pascal is equivalent to a $\mathrm{N} / \mathrm{m}^{2}$) we obtain $W=333 \mathrm{~J}$.
(c) The gas is monatomic so $\gamma=5 / 3$. Eq. 19-54 then yields $P_{f}=0.961 \mathrm{~atm}$.
(d) Using Eq. 19-53 in Eq. 18-25 gives

$$
W=P_{i} V_{i}^{\gamma} \int V^{-\gamma} d V=P_{i} V_{i}^{\gamma} \frac{V_{f}^{1-\gamma}-V_{i}^{1-\gamma}}{1-\gamma}=\frac{P_{f} V_{f}-P_{i} V_{i}}{1-\gamma}
$$

where in the last step Eq. 19-54 has been used. Converting "atm" to "Pa", we obtain $W=$ 236 J .
77. (a) With $P_{1}=(20.0)\left(1.01 \times 10^{5} \mathrm{~Pa}\right)$ and $V_{1}=0.0015 \mathrm{~m}^{3}$, the ideal gas law gives

$$
P_{1} V_{1}=n R T_{1} \quad \Rightarrow \quad T_{1}=121.54 \mathrm{~K} \approx 122 \mathrm{~K}
$$

(b) From the information in the problem, we deduce that $T_{2}=3 T_{1}=365 \mathrm{~K}$.
(c) We also deduce that $T_{3}=T_{1}$ which means $\Delta T=0$ for this process. Since this involves an ideal gas, this implies the change in internal energy is zero here.
78. (a) We use $p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma}$ to compute γ.

$$
\gamma=\frac{\ln \left(p_{i} / p_{f}\right)}{\ln \left(V_{f} / V_{i}\right)}=\frac{\ln \left(1.0 \mathrm{~atm} / 1.0 \times 10^{5} \mathrm{~atm}\right)}{\ln \left(1.0 \times 10^{3} \mathrm{~L} / 1.0 \times 10^{6} \mathrm{~L}\right)}=\frac{5}{3} .
$$

Therefore the gas is monatomic.
(b) Using the gas law in ratio form (see Sample Problem 19-1), the final temperature is

$$
T_{f}=T_{i} \frac{p_{f} V_{f}}{p_{i} V_{i}}=(273 \mathrm{~K}) \frac{\left(1.0 \times 10^{5} \mathrm{~atm}\right)\left(1.0 \times 10^{3} \mathrm{~L}\right)}{(1.0 \mathrm{~atm})\left(1.0 \times 10^{6} \mathrm{~L}\right)}=2.7 \times 10^{4} \mathrm{~K}
$$

(c) The number of moles of gas present is

$$
n=\frac{p_{i} V_{i}}{R T_{i}}=\frac{\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(1.0 \times 10^{3} \mathrm{~cm}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})}=4.5 \times 10^{4} \mathrm{~mol}
$$

(d) The total translational energy per mole before the compression is

$$
K_{i}=\frac{3}{2} R T_{i}=\frac{3}{2}(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})=3.4 \times 10^{3} \mathrm{~J}
$$

(e) After the compression,

$$
K_{f}=\frac{3}{2} R T_{f}=\frac{3}{2}(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(2.7 \times 10^{4} \mathrm{~K}\right)=3.4 \times 10^{5} \mathrm{~J}
$$

(f) Since $v_{\text {rms }}^{2} \propto T$, we have

$$
\frac{v_{\mathrm{rms}, i}^{2}}{v_{\mathrm{rms}, f}^{2}}=\frac{T_{i}}{T_{f}}=\frac{273 \mathrm{~K}}{2.7 \times 10^{4} \mathrm{~K}}=0.010
$$

79. (a) The final pressure is

$$
p_{f}=\frac{p_{i} V_{i}}{V_{f}}=\frac{(32 \mathrm{~atm})(1.0 \mathrm{~L})}{4.0 \mathrm{~L}}=8.0 \mathrm{~atm}
$$

(b) For the isothermal process the final temperature of the gas is $T_{f}=T_{i}=300 \mathrm{~K}$.
(c) The work done is

$$
\begin{aligned}
W & =n R T_{i} \ln \left(\frac{V_{f}}{V_{i}}\right)=p_{i} V_{i} \ln \left(\frac{V_{f}}{V_{i}}\right)=(32 \mathrm{~atm})\left(1.01 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}\right)\left(1.0 \times 10^{-3} \mathrm{~m}^{3}\right) \ln \left(\frac{4.0 \mathrm{~L}}{1.0 \mathrm{~L}}\right) \\
& =4.4 \times 10^{3} \mathrm{~J} .
\end{aligned}
$$

For the adiabatic process $p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma}$. Thus,
(d) The final pressure is

$$
p_{f}=p_{f}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=(32 \mathrm{~atm})\left(\frac{1.0 \mathrm{~L}}{4.0 \mathrm{~L}}\right)^{5 / 3}=3.2 \mathrm{~atm} .
$$

(e) The final temperature is

$$
T_{f}=\frac{p_{f} V_{f} T_{i}}{p_{i} V_{i}}=\frac{(3.2 \mathrm{~atm})(4.0 \mathrm{~L})(300 \mathrm{~K})}{(32 \mathrm{~atm})(1.0 \mathrm{~L})}=120 \mathrm{~K} .
$$

(f) The work done is

$$
\begin{aligned}
W & =Q-\Delta E_{\text {int }}=-\Delta E_{\text {int }}=-\frac{3}{2} n R \Delta T=-\frac{3}{2}\left(p_{f} V_{f}-p_{i} V_{i}\right) \\
& =-\frac{3}{2}[(3.2 \mathrm{~atm})(4.0 \mathrm{~L})-(32 \mathrm{~atm})(1.0 \mathrm{~L})]\left(1.01 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}\right)\left(10^{-3} \mathrm{~m}^{3} / \mathrm{L}\right) \\
& =2.9 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

If the gas is diatomic, then $\gamma=1.4$.
(g) The final pressure is

$$
p_{f}=p_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=(32 \mathrm{~atm})\left(\frac{1.0 \mathrm{~L}}{4.0 \mathrm{~L}}\right)^{1.4}=4.6 \mathrm{~atm} .
$$

(h) The final temperature is

$$
T_{f}=\frac{p_{f} V_{f} T_{i}}{p_{i} V_{i}}=\frac{(4.6 \mathrm{~atm})(4.0 \mathrm{~L})(300 \mathrm{~K})}{(32 \mathrm{~atm})(1.0 \mathrm{~L})}=170 \mathrm{~K} .
$$

(i) The work done is

$$
\begin{aligned}
W & =Q-\Delta E_{\mathrm{int}}=-\frac{5}{2} n R \Delta T=-\frac{5}{2}\left(p_{f} V_{f}-p_{i} V_{i}\right) \\
& =-\frac{5}{2}[(4.6 \mathrm{~atm})(4.0 \mathrm{~L})-(32 \mathrm{~atm})(1.0 \mathrm{~L})]\left(1.01 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}\right)\left(10^{-3} \mathrm{~m}^{3} / \mathrm{L}\right) \\
& =3.4 \times 10^{3} \mathrm{~J} .
\end{aligned}
$$

80. We label the various states of the ideal gas as follows: it starts expanding adiabatically from state 1 until it reaches state 2 , with $V_{2}=4 \mathrm{~m}^{3}$; then continues on to state 3 isothermally, with $V_{3}=10 \mathrm{~m}^{3}$; and eventually getting compressed adiabatically to reach state 4 , the final state. For the adiabatic process $1 \rightarrow 2 p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma}$, for the isothermal process $2 \rightarrow 3 p_{2} V_{2}=p_{3} V_{3}$, and finally for the adiabatic process $3 \rightarrow 4 p_{3} V_{3}^{\gamma}=p_{4} V_{4}^{\gamma}$. These equations yield

$$
p_{4}=p_{3}\left(\frac{V_{3}}{V_{4}}\right)^{\gamma}=p_{2}\left(\frac{V_{2}}{V_{3}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}\left(\frac{V_{2}}{V_{3}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} .
$$

We substitute this expression for p_{4} into the equation $p_{1} V_{1}=p_{4} V_{4}$ (since $T_{1}=T_{4}$) to obtain $V_{1} V_{3}=V_{2} V_{4}$. Solving for V_{4} we obtain

$$
V_{4}=\frac{V_{1} V_{3}}{V_{2}}=\frac{\left(2.0 \mathrm{~m}^{3}\right)\left(10 \mathrm{~m}^{3}\right)}{4.0 \mathrm{~m}^{3}}=5.0 \mathrm{~m}^{3} .
$$

81. We write $T=273 \mathrm{~K}$ and use Eq. 19-14:

$$
W=(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K}) \ln \left(\frac{16.8}{22.4}\right)
$$

which yields $W=-653 \mathrm{~J}$. Recalling the sign conventions for work stated in Chapter 18, this means an external agent does 653 J of work on the ideal gas during this process.
82. (a) We use $p V=n R T$. The volume of the tank is

$$
V=\frac{n R T}{p}=\frac{\left(\frac{300 \mathrm{~g}}{17 \mathrm{~g} / \mathrm{mol}}\right)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(350 \mathrm{~K})}{1.35 \times 10^{6} \mathrm{~Pa}}=3.8 \times 10^{-2} \mathrm{~m}^{3}=38 \mathrm{~L} .
$$

(b) The number of moles of the remaining gas is

$$
n^{\prime}=\frac{p^{\prime} V}{R T^{\prime}}=\frac{\left(8.7 \times 10^{5} \mathrm{~Pa}\right)\left(3.8 \times 10^{-2} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(293 \mathrm{~K})}=13.5 \mathrm{~mol}
$$

The mass of the gas that leaked out is then $\Delta m=300 \mathrm{~g}-(13.5 \mathrm{~mol})(17 \mathrm{~g} / \mathrm{mol})=71 \mathrm{~g}$.
83. From Table 19-3, $C_{V}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for a monatomic gas such as helium. To obtain the desired result c_{V} we need to effectively "convert" mol $\rightarrow \mathrm{kg}$, which can be done using the molar mass M expressed in kilograms per mole. Although we could look up M for helium in Table 19-1 or Appendix F, the problem gives us m so that we can use Eq. 19-4 to find M. That is,

$$
M=m N_{\mathrm{A}}=\left(6.66 \times 10^{-27} \mathrm{~kg}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)=4.01 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~mol}} .
$$

Therefore, $c_{V}=C_{V} / M=3.11 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.
84. (a) When $n=1, V=V_{m}=R T / p$, where V_{m} is the molar volume of the gas. So

$$
V_{m}=\frac{R T}{p}=\frac{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273.15 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~Pa}}=22.5 \mathrm{~L} .
$$

(b) We use $v_{\mathrm{rms}}=\sqrt{3 R T / M}$. The ratio is given by

$$
\frac{v_{\mathrm{rms}, \mathrm{He}}}{v_{\mathrm{rms}, \mathrm{Ne}}}=\sqrt{\frac{M_{\mathrm{Ne}}}{M_{\mathrm{He}}}}=\sqrt{\frac{20 \mathrm{~g}}{4.0 \mathrm{~g}}}=2.25 .
$$

(c) We use $\lambda_{\text {не }}=\left(\sqrt{2} \pi d^{2} N / V\right)^{-1}$, where the number of particles per unit volume is given by $N / V=N_{A} n / V=N_{A} p / R T=p / k T$. So

$$
\begin{aligned}
\lambda_{\mathrm{He}} & =\frac{1}{\sqrt{2} \pi d^{2}(p / k T)}=\frac{k T}{\sqrt{2} \pi d^{2} p} \\
& =\frac{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273.15 \mathrm{~K})}{1.414 \pi\left(1 \times 10^{-10} \mathrm{~m}\right)^{2}\left(1.01 \times 10^{5} \mathrm{~Pa}\right)}=0.840 \mu \mathrm{~m} .
\end{aligned}
$$

(d) $\lambda_{\mathrm{Ne}}=\lambda_{\mathrm{He}}=0.840 \mu \mathrm{~m}$.
85. For convenience, the "int" subscript for the internal energy will be omitted in this solution. Recalling Eq. 19-28, we note that

$$
\begin{aligned}
\sum_{\text {cycle }} E & =0 \\
\Delta E_{A \rightarrow B}+\Delta E_{B \rightarrow C}+\Delta E_{C \rightarrow D}+\Delta E_{D \rightarrow E}+\Delta E_{E \rightarrow A} & =0 .
\end{aligned}
$$

Since a gas is involved (assumed to be ideal), then the internal energy does not change when the temperature does not change, so

$$
\Delta E_{A \rightarrow B}=\Delta E_{D \rightarrow E}=0 .
$$

Now, with $\Delta E_{E \rightarrow A}=8.0 \mathrm{~J}$ given in the problem statement, we have

$$
\Delta E_{B \rightarrow C}+\Delta E_{C \rightarrow D}+8.0 \mathrm{~J}=0
$$

In an adiabatic process, $\Delta E=-W$, which leads to $-5.0 \mathrm{~J}+\Delta E_{C \rightarrow D}+8.0 \mathrm{~J}=0$, and we obtain $\Delta E_{C \rightarrow D}=-3.0 \mathrm{~J}$.
86. We solve

$$
\sqrt{\frac{3 R T}{M_{\text {helium }}}}=\sqrt{\frac{3 R(293 \mathrm{~K})}{M_{\text {hydrogen }}}}
$$

for T. With the molar masses found in Table 19-1, we obtain

$$
T=(293 \mathrm{~K})\left(\frac{4.0}{2.02}\right)=580 \mathrm{~K}
$$

which is equivalent to $307^{\circ} \mathrm{C}$.
87. It is straightforward to show, from Eq. 19-11, that for any process that is depicted as a straight line on the $p V$ diagram, the work is

$$
W_{\text {straight }}=\left(\frac{p_{i}+p_{f}}{2}\right) \Delta V
$$

which includes, as special cases, $W=p \Delta V$ for constant-pressure processes and $W=0$ for constant-volume processes. Also, from the ideal gas law in ratio form (see Sample Problem 1), we find the final temperature:

$$
T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{V_{2}}{V_{1}}\right)=4 T_{1} .
$$

(a) With $\Delta V=V_{2}-V_{1}=2 V_{1}-V_{1}=V_{1}$ and $p_{1}+p_{2}=p_{1}+2 p_{1}=3 p_{1}$, we obtain

$$
W=\frac{3}{2}\left(p_{1} V_{1}\right)=\frac{3}{2} n R T_{1} \Rightarrow \frac{W}{n R T_{1}}=\frac{3}{2}=1.5
$$

where the ideal gas law is used in that final step.
(b) With $\Delta T=T_{2}-T_{1}=4 T_{1}-T_{1}=3 T_{1}$ and $C_{V}=\frac{3}{2} R$, we find

$$
\Delta E_{\mathrm{int}}=n\left(\frac{3}{2} R\right)\left(3 T_{1}\right)=\frac{9}{2} n R T_{1} \Rightarrow \frac{\Delta E_{\mathrm{int}}}{n R T_{1}}=\frac{9}{2}=4.5 .
$$

(c) The energy added as heat is $Q=\Delta E_{\text {int }}+W=6 n R T_{1}$, or $Q / n R T_{1}=6$.
(d) The molar specific heat for this process may be defined by

$$
C=\frac{Q}{n \Delta T}=\frac{6 n R T_{1}}{n\left(3 T_{1}\right)}=2 R \Rightarrow \frac{C}{R}=2 .
$$

88. The gas law in ratio form (see Sample Problem 19-1) leads to

$$
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)\left(\frac{T_{2}}{T_{1}}\right)=(5.67 \mathrm{~Pa})\left(\frac{4.00 \mathrm{~m}^{3}}{7.00 \mathrm{~m}^{3}}\right)\left(\frac{313 \mathrm{~K}}{217 \mathrm{~K}}\right)=4.67 \mathrm{~Pa} .
$$

89. It is recommended to look over §19-7 before doing this problem.
(a) We normalize the distribution function as follows:

$$
\int_{0}^{v_{0}} P(v) d v=1 \Rightarrow C=\frac{3}{v_{0}^{3}} .
$$

(b) The average speed is

$$
\int_{0}^{v_{0}} v P(v) d v=\int_{0}^{v_{0}} v\left(\frac{3 v^{2}}{v_{\mathrm{o}}^{3}}\right) d v=\frac{3}{4} v_{\mathrm{o}} .
$$

(c) The rms speed is the square root of

$$
\int_{0}^{v_{0}} v^{2} P(v) d v=\int_{0}^{v_{0}} v^{2}\left(\frac{3 v^{2}}{v_{0}^{3}}\right) d v=\frac{3}{5} v_{0}^{2}
$$

Therefore, $v_{\mathrm{rms}}=\sqrt{3 / 5} v_{\circ} \approx 0.775 v_{\circ}$.
90. (a) From Table 19-3, $C_{V}=\frac{5}{2} R$ and $C_{p}=\frac{7}{2} R$. Thus, Eq. 19-46 yields

$$
Q=n C_{p} \Delta T=(3.00)\left(\frac{7}{2}(8.31)\right)(40.0)=3.49 \times 10^{3} \mathrm{~J} .
$$

(b) Eq. 19-45 leads to

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T=(3.00)\left(\frac{5}{2}(8.31)\right)(40.0)=2.49 \times 10^{3} \mathrm{~J}
$$

(c) From either $W=Q-\Delta E_{\text {int }}$ or $W=p \Delta T=n R \Delta T$, we find $W=997 \mathrm{~J}$.
(d) Eq. 19-24 is written in more convenient form (for this problem) in Eq. 19-38. Thus, we obtain

$$
\Delta K_{\text {trans }}=\Delta\left(N K_{\text {avg }}\right)=n\left(\frac{3}{2} R\right) \Delta T \approx 1.50 \times 10^{3} \mathrm{~J}
$$

91. (a) The temperature is $10.0^{\circ} \mathrm{C} \rightarrow T=283 \mathrm{~K}$. Then, with $n=3.50 \mathrm{~mol}$ and $V_{f} / V_{0}=3 / 4$, we use Eq. 19-14:

$$
W=n R T \ln \left(\frac{V_{f}}{V_{0}}\right)=-2.37 \mathrm{~kJ}
$$

(b) The internal energy change $\Delta E_{\text {int }}$ vanishes (for an ideal gas) when $\Delta T=0$ so that the First Law of Thermodynamics leads to $Q=W=-2.37 \mathrm{~kJ}$. The negative value implies that the heat transfer is from the sample to its environment.
92. (a) Since $n / V=p / R T$, the number of molecules per unit volume is

$$
\frac{N}{V}=\frac{n N_{\mathrm{A}}}{V}=N_{\mathrm{A}}\left(\frac{p}{R T}\right)\left(6.02 \times 10^{23}\right) \frac{1.01 \times 10^{5} \mathrm{~Pa}}{\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}\right)(293 \mathrm{~K})}=2.5 \times 10^{25} \frac{\text { molecules }}{\mathrm{m}^{3}} .
$$

(b) Three-fourths of the 2.5×10^{25} value found in part (a) are nitrogen molecules with M $=28.0 \mathrm{~g} / \mathrm{mol}$ (using Table 19-1), and one-fourth of that value are oxygen molecules with $M=32.0 \mathrm{~g} / \mathrm{mol}$. Consequently, we generalize the $M_{\mathrm{sam}}=N M / N_{\mathrm{A}}$ expression for these two species of molecules and write

$$
\frac{3}{4}\left(2.5 \times 10^{25}\right) \frac{28.0}{6.02 \times 10^{23}}+\frac{1}{4}\left(2.5 \times 10^{25}\right) \frac{32.0}{6.02 \times 10^{23}}=1.2 \times 10^{3} \mathrm{~g}
$$

93. (a) The work done in a constant-pressure process is $W=p \Delta V$. Therefore,

$$
W=\left(25 \mathrm{~N} / \mathrm{m}^{2}\right)\left(1.8 \mathrm{~m}^{3}-3.0 \mathrm{~m}^{3}\right)=-30 \mathrm{~J} .
$$

The sign conventions discussed in the textbook for Q indicate that we should write -75 J for the energy which leaves the system in the form of heat. Therefore, the first law of thermodynamics leads to

$$
\Delta E_{\mathrm{int}}=Q-W=(-75 \mathrm{~J})-(-30 \mathrm{~J})=-45 \mathrm{~J} .
$$

(b) Since the pressure is constant (and the number of moles is presumed constant), the ideal gas law in ratio form (see Sample Problem 19-1) leads to

$$
T_{2}=T_{1}\left(\frac{V_{2}}{V_{1}}\right)=(300 \mathrm{~K})\left(\frac{1.8 \mathrm{~m}^{3}}{3.0 \mathrm{~m}^{3}}\right)=1.8 \times 10^{2} \mathrm{~K} .
$$

It should be noted that this is consistent with the gas being monatomic (that is, if one assumes $C_{V}=\frac{3}{2} R$ and uses Eq. 19-45, one arrives at this same value for the final temperature).
94. Since no heat is transferred in an adiabatic process, then

$$
Q_{\text {total }}=Q_{\text {isotherm }}=W_{\text {isotherm }}=n R T \ln \left(\frac{3}{12}\right)
$$

where the First Law of Thermodynamics (with $\Delta E_{\text {int }}=0$ during the isothermal process) and Eq. 19-14 have been used. With $n=2.0 \mathrm{~mol}$ and $T=300 \mathrm{~K}$, we obtain $Q=-6912 \mathrm{~J}$ $\approx-6.9 \mathrm{~kJ}$.

1. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the volume V, and the temperature T by $p=n R T / V$. The work done by the gas during the isothermal expansion is

$$
W=\int_{V_{1}}^{V_{2}} p d V=n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=n R T \ln \frac{V_{2}}{V_{1}} .
$$

We substitute $V_{2}=2.00 V_{1}$ to obtain

$$
W=n R T \ln 2.00=(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(400 \mathrm{~K}) \ln 2.00=9.22 \times 10^{3} \mathrm{~J}
$$

(b) Since the expansion is isothermal, the change in entropy is given by $\Delta S=\int(1 / T) d Q=Q / T$, where Q is the heat absorbed. According to the first law of thermodynamics, $\Delta E_{\text {int }}=Q-W$. Now the internal energy of an ideal gas depends only on the temperature and not on the pressure and volume. Since the expansion is isothermal, $\Delta E_{\text {int }}=0$ and $Q=W$. Thus,

$$
\Delta S=\frac{W}{T}=\frac{9.22 \times 10^{3} \mathrm{~J}}{400 \mathrm{~K}}=23.1 \mathrm{~J} / \mathrm{K}
$$

(c) $\Delta S=0$ for all reversible adiabatic processes.
2. From Eq. 20-2, we obtain

$$
Q=T \Delta S=(405 \mathrm{~K})(46.0 \mathrm{~J} / \mathrm{K})=1.86 \times 10^{4} \mathrm{~J}
$$

3. An isothermal process is one in which $T_{i}=T_{f}$ which implies $\ln \left(T_{f} / T_{i}\right)=0$. Therefore, with $V_{f} / V_{i}=2.00$, Eq. 20-4 leads to

$$
\Delta S=n R \ln \left(\frac{V_{f}}{V_{i}}\right)=(2.50 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \ln (2.00)=14.4 \mathrm{~J} / \mathrm{K} .
$$

4. (a) This may be considered a reversible process (as well as isothermal), so we use $\Delta S=$ Q / T where $Q=L m$ with $L=333 \mathrm{~J} / \mathrm{g}$ from Table 19-4. Consequently,

$$
\Delta S=\frac{(333 \mathrm{~J} / \mathrm{g})(12.0 \mathrm{~g})}{273 \mathrm{~K}}=14.6 \mathrm{~J} / \mathrm{K} .
$$

(b) The situation is similar to that described in part (a), except with $L=2256 \mathrm{~J} / \mathrm{g}, m=$ 5.00 g , and $T=373 \mathrm{~K}$. We therefore find $\Delta S=30.2 \mathrm{~J} / \mathrm{K}$.
5. We use the following relation derived in Sample Problem 20-2:

$$
\Delta S=m c \ln \left(\frac{T_{f}}{T_{i}}\right)
$$

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find

$$
Q=c m \Delta T=\left(386 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(2.00 \mathrm{~kg})(75 \mathrm{~K})=5.79 \times 10^{4} \mathrm{~J}
$$

where we have used the fact that a change in Kelvin temperature is equivalent to a change in Celsius degrees.
(b) With $T_{f}=373.15 \mathrm{~K}$ and $T_{i}=298.15 \mathrm{~K}$, we obtain

$$
\Delta S=(2.00 \mathrm{~kg})\left(386 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \ln \left(\frac{373.15}{298.15}\right)=173 \mathrm{~J} / \mathrm{K} .
$$

6. An isothermal process is one in which $T_{i}=T_{f}$ which implies $\ln \left(T_{f} / T_{i}\right)=0$. Therefore, Eq. 20-4 leads to

$$
\Delta S=n R \ln \left(\frac{V_{f}}{V_{i}}\right) \Rightarrow n=\frac{22.0}{(8.31) \ln (3.4 / 1.3)}=2.75 \mathrm{~mol} .
$$

7. (a) The energy that leaves the aluminum as heat has magnitude $Q=m_{a} c_{a}\left(T_{a i}-T_{f}\right)$, where m_{a} is the mass of the aluminum, c_{a} is the specific heat of aluminum, $T_{a i}$ is the initial temperature of the aluminum, and T_{f} is the final temperature of the aluminumwater system. The energy that enters the water as heat has magnitude $Q=m_{w} c_{w}\left(T_{f}-T_{w i}\right)$, where m_{w} is the mass of the water, c_{w} is the specific heat of water, and $T_{w i}$ is the initial temperature of the water. The two energies are the same in magnitude since no energy is lost. Thus,

$$
m_{a} c_{a}\left(T_{a i}-T_{f}\right)=m_{w} c_{w}\left(T_{f}-T_{w i}\right) \Rightarrow T_{f}=\frac{m_{a} c_{a} T_{a i}+m_{w} c_{w} T_{w i}}{m_{a} c_{a}+m_{w} c_{w}} .
$$

The specific heat of aluminum is $900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ and the specific heat of water is $4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. Thus,

$$
\begin{aligned}
T_{f} & =\frac{(0.200 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(100^{\circ} \mathrm{C}\right)+(0.0500 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(20^{\circ} \mathrm{C}\right)}{(0.200 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})+(0.0500 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})} \\
& =57.0^{\circ} \mathrm{C} \quad \text { or } 330 \mathrm{~K} .
\end{aligned}
$$

(b) Now temperatures must be given in Kelvins: $T_{a i}=393 \mathrm{~K}, T_{w i}=293 \mathrm{~K}$, and $T_{f}=330 \mathrm{~K}$. For the aluminum, $d Q=m_{a} c_{a} d T$ and the change in entropy is

$$
\begin{aligned}
\Delta S_{a} & =\int \frac{d Q}{T}=m_{a} c_{a} \int_{T_{a i}}^{T_{f}} \frac{d T}{T}=m_{a} c_{a} \ln \frac{T_{f}}{T_{a i}} \\
& =(0.200 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{330 \mathrm{~K}}{373 \mathrm{~K}}\right)=-22.1 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

(c) The entropy change for the water is

$$
\begin{aligned}
\Delta S_{w} & =\int \frac{d Q}{T}=m_{w} c_{w} \int_{T_{w i}}^{T_{f}} \frac{d T}{T}=m_{w} c_{w} \ln \frac{T_{f}}{T_{w i}} \\
& =(0.0500 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{330 \mathrm{~K}}{293 \mathrm{~K}}\right)=+24.9 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

(d) The change in the total entropy of the aluminum-water system is

$$
\Delta S=\Delta S_{a}+\Delta S_{w}=-22.1 \mathrm{~J} / \mathrm{K}+24.9 \mathrm{~J} / \mathrm{K}=+2.8 \mathrm{~J} / \mathrm{K} .
$$

8. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final and initial temperatures are the same, and because $\ln (1)=0)$. Thus, the entropy change is

$$
\Delta \mathrm{S}=n R \ln \left(V_{f} / V_{i}\right) .
$$

Noting that $\Delta \mathrm{S}=0$ at $V_{f}=0.40 \mathrm{~m}^{3}$, we are able to deduce that $V_{i}=0.40 \mathrm{~m}^{3}$. We now examine the point in the graph where $\Delta \mathrm{S}=32 \mathrm{~J} / \mathrm{K}$ and $V_{f}=1.2 \mathrm{~m}^{3}$; the above expression can now be used to solve for the number of moles. We obtain $n=3.5 \mathrm{~mol}$.
9. This problem is similar to Sample Problem 20-2. The only difference is that we need to find the mass m of each of the blocks. Since the two blocks are identical the final temperature T_{f} is the average of the initial temperatures:

$$
T_{f}=\frac{1}{2}\left(T_{i}+T_{f}\right)=\frac{1}{2}(305.5 \mathrm{~K}+294.5 \mathrm{~K})=300.0 \mathrm{~K} .
$$

Thus from $Q=m c \Delta T$ we find the mass m :

$$
m=\frac{Q}{c \Delta T}=\frac{215 \mathrm{~J}}{(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(300.0 \mathrm{~K}-294.5 \mathrm{~K})}=0.101 \mathrm{~kg} .
$$

(a) The change in entropy for block L is

$$
\Delta S_{L}=m c \ln \left(\frac{T_{f}}{T_{i L}}\right)=(0.101 \mathrm{~kg})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{300.0 \mathrm{~K}}{305.5 \mathrm{~K}}\right)=-0.710 \mathrm{~J} / \mathrm{K} .
$$

(b) Since the temperature of the reservoir is virtually the same as that of the block, which gives up the same amount of heat as the reservoir absorbs, the change in entropy ΔS_{L}^{\prime} of the reservoir connected to the left block is the opposite of that of the left block: $\Delta S_{L}^{\prime}=$ $-\Delta S_{L}=+0.710 \mathrm{~J} / \mathrm{K}$.
(c) The entropy change for block R is

$$
\Delta S_{R}=m c \ln \left(\frac{T_{f}}{T_{i R}}\right)=(0.101 \mathrm{~kg})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{300.0 \mathrm{~K}}{294.5 \mathrm{~K}}\right)=+0.723 \mathrm{~J} / \mathrm{K} .
$$

(d) Similar to the case in part (b) above, the change in entropy ΔS_{R}^{\prime} of the reservoir connected to the right block is given by $\Delta S_{R}^{\prime}=-\Delta S_{R}=-0.723 \mathrm{~J} / \mathrm{K}$.
(e) The change in entropy for the two-block system is

$$
\Delta S_{L}+\Delta S_{R}=-0.710 \mathrm{~J} / \mathrm{K}+0.723 \mathrm{~J} / \mathrm{K}=+0.013 \mathrm{~J} / \mathrm{K}
$$

(f) The entropy change for the entire system is given by

$$
\Delta S=\Delta S_{L}+\Delta S_{L}^{\prime}+\Delta S_{R}+\Delta S_{R}^{\prime}=\Delta S_{L}-\Delta S_{L}+\Delta S_{R}-\Delta S_{R}=0
$$

which is expected of a reversible process.
10. We follow the method shown in Sample Problem 20-2. Since

$$
\Delta S=m c \int \frac{d T}{T}=m c \ln \left(T_{f} / T_{i}\right)
$$

then with $\Delta S=50 \mathrm{~J} / \mathrm{K}, T_{f}=380 \mathrm{~K}, T_{i}=280 \mathrm{~K}$ and $m=0.364 \mathrm{~kg}$, we obtain $c=4.5 \times 10^{2}$ $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$.
11. The connection between molar heat capacity and the degrees of freedom of a diatomic gas is given by setting $f=5$ in Eq. 19-51. Thus, $C_{V}=5 R / 2, C_{p}=7 R / 2$, and $\gamma=7 / 5$. In addition to various equations from Chapter 19, we also make use of Eq. 20-4 of this chapter. We note that we are asked to use the ideal gas constant as R and not plug in its numerical value. We also recall that isothermal means constant-temperature, so $T_{2}=$ T_{1} for the $1 \rightarrow 2$ process. The statement (at the end of the problem) regarding "per mole" may be taken to mean that n may be set identically equal to 1 wherever it appears.
(a) The gas law in ratio form (see Sample Problem 19-1) is used to obtain

$$
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)=\frac{p_{1}}{3} \Rightarrow \frac{p_{2}}{p_{1}}=\frac{1}{3}=0.333 .
$$

(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to

$$
p_{3}=p_{1}\left(\frac{V_{1}}{V_{3}}\right)^{\gamma}=\frac{p_{1}}{3^{1.4}} \Rightarrow \frac{p_{3}}{p_{1}}=\frac{1}{3^{1.4}}=0.215 .
$$

(c) and

$$
T_{3}=T_{1}\left(\frac{V_{1}}{V_{3}}\right)^{\gamma-1}=\frac{T_{1}}{3^{0.4}} \Rightarrow \frac{T_{3}}{T_{1}}=\frac{1}{3^{0.4}}=0.644
$$

- process $1 \rightarrow 2$
(d) The work is given by Eq. 19-14: $W=n R T_{1} \ln \left(V_{2} / V_{1}\right)=R T_{1} \ln 3$ which is approximately $1.10 R T_{1}$. Thus, $W / n R T_{1}=\ln 3=1.10$.
(e) The internal energy change is $\Delta E_{\text {int }}=0$ since this is an ideal gas process without a temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the first law of thermodynamics: $Q=\Delta E_{\text {int }}+W \approx 1.10 R T_{1}$, or $Q / n R T_{1}=\ln 3=1.10$.
(f) $\Delta E_{\text {int }}=0$ or $\Delta E_{\text {int }} / n R T_{1}=0$
(g) The entropy change is $\Delta S=Q / T_{1}=1.10 R$, or $\Delta S / R=1.10$.
- process $2 \rightarrow 3$
(h) The work is zero since there is no volume change. Therefore, $W / n R T_{1}=0$
(i) The internal energy change is

$$
\Delta E_{\mathrm{int}}=n C_{V}\left(T_{3}-T_{2}\right)=(1)\left(\frac{5}{2} R\right)\left(\frac{T_{1}}{3^{0.4}}-T_{1}\right) \approx-0.889 R T_{1} \Rightarrow \frac{\Delta E_{\mathrm{int}}}{n R T_{1}} \approx-0.889
$$

This ratio (-0.889) is also the value for $Q / n R T_{1}$ (by either the first law of thermodynamics or by the definition of C_{V}).
(j) $\Delta E_{\text {int }} / n R T_{1}=-0.889$.
(k) For the entropy change, we obtain

$$
\frac{\Delta S}{R}=n \ln \left(\frac{V_{3}}{V_{1}}\right)+n \frac{C_{V}}{R} \ln \left(\frac{T_{3}}{T_{1}}\right)=(1) \ln (1)+(1)\left(\frac{5}{2}\right) \ln \left(\frac{T_{1} / 3^{0.4}}{T_{1}}\right)=0+\frac{5}{2} \ln \left(3^{-0.4}\right) \approx-1.10 .
$$

- process $3 \rightarrow 1$
(l) By definition, $Q=0$ in an adiabatic process, which also implies an absence of entropy change (taking this to be a reversible process). The internal change must be the negative of the value obtained for it in the previous process (since all the internal energy changes must add up to zero, for an entire cycle, and its change is zero for process $1 \rightarrow 2$), so $\Delta E_{\text {int }}=+0.889 R T_{1}$. By the first law of thermodynamics, then,

$$
W=Q-\Delta E_{\mathrm{int}}=-0.889 R T_{1},
$$

or $W / n R T_{1}=-0.889$.
(m) $Q=0$ in an adiabatic process.
(n) $\Delta E_{\text {int }} / n R T_{1}=+0.889$.
(o) $\Delta S / n R=0$
12. We use Eq. 20-1:

$$
\Delta S=\int \frac{n C_{V} d T}{T}=n A \int_{5.00}^{1.00} T^{2} d T=\frac{n A}{3}\left[(10.0)^{3}-(5.00)^{3}\right]=0.0368 \mathrm{~J} / \mathrm{K}
$$

13. (a) We refer to the copper block as block 1 and the lead block as block 2 . The equilibrium temperature T_{f} satisfies $m_{1} c_{1}\left(T_{f}-T_{i, 1}\right)+m_{2} c_{2}\left(T_{f}-T_{i 2}\right)=0$, which we solve for T_{f} :

$$
\begin{aligned}
T_{f} & =\frac{m_{1} c_{1} T_{i, 1}+m_{2} c_{2} T_{i, 2}}{m_{1} c_{1}+m_{2} c_{2}}=\frac{(50.0 \mathrm{~g})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(400 \mathrm{~K})+(100 \mathrm{~g})(128 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(200 \mathrm{~K})}{(50.0 \mathrm{~g})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})+(100 \mathrm{~g})(128 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})} \\
& =320 \mathrm{~K} .
\end{aligned}
$$

(b) Since the two-block system in thermally insulated from the environment, the change in internal energy of the system is zero.
(c) The change in entropy is

$$
\begin{aligned}
\Delta S & =\Delta S_{1}+\Delta S_{2}=m_{1} c_{1} \ln \left(\frac{T_{f}}{T_{i, 1}}\right)+m_{2} c_{2} \ln \left(\frac{T_{f}}{T_{i, 2}}\right) \\
& =(50.0 \mathrm{~g})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{320 \mathrm{~K}}{400 \mathrm{~K}}\right)+(100 \mathrm{~g})(128 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{320 \mathrm{~K}}{200 \mathrm{~K}}\right) \\
& =+1.72 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

14. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be found from the integral (or "area under the curve") of a curve in a TS diagram, such as this one. Either from calculus, or from geometry (area of a trapezoid), it is straightforward to find the result for a "straight-line" path in the TS diagram:

$$
Q_{\text {straight }}=\left(\frac{T_{i}+T_{f}}{2}\right) \Delta S
$$

which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in mind that this is rigorously true only for a process which forms a straight line in a graph that plots T versus S). This leads to $(300 \mathrm{~K})(15 \mathrm{~J} / \mathrm{K})=4.5 \times 10^{3} \mathrm{~J}$ for the energy absorbed as heat by the gas.
(b) Using Table 19-3 and Eq. 19-45, we find

$$
\Delta E_{\mathrm{int}}=n\left(\frac{3}{2} R\right) \Delta T=(2.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(200 \mathrm{~K}-400 \mathrm{~K})=-5.0 \times 10^{3} \mathrm{~J} .
$$

(c) By the first law of thermodynamics,

$$
W=Q-\Delta E_{\mathrm{int}}=4.5 \mathrm{~kJ}-(-5.0 \mathrm{~kJ})=9.5 \mathrm{~kJ} .
$$

15. The ice warms to $0^{\circ} \mathrm{C}$, then melts, and the resulting water warms to the temperature of the lake water, which is $15^{\circ} \mathrm{C}$. As the ice warms, the energy it receives as heat when the temperature changes by $d T$ is $d Q=m c_{I} d T$, where m is the mass of the ice and c_{I} is the specific heat of ice. If $T_{i}(=263 \mathrm{~K})$ is the initial temperature and $T_{f}(=273 \mathrm{~K})$ is the final temperature, then the change in its entropy is

$$
\Delta S=\int \frac{d Q}{T}=m c_{I} \int_{T_{i}}^{T_{f}} \frac{d T}{T}=m c_{I} \ln \frac{T_{f}}{T_{i}}=(0.010 \mathrm{~kg})(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{273 \mathrm{~K}}{263 \mathrm{~K}}\right)=0.828 \mathrm{~J} / \mathrm{K} .
$$

Melting is an isothermal process. The energy leaving the ice as heat is $m L_{F}$, where L_{F} is the heat of fusion for ice. Thus,

$$
\Delta S=Q / T=m L_{F} / T=(0.010 \mathrm{~kg})\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right) /(273 \mathrm{~K})=12.20 \mathrm{~J} / \mathrm{K}
$$

For the warming of the water from the melted ice, the change in entropy is

$$
\Delta S=m c_{w} \ln \frac{T_{f}}{T_{i}}
$$

where c_{w} is the specific heat of water $(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$. Thus,

$$
\Delta S=(0.010 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{288 \mathrm{~K}}{273 \mathrm{~K}}\right)=2.24 \mathrm{~J} / \mathrm{K}
$$

The total change in entropy for the ice and the water it becomes is

$$
\Delta S=0.828 \mathrm{~J} / \mathrm{K}+12.20 \mathrm{~J} / \mathrm{K}+2.24 \mathrm{~J} / \mathrm{K}=15.27 \mathrm{~J} / \mathrm{K}
$$

Since the temperature of the lake does not change significantly when the ice melts, the change in its entropy is $\Delta S=Q / T$, where Q is the energy it receives as heat (the negative of the energy it supplies the ice) and T is its temperature. When the ice warms to $0^{\circ} \mathrm{C}$,

$$
Q=-m c_{I}\left(T_{f}-T_{i}\right)=-(0.010 \mathrm{~kg})(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(10 \mathrm{~K})=-222 \mathrm{~J} .
$$

When the ice melts,

$$
Q=-m L_{F}=-(0.010 \mathrm{~kg})\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)=-3.33 \times 10^{3} \mathrm{~J}
$$

When the water from the ice warms,

$$
Q=-m c_{w}\left(T_{f}-T_{i}\right)=-(0.010 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(15 \mathrm{~K})=-629 \mathrm{~J} .
$$

The total energy leaving the lake water is

$$
Q=-222 \mathrm{~J}-3.33 \times 10^{3} \mathrm{~J}-6.29 \times 10^{2} \mathrm{~J}=-4.18 \times 10^{3} \mathrm{~J}
$$

The change in entropy is

$$
\Delta S=-\frac{4.18 \times 10^{3} \mathrm{~J}}{288 \mathrm{~K}}=-14.51 \mathrm{~J} / \mathrm{K} .
$$

The change in the entropy of the ice-lake system is $\Delta S=(15.27-14.51) \mathrm{J} / \mathrm{K}=0.76 \mathrm{~J} / \mathrm{K}$.
16. In coming to equilibrium, the heat lost by the $100 \mathrm{~cm}^{3}$ of liquid water (of mass $m_{w}=$ 100 g and specific heat capacity $c_{w}=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$) is absorbed by the ice (of mass m_{i} which melts and reaches $T_{f}>0^{\circ} \mathrm{C}$). We begin by finding the equilibrium temperature:

$$
\begin{aligned}
\sum Q & =0 \\
Q_{\text {warm water cools }}+Q_{\text {ice warms to } 0^{\circ}}+Q_{\text {ice melts }}+Q_{\text {melted ice warms }} & =0 \\
c_{w} m_{w}\left(T_{f}-20^{\circ}\right)+c_{i} m_{i}\left(0^{\circ}-\left(-10^{\circ}\right)\right)+L_{F} m_{i}+c_{w} m_{i}\left(T_{f}-0^{\circ}\right) & =0
\end{aligned}
$$

which yields, after using $L_{F}=333000 \mathrm{~J} / \mathrm{kg}$ and values cited in the problem, $T_{f}=12.24^{\circ}$ which is equivalent to $T_{f}=285.39 \mathrm{~K}$. Sample Problem 19-2 shows that

$$
\Delta S_{\text {temp change }}=m c \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

for processes where $\Delta T=T_{2}-T_{1}$, and Eq. 20-2 gives

$$
\Delta S_{\mathrm{melt}}=\frac{L_{F} m}{T_{\mathrm{o}}}
$$

for the phase change experienced by the ice (with $T_{\mathrm{o}}=273.15 \mathrm{~K}$). The total entropy change is (with T in Kelvins)

$$
\begin{aligned}
\Delta S_{\text {system }} & =m_{w} c_{w} \ln \left(\frac{285.39}{293.15}\right)+m_{i} c_{i} \ln \left(\frac{273.15}{263.15}\right)+m_{i} c_{w} \ln \left(\frac{285.39}{273.15}\right)+\frac{L_{F} m_{i}}{273.15} \\
& =-11.24+0.66+1.47+9.75=0.64 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

17. (a) The final mass of ice is $(1773 \mathrm{~g}+227 \mathrm{~g}) / 2=1000 \mathrm{~g}$. This means 773 g of water froze. Energy in the form of heat left the system in the amount $m L_{F}$, where m is the mass of the water that froze and L_{F} is the heat of fusion of water. The process is isothermal, so the change in entropy is

$$
\Delta S=Q / T=-m L_{F} / T=-(0.773 \mathrm{~kg})\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right) /(273 \mathrm{~K})=-943 \mathrm{~J} / \mathrm{K} .
$$

(b) Now, 773 g of ice is melted. The change in entropy is

$$
\Delta S=\frac{Q}{T}=\frac{m L_{F}}{T}=+943 \mathrm{~J} / \mathrm{K} .
$$

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, the change in entropy of the water-ice system is zero even though part of the cycle is irreversible. However, the system is not closed. To consider a closed system, we must include whatever exchanges energy with the ice and water. Suppose it is a constanttemperature heat reservoir during the freezing portion of the cycle and a Bunsen burner during the melting portion. During freezing the entropy of the reservoir increases by 943 J / K. As far as the reservoir-water-ice system is concerned, the process is adiabatic and reversible, so its total entropy does not change. The melting process is irreversible, so the total entropy of the burner-water-ice system increases. The entropy of the burner either increases or else decreases by less than $943 \mathrm{~J} / \mathrm{K}$.
18. (a) Work is done only for the $a b$ portion of the process. This portion is at constant pressure, so the work done by the gas is

$$
W=\int_{V_{0}}^{4 V_{0}} p_{0} d V=p_{0}\left(4.00 V_{0}-1.00 V_{0}\right)=3.00 p_{0} V_{0} \Rightarrow \frac{W}{p_{0} V}=3.00
$$

(b) We use the first law: $\Delta E_{\text {int }}=Q-W$. Since the process is at constant volume, the work done by the gas is zero and $E_{\mathrm{int}}=Q$. The energy Q absorbed by the gas as heat is $Q=n C_{V}$ ΔT, where C_{V} is the molar specific heat at constant volume and ΔT is the change in temperature. Since the gas is a monatomic ideal gas, $C_{V}=3 R / 2$. Use the ideal gas law to find that the initial temperature is

$$
T_{b}=\frac{p_{b} V_{b}}{n R}=\frac{4 p_{0} V_{0}}{n R}
$$

and that the final temperature is

$$
T_{c}=\frac{p_{c} V_{c}}{n R}=\frac{\left(2 p_{0}\right)\left(4 V_{0}\right)}{n R}=\frac{8 p_{0} V_{0}}{n R} .
$$

Thus,

$$
Q=\frac{3}{2} n R\left(\frac{8 p_{0} V_{0}}{n R}-\frac{4 p_{0} V_{0}}{n R}\right)=6.00 p_{0} V_{0} .
$$

The change in the internal energy is $\Delta E_{\text {int }}=6 p_{0} V_{0}$ or $\Delta E_{\text {int }} / p_{0} V_{0}=6.00$. Since $n=1 \mathrm{~mol}$, this can also be written $Q=6.00 R T_{0}$.
(c) For a complete cycle, $\Delta E_{\text {int }}=0$
(d) Since the process is at constant volume, use $d Q=n C_{V} d T$ to obtain

$$
\Delta S=\int \frac{d Q}{T}=n C_{V} \int_{T_{b}}^{T_{c}} \frac{d T}{T}=n C_{V} \ln \frac{T_{c}}{T_{b}} .
$$

Substituting $C_{V}=\frac{3}{2} R$ and using the ideal gas law, we write

$$
\frac{T_{c}}{T_{b}}=\frac{p_{c} V_{c}}{p_{b} V_{b}}=\frac{\left(2 p_{0}\right)\left(4 V_{0}\right)}{p_{0}\left(4 V_{0}\right)}=2 .
$$

Thus, $\Delta S=\frac{3}{2} n R \ln 2$. Since $n=1$, this is $\Delta S=\frac{3}{2} R \ln 2=8.64 \mathrm{~J} / \mathrm{K}$. .
(e) For a complete cycle, $\Delta E_{\text {int }}=0$ and $\Delta S=0$.
19. We note that the connection between molar heat capacity and the degrees of freedom of a monatomic gas is given by setting $f=3$ in Eq. 19-51. Thus, $C_{V}=3 R / 2, C_{p}=5 R / 2$, and $\gamma=5 / 3$.
(a) Since this is an ideal gas, Eq. 19-45 holds, which implies $\Delta E_{\text {int }}=0$ for this process. Eq. 19-14 also applies, so that by the first law of thermodynamics,

$$
Q=0+W=n R T_{1} \ln V_{2} / V_{1}=p_{1} V_{1} \ln 2 \rightarrow Q / p_{1} V_{1}=\ln 2=0.693 .
$$

(b) The gas law in ratio form (see Sample Problem 19-1) implies that the pressure decreased by a factor of 2 during the isothermal expansion process to $V_{2}=2.00 V_{1}$, so that it needs to increase by a factor of 4 in this step in order to reach a final pressure of $p_{2}=2.00 p_{1}$. That same ratio form now applied to this constant-volume process, yielding $4.00=T_{2} T_{1}$ which is used in the following:

$$
Q=n C_{V} \Delta T=n\left(\frac{3}{2} R\right)\left(T_{2}-T_{1}\right)=\frac{3}{2} n R T_{1}\left(\frac{T_{2}}{T_{1}}-1\right)=\frac{3}{2} p_{1} V_{1}(4-1)=\frac{9}{2} p_{1} V_{1}
$$

or $Q / p_{1} V_{1}=9 / 2=4.50$.
(c) The work done during the isothermal expansion process may be obtained by using Eq. 19-14:

$$
W=n R T_{1} \ln V_{2} / V_{1}=p_{1} V_{1} \ln 2.00 \rightarrow W / p_{1} V_{1}=\ln 2=0.693
$$

(d) In step 2 where the volume is kept constant, $W=0$.
(e) The change in internal energy can be calculated by combining the above results and applying the first law of thermodynamics:

$$
\Delta E_{\text {int }}=Q_{\text {total }}-W_{\text {total }}=\left(p_{1} V_{1} \ln 2+\frac{9}{2} p_{1} V_{1}\right)-\left(p_{1} V_{1} \ln 2+0\right)=\frac{9}{2} p_{1} V_{1}
$$

or $\Delta E_{\text {int }} / p_{1} V_{1}=9 / 2=4.50$.
(f) The change in entropy may be computed by using Eq. 20-4:

$$
\begin{aligned}
\Delta S & =R \ln \left(\frac{2.00 V_{1}}{V_{1}}\right)+C_{V} \ln \left(\frac{4.00 T_{1}}{T_{1}}\right)=R \ln 2.00+\left(\frac{3}{2} R\right) \ln (2.00)^{2} \\
& =R \ln 2.00+3 R \ln 2.00=4 R \ln 2.00=23.0 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

The second approach consists of an isothermal (constant T) process in which the volume halves, followed by an isobaric (constant p) process.
(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as the original. Since $\ln (1 / 2.00)=-\ln 2.00$, the reasoning used above leads to $Q=-p_{1} V_{1} \ln$ 2.00 , or $Q / p_{1} V_{1}=-\ln 2.00=-0.693$.
(h) To obtain a final volume twice as big as the original, in this step we need to increase the volume by a factor of 4.00 . Now, the gas law applied to this isobaric portion leads to a temperature ratio $T_{2} / T_{1}=4.00$. Thus,

$$
Q=C_{p} \Delta T=\frac{5}{2} R\left(T_{2}-T_{1}\right)=\frac{5}{2} R T_{1}\left(\frac{T_{2}}{T_{1}}-1\right)=\frac{5}{2} p_{1} V_{1}(4-1)=\frac{15}{2} p_{1} V_{1}
$$

or $Q^{/} p_{1} V_{1}=15 / 2=7.50$.
(i) During the isothermal compression process, Eq. 19-14 gives

$$
W=n R T_{1} \ln V_{2} / V_{1}=p_{1} V_{1} \ln (-1 / 2.00)=-p_{1} V_{1} \ln 2.00 \Rightarrow W / p_{1} V_{1}=-\ln 2=-0.693 .
$$

(j) The initial value of the volume, for this part of the process, is $V_{i}=V_{1} / 2$, and the final volume is $V_{f}=2 V_{1}$. The pressure maintained during this process is $p^{\prime}=2.00 p_{1}$. The work is given by Eq. 19-16:

$$
W=p^{\prime} \Delta V=p^{\prime}\left(V_{f}-V_{i}\right)=\left(2.00 p_{1}\right)\left(2.00 V_{1}-\frac{1}{2} V_{1}\right)=3.00 p_{1} V_{1} \Rightarrow W / p_{1} V_{1}=3.00
$$

(k) Using the first law of thermodynamics, the change in internal energy is

$$
\Delta E_{\text {int }}=Q_{\text {total }}-W_{\text {total }}=\left(\frac{15}{2} p_{1} V_{1}-p_{1} V_{1} \ln 2.00\right)-\left(3 p_{1} V_{1}-p_{1} V_{1} \ln 2.00\right)=\frac{9}{2} p_{1} V_{1}
$$

or $\Delta E_{\text {int }} / p_{1} V_{1}=9 / 2=4.50$. The result is the same as that obtained in part (e).
(1) Similarly, $\Delta S=4 R \ln 2.00=23.0 \mathrm{~J} / \mathrm{K}$. the same as that obtained in part (f).
20. (a) The final pressure is

$$
p_{f}=(5.00 \mathrm{kPa}) e^{\left(V_{i}-V_{f}\right) / a}=(5.00 \mathrm{kPa}) e^{\left(1.00 \mathrm{~m}^{3}-2.00 \mathrm{~m}^{3}\right) / 1.00 \mathrm{~m}^{3}}=1.84 \mathrm{kPa}
$$

(b) We use the ratio form of the gas law (see Sample Problem 19-1) to find the final temperature of the gas:

$$
T_{f}=T_{i}\left(\frac{p_{f} V_{f}}{p_{i} V_{i}}\right)=(600 \mathrm{~K}) \frac{(1.84 \mathrm{kPa})\left(2.00 \mathrm{~m}^{3}\right)}{(5.00 \mathrm{kPa})\left(1.00 \mathrm{~m}^{3}\right)}=441 \mathrm{~K} .
$$

For later purposes, we note that this result can be written "exactly" as $T_{f}=T_{i}\left(2 e^{-1}\right)$. In our solution, we are avoiding using the "one mole" datum since it is not clear how precise it is.
(c) The work done by the gas is

$$
\begin{aligned}
W & =\int_{i}^{f} p d V=\int_{V_{i}}^{V_{f}}(5.00 \mathrm{kPa}) e^{\left(V_{i}-V\right) / a} d V=(5.00 \mathrm{kPa}) e^{V_{i} / a} \cdot\left[-a e^{-V / a}\right]_{V_{i}}^{V_{f}} \\
& =(5.00 \mathrm{kPa}) e^{1.00}\left(1.00 \mathrm{~m}^{3}\right)\left(e^{-1.00}-e^{-2.00}\right) \\
& =3.16 \mathrm{~kJ} .
\end{aligned}
$$

(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq. 20-4. Consequently, with $C_{V}=\frac{3}{2} R$ (see Eq. 19-43), we find

$$
\begin{aligned}
\Delta S & =n R \ln \left(\frac{V_{f}}{V_{i}}\right)+n\left(\frac{3}{2} R\right) \ln \left(\frac{T_{f}}{T_{i}}\right)=n R\left(\ln 2+\frac{3}{2} \ln \left(2 e^{-1}\right)\right)=\frac{p_{i} V_{i}}{T_{i}}\left(\ln 2+\frac{3}{2} \ln 2+\frac{3}{2} \ln e^{-1}\right) \\
& =\frac{(5000 \mathrm{~Pa})\left(1.00 \mathrm{~m}^{3}\right)}{600 \mathrm{~K}}\left(\frac{5}{2} \ln 2-\frac{3}{2}\right) \\
& =1.94 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

21. (a) The efficiency is

$$
\varepsilon=\frac{T_{\mathrm{H}}-T_{\mathrm{L}}}{T_{\mathrm{H}}}=\frac{(235-115) \mathrm{K}}{(235+273) \mathrm{K}}=0.236=23.6 \% \text {. }
$$

We note that a temperature difference has the same value on the Kelvin and Celsius scales. Since the temperatures in the equation must be in Kelvins, the temperature in the denominator is converted to the Kelvin scale.
(b) Since the efficiency is given by $\varepsilon=|W| /\left|Q_{\mathrm{H}}\right|$, the work done is given by

$$
|W|=\varepsilon\left|Q_{\mathrm{H}}\right|=0.236\left(6.30 \times 10^{4} \mathrm{~J}\right)=1.49 \times 10^{4} \mathrm{~J}
$$

22. The answers to this exercise do not depend on the engine being of the Carnot design. Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to $\left|Q_{\mathrm{H}}\right|=$ 52 kJ and exhausts (or discards) energy as heat equal to $\left|Q_{\mathrm{L}}\right|=36 \mathrm{~kJ}$ will have these values of efficiency ε and net work W.
(a) Eq. 20-10 gives

$$
\varepsilon=1-\left|\frac{Q_{\mathrm{L}}}{Q_{\mathrm{H}}}\right|=0.31=31 \%
$$

(b) Eq. 20-6 gives

$$
W=\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|=16 \mathrm{~kJ}
$$

23. With $T_{\mathrm{L}}=290 \mathrm{k}$, we find

$$
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}} \Rightarrow T_{\mathrm{H}}=\frac{T_{\mathrm{L}}}{1-\varepsilon}=\frac{290 \mathrm{~K}}{1-0.40}
$$

which yields the (initial) temperature of the high-temperature reservoir: $T_{\mathrm{H}}=483 \mathrm{~K}$. If we replace $\varepsilon=0.40$ in the above calculation with $\mathcal{E}=0.50$, we obtain a (final) high temperature equal to $T_{\mathrm{H}}^{\prime}=580 \mathrm{~K}$. The difference is

$$
T_{\mathrm{H}}^{\prime}-T_{\mathrm{H}}=580 \mathrm{~K}-483 \mathrm{~K}=97 \mathrm{~K} .
$$

24. Eq. 20-11 leads to

$$
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}=1-\frac{373 \mathrm{~K}}{7 \times 10^{8} \mathrm{~K}}=0.9999995
$$

quoting more figures than are significant. As a percentage, this is $\mathcal{E}=99.99995 \%$.
25. We solve (b) first
(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 2011. Therefore,

$$
T_{\mathrm{H}}=\frac{T_{\mathrm{H}}-T_{\mathrm{L}}}{\varepsilon}=\frac{75 \mathrm{~K}}{0.22}=341 \mathrm{~K}
$$

which is equivalent to $68^{\circ} \mathrm{C}$.
(a) The temperature of the cold reservoir is $T_{\mathrm{L}}=T_{\mathrm{H}}-75=341 \mathrm{~K}-75 \mathrm{~K}=266 \mathrm{~K}$.
26. (a) Eq. 20-11 leads to

$$
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}=1-\frac{333 \mathrm{~K}}{373 \mathrm{~K}}=0.107
$$

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit time is the given value $500 \mathrm{~J} / \mathrm{s}$. Therefore, by Eq. 20-9, we obtain the heat input per unit time:

$$
\varepsilon=\frac{W}{\left|Q_{\mathrm{H}}\right|} \Rightarrow \frac{0.500 \mathrm{~kJ} / \mathrm{s}}{0.107}=4.67 \mathrm{~kJ} / \mathrm{s} .
$$

(b) Considering Eq. 20-6 on a per unit time basis, we find (4.67-0.500) kJ/s $=4.17 \mathrm{~kJ} / \mathrm{s}$ for the rate of heat exhaust.
27. (a) Energy is added as heat during the portion of the process from a to b. This portion occurs at constant volume $\left(V_{b}\right)$, so $Q_{i n}=n C_{V} \Delta T$. The gas is a monatomic ideal gas, so $C_{V}=3 R / 2$ and the ideal gas law gives

$$
\Delta T=(1 / n R)\left(p_{b} V_{b}-p_{a} V_{a}\right)=(1 / n R)\left(p_{b}-p_{a}\right) V_{b}
$$

Thus, $Q_{\mathrm{in}}=\frac{3}{2}\left(p_{b}-p_{a}\right) V_{b} . V_{b}$ and p_{b} are given. We need to find p_{a}. Now p_{a} is the same as p_{c} and points c and b are connected by an adiabatic process. Thus, $p_{c} V_{c}^{\gamma}=p_{b} V_{b}^{\gamma}$ and

$$
p_{a}=p_{c}=\left(\frac{V_{b}}{V_{c}}\right)^{\gamma} p_{b}=\left(\frac{1}{8.00}\right)^{5 / 3}\left(1.013 \times 10^{6} \mathrm{~Pa}\right)=3.167 \times 10^{4} \mathrm{~Pa} .
$$

The energy added as heat is

$$
Q_{\mathrm{in}}=\frac{3}{2}\left(1.013 \times 10^{6} \mathrm{~Pa}-3.167 \times 10^{4} \mathrm{~Pa}\right)\left(1.00 \times 10^{-3} \mathrm{~m}^{3}\right)=1.47 \times 10^{3} \mathrm{~J} .
$$

(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a constant pressure process, so

$$
\begin{aligned}
Q_{\mathrm{out}} & =n C_{p} \Delta T=\frac{5}{2}\left(p_{a} V_{a}-p_{c} V_{c}\right)=\frac{5}{2} p_{a}\left(V_{a}-V_{c}\right) \\
& =\frac{5}{2}\left(3.167 \times 10^{4} \mathrm{~Pa}\right)(-7.00)\left(1.00 \times 10^{-3} \mathrm{~m}^{3}\right)=-5.54 \times 10^{2} \mathrm{~J}
\end{aligned}
$$

or $\left|Q_{\text {out }}\right|=5.54 \times 10^{2} \mathrm{~J}$. The substitutions $V_{a}-V_{c}=V_{a}-8.00 V_{a}=-7.00 V_{a}$ and $C_{p}=\frac{5}{2} R$ were made.
(c) For a complete cycle, the change in the internal energy is zero and

$$
W=Q=1.47 \times 10^{3} \mathrm{~J}-5.54 \times 10^{2} \mathrm{~J}=9.18 \times 10^{2} \mathrm{~J}
$$

(d) The efficiency is $\varepsilon=W / Q_{\text {in }}=\left(9.18 \times 10^{2} \mathrm{~J}\right) /\left(1.47 \times 10^{3} \mathrm{~J}\right)=0.624=62.4 \%$.
28. From Fig. 20-28, we see $Q_{H}=4000 \mathrm{~J}$ at $T_{H}=325 \mathrm{~K}$. Combining Eq. 20-9 with Eq. 20-11, we have

$$
\frac{W}{Q_{H}}=1-\frac{T_{C}}{T_{H}} \Rightarrow W=923 \mathrm{~J}
$$

Now, for $T_{H}^{\prime}=550 \mathrm{~K}$, we have

$$
\frac{W}{Q_{H}^{\prime}}=1-\frac{T_{C}}{T_{H}^{\prime}} \quad \Rightarrow Q_{H}^{\prime}=1692 \mathrm{~J} \approx 1.7 \mathrm{~kJ}
$$

29. (a) The net work done is the rectangular "area" enclosed in the $p V$ diagram:

$$
W=\left(V-V_{0}\right)\left(p-p_{0}\right)=\left(2 V_{0}-V_{0}\right)\left(2 p_{0}-p_{0}\right)=V_{0} p_{0} .
$$

Inserting the values stated in the problem, we obtain $W=2.27 \mathrm{~kJ}$.
(b) We compute the energy added as heat during the "heat-intake" portions of the cycle using Eq. 19-39, Eq. 19-43, and Eq. 19-46:

$$
\begin{aligned}
Q_{a b c} & =n C_{V}\left(T_{b}-T_{a}\right)+n C_{p}\left(T_{c}-T_{b}\right)=n\left(\frac{3}{2} R\right) T_{a}\left(\frac{T_{b}}{T_{a}}-1\right)+n\left(\frac{5}{2} R\right) T_{a}\left(\frac{T_{c}}{T_{a}}-\frac{T_{b}}{T_{a}}\right) \\
& =n R T_{a}\left(\frac{3}{2}\left(\frac{T_{b}}{T_{a}}-1\right)+\frac{5}{2}\left(\frac{T_{c}}{T_{a}}-\frac{T_{b}}{T_{a}}\right)\right)=p_{0} V_{0}\left(\frac{3}{2}(2-1)+\frac{5}{2}(4-2)\right) \\
& =\frac{13}{2} p_{0} V_{0}
\end{aligned}
$$

where, to obtain the last line, the gas law in ratio form has been used (see Sample Problem 19-1). Therefore, since $W=p_{0} V_{0}$, we have $Q_{a b c}=13 W / 2=14.8 \mathrm{~kJ}$.
(c) The efficiency is given by Eq. 20-9:

$$
\varepsilon=\frac{W}{\left|Q_{\mathrm{H}}\right|}=\frac{2}{13}=0.154=15.4 \% .
$$

(d) A Carnot engine operating between T_{c} and T_{a} has efficiency equal to

$$
\varepsilon=1-\frac{T_{a}}{T_{c}}=1-\frac{1}{4}=0.750=75.0 \%
$$

where the gas law in ratio form has been used.
(e) This is greater than our result in part (c), as expected from the second law of thermodynamics.
30. All terms are assumed to be positive. The total work done by the two-stage system is $W_{1}+W_{2}$. The heat-intake (from, say, consuming fuel) of the system is Q_{1} so we have (by Eq. 20-9 and Eq. 20-6)

$$
\varepsilon=\frac{W_{1}+W_{2}}{Q_{1}}=\frac{\left(Q_{1}-Q_{2}\right)+\left(Q_{2}-Q_{3}\right)}{Q_{1}}=1-\frac{Q_{3}}{Q_{1}} .
$$

Now, Eq. 20-8 leads to

$$
\frac{Q_{1}}{T_{1}}=\frac{Q_{2}}{T_{2}}=\frac{Q_{3}}{T_{3}}
$$

where we assume Q_{2} is absorbed by the second stage at temperature T_{2}. This implies the efficiency can be written

$$
\varepsilon=1-\frac{T_{3}}{T_{1}}=\frac{T_{1}-T_{3}}{T_{1}} .
$$

31. (a) We use $\varepsilon=\left|W / Q_{H}\right|$. The heat absorbed is $\left|Q_{\mathrm{H}}\right|=\frac{|W|}{\varepsilon}=\frac{8.2 \mathrm{~kJ}}{0.25}=33 \mathrm{~kJ}$.
(b) The heat exhausted is then $\left|Q_{\mathrm{L}}\right|=\left|Q_{\mathrm{H}}\right|-|W|=33 \mathrm{~kJ}-8.2 \mathrm{~kJ}=25 \mathrm{~kJ}$.
(c) Now we have $\left|Q_{\mathrm{H}}\right|=\frac{|W|}{\varepsilon}=\frac{8.2 \mathrm{~kJ}}{0.31}=26 \mathrm{~kJ}$.
(d) and $\left|Q_{\mathrm{C}}\right|=\left|Q_{\mathrm{H}}\right|-|W|=26 \mathrm{~kJ}-8.2 \mathrm{~kJ}=18 \mathrm{~kJ}$.
32. (a) Using Eq. 19-54 for process $D \rightarrow A$ gives

$$
p_{D} V_{D}^{\gamma}=p_{A} V_{A}^{\gamma} \quad \Rightarrow \quad \frac{p_{0}}{32}\left(8 V_{0}\right)^{\gamma}=p_{0} V_{0}^{\gamma}
$$

which leads to $8^{\gamma}=32 \Rightarrow \gamma=5 / 3$. The result (see §19-9 and §19-11) implies the gas is monatomic.
(b) The input heat is that absorbed during process $A \rightarrow B$:

$$
Q_{\mathrm{H}}=n C_{p} \Delta T=n\left(\frac{5}{2} R\right) T_{A}\left(\frac{T_{B}}{T_{A}}-1\right)=n R T_{A}\left(\frac{5}{2}\right)(2-1)=p_{0} V_{0}\left(\frac{5}{2}\right)
$$

and the exhaust heat is that liberated during process $C \rightarrow D$:

$$
Q_{\mathrm{L}}=n C_{p} \Delta T=n\left(\frac{5}{2} R\right) T_{D}\left(1-\frac{T_{\mathrm{L}}}{T_{D}}\right)=n R T_{D}\left(\frac{5}{2}\right)(1-2)=-\frac{1}{4} p_{0} V_{0}\left(\frac{5}{2}\right)
$$

where in the last step we have used the fact that $T_{D}=\frac{1}{4} T_{A}$ (from the gas law in ratio form - see Sample Problem 19-1). Therefore, Eq. 20-10 leads to

$$
\varepsilon=1-\left|\frac{Q_{\mathrm{L}}}{Q_{\mathrm{H}}}\right|=1-\frac{1}{4}=0.75=75 \% .
$$

33. (a) The pressure at 2 is $p_{2}=3.00 p_{1}$, as given in the problem statement. The volume is $V_{2}=V_{1}=n R T_{1} / p_{1}$. The temperature is

$$
T_{2}=\frac{p_{2} V_{2}}{n R}=\frac{3.00 p_{1} V_{1}}{n R}=3.00 T_{1} \Rightarrow \frac{T_{2}}{T_{1}}=3.00
$$

(b) The process $2 \rightarrow 3$ is adiabatic, so $T_{2} V_{2}^{\gamma-1}=T_{3} V_{3}^{\gamma-1}$. Using the result from part (a), $V_{3}=$ $4.00 V_{1}, V_{2}=V_{1}$ and $\gamma=1.30$, we obtain

$$
\frac{T_{3}}{T_{1}}=\frac{T_{3}}{T_{2} / 3.00}=3.00\left(\frac{V_{2}}{V_{3}}\right)^{\gamma-1}=3.00\left(\frac{1}{4.00}\right)^{0.30}=1.98
$$

(c) The process $4 \rightarrow 1$ is adiabatic, so $T_{4} V_{4}^{\gamma-1}=T_{1} V_{1}^{\gamma-1}$. Since $V_{4}=4.00 V_{1}$, we have

$$
\frac{T_{4}}{T_{1}}=\left(\frac{V_{1}}{V_{4}}\right)^{\gamma-1}=\left(\frac{1}{4.00}\right)^{0.30}=0.660
$$

(d) The process $2 \rightarrow 3$ is adiabatic, so $p_{2} V_{2}^{\gamma}=p_{3} V_{3}^{\gamma}$ or $p_{3}=\left(V_{2} / V_{3}\right)^{\gamma} p_{2}$. Substituting V_{3} $=4.00 V_{1}, V_{2}=V_{1}, p_{2}=3.00 p_{1}$ and $\gamma=1.30$, we obtain

$$
\frac{p_{3}}{p_{1}}=\frac{3.00}{(4.00)^{1.30}}=0.495 .
$$

(e) The process $4 \rightarrow 1$ is adiabatic, so $p_{4} V_{4}^{\gamma}=p_{1} V_{1}^{\gamma}$ and

$$
\frac{p_{4}}{p_{1}}=\left(\frac{V_{1}}{V_{4}}\right)^{\gamma}=\frac{1}{(4.00)^{1.30}}=0.165
$$

where we have used $V_{4}=4.00 V_{1}$.
(f) The efficiency of the cycle is $\varepsilon=W / Q_{12}$, where W is the total work done by the gas during the cycle and Q_{12} is the energy added as heat during the $1 \rightarrow 2$ portion of the cycle, the only portion in which energy is added as heat. The work done during the portion of the cycle from 2 to 3 is $W_{23}=\int p d V$. Substitute $p=p_{2} V_{2}^{\gamma} / V^{\gamma}$ to obtain

$$
W_{23}=p_{2} V_{2}^{\gamma} \int_{V_{2}}^{V_{3}} V^{-\gamma} d V=\left(\frac{p_{2} V_{2}^{\gamma}}{\gamma-1}\right)\left(V_{2}^{1-\gamma}-V_{3}^{1-\gamma}\right) .
$$

Substitute $V_{2}=V_{1}, V_{3}=4.00 V_{1}$, and $p_{3}=3.00 p_{1}$ to obtain

$$
W_{23}=\left(\frac{3 p_{1} V_{1}}{1-\gamma}\right)\left(1-\frac{1}{4^{\gamma-1}}\right)=\left(\frac{3 n R T_{1}}{\gamma-1}\right)\left(1-\frac{1}{4^{\gamma-1}}\right)
$$

Similarly, the work done during the portion of the cycle from 4 to 1 is

$$
W_{41}=\left(\frac{p_{1} V_{1}^{\gamma}}{\gamma-1}\right)\left(V_{4}^{1-\gamma}-V_{1}^{1-\gamma}\right)=-\left(\frac{p_{1} V_{1}}{\gamma-1}\right)\left(1-\frac{1}{4^{\gamma-1}}\right)=-\left(\frac{n R T_{1}}{\gamma-1}\right)\left(1-\frac{1}{4^{\gamma-1}}\right) .
$$

No work is done during the $1 \rightarrow 2$ and $3 \rightarrow 4$ portions, so the total work done by the gas during the cycle is

$$
W=W_{23}+W_{41}=\left(\frac{2 n R T_{1}}{\gamma-1}\right)\left(1-\frac{1}{4^{\gamma-1}}\right) .
$$

The energy added as heat is

$$
Q_{12}=n C_{V}\left(T_{2}-T_{1}\right)=n C_{V}\left(3 T_{1}-T_{1}\right)=2 n C_{V} T_{1},
$$

where C_{V} is the molar specific heat at constant volume. Now

$$
\gamma=C_{p} / C_{V}=\left(C_{V}+R\right) / C_{V}=1+\left(R / C_{V}\right),
$$

so $C_{V}=R /(\gamma-1)$. Here C_{p} is the molar specific heat at constant pressure, which for an ideal gas is $C_{p}=C_{V}+R$. Thus, $Q_{12}=2 n R T_{1} /(\gamma-1)$. The efficiency is

$$
\varepsilon=\frac{2 n R T_{1}}{\gamma-1}\left(1-\frac{1}{4^{\gamma-1}}\right) \frac{\gamma-1}{2 n R T_{1}}=1-\frac{1}{4^{\gamma-1}} .
$$

With $\gamma=1.30$, the efficiency is $\varepsilon=0.340$ or 34.0%.
34. (a) Eq. 20-13 provides

$$
K_{C}=\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|} \Rightarrow\left|Q_{\mathrm{H}}\right|=\left|Q_{\mathrm{L}}\right|\left(\frac{1+K_{C}}{K_{C}}\right)
$$

which yields $\left|Q_{\mathrm{H}}\right|=49 \mathrm{~kJ}$ when $K_{C}=5.7$ and $\left|Q_{\mathrm{L}}\right|=42 \mathrm{~kJ}$.
(b) From §20-5 we obtain

$$
|W|=\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|=49.4 \mathrm{~kJ}-42.0 \mathrm{~kJ}=7.4 \mathrm{~kJ}
$$

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures are not used in the calculation; in fact, it is possible that the given room temperature value is not meant to be the high temperature for the (reversed) Carnot cycle - since it does not lead to the given K_{C} using Eq. 20-14.
35. A Carnot refrigerator working between a hot reservoir at temperature T_{H} and a cold reservoir at temperature T_{L} has a coefficient of performance K that is given by $K=T_{\mathrm{L}}$ $/\left(T_{\mathrm{H}}-T_{\mathrm{L}}\right)$. For the refrigerator of this problem, $T_{\mathrm{H}}=96^{\circ} \mathrm{F}=309 \mathrm{~K}$ and $T_{\mathrm{L}}=70^{\circ} \mathrm{F}=294$ K , so $K=(294 \mathrm{~K}) /(309 \mathrm{~K}-294 \mathrm{~K})=19.6$. The coefficient of performance is the energy Q_{L} drawn from the cold reservoir as heat divided by the work done: $K=\left|Q_{\mathrm{L}}\right| / \mid W$. Thus, $\left|Q_{\mathrm{L}}\right|=K|W|=(19.6)(1.0 \mathrm{~J})=20 \mathrm{~J}$.
36. Eq. 20-8 still holds (particularly due to its use of absolute values), and energy conservation implies $|W|+Q_{\mathrm{L}}=Q_{\mathrm{H}}$. Therefore, with $T_{\mathrm{L}}=268.15 \mathrm{~K}$ and $T_{\mathrm{H}}=290.15 \mathrm{~K}$, we find

$$
\left|Q_{\mathrm{H}}\right|=\left|Q_{\mathrm{L}}\right|\left(\frac{T_{\mathrm{H}}}{T_{\mathrm{L}}}\right)=\left(\left|Q_{\mathrm{H}}\right|-|W|\right)\left(\frac{290.15}{268.15}\right)
$$

which (with $|W|=1.0 \mathrm{~J}$) leads to

$$
\left|Q_{\mathrm{H}}\right|=|W|\left(\frac{1}{1-268.15 / 290.15}\right)=13 \mathrm{~J}
$$

37. The coefficient of performance for a refrigerator is given by $K=\left|Q_{\mathrm{L}}\right| /|W|$, where Q_{L} is the energy absorbed from the cold reservoir as heat and W is the work done during the refrigeration cycle, a negative value. The first law of thermodynamics yields $Q_{\mathrm{H}}+Q_{\mathrm{L}}-$ $W=0$ for an integer number of cycles. Here Q_{H} is the energy ejected to the hot reservoir as heat. Thus, $Q_{\mathrm{L}}=W-Q_{\mathrm{H}} . Q_{\mathrm{H}}$ is negative and greater in magnitude than W, so $\left|Q_{\mathrm{L}}\right|=$ $\left|Q_{\mathrm{H}}\right|-|W|$. Thus,

$$
K=\frac{\left|Q_{\mathrm{H}}\right|-|W|}{|W|} .
$$

The solution for $|W|$ is $|W|=\left|Q_{\mathrm{H}}\right| /(K+1)$. In one hour,

$$
|W|=\frac{7.54 \mathrm{MJ}}{3.8+1}=1.57 \mathrm{MJ} .
$$

The rate at which work is done is $\left(1.57 \times 10^{6} \mathrm{~J}\right) /(3600 \mathrm{~s})=440 \mathrm{~W}$.
38. (a) Using Eq. 20-12 and Eq. 20-14, we obtain

$$
|W|=\frac{\left|Q_{\mathrm{L}}\right|}{K_{C}}=(1.0 \mathrm{~J})\left(\frac{300 \mathrm{~K}-280 \mathrm{~K}}{280 \mathrm{~K}}\right)=0.071 \mathrm{~J} .
$$

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this case.
(c) with $T_{\mathrm{L}}=100 \mathrm{~K}$, we obtain $|W|=2.0 \mathrm{~J}$.
(d) Finally, with the low temperature reservoir at 50 K , an amount of work equal to $|\mathrm{W}|=$ 5.0 J is required.
39. We are told $K=0.27 K_{C}$ where

$$
K_{C}=\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}}=\frac{294 \mathrm{~K}}{307 \mathrm{~K}-294 \mathrm{~K}}=23
$$

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per unit time basis, Eq. 20-12 leads to

$$
\frac{|W|}{t}=\frac{\left(\frac{\left|Q_{\iota}\right|}{t}\right)}{K}=\frac{4000 \mathrm{Btu} / \mathrm{h}}{(0.27)(23)}=643 \mathrm{Btu} / \mathrm{h} .
$$

Appendix D indicates $1 \mathrm{But} / \mathrm{h}=0.0003929 \mathrm{hp}$, so our result may be expressed as $\mathrm{IW} \mathrm{V} / t=$ 0.25 hp .
40. (a) Eq. 20-11 gives the Carnot efficiency as $1-T_{L} / T_{H}$. This gives 0.222 in this case. Using this value with Eq. 20-9 leads to $W=(0.222)(750 \mathrm{~J})=167 \mathrm{~J}$.
(b) Now, Eq. 20-14 gives $K_{C}=3.5$. Then, Eq. 20-12 yields $|W|=1200 / 3.5=343 \mathrm{~J}$.
41. The efficiency of the engine is defined by $\varepsilon=W / Q_{1}$ and is shown in the text to be $\varepsilon=$ $\left(T_{1}-T_{2}\right) / T_{1}$, so $W / Q_{1}=\left(T_{1}-T_{2}\right) / T_{1}$. The coefficient of performance of the refrigerator is defined by $K=Q_{4} / W$ and is shown in the text to be $K=T_{4} /\left(T_{3}-T_{4}\right)$, so $Q_{4} / W=T_{4} /\left(T_{3}-\right.$ T_{4}). Now $Q_{4}=Q_{3}-W$, so $\left(Q_{3}-W\right) / W=T_{4} /\left(T_{3}-T_{4}\right)$. The work done by the engine is used to drive the refrigerator, so W is the same for the two. Solve the engine equation for W and substitute the resulting expression into the refrigerator equation. The engine equation yields $W=\left(T_{1}-T_{2}\right) Q_{1} / T_{1}$ and the substitution yields

$$
\frac{T_{4}}{T_{3}-T_{4}}=\frac{Q_{3}}{W}-1=\frac{Q_{3} T_{1}}{Q_{1}\left(T_{1}-T_{2}\right)}-1 .
$$

Solve for Q_{3} / Q_{1} :

$$
\frac{Q_{3}}{Q_{1}}=\left(\frac{T_{4}}{T_{3}-T_{4}}+1\right)\left(\frac{T_{1}-T_{2}}{T_{1}}\right)=\left(\frac{T_{3}}{T_{3}-T_{4}}\right)\left(\frac{T_{1}-T_{2}}{T_{1}}\right)=\frac{1-\left(T_{2} / T_{1}\right)}{1-\left(T_{4} / T_{3}\right)} .
$$

With $T_{1}=400 \mathrm{~K}, T_{2}=150 \mathrm{~K}, T_{3}=325 \mathrm{~K}$, and $T_{4}=225 \mathrm{~K}$, the ratio becomes $Q_{3} / Q_{1}=2.03$.
42. The work done by the motor in $t=10.0 \mathrm{~min}$ is $|W|=P t=(200 \mathrm{~W})(10.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})$ $=1.20 \times 10^{5} \mathrm{~J}$. The heat extracted is then

$$
\left|Q_{\mathrm{L}}\right|=K|W|=\frac{T_{\mathrm{L}}|W|}{T_{\mathrm{H}}-T_{\mathrm{L}}}=\frac{(270 \mathrm{~K})\left(1.20 \times 10^{5} \mathrm{~J}\right)}{300 \mathrm{~K}-270 \mathrm{~K}}=1.08 \times 10^{6} \mathrm{~J} .
$$

43. We need nine labels:

Label	Number of molecules on side 1	Number of molecules on side 2
I	8	0
II	7	1
III	6	2
IV	5	3
V	4	4
VI	3	5
VII	2	6
VIII	1	7
IX	0	8

The multiplicity W is computing using Eq. 20-18. For example, the multiplicity for label IV is

$$
W=\frac{8!}{(5!)(3!)}=\frac{40320}{(120)(6)}=56
$$

and the corresponding entropy is (using Eq. 20-19)

$$
S=k \ln W=\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln (56)=5.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

In this way, we generate the following table:

Label	W	S
I	1	0
II	8	$2.9 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
III	28	$4.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
IV	56	$5.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
V	70	$5.9 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
VI	56	$5.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
VII	28	$4.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
VIII	8	$2.9 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
IX	1	0

44. (a) We denote the configuration with n heads out of N trials as $(n ; N)$. We use Eq. 2018:

$$
W(25 ; 50)=\frac{50!}{(25!)(50-25)!}=1.26 \times 10^{14} .
$$

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2 of the box. If there are a total of N independent molecules, the total number of available states of the N-particle system is

$$
N_{\text {total }}=2 \times 2 \times 2 \times \cdots \times 2=2^{N} .
$$

With $N=50$, we obtain $N_{\text {total }}=2^{50}=1.13 \times 10^{15}$.
(c) The percentage of time in question is equal to the probability for the system to be in the central configuration:

$$
p(25 ; 50)=\frac{W(25 ; 50)}{2^{50}}=\frac{1.26 \times 10^{14}}{1.13 \times 10^{15}}=11.1 \%
$$

With $N=100$, we obtain
(d) $W(N / 2, N)=N!/[(N / 2)!]^{2}=1.01 \times 10^{29}$,
(e) $N_{\text {total }}=2^{N}=1.27 \times 10^{30}$,
(f) and $p(N / 2 ; N)=W(N / 2, N) / N_{\text {total }}=8.0 \%$.

Similarly, for $N=200$, we obtain
(g) $W(N / 2, N)=9.25 \times 10^{58}$,
(h) $N_{\text {total }}=1.61 \times 10^{60}$,
(i) and $p(N / 2 ; N)=5.7 \%$.
(j) As N increases the number of available microscopic states increase as 2^{N}, so there are more states to be occupied, leaving the probability less for the system to remain in its central configuration. Thus, the time spent in there decreases with an increase in N.
45. (a) Suppose there are n_{L} molecules in the left third of the box, n_{C} molecules in the center third, and n_{R} molecules in the right third. There are N ! arrangements of the N molecules, but n_{L} ! are simply rearrangements of the n_{L} molecules in the right third, n_{C} ! are rearrangements of the n_{C} molecules in the center third, and n_{R} ! are rearrangements of the n_{R} molecules in the right third. These rearrangements do not produce a new configuration. Thus, the multiplicity is

$$
W=\frac{N!}{n_{L}!n_{C}!n_{R}!} .
$$

(b) If half the molecules are in the right half of the box and the other half are in the left half of the box, then the multiplicity is

$$
W_{B}=\frac{N!}{(N / 2)!(N / 2)!} .
$$

If one-third of the molecules are in each third of the box, then the multiplicity is

$$
W_{A}=\frac{N!}{(N / 3)!(N / 3)!(N / 3)!}
$$

The ratio is

$$
\frac{W_{A}}{W_{B}}=\frac{(N / 2)!(N / 2)!}{(N / 3)!(N / 3)!(N / 3)!}
$$

(c) For $N=100$,

$$
\frac{W_{A}}{W_{B}}=\frac{50!50!}{33!33!34!}=4.2 \times 10^{16} .
$$

46. We consider a three-step reversible process as follows: the supercooled water drop (of mass m) starts at state $1\left(T_{1}=268 \mathrm{~K}\right)$, moves on to state $2\left(\right.$ still in liquid form but at $T_{2}=$ 273 K), freezes to state $3\left(T_{3}=T_{2}\right)$, and then cools down to state 4 (in solid form, with T_{4} $=T_{1}$). The change in entropy for each of the stages is given as follows:

$$
\begin{aligned}
& \Delta S_{12}=m c_{w} \ln \left(T_{2} / T_{1}\right) \\
& \Delta S_{23}=-m L_{F} / T_{2} \\
& \Delta S_{34}=m c_{I} \ln \left(T_{4} / T_{3}\right)=m c_{I} \ln \left(T_{1} / T_{2}\right)=-m c_{I} \ln \left(T_{2} / T_{1}\right)
\end{aligned}
$$

Thus the net entropy change for the water drop is

$$
\begin{aligned}
\Delta S & =\Delta S_{12}+\Delta S_{23}+\Delta S_{34}=m\left(c_{w}-c_{I}\right) \ln \left(\frac{T_{2}}{T_{1}}\right)-\frac{m L_{F}}{T_{2}} \\
& =(1.00 \mathrm{~g})(4.19 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}-2.22 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}) \ln \left(\frac{273 \mathrm{~K}}{268 \mathrm{~K}}\right)-\frac{(1.00 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g})}{273 \mathrm{~K}} \\
& =-1.18 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

47. (a) A good way to (mathematically) think of this is: consider the terms when you expand $(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}$. The coefficients correspond to the multiplicities. Thus, the smallest coefficient is 1 .
(b) The largest coefficient is 6 .
(c) Since the logarithm of 1 is zero, then Eq. 20-19 gives $\mathrm{S}=0$ for the least case.
(d) $S=k \ln (6)=2.47 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
48. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the (negative) constant-pressure compression (Eq. 19-48). Thus,

$$
W_{\text {net }}=n R T_{H} \ln \left(V_{\max } / V_{\min }\right)+n R\left(T_{L}-T_{H}\right)
$$

where $n=3.4, T_{H}=500 \mathrm{~K}, T_{L}=200 \mathrm{~K}$ and $V_{\max } / V_{\min }=5 / 2$ (same as the ratio T_{H} / T_{L}). Therefore, $W_{\text {net }}=4468 \mathrm{~J}$. Now, we identify the "input heat" as that transferred in steps 1 and 2 :

$$
Q_{\mathrm{in}}=Q_{1}+Q_{2}=n C_{V}\left(T_{H}-T_{L}\right)+n R T_{H} \ln \left(V_{\max } / V_{\min }\right)
$$

where $C_{V}=5 R / 2$ (see Table 19-3). Consequently, $Q_{\mathrm{in}}=34135 \mathrm{~J}$. Dividing these results gives the efficiency: $W_{\text {net }} / Q_{\text {in }}=0.131$ (or about 13.1%).
49. Using Eq. 19-34 and Eq. 19-35, we arrive at

$$
\Delta v=(\sqrt{3}-\sqrt{2}) \sqrt{R T / M}
$$

(a) We find, with $M=28 \mathrm{~g} / \mathrm{mol}=0.028 \mathrm{~kg} / \mathrm{mol}$ (see Table 19-1), $\Delta v_{i}=87 \mathrm{~m} / \mathrm{s}$ at 250 K ,
(b) and $\Delta v_{f}=122 \approx 1.2 \times 10^{2} \mathrm{~m} / \mathrm{s}$ at 500 K .
(c) The expression above for Δv implies

$$
T=\frac{M}{R(\sqrt{3}-\sqrt{2})^{2}}(\Delta v)^{2}
$$

which we can plug into Eq. 20-4 to yield

$$
\Delta \mathrm{S}=n R \ln \left(V_{f} / V_{i}\right)+n C_{V} \ln \left(T_{f} / T_{i}\right)=0+n C_{V} \ln \left[\left(\Delta v_{f}\right)^{2} /\left(\Delta v_{i}\right)^{2}\right]=2 n C_{V} \ln \left(\Delta \mathrm{v}_{f} / \Delta \mathrm{v}_{i}\right)
$$

Using Table 19-3 to get $C_{V}=5 R / 2$ (see also Table 19-2) we then find, for $n=1.5 \mathrm{~mol}, \Delta S$ $=22 \mathrm{~J} / \mathrm{K}$.
50. (a) Eq. 20-2 gives the entropy change for each reservoir (each of which, by definition, is able to maintain constant temperature conditions within itself). The net entropy change is therefore

$$
\Delta \mathrm{S}=\frac{+|Q|}{273+24}+\frac{-|Q|}{273+130}=4.45 \mathrm{~J} / \mathrm{K}
$$

where we set $|Q|=5030 \mathrm{~J}$.
(b) We have assumed that the conductive heat flow in the rod is "steady-state"; that is, the situation described by the problem has existed and will exist for "long times." Thus there are no entropy change terms included in the calculation for elements of the rod itself.
51. (a) If T_{H} is the temperature of the high-temperature reservoir and T_{L} is the temperature of the low-temperature reservoir, then the maximum efficiency of the engine is

$$
\varepsilon=\frac{T_{\mathrm{H}}-T_{\mathrm{L}}}{T_{\mathrm{H}}}=\frac{(800+40) \mathrm{K}}{(800+273) \mathrm{K}}=0.78 \text { or } 78 \% .
$$

(b) The efficiency is defined by $\varepsilon=|W| /\left|Q_{\mathrm{H}}\right|$, where W is the work done by the engine and Q_{H} is the heat input. W is positive. Over a complete cycle, $Q_{\mathrm{H}}=W+\left|Q_{\mathrm{L}}\right|$, where Q_{L} is the heat output, so $\varepsilon=W /\left(W+\left|Q_{\mathrm{L}}\right|\right)$ and $\left|Q_{\mathrm{L}}\right|=W[(1 / \varepsilon)-1]$. Now $\varepsilon=\left(T_{\mathrm{H}}-T_{\mathrm{L}}\right) / T_{\mathrm{H}}$, where T_{H} is the temperature of the high-temperature heat reservoir and T_{L} is the temperature of the low-temperature reservoir. Thus,

$$
\frac{1}{\varepsilon}-1=\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}} \text { and }\left|Q_{\mathrm{L}}\right|=\frac{W T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}} .
$$

The heat output is used to melt ice at temperature $T_{i}=-40^{\circ} \mathrm{C}$. The ice must be brought to $0^{\circ} \mathrm{C}$, then melted, so $\left|Q_{\mathrm{L}}\right|=m c\left(T_{f}-T_{i}\right)+m L_{F}$, where m is the mass of ice melted, T_{f} is the melting temperature $\left(0^{\circ} \mathrm{C}\right), c$ is the specific heat of ice, and L_{F} is the heat of fusion of ice. Thus,

$$
W T_{\mathrm{L}} /\left(T_{\mathrm{H}}-T_{\mathrm{L}}\right)=m c\left(T_{f}-T_{i}\right)+m L_{F}
$$

We differentiate with respect to time and replace $d W / d t$ with P, the power output of the engine, and obtain $P T_{\mathrm{L}} /\left(T_{\mathrm{H}}-T_{\mathrm{L}}\right)=(d m / d t)\left[c\left(T_{f}-T_{i}\right)+L_{F}\right]$. Thus,

$$
\frac{d m}{d t}=\left(\frac{P T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}}\right)\left(\frac{1}{c\left(T_{f}-T_{i}\right)+L_{F}}\right)
$$

Now, $P=100 \times 10^{6} \mathrm{~W}, T_{\mathrm{L}}=0+273=273 \mathrm{~K}, T_{\mathrm{H}}=800+273=1073 \mathrm{~K}, T_{i}=-40+273$ $=233 \mathrm{~K}, T_{f}=0+273=273 \mathrm{~K}, c=2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$, and $L_{F}=333 \times 10^{3} \mathrm{~J} / \mathrm{kg}$, so

$$
\begin{aligned}
\frac{d m}{d t} & =\left[\frac{\left(100 \times 10^{6} \mathrm{~J} / \mathrm{s}\right)(273 \mathrm{~K})}{1073 \mathrm{~K}-273 \mathrm{~K}}\right]\left[\frac{1}{(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(273 \mathrm{~K}-233 \mathrm{~K})+333 \times 10^{3} \mathrm{~J} / \mathrm{kg}}\right] \\
& =82 \mathrm{~kg} / \mathrm{s} .
\end{aligned}
$$

We note that the engine is now operated between $0^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$.
52. (a) Combining Eq. 20-9 with Eq. 20-11, we obtain

$$
|W|=\left|Q_{\mathrm{H}}\right|\left(1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}\right)=(500 \mathrm{~J})\left(1-\frac{260 \mathrm{~K}}{320 \mathrm{~K}}\right)=93.8 \mathrm{~J}
$$

(b) Combining Eq. 20-12 with Eq. 20-14, we find

$$
|W|=\frac{\left|Q_{\mathrm{L}}\right|}{\left(\frac{\mathrm{L}_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}}\right)}=\frac{1000 \mathrm{~J}}{\left(\frac{260 \mathrm{~K}}{320 \mathrm{~K}-260 \mathrm{~K}}\right)}=231 \mathrm{~J} .
$$

53. (a) We denote the mass of the ice (which turns to water and warms to T_{f}) as m and the mass of original-water (which cools from 80° down to T_{f}) as m^{\prime}. From $\Sigma Q=0$ we have

$$
L_{F} m+c m\left(T_{f}-0^{\circ}\right)+c m^{\prime}\left(T_{f}-80^{\circ}\right)=0 .
$$

Since $L_{F}=333 \times 10^{3} \mathrm{~J} / \mathrm{kg}, c=4190 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\mathrm{o}}\right), m^{\prime}=0.13 \mathrm{~kg}$ and $m=0.012 \mathrm{~kg}$, we find T_{f} $=66.5^{\circ}$, which is equivalent to 339.67 K .
(b) The process of ice at $0^{\circ} \mathrm{C}$ turning to water at $0^{\circ} \mathrm{C}$ involves an entropy change of

$$
\frac{Q}{T}=\frac{L_{F} m}{273.15 \mathrm{~K}}=14.6 \mathrm{~J} / \mathrm{K}
$$

using Eq. 20-2.
(c) The process of $m=0.012 \mathrm{~kg}$ of water warming from $0^{\circ} \mathrm{C}$ to $66.5^{\circ} \mathrm{C}$ involves an entropy change of

$$
\int_{273.15}^{339.67} \frac{\mathrm{cmd} T}{T}=c m \ln \left(\frac{339.67}{273.15}\right)=11.0 \mathrm{~J} / \mathrm{K}
$$

using Eq.20-1.
(d) Similarly, the cooling of the original-water involves an entropy change of

$$
\int_{353.15}^{339.67} \frac{\mathrm{~cm}^{\prime} d T}{T}=c m^{\prime} \ln \left(\frac{339.67}{353.15}\right)=-21.2 \mathrm{~J} / \mathrm{K}
$$

(e) The net entropy change in this calorimetry experiment is found by summing the previous results; we find (by using more precise values than those shown above) $\Delta S_{\text {net }}=$ $4.39 \mathrm{~J} / \mathrm{K}$.
54. (a) Starting from $\sum Q=0$ (for calorimetry problems) we can derive (when no phase changes are involved)

$$
T_{f}=\frac{c_{1} m_{1} T_{1}+c_{2} m_{2} T_{2}}{c_{1} m_{1}+c_{2} m_{2}}=40.9^{\circ} \mathrm{C}
$$

which is equivalent to 314 K .
(b) From Eq. 20-1, we have

$$
\Delta S_{\text {copper }}=\int_{353}^{314} \frac{\mathrm{cmd}}{T}=(386)(0.600) \ln \left(\frac{314}{353}\right)=-27.1 \mathrm{~J} / \mathrm{K} .
$$

(c) For water, the change in entropy is

$$
\Delta S_{\text {water }}=\int_{283}^{314} \frac{c m d T}{T}=(4190)(0.0700) \ln \left(\frac{314}{283}\right)=30.5 \mathrm{~J} / \mathrm{K} .
$$

(d) The net result for the system is $(30.5-27.1) \mathrm{J} / \mathrm{K}=3.4 \mathrm{~J} / \mathrm{K}$. (Note: these calculations are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 was used to convert to Kelvins, and all intermediate steps were retained to full calculator accuracy.)
55. For an isothermal ideal gas process, we have $Q=W=n R T \ln \left(V_{f} / V_{i}\right)$. Thus,

$$
\Delta S=Q / T=W / T=n R \ln \left(V_{f} / V_{i}\right)
$$

(a) $V_{f} / V_{i}=(0.800) /(0.200)=4.00, \Delta S=(0.55)(8.31) \ln (4.00)=6.34 \mathrm{~J} / \mathrm{K}$.
(b) $V_{f} / V_{i}=(0.800) /(0.200)=4.00, \Delta S=(0.55)(8.31) \ln (4.00)=6.34 \mathrm{~J} / \mathrm{K}$.
(c) $V_{f} / V_{i}=(1.20) /(0.300)=4.00, \Delta S=(0.55)(8.31) \ln (4.00)=6.34 \mathrm{~J} / \mathrm{K}$.
(d) $V_{f} / V_{i}=(1.20) /(0.300)=4.00, \Delta S=(0.55)(8.31) \ln (4.00)=6.34 \mathrm{~J} / \mathrm{K}$.
56. Eq. 20-4 yields

$$
\Delta \mathrm{S}=n R \ln \left(V_{f} / V_{i}\right)+n C_{V} \ln \left(T_{f} / T_{i}\right)=0+n C_{V} \ln (425 / 380)
$$

where $n=3.20$ and $C_{V}=\frac{3}{2} R$ (Eq. 19-43). This gives $4.46 \mathrm{~J} / \mathrm{K}$.
57. Except for the phase change (which just uses Eq. 20-2), this has some similarities with Sample Problem 20-2. Using constants available in the Chapter 19 tables, we compute

$$
\Delta \mathrm{S}=m\left[c_{\mathrm{ice}} \ln (273 / 253)+\frac{L_{f}}{273}+c_{\text {water }} \ln (313 / 273)\right]=1.18 \times 10^{3} \mathrm{~J} / \mathrm{K}
$$

58. (a) It is a reversible set of processes returning the system to its initial state; clearly, $\Delta S_{\text {net }}=0$.
(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 20-1 applies with $d Q=0$ and yields $\Delta S_{1}=0$.
(c) Since the working substance is an ideal gas, then an isothermal process implies $Q=W$, which further implies (regarding Eq. 20-1) $d Q=p d V$. Therefore,

$$
\int \frac{d Q}{T}=\int \frac{p d V}{\left(\frac{p V}{n R}\right)}=n R \int \frac{d V}{V}
$$

which leads to $\Delta S_{3}=n R \ln (1 / 2)=-23.0 \mathrm{~J} / \mathrm{K}$.
(d) By part (a), $\Delta S_{1}+\Delta S_{2}+\Delta S_{3}=0$. Then, part (b) implies $\Delta S_{2}=-\Delta S_{3}$. Therefore, $\Delta S_{2}=$ $23.0 \mathrm{~J} / \mathrm{K}$.
59. Eq. 20-8 gives

$$
\left|\frac{Q_{\mathrm{to}}}{Q_{\mathrm{from}}}\right|=\frac{T_{\mathrm{to}}}{T_{\text {from }}}=\frac{300 \mathrm{~K}}{4.0 \mathrm{~K}}=75 .
$$

60. (a) The most obvious input-heat step is the constant-volume process. Since the gas is monatomic, we know from Chapter 19 that $C_{V}=\frac{3}{2} R$. Therefore,

$$
Q_{V}=n C_{V} \Delta T=(1.0 \mathrm{~mol})\left(\frac{3}{2}\right)\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(600 \mathrm{~K}-300 \mathrm{~K})=3740 \mathrm{~J} .
$$

Since the heat transfer during the isothermal step is positive, we may consider it also to be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the next part) because $\Delta E_{\text {int }}=0$ for an ideal gas isothermal process (see Eq. 19-45). Borrowing from the part (b) computation, we have

$$
Q_{\text {isotherm }}=n R T_{\mathrm{H}} \ln 2=(1 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(600 \mathrm{~K}) \ln 2=3456 \mathrm{~J} .
$$

Therefore, $Q_{\mathrm{H}}=Q_{V}+Q_{\text {isotherm }}=7.2 \times 10^{3} \mathrm{~J}$.
(b) We consider the sum of works done during the processes (noting that no work is done during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have

$$
W=n R T_{\mathrm{H}} \ln \left(\frac{V_{\max }}{V_{\min }}\right)+p_{\min }\left(V_{\min }-V_{\max }\right)
$$

where (by the gas law in ratio form, as illustrated in Sample Problem 19-1) the volume ratio is

$$
\frac{V_{\max }}{V_{\min }}=\frac{T_{\mathrm{H}}}{T_{\mathrm{L}}}=\frac{600 \mathrm{~K}}{300 \mathrm{~K}}=2
$$

Thus, the net work is

$$
\begin{aligned}
W & =n R T_{\mathrm{H}} \ln 2+p_{\min } V_{\min }\left(1-\frac{V_{\max }}{V_{\min }}\right)=n R T_{\mathrm{H}} \ln 2+n R T_{\mathrm{L}}(1-2)=n R\left(T_{\mathrm{H}} \ln 2-T_{\mathrm{L}}\right) \\
& =(1 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)((600 \mathrm{~K}) \ln 2-(300 \mathrm{~K})) \\
& =9.6 \times 10^{2} \mathrm{~J} .
\end{aligned}
$$

(c) Eq. 20-9 gives

$$
\varepsilon=\frac{W}{Q_{\mathrm{H}}}=0.134 \approx 13 \% .
$$

61. We adapt the discussion of $\S 20-7$ to 3 and 5 particles (as opposed to the 6 particle situation treated in that section).
(a) The least multiplicity configuration is when all the particles are in the same half of the box. In this case, using Eq. 20-18, we have

$$
W=\frac{3!}{3!0!}=1
$$

(b) Similarly for box $B, W=5!/(5!0!)=1$ in the "least" case.
(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on the other. Thus,

$$
W=\frac{3!}{2!1!}=3 .
$$

(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on the other. Thus,

$$
W=\frac{5!}{3!2!}=10
$$

(e) We use Eq. 20-19 with our result in part (c) to obtain

$$
S=k \ln W=\left(1.38 \times 10^{-23}\right) \ln 3=1.5 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

(f) Similarly for the 5 particle case (using the result from part (d)), we find

$$
S=k \ln 10=3.2 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

62. A metric ton is 1000 kg , so that the heat generated by burning 380 metric tons during one hour is $(380000 \mathrm{~kg})(28 \mathrm{MJ} / \mathrm{kg})=10.6 \times 10^{6} \mathrm{MJ}$. The work done in one hour is

$$
W=(750 \mathrm{MJ} / \mathrm{s})(3600 \mathrm{~s})=2.7 \times 10^{6} \mathrm{MJ}
$$

where we use the fact that a Watt is a Joule-per-second. By Eq. 20-9, the efficiency is

$$
\varepsilon=\frac{2.7 \times 10^{6} \mathrm{MJ}}{10.6 \times 10^{6} \mathrm{MJ}}=0.253=25 \% .
$$

63. Since the volume of the monatomic ideal gas is kept constant it does not do any work in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial energy: $d Q=d E_{\mathrm{int}}=\frac{3}{2} n R d T$. Thus

$$
\begin{aligned}
\Delta S & =\int \frac{d Q}{T}=\int_{T_{i}}^{T_{f}} \frac{(3 n R / 2) d T}{T}=\frac{3}{2} n R \ln \left(\frac{T_{f}}{T_{i}}\right)=\frac{3}{2}(1.00 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \ln \left(\frac{400 \mathrm{~K}}{300 \mathrm{~K}}\right) \\
& =3.59 \mathrm{~J} / \mathrm{K} .
\end{aligned}
$$

64. With the pressure kept constant,

$$
d Q=n C_{p} d T=n\left(C_{V}+R\right) d T=\left(\frac{3}{2} n R+n R\right) d T=\frac{5}{2} n R d T,
$$

so we need to replace the factor $3 / 2$ in the last problem by $5 / 2$. The rest is the same. Thus the answer now is

$$
\Delta S=\frac{5}{2} n R \ln \left(\frac{T_{f}}{T_{i}}\right)=\frac{5}{2}(1.00 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \ln \left(\frac{400 \mathrm{~K}}{300 \mathrm{~K}}\right)=5.98 \mathrm{~J} / \mathrm{K} .
$$

65. The change in entropy in transferring a certain amount of heat Q from a heat reservoir at T_{1} to another one at T_{2} is $\Delta S=\Delta S_{1}+\Delta S_{2}=Q\left(1 / T_{2}-1 / T_{1}\right)$.
(a) $\Delta S=(260 \mathrm{~J})(1 / 100 \mathrm{~K}-1 / 400 \mathrm{~K})=1.95 \mathrm{~J} / \mathrm{K}$.
(b) $\Delta S=(260 \mathrm{~J})(1 / 200 \mathrm{~K}-1 / 400 \mathrm{~K})=0.650 \mathrm{~J} / \mathrm{K}$.
(c) $\Delta S=(260 \mathrm{~J})(1 / 300 \mathrm{~K}-1 / 400 \mathrm{~K})=0.217 \mathrm{~J} / \mathrm{K}$.
(d) $\Delta S=(260 \mathrm{~J})(1 / 360 \mathrm{~K}-1 / 400 \mathrm{~K})=0.072 \mathrm{~J} / \mathrm{K}$.
(e) We see that as the temperature difference between the two reservoirs decreases, so does the change in entropy.
66. (a) Processes 1 and 2 both require the input of heat, which is denoted Q_{H}. Noting that rotational degrees of freedom are not involved, then, from the discussion in Chapter 19, $C_{V}=3 R / 2, C_{p}=5 R / 2$, and $\gamma=5 / 3$. We further note that since the working substance is an ideal gas, process 2 (being isothermal) implies $Q_{2}=W_{2}$. Finally, we note that the volume ratio in process 2 is simply $8 / 3$. Therefore,

$$
Q_{\mathrm{H}}=Q_{1}+Q_{2}=n C_{V}\left(T^{\prime}-T\right)+n R T^{\prime} \ln \frac{8}{3}
$$

which yields (for $T=300 \mathrm{~K}$ and $T^{\prime}=800 \mathrm{~K}$) the result $Q_{\mathrm{H}}=25.5 \times 10^{3} \mathrm{~J}$.
(b) The net work is the net heat $\left(Q_{1}+Q_{2}+Q_{3}\right)$. We find Q_{3} from $n C_{p}\left(T-T^{\prime}\right)=-20.8 \times$ $10^{3} \mathrm{~J}$. Thus, $W=4.73 \times 10^{3} \mathrm{~J}$.
(c) Using Eq. 20-9, we find that the efficiency is

$$
\varepsilon=\frac{|W|}{\left|Q_{\mathrm{H}}\right|}=\frac{4.73 \times 10^{3}}{25.5 \times 10^{3}}=0.185 \text { or } 18.5 \% .
$$

67. The Carnot efficiency (Eq. 20-11) depends linearly on T_{L} so that we can take a derivative

$$
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}} \Rightarrow \frac{d \varepsilon}{d T_{\mathrm{L}}}=-\frac{1}{T_{\mathrm{H}}}
$$

and quickly get to the result. With $d \varepsilon \rightarrow \Delta \varepsilon=0.100$ and $T_{\mathrm{H}}=400 \mathrm{~K}$, we find $d T_{\mathrm{L}} \rightarrow \Delta T_{\mathrm{L}}$ $=-40 \mathrm{~K}$.
68. (a) Starting from $\sum Q=0$ (for calorimetry problems) we can derive (when no phase changes are involved)

$$
T_{f}=\frac{c_{1} m_{1} T_{1}+c_{2} m_{2} T_{2}}{c_{1} m_{1}+c_{2} m_{2}}=-44.2^{\circ} \mathrm{C}
$$

which is equivalent to 229 K .
(b) From Eq. 20-1, we have

$$
\Delta S_{\text {tungsten }}=\int_{303}^{229} \frac{\mathrm{cmd}}{T}=(134)(0.045) \ln \left(\frac{229}{303}\right)=-1.69 \mathrm{~J} / \mathrm{K} .
$$

(c) Also,

$$
\Delta S_{\text {silver }}=\int_{153}^{229} \frac{\mathrm{cmd}}{T}=(236)(0.0250) \ln \left(\frac{229}{153}\right)=2.38 \mathrm{~J} / \mathrm{K} .
$$

(d) The net result for the system is $(2.38-1.69) \mathrm{J} / \mathrm{K}=0.69 \mathrm{~J} / \mathrm{K}$. (Note: these calculations are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 was used to convert to Kelvins, and all intermediate steps were retained to full calculator accuracy.)
69. (a) We use Eq. 20-14. For configuration A

$$
W_{A}=\frac{N!}{(N / 2)!(N / 2)!}=\frac{50!}{(25!)(25!)}=1.26 \times 10^{14} .
$$

(b) For configuration B

$$
W_{B}=\frac{N!}{(0.6 N)!(0.4 N)!}=\frac{50!}{[0.6(50)]![0.4(50)]!}=4.71 \times 10^{13} .
$$

(c) Since all microstates are equally probable,

$$
f=\frac{W_{B}}{W_{A}}=\frac{1265}{3393} \approx 0.37
$$

We use these formulas for $N=100$. The results are
(d) $W_{A}=\frac{N!}{(N / 2)!(N / 2)!}=\frac{100!}{(50!)(50!)}=1.01 \times 10^{29}$.
(e) $W_{B}=\frac{N!}{(0.6 N)!(0.4 N)!}=\frac{100!}{[0.6(100)]![0.4(100)]!}=1.37 \times 10^{28}$.
(f) and $f W_{B} / W_{A} \approx 0.14$.

Similarly, using the same formulas for $N=200$, we obtain
(g) $W_{A}=9.05 \times 10^{58}$,
(h) $W_{B}=1.64 \times 10^{57}$,
(i) and $f=0.018$.
(j) We see from the calculation above that f decreases as N increases, as expected.
70. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have

$$
H=k A \frac{T_{H}-T_{C}}{L}=(401)\left(\pi(0.02)^{2}\right) 270 / 1.50
$$

which yields $H=90.7 \mathrm{~J} / \mathrm{s}$. Using Eq. 20-2, this is associated with an entropy rate-ofdecrease of the high temperature reservoir (at 573 K) equal to $\Delta S / t=-90.7 / 573=-0.158$ $(\mathrm{J} / \mathrm{K}) / \mathrm{s}$. And it is associated with an entropy rate-of-increase of the low temperature reservoir (at 303 K) equal to $\Delta S / t=+90.7 / 303=0.299(\mathrm{~J} / \mathrm{K}) / \mathrm{s}$. The net result is $0.299-$ $0.158=0.141(\mathrm{~J} / \mathrm{K}) / \mathrm{s}$.
71. (a) Eq. 20-12 gives $K=560 / 150=3.73$.
(b) Energy conservation requires the exhaust heat to be $560+150=710 \mathrm{~J}$.
72. (a) From Eq. 20-1, we infer $Q=\int T d S$, which corresponds to the "area under the curve" in a $T-S$ diagram. Thus, since the area of a rectangle is (height) \times (width), we have $Q_{1 \rightarrow 2}=(350)(2.00)=700 \mathrm{~J}$.
(b) With no "area under the curve" for process $2 \rightarrow 3$, we conclude $Q_{2 \rightarrow 3}=0$.
(c) For the cycle, the (net) heat should be the "area inside the figure," so using the fact that the area of a triangle is $1 / 2$ (base) \times (height), we find

$$
Q_{\mathrm{net}}=\frac{1}{2}(2.00)(50)=50 \mathrm{~J}
$$

(d) Since we are dealing with an ideal gas (so that $\Delta E_{\text {int }}=0$ in an isothermal process), then

$$
W_{1 \rightarrow 2}=Q_{1 \rightarrow 2}=700 \mathrm{~J} .
$$

(e) Using Eq. 19-14 for the isothermal work, we have

$$
W_{l \rightarrow 2}=n R T \ln \frac{V_{2}}{V_{1}} .
$$

where $T=350 \mathrm{~K}$. Thus, if $V_{1}=0.200 \mathrm{~m}^{3}$, then we obtain

$$
V_{2}=V_{1} \exp (W / n R T)=(0.200) e^{0.12}=0.226 \mathrm{~m}^{3} .
$$

(f) Process $2 \rightarrow 3$ is adiabatic; Eq. 19-56 applies with $\gamma=5 / 3$ (since only translational degrees of freedom are relevant, here).

$$
T_{2} V_{2}^{\gamma-1}=T_{3} V_{3}^{\gamma-1}
$$

This yields $V_{3}=0.284 \mathrm{~m}^{3}$.
(g) As remarked in part (d), $\Delta E_{\text {int }}=0$ for process $1 \rightarrow 2$.
(h) We find the change in internal energy from Eq. 19-45 (with $C_{V}=\frac{3}{2} R$):

$$
\Delta E_{\mathrm{int}}=n C_{V}\left(T_{3}-T_{2}\right)=-1.25 \times 10^{3} \mathrm{~J}
$$

(i) Clearly, the net change of internal energy for the entire cycle is zero. This feature of a closed cycle is as true for a $T-S$ diagram as for a $p-V$ diagram.
(j) For the adiabatic $(2 \rightarrow 3)$ process, we have $W=-\Delta E_{\text {int }}$. Therefore, $W=1.25 \times 10^{3} \mathrm{~J}$. Its positive value indicates an expansion.
73. (a) Eq. 20-13 can be written as $\left|Q_{H}\right|=\left|Q_{L}\right|\left(1+1 / K_{C}\right)=(35)\left(1+\frac{1}{4.6}\right)=42.6 \mathrm{~kJ}$.
(b) Similarly, Eq. 20-12 leads to $|W|=\left|Q_{L}\right| / K=35 / 4.6=7.61 \mathrm{~kJ}$.
74. Since the inventor's claim implies that less heat (typically from burning fuel) is needed to operate his engine than, say, a Carnot engine (for the same magnitude of net work), then $Q_{H}{ }^{\prime}<Q_{H}$ (See Fig. 20-34(a)) which implies that the Carnot (ideal refrigerator) unit is delivering more heat to the high temperature reservoir than engine X draws from it. This (using also energy conservation) immediately implies Fig. 20-34(b) which violates the second law.

1. (a) With a understood to mean the magnitude of acceleration, Newton's second and third laws lead to

$$
m_{2} a_{2}=m_{1} a_{1} \Rightarrow m_{2}=\frac{\left(6.3 \times 10^{-7} \mathrm{~kg}\right)\left(7.0 \mathrm{~m} / \mathrm{s}^{2}\right)}{9.0 \mathrm{~m} / \mathrm{s}^{2}}=4.9 \times 10^{-7} \mathrm{~kg}
$$

(b) The magnitude of the (only) force on particle 1 is

$$
F=m_{1} a_{1}=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}=\left(8.99 \times 10^{9}\right) \frac{|q|^{2}}{0.0032^{2}} .
$$

Inserting the values for m_{1} and a_{1} (see part (a)) we obtain $|q|=7.1 \times 10^{-11} \mathrm{C}$.
2. The magnitude of the mutual force of attraction at $r=0.120 \mathrm{~m}$ is

$$
F=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}=\left(8.99 \times 10^{9}\right) \frac{\left(3.00 \times 10^{-6}\right)\left(1.50 \times 10^{-6}\right)}{0.120^{2}}=2.81 \mathrm{~N} .
$$

3. Eq. 21-1 gives Coulomb's Law, $F=k \frac{\left|q_{1}\right| q_{2} \mid}{r^{2}}$, which we solve for the distance:

$$
r=\sqrt{\frac{k\left|q_{1}\right|\left|q_{2}\right|}{F}}=\sqrt{\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)\left(47.0 \times 10^{-6} \mathrm{C}\right)}{5.70 \mathrm{~N}}}=1.39 \mathrm{~m} .
$$

4. The fact that the spheres are identical allows us to conclude that when two spheres are in contact, they share equal charge. Therefore, when a charged sphere (q) touches an uncharged one, they will (fairly quickly) each attain half that charge ($q / 2$). We start with spheres 1 and 2 each having charge q and experiencing a mutual repulsive force $F=k q^{2} / r^{2}$. When the neutral sphere 3 touches sphere 1 , sphere 1 's charge decreases to $q / 2$. Then sphere 3 (now carrying charge $q / 2$) is brought into contact with sphere 2 , a total amount of $q / 2+q$ becomes shared equally between them. Therefore, the charge of sphere 3 is $3 q / 4$ in the final situation. The repulsive force between spheres 1 and 2 is finally

$$
F^{\prime}=k \frac{(q / 2)(3 q / 4)}{r^{2}}=\frac{3}{8} k \frac{q^{2}}{r^{2}}=\frac{3}{8} F \Rightarrow \frac{F^{\prime}}{F}=\frac{3}{8}=0.375 .
$$

5. The magnitude of the force of either of the charges on the other is given by

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q(Q-q)}{r^{2}}
$$

where r is the distance between the charges. We want the value of q that maximizes the function $f(q)=q(Q-q)$. Setting the derivative $d f / d q$ equal to zero leads to $Q-2 q=0$, or $q=Q / 2$. Thus, $q / Q=0.500$.
6. For ease of presentation (of the computations below) we assume $Q>0$ and $q<0$ (although the final result does not depend on this particular choice).
(a) The x-component of the force experienced by $q_{1}=Q$ is

$$
F_{1 x}=\frac{1}{4 \pi \varepsilon_{0}}\left(-\frac{(Q)(Q)}{(\sqrt{2} a)^{2}} \cos 45^{\circ}+\frac{(|q|)(Q)}{a^{2}}\right)=\frac{Q|q|}{4 \pi \varepsilon_{0} a^{2}}\left(-\frac{Q /|q|}{2 \sqrt{2}}+1\right)
$$

which (upon requiring $F_{1 x}=0$) leads to $Q /|q|=2 \sqrt{2}$, or $Q / q=-2 \sqrt{2}=-2.83$.
(b) The y-component of the net force on $q_{2}=q$ is

$$
F_{2 y}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{|q|^{2}}{(\sqrt{2} a)^{2}} \sin 45^{\circ}-\frac{(|q|)(Q)}{a^{2}}\right)=\frac{|q|^{2}}{4 \pi \varepsilon_{0} a^{2}}\left(\frac{1}{2 \sqrt{2}}-\frac{Q}{|q|}\right)
$$

which (if we demand $F_{2 y}=0$) leads to $Q / q=-1 / 2 \sqrt{2}$. The result is inconsistent with that obtained in part (a). Thus, we are unable to construct an equilibrium configuration with this geometry, where the only forces present are given by Eq. 21-1.
7. The force experienced by q_{3} is

$$
\vec{F}_{3}=\vec{F}_{31}+\vec{F}_{32}+\vec{F}_{34}=\frac{1}{4 \pi \varepsilon_{0}}\left(-\frac{\left|q_{3}\right|\left|q_{1}\right|}{a^{2}} \hat{\mathrm{j}}+\frac{\left|q_{3}\right|\left|q_{2}\right|}{(\sqrt{2} a)^{2}}\left(\cos 45^{\circ} \hat{\mathrm{i}}+\sin 45^{\circ} \hat{\mathrm{j}}\right)+\frac{\left|q_{3}\right|\left|q_{4}\right|}{a^{2}} \hat{\mathrm{i}}\right)
$$

(a) Therefore, the x-component of the resultant force on q_{3} is

$$
F_{3 x}=\frac{\left|q_{3}\right|}{4 \pi \varepsilon_{0} a^{2}}\left(\frac{\left|q_{2}\right|}{2 \sqrt{2}}+\left|q_{4}\right|\right)=\left(8.99 \times 10^{9}\right) \frac{2\left(1.0 \times 10^{-7}\right)^{2}}{(0.050)^{2}}\left(\frac{1}{2 \sqrt{2}}+2\right)=0.17 \mathrm{~N}
$$

(b) Similarly, the y-component of the net force on q_{3} is

$$
F_{3 y}=\frac{\left|q_{3}\right|}{4 \pi \varepsilon_{0} a^{2}}\left(-\left|q_{1}\right|+\frac{\left|q_{2}\right|}{2 \sqrt{2}}\right)=\left(8.99 \times 10^{9}\right) \frac{2\left(1.0 \times 10^{-7}\right)^{2}}{(0.050)^{2}}\left(-1+\frac{1}{2 \sqrt{2}}\right)=-0.046 \mathrm{~N} .
$$

8. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1,

$$
k \frac{\left|q_{1}\right| Q}{\left(-a-\frac{a}{2}\right)^{2}}=k \frac{\left|q_{2}\right| Q}{\left(a-\frac{a}{2}\right)^{2}}
$$

which leads to $\left|q_{1}\right|=9.0\left|q_{2}\right|$. Since Q is located between q_{1} and q_{2}, we conclude q_{1} and q_{2} are like-sign. Consequently, $q_{1} / q_{2}=9.0$.
(b) Now we have

$$
k \frac{\left|q_{1}\right| Q}{\left(-a-\frac{3 a}{2}\right)^{2}}=k \frac{\left|q_{2}\right| Q}{\left(a-\frac{3 a}{2}\right)^{2}}
$$

which yields $\left|q_{1}\right|=25\left|q_{2}\right|$. Now, Q is not located between q_{1} and q_{2}, one of them must push and the other must pull. Thus, they are unlike-sign, so $q_{1} / q_{2}=-25$.
9. We assume the spheres are far apart. Then the charge distribution on each of them is spherically symmetric and Coulomb's law can be used. Let q_{1} and q_{2} be the original charges. We choose the coordinate system so the force on q_{2} is positive if it is repelled by q_{1}. Then, the force on q_{2} is

$$
F_{a}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}=-k \frac{q_{1} q_{2}}{r^{2}}
$$

where $r=0.500 \mathrm{~m}$. The negative sign indicates that the spheres attract each other. After the wire is connected, the spheres, being identical, acquire the same charge. Since charge is conserved, the total charge is the same as it was originally. This means the charge on each sphere is $\left(q_{1}+q_{2}\right) / 2$. The force is now one of repulsion and is given by

$$
F_{b}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left(\frac{q_{1}+q_{2}}{2}\right)\left(\frac{q_{1}+q_{2}}{2}\right)}{r^{2}}=k \frac{\left(q_{1}+q_{2}\right)^{2}}{4 r^{2}} .
$$

We solve the two force equations simultaneously for q_{1} and q_{2}. The first gives the product

$$
q_{1} q_{2}=-\frac{r^{2} F_{a}}{k}=-\frac{(0.500 \mathrm{~m})^{2}(0.108 \mathrm{~N})}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=-3.00 \times 10^{-12} \mathrm{C}^{2},
$$

and the second gives the sum

$$
q_{1}+q_{2}=2 r \sqrt{\frac{F_{b}}{k}}=2(0.500 \mathrm{~m}) \sqrt{\frac{0.0360 \mathrm{~N}}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}}=2.00 \times 10^{-6} \mathrm{C}
$$

where we have taken the positive root (which amounts to assuming $q_{1}+q_{2} \geq 0$). Thus, the product result provides the relation

$$
q_{2}=\frac{-\left(3.00 \times 10^{-12} \mathrm{C}^{2}\right)}{q_{1}}
$$

which we substitute into the sum result, producing

$$
q_{1}-\frac{3.00 \times 10^{-12} \mathrm{C}^{2}}{q_{1}}=2.00 \times 10^{-6} \mathrm{C}
$$

Multiplying by q_{1} and rearranging, we obtain a quadratic equation

$$
q_{1}^{2}-\left(2.00 \times 10^{-6} \mathrm{C}\right) q_{1}-3.00 \times 10^{-12} \mathrm{C}^{2}=0 .
$$

The solutions are

$$
q_{1}=\frac{2.00 \times 10^{-6} \mathrm{C} \pm \sqrt{\left(-2.00 \times 10^{-6} \mathrm{C}\right)^{2}-4\left(-3.00 \times 10^{-12} \mathrm{C}^{2}\right)}}{2}
$$

If the positive sign is used, $q_{1}=3.00 \times 10^{-6} \mathrm{C}$, and if the negative sign is used, $q_{1}=-1.00 \times 10^{-6} \mathrm{C}$.
(a) Using $q_{2}=\left(-3.00 \times 10^{-12}\right) / q_{1}$ with $q_{1}=3.00 \times 10^{-6} \mathrm{C}$, we get $q_{2}=-1.00 \times 10^{-6} \mathrm{C}$.
(b) If we instead work with the $q_{1}=-1.00 \times 10^{-6} \mathrm{C}$ root, then we find $q_{2}=3.00 \times 10^{-6} \mathrm{C}$.

Note that since the spheres are identical, the solutions are essentially the same: one sphere originally had charge $-1.00 \times 10^{-6} \mathrm{C}$ and the other had charge $+3.00 \times 10^{-6} \mathrm{C}$.

What if we had not made the assumption, above, that $q_{1}+q_{2} \geq 0$? If the signs of the charges were reversed (so $q_{1}+q_{2}<0$), then the forces remain the same, so a charge of $+1.00 \times 10^{-6} \mathrm{C}$ on one sphere and a charge of $-3.00 \times 10^{-6} \mathrm{C}$ on the other also satisfies the conditions of the problem.
10. With rightwards positive, the net force on q_{3} is

$$
F_{3}=F_{13}+F_{23}=k \frac{q_{1} q_{3}}{\left(L_{12}+L_{23}\right)^{2}}+k \frac{q_{2} q_{3}}{L_{23}^{2}} .
$$

We note that each term exhibits the proper sign (positive for rightward, negative for leftward) for all possible signs of the charges. For example, the first term (the force exerted on q_{3} by q_{1}) is negative if they are unlike charges, indicating that q_{3} is being pulled toward q_{1}, and it is positive if they are like charges (so q_{3} would be repelled from q_{1}). Setting the net force equal to zero $L_{23}=L_{12}$ and canceling k, q_{3} and L_{12} leads to

$$
\frac{q_{1}}{4.00}+q_{2}=0 \Rightarrow \frac{q_{1}}{q_{2}}=-4.00 .
$$

11. (a) Eq. 21-1 gives

$$
F_{12}=k \frac{q_{1} q_{2}}{d^{2}}=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{\left(20.0 \times 10^{-6} \mathrm{C}\right)^{2}}{(1.50 \mathrm{~m})^{2}}=1.60 \mathrm{~N} .
$$

(b) A force diagram is shown as well as our choice of y axis (the dashed line).

The y axis is meant to bisect the line between q_{2} and q_{3} in order to make use of the symmetry in the problem (equilateral triangle of side length d, equal-magnitude charges $q_{1}=q_{2}=q_{3}=q$). We see that the resultant force is along this symmetry axis, and we obtain

$$
\left|F_{y}\right|=2\left(k \frac{q^{2}}{d^{2}}\right) \cos 30^{\circ}=2.77 \mathrm{~N} .
$$

12. (a) According to the graph, when q_{3} is very close to q_{1} (at which point we can consider the force exerted by particle 1 on 3 to dominate) there is a (large) force in the positive x direction. This is a repulsive force, then, so we conclude q_{1} has the same sign as q_{3}. Thus, q_{3} is a positive-valued charge.
(b) Since the graph crosses zero and particle 3 is between the others, q_{1} must have the same sign as q_{2}, which means it is also positive-valued. We note that it crosses zero at r $=0.020 \mathrm{~m}$ (which is a distance $d=0.060 \mathrm{~m}$ from q_{2}). Using Coulomb's law at that point, we have

$$
\frac{q_{1} q_{3}}{4 \pi \varepsilon_{0} r^{2}}=\frac{q_{3} q_{2}}{4 \pi \varepsilon_{0} d^{2}} \quad \Rightarrow \quad q_{2}=\left(\frac{d^{2}}{r^{2}}\right) q_{1}=9.0 q_{1}
$$

or $q_{2} / q_{1}=9.0$.
13. (a) There is no equilibrium position for q_{3} between the two fixed charges, because it is being pulled by one and pushed by the other (since q_{1} and q_{2} have different signs); in this region this means the two force arrows on q_{3} are in the same direction and cannot cancel. It should also be clear that off-axis (with the axis defined as that which passes through the two fixed charges) there are no equilibrium positions. On the semi-infinite region of the axis which is nearest q_{2} and furthest from q_{1} an equilibrium position for q_{3} cannot be found because $\left|q_{1}\right|<\left|q_{2}\right|$ and the magnitude of force exerted by q_{2} is everywhere (in that region) stronger than that exerted by q_{1} on q_{3}. Thus, we must look in the semi-infinite region of the axis which is nearest q_{1} and furthest from q_{2}, where the net force on q_{3} has magnitude

$$
\left|k \frac{\left|q_{1} q_{3}\right|}{x^{2}}-k \frac{\left|q_{2} q_{3}\right|}{(d+x)^{2}}\right|
$$

with $d=10 \mathrm{~cm}$ and x assumed positive. We set this equal to zero, as required by the problem, and cancel k and q_{3}. Thus, we obtain

$$
\frac{\left|q_{1}\right|}{x^{2}}-\frac{\left|q_{2}\right|}{(d+x)^{2}}=0 \Rightarrow\left(\frac{d+x}{x}\right)^{2}=\left|\frac{q_{2}}{q_{1}}\right|=3
$$

which yields (after taking the square root)

$$
\frac{d+x}{x}=\sqrt{3} \Rightarrow x=\frac{d}{\sqrt{3}-1} \approx 14 \mathrm{~cm}
$$

for the distance between q_{3} and q_{1}.
(b) As stated above, $y=0$.
14. Since the forces involved are proportional to q, we see that the essential difference between the two situations is $F_{a} \propto q_{B}+q_{C}$ (when those two charges are on the same side) versus $F_{b} \propto-q_{B}+q_{C}$ (when they are on opposite sides). Setting up ratios, we have

$$
\frac{F_{a}}{F_{b}}=\frac{q_{B}+q_{C}}{-q_{B}+q_{C}} \Rightarrow \frac{20.14}{-2.877}=\frac{1+r}{-1+r}
$$

where in the last step we have canceled (on the left hand side) $10^{-24} \mathrm{~N}$ from the numerator and the denominator, and (on the right hand side) introduced the symbol $r=q_{C} / q_{B}$. After noting that the ratio on the left hand side is very close to -7 , then, after a couple of algebra steps, we are led to

$$
r=\frac{7+1}{7-1}=\frac{8}{6}=1.333 .
$$

15. (a) The distance between q_{1} and q_{2} is

$$
r_{12}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-0.020-0.035)^{2}+(0.015-0.005)^{2}}=0.056 \mathrm{~m} .
$$

The magnitude of the force exerted by q_{1} on q_{2} is

$$
F_{21}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(3.0 \times 10^{-6}\right)\left(4.0 \times 10^{-6}\right)}{(0.056)^{2}}=35 \mathrm{~N} .
$$

(b) The vector \vec{F}_{21} is directed towards q_{1} and makes an angle θ with the $+x$ axis, where

$$
\theta=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)=\tan ^{-1}\left(\frac{1.5-0.5}{-2.0-3.5}\right)=-10.3^{\circ} \approx-10^{\circ} .
$$

(c) Let the third charge be located at (x_{3}, y_{3}), a distance r from q_{2}. We note that q_{1}, q_{2} and q_{3} must be collinear; otherwise, an equilibrium position for any one of them would be impossible to find. Furthermore, we cannot place q_{3} on the same side of q_{2} where we also find q_{1}, since in that region both forces (exerted on q_{2} by q_{3} and q_{1}) would be in the same direction (since q_{2} is attracted to both of them). Thus, in terms of the angle found in part (a), we have $x_{3}=x_{2}-r \cos \theta$ and $y_{3}=y_{2}-r \sin \theta$ (which means $y_{3}>y_{2}$ since θ is negative). The magnitude of force exerted on q_{2} by q_{3} is $F_{23}=k\left|q_{2} q_{3}\right| / r^{2}$, which must equal that of the force exerted on it by q_{1} (found in part (a)). Therefore,

$$
k \frac{\left|q_{2} q_{3}\right|}{r^{2}}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}} \Rightarrow r=r_{12} \sqrt{\frac{q_{3}}{q_{1}}}=0.0645 \mathrm{~cm} .
$$

Consequently, $x_{3}=x_{2}-r \cos \theta=-2.0 \mathrm{~cm}-(6.45 \mathrm{~cm}) \cos \left(-10^{\circ}\right)=-8.4 \mathrm{~cm}$,
(d) and $y_{3}=y_{2}-r \sin \theta=1.5 \mathrm{~cm}-(6.45 \mathrm{~cm}) \sin \left(-10^{\circ}\right)=2.7 \mathrm{~cm}$.
16. (a) For the net force to be in the $+x$ direction, the y components of the individual forces must cancel. The angle of the force exerted by the $q_{1}=40 \mu \mathrm{C}$ charge on $q_{3}=20 \mu \mathrm{C}$ is 45°, and the angle of force exerted on q_{3} by Q is at $-\theta$ where

$$
\theta=\tan ^{-1}\left(\frac{2.0}{3.0}\right)=33.7^{\circ}
$$

Therefore, cancellation of y components requires

$$
k \frac{q_{1} q_{3}}{(0.02 \sqrt{2})^{2}} \sin 45^{\circ}=k \frac{|Q| q_{3}}{\left(\sqrt{(0.030)^{2}+(0.020)^{2}}\right)^{2}} \sin \theta
$$

from which we obtain $|Q|=83 \mu \mathrm{C}$. Charge Q is "pulling" on q_{3}, so (since $q_{3}>0$) we conclude $Q=-83 \mu \mathrm{C}$.
(b) Now, we require that the x components cancel, and we note that in this case, the angle of force on q_{3} exerted by Q is $+\theta$ (it is repulsive, and Q is positive-valued). Therefore,

$$
k \frac{q_{1} q_{3}}{(0.02 \sqrt{2})^{2}} \cos 45^{\circ}=k \frac{Q q_{3}}{\left(\sqrt{(0.030)^{2}+(0.020)^{2}}\right)^{2}} \cos \theta
$$

from which we obtain $Q=55.2 \mu \mathrm{C} \approx 55 \mu \mathrm{C}$.
17. (a) If the system of three charges is to be in equilibrium, the force on each charge must be zero. The third charge q_{3} must lie between the other two or else the forces acting on it due to the other charges would be in the same direction and q_{3} could not be in equilibrium. Suppose q_{3} is at a distance x from q, and $L-x$ from $4.00 q$. The force acting on it is then given by

$$
F_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q q_{3}}{x^{2}}-\frac{4 q q_{3}}{(L-x)^{2}}\right)
$$

where the positive direction is rightward. We require $F_{3}=0$ and solve for x. Canceling common factors yields $1 / x^{2}=4 /(L-x)^{2}$ and taking the square root yields $1 / x=2 /(L-x)$. The solution is $x=L / 3$.

The force on q is

$$
F_{q}=\frac{-1}{4 \pi \varepsilon_{0}}\left(\frac{q q_{3}}{x^{2}}+\frac{4.00 q^{2}}{L^{2}}\right) .
$$

The signs are chosen so that a negative force value would cause q to move leftward. We require $F_{q}=0$ and solve for q_{3} :

$$
q_{3}=-\frac{4 q x^{2}}{L^{2}}=-\frac{4}{9} q \Rightarrow \frac{q_{3}}{q}=-\frac{4}{9}=-0.444
$$

where $x=L / 3$ is used. We may easily verify that the force on $4.00 q$ also vanishes:

$$
F_{4 q}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q^{2}}{L^{2}}+\frac{4 q q_{0}}{(L-x)^{2}}\right)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q^{2}}{L^{2}}+\frac{4(-4 / 9) q^{2}}{(4 / 9) L^{2}}\right)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q^{2}}{L^{2}}-\frac{4 q^{2}}{L^{2}}\right)=0
$$

(b) As seen above, q_{3} is located at $x=L / 3$. With $L=9.00 \mathrm{~cm}$, we have $x=3.00 \mathrm{~cm}$.
(c) Similarly, the y coordinate of q_{3} is $y=0$.
18. (a) We note that $\cos \left(30^{\circ}\right)=\frac{1}{2} \sqrt{3}$, so that the dashed line distance in the figure is $r=2 d / \sqrt{3}$. We net force on q_{1} due to the two charges q_{3} and q_{4} (with $\left|q_{3}\right|=\left|q_{4}\right|=1.60 \times$ $10^{-19} \mathrm{C}$) on the y axis has magnitude

$$
2 \frac{\left|q_{1} q_{3}\right|}{4 \pi \varepsilon_{0} r^{2}} \cos \left(30^{\circ}\right)=\frac{3 \sqrt{3}\left|q_{1} q_{3}\right|}{16 \pi \varepsilon_{0} d^{2}} .
$$

This must be set equal to the magnitude of the force exerted on q_{1} by $q_{2}=8.00 \times 10^{-19} \mathrm{C}$ $=5.00\left|q_{3}\right|$ in order that its net force be zero:

$$
\frac{3 \sqrt{3}\left|q_{1} q_{3}\right|}{16 \pi \varepsilon_{0} d^{2}}=\frac{\left|q_{1} q_{2}\right|}{4 \pi \varepsilon_{0}(D+d)^{2}} \Rightarrow \quad D=d\left(2 \sqrt{\frac{5}{3 \sqrt{3}}}-1\right)=0.9245 d
$$

Given $d=2.00 \mathrm{~cm}$, then this leads to $D=1.92 \mathrm{~cm}$.
(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the charges on the y axis. To offset this, the force exerted by q_{2} must be made stronger, so that it must be brought closer to q_{1} (keep in mind that Coulomb's law is inversely proportional to distance-squared). Thus, D must be decreased.
19. The charge $d q$ within a thin shell of thickness $d r$ is $\rho A d r$ where $A=4 \pi r^{2}$. Thus, with $\rho=b / r$, we have

$$
q=\int d q=4 \pi b \int_{r_{1}}^{r_{2}} r d r=2 \pi b\left(r_{2}^{2}-r_{1}^{2}\right) .
$$

With $b=3.0 \mu \mathrm{C} / \mathrm{m}^{2}, r_{2}=0.06 \mathrm{~m}$ and $r_{1}=0.04 \mathrm{~m}$, we obtain $q=0.038 \mu \mathrm{C}=3.8 \times 10^{-8} \mathrm{C}$.
20. If θ is the angle between the force and the x-axis, then

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+d^{2}}}
$$

We note that, due to the symmetry in the problem, there is no y component to the net force on the third particle. Thus, F represents the magnitude of force exerted by q_{1} or q_{2} on q_{3}. Let $e=+1.60 \times 10^{-19} \mathrm{C}$, then $q_{1}=q_{2}=+2 e$ and $q_{3}=4.0 e$ and we have

$$
F_{\text {net }}=2 F \cos \theta=\frac{2(2 e)(4 e)}{4 \pi \varepsilon_{0}\left(x^{2}+d^{2}\right)} \frac{x}{\sqrt{x^{2}+d^{2}}}=\frac{4 e^{2} x}{\pi \varepsilon_{0}\left(x^{2}+d^{2}\right)^{3 / 2}} .
$$

(a) To find where the force is at an extremum, we can set the derivative of this expression equal to zero and solve for x, but it is good in any case to graph the function for a fuller understanding of its behavior - and as a quick way to see whether an extremum point is a maximum or a miminum. In this way, we find that the value coming from the derivative procedure is a maximum (and will be presented in part (b)) and that the minimum is found at the lower limit of the interval. Thus, the net force is found to be zero at $x=0$, which is the smallest value of the net force in the interval $5.0 \mathrm{~m} \geq x \geq 0$.
(b) The maximum is found to be at $x=d / \sqrt{2}$ or roughly 12 cm .
(c) The value of the net force at $x=0$ is $F_{\text {net }}=0$.
(d) The value of the net force at $x=d / \sqrt{2}$ is $F_{\text {net }}=4.9 \times 10^{-26} \mathrm{~N}$.
21. (a) The magnitude of the force between the (positive) ions is given by

$$
F=\frac{(q)(q)}{4 \pi \varepsilon_{0} r^{2}}=k \frac{q^{2}}{r^{2}}
$$

where q is the charge on either of them and r is the distance between them. We solve for the charge:

$$
q=r \sqrt{\frac{F}{k}}=\left(5.0 \times 10^{-10} \mathrm{~m}\right) \sqrt{\frac{3.7 \times 10^{-9} \mathrm{~N}}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}}=3.2 \times 10^{-19} \mathrm{C}
$$

(b) Let N be the number of electrons missing from each ion. Then, $N e=q$, or

$$
N=\frac{q}{e}=\frac{3.2 \times 10^{-9} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}=2
$$

22. The magnitude of the force is

$$
F=k \frac{e^{2}}{r^{2}}=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(2.82 \times 10^{-10} \mathrm{~m}\right)^{2}}=2.89 \times 10^{-9} \mathrm{~N} .
$$

23. Eq. 21-11 (in absolute value) gives

$$
n=\frac{|q|}{e}=\frac{1.0 \times 10^{-7} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}=6.3 \times 10^{11}
$$

24. (a) Eq. 21-1 gives

$$
F=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.00 \times 10^{-16} \mathrm{C}\right)^{2}}{\left(1.00 \times 10^{-2} \mathrm{~m}\right)^{2}}=8.99 \times 10^{-19} \mathrm{~N}
$$

(b) If n is the number of excess electrons (of charge $-e$ each) on each drop then

$$
n=-\frac{q}{e}=-\frac{-1.00 \times 10^{-16} \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C}}=625
$$

25. The unit Ampere is discussed in §21-4. The proton flux is given as 1500 protons per square meter per second, where each proton provides a charge of $q=+e$. The current through the spherical area $4 \pi R^{2}=4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}=5.1 \times 10^{14} \mathrm{~m}^{2}$ would be

$$
i=\left(5.1 \times 10^{14} \mathrm{~m}^{2}\right)\left(1500 \frac{\text { protons }}{\mathrm{s} \cdot \mathrm{~m}^{2}}\right)\left(1.6 \times 10^{-19} \mathrm{C} / \text { proton }\right)=0.122 \mathrm{~A} .
$$

26. The volume of $250 \mathrm{~cm}^{3}$ corresponds to a mass of 250 g since the density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. This mass corresponds to $250 / 18=14$ moles since the molar mass of water is 18. There are ten protons (each with charge $q=+e$) in each molecule of $\mathrm{H}_{2} \mathrm{O}$, so

$$
Q=14 N_{A} q=14\left(6.02 \times 10^{23}\right)(10)\left(1.60 \times 10^{-19} \mathrm{C}\right)=1.3 \times 10^{7} \mathrm{C} .
$$

27. Since the graph crosses zero, q_{1} must be positive-valued: $q_{1}=+8.00 e$. We note that it crosses zero at $r=0.40 \mathrm{~m}$. Now the asymptotic value of the force yields the magnitude and sign of q_{2} :

$$
\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}=F \quad \Rightarrow \quad q_{2}=\left(\frac{1.5 \times 10^{-25}}{k q_{1}}\right) r^{2}=2.086 \times 10^{-18} \mathrm{C}=13 e
$$

28. Let d be the vertical distance from the coordinate origin to $q_{3}=-q$ and $q_{4}=-q$ on the $+y$ axis, where the symbol q is assumed to be a positive value. Similarly, d is the (positive) distance from the origin $q_{4}=-$ on the $-y$ axis. If we take each angle θ in the figure to be positive, then we have $\tan \theta=d / R$ and $\cos \theta=R / r$ (where r is the dashed line distance shown in the figure). The problem asks us to consider θ to be a variable in the sense that, once the charges on the x axis are fixed in place (which determines R), d can then be arranged to some multiple of R, since $d=R \tan \theta$. The aim of this exploration is to show that if q is bounded then θ (and thus d) is also bounded.

From symmetry, we see that there is no net force in the vertical direction on $q_{2}=-e$ sitting at a distance R to the left of the coordinate origin. We note that the net x force caused by q_{3} and q_{4} on the y axis will have a magnitude equal to

$$
2 \frac{q e}{4 \pi \varepsilon_{0} r^{2}} \cos (\theta)=\frac{2 q e \cos (\theta)}{4 \pi \varepsilon_{0}(R / \cos (\theta))^{2}}=\frac{2 q e \cos ^{3}(\theta)}{4 \pi \varepsilon_{0} R^{2}} .
$$

Consequently, to achieve a zero net force along the x axis, the above expression must equal the magnitude of the repulsive force exerted on q_{2} by $q_{1}=-e$. Thus,

$$
\frac{2 q e \cos ^{3}(\theta)}{4 \pi \varepsilon_{0} R^{2}}=\frac{e^{2}}{4 \pi \varepsilon_{0} R^{2}} \quad \Rightarrow \quad q=\frac{e}{2 \cos ^{3}(\theta)}
$$

Below we plot q / e as a function of the angle (in degrees):

The graph suggests that $q / e<5$ for $\theta<60^{\circ}$, roughly. We can be more precise by solving the above equation. The requirement that $q \leq 5 e$ leads to

$$
\frac{e}{2 \cos ^{3}(\theta)} \leq 5 e \quad \Rightarrow \quad \frac{1}{(10)^{1 / 3}} \leq \cos \theta
$$

which yields $\theta \leq 62.34^{\circ}$. The problem asks for "physically possible values," and it is reasonable to suppose that only positive-integer-multiple values of e are allowed for q. If we let $q=N e$, for $N=1 \ldots 5$, then θ_{N} will be found by taking the inverse cosine of the cube root of $(1 / 2 N)$.
(a) The smallest value of angle is $\theta_{1}=37.5^{\circ}$ (or 0.654 rad).
(b) The second smallest value of angle is $\theta_{2}=50.95^{\circ}$ (or 0.889 rad).
(c) The third smallest value of angle is $\theta_{3}=56.6^{\circ}$ (or 0.988 rad$)$.
29. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on the chlorine ion at the cube center. Each force is a force of attraction and is directed toward the cesium ion that exerts it, along the body diagonal of the cube. We can pair every cesium ion with another, diametrically positioned at the opposite corner of the cube. Since the two ions in such a pair exert forces that have the same magnitude but are oppositely directed, the two forces sum to zero and, since every cesium ion can be paired in this way, the total force on the chlorine ion is zero.
(b) Rather than remove a cesium ion, we superpose charge $-e$ at the position of one cesium ion. This neutralizes the ion, and as far as the electrical force on the chlorine ion is concerned, it is equivalent to removing the ion. The forces of the eight cesium ions at the cube corners sum to zero, so the only force on the chlorine ion is the force of the added charge.

The length of a body diagonal of a cube is $\sqrt{3} a$, where a is the length of a cube edge. Thus, the distance from the center of the cube to a corner is $d=(\sqrt{3} / 2) a$. The force has magnitude

$$
F=k \frac{e^{2}}{d^{2}}=\frac{k e^{2}}{(3 / 4) a^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{(3 / 4)\left(0.40 \times 10^{-9} \mathrm{~m}\right)^{2}}=1.9 \times 10^{-9} \mathrm{~N}
$$

Since both the added charge and the chlorine ion are negative, the force is one of repulsion. The chlorine ion is pushed away from the site of the missing cesium ion.
30. (a) Since the proton is positively charged, the emitted particle must be a positron (as opposed to the negatively charged electron) in accordance with the law of charge conservation.
(b) In this case, the initial state had zero charge (the neutron is neutral), so the sum of charges in the final state must be zero. Since there is a proton in the final state, there should also be an electron (as opposed to a positron) so that $\Sigma q=0$.
31. None of the reactions given include a beta decay, so the number of protons, the number of neutrons, and the number of electrons are each conserved. Atomic numbers (numbers of protons and numbers of electrons) and molar masses (combined numbers of protons and neutrons) can be found in Appendix F of the text.
(a) ${ }^{1} \mathrm{H}$ has 1 proton, 1 electron, and 0 neutrons and ${ }^{9} \mathrm{Be}$ has 4 protons, 4 electrons, and $9-$ $4=5$ neutrons, so X has $1+4=5$ protons, $1+4=5$ electrons, and $0+5-1=4$ neutrons. One of the neutrons is freed in the reaction. X must be boron with a molar mass of $5+4$ $=9 \mathrm{~g} / \mathrm{mol}:{ }^{9} \mathrm{~B}$.
(b) ${ }^{12} \mathrm{C}$ has 6 protons, 6 electrons, and $12-6=6$ neutrons and ${ }^{1} \mathrm{H}$ has 1 proton, 1 electron, and 0 neutrons, so X has $6+1=7$ protons, $6+1=7$ electrons, and $6+0=6$ neutrons. It must be nitrogen with a molar mass of $7+6=13 \mathrm{~g} / \mathrm{mol}:{ }^{13} \mathrm{~N}$.
(c) ${ }^{15} \mathrm{~N}$ has 7 protons, 7 electrons, and $15-7=8$ neutrons; ${ }^{1} \mathrm{H}$ has 1 proton, 1 electron, and 0 neutrons; and ${ }^{4} \mathrm{He}$ has 2 protons, 2 electrons, and $4-2=2$ neutrons; so X has $7+$ $1-2=6$ protons, 6 electrons, and $8+0-2=6$ neutrons. It must be carbon with a molar mass of $6+6=12:{ }^{12} \mathrm{C}$.
32. We note that the problem is examining the force on charge A, so that the respective distances (involved in the Coulomb force expressions) between B and A, and between C and A, do not change as particle B is moved along its circular path. We focus on the endpoints $\left(\theta=0^{\circ}\right.$ and 180°) of each graph, since they represent cases where the forces (on A) due to B and C are either parallel or antiparallel (yielding maximum or minimum force magnitudes, respectively). We note, too, that since Coulomb's law is inversely proportional to r^{2} then the (if, say, the charges were all the same) force due to C would be one-fourth as big as that due to B (since C is twice as far away from A). The charges, it turns out, are not the same, so there is also a factor of the charge ratio ξ (the charge of C divided by the charge of B), as well as the aforementioned $1 / 4$ factor. That is, the force exerted by C is, by Coulomb's law equal to $\pm 1 / 4 \xi$ multiplied by the force exerted by B.
(a) The maximum force is $2 F_{0}$ and occurs when $\theta=180^{\circ}$ (B is to the left of A, while C is the right of A). We choose the minus sign and write

$$
2 F_{0}=(1-1 / 4 \xi) F_{0} \Rightarrow \xi=-4 .
$$

One way to think of the minus sign choice is $\cos \left(180^{\circ}\right)=-1$. This is certainly consistent with the minimum force ratio (zero) at $\theta=0^{\circ}$ since that would also imply

$$
0=1+1 / 4 \xi \Rightarrow \xi=-4 .
$$

(b) The ratio of maximum to minimum forces is $1.25 / 0.75=5 / 3$ in this case, which implies

$$
\frac{5}{3}=\frac{1+1 / 4 \xi}{1-1 / 4 \xi} \Rightarrow \xi=16
$$

Of course, this could also be figured as illustrated in part (a), looking at the maximum force ratio by itself and solving, or looking at the minimum force ratio $(3 / 4)$ at $\theta=180^{\circ}$ and solving for ξ.
33. We note that, as result of the fact that the Coulomb force is inversely proportional to r^{2}, a particle of charge Q which is distance d from the origin will exert a force on some charge q_{o} at the origin of equal strength as a particle of charge $4 Q$ at distance $2 d$ would exert on q_{0}. Therefore, $q_{6}=+8 e$ on the $-y$ axis could be replaced with a $+2 e$ closer to the origin (at half the distance); this would add to the $q_{5}=+2 e$ already there and produce $+4 e$ below the origin which exactly cancels the force due to $q_{2}=+4 e$ above the origin.

Similarly, $q_{4}=+4 e$ to the far right could be replaced by a $+e$ at half the distance, which would add to $q_{3}=+e$ already there to produce $\mathrm{a}+2 e$ at distance d to the right of the central charge q_{7}. The horizontal force due to this $+2 e$ is cancelled exactly by that of $q_{1}=$ $+2 e$ on the $-x$ axis, so that the net force on q_{7} is zero.
34. For the Coulomb force to be sufficient for circular motion at that distance (where $r=$ 0.200 m and the acceleration needed for circular motion is $a=\mathrm{v}^{2} / r$) the following equality is required:

$$
\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}=-\frac{m \mathrm{v}^{2}}{r} .
$$

With $q=4.00 \times 10^{-6} \mathrm{C}, m=0.000800 \mathrm{~kg}, v=50.0 \mathrm{~m} / \mathrm{s}$, this leads to $Q=-1.11 \times 10^{-5} \mathrm{C}$.
35. Let \vec{F}_{12} denotes the force on q_{1} exerted by q_{2} and F_{12} be its magnitude.
(a) We consider the net force on q_{1}, \vec{F}_{12} points in the $+x$ direction since q_{1} is attracted to q_{2}. \vec{F}_{13} and \vec{F}_{14} both point in the $-x$ direction since q_{1} is repelled by q_{3} and q_{4}. Thus, using $d=0.0200 \mathrm{~m}$, the net force is

$$
F_{1}=F_{12}-F_{13}-F_{14}=\frac{2 e|-e|}{4 \pi \varepsilon_{0} d^{2}}-\frac{(2 e)(e)}{4 \pi \varepsilon_{0}(2 d)^{2}}-\frac{(2 e)(4 e)}{4 \pi \varepsilon_{0}(3 d)^{2}}=+3.52 \times 10^{-25} \mathrm{~N},
$$

or $\vec{F}_{1}=\left(3.52 \times 10^{-25} \mathrm{~N}\right) \hat{\mathrm{i}}$.
(b) We now consider the net force on q_{2}. We note that $\vec{F}_{21}=-\vec{F}_{12}$ points in the $-x$ direction, and \vec{F}_{23} and \vec{F}_{24} both point in the $+x$ direction. The net force is

$$
F_{23}+F_{24}-F_{21}=\frac{4 e|-e|}{4 \pi \varepsilon_{0}(2 d)^{2}}+\frac{e|-e|}{4 \pi \varepsilon_{0} d^{2}}-\frac{2 e|-e|}{4 \pi \varepsilon_{0} d^{2}}=0
$$

36. As a result of the first action, both sphere W and sphere A possess charge $\frac{1}{2} q_{A}$, where q_{A} is the initial charge of sphere A. As a result of the second action, sphere W has charge

$$
\frac{1}{2}\left(\frac{1}{2} q_{A}-32 e\right) .
$$

As a result of the final action, sphere W now has charge equal to

$$
\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{2} q_{A}-32 e\right)+48 e\right] .
$$

Setting this final expression equal to $+18 e$ as required by the problem leads (after a couple of algebra steps) to the answer: $q_{A}=+16 e$.
37. If θ is the angle between the force and the x axis, then

$$
\cos \theta=\frac{d_{2}}{\sqrt{d_{1}^{2}+d_{2}^{2}}}
$$

Thus, using Coulomb's law for F, we have

$$
F_{x}=F \cos \theta=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}\left(d_{1}^{2}+d_{2}^{2}\right)} \frac{d_{2}}{\sqrt{d_{1}^{2}+d_{2}^{2}}}=1.31 \times 10^{-22} \mathrm{~N} .
$$

38. (a) We note that $\tan \left(30^{\circ}\right)=1 / \sqrt{3}$. In the initial (highly symmetrical) configuration, the net force on the central bead is in the $-y$ direction and has magnitude $3 F$ where F is the Coulomb's law force of one bead on another at distance $d=10 \mathrm{~cm}$. This is due to the fact that the forces exerted on the central bead (in the initial situation) by the beads on the x axis cancel each other; also, the force exerted "downward" by bead 4 on the central bead is four times larger than the "upward" force exerted by bead 2. This net force along the y axis does not change as bead 1 is now moved, though there is now a nonzero x component F_{x}. The components are now related by

$$
\tan \left(30^{\circ}\right)=\frac{F_{x}}{F_{y}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{F_{x}}{3 F}
$$

which implies $F_{x}=\sqrt{3} F$. Now, bead 3 exerts a "leftward" force of magnitude F on the central bead, while bead 1 exerts a "rightward" force of magnitude F. Therefore,

$$
F^{\prime}-F=\sqrt{3} F . \quad \Rightarrow \quad F^{\prime}=(\sqrt{3}+1) F .
$$

The fact that Coulomb's law depends inversely on distance-squared then implies

$$
r^{2}=\frac{d^{2}}{\sqrt{3}+1} \quad \Rightarrow \quad r=\frac{d}{\sqrt{\sqrt{3}+1}}
$$

where r is the distance between bead 1 and the central bead. Thus $r=6.05 \mathrm{~cm}$.
(b) To regain the condition of high symmetry (in particular, the cancellation of x components) bead 3 must be moved closer to the central bead so that it, too, is the distance r (as calculated in part(a)) away from it.
39. (a) Charge $Q_{1}=+80 \times 10^{-9} \mathrm{C}$ is on the y axis at $y=0.003 \mathrm{~m}$, and charge $Q_{2}=+80 \times 10^{-9} \mathrm{C}$ is on the y axis at $y=-0.003 \mathrm{~m}$. The force on particle 3 (which has a charge of $q=+18 \times 10^{-9} \mathrm{C}$) is due to the vector sum of the repulsive forces from Q_{1} and Q_{2}. In symbols, $\vec{F}_{31}+\vec{F}_{32}=\vec{F}_{3}$, where

$$
\left|\vec{F}_{31}\right|=k \frac{q_{3}\left|q_{1}\right|}{r_{31}^{2}} \text { and }\left|\vec{F}_{32}\right|=k \frac{q_{3} q_{2}}{r_{32}^{2}} .
$$

Using the Pythagorean theorem, we have $r_{31}=r_{32}=0.005 \mathrm{~m}$. In magnitude-angle notation (particularly convenient if one uses a vector-capable calculator in polar mode), the indicated vector addition becomes

$$
\vec{F}_{3}=\left(0.518 \angle-37^{\circ}\right)+\left(0.518 \angle 37^{\circ}\right)=\left(0.829 \angle 0^{\circ}\right) .
$$

Therefore, the net force is $\vec{F}_{3}=(0.829 \mathrm{~N}) \hat{\mathrm{i}}$.
(b) Switching the sign of Q_{2} amounts to reversing the direction of its force on q. Consequently, we have

$$
\vec{F}_{3}=\left(0.518 \angle-37^{\circ}\right)+\left(0.518 \angle-143^{\circ}\right)=\left(0.621 \angle-90^{\circ}\right) .
$$

Therefore, the net force is $\vec{F}_{3}=-(0.621 \mathrm{~N}) \hat{\mathrm{j}}$.
40. (a) Let x be the distance between particle 1 and particle 3 . Thus, the distance between particle 3 and particle 2 is $L-x$. Both particles exert leftward forces on q_{3} (so long as it is on the line between them), so the magnitude of the net force on q_{3} is

$$
F_{\mathrm{net}}=\left|\vec{F}_{13}\right|+\left|\vec{F}_{23}\right|=\frac{\left|q_{1} q_{3}\right|}{4 \pi \varepsilon_{0} x^{2}}+\frac{\left|q_{2} q_{3}\right|}{4 \pi \varepsilon_{0}(L-x)^{2}}=\frac{e^{2}}{\pi \varepsilon_{0}}\left(\frac{1}{x^{2}}+\frac{27}{(L-x)^{2}}\right)
$$

with the values of the charges (stated in the problem) plugged in. Finding the value of x which minimizes this expression leads to $x=1 / 4 L$. Thus, $x=2.00 \mathrm{~cm}$.
(b) Substituting $x=1 / 4 L$ back into the expression for the net force magnitude and using the standard value for e leads to $F_{\text {net }}=9.21 \times 10^{-24} \mathrm{~N}$.
41. The individual force magnitudes are found using Eq. 21-1, with SI units (so $a=0.02 \mathrm{~m}$) and k as in Eq. 21-5. We use magnitude-angle notation (convenient if one uses a vector-capable calculator in polar mode), listing the forces due to $+4.00 q,+2.00 q$, and $-2.00 q$ charges:
$\left(4.60 \times 10^{-24} \angle 180^{\circ}\right)+\left(2.30 \times 10^{-24} \angle-90^{\circ}\right)+\left(1.02 \times 10^{-24} \angle-145^{\circ}\right)=\left(6.16 \times 10^{-24} \angle-152^{\circ}\right)$
(a) Therefore, the net force has magnitude $6.16 \times 10^{-24} \mathrm{~N}$.
(b) The direction of the net force is at an angle of -152° (or 208° measured counterclockwise from the $+x$ axis).
42. The charge $d q$ within a thin section of the (of thickness $d x$) is $\rho A d x$ where $A=4.00 \times 10^{-4} \mathrm{~m}^{2}$ and ρ is the charge per unit volume. The number of (excess) electrons in the $\operatorname{rod}($ of length $L=2.00 \mathrm{~m})$ is $N=q /(-e)$ where e is given in Eq. 21-14.
(a) In the case where $\rho=-4.00 \times 10^{-6} \mathrm{C} / \mathrm{m}^{3}$, we have

$$
N=\frac{q}{-e}=\frac{\rho A}{-e} \int_{0}^{L} d x=\frac{|\rho| A L}{e}=2.00 \times 10^{10} .
$$

(b) With $\rho=b x^{2}\left(b=-2.00 \times 10^{-6} \mathrm{C} / \mathrm{m}^{5}\right)$ we obtain

$$
N=\frac{b A}{-e} \int_{0}^{L} x^{2} d x=\frac{|b| A L^{3}}{3 e}=1.33 \times 10^{10} .
$$

43. The magnitude of the net force on the $q=42 \times 10^{-6} \mathrm{C}$ charge is

$$
k \frac{q_{1} q}{0.28^{2}}+k \frac{\left|q_{2}\right| q}{0.44^{2}}
$$

where $q_{1}=30 \times 10^{-9} \mathrm{C}$ and $\left|q_{2}\right|=40 \times 10^{-9} \mathrm{C}$. This yields 0.22 N . Using Newton's second law, we obtain

$$
m=\frac{F}{a}=\frac{0.22 \mathrm{~N}}{100 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}}=2.2 \times 10^{-6} \mathrm{~kg} .
$$

44. Let q_{1} be the charge of one part and q_{2} that of the other part; thus, $q_{1}+q_{2}=Q=6.0 \mu \mathrm{C}$. The repulsive force between them is given by Coulomb's law:

$$
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{q_{1}\left(Q-q_{1}\right)}{4 \pi \varepsilon_{0} r^{2}} .
$$

If we maximize this expression by taking the derivative with respect to q_{1} and setting equal to zero, we find $q_{1}=Q / 2$, which might have been anticipated (based on symmetry arguments). This implies $q_{2}=Q / 2$ also. With $r=0.0030 \mathrm{~m}$ and $Q=6.0 \times 10^{-6} \mathrm{C}$, we find

$$
F=\frac{(Q / 2)(Q / 2)}{4 \pi \varepsilon_{0} r^{2}} \approx 9.0 \times 10^{3} \mathrm{~N} .
$$

45. For the net force on $q_{1}=+Q$ to vanish, the x force component due to $q_{2}=q$ must exactly cancel the force of attraction caused by $q_{4}=-2 Q$. Consequently,

$$
\frac{Q q}{4 \pi \varepsilon_{0} a^{2}}=\frac{Q|2 Q|}{4 \pi \varepsilon_{0}(\sqrt{2} a)^{2}} \cos 45^{\circ}=\frac{Q^{2}}{4 \pi \varepsilon_{0} \sqrt{2} a^{2}}
$$

or $q=Q / \sqrt{2}$. This implies that $q / Q=1 / \sqrt{2}=0.707$.
46. We are looking for a charge q which, when placed at the origin, experiences $\vec{F}_{\text {net }}=0$, where

$$
\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3} .
$$

The magnitude of these individual forces are given by Coulomb's law, Eq. 21-1, and without loss of generality we assume $q>0$. The charges $q_{1}(+6 \mu \mathrm{C}), q_{2}(-4 \mu \mathrm{C})$, and q_{3} (unknown), are located on the $+x$ axis, so that we know \vec{F}_{1} points towards $-x, \vec{F}_{2}$ points towards $+x$, and \vec{F}_{3} points towards $-x$ if $q_{3}>0$ and points towards $+x$ if $q_{3}<0$. Therefore, with $r_{1}=8 \mathrm{~m}, r_{2}=16 \mathrm{~m}$ and $r_{3}=24 \mathrm{~m}$, we have

$$
0=-k \frac{q_{1} q}{r_{1}^{2}}+k \frac{\left|q_{2}\right| q}{r_{2}^{2}}-k \frac{q_{3} q}{r_{3}^{2}} .
$$

Simplifying, this becomes

$$
0=-\frac{6}{8^{2}}+\frac{4}{16^{2}}-\frac{q_{3}}{24^{2}}
$$

where q_{3} is now understood to be in $\mu \mathrm{C}$. Thus, we obtain $q_{3}=-45 \mu \mathrm{C}$.
47. There are two protons (each with charge $q=+e$) in each molecule, so

$$
Q=N_{A} q=\left(6.02 \times 10^{23}\right)(2)\left(1.60 \times 10^{-19} \mathrm{C}\right)=1.9 \times 10^{5} \mathrm{C}=0.19 \mathrm{MC} .
$$

48. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque about any point is also zero. We write an expression for the net torque about the bearing, equate it to zero, and solve for x. The charge Q on the left exerts an upward force of magnitude $\left(1 / 4 \pi \varepsilon_{0}\right)\left(q Q / h^{2}\right)$, at a distance $L / 2$ from the bearing. We take the torque to be negative. The attached weight exerts a downward force of magnitude W, at a distance $x-L / 2$ from the bearing. This torque is also negative. The charge Q on the right exerts an upward force of magnitude $\left(1 / 4 \pi \varepsilon_{0}\right)\left(2 q Q / h^{2}\right)$, at a distance $L / 2$ from the bearing. This torque is positive. The equation for rotational equilibrium is

$$
\frac{-1}{4 \pi \varepsilon_{0}} \frac{q Q}{h^{2}} \frac{L}{2}-W\left(x-\frac{L}{2}\right)+\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{h^{2}} \frac{L}{2}=0 .
$$

The solution for x is

$$
x=\frac{L}{2}\left(1+\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{h^{2} W}\right) .
$$

(b) If F_{N} is the magnitude of the upward force exerted by the bearing, then Newton's second law (with zero acceleration) gives

$$
W-\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{h^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{h^{2}}-F_{N}=0 .
$$

We solve for h so that $F_{N}=0$. The result is

$$
h=\sqrt{\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q Q}{W}} .
$$

49. Charge $q_{1}=-80 \times 10^{-6} \mathrm{C}$ is at the origin, and charge $q_{2}=+40 \times 10^{-6} \mathrm{C}$ is at $x=0.20$ m . The force on $q_{3}=+20 \times 10^{-6} \mathrm{C}$ is due to the attractive and repulsive forces from q_{1} and q_{2}, respectively. In symbols, $\vec{F}_{3 \text { net }}=\vec{F}_{31}+\vec{F}_{32}$, where

$$
\left|\vec{F}_{31}\right|=k \frac{q_{3}\left|q_{1}\right|}{r_{31}^{2}} \text { and }\left|\vec{F}_{32}\right|=k \frac{q_{3} q_{2}}{r_{32}^{2}} .
$$

(a) In this case $r_{31}=0.40 \mathrm{~m}$ and $r_{32}=0.20 \mathrm{~m}$, with \vec{F}_{31} directed towards $-x$ and \vec{F}_{32} directed in the $+x$ direction. Using the value of k in Eq. 21-5, we obtain $\vec{F}_{3 \text { net }}=(89.9 \mathrm{~N}) \hat{\mathrm{i}}$.
(b) In this case $r_{31}=0.80 \mathrm{~m}$ and $r_{32}=0.60 \mathrm{~m}$, with \vec{F}_{31} directed towards $-x$ and \vec{F}_{32} towards $+x$. Now we obtain $\vec{F}_{3 \text { net }}=(-2.50 \mathrm{~N}) \hat{\mathrm{i}}$.
(c) Between the locations treated in parts (a) and (b), there must be one where $\vec{F}_{3 \text { net }}=0$. Writing $r_{31}=x$ and $r_{32}=x-0.20 \mathrm{~m}$, we equate $\left|\vec{F}_{31}\right|$ and $\left|\vec{F}_{32}\right|$, and after canceling common factors, arrive at

$$
\frac{\left|q_{1}\right|}{x^{2}}=\frac{q_{2}}{(x-0.2)^{2}} .
$$

This can be further simplified to

$$
\frac{(x-0.2)^{2}}{x^{2}}=\frac{q_{2}}{\left|q_{1}\right|}=\frac{1}{2} .
$$

Taking the (positive) square root and solving, we obtain $x=0.683 \mathrm{~m}$. If one takes the negative root and 'solves', one finds the location where the net force would be zero if q_{1} and q_{2} were of like sign (which is not the case here).
(d) From the above, we see that $y=0$.
50. We are concerned with the charges in the nucleus (not the "orbiting" electrons, if there are any). The nucleus of Helium has 2 protons and that of Thorium has 90.
(a) Eq. 21-1 gives

$$
F=k \frac{q^{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(2\left(1.60 \times 10^{-19} \mathrm{C}\right)\right)\left(90\left(1.60 \times 10^{-19} \mathrm{C}\right)\right)}{\left(9.0 \times 10^{-15} \mathrm{~m}\right)^{2}}=5.1 \times 10^{2} \mathrm{~N} .
$$

(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons and 2 neutrons, but the neutrons have approximately the same mass), Newton's second law leads to

$$
a=\frac{F}{m}=\frac{5.1 \times 10^{2} \mathrm{~N}}{4\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=7.7 \times 10^{28} \mathrm{~m} / \mathrm{s}^{2} .
$$

51. Coulomb's law gives

$$
F=\frac{|q| \cdot|q|}{4 \pi \varepsilon_{0} r^{2}}=\frac{k(e / 3)^{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{9\left(2.6 \times 10^{-15} \mathrm{~m}\right)^{2}}=3.8 \mathrm{~N} .
$$

52. (a) Since $q_{A}=-2.00 \mathrm{nC}$ and $q_{C}=+8.00 \mathrm{nC}$ Eq. $21-4$ leads to

$$
\left|\vec{F}_{A C}\right|=\frac{\left|q_{A} q_{C}\right|}{4 \pi \varepsilon_{0} d^{2}}=\frac{\left|\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(-2.00 \times 10^{-9} \mathrm{C}\right)\left(8.00 \times 10^{-9} \mathrm{C}\right)\right|}{(0.200 \mathrm{~m})^{2}}=3.60 \times 10^{-6} \mathrm{~N}
$$

(b) After making contact with each other, both A and B have a charge of

$$
\frac{q_{A}+q_{B}}{2}=\left(\frac{-2.00+(-4.00)}{2}\right) \mathrm{nC}=-3.00 \mathrm{nC} .
$$

When B is grounded its charge is zero. After making contact with C, which has a charge of $+8.00 \mathrm{nC}, B$ acquires a charge of $[0+(-8.00 \mathrm{nC})] / 2=-4.00 \mathrm{nC}$, which charge C has as well. Finally, we have $Q_{A}=-3.00 \mathrm{nC}$ and $Q_{B}=Q_{C}=-4.00 \mathrm{nC}$. Therefore,

$$
\left|\vec{F}_{A C}\right|=\frac{\left|q_{A} q_{C}\right|}{4 \pi \varepsilon_{0} d^{2}}=\frac{\left|\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(-3.00 \times 10^{-9} \mathrm{C}\right)\left(-4.00 \times 10^{-9} \mathrm{C}\right)\right|}{(0.200 \mathrm{~m})^{2}}=2.70 \times 10^{-6} \mathrm{~N} .
$$

(c) We also obtain

$$
\left|\vec{F}_{B C}\right|=\frac{\left|q_{B} q_{C}\right|}{4 \pi \varepsilon_{0} d^{2}}=\frac{\left|\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(-4.00 \times 10^{-9} \mathrm{C}\right)\left(-4.00 \times 10^{-9} \mathrm{C}\right)\right|}{(0.200 \mathrm{~m})^{2}}=3.60 \times 10^{-6} \mathrm{~N}
$$

53. Let the two charges be q_{1} and q_{2}. Then $q_{1}+q_{2}=Q=5.0 \times 10^{-5} \mathrm{C}$. We use Eq. 21-1:

$$
1.0 \mathrm{~N}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) q_{1} q_{2}}{(2.0 \mathrm{~m})^{2}}
$$

We substitute $q_{2}=Q-q_{1}$ and solve for q_{1} using the quadratic formula. The two roots obtained are the values of q_{1} and q_{2}, since it does not matter which is which. We get $1.2 \times 10^{-5} \mathrm{C}$ and $3.8 \times 10^{-5} \mathrm{C}$. Thus, the charge on the sphere with the smaller charge is $1.2 \times 10^{-5} \mathrm{C}$.
54. The unit Ampere is discussed in $\S 21-4$. Using i for current, the charge transferred is

$$
q=i t=\left(2.5 \times 10^{4} \mathrm{~A}\right)\left(20 \times 10^{-6} \mathrm{~s}\right)=0.50 \mathrm{C} .
$$

55. (a) Using Coulomb's law, we obtain

$$
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{k q^{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(1.00 \mathrm{C})^{2}}{(1.00 \mathrm{~m})^{2}}=8.99 \times 10^{9} \mathrm{~N}
$$

(b) If $r=1000 \mathrm{~m}$, then

$$
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{k q^{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(1.00 \mathrm{C})^{2}}{\left(1.00 \times 10^{3} \mathrm{~m}\right)^{2}}=8.99 \times 10^{3} \mathrm{~N}
$$

56. Keeping in mind that an Ampere is a Coulomb per second, and that a minute is 60 seconds, the charge (in absolute value) that passes through the chest is

$$
|q|=\left(0.300 \frac{\text { Coulomb }}{\text { second }}\right)(120 \text { seconds })=36.0 \text { Coulombs . }
$$

This charge consists of a number N of electrons (each of which has an absolute value of charge equal to e). Thus,

$$
N=\frac{|q|}{e}=\frac{36.0 \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C}}=2.25 \times 10^{20} .
$$

57. When sphere C touches sphere A, they divide up their total charge ($Q / 2$ plus Q) equally between them. Thus, sphere A now has charge $3 Q / 4$, and the magnitude of the force of attraction between A and B becomes

$$
F=k \frac{(3 Q / 4)(Q / 4)}{d^{2}}=4.68 \times 10^{-19} \mathrm{~N} .
$$

58. In experiment 1 , sphere C first touches sphere A, and they divided up their total charge ($Q / 2$ plus Q) equally between them. Thus, sphere A and sphere C each acquired charge $3 Q / 4$. Then, sphere C touches B and those spheres split up their total charge ($3 Q / 4$ plus $-Q / 4$) so that B ends up with charge equal to $Q / 4$. The force of repulsion between A and B is therefore

$$
F_{1}=k \frac{(3 Q / 4)(Q / 4)}{d^{2}}
$$

at the end of experiment 1 . Now, in experiment 2 , sphere C first touches B which leaves each of them with charge $Q / 8$. When C next touches A, sphere A is left with charge $9 Q / 16$. Consequently, the force of repulsion between A and B is

$$
F_{2}=k \frac{(9 Q / 16)(Q / 8)}{d^{2}}
$$

at the end of experiment 2 . The ratio is

$$
\frac{F_{2}}{F_{1}}=\frac{(9 / 16)(1 / 8)}{(3 / 4)(1 / 4)}=0.375 .
$$

59. If the relative difference between the proton and electron charges (in absolute value) were

$$
\frac{q_{p}-\left|q_{e}\right|}{e}=0.0000010
$$

then the actual difference would be $q_{p}-\left|q_{e}\right|=1.6 \times 10^{-25} \mathrm{C}$. Amplified by a factor of $29 \times$ 3×10^{22} as indicated in the problem, this amounts to a deviation from perfect neutrality of

$$
\Delta q=\left(29 \times 3 \times 10^{22}\right)\left(1.6 \times 10^{-25} \mathrm{C}\right)=0.14 \mathrm{C}
$$

in a copper penny. Two such pennies, at $r=1.0 \mathrm{~m}$, would therefore experience a very large force. Eq. 21-1 gives

$$
F=k \frac{(\Delta q)^{2}}{r^{2}}=1.7 \times 10^{8} \mathrm{~N} .
$$

60. With $F=m_{e} g$, Eq. 21-1 leads to

$$
y^{2}=\frac{k e^{2}}{m_{e} g}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}
$$

which leads to $y= \pm 5.1 \mathrm{~m}$. We choose $y=-5.1 \mathrm{~m}$ since the second electron must be below the first one, so that the repulsive force (acting on the first) is in the direction opposite to the pull of Earth's gravity.
61. Letting $k q^{2} / r^{2}=m g$, we get

$$
r=q \sqrt{\frac{k}{m g}}=\left(1.60 \times 10^{-19} \mathrm{C}\right) \sqrt{\frac{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}}=0.119 \mathrm{~m} .
$$

62. The net charge carried by John whose mass is m is roughly

$$
\begin{aligned}
q & =(0.0001) \frac{m N_{A} Z e}{M} \\
& =(0.0001) \frac{(90 \mathrm{~kg})\left(6.02 \times 10^{23} \text { molecules } / \mathrm{mol}\right)(18 \text { electron proton pairs } / \text { molecule })\left(1.6 \times 10^{-19} \mathrm{C}\right)}{0.018 \mathrm{~kg} / \mathrm{mol}} \\
& =8.7 \times 10^{5} \mathrm{C},
\end{aligned}
$$

and the net charge carried by Mary is half of that. So the electrostatic force between them is estimated to be

$$
F \approx k \frac{q(q / 2)}{d^{2}}=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{\left(8.7 \times 10^{5} \mathrm{C}\right)^{2}}{2(30 \mathrm{~m})^{2}} \approx 4 \times 10^{18} \mathrm{~N} .
$$

Thus, the order of magnitude of the electrostatic force is $10^{18} \mathrm{~N}$.
63. (a) Eq. 21-11 (in absolute value) gives

$$
n=\frac{|q|}{e}=\frac{2.00 \times 10^{-6} \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C}}=1.25 \times 10^{13} \text { electrons. }
$$

(b) Since you have the excess electrons (and electrons are lighter and more mobile than protons) then the electrons "leap" from you to the faucet instead of protons moving from the faucet to you (in the process of neutralizing your body).
(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose any number of electrons due to its contact with Earth's large reservoir of mobile charges) becomes positively charged, especially in the region closest to your (negatively charged) hand, just before the spark.
(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) the flow of charge (electrons) is from the faucet to the cat.
(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign (which, additionally, is oppositely charged from your bare hand which had stroked the cat's fur). The charges in your hand and those of the furthest side of the "sphere" therefore attract each other, and when close enough, manage to neutralize (due to the "jump" made by the electrons) in a painful spark.
64. The two charges are $q=\alpha Q$ (where α is a pure number presumably less than 1 and greater than zero) and $Q-q=(1-\alpha) Q$. Thus, Eq. 21-4 gives

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{(\alpha Q)((1-\alpha) Q)}{d^{2}}=\frac{Q^{2} \alpha(1-\alpha)}{4 \pi \varepsilon_{0} d^{2}} .
$$

The graph below, of F versus α, has been scaled so that the maximum is 1 . In actuality, the maximum value of the force is $F_{\max }=Q^{2} / 16 \pi \varepsilon_{0} d^{2}$.

(a) It is clear that $\alpha=\frac{1}{2}=0.5$ gives the maximum value of F.
(b) Seeking the half-height points on the graph is difficult without grid lines or some of the special tracing features found in a variety of modern calculators. It is not difficult to algebraically solve for the half-height points (this involves the use of the quadratic formula). The results are

$$
\alpha_{1}=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right) \approx 0.15 \text { and } \alpha_{2}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right) \approx 0.85 .
$$

Thus, the smaller value of α is $\alpha_{1}=0.15$,
(c) and the larger value of α is $\alpha_{2}=0.85$.
65. (a) The magnitudes of the gravitational and electrical forces must be the same:

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}=G \frac{m M}{r^{2}}
$$

where q is the charge on either body, r is the center-to-center separation of Earth and Moon, G is the universal gravitational constant, M is the mass of Earth, and m is the mass of the Moon. We solve for q :

$$
q=\sqrt{4 \pi \varepsilon_{0} G m M}
$$

According to Appendix C of the text, $M=5.98 \times 10^{24} \mathrm{~kg}$, and $m=7.36 \times 10^{22} \mathrm{~kg}$, so (using $4 \pi \varepsilon_{0}=1 / k$) the charge is

$$
q=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(7.36 \times 10^{22} \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}}=5.7 \times 10^{13} \mathrm{C}
$$

(b) The distance r cancels because both the electric and gravitational forces are proportional to $1 / r^{2}$.
(c) The charge on a hydrogen ion is $e=1.60 \times 10^{-19} \mathrm{C}$, so there must be

$$
\frac{q}{e}=\frac{5.7 \times 10^{13} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}=3.6 \times 10^{32} \text { ions }
$$

Each ion has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$, so the total mass needed is

$$
\left(3.6 \times 10^{32}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)=6.0 \times 10^{5} \mathrm{~kg} .
$$

66. (a) A force diagram for one of the balls is shown below. The force of gravity $m \vec{g}$ acts downward, the electrical force \vec{F}_{e} of the other ball acts to the left, and the tension in the thread acts along the thread, at the angle θ to the vertical. The ball is in equilibrium, so its acceleration is zero. The y component of Newton's second law yields $T \cos \theta-m g=0$ and the x component yields $T \sin \theta-F_{e}=0$. We solve the first equation for T and obtain T $=m g / \cos \theta$. We substitute the result into the second to obtain $m g \tan \theta-F_{e}=0$.

Examination of the geometry of Figure 21-43 leads to

$$
\tan \theta=\frac{x / 2}{\sqrt{L^{2}-(x / 2)^{2}}} .
$$

If L is much larger than x (which is the case if θ is very small), we may neglect $x / 2$ in the denominator and write $\tan \theta \approx x / 2 L$. This is equivalent to approximating $\tan \theta$ by $\sin \theta$. The magnitude of the electrical force of one ball on the other is

$$
F_{e}=\frac{q^{2}}{4 \pi \varepsilon_{0} x^{2}}
$$

by Eq. 21-4. When these two expressions are used in the equation $m g \tan \theta=F_{e}$, we obtain

$$
\frac{m g x}{2 L} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{x^{2}} \Rightarrow x \approx\left(\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3} .
$$

(b) We solve $x^{3}=2 k q^{2} L / m g$) for the charge (using Eq. 21-5):

$$
q=\sqrt{\frac{m g x^{3}}{2 k L}}=\sqrt{\frac{(0.010 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.050 \mathrm{~m})^{3}}{2\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(1.20 \mathrm{~m})}}= \pm 2.4 \times 10^{-8} \mathrm{C}
$$

Thus, the magnitude is $|q|=2.4 \times 10^{-8} \mathrm{C}$.
67. (a) If one of them is discharged, there would no electrostatic repulsion between the two balls and they would both come to the position $\theta=0$, making contact with each other.
(b) A redistribution of the remaining charge would then occur, with each of the balls getting $q / 2$. Then they would again be separated due to electrostatic repulsion, which results in the new equilibrium separation

$$
x^{\prime}=\left[\frac{(q / 2)^{2} L}{2 \pi \varepsilon_{0} m g}\right]^{1 / 3}=\left(\frac{1}{4}\right)^{1 / 3} x=\left(\frac{1}{4}\right)^{1 / 3}(5.0 \mathrm{~cm})=3.1 \mathrm{~cm} .
$$

68. Regarding the forces on q_{3} exerted by q_{1} and q_{2}, one must "push" and the other must "pull" in order that the net force is zero; hence, q_{1} and q_{2} have opposite signs. For individual forces to cancel, their magnitudes must be equal:

$$
k \frac{\left|q_{1}\right|\left|q_{3}\right|}{\left(L_{12}+L_{23}\right)^{2}}=k \frac{\left|q_{2}\right|\left|q_{3}\right|}{\left(L_{23}\right)^{2}} .
$$

With $L_{23}=2.00 L_{12}$, the above expression simplifies to $\frac{\left|q_{1}\right|}{9}=\frac{\left|q_{2}\right|}{4}$. Therefore, $q_{1}=-9 q_{2} / 4$, or $q_{1} / q_{2}=-2.25$.
69. (a) The charge q placed at the origin is a distance r from Q (which is the positive charge on which the forces are being evaluated), and the charge q placed at $x=d$ is a distance r^{\prime} from Q. Depending on what region Q is located in, the relation between r, r^{\prime} and d will be either

$$
\begin{array}{ll}
r^{\prime}=r+d & \text { if } Q \text { is along the }-x \text { axis (region } \mathbf{A}) \\
r^{\prime}=d-r & \text { if } Q \text { is between the charges (region } \mathbf{B}) \\
r^{\prime}=r-d & \text { if } Q \text { is at } x>d \text { (region } \mathbf{C}) .
\end{array}
$$

Since all charges in this problem are taken to be positive, then the net force in region \mathbf{A} will in the $-x$ direction; its magnitude will consist of the individual force magnitudes added together. In region \mathbf{C} the net force will be in the $+x$ direction and will consist again of the individual force magnitudes added together. It is in region \mathbf{B} where the individual force magnitudes must be subtracted, and in order for the result to exhibit the correct sign (positive when the net force \vec{F} should point in the $+x$ direction, and so forth), we must write

$$
\overrightarrow{F_{\mathrm{B}}}=\frac{q Q}{4 \pi \varepsilon_{0} r^{2}}-\frac{q Q}{4 \pi \varepsilon_{0} r^{\prime 2}}=\frac{q Q}{4 \pi \varepsilon_{0} r^{2}}-\frac{q Q}{4 \pi \varepsilon_{0}(d-r)^{2}} .
$$

If we further adopt the notation suggested in the problem, then $r=\alpha d$ in regions \mathbf{B} and \mathbf{C}, and $r=-\alpha d$ in region A.(since r must by definition be a positive number, yet α is negative-valued in region \mathbf{A}). Using this notation, too, it is clear that we can factor out a common $q Q / 4 \pi \varepsilon_{0} d^{2}$ from our expressions. For brevity we will use the notation

$$
J=\frac{q Q}{4 \pi \varepsilon_{0} d^{2}} .
$$

Then, using the observations noted above, we are able to write down the expressions for the force in each region:

$$
\begin{aligned}
\vec{F}_{\mathrm{A}} & =-J\left(\frac{1}{\alpha^{2}}+\frac{1}{(1-\alpha)^{2}}\right) \\
\vec{F}_{\mathrm{B}} & =J\left(\frac{1}{\alpha^{2}}-\frac{1}{(1-\alpha)^{2}}\right) \\
\vec{F}_{\mathrm{C}} & =J\left(\frac{1}{\alpha^{2}}+\frac{1}{(\alpha-1)^{2}}\right)
\end{aligned}
$$

(b) We set $J=1$ in our plot of the force, below.

70. The mass of an electron is $m=9.11 \times 10^{-31} \mathrm{~kg}$, so the number of electrons in a collection with total mass $M=75.0 \mathrm{~kg}$ is

$$
N=\frac{M}{m}=\frac{75.0 \mathrm{~kg}}{9.11 \times 10^{-31} \mathrm{~kg}}=8.23 \times 10^{31} \text { electrons. }
$$

The total charge of the collection is

$$
q=-N e=-\left(8.23 \times 10^{31}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)=-1.32 \times 10^{13} \mathrm{C}
$$

71. (a) If a (negative) charged particle is placed a distance x to the right of the $+2 q$ particle, then its attraction to the $+2 q$ particle will be exactly balanced by its repulsion from the $-5 q$ particle is we require

$$
\frac{5}{(L+x)^{2}}=\frac{2}{x^{2}}
$$

which is obtained by equating the Coulomb force magnitudes and then canceling common factors. Cross-multiplying and taking the square root, we obtain

$$
\frac{x}{L+x}=\sqrt{\frac{2}{5}}
$$

which can be rearranged to produce

$$
x=\frac{L}{\sqrt{\frac{2}{5}}-1} \approx 1.72 L
$$

(b) The y coordinate of particle 3 is $y=0$.

1. We note that the symbol q_{2} is used in the problem statement to mean the absolute value of the negative charge which resides on the larger shell. The following sketch is for $q_{1}=q_{2}$.

The following two sketches are for the cases $q_{1}>q_{2}$ (left figure) and $q_{1}<q_{2}$ (right figure).

2. (a) We note that the electric field points leftward at both points. Using $\vec{F}=q_{0} \vec{E}$, and orienting our x axis rightward (so \hat{i} points right in the figure), we find

$$
\vec{F}=\left(+1.6 \times 10^{-19} \mathrm{C}\right)\left(-40 \frac{\mathrm{~N}}{\mathrm{C}} \hat{\mathrm{i}}\right)=-6.4 \times 10^{-18} \mathrm{~N} \hat{\mathrm{i}}
$$

which means the magnitude of the force on the proton is $6.4 \times 10^{-18} \mathrm{~N}$ and its direction $(-\hat{\mathrm{i}})$ is leftward.
(b) As the discussion in §22-2 makes clear, the field strength is proportional to the "crowdedness" of the field lines. It is seen that the lines are twice as crowded at A than at B, so we conclude that $E_{A}=2 E_{B}$. Thus, $E_{B}=20 \mathrm{~N} / \mathrm{C}$.
3. The following diagram is an edge view of the disk and shows the field lines above it. Near the disk, the lines are perpendicular to the surface and since the disk is uniformly charged, the lines are uniformly distributed over the surface. Far away from the disk, the lines are like those of a single point charge (the charge on the disk). Extended back to the disk (along the dotted lines of the diagram) they intersect at the center of the disk.

If the disk is positively charged, the lines are directed outward from the disk. If the disk is negatively charged, they are directed inward toward the disk. A similar set of lines is associated with the region below the disk.
4. We find the charge magnitude $|q|$ from $E=|q| / 4 \pi \varepsilon_{0} r^{2}$:

$$
q=4 \pi \varepsilon_{0} E r^{2}=\frac{(1.00 \mathrm{~N} / \mathrm{C})(1.00 \mathrm{~m})^{2}}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=1.11 \times 10^{-10} \mathrm{C}
$$

5. Since the magnitude of the electric field produced by a point charge q is given by $E=|q| / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance from the charge to the point where the field has magnitude E, the magnitude of the charge is

$$
|q|=4 \pi \varepsilon_{0} r^{2} E=\frac{(0.50 \mathrm{~m})^{2}(2.0 \mathrm{~N} / \mathrm{C})}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=5.6 \times 10^{-11} \mathrm{C}
$$

6. With $x_{1}=6.00 \mathrm{~cm}$ and $x_{2}=21.00 \mathrm{~cm}$, the point midway between the two charges is located at $x=13.5 \mathrm{~cm}$. The values of the charge are $q_{1}=-q_{2}=-2.00 \times 10^{-7} \mathrm{C}$, and the magnitudes and directions of the individual fields are given by:

$$
\begin{aligned}
& \vec{E}_{1}=-\frac{\left|q_{1}\right|}{4 \pi \varepsilon_{0}\left(x-x_{1}\right)^{2}} \hat{\mathrm{i}}=-\left(3.196 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}} \\
& \vec{E}_{2}=-\frac{q_{2}}{4 \pi \varepsilon_{0}\left(x-x_{1}\right)^{2}} \hat{\mathrm{i}}=-\left(3.196 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}
\end{aligned}
$$

Thus, the net electric field is

$$
\vec{E}_{\text {net }}=\vec{E}_{1}+\vec{E}_{2}=-\left(6.39 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}
$$

7. Since the charge is uniformly distributed throughout a sphere, the electric field at the surface is exactly the same as it would be if the charge were all at the center. That is, the magnitude of the field is

$$
E=\frac{q}{4 \pi \varepsilon_{0} R^{2}}
$$

where q is the magnitude of the total charge and R is the sphere radius.
(a) The magnitude of the total charge is $Z e$, so

$$
E=\frac{Z e}{4 \pi \varepsilon_{0} R^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(94)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{\left(6.64 \times 10^{-15} \mathrm{~m}\right)^{2}}=3.07 \times 10^{21} \mathrm{~N} / \mathrm{C} .
$$

(b) The field is normal to the surface and since the charge is positive, it points outward from the surface.
8. (a) The individual magnitudes $\left|\vec{E}_{1}\right|$ and $\left|\vec{E}_{2}\right|$ are figured from Eq. 22-3, where the absolute value signs for q_{2} are unnecessary since this charge is positive. Whether we add the magnitudes or subtract them depends on if \vec{E}_{1} is in the same, or opposite, direction as \vec{E}_{2}. At points left of q_{1} (on the $-x$ axis) the fields point in opposite directions, but there is no possibility of cancellation (zero net field) since $\left|\vec{E}_{1}\right|$ is everywhere bigger than $\left|\vec{E}_{2}\right|$ in this region. In the region between the charges $(0<x<L)$ both fields point leftward and there is no possibility of cancellation. At points to the right of q_{2} (where $x>L$), \vec{E}_{1} points leftward and \vec{E}_{2} points rightward so the net field in this range is

$$
\vec{E}_{\text {net }}=\left(\left|\vec{E}_{2}\right|-\left|\vec{E}_{1}\right|\right) \hat{\mathrm{i}} .
$$

Although $\left|q_{1}\right|>q_{2}$ there is the possibility of $\vec{E}_{\text {net }}=0$ since these points are closer to q_{2} than to q_{1}. Thus, we look for the zero net field point in the $x>L$ region:

$$
\left|\vec{E}_{1}\right|=\left|\vec{E}_{2}\right| \Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|}{x^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{(x-L)^{2}}
$$

which leads to

$$
\frac{x-L}{x}=\sqrt{\frac{q_{2}}{\left|q_{1}\right|}}=\sqrt{\frac{2}{5}} .
$$

Thus, we obtain $x=\frac{L}{1-\sqrt{2 / 5}} \approx 2.72 L$.
(b) A sketch of the field lines is shown in the figure below:

9. At points between the charges, the individual electric fields are in the same direction and do not cancel. Since charge $q_{2}=-4.00 q_{1}$ located at $x_{2}=70 \mathrm{~cm}$ has a greater magnitude than $q_{1}=2.1 \times 10^{-8} \mathrm{C}$ located at $x_{1}=20 \mathrm{~cm}$, a point of zero field must be closer to q_{1} than to q_{2}. It must be to the left of q_{1}.

Let x be the coordinate of P, the point where the field vanishes. Then, the total electric field at P is given by

$$
E=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\left|q_{2}\right|}{\left(x-x_{2}\right)^{2}}-\frac{\left|q_{1}\right|}{\left(x-x_{1}\right)^{2}}\right) .
$$

If the field is to vanish, then

$$
\frac{\left|q_{2}\right|}{\left(x-x_{2}\right)^{2}}=\frac{\left|q_{1}\right|}{\left(x-x_{1}\right)^{2}} \Rightarrow \frac{\left|q_{2}\right|}{\left|q_{1}\right|}=\frac{\left(x-x_{2}\right)^{2}}{\left(x-x_{1}\right)^{2}} .
$$

Taking the square root of both sides, noting that $\left|q_{2}\right|\left|\left|q_{1}\right|=4\right.$, we obtain

$$
\frac{x-70}{x-20}= \pm 2.0
$$

Choosing -2.0 for consistency, the value of x is found to be $x=-30 \mathrm{~cm}$.
10. We place the origin of our coordinate system at point P and orient our y axis in the direction of the $q_{4}=-12 q$ charge (passing through the $q_{3}=+3 q$ charge). The x axis is perpendicular to the y axis, and thus passes through the identical $q_{1}=q_{2}=+5 q$ charges. The individual magnitudes $\left|\vec{E}_{1}\right|,\left|\vec{E}_{2}\right|,\left|\vec{E}_{3}\right|$, and $\left|\vec{E}_{4}\right|$ are figured from Eq. 22-3, where the absolute value signs for q_{1}, q_{2}, and q_{3} are unnecessary since those charges are positive (assuming $q>0$). We note that the contribution from q_{1} cancels that of q_{2} (that is, $\left|\vec{E}_{1}\right|=\left|\vec{E}_{2}\right|$), and the net field (if there is any) should be along the y axis, with magnitude equal to

$$
\vec{E}_{\text {net }}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\left|q_{4}\right|}{(2 d)^{2}}-\frac{q_{3}}{d^{2}}\right) \hat{\mathrm{j}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{12 q}{4 d^{2}}-\frac{3 q}{d^{2}}\right) \hat{\mathrm{j}}
$$

which is seen to be zero. A rough sketch of the field lines is shown below:

11. The x component of the electric field at the center of the square is given by

$$
\begin{aligned}
E_{x} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{\left|q_{1}\right|}{(a / \sqrt{2})^{2}}+\frac{\left|q_{2}\right|}{(a / \sqrt{2})^{2}}-\frac{\left|q_{3}\right|}{(a / \sqrt{2})^{2}}-\frac{\left|q_{4}\right|}{(a / \sqrt{2})^{2}}\right] \cos 45^{\circ} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{a^{2} / 2}\left(\left|q_{1}\right|+\left|q_{2}\right|-\left|q_{3}\right|-\left|q_{4}\right|\right) \frac{1}{\sqrt{2}} \\
& =0 .
\end{aligned}
$$

Similarly, the y component of the electric field is

$$
\begin{aligned}
E_{y} & =\frac{1}{4 \pi \varepsilon_{0}}\left[-\frac{\left|q_{1}\right|}{(a / \sqrt{2})^{2}}+\frac{\left|q_{2}\right|}{(a / \sqrt{2})^{2}}+\frac{\left|q_{3}\right|}{(a / \sqrt{2})^{2}}-\frac{\left|q_{4}\right|}{(a / \sqrt{2})^{2}}\right] \cos 45^{\circ} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{a^{2} / 2}\left(-\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|-\left|q_{4}\right|\right) \frac{1}{\sqrt{2}} \\
& =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(2.0 \times 10^{-8} \mathrm{C}\right)}{(0.050 \mathrm{~m})^{2} / 2} \frac{1}{\sqrt{2}}=1.02 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Thus, the electric field at the center of the square is $\vec{E}=E_{y} \hat{\mathrm{j}}=\left(1.02 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{j}}$.
12. By symmetry we see the contributions from the two charges $q_{1}=q_{2}=+e$ cancel each other, and we simply use Eq. 22-3 to compute magnitude of the field due to $q_{3}=+2 e$.
(a) The magnitude of the net electric field is

$$
\left|\vec{E}_{\text {net }}\right|=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 e}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 e}{(a / \sqrt{2})^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 e}{a^{2}}=\left(8.99 \times 10^{9}\right) \frac{4\left(1.60 \times 10^{-19}\right)}{\left(6.00 \times 10^{-6}\right)^{2}}=160 \mathrm{~N} / \mathrm{C}
$$

(b) This field points at 45.0°, counterclockwise from the x axis.
13. (a) The vertical components of the individual fields (due to the two charges) cancel, by symmetry. Using $d=3.00 \mathrm{~m}$, the horizontal components (both pointing to the $-x$ direction) add to give a magnitude of

$$
E_{x, \text { net }}=\frac{2 q d}{4 \pi \varepsilon_{0}\left(d^{2}+y^{2}\right)^{3 / 2}}=1.38 \times 10^{-10} \mathrm{~N} / \mathrm{C} .
$$

(b) The net electric field points in the $-x$ direction, or 180° counterclockwise from the $+x$ axis.
14. For it to be possible for the net field to vanish at some $x>0$, the two individual fields (caused by q_{1} and q_{2}) must point in opposite directions for $x>0$. Given their locations in the figure, we conclude they are therefore oppositely charged. Further, since the net field points more strongly leftward for the small positive x (where it is very close to q_{2}) then we conclude that q_{2} is the negative-valued charge. Thus, q_{1} is a positive-valued charge. We write each charge as a multiple of some positive number ξ (not determined at this point). Since the problem states the absolute value of their ratio, and we have already inferred their signs, we have $q_{1}=4 \xi$ and $q_{2}=-\xi$. Using Eq. 22-3 for the individual fields, we find

$$
E_{\mathrm{net}}=E_{1}+E_{2}=\frac{4 \xi}{4 \pi \varepsilon_{0}(L+x)^{2}}-\frac{\xi}{4 \pi \varepsilon_{0} x^{2}}
$$

for points along the positive x axis. Setting $E_{\text {net }}=0$ at $x=20 \mathrm{~cm}$ (see graph) immediately leads to $L=20 \mathrm{~cm}$.
(a) If we differentiate $E_{\text {net }}$ with respect to x and set equal to zero (in order to find where it is maximum), we obtain (after some simplification) that location:

$$
x=\left(\frac{2}{3} \sqrt[3]{2}+\frac{1}{3} \sqrt[3]{4}+\frac{1}{3}\right) L=34 \mathrm{~cm}
$$

We note that the result for part (a) does not depend on the particular value of ξ.
(b) Now we are asked to set $\xi=3 e$, where $e=1.60 \times 10^{-19} \mathrm{C}$, and evaluate $E_{\text {net }}$ at the value of x (converted to meters) found in part (a). The result is $2.2 \times 10^{-8} \mathrm{~N} / \mathrm{C}$.
15. The field of each charge has magnitude

$$
E=k \frac{e}{(0.020 \mathrm{~m})^{2}}=3.6 \times 10^{-6} \mathrm{~N} / \mathrm{C}
$$

The directions are indicated in standard format below. We use the magnitude-angle notation (convenient if one is using a vector-capable calculator in polar mode) and write (starting with the proton on the left and moving around clockwise) the contributions to $\vec{E}_{\text {net }}$ as follows:

$$
\left(E \angle-20^{\circ}\right)+\left(E \angle 130^{\circ}\right)+\left(E \angle-100^{\circ}\right)+\left(E \angle-150^{\circ}\right)+\left(E \angle 0^{\circ}\right) .
$$

This yields $\left(3.93 \times 10^{-6} \angle-76.4^{\circ}\right)$, with the N/C unit understood.
(a) The result above shows that the magnitude of the net electric field is $\left|\vec{E}_{\text {net }}\right|=3.93 \times 10^{-6} \mathrm{~N} / \mathrm{C}$.
(b) Similarly, the direction of $\vec{E}_{\text {net }}$ is -76.4° from the x axis.
16. The net field components along the x and y axes are

$$
E_{\text {net } x}=\frac{q_{1}}{4 \pi \varepsilon_{0} R^{2}}-\frac{q_{2} \cos \theta}{4 \pi \varepsilon_{0} R^{2}}, \quad E_{\text {net } y}=-\frac{q_{2} \sin \theta}{4 \pi \varepsilon_{0} R^{2}} .
$$

The magnitude is the square root of the sum of the components-squared. Setting the magnitude equal to $E=2.00 \times 10^{5} \mathrm{~N} / \mathrm{C}$, squaring and simplifying, we obtain

$$
E^{2}=\frac{q_{1}^{2}+q_{2}^{2}-2 q_{1} q_{2} \cos \theta}{16 \pi^{2} \varepsilon_{0}^{2} R^{4}}
$$

With $R=0.500 \mathrm{~m}, q_{1}=2.00 \times 10^{-6} \mathrm{C}$ and $q_{2}=6.00 \times 10^{-6} \mathrm{C}$, we can solve this expression for $\cos \theta$ and then take the inverse cosine to find the angle. There are two answers.
(a) The positive value of angle is $\theta=67.8^{\circ}$.
(b) The positive value of angle is $\theta=-67.8^{\circ}$.
17. The magnitude of the dipole moment is given by $p=q d$, where q is the positive charge in the dipole and d is the separation of the charges. For the dipole described in the problem,

$$
p=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(4.30 \times 10^{-9} \mathrm{~m}\right)=6.88 \times 10^{-28} \mathrm{C} \cdot \mathrm{~m}
$$

The dipole moment is a vector that points from the negative toward the positive charge.
18. According to the problem statement, $E_{\text {act }}$ is Eq. 22-5 (with $z=5 d$)

$$
\frac{q}{4 \pi \varepsilon_{0}(4.5 d)^{2}}-\frac{q}{4 \pi \varepsilon_{0}(5.5 d)^{2}}=\frac{40 q}{9801 \pi \varepsilon_{0} d^{2}}
$$

and $E_{\text {approx }}$ is

$$
\frac{q d}{2 \pi \varepsilon_{0}(5 d)^{3}}=\frac{q}{250 \pi \varepsilon_{0} d^{2}} .
$$

The ratio is therefore

$$
\frac{E_{\text {approx }}}{E_{\text {act }}}=0.9801 \approx 0.98
$$

19. Consider the figure below.

(a) The magnitude of the net electric field at point P is

$$
\left|\vec{E}_{\mathrm{net}}\right|=2 E_{1} \sin \theta=2\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(d / 2)^{2}+r^{2}}\right] \frac{d / 2}{\sqrt{(d / 2)^{2}+r^{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q d}{\left[(d / 2)^{2}+r^{2}\right]^{3 / 2}}
$$

For $r \gg d$, we write $\left[(d / 2)^{2}+r^{2}\right]^{3 / 2} \approx r^{3}$ so the expression above reduces to

$$
\left|\vec{E}_{\text {net }}\right| \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{q d}{r^{3}}
$$

(b) From the figure, it is clear that the net electric field at point P points in the $-\hat{\mathrm{j}}$ direction, or -90° from the $+x$ axis.
20. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping higher order terms than are shown in Eq. 22-7:

$$
\begin{aligned}
E & =\frac{q}{4 \pi \varepsilon_{0} z^{2}}\left(\left(1+\frac{d}{z}+\frac{3}{4} \frac{d^{2}}{z^{2}}+\frac{1}{2} \frac{d^{3}}{z^{3}}+\ldots\right)-\left(1-\frac{d}{z}+\frac{3}{4} \frac{d^{2}}{z^{2}}-\frac{1}{2} \frac{d^{3}}{z^{3}}+\ldots\right)\right) \\
& =\frac{q d}{2 \pi \varepsilon_{0} z^{3}}+\frac{q d^{3}}{4 \pi \varepsilon_{0} z^{5}}+\ldots
\end{aligned}
$$

Therefore, in the terminology of the problem, $E_{\text {next }}=q d^{3} / 4 \pi \varepsilon_{0} z^{5}$.
21. Think of the quadrupole as composed of two dipoles, each with dipole moment of magnitude $p=q d$. The moments point in opposite directions and produce fields in opposite directions at points on the quadrupole axis. Consider the point P on the axis, a distance z to the right of the quadrupole center and take a rightward pointing field to be positive. Then, the field produced by the right dipole of the pair is $q d / 2 \pi \varepsilon_{0}(z-d / 2)^{3}$ and the field produced by the left dipole is $-q d / 2 \pi \varepsilon_{0}(z+d / 2)^{3}$. Use the binomial expansions $(z-d / 2)^{-3} \approx z^{-3}-3 z^{-4}(-d / 2)$ and $(z+d / 2)^{-3} \approx z^{-3}-3 z^{-4}(d / 2)$ to obtain

$$
E=\frac{q d}{2 \pi \varepsilon_{0}}\left[\frac{1}{z^{3}}+\frac{3 d}{2 z^{4}}-\frac{1}{z^{3}}+\frac{3 d}{2 z^{4}}\right]=\frac{6 q d^{2}}{4 \pi \varepsilon_{0} z^{4}} .
$$

Let $Q=2 q d^{2}$. Then,

$$
E=\frac{3 Q}{4 \pi \varepsilon_{0} z^{4}}
$$

22. We use Eq. 22-3, assuming both charges are positive. At P, we have

$$
E_{\text {left ring }}=E_{\text {right ring }} \Rightarrow \frac{q_{1} R}{4 \pi \varepsilon_{0}\left(R^{2}+R^{2}\right)^{3 / 2}}=\frac{q_{2}(2 R)}{4 \pi \varepsilon_{0}\left[(2 R)^{2}+R^{2}\right]^{3 / 2}}
$$

Simplifying, we obtain

$$
\frac{q_{1}}{q_{2}}=2\left(\frac{2}{5}\right)^{3 / 2} \approx 0.506
$$

23. (a) We use the usual notation for the linear charge density: $\lambda=q / L$. The arc length is $L=r \theta$ if θ is expressed in radians. Thus,

$$
L=(0.0400 \mathrm{~m})(0.698 \mathrm{rad})=0.0279 \mathrm{~m} .
$$

With $q=-300\left(1.602 \times 10^{-19} \mathrm{C}\right)$, we obtain $\lambda=-1.72 \times 10^{-15} \mathrm{C} / \mathrm{m}$.
(b) We consider the same charge distributed over an area $A=\pi r^{2}=\pi(0.0200 \mathrm{~m})^{2}$ and obtain $\sigma=q / A=-3.82 \times 10^{-14} \mathrm{C} / \mathrm{m}^{2}$.
(c) Now the area is four times larger than in the previous part $\left(A_{\text {sphere }}=4 \pi r^{2}\right)$ and thus obtain an answer that is one-fourth as big:

$$
\sigma=q / A_{\text {sphere }}=-9.56 \times 10^{-15} \mathrm{C} / \mathrm{m}^{2}
$$

(d) Finally, we consider that same charge spread throughout a volume of $4 \pi r^{3} / 3$ and obtain the charge density $\rho=$ charge $/$ volume $=-1.43 \times 10^{-12} \mathrm{C} / \mathrm{m}^{3}$.
24. From symmetry, we see that the net field at P is twice the field caused by the upper semicircular charge $+q=\lambda \cdot \pi R$ (and that it points downward). Adapting the steps leading to Eq. 22-21, we find

$$
\vec{E}_{\text {net }}=\left.2(-\hat{\mathrm{j}}) \frac{\lambda}{4 \pi \varepsilon_{0} R} \sin \theta\right|_{-90^{\circ}} ^{90^{\circ}}=-\frac{q}{\varepsilon_{0} \pi^{2} R^{2}} \hat{\mathrm{j}} .
$$

(a) With $\mathrm{R}=8.50 \times 10^{-2} \mathrm{~m}$ and $q=1.50 \times 10^{-8} \mathrm{C},\left|\vec{E}_{\text {net }}\right|=23.8 \mathrm{~N} / \mathrm{C}$.
(b) The net electric field $\vec{E}_{\text {net }}$ points in the $-\hat{\mathrm{j}}$ direction, or -90° counterclockwise from the $+x$ axis.
25. Studying Sample Problem 22-4, we see that the field evaluated at the center of curvature due to a charged distribution on a circular arc is given by

$$
\vec{E}=\frac{\lambda}{4 \pi \varepsilon_{0} r}[\sin \theta]_{-\theta / 2}^{\theta / 2} \quad \text { along the symmetry axis }
$$

where $\lambda=q / r \theta$ with θ in radians. In this problem, each charged quarter-circle produces a field of magnitude

$$
|\vec{E}|=\frac{|q|}{r \pi / 2} \frac{1}{4 \pi \varepsilon_{0} r}[\sin \theta]_{-\pi / 4}^{\pi / 4}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \sqrt{2}|q|}{\pi r^{2}} .
$$

That produced by the positive quarter-circle points at -45°, and that of the negative quarter-circle points at $+45^{\circ}$.
(a) The magnitude of the net field is

$$
E_{\text {net }, x}=2\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \sqrt{2}|q|}{\pi r^{2}}\right) \cos 45^{\circ}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4|q|}{\pi r^{2}}=\frac{\left(8.99 \times 10^{9}\right) 4\left(4.50 \times 10^{-12}\right)}{\pi\left(5.00 \times 10^{-2}\right)^{2}}=20.6 \mathrm{~N} / \mathrm{C} .
$$

(b) By symmetry, the net field points vertically downward in the $-\hat{\mathrm{j}}$ direction, or -90° counterclockwise from the $+x$ axis.
26. We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero.

$$
\frac{d}{d z}\left(\frac{q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}}\right)=\frac{q}{4 \pi \varepsilon_{0}} \frac{R^{2}-2 z^{2}}{\left(z^{2}+R^{2}\right)^{5 / 2}}=0
$$

which leads to $z=R / \sqrt{2}$. With $R=2.40 \mathrm{~cm}$, we have $z=1.70 \mathrm{~cm}$.
27. (a) The linear charge density is the charge per unit length of rod. Since the charge is uniformly distributed on the rod,

$$
\lambda=\frac{-q}{L}=\frac{-4.23 \times 10^{-15} \mathrm{C}}{0.0815 \mathrm{~m}}=-5.19 \times 10^{-14} \mathrm{C} / \mathrm{m} .
$$

(b) We position the x axis along the rod with the origin at the left end of the rod, as shown in the diagram.

Let $d x$ be an infinitesimal length of rod at x. The charge in this segment is $d q=\lambda d x$. The charge $d q$ may be considered to be a point charge. The electric field it produces at point P has only an x component and this component is given by

$$
d E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{(L+a-x)^{2}} .
$$

The total electric field produced at P by the whole rod is the integral

$$
\begin{aligned}
E_{x} & =\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{d x}{(L+a-x)^{2}}=\left.\frac{\lambda}{4 \pi \varepsilon_{0}} \frac{1}{L+a-x}\right|_{0} ^{L}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{L+a}\right) \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}} \frac{L}{a(L+a)}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a(L+a)},
\end{aligned}
$$

upon substituting $-q=\lambda L$. With $q=4.23 \times 10^{-15} \mathrm{C}, L=0.0815 \mathrm{~m}$ and $a=0.120 \mathrm{~m}$, we obtain $E_{x}=-1.57 \times 10^{-3} \mathrm{~N} / \mathrm{C}$.
(c) The negative sign indicates that the field points in the $-x$ direction, or -180° counterclockwise form the $+x$ axis.
(d) If a is much larger than L, the quantity $L+a$ in the denominator can be approximated by a and the expression for the electric field becomes

$$
E_{x}=-\frac{q}{4 \pi \varepsilon_{0} a^{2}} .
$$

Since $a=50 \mathrm{~m} \gg L=0.0815 \mathrm{~m}$, the above approximation applies and we have $E_{x}=-1.52 \times 10^{-8} \mathrm{~N} / \mathrm{C}$, or $\left|E_{x}\right|=1.52 \times 10^{-8} \mathrm{~N} / \mathrm{C}$.
(e) For a particle of charge $-q=-4.23 \times 10^{-15} \mathrm{C}$, the electric field at a distance $a=50 \mathrm{~m}$ away has a magnitude $\left|E_{x}\right|=1.52 \times 10^{-8} \mathrm{~N} / \mathrm{C}$.
28. First, we need a formula for the field due to the arc. We use the notation λ for the charge density, $\lambda=Q / L$. Sample Problem 22-4 illustrates the simplest approach to circular arc field problems. Following the steps leading to Eq. 22-21, we see that the general result (for arcs that subtend angle θ) is

$$
E_{\mathrm{arc}}=\frac{\lambda}{4 \pi \varepsilon_{\mathrm{o}} r}[\sin (\theta / 2)-\sin (-\theta / 2)]=\frac{\lambda \sin (\theta / 2)}{2 \pi \varepsilon_{\mathrm{o}} r} .
$$

Now, the arc length is $L=r \theta$ if θ is expressed in radians. Thus, using R instead of r, we obtain

$$
E_{\mathrm{arc}}=\frac{Q / L \sin (\theta / 2)}{2 \pi \varepsilon_{0} R}=\frac{Q \sin (\theta / 2)}{2 \pi \varepsilon_{0} \theta R^{2}} .
$$

Thus, with $\theta=\pi$, the problem asks for the ratio $E_{\text {particle }} / E_{\text {arc }}$ where $E_{\text {particle }}$ is given by Eq. $22-3$. We obtain

$$
\frac{Q / 4 \pi \varepsilon_{0} R^{2}}{Q \sin (\theta / 2) / 2 \pi \varepsilon_{0} R^{2}}=\frac{\pi}{2} \approx 1.57
$$

29. We assume $q>0$. Using the notation $\lambda=q / L$ we note that the (infinitesimal) charge on an element $d x$ of the rod contains charge $d q=\lambda d x$. By symmetry, we conclude that all horizontal field components (due to the $d q$'s) cancel and we need only "sum" (integrate) the vertical components. Symmetry also allows us to integrate these contributions over only half the $\operatorname{rod}(0 \leq x \leq L / 2)$ and then simply double the result. In that regard we note that $\sin \theta=R / r$ where $r=\sqrt{x^{2}+R^{2}}$.
(a) Using Eq. 22-3 (with the 2 and $\sin \theta$ factors just discussed) the magnitude is

$$
\begin{aligned}
|\vec{E}| & =2 \int_{0}^{L / 2}\left(\frac{d q}{4 \pi \varepsilon_{0} r^{2}}\right) \sin \theta=\frac{2}{4 \pi \varepsilon_{0}} \int_{0}^{L / 2}\left(\frac{\lambda d x}{x^{2}+R^{2}}\right)\left(\frac{y}{\sqrt{x^{2}+R^{2}}}\right) \\
& =\frac{\lambda R}{2 \pi \varepsilon_{0}} \int_{0}^{L / 2} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\frac{(q / L) R}{2 \pi \varepsilon_{0}}\left[\frac{x}{R^{2} \sqrt{x^{2}+R^{2}}}\right]_{0}^{L / 2} \\
& =\frac{q}{2 \pi \varepsilon_{0} L R} \frac{L / 2}{\sqrt{(L / 2)^{2}+R^{2}}}=\frac{q}{2 \pi \varepsilon_{0} R} \frac{1}{\sqrt{L^{2}+4 R^{2}}}
\end{aligned}
$$

where the integral may be evaluated by elementary means or looked up in Appendix E (item \#19 in the list of integrals). With $q=7.81 \times 10^{-12} \mathrm{C}, L=0.145 \mathrm{~m}$ and $R=0.0600 \mathrm{~m}$, we have $|\vec{E}|=12.4 \mathrm{~N} / \mathrm{C}$.
(b) As noted above, the electric field \vec{E} points in the $+y$ direction, or $+90^{\circ}$ counterclockwise from the $+x$ axis.
30. From Eq. 22-26
$E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)=\frac{5.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}}{2\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}\left[1-\frac{12 \mathrm{~cm}}{\sqrt{(12 \mathrm{~cm})^{2}+(2.5 \mathrm{~cm})^{2}}}\right]=6.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$.
31. At a point on the axis of a uniformly charged disk a distance z above the center of the disk, the magnitude of the electric field is

$$
E=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right]
$$

where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 22-26. The magnitude of the field at the center of the disk $(z=0)$ is $E_{c}=\sigma / 2 \varepsilon_{0}$. We want to solve for the value of z such that $E / E_{c}=1 / 2$. This means

$$
1-\frac{z}{\sqrt{z^{2}+R^{2}}}=\frac{1}{2} \Rightarrow \frac{z}{\sqrt{z^{2}+R^{2}}}=\frac{1}{2} .
$$

Squaring both sides, then multiplying them by $z^{2}+R^{2}$, we obtain $z^{2}=\left(z^{2} / 4\right)+\left(R^{2} / 4\right)$. Thus, $z^{2}=R^{2} / 3$, or $z=R / \sqrt{3}$. With $R=0.600 \mathrm{~m}$, we have $z=0.346 \mathrm{~m}$.
32. We write Eq. 22-26 as

$$
\frac{E}{E_{\max }}=1-\frac{z}{\left(z^{2}+R^{2}\right)^{1 / 2}}
$$

and note that this ratio is $\frac{1}{2}$ (according to the graph shown in the figure) when $z=4.0 \mathrm{~cm}$. Solving this for R we obtain $R=z \sqrt{3}=6.9 \mathrm{~cm}$.
33. We use Eq. 22-26, noting that the disk in figure (b) is effectively equivalent to the disk in figure (a) plus a concentric smaller disk (of radius $R / 2$) with the opposite value of σ. That is,

$$
E_{(b)}=E_{(a)}-\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{2 R}{\sqrt{(2 R)^{2}+(R / 2)^{2}}}\right)
$$

where

$$
E_{(a)}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{2 R}{\sqrt{(2 R)^{2}+R^{2}}}\right) .
$$

We find the relative difference and simplify:

$$
\frac{E_{(a)}-E_{(b)}}{E_{(a)}}=\frac{1-\frac{2}{\sqrt{4+1 / 4}}}{1-\frac{2}{\sqrt{4+1}}}=0.283
$$

or approximately 28%.
34. (a) Vertical equilibrium of forces leads to the equality

$$
q|\vec{E}|=m g \Rightarrow|\vec{E}|=\frac{m g}{2 e}
$$

Using the mass given in the problem, we obtain $|\vec{E}|=2.03 \times 10^{-7} \mathrm{~N} / \mathrm{C}$.
(b) Since the force of gravity is downward, then $q \vec{E}$ must point upward. Since $q>0$ in this situation, this implies \vec{E} must itself point upward.
35. The magnitude of the force acting on the electron is $F=e E$, where E is the magnitude of the electric field at its location. The acceleration of the electron is given by Newton's second law:

$$
a=\frac{F}{m}=\frac{e E}{m}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.00 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}=3.51 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}
$$

36. Eq. 22-28 gives

$$
\vec{E}=\frac{\vec{F}}{q}=\frac{m \vec{a}}{(-e)}=-\left(\frac{m}{e}\right) \vec{a}
$$

using Newton's second law.
(a) With east being the \hat{i} direction, we have

$$
\vec{E}=-\left(\frac{9.11 \times 10^{-31} \mathrm{~kg}}{1.60 \times 10^{-19} \mathrm{C}}\right)\left(1.80 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2} \hat{\mathrm{i}}\right)=-0.0102 \mathrm{~N} / \mathrm{C} \hat{\mathrm{i}}
$$

which means the field has a magnitude of $0.0102 \mathrm{~N} / \mathrm{C}$
(b) The result shows that the field \vec{E} is directed in the $-x$ direction, or westward.
37. We combine Eq. 22-9 and Eq. 22-28 (in absolute values).

$$
F=|q| E=|q|\left(\frac{p}{2 \pi \varepsilon_{0} z^{3}}\right)=\frac{2 k e p}{z^{3}}
$$

where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain

$$
F=\frac{2\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.6 \times 10^{-29} \mathrm{C} \cdot \mathrm{~m}\right)}{\left(25 \times 10^{-9} \mathrm{~m}\right)^{3}}
$$

which yields a force of magnitude $6.6 \times 10^{-15} \mathrm{~N}$. If the dipole is oriented such that \vec{p} is in the $+z$ direction, then \vec{F} points in the $-z$ direction.
38. (a) $F_{e}=E e=\left(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)=4.8 \times 10^{-13} \mathrm{~N}$.
(b) $F_{i}=E q_{\text {ion }}=E e=4.8 \times 10^{-13} \mathrm{~N}$.
39. (a) The magnitude of the force on the particle is given by $F=q E$, where q is the magnitude of the charge carried by the particle and E is the magnitude of the electric field at the location of the particle. Thus,

$$
E=\frac{F}{q}=\frac{3.0 \times 10^{-6} \mathrm{~N}}{2.0 \times 10^{-9} \mathrm{C}}=1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

The force points downward and the charge is negative, so the field points upward.
(b) The magnitude of the electrostatic force on a proton is

$$
F_{e l}=e E=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)=2.4 \times 10^{-16} \mathrm{~N} .
$$

(c) A proton is positively charged, so the force is in the same direction as the field, upward.
(d) The magnitude of the gravitational force on the proton is

$$
F_{g}=m g=\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.6 \times 10^{-26} \mathrm{~N} .
$$

The force is downward.
(e) The ratio of the forces is

$$
\frac{F_{e l}}{F_{g}}=\frac{2.4 \times 10^{-16} \mathrm{~N}}{1.64 \times 10^{-26} \mathrm{~N}}=1.5 \times 10^{10}
$$

40. (a) The initial direction of motion is taken to be the $+x$ direction (this is also the direction of \vec{E}). We use $v_{f}^{2}-v_{i}^{2}=2 a \Delta x$ with $v_{f}=0$ and $\vec{a}=\vec{F} / m=-e \vec{E} / m_{e}$ to solve for distance Δx :

$$
\Delta x=\frac{-v_{i}^{2}}{2 a}=\frac{-m_{e} v_{i}^{2}}{-2 e E}=\frac{-\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}{-2\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.00 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)}=7.12 \times 10^{-2} \mathrm{~m}
$$

(b) Eq. 2-17 leads to

$$
t=\frac{\Delta x}{v_{\text {avg }}}=\frac{2 \Delta x}{v_{i}}=\frac{2\left(7.12 \times 10^{-2} \mathrm{~m}\right)}{5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}}=2.85 \times 10^{-8} \mathrm{~s} .
$$

(c) Using $\Delta v^{2}=2 a \Delta x$ with the new value of Δx, we find

$$
\begin{aligned}
\frac{\Delta K}{K_{i}} & =\frac{\Delta\left(\frac{1}{2} m_{e} v^{2}\right)}{\frac{1}{2} m_{e} v_{i}^{2}}=\frac{\Delta v^{2}}{v_{i}^{2}}=\frac{2 a \Delta x}{v_{i}^{2}}=\frac{-2 e E \Delta x}{m_{e} v_{i}^{2}} \\
& =\frac{-2\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.00 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)\left(8.00 \times 10^{-3} \mathrm{~m}\right)}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}=-0.112 .
\end{aligned}
$$

Thus, the fraction of the initial kinetic energy lost in the region is 0.112 or 11.2%.
41. (a) The magnitude of the force acting on the proton is $F=e E$, where E is the magnitude of the electric field. According to Newton's second law, the acceleration of the proton is $a=F / m=e E / m$, where m is the mass of the proton. Thus,

$$
a=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.00 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}=1.92 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) We assume the proton starts from rest and use the kinematic equation $v^{2}=v_{0}^{2}+2 a x$ (or else $x=\frac{1}{2} a t^{2}$ and $v=a t$) to show that

$$
v=\sqrt{2 a x}=\sqrt{2\left(1.92 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}\right)(0.0100 \mathrm{~m})}=1.96 \times 10^{5} \mathrm{~m} / \mathrm{s} .
$$

42. When the drop is in equilibrium, the force of gravity is balanced by the force of the electric field: $m g=-q E$, where m is the mass of the drop, q is the charge on the drop, and E is the magnitude of the electric field. The mass of the drop is given by $m=(4 \pi / 3) r^{3} \rho$, where r is its radius and ρ is its mass density. Thus,

$$
q=-\frac{m g}{E}=-\frac{4 \pi r^{3} \rho g}{3 E}=-\frac{4 \pi\left(1.64 \times 10^{-6} \mathrm{~m}\right)^{3}\left(851 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{3\left(1.92 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)}=-8.0 \times 10^{-19} \mathrm{C}
$$

and $q / e=\left(-8.0 \times 10^{-19} \mathrm{C}\right) /\left(1.60 \times 10^{-19} \mathrm{C}\right)=-5$, or $q=-5 e$.
43. (a) We use $\Delta x=v_{\text {avg }} t=v t / 2$:

$$
v=\frac{2 \Delta x}{t}=\frac{2\left(2.0 \times 10^{-2} \mathrm{~m}\right)}{1.5 \times 10^{-8} \mathrm{~s}}=2.7 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) We use $\Delta x=\frac{1}{2} a t^{2}$ and $E=F / e=m a / e$:

$$
E=\frac{m a}{e}=\frac{2 \Delta x m}{e t^{2}}=\frac{2\left(2.0 \times 10^{-2} \mathrm{~m}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.5 \times 10^{-8} \mathrm{~s}\right)^{2}}=1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

44. We assume there are no forces or force-components along the x direction. We combine Eq. 22-28 with Newton's second law, then use Eq. 4-21 to determine time t followed by Eq. 4-23 to determine the final velocity (with $-g$ replaced by the a_{y} of this problem); for these purposes, the velocity components given in the problem statement are re-labeled as $v_{0 x}$ and $v_{0 y}$ respectively.
(a) We have $\vec{a}=q \vec{E} / m=-(e / m) \vec{E}$ which leads to

$$
\vec{a}=-\left(\frac{1.60 \times 10^{-19} \mathrm{C}}{9.11 \times 10^{-31} \mathrm{~kg}}\right)\left(120 \frac{\mathrm{~N}}{\mathrm{C}}\right) \hat{\mathrm{j}}=-\left(2.1 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

(b) Since $v_{x}=v_{0 x}$ in this problem (that is, $a_{x}=0$), we obtain

$$
\begin{aligned}
t & =\frac{\Delta x}{v_{0 x}}=\frac{0.020 \mathrm{~m}}{1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}}=1.3 \times 10^{-7} \mathrm{~s} \\
v_{y} & =v_{0 y}+a_{y} t=3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}+\left(-2.1 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.3 \times 10^{-7} \mathrm{~s}\right)
\end{aligned}
$$

which leads to $v_{y}=-2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Therefore, the final velocity is

$$
\vec{v}=\left(1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}-\left(2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}
$$

45. We take the positive direction to be to the right in the figure. The acceleration of the proton is $a_{p}=e E / m_{p}$ and the acceleration of the electron is $a_{e}=-e E / m_{e}$, where E is the magnitude of the electric field, m_{p} is the mass of the proton, and m_{e} is the mass of the electron. We take the origin to be at the initial position of the proton. Then, the coordinate of the proton at time t is $x=\frac{1}{2} a_{p} t^{2}$ and the coordinate of the electron is $x=L+\frac{1}{2} a_{e} t^{2}$. They pass each other when their coordinates are the same, or $\frac{1}{2} a_{p} t^{2}=L+\frac{1}{2} a_{e} t^{2}$. This means $t^{2}=2 L /\left(a_{p}-a_{e}\right)$ and

$$
\begin{aligned}
x & =\frac{a_{p}}{a_{p}-a_{e}} L=\frac{e E / m_{p}}{\left(e E / m_{p}\right)+\left(e E / m_{e}\right)} L=\frac{m_{e}}{m_{e}+m_{p}} L \\
& =\frac{9.11 \times 10^{-31} \mathrm{~kg}}{9.11 \times 10^{-31} \mathrm{~kg}+1.67 \times 10^{-27} \mathrm{~kg}}(0.050 \mathrm{~m}) \\
& =2.7 \times 10^{-5} \mathrm{~m} .
\end{aligned}
$$

46. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 22-28 and Newton's second law) the field \vec{E} pointing in the $+y$ direction (which we will call "upward") leads to a downward acceleration. This is exactly like a projectile motion problem as treated in Chapter 4 (but with g replaced with $a=e E / m=8.78 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$). Thus, Eq. 4-21 gives

$$
t=\frac{x}{\mathrm{v}_{\mathrm{o}} \cos 40^{\circ}}=\frac{3.00 \mathrm{~m}}{1.53 \times 10^{7} \mathrm{~m} / \mathrm{s}}=1.96 \times 10^{-6} \mathrm{~s}
$$

This leads (using Eq. 4-23) to

$$
v_{y}=v_{0} \sin 40^{\circ}-a t=-4.34 \times 10^{5} \mathrm{~m} / \mathrm{s} .
$$

Since the x component of velocity does not change, then the final velocity is

$$
\vec{v}=\left(1.53 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}-\left(4.34 \times 10^{5} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}} .
$$

47. (a) Using Eq. 22-28, we find

$$
\begin{aligned}
\vec{F} & =\left(8.00 \times 10^{-5} \mathrm{C}\right)\left(3.00 \times 10^{3} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}+\left(8.00 \times 10^{-5} \mathrm{C}\right)(-600 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{j}} \\
& =(0.240 \mathrm{~N}) \hat{\mathrm{i}}-(0.0480 \mathrm{~N}) \hat{\mathrm{j}}
\end{aligned}
$$

Therefore, the force has magnitude equal to

$$
F=\sqrt{(0.240 \mathrm{~N})^{2}+(0.0480 \mathrm{~N})^{2}}=0.245 \mathrm{~N} .
$$

(b) The angle the force \vec{F} makes with the $+x$ axis is

$$
\theta=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)=\tan ^{-1}\left(\frac{-0.0480 \mathrm{~N}}{0.240 \mathrm{~N}}\right)=-11.3^{\circ}
$$

measured counterclockwise from the $+x$ axis.
(c) With $m=0.0100 \mathrm{~kg}$, the (x, y) coordinates at $t=3.00 \mathrm{~s}$ can be found by combining Newton's second law with the kinematics equations of Chapters $2-4$. The x coordinate is

$$
x=\frac{1}{2} a_{x} t^{2}=\frac{F_{x} t^{2}}{2 m}=\frac{(0.240)(3.00)^{2}}{2(0.0100)}=108 \mathrm{~m} .
$$

(d) Similarly, the y coordinate is

$$
y=\frac{1}{2} a_{y} t^{2}=\frac{F_{y} t^{2}}{2 m}=\frac{(-0.0480)(3.00)^{2}}{2(0.0100)}=-21.6 \mathrm{~m} .
$$

48. We are given $\sigma=4.00 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$ and various values of z (in the notation of Eq. 2226 which specifies the field E of the charged disk). Using this with $F=e E$ (the magnitude of Eq. 22-28 applied to the electron) and $F=m a$, we obtain
(a) The magnitude of the acceleration at a distance R is

$$
a=\frac{e \sigma(2-\sqrt{2})}{4 m \varepsilon_{0}}=1.16 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) At a distance $R / 100, a=\frac{e \sigma(10001-\sqrt{10001})}{20002 m \varepsilon_{\mathrm{o}}}=3.94 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}$.
(c) At a distance $R / 1000, a=\frac{e \sigma(1000001-\sqrt{1000001})}{2000002 m \varepsilon_{0}}=3.97 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}$.
(d) The field due to the disk becomes more uniform as the electron nears the center point. One way to view this is to consider the forces exerted on the electron by the charges near the edge of the disk; the net force on the electron caused by those charges will decrease due to the fact that their contributions come closer to canceling out as the electron approaches the middle of the disk.
49. (a) Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 22-28 and Newton's second law) the field \vec{E} pointing in the same direction as the velocity leads to deceleration. Thus, with $t=1.5 \times 10^{-9} \mathrm{~s}$, we find

$$
v=v_{\mathrm{o}}-|a| t=v_{\mathrm{o}}-\frac{e E}{m} t=2.7 \times 10^{4} \mathrm{~m} / \mathrm{s} .
$$

(b) The displacement is equal to the distance since the electron does not change its direction of motion. The field is uniform, which implies the acceleration is constant. Thus,

$$
d=\frac{v+v_{0}}{2} t=5.0 \times 10^{-5} \mathrm{~m} .
$$

50. (a) Eq. 22-33 leads to $\tau=p E \sin 0^{\circ}=0$.
(b) With $\theta=90^{\circ}$, the equation gives

$$
\tau=p E=\left(2\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(0.78 \times 10^{-9} \mathrm{~m}\right)\right)\left(3.4 \times 10^{6} \mathrm{~N} / \mathrm{C}\right)=8.5 \times 10^{-22} \mathrm{~N} \cdot \mathrm{~m} .
$$

(c) Now the equation gives $\tau=p E \sin 180^{\circ}=0$.
51. (a) The magnitude of the dipole moment is

$$
p=q d=\left(1.50 \times 10^{-9} \mathrm{C}\right)\left(6.20 \times 10^{-6} \mathrm{~m}\right)=9.30 \times 10^{-15} \mathrm{C} \cdot \mathrm{~m}
$$

(b) Following the solution to part (c) of Sample Problem 22-6, we find

$$
U\left(180^{\circ}\right)-U(0)=2 p E=2\left(9.30 \times 10^{-15}\right)(1100)=2.05 \times 10^{-11} \mathrm{~J}
$$

52. Using Eq. 22-35, considering θ as a variable, we note that it reaches its maximum value when $\theta=-90^{\circ}: \tau_{\max }=p E$. Thus, with $E=40 \mathrm{~N} / \mathrm{C}$ and $\tau_{\max }=100 \times 10^{-28} \mathrm{~N} \cdot \mathrm{~m}$ (determined from the graph), we obtain the dipole moment: $p=2.5 \times 10^{-28} \mathrm{C} \cdot \mathrm{m}$.
53. Following the solution to part (c) of Sample Problem 22-6, we find

$$
\begin{aligned}
W & =U\left(\theta_{0}+\pi\right)-U\left(\theta_{0}\right)=-p E\left(\cos \left(\theta_{0}+\pi\right)-\cos \left(\theta_{0}\right)\right)=2 p E \cos \theta_{0} \\
& =2\left(3.02 \times 10^{-25} \mathrm{C} \cdot \mathrm{~m}\right)(46.0 \mathrm{~N} / \mathrm{C}) \cos 64.0^{\circ} \\
& =1.22 \times 10^{-23} \mathrm{~J} .
\end{aligned}
$$

54. We make the assumption that bead 2 is in the lower half of the circle, partly because it would be awkward for bead 1 to "slide through" bead 2 if it were in the path of bead 1 (which is the upper half of the circle) and partly to eliminate a second solution to the problem (which would have opposite angle and charge for bead 2). We note that the net y component of the electric field evaluated at the origin is negative (points down) for all positions of bead 1, which implies (with our assumption in the previous sentence) that bead 2 is a negative charge.
(a) When bead 1 is on the $+y$ axis, there is no x component of the net electric field, which implies bead 2 is on the $-y$ axis, so its angle is -90°.
(b) Since the downward component of the net field, when bead 1 is on the $+y$ axis, is of largest magnitude, then bead 1 must be a positive charge (so that its field is in the same direction as that of bead 2, in that situation). Comparing the values of E_{y} at 0° and at 90° we see that the absolute values of the charges on beads 1 and 2 must be in the ratio of 5 to 4. This checks with the 180° value from the E_{x} graph, which further confirms our belief that bead 1 is positively charged. In fact, the 180° value from the E_{x} graph allows us to solve for its charge (using Eq. 22-3):

$$
q_{1}=4 \pi \varepsilon_{0} r^{2} E=4 \pi\left(8.854 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}\right)(0.60 \mathrm{~m})^{2}\left(5.0 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}\right)=2.0 \times 10^{-6} \mathrm{C} .
$$

(c) Similarly, the 0° value from the E_{y} graph allows us to solve for the charge of bead 2:

$$
q_{2}=4 \pi \varepsilon_{0} r^{2} E=4 \pi\left(8.854 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}\right)(0.60 \mathrm{~m})^{2}\left(-4.0 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}\right)=-1.6 \times 10^{-6} \mathrm{C} .
$$

55. Consider an infinitesimal section of the rod of length $d x$, a distance x from the left end, as shown in the following diagram.

It contains charge $d q=\lambda d x$ and is a distance r from P. The magnitude of the field it produces at P is given by

$$
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{r^{2}} .
$$

The x and the y components are

$$
d E_{x}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{r^{2}} \sin \theta
$$

and

$$
d E_{y}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{r^{2}} \cos \theta
$$

respectively. We use θ as the variable of integration and substitute $r=R / \cos \theta$, $x=R \tan \theta$ and $d x=\left(R / \cos ^{2} \theta\right) d \theta$. The limits of integration are 0 and $\pi / 2 \mathrm{rad}$. Thus,

$$
E_{x}=-\frac{\lambda}{4 \pi \varepsilon_{0} R} \int_{0}^{\pi / 2} \sin \theta d \theta=\left.\frac{\lambda}{4 \pi \varepsilon_{0} R} \cos \theta\right|_{0} ^{\pi / 2}=-\frac{\lambda}{4 \pi \varepsilon_{0} R}
$$

and

$$
E_{y}=-\frac{\lambda}{4 \pi \varepsilon_{0} R} \int_{0}^{\pi / 2} \cos \theta d \theta=-\left.\frac{\lambda}{4 \pi \varepsilon_{0} R} \sin \theta\right|_{0} ^{\pi / 2}=-\frac{\lambda}{4 \pi \varepsilon_{0} R} .
$$

We notice that $E_{x}=E_{y}$ no matter what the value of R. Thus, \vec{E} makes an angle of 45° with the rod for all values of R.
56. From $d A=2 \pi r d r$ (which can be thought of as the differential of $A=\pi r^{2}$) and $d q=\sigma$ $d A$ (from the definition of the surface charge density σ), we have

$$
d q=\left(\frac{Q}{\pi R^{2}}\right) 2 \pi r d r
$$

where we have used the fact that the disk is uniformly charged to set the surface charge density equal to the total charge (Q) divided by the total area $\left(\pi R^{2}\right)$. We next set $r=$ 0.0050 m and make the approximation $d r \approx 30 \times 10^{-6} \mathrm{~m}$. Thus we get $d q \approx 2.4 \times 10^{-16} \mathrm{C}$.
57. Our approach (based on Eq. 22-29) consists of several steps. The first is to find an approximate value of e by taking differences between all the given data. The smallest difference is between the fifth and sixth values:

$$
18.08 \times 10^{-19} \mathrm{C}-16.48 \times 10^{-19} \mathrm{C}=1.60 \times 10^{-19} \mathrm{C}
$$

which we denote $e_{\text {approx }}$. The goal at this point is to assign integers n using this approximate value of e :

datum1	$\frac{6.563 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=4.10 \Rightarrow n_{1}=4$	datum6	$\frac{18.08 \times 10^{-19} \mathrm{C}}{e_{\text {appeox }}}=11.30 \Rightarrow n_{6}=11$
datum2	$\frac{8.204 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=5.13 \Rightarrow n_{2}=5$	datum7	$\frac{19.71 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=12.32 \Rightarrow n_{7}=12$
datum3	$\frac{11.50 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=7.19 \Rightarrow n_{3}=7$	datum8	$\frac{22.89 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=14.31 \Rightarrow n_{8}=14$
datum4	$\frac{13.13 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=8.21 \Rightarrow n_{4}=8$		
datum5	$\frac{16.48 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=10.30 \Rightarrow n_{5}=10$	datum9	$\frac{26.13 \times 10^{-19} \mathrm{C}}{e_{\text {approx }}}=16.33 \Rightarrow n_{9}=16$

Next, we construct a new data set $\left(e_{1}, e_{2}, e_{3} \ldots\right)$ by dividing the given data by the respective exact integers n_{i} (for $i=1,2,3 \ldots$):

$$
\left(e_{1}, e_{2}, e_{3} \ldots\right)=\left(\frac{6.563 \times 10^{-19} \mathrm{C}}{n_{1}}, \frac{8.204 \times 10^{-19} \mathrm{C}}{n_{2}}, \frac{11.50 \times 10^{-19} \mathrm{C}}{n_{3}} \ldots\right)
$$

which gives (carrying a few more figures than are significant)

$$
\left(1.64075 \times 10^{-19} \mathrm{C}, 1.6408 \times 10^{-19} \mathrm{C}, 1.64286 \times 10^{-19} \mathrm{C} \ldots\right)
$$

as the new data set (our experimental values for e). We compute the average and standard deviation of this set, obtaining

$$
e_{\text {exptal }}=e_{\text {avg }} \pm \Delta e=(1.641 \pm 0.004) \times 10^{-19} \mathrm{C}
$$

which does not agree (to within one standard deviation) with the modern accepted value for e. The lower bound on this spread is $e_{\text {avg }}-\Delta e=1.637 \times 10^{-19} \mathrm{C}$ which is still about 2% too high.
58. (a) It is clear from symmetry (also from Eq. 22-16) that the field vanishes at the center.
(b) The result $(E=0)$ for points infinitely far away can be reasoned directly from Eq. 2216 (it goes as $1 / z^{2}$ as $z \rightarrow \infty$) or by recalling the starting point of its derivation (Eq. 22-11, which makes it clearer that the field strength decreases as $1 / r^{2}$ at distant points).
(c) Differentiating Eq. 22-16 and setting equal to zero (to obtain the location where it is maximum) leads to

$$
\frac{d E}{d z}=\frac{q\left(R^{2}-2 z^{2}\right)}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)^{5 / 2}}=0 \quad \Rightarrow \quad z=+\frac{R}{\sqrt{2}}=0.707 R .
$$

(d) Plugging this value back into Eq. 22-16 with the values stated in the problem, we find $E_{\max }=3.46 \times 10^{7} \mathrm{~N} / \mathrm{C}$.
59. The distance from Q to P is $5 a$, and the distance from q to P is $3 a$. Therefore, the magnitudes of the individual electric fields are, using Eq. 22-3 (writing $1 / 4 \pi \varepsilon_{0}=k$),

$$
\left|\vec{E}_{Q}\right|=\frac{k|Q|}{25 a^{2}}, \quad\left|\vec{E}_{q}\right|=\frac{k|q|}{9 a^{2}} .
$$

We note that \vec{E}_{q} is along the y axis (directed towards $\pm y$ in accordance with the sign of q), and \vec{E}_{Q} has x and y components, with $\vec{E}_{Q x}= \pm \frac{4}{5}\left|\vec{E}_{Q}\right|$ and $\vec{E}_{Q y}= \pm \frac{3}{5}\left|\vec{E}_{Q}\right|$ (signs corresponding to the sign of Q). Consequently, we can write the addition of components in a simple way (basically, by dropping the absolute values):

$$
\begin{aligned}
& \vec{E}_{\text {net } x}=\frac{4 k Q}{125 a^{2}} \\
& \vec{E}_{\text {net } y}=\frac{3 k Q}{125 a^{2}}+\frac{k q}{9 a^{2}}
\end{aligned}
$$

(a) Equating $\vec{E}_{\text {net } x}$ and $\vec{E}_{\text {net } y}$, it is straightforward to solve for the relation between Q and q. We obtain $Q / q=125 / 9 \approx 14$.
(b) We set $\vec{E}_{\text {net } y}=0$ and find the necessary relation between Q and q. We obtain $Q / q=-125 / 27 \approx-4.6$.
60. First, we need a formula for the field due to the arc. We use the notation λ for the charge density, $\lambda=Q / L$. Sample Problem 22-4 illustrates the simplest approach to circular arc field problems. Following the steps leading to Eq. 22-21, we see that the general result (for arcs that subtend angle θ) is

$$
E_{\text {arc }}=\frac{\lambda}{4 \pi \varepsilon_{0} r}[\sin (\theta / 2)-\sin (-\theta / 2)]=\frac{\lambda \sin (\theta / 2)}{2 \pi \varepsilon_{0} r} .
$$

Now, the arc length is $L=r \theta$ if θ is expressed in radians. Thus, using R instead of r, we obtain

$$
E_{\mathrm{arc}}=\frac{Q / L \sin (\theta / 2)}{2 \pi \varepsilon_{0} R}=\frac{Q \sin (\theta / 2)}{2 \pi \varepsilon_{0} \theta R^{2}} .
$$

Thus, the problem requires $E_{\text {arc }}=\frac{1}{2} E_{\text {particle }}$ where $E_{\text {particle }}$ is given by Eq. 22-3. Hence,

$$
\frac{Q \sin (\theta / 2)}{2 \pi \varepsilon_{0} \theta R^{2}}=\frac{1}{2} \frac{Q}{4 \pi \varepsilon_{0} R^{2}} \Rightarrow \sin \left(\frac{\theta}{2}\right)=\frac{\theta}{4}
$$

where we note, again, that the angle is in radians. The approximate solution to this equation is $\theta=3.791 \mathrm{rad} \approx 217^{\circ}$.
61. Most of the individual fields, caused by diametrically opposite charges, will cancel, except for the pair that lie on the x axis passing through the center. This pair of charges produces a field pointing to the right

$$
\vec{E}=\frac{3 q}{4 \pi \varepsilon_{0} d^{2}} \hat{\mathrm{i}}=\frac{3 e}{4 \pi \varepsilon_{\mathrm{o}}(0.020 \mathrm{~m})^{2}}=\left(1.08 \times 10^{-5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}} .
$$

62. We use Eq. 22-16, with " q " denoting the charge on the larger ring:

$$
\frac{Q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}}+\frac{q z}{4 \pi \varepsilon_{0}\left(z^{2}+(3 R)^{2}\right)^{3 / 2}}=0 \quad \Rightarrow \quad q=-Q\left(\frac{13 \sqrt{13}}{5 \sqrt{5}}\right)
$$

which gives $q \approx-4.19 Q$. Note: we set $z=2 R$ in the above calculation.
63. (a) We refer to the same figure to which problem 63 refers (but without " q "). From symmetry, we see the net field component along the x axis is zero; the net field component along the y axis points upward. With $\theta=60^{\circ}$,

$$
E_{\text {net } y}=2 \frac{Q \sin \theta}{4 \pi \varepsilon_{0} a^{2}}
$$

Since $\sin \left(60^{\circ}\right)=\sqrt{3} / 2$, we can write this as $E_{\text {net }}=k Q \sqrt{3} / a^{2}$ (using the notation of the constant k defined in Eq. 21-5). Numerically, this gives roughly $47 \mathrm{~N} / \mathrm{C}$.
(b) From symmetry, we see in this case that the net field component along the y axis is zero; the net field component along the x axis points rightward. With $\theta=60^{\circ}$,

$$
E_{\mathrm{net} x}=2 \frac{Q \cos \theta}{4 \pi \varepsilon_{0} a^{2}} .
$$

Since $\cos \left(60^{\circ}\right)=1 / 2$, we can write this as $E_{\text {net }}=k Q / a^{2}$ (using the notation of Eq. 21-5). Thus, $E_{\text {net }} \approx 27 \mathrm{~N} / \mathrm{C}$.
64. The smallest arc is of length $L_{1}=\pi r_{1} / 2=\pi R / 2$; the middle-sized arc has length $L_{2}=\pi r_{2} / 2=\pi(2 R) / 2=\pi R$; and, the largest arc has $L_{3}=\pi(3 R) / 2$. The charge per unit length for each arc is $\lambda=q / L$ where each charge q is specified in the figure. Following the steps that lead to Eq. 22-21 in Sample Problem 22-4, we find

$$
E_{\text {net }}=\frac{\lambda_{1}\left[2 \sin \left(45^{\circ}\right)\right]}{4 \pi \varepsilon_{0} r_{1}}+\frac{\lambda_{2}\left[2 \sin \left(45^{\circ}\right)\right]}{4 \pi \varepsilon_{0} r_{2}}+\frac{\lambda_{3}\left[2 \sin \left(45^{\circ}\right)\right]}{4 \pi \varepsilon_{0} r_{3}}=\frac{Q}{\sqrt{2} \pi^{2} \varepsilon_{0} R^{2}}
$$

which yields $E_{\text {net }}=1.62 \times 10^{6} \mathrm{~N} / \mathrm{C}$.
(b) The direction is -45°, measured counterclockwise from the $+x$ axis.
65. (a) Since the two charges in question are of the same sign, the point $x=2.0 \mathrm{~mm}$ should be located in between them (so that the field vectors point in the opposite direction). Let the coordinate of the second particle be $x^{\prime}\left(x^{\prime}>0\right)$. Then, the magnitude of the field due to the charge $-q_{1}$ evaluated at x is given by $E=q_{1} / 4 \pi \varepsilon_{0} x^{2}$, while that due to the second charge $-4 q_{1}$ is $E^{\prime}=4 q_{1} / 4 \pi \varepsilon_{0}\left(x^{\prime}-x\right)^{2}$. We set the net field equal to zero:

$$
\vec{E}_{\mathrm{net}}=0 \Rightarrow E=E^{\prime}
$$

so that

$$
\frac{q_{1}}{4 \pi \varepsilon_{0} x^{2}}=\frac{4 q_{1}}{4 \pi \varepsilon_{0}\left(x^{\prime}-x\right)^{2}}
$$

Thus, we obtain $x^{\prime}=3 x=3(2.0 \mathrm{~mm})=6.0 \mathrm{~mm}$.
(b) In this case, with the second charge now positive, the electric field vectors produced by both charges are in the negative x direction, when evaluated at $x=2.0 \mathrm{~mm}$. Therefore, the net field points in the negative x direction, or 180°, measured counterclockwise from the $+x$ axis.
66. (a) The electron e_{c} is a distance $r=z=0.020$ meter away. Thus,

$$
E_{\mathrm{c}}=\frac{e}{4 \pi \varepsilon_{\mathrm{o}} r^{2}}=3.60 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
$$

(b) The horizontal components of the individual fields (due to the two e_{s} charges) cancel, and the vertical components add to give

$$
E_{\mathrm{S}, \text { net }}=\frac{2 e z}{4 \pi \varepsilon_{\mathrm{o}}\left(R^{2}+z^{2}\right)^{3 / 2}}=2.55 \times 10^{-6} \mathrm{~N} / \mathrm{C}
$$

(c) Calculation similar to that shown in part (a) now leads to a stronger field $E_{c}=3.60 \times 10^{-4} \mathrm{~N} / \mathrm{C}$ from the central charge.
(d) The field due to the side charges may be obtained from calculation similar to that shown in part (b). The result is $E_{\mathrm{s}, \text { net }}=7.09 \times 10^{-7} \mathrm{~N} / \mathrm{C}$.
(e) Since E_{c} is inversely proportional to z^{2}, this is a simple result of the fact that z is now much smaller than in part (a). For the net effect due to the side charges, it is the "trigonometric factor" for the y component (here expressed as z / \sqrt{r}) which shrinks almost linearly (as z decreases) for very small z, plus the fact that the x components cancel, which leads to the decreasing value of $E_{\mathrm{s} \text {, net }}$.
67. We interpret the linear charge density, $\lambda=|Q| / L$, to indicate a positive quantity (so we can relate it to the magnitude of the field). Sample Problem 22-4 illustrates the simplest approach to circular arc field problems. Following the steps leading to Eq. 2221 , we see that the general result (for arcs that subtend angle θ) is

$$
E=\frac{\lambda}{4 \pi \varepsilon_{0} r}[\sin (\theta / 2)-\sin (-\theta / 2)]=\frac{\lambda \sin (\theta / 2)}{2 \pi \varepsilon_{0} r} .
$$

Now, the arc length is $L=r \theta$ if θ is expressed in radians. Thus, using R instead of r, we obtain

$$
E=\frac{|Q| / L \sin (\theta / 2)}{2 \pi \varepsilon_{0} R}=\frac{|Q| \sin (\theta / 2)}{2 \pi \varepsilon_{0} \theta R^{2}}
$$

With $|Q|=6.25 \times 10^{-12} \mathrm{C}, \theta=2.40 \mathrm{rad}=137.5^{\circ}$ and $R=9.00 \times 10^{-2} \mathrm{~m}$, the magnitude of the electric field is $E=5.39 \mathrm{~N} / \mathrm{C}$.
68. Examining the lowest value on the graph, we have (using Eq. 22-38)

$$
U=-\vec{p} \cdot \vec{E}=-1.00 \times 10^{-28} \mathrm{~J}
$$

If $E=20 \mathrm{~N} / \mathrm{C}$, we find $p=5.0 \times 10^{-28} \mathrm{C} \cdot \mathrm{m}$.
69. From symmetry, we see the net force component along the y axis is zero; the net force component along the x axis points rightward. With $\theta=60^{\circ}$,

$$
F_{3}=2 \frac{q_{3} q_{1} \cos \theta}{4 \pi \varepsilon_{0} a^{2}} .
$$

Since $\cos \left(60^{\circ}\right)=1 / 2$, we can write this as

$$
F_{3}=\frac{k q_{3} q_{1}}{a^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(5.00 \times 10^{-12}\right)\left(2.00 \times 10^{-12}\right)}{(0.0950)^{2}}=9.96 \times 10^{-12} \mathrm{~N} .
$$

70. The two closest charges produce fields at the midpoint which cancel each other out. Thus, the only significant contribution is from the furthest charge, which is a distance $r=\sqrt{3} d / 2$ away from that midpoint. Plugging this into Eq. 22-3 immediately gives the result:

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}=\frac{Q}{3 \pi \varepsilon_{0} d^{2}} .
$$

71. From the second measurement (at $(2.0,0)$) we see that the charge must be somewhere on the x axis. A line passing through $(3.0,3.0)$ with slope $\tan ^{-1}(3 / 4)$ will intersect the x axis at $x=-1.0$. Thus, the location of the particle is specified by the coordinates (in cm): $(-1.0,0)$.
(a) Thus, the x coordinate is $x=-1.0 \mathrm{~cm}$.
(b) Similarly, the y coordinate is $y=0$.
(c) Using $k=1 / 4 \pi \varepsilon_{0}$, the field magnitude measured at $(2.0,0)$ (which is $r=0.030 \mathrm{~m}$ from the charge) is

$$
|\vec{E}|=k \frac{q}{r^{2}}=100 \mathrm{~N} / \mathrm{C} .
$$

Therefore, $q=1.0 \times 10^{-11} \mathrm{C}$.
72. We denote the electron with subscript e and the proton with p. From the figure below we see that

$$
\left|\vec{E}_{e}\right|=\left|\vec{E}_{p}\right|=\frac{e}{4 \pi \varepsilon_{0} d^{2}}
$$

where $d=2.0 \times 10^{-6} \mathrm{~m}$. We note that the components along the y axis cancel during the vector summation. With $k=1 / 4 \pi \varepsilon_{0}$ and $\theta=60^{\circ}$, the magnitude of the net electric field is obtained as follows:

$$
\begin{aligned}
& \text { (} \vec{E}_{\text {net }} \left\lvert\,=E_{x}=2 E_{e} \cos \theta=2\left(\frac{e}{4 \pi \varepsilon_{0} d^{2}}\right) \cos \theta=2 k\left[\frac{e}{d^{2}}\right] \cos \theta\right. \\
& =2\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left[\frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)}{\left(2.0 \times 10^{-6} \mathrm{~m}\right)^{2}}\right] \cos 60^{\circ} \\
& =3.6 \times 10^{2} \mathrm{~N} / \mathrm{C} .
\end{aligned}
$$

73. On the one hand, the conclusion (that $Q=+1.00 \mu \mathrm{C}$) is clear from symmetry. If a more in-depth justification is desired, one should use Eq. 22-3 for the electric field magnitudes of the three charges (each at the same distance $r=a / \sqrt{3}$ from C) and then find field components along suitably chosen axes, requiring each component-sum to be zero. If the y axis is vertical, then (assuming $Q>0$) the component-sum along that axis leads to $2 k q \sin 30^{\circ} / r^{2}=k Q / r^{2}$ where q refers to either of the charges at the bottom corners. This yields $Q=2 q \sin 30^{\circ}=q$ and thus to the conclusion mentioned above.
74. (a) Let $E=\sigma / 2 \varepsilon_{0}=3 \times 10^{6} \mathrm{~N} / \mathrm{C}$. With $\sigma=|q| / A$, this leads to

$$
|q|=\pi R^{2} \sigma=2 \pi \varepsilon_{0} R^{2} E=\frac{R^{2} E}{2 k}=\frac{\left(2.5 \times 10^{-2} \mathrm{~m}\right)^{2}\left(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\right)}{2\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)}=1.0 \times 10^{-7} \mathrm{C}
$$

(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated to be

$$
N=\frac{\pi\left(2.5 \times 10^{-2} \mathrm{~m}\right)^{2}}{0.015 \times 10^{-18} \mathrm{~m}^{2}}=1.3 \times 10^{17}
$$

(c) Therefore, the fraction is

$$
\frac{q}{N e}=\frac{1.0 \times 10^{-7} \mathrm{C}}{\left(1.3 \times 10^{17}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)} \approx 5.0 \times 10^{-6}
$$

75. (a) Using the density of water $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$, the weight $m g$ of the spherical drop (of radius $r=6.0 \times 10^{-7} \mathrm{~m}$) is

$$
W=\rho V g=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(\frac{4 \pi}{3}\left(6.0 \times 10^{-7} \mathrm{~m}\right)^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=8.87 \times 10^{-15} \mathrm{~N} .
$$

(b) Vertical equilibrium of forces leads to $m g=q E=n e E$, which we solve for n, the number of excess electrons:

$$
n=\frac{m g}{e E}=\frac{8.87 \times 10^{-15} \mathrm{~N}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(462 \mathrm{~N} / \mathrm{C})}=120
$$

76. Eq. 22-38 gives $U=-\vec{p} \cdot \vec{E}=-p E \cos \theta$. We note that $\theta_{i}=110^{\circ}$ and $\theta_{f}=70.0^{\circ}$. Therefore,

$$
\Delta U=-p E\left(\cos 70.0^{\circ}-\cos 110^{\circ}\right)=-3.28 \times 10^{-21} \mathrm{~J}
$$

77. A small section of the distribution that has charge $d q$ is $\lambda d x$, where $\lambda=9.0 \times 10^{-9}$ C / m. Its contribution to the field at $x_{P}=4.0 \mathrm{~m}$ is

$$
d \vec{E}=\frac{d q}{4 \pi \varepsilon_{0}\left(x-x_{P}\right)^{2}}
$$

pointing in the $+x$ direction. Thus, we have

$$
\vec{E}=\int_{0}^{3.0 \mathrm{~m}} \frac{\lambda d x}{4 \pi \varepsilon_{0}\left(x-x_{P}\right)^{2}} \hat{\mathrm{i}}
$$

which becomes, using the substitution $u=x-x_{P}$,

$$
\vec{E}=\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{-4.0 \mathrm{~m}}^{-1.0 \mathrm{~m}} \frac{d u}{u^{2}} \hat{\mathrm{i}}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left(\frac{-1}{-1.0 \mathrm{~m}}-\frac{-1}{-4.0 \mathrm{~m}}\right) \hat{\mathrm{i}}
$$

which yields $61 \mathrm{~N} / \mathrm{C}$ in the $+x$ direction.
78. Studying Sample Problem 22-4, we see that the field evaluated at the center of curvature due to a charged distribution on a circular arc is given by

$$
\vec{E}=\frac{\lambda}{4 \pi \varepsilon_{0} r}[\sin \theta]_{-\theta / 2}^{\theta / 2} \quad \text { along the symmetry axis }
$$

where $\lambda=q / \ell=q / r \theta$ with θ in radians. Here ℓ is the length of the arc, given as $\ell=4.0 \mathrm{~m}$. Therefore, $\theta=\ell / r=4.0 / 2.0=2.0 \mathrm{rad}$. Thus, with $q=20 \times 10^{-9} \mathrm{C}$, we obtain

$$
|\vec{E}|=\frac{q}{\ell} \frac{1}{4 \pi \varepsilon_{0} r}[\sin \theta]_{-1.0 \mathrm{rad}}^{1.0 \mathrm{rad}}=38 \mathrm{~N} / \mathrm{C} .
$$

79. (a) We combine Eq. 22-28 (in absolute value) with Newton's second law:

$$
a=\frac{|q| E}{m}=\left(\frac{1.60 \times 10^{-19} \mathrm{C}}{9.11 \times 10^{-31} \mathrm{~kg}}\right)\left(1.40 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}\right)=2.46 \times 10^{17} \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) With $v=\frac{c}{10}=3.00 \times 10^{7} \mathrm{~m} / \mathrm{s}$, we use Eq. 2-11 to find

$$
t=\frac{v-v_{\mathrm{o}}}{a}=\frac{3.00 \times 10^{7}}{2.46 \times 10^{17}}=1.22 \times 10^{-10} \mathrm{~s} .
$$

(c) Eq. 2-16 gives

$$
\Delta x=\frac{v^{2}-v_{o}^{2}}{2 a}=\frac{\left(3.00 \times 10^{7}\right)^{2}}{2\left(2.46 \times 10^{17}\right)}=1.83 \times 10^{-3} \mathrm{~m} .
$$

80. Let q_{1} denote the charge at $y=d$ and q_{2} denote the charge at $y=-d$. The individual magnitudes $\left|\vec{E}_{1}\right|$ and $\left|\vec{E}_{2}\right|$ are figured from Eq. 22-3, where the absolute value signs for q are unnecessary since these charges are both positive. The distance from q_{1} to a point on the x axis is the same as the distance from q_{2} to a point on the x axis: $r=\sqrt{x^{2}+d^{2}}$. By symmetry, the y component of the net field along the x axis is zero. The x component of the net field, evaluated at points on the positive x axis, is

$$
E_{x}=2\left(\frac{1}{4 \pi \varepsilon_{0}}\right)\left(\frac{q}{x^{2}+d^{2}}\right)\left(\frac{x}{\sqrt{x^{2}+d^{2}}}\right)
$$

where the last factor is $\cos \theta=x / r$ with θ being the angle for each individual field as measured from the x axis.
(a) If we simplify the above expression, and plug in $x=\alpha d$, we obtain

$$
E_{x}=\frac{q}{2 \pi \varepsilon_{0} d^{2}}\left(\frac{\alpha}{\left(\alpha^{2}+1\right)^{3 / 2}}\right)
$$

(b) The graph of $E=E_{x}$ versus α is shown below. For the purposes of graphing, we set d $=1 \mathrm{~m}$ and $q=5.56 \times 10^{-11} \mathrm{C}$.

(c) From the graph, we estimate $E_{\max }$ occurs at about $\alpha=0.71$. More accurate computation shows that the maximum occurs at $\alpha=1 / \sqrt{2}$.
(d) The graph suggests that "half-height" points occur at $\alpha \approx 0.2$ and $\alpha \approx 2.0$. Further numerical exploration leads to the values: $\alpha=0.2047$ and $\alpha=1.9864$.
81. (a) From Eq. 22-38 (and the facts that $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1$ and $\hat{\mathrm{j}} \cdot \hat{\mathrm{i}}=0$), the potential energy is

$$
\begin{aligned}
U & =-\vec{p} \cdot \vec{E}=-\left[(3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}})\left(1.24 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)\right] \cdot[(4000 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}] \\
& =-1.49 \times 10^{-26} \mathrm{~J} .
\end{aligned}
$$

(b) From Eq. 22-34 (and the facts that $\hat{\mathrm{i}} \times \hat{\mathrm{i}}=0$ and $\hat{\mathrm{j}} \times \hat{\mathrm{i}}=-\hat{\mathrm{k}}$), the torque is

$$
\begin{aligned}
\vec{\tau} & =\vec{p} \times \vec{E}=\left[(3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}})\left(1.24 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)\right] \times[(4000 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}] \\
& =\left(-1.98 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m}\right) \hat{\mathrm{k}} .
\end{aligned}
$$

(c) The work done is

$$
\begin{aligned}
W & =\Delta U=\Delta(-\vec{p} \cdot \vec{E})=\left(\vec{p}_{i}-\vec{p}_{f}\right) \cdot \vec{E} \\
& \left.=[(3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}})-(-4.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}})]\left(1.24 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)\right] \cdot[(4000 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}] \\
& =3.47 \times 10^{-26} \mathrm{~J} .
\end{aligned}
$$

82. We consider pairs of diametrically opposed charges. The net field due to just the charges in the one o'clock $(-q)$ and seven o'clock $(-7 q)$ positions is clearly equivalent to that of a single $-6 q$ charge sitting at the seven o'clock position. Similarly, the net field due to just the charges in the six o'clock $(-6 q)$ and twelve o'clock $(-12 q)$ positions is the same as that due to a single $-6 q$ charge sitting at the twelve o'clock position. Continuing with this line of reasoning, we see that there are six equal-magnitude electric field vectors pointing at the seven o'clock, eight o'clock ... twelve o'clock positions. Thus, the resultant field of all of these points, by symmetry, is directed toward the position midway between seven and twelve o'clock. Therefore, $\vec{E}_{\text {resultant }}$ points towards the nine-thirty position.
83. (a) For point A, we have (in SI units)

$$
\begin{aligned}
\vec{E}_{A} & =\left[\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}^{2}}+\frac{q_{2}}{4 \pi \varepsilon_{0} r_{2}^{2}}\right](-\hat{\mathrm{i}}) \\
& =\frac{\left(8.99 \times 10^{9}\right)\left(1.00 \times 10^{-12} \mathrm{C}\right)}{\left(5.00 \times 10^{-2}\right)^{2}}(-\hat{\mathrm{i}})+\frac{\left(8.99 \times 10^{9}\right)\left|-2.00 \times 10^{-12} \mathrm{C}\right|}{\left(2 \times 5.00 \times 10^{-2}\right)^{2}}(\hat{\mathrm{i}}) . \\
& =(-1.80 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}} .
\end{aligned}
$$

(b) Similar considerations leads to

$$
\begin{aligned}
\vec{E}_{B} & =\left[\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}^{2}}+\frac{\left|q_{2}\right|}{4 \pi \varepsilon_{0} r_{2}^{2}}\right] \hat{\mathrm{i}}=\frac{\left(8.99 \times 10^{9}\right)\left(1.00 \times 10^{-12} \mathrm{C}\right)}{\left(0.500 \times 5.00 \times 10^{-2}\right)^{2}} \hat{\mathrm{i}}+\frac{\left(8.99 \times 10^{9}\right)\left|-2.00 \times 10^{-12} \mathrm{C}\right|}{\left(0.500 \times 5.00 \times 10^{-2}\right)^{2}} \hat{\mathrm{i}} \\
& =(43.2 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}} .
\end{aligned}
$$

(c) For point C, we have

$$
\begin{aligned}
\vec{E}_{C} & =\left[\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}^{2}}-\frac{\left|q_{2}\right|}{4 \pi \varepsilon_{0} r_{2}^{2}}\right] \hat{\mathrm{i}}=\frac{\left(8.99 \times 10^{9}\right)\left(1.00 \times 10^{-12} \mathrm{C}\right)}{\left(2.00 \times 5.00 \times 10^{-2}\right)^{2}} \hat{\mathrm{i}}-\frac{\left(8.99 \times 10^{9}\right)\left|-2.00 \times 10^{-12} \mathrm{C}\right|}{\left(5.00 \times 10^{-2}\right)^{2}} \hat{\mathrm{i}} \\
& =-(6.29 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}} .
\end{aligned}
$$

(d) Although a sketch is not shown here, it would be somewhat similar to Fig. 22-5 in the textbook except that there would be twice as many field lines "coming into" the negative charge (which would destroy the simple up/down symmetry seen in Fig. 22-5).
84. The electric field at a point on the axis of a uniformly charged ring, a distance z from the ring center, is given by

$$
E=\frac{q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

where q is the charge on the ring and R is the radius of the ring (see Eq. 22-16). For q positive, the field points upward at points above the ring and downward at points below the ring. We take the positive direction to be upward. Then, the force acting on an electron on the axis is

$$
F=-\frac{e q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} .
$$

For small amplitude oscillations $z \ll R$ and z can be neglected in the denominator. Thus,

$$
F=-\frac{e q z}{4 \pi \varepsilon_{0} R^{3}} .
$$

The force is a restoring force: it pulls the electron toward the equilibrium point $z=0$. Furthermore, the magnitude of the force is proportional to z, just as if the electron were attached to a spring with spring constant $k=e q / 4 \pi \varepsilon_{0} R^{3}$. The electron moves in simple harmonic motion with an angular frequency given by

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{e q}{4 \pi \varepsilon_{0} m R^{3}}}
$$

where m is the mass of the electron.
85. (a) Since \vec{E} points down and we need an upward electric force (to cancel the downward pull of gravity), then we require the charge of the sphere to be negative. The magnitude of the charge is found by working with the absolute value of Eq. 22-28:

$$
|q|=\frac{F}{E}=\frac{m g}{E}=\frac{4.4 \mathrm{~N}}{150 \mathrm{~N} / \mathrm{C}}=0.029 \mathrm{C},
$$

or $q=-0.029 \mathrm{C}$.
(b) The feasibility of this experiment may be studied by using Eq. 22-3 (using k for $1 / 4 \pi \varepsilon_{0}$). We have $E=k|q| / r^{2}$ with

$$
\rho_{\text {sulfur }}\left(\frac{4}{3} \pi r^{3}\right)=m_{\text {sphere }}
$$

Since the mass of the sphere is $4.4 / 9.8 \approx 0.45 \mathrm{~kg}$ and the density of sulfur is about $2.1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ (see Appendix F), then we obtain

$$
r=\left(\frac{3 m_{\text {sphere }}}{4 \pi \rho_{\text {sulfur }}}\right)^{1 / 3}=0.037 \mathrm{~m} \Rightarrow E=k \frac{|q|}{r^{2}} \approx 2 \times 10^{11} \mathrm{~N} / \mathrm{C}
$$

which is much too large a field to maintain in air.
86. (a) The electric field is upward in the diagram and the charge is negative, so the force of the field on it is downward. The magnitude of the acceleration is $a=e E / m$, where E is the magnitude of the field and m is the mass of the electron. Its numerical value is

$$
a=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.00 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}=3.51 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}
$$

We put the origin of a coordinate system at the initial position of the electron. We take the x axis to be horizontal and positive to the right; take the y axis to be vertical and positive toward the top of the page. The kinematic equations are

$$
x=v_{0} t \cos \theta, \quad y=v_{0} t \sin \theta-\frac{1}{2} a t^{2}, \quad \text { and } \quad v_{y}=v_{0} \sin \theta-a t .
$$

First, we find the greatest y coordinate attained by the electron. If it is less than d, the electron does not hit the upper plate. If it is greater than d, it will hit the upper plate if the corresponding x coordinate is less than L. The greatest y coordinate occurs when $v_{y}=0$. This means $v_{0} \sin \theta-a t=0$ or $t=\left(v_{0} / a\right) \sin \theta$ and

$$
y_{\max }=\frac{v_{0}^{2} \sin ^{2} \theta}{a}-\frac{1}{2} a \frac{v_{0}^{2} \sin ^{2} \theta}{a^{2}}=\frac{1}{2} \frac{v_{0}^{2} \sin ^{2} \theta}{a}=\frac{\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2} \sin ^{2} 45^{\circ}}{2\left(3.51 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\right)}=2.56 \times 10^{-2} \mathrm{~m} .
$$

Since this is greater than $d=2.00 \mathrm{~cm}$, the electron might hit the upper plate.
(b) Now, we find the x coordinate of the position of the electron when $y=d$. Since

$$
v_{0} \sin \theta=\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \sin 45^{\circ}=4.24 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

and

$$
2 a d=2\left(3.51 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\right)(0.0200 \mathrm{~m})=1.40 \times 10^{13} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

the solution to $d=v_{0} t \sin \theta-\frac{1}{2} a t^{2}$ is

$$
\begin{aligned}
t & =\frac{v_{0} \sin \theta-\sqrt{v_{0}^{2} \sin ^{2} \theta-2 a d}}{a}=\frac{4.24 \times 10^{6} \mathrm{~m} / \mathrm{s}-\sqrt{\left(4.24 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}-1.40 \times 10^{13} \mathrm{~m}^{2} / \mathrm{s}^{2}}}{3.51 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}} \\
& =6.43 \times 10^{-9} \mathrm{~s} .
\end{aligned}
$$

The negative root was used because we want the earliest time for which $y=d$. The x coordinate is

$$
x=v_{0} t \cos \theta=\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(6.43 \times 10^{-9} \mathrm{~s}\right) \cos 45^{\circ}=2.72 \times 10^{-2} \mathrm{~m} .
$$

This is less than L so the electron hits the upper plate at $x=2.72 \mathrm{~cm}$.
87. Eq. 22-35 $(\tau=-p E \sin \theta)$ captures the sense as well as the magnitude of the effect. That is, this is a restoring torque, trying to bring the tilted dipole back to its aligned equilibrium position. If the amplitude of the motion is small, we may replace $\sin \theta$ with θ in radians. Thus, $\tau \approx-p E \theta$. Since this exhibits a simple negative proportionality to the angle of rotation, the dipole oscillates in simple harmonic motion, like a torsional pendulum with torsion constant $\kappa=p E$. The angular frequency ω is given by

$$
\omega^{2}=\frac{\kappa}{I}=\frac{p E}{I}
$$

where I is the rotational inertia of the dipole. The frequency of oscillation is

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{p E}{I}}
$$

88. (a) If we subtract each value from the next larger value in the table, we find a set of numbers which are suggestive of a basic unit of charge: $1.64 \times 10^{-19}, 3.3 \times 10^{-19}$, $1.63 \times 10^{-19}, 3.35 \times 10^{-19}, 1.6 \times 10^{-19}, 1.63 \times 10^{-19}, 3.18 \times 10^{-19}, 3.24 \times 10^{-19}$, where the SI unit Coulomb is understood. These values are either close to a common $e \approx 1.6 \times 10^{-19} \mathrm{C}$ value or are double that. Taking this, then, as a crude approximation to our experimental e we divide it into all the values in the original data set and round to the nearest integer, obtaining $n=4,5,7,8,10,11,12,14$, and 16.
(b) When we perform a least squares fit of the original data set versus these values for n we obtain the linear equation:

$$
q=7.18 \times 10^{-21}+1.633 \times 10^{-19} n .
$$

If we dismiss the constant term as unphysical (representing, say, systematic errors in our measurements) then we obtain $e=1.63 \times 10^{-19}$ when we set $n=1$ in this equation.
89. (a) Using $k=1 / 4 \pi \varepsilon_{0}$, we estimate the field at $r=0.02 \mathrm{~m}$ using Eq. 22-3:

$$
E=k \frac{q}{r^{2}}=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{45 \times 10^{-12} \mathrm{C}}{(0.02 \mathrm{~m})^{2}} \approx 1 \times 10^{3} \mathrm{~N} / \mathrm{C} .
$$

(b) The field described by Eq. 22-3 is nonuniform.
(c) As the positively charged bee approaches the grain, a concentration of negative charge is induced on the closest side of the grain, leading to a force of attraction which makes the grain jump to the bee. Although in physical contact, it is not in electrical contact with the bee, or else it would acquire a net positive charge causing it to be repelled from the bee. As the bee (with grain) approaches the stigma, a concentration of negative charge is induced on the closest side of the stigma which is presumably highly nonuniform. In some configurations, the field from the stigma (acting on the positive side of the grain) will overcome the field from the bee acting on the negative side, and the grain will jump to the stigma.
90. Since both charges are positive (and aligned along the z axis) we have

$$
\left|\vec{E}_{\mathrm{net}}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{(z-d / 2)^{2}}+\frac{q}{(z+d / 2)^{2}}\right]
$$

For $z \gg d$ we have $(z \pm d / 2)^{-2} \approx z^{-2}$, so

$$
\left|\vec{E}_{\mathrm{net}}\right| \approx \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{z^{2}}+\frac{q}{z^{2}}\right)=\frac{2 q}{4 \pi \varepsilon_{0} z^{2}}
$$

91. (a) Suppose the pendulum is at the angle θ with the vertical. The force diagram is shown below. \vec{T} is the tension in the thread, $m g$ is the magnitude of the force of gravity, and $q E$ is the magnitude of the electric force. The field points upward and the charge is positive, so the force is upward. Taking the angle shown to be positive, then the torque on the sphere about the point where the thread is attached to the upper plate is $\tau=-(m g-q E) L \sin \theta$. If $m g>q E$ then the torque is a restoring torque; it tends to pull the pendulum back to its equilibrium position.

If the amplitude of the oscillation is small, $\sin \theta$ can be replaced by θ in radians and the torque is $\tau=-(m g-q E) L \theta$. The torque is proportional to the angular displacement and the pendulum moves in simple harmonic motion. Its angular frequency is $\omega=\sqrt{(m g-q E) L / I}$, where I is the rotational inertia of the pendulum. Since $I=m L^{2}$ for a simple pendulum,

$$
\omega=\sqrt{\frac{(m g-q E) L}{m L^{2}}}=\sqrt{\frac{g-q E / m}{L}}
$$

and the period is

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g-q E / m}} .
$$

If $q E>m g$ the torque is not a restoring torque and the pendulum does not oscillate.
(b) The force of the electric field is now downward and the torque on the pendulum is $\tau=-(m g+q E) L \theta$ if the angular displacement is small. The period of oscillation is

$$
T=2 \pi \sqrt{\frac{L}{g+q E / m}}
$$

1. The vector area \vec{A} and the electric field \vec{E} are shown on the diagram below. The angle θ between them is $180^{\circ}-35^{\circ}=145^{\circ}$, so the electric flux through the area is

$$
\Phi=\vec{E} \cdot \vec{A}=E A \cos \theta=(1800 \mathrm{~N} / \mathrm{C})\left(3.2 \times 10^{-3} \mathrm{~m}\right)^{2} \cos 145^{\circ}=-1.5 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}
$$

2. We use $\Phi=\vec{E} \cdot \vec{A}$, where $\vec{A}=A \hat{\mathrm{j}}=(1.40 \mathrm{~m})^{2} \hat{\mathrm{j}}$.
(a) $\Phi=(6.00 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}} \cdot(1.40 \mathrm{~m})^{2} \hat{\mathrm{j}}=0$.
(b) $\Phi=(-2.00 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{j}} \cdot(1.40 \mathrm{~m})^{2} \hat{\mathrm{j}}=-3.92 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(c) $\Phi=[(-3.00 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}+(400 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{k}}] \cdot(1.40 \mathrm{~m})^{2} \hat{\mathrm{j}}=0$.
(d) The total flux of a uniform field through a closed surface is always zero.
3. We use $\Phi=\int \vec{E} \cdot d \vec{A}$ and note that the side length of the cube is $(3.0 \mathrm{~m}-1.0 \mathrm{~m})=2.0 \mathrm{~m}$.
(a) On the top face of the cube $y=2.0 \mathrm{~m}$ and $d \vec{A}=(d A) \hat{\mathrm{j}}$. Therefore, we have $\vec{E}=4 \hat{\mathrm{i}}-3\left((2.0)^{2}+2\right) \hat{\mathrm{j}}=4 \hat{\mathrm{i}}-18 \hat{\mathrm{j}}$. Thus the flux is
$\Phi=\int_{\text {iop }} \vec{E} \cdot d \vec{A}=\int_{\text {top }}(4 \hat{\mathrm{i}}-18 \hat{\mathrm{j}}) \cdot(d A) \hat{\mathrm{j}}=-18 \int_{\text {top }} d A=(-18)(2.0)^{2} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}=-72 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(b) On the bottom face of the cube $y=0$ and $d \vec{A}=(d A)(-\hat{\mathrm{j}})$. Therefore, we have $E=4 \hat{\mathrm{i}}-3\left(0^{2}+2\right) \hat{\mathrm{j}}=4 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$. Thus, the flux is
$\Phi=\int_{\text {bottom }} \vec{E} \cdot d \vec{A}=\int_{\text {bottom }}(4 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}) \cdot(d A)(-\hat{\mathrm{j}})=6 \int_{\text {bottom }} d A=6(2.0)^{2} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}=+24 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(c) On the left face of the cube $d \vec{A}=(d A)(-\hat{\mathrm{i}})$. So
$\Phi=\int_{\text {left }} \hat{E} \cdot d \vec{A}=\int_{\text {left }}\left(4 \hat{\mathrm{i}}+E_{y} \hat{\mathrm{j}}\right) \cdot(d A)(-\hat{\mathrm{i}})=-4 \int_{\text {bottom }} d A=-4(2.0)^{2} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}=-16 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(d) On the back face of the cube $d \vec{A}=(d A)(-\hat{\mathrm{k}})$. But since \vec{E} has no z component $\vec{E} \cdot d \vec{A}=0$. Thus, $\Phi=0$.
(e) We now have to add the flux through all six faces. One can easily verify that the flux through the front face is zero, while that through the right face is the opposite of that through the left one, or $+16 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. Thus the net flux through the cube is

$$
\Phi=(-72+24-16+0+0+16) \mathrm{N} \cdot \mathrm{~m}^{2} / \mathrm{C}=-48 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

4. The flux through the flat surface encircled by the rim is given by $\Phi=\pi a^{2} E$. Thus, the flux through the netting is

$$
\Phi^{\prime}=-\Phi=-\pi a^{2} E=-\pi(0.11 \mathrm{~m})^{2}\left(3.0 \times 10^{-3} \mathrm{~N} / \mathrm{C}\right)=-1.1 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

5. We use Gauss' law: $\mathcal{E}_{0} \Phi=q$, where Φ is the total flux through the cube surface and q is the net charge inside the cube. Thus,

$$
\Phi=\frac{q}{\varepsilon_{0}}=\frac{1.8 \times 10^{-6} \mathrm{C}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}}=2.0 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

6. There is no flux through the sides, so we have two "inward" contributions to the flux, one from the top (of magnitude (34)(3.0) ${ }^{2}$) and one from the bottom (of magnitude $(20)(3.0)^{2}$). With "inward" flux being negative, the result is $\Phi=-486 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. Gauss' law then leads to $q_{\mathrm{enc}}=\varepsilon_{0} \Phi=-4.3 \times 10^{-9} \mathrm{C}$.
7. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the shape of a cube, of edge length d, with a proton of charge $q=+1.6 \times 10^{-19} \mathrm{C}$ situated at the inside center of the cube. The cube has six faces, and we expect an equal amount of flux through each face. The total amount of flux is $\Phi_{\text {net }}=q / \varepsilon_{0}$, and we conclude that the flux through the square is one-sixth of that. Thus, $\Phi=q / 6 \varepsilon_{0}=3.01 \times 10^{-9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
8. (a) The total surface area bounding the bathroom is

$$
A=2(2.5 \times 3.0)+2(3.0 \times 2.0)+2(2.0 \times 2.5)=37 \mathrm{~m}^{2} .
$$

The absolute value of the total electric flux, with the assumptions stated in the problem, is

$$
|\Phi|=\left|\sum \vec{E} \cdot \vec{A}\right|=|\vec{E}| A=(600)(37)=22 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

By Gauss' law, we conclude that the enclosed charge (in absolute value) is $\left|q_{\text {enc }}\right|=\varepsilon_{0}|\Phi|=2.0 \times 10^{-7} \mathrm{C}$. Therefore, with volume $V=15 \mathrm{~m}^{3}$, and recognizing that we are dealing with negative charges (see problem), the charge density is $q_{\text {enc }} / V=-1.3 \times 10^{-8}$ $\mathrm{C} / \mathrm{m}^{3}$.
(b) We find $\left(\left|q_{\text {enc }}\right| e\right) / V=\left(2.0 \times 10^{-7} / 1.6 \times 10^{-19}\right) / 15=8.2 \times 10^{10}$ excess electrons per cubic meter.
9. Let A be the area of one face of the cube, E_{u} be the magnitude of the electric field at the upper face, and E_{l} be the magnitude of the field at the lower face. Since the field is downward, the flux through the upper face is negative and the flux through the lower face is positive. The flux through the other faces is zero, so the total flux through the cube surface is $\Phi=A\left(E_{\ell}-E_{u}\right)$. The net charge inside the cube is given by Gauss' law:

$$
\begin{aligned}
q & =\varepsilon_{0} \Phi=\varepsilon_{0} A\left(E_{\ell}-E_{u}\right)=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(100 \mathrm{~m})^{2}(100 \mathrm{~N} / \mathrm{C}-60.0 \mathrm{~N} / \mathrm{C}) \\
& =3.54 \times 10^{-6} \mathrm{C}=3.54 \mu \mathrm{C} .
\end{aligned}
$$

10. We note that only the smaller shell contributes a (non-zero) field at the designated point, since the point is inside the radius of the large sphere (and $E=0$ inside of a spherical charge), and the field points towards the $-x$ direction. Thus,

$$
\vec{E}=E(-\hat{\mathrm{j}})=-\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathrm{j}}=-\frac{\sigma_{2} 4 \pi R^{2}}{4 \pi \varepsilon_{0}(L-x)^{2}} \hat{\mathrm{j}}=-\left(2.8 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{j}},
$$

where $R=0.020 \mathrm{~m}$ (the radius of the smaller shell), $d=0.10 \mathrm{~m}$ and $x=0.020 \mathrm{~m}$.
11. The total flux through any surface that completely surrounds the point charge is q / ε_{0}.
(a) If we stack identical cubes side by side and directly on top of each other, we will find that eight cubes meet at any corner. Thus, one-eighth of the field lines emanating from the point charge pass through a cube with a corner at the charge, and the total flux through the surface of such a cube is $q / 8 \varepsilon_{0}$. Now the field lines are radial, so at each of the three cube faces that meet at the charge, the lines are parallel to the face and the flux through the face is zero.
(b) The fluxes through each of the other three faces are the same, so the flux through each of them is one-third of the total. That is, the flux through each of these faces is $(1 / 3)\left(q / 8 \varepsilon_{0}\right)$ $=q / 24 \varepsilon_{0}$. Thus, the multiple is $1 / 24=0.0417$.
12. Eq. 23-6 (Gauss' law) gives $\varepsilon_{0} \Phi=q_{\text {enclosed }}$.
(a) Thus, the value $\Phi=2.0 \times 10^{5}$ (in SI units) for small r leads to $q_{\text {central }}=+1.77 \times 10^{-6} \mathrm{C}$ or roughly $1.8 \mu \mathrm{C}$.
(b) The next value that Φ takes is -4.0×10^{5} (in SI units), which implies $q_{\text {enc }}=-3.54 \times 10^{-6} \mathrm{C}$. But we have already accounted for some of that charge in part (a), so the result for part (b) is $q_{A}=q_{\text {enc }}-q_{\text {central }}=-5.3 \times 10^{-6} \mathrm{C}$.
(c) Finally, the large r value for Φ is 6.0×10^{5} (in SI units), which implies $q_{\text {total enc }}=5.31 \times 10^{-6} \mathrm{C}$. Considering what we have already found, then the result is $q_{\text {total enc }}-q_{A}-q_{\text {central }}=+8.9 \mu C$.
13. (a) Let $A=(1.40 \mathrm{~m})^{2}$. Then

$$
\Phi=\left.(3.00 y \hat{\mathrm{j}}) \cdot(-A \hat{\mathrm{j}})\right|_{y=0}+\left.(3.00 y \hat{\mathrm{j}}) \cdot(\mathrm{A} \hat{\mathrm{j}})\right|_{y=1.40}=(3.00)(1.40)(1.40)^{2}=8.23 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

(b) The charge is given by

$$
q_{\mathrm{enc}}=\varepsilon_{0} \Phi=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(8.23 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)=7.29 \times 10^{-11} \mathrm{C} .
$$

(c) The electric field can be re-written as $\vec{E}=3.00 y \hat{\mathrm{j}}+\vec{E}_{0}$, where $\vec{E}_{0}=-4.00 \hat{\mathrm{i}}+6.00 \hat{\mathrm{j}}$ is a constant field which does not contribute to the net flux through the cube. Thus Φ is still $8.23 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(d) The charge is again given by

$$
q_{\mathrm{enc}}=\varepsilon_{0} \Phi=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(8.23 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)=7.29 \times 10^{-11} \mathrm{C}
$$

14. The total electric flux through the cube is $\Phi=\oint \vec{E} \cdot d \vec{A}$. The net flux through the two faces parallel to the $y z$ plane is

$$
\begin{aligned}
\Phi_{y z} & =\iint\left[E_{x}\left(x=x_{2}\right)-E_{x}\left(x=x_{1}\right)\right] d y d z=\int_{y_{1}=0}^{y_{2}=1} d y \int_{z_{1}=1}^{z_{2}=3} d z[10+2(4)-10-2(1)] \\
& =6 \int_{y_{1}=0}^{y_{2}=1} d y \int_{z_{1}=1}^{z_{2}=3} d z=6(1)(2)=12 .
\end{aligned}
$$

Similarly, the net flux through the two faces parallel to the $x z$ plane is

$$
\Phi_{x z}=\iint\left[E_{y}\left(y=y_{2}\right)-E_{y}\left(y=y_{1}\right)\right] d x d z=\int_{x_{1}=1}^{x_{2}=4} d y \int_{z_{1}=1}^{z_{2}=3} d z[-3-(-3)]=0,
$$

and the net flux through the two faces parallel to the $x y$ plane is

$$
\Phi_{x y}=\iint\left[E_{z}\left(z=z_{2}\right)-E_{z}\left(z=z_{1}\right)\right] d x d y=\int_{x_{1}=1}^{x_{2}=4} d x \int_{y_{1}=0}^{y_{2}=1} d y(3 b-b)=2 b(3)(1)=6 b .
$$

Applying Gauss' law, we obtain

$$
q_{\mathrm{enc}}=\varepsilon_{0} \Phi=\varepsilon_{0}\left(\Phi_{x y}+\Phi_{x z}+\Phi_{y z}\right)=\varepsilon_{0}(6.00 b+0+12.0)=24.0 \varepsilon_{0}
$$

which implies that $b=2.00 \mathrm{~N} / \mathrm{C} \cdot \mathrm{m}$.
15. (a) The charge on the surface of the sphere is the product of the surface charge density σ and the surface area of the sphere (which is $4 \pi r^{2}$, where r is the radius). Thus,

$$
q=4 \pi r^{2} \sigma=4 \pi\left(\frac{1.2 \mathrm{~m}}{2}\right)^{2}\left(8.1 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}\right)=3.7 \times 10^{-5} \mathrm{C} .
$$

(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting sphere and with a slightly larger radius. The flux is given by Gauss's law:

$$
\Phi=\frac{q}{\varepsilon_{0}}=\frac{3.66 \times 10^{-5} \mathrm{C}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}}=4.1 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
$$

16. Using Eq. 23-11, the surface charge density is

$$
\sigma=E \varepsilon_{0}=\left(2.3 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)=2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
$$

17. (a) The area of a sphere may be written $4 \pi R^{2}=\pi D^{2}$. Thus,

$$
\sigma=\frac{q}{\pi D^{2}}=\frac{2.4 \times 10^{-6} \mathrm{C}}{\pi(1.3 \mathrm{~m})^{2}}=4.5 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}
$$

(b) Eq. 23-11 gives

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{4.5 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}}=5.1 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

18. Eq. 23-6 (Gauss' law) gives $\varepsilon_{0} \Phi=q_{\text {enc }}$.
(a) The value $\Phi=-9.0 \times 10^{5}$ (in SI units) for small r leads to $q_{\text {central }}=-7.97 \times 10^{-6} \mathrm{C}$ or roughly $-8.0 \mu \mathrm{C}$.
(b) The next (non-zero) value that Φ takes is $+4.0 \times 10^{5}$ (in SI units), which implies $q_{\text {enc }}=3.54 \times 10^{-6} \mathrm{C}$. But we have already accounted for some of that charge in part (a), so the result is

$$
q_{A}=q_{\mathrm{enc}}-q_{\mathrm{central}}=11.5 \times 10^{-6} \mathrm{C} \approx 12 \mu \mathrm{C}
$$

(c) Finally, the large r value for Φ is -2.0×10^{5} (in SI units), which implies $q_{\text {total enc }}=-1.77 \times 10^{-6} \mathrm{C}$. Considering what we have already found, then the result is

$$
q_{\text {total enc }}-q_{A}-q_{\mathrm{central}}=-5.3 \mu \mathrm{C}
$$

19. (a) Consider a Gaussian surface that is completely within the conductor and surrounds the cavity. Since the electric field is zero everywhere on the surface, the net charge it encloses is zero. The net charge is the sum of the charge q in the cavity and the charge q_{w} on the cavity wall, so $q+q_{w}=0$ and $q_{w}=-q=-3.0 \times 10^{-6} \mathrm{C}$.
(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the charge q_{s} on the outer surface of the conductor, so $Q=q_{w}+q_{s}$ and

$$
q_{s}=Q-q_{\omega}=\left(10 \times 10^{-6} \mathrm{C}\right)-\left(-3.0 \times 10^{-6} \mathrm{C}\right)=+1.3 \times 10^{-5} \mathrm{C} .
$$

20. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric with the metal tube. Then by symmetry $\oint_{A} \vec{E} \cdot d \vec{A}=2 \pi r E=\frac{q_{\text {enc }}}{\varepsilon_{0}}$.
(a) For $r<R, q_{\mathrm{enc}}=0$, so $E=0$.
(b) For $r>R, q_{\mathrm{enc}}=\lambda$, so $E(r)=\lambda / 2 \pi r \varepsilon_{0}$. With $\lambda=2.00 \times 10^{-8} \mathrm{C} / \mathrm{m}$ and $r=2.00 R=$ 0.0600 m , we obtain

$$
E=\frac{\left(2.0 \times 10^{-8} \mathrm{C} / \mathrm{m}\right)}{2 \pi(0.0600 \mathrm{~m})\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)}=5.99 \times 10^{3} \mathrm{~N} / \mathrm{C} .
$$

(c) The plot of E vs. r is shown below.

Here, the maximum value is

$$
E_{\max }=\frac{\lambda}{2 \pi r \varepsilon_{0}}=\frac{\left(2.0 \times 10^{-8} \mathrm{C} / \mathrm{m}\right)}{2 \pi(0.030 \mathrm{~m})\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)}=1.2 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

21. The magnitude of the electric field produced by a uniformly charged infinite line is E $=\lambda / 2 \pi \varepsilon_{0} r$, where λ is the linear charge density and r is the distance from the line to the point where the field is measured. See Eq. 23-12. Thus,

$$
\lambda=2 \pi \varepsilon_{0} E r=2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(4.5 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)(2.0 \mathrm{~m})=5.0 \times 10^{-6} \mathrm{C} / \mathrm{m}
$$

22. We combine Newton's second law $(F=m a)$ with the definition of electric field ($F=q E$) and with Eq. 23-12 (for the field due to a line of charge). In terms of magnitudes, we have (if $r=0.080 \mathrm{~m}$ and $\lambda=6.0 \times 10^{-6} \mathrm{C} / \mathrm{m}$)

$$
m a=e E=\frac{e \lambda}{2 \pi \varepsilon_{0} r} \Rightarrow a=\frac{e \lambda}{2 \pi \varepsilon_{0} r m}=2.1 \times 10^{17} \mathrm{~m} / \mathrm{s}^{2}
$$

23. (a) The side surface area A for the drum of diameter D and length h is given by $A=\pi D h$. Thus

$$
\begin{aligned}
q & =\sigma A=\sigma \pi D h=\pi \varepsilon_{0} E D h=\pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(2.3 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)(0.12 \mathrm{~m})(0.42 \mathrm{~m}) \\
& =3.2 \times 10^{-7} \mathrm{C} .
\end{aligned}
$$

(b) The new charge is

$$
q^{\prime}=q\left(\frac{A^{\prime}}{A}\right)=q\left(\frac{\pi D^{\prime} h^{\prime}}{\pi D h}\right)=\left(3.2 \times 10^{-7} \mathrm{C}\right)\left[\frac{(8.0 \mathrm{~cm})(28 \mathrm{~cm})}{(12 \mathrm{~cm})(42 \mathrm{~cm})}\right]=1.4 \times 10^{-7} \mathrm{C}
$$

24. We reason that point P (the point on the x axis where the net electric field is zero) cannot be between the lines of charge (since their charges have opposite sign). We reason further that P is not to the left of "line 1 " since its magnitude of charge (per unit length) exceeds that of "line 2 "; thus, we look in the region to the right of "line 2 " for P. Using Eq. 23-12, we have

$$
E_{\mathrm{net}}=E_{1}+E_{2}=\frac{\lambda_{1}}{2 \pi \varepsilon_{0}(x+L / 2)}+\frac{\lambda_{2}}{2 \pi \varepsilon_{0}(x-L / 2)}
$$

Setting this equal to zero and solving for x we find

$$
x=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}} \frac{L}{2}
$$

which, for the values given in the problem, yields $x=8.0 \mathrm{~cm}$.
25. We denote the inner and outer cylinders with subscripts i and o, respectively.
(a) Since $r_{i}<r=4.0 \mathrm{~cm}<r_{o}$,

$$
E(r)=\frac{\lambda_{i}}{2 \pi \varepsilon_{0} r}=\frac{5.0 \times 10^{-6} \mathrm{C} / \mathrm{m}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(4.0 \times 10^{-2} \mathrm{~m}\right)}=2.3 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

(b) The electric field $\vec{E}(r)$ points radially outward.
(c) Since $r>r_{o}$,

$$
E(r)=\frac{\lambda_{i}+\lambda_{o}}{2 \pi \varepsilon_{0} r}=\frac{5.0 \times 10^{-6} \mathrm{C} / \mathrm{m}-7.0 \times 10^{-6} \mathrm{C} / \mathrm{m}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(8.0 \times 10^{-2} \mathrm{~m}\right)}=-4.5 \times 10^{5} \mathrm{~N} / \mathrm{C},
$$

or $|E(r)|=4.5 \times 10^{5} \mathrm{~N} / \mathrm{C}$.
(d) The minus sign indicates that $\vec{E}(r)$ points radially inward.
26. As we approach $r=3.5 \mathrm{~cm}$ from the inside, we have

$$
E_{\text {internal }}=\frac{\lambda}{2 \pi \varepsilon_{0} r}=1000 \mathrm{~N} / \mathrm{C} .
$$

And as we approach $r=3.5 \mathrm{~cm}$ from the outside, we have

$$
E_{\text {external }}=\frac{\lambda}{2 \pi \varepsilon_{\mathrm{o}} r}+\frac{\lambda^{\prime}}{2 \pi \varepsilon_{\mathrm{o}} r}=-3000 \mathrm{~N} / \mathrm{C} .
$$

Considering the difference ($E_{\text {external }}-E_{\text {internal }}$) allows us to find λ^{\prime} (the charge per unit length on the larger cylinder). Using $r=0.035 \mathrm{~m}$, we obtain $\lambda^{\prime}=-5.8 \times 10^{-9} \mathrm{C} / \mathrm{m}$.
27. We assume the charge density of both the conducting cylinder and the shell are uniform, and we neglect fringing effect. Symmetry can be used to show that the electric field is radial, both between the cylinder and the shell and outside the shell. It is zero, of course, inside the cylinder and inside the shell.
(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given cylinders and of larger radius r than either of them. The flux through this surface is $\Phi=2 \pi r L E$, where E is the magnitude of the field at the Gaussian surface. We may ignore any flux through the ends. Now, the charge enclosed by the Gaussian surface is $q_{\mathrm{enc}}=Q 1+Q_{2}=-Q_{1}=-3.40 \times 10^{-12} \mathrm{C}$. Consequently, Gauss' law yields $2 \pi r \varepsilon_{0} L E=q_{\mathrm{enc}}$, or

$$
E=\frac{q_{\mathrm{enc}}}{2 \pi \varepsilon_{0} L r}=\frac{-3.40 \times 10^{-12} \mathrm{C}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(11.0 \mathrm{~m})\left(20.0 \times 1.30 \times 10^{-3} \mathrm{~m}\right)}=-0.214 \mathrm{~N} / \mathrm{C},
$$

or $|E|=0.214 \mathrm{~N} / \mathrm{C}$.
(b) The negative sign in E indicates that the field points inward.
(c) Next, for $r=5.00 R_{1}$, the charge enclosed by the Gaussian surface is $q_{\text {enc }}=Q_{1}=$ $3.40 \times 10^{-12} \mathrm{C}$. Consequently, Gauss' law yields $2 \pi r \varepsilon_{0} L E=q_{\mathrm{enc}}$, or

$$
E=\frac{q_{\mathrm{enc}}}{2 \pi \varepsilon_{0} L r}=\frac{3.40 \times 10^{-12} \mathrm{C}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(11.0 \mathrm{~m})\left(5.00 \times 1.30 \times 10^{-3} \mathrm{~m}\right)}=0.855 \mathrm{~N} / \mathrm{C} .
$$

(d) The positive sign indicates that the field points outward.
(e) we consider a cylindrical Gaussian surface whose radius places it within the shell itself. The electric field is zero at all points on the surface since any field within a conducting material would lead to current flow (and thus to a situation other than the electrostatic ones being considered here), so the total electric flux through the Gaussian surface is zero and the net charge within it is zero (by Gauss' law). Since the central rod has charge Q_{1}, the inner surface of the shell must have charge $Q_{\text {in }}=-Q_{1}=-3.40 \times 10^{-12} \mathrm{C}$.
(f) Since the shell is known to have total charge $Q_{2}=-2.00 Q_{1}$, it must have charge $Q_{\text {out }}=$ $Q_{2}-Q_{\text {in }}=-Q_{1}=-3.40 \times 10^{-12} \mathrm{C}$ on its outer surface.
28. (a) In Eq. 23-12, $\lambda=q / L$ where q is the net charge enclosed by a cylindrical Gaussian surface of radius r. The field is being measured outside the system (the charged rod coaxial with the neutral cylinder) so that the net enclosed charge is only that which is on the rod. Consequently,

$$
|\vec{E}|=\frac{\lambda}{2 \pi \varepsilon_{0} r}=\frac{2.0 \times 10^{-9}}{2 \pi \varepsilon_{0}(0.15)}=2.4 \times 10^{2} \mathrm{~N} / \mathrm{C}
$$

(b) Since the field is zero inside the conductor (in an electrostatic configuration), then there resides on the inner surface charge $-q$, and on the outer surface, charge $+q$ (where q is the charge on the rod at the center). Therefore, with $r_{i}=0.05 \mathrm{~m}$, the surface density of charge is

$$
\sigma_{\text {inner }}=\frac{-q}{2 \pi r_{i} L}=-\frac{\lambda}{2 \pi r_{i}}=-6.4 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}
$$

for the inner surface.
(c) With $r_{o}=0.10 \mathrm{~m}$, the surface charge density of the outer surface is

$$
\sigma_{\text {outer }}=\frac{+q}{2 \pi r_{o} L}=\frac{\lambda}{2 \pi r_{o}}=+3.2 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}
$$

29. We denote the radius of the thin cylinder as $R=0.015 \mathrm{~m}$. Using Eq. 23-12, the net electric field for $r>R$ is given by

$$
E_{\text {net }}=E_{\text {wire }}+E_{\text {cylinder }}=\frac{-\lambda}{2 \pi \varepsilon_{0} r}+\frac{\lambda^{\prime}}{2 \pi \varepsilon_{0} r}
$$

where $-\lambda=-3.6 \mathrm{nC} / \mathrm{m}$ is the linear charge density of the wire and λ^{\prime} is the linear charge density of the thin cylinder. We note that the surface and linear charge densities of the thin cylinder are related by

$$
q_{\text {cylinder }}=\lambda^{\prime} L=\sigma(2 \pi R L) \Rightarrow \lambda^{\prime}=\sigma(2 \pi R) .
$$

Now, $E_{\text {net }}$ outside the cylinder will equal zero, provided that $2 \pi R \sigma=\lambda$, or

$$
\sigma=\frac{\lambda}{2 \pi R}=\frac{3.6 \times 10^{-6} \mathrm{C} / \mathrm{m}}{(2 \pi)(0.015 \mathrm{~m})}=3.8 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2} .
$$

30. To evaluate the field using Gauss' law, we employ a cylindrical surface of area $2 \pi r L$ where L is very large (large enough that contributions from the ends of the cylinder become irrelevant to the calculation). The volume within this surface is $V=\pi r^{2} L$, or expressed more appropriate to our needs: $d V=2 \pi r L d r$. The charge enclosed is, with $A=2.5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{5}$,

$$
q_{\mathrm{enc}}=\int_{0}^{r} A r^{2} 2 \pi r L d r=\frac{\pi}{2} A L r^{4}
$$

By Gauss' law, we find $\quad \Phi=|\vec{E}|(2 \pi r L)=q_{\text {enc }} / \varepsilon_{0}$; we thus obtain $|\vec{E}|=\frac{A r^{3}}{4 \varepsilon_{0}}$.
(a) With $r=0.030 \mathrm{~m}$, we find $|\vec{E}|=1.9 \mathrm{~N} / \mathrm{C}$.
(b) Once outside the cylinder, Eq. 23-12 is obeyed. To find $\lambda=q / L$ we must find the total charge q. Therefore,

$$
\frac{q}{L}=\frac{1}{L} \int_{0}^{0.04} A r^{2} 2 \pi r L d r=1.0 \times 10^{-11} \mathrm{C} / \mathrm{m}
$$

And the result, for $r=0.050 \mathrm{~m}$, is $|\vec{E}|=\lambda / 2 \pi \varepsilon_{0} r=3.6 \mathrm{~N} / \mathrm{C}$.
31. (a) To calculate the electric field at a point very close to the center of a large, uniformly charged conducting plate, we may replace the finite plate with an infinite plate with the same area charge density and take the magnitude of the field to be $E=\sigma / \varepsilon_{0}$, where σ is the area charge density for the surface just under the point. The charge is distributed uniformly over both sides of the original plate, with half being on the side near the field point. Thus,

$$
\sigma=\frac{q}{2 A}=\frac{6.0 \times 10^{-6} \mathrm{C}}{2(0.080 \mathrm{~m})^{2}}=4.69 \times 10^{-4} \mathrm{C} / \mathrm{m}^{2}
$$

The magnitude of the field is

$$
E=\frac{4.69 \times 10^{-4} \mathrm{C} / \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}}=5.3 \times 10^{7} \mathrm{~N} / \mathrm{C} .
$$

The field is normal to the plate and since the charge on the plate is positive, it points away from the plate.
(b) At a point far away from the plate, the electric field is nearly that of a point particle with charge equal to the total charge on the plate. The magnitude of the field is $E=q / 4 \pi \varepsilon_{0} r^{2}=k q / r^{2}$, where r is the distance from the plate. Thus,

$$
E=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(6.0 \times 10^{-6} \mathrm{C}\right)}{(30 \mathrm{~m})^{2}}=60 \mathrm{~N} / \mathrm{C} .
$$

32. According to Eq. 23-13 the electric field due to either sheet of charge with surface charge density $\sigma=1.77 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$ is perpendicular to the plane of the sheet (pointing away from the sheet if the charge is positive) and has magnitude $E=\sigma / 2 \varepsilon_{0}$. Using the superposition principle, we conclude:
(a) $E=\sigma / \varepsilon_{0}=\left(1.77 \times 10^{-22}\right) /\left(8.85 \times 10^{-12}\right)=2.00 \times 10^{-11} \mathrm{~N} / \mathrm{C}$, pointing in the upward direction, or $\vec{E}=\left(2.00 \times 10^{-11} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{j}}$.
(b) $E=0$;
(c) and, $E=\sigma / \varepsilon_{0}$, pointing down, or $\vec{E}=-\left(2.00 \times 10^{-11} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{j}}$.
33. In the region between sheets 1 and 2, the net field is $E_{1}-E_{2}+E_{3}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$.

In the region between sheets 2 and 3, the net field is at its greatest value:

$$
E_{1}+E_{2}+E_{3}=6.0 \times 10^{5} \mathrm{~N} / \mathrm{C}
$$

The net field vanishes in the region to the right of sheet 3 , where $E_{1}+E_{2}=E_{3}$. We note the implication that σ_{3} is negative (and is the largest surface-density, in magnitude). These three conditions are sufficient for finding the fields:

$$
E_{1}=1.0 \times 10^{5} \mathrm{~N} / \mathrm{C}, E_{2}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{C}, E_{3}=3.0 \times 10^{5} \mathrm{~N} / \mathrm{C}
$$

From Eq. 23-13, we infer (from these values of E)

$$
\frac{\left|\sigma_{3}\right|}{\left|\sigma_{2}\right|}=\frac{3.0 \times 10^{5} \mathrm{~N} / \mathrm{C}}{2.0 \times 10^{5} \mathrm{~N} / \mathrm{C}}=1.5 .
$$

Recalling our observation, above, about σ_{3}, we conclude $\frac{\sigma_{3}}{\sigma_{2}}=-1.5$.
34. The charge distribution in this problem is equivalent to that of an infinite sheet of charge with surface charge density $\sigma=4.50 \times 10^{-12} \mathrm{C} / \mathrm{m}^{2}$ plus a small circular pad of radius $R=1.80 \mathrm{~cm}$ located at the middle of the sheet with charge density $-\sigma$. We denote the electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. Using Eq. 22-26 for \vec{E}_{2}, the net electric field \vec{E} at a distance $z=2.56 \mathrm{~cm}$ along the central axis is then

$$
\begin{aligned}
\vec{E} & =\vec{E}_{1}+\vec{E}_{2}=\left(\frac{\sigma}{2 \varepsilon_{0}}\right) \hat{\mathrm{k}}+\frac{(-\sigma)}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) \hat{\mathrm{k}}=\frac{\sigma z}{2 \varepsilon_{0} \sqrt{z^{2}+R^{2}}} \hat{\mathrm{k}} \\
& =\frac{\left(4.50 \times 10^{-12}\right)\left(2.56 \times 10^{-2}\right)}{2\left(8.85 \times 10^{-12}\right) \sqrt{\left(2.56 \times 10^{-2}\right)^{2}+\left(1.80 \times 10^{-2}\right)^{2}}} \hat{\mathrm{k}}=(0.208 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{k}}
\end{aligned}
$$

35. We use Eq. 23-13.
(a) To the left of the plates:

$$
\vec{E}=\left(\sigma / 2 \varepsilon_{0}\right)(-\hat{\mathrm{i}})(\text { from the right plate })+\left(\sigma / 2 \varepsilon_{0}\right) \hat{\mathrm{i}}(\text { from the left one })=0 .
$$

(b) To the right of the plates:

$$
\left.\vec{E}=\left(\sigma / 2 \varepsilon_{0}\right) \hat{\mathrm{i}} \text { (from the right plate }\right)+\left(\sigma / 2 \varepsilon_{0}\right)(-\hat{\mathrm{i}})(\text { from the left one })=0 .
$$

(c) Between the plates:

$$
\vec{E}=\left(\frac{\sigma}{2 \varepsilon_{0}}\right)(-\hat{\mathrm{i}})+\left(\frac{\sigma}{2 \varepsilon_{0}}\right)(-\hat{\mathrm{i}})=\left(\frac{\sigma}{\varepsilon_{0}}\right)(-\hat{\mathrm{i}})=-\left(\frac{7.00 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}}{8.85 \times 10^{-12} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}}\right) \hat{\mathrm{i}}=\left(-7.91 \times 10^{-11} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}
$$

36. The field due to the sheet is $E=\frac{\sigma}{2 \varepsilon_{0}}$. The force (in magnitude) on the electron (due to that field) is $F=e E$, and assuming it's the only force then the acceleration is

$$
a=\frac{e \sigma}{2 \varepsilon_{0} m}=\text { slope of the graph }\left(=2.0 \times 10^{5} \mathrm{~m} / \mathrm{s} \text { divided by } 7.0 \times 10^{-12} \mathrm{~s}\right) .
$$

Thus we obtain $\sigma=2.9 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$.
37. The charge on the metal plate, which is negative, exerts a force of repulsion on the electron and stops it. First find an expression for the acceleration of the electron, then use kinematics to find the stopping distance. We take the initial direction of motion of the electron to be positive. Then, the electric field is given by $E=\sigma / \varepsilon_{0}$, where σ is the surface charge density on the plate. The force on the electron is $F=-e E=-e \sigma / \varepsilon_{0}$ and the acceleration is

$$
a=\frac{F}{m}=-\frac{e \sigma}{\varepsilon_{0} m}
$$

where m is the mass of the electron. The force is constant, so we use constant acceleration kinematics. If v_{0} is the initial velocity of the electron, v is the final velocity, and x is the distance traveled between the initial and final positions, then $v^{2}-v_{0}^{2}=2 a x$. Set $v=0$ and replace a with $-e \sigma / \varepsilon_{0} m$, then solve for x. We find

$$
x=-\frac{v_{0}^{2}}{2 a}=\frac{\varepsilon_{0} m v_{0}^{2}}{2 e \sigma} .
$$

Now $\frac{1}{2} m v_{0}^{2}$ is the initial kinetic energy K_{0}, so

$$
x=\frac{\varepsilon_{0} K_{0}}{e \sigma}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(1.60 \times 10^{-17} \mathrm{~J}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}\right)}=4.4 \times 10^{-4} \mathrm{~m} .
$$

38. We use the result of part (c) of problem 35 to obtain the surface charge density.

$$
E=\sigma / \varepsilon_{0} \Rightarrow \sigma=\varepsilon_{0} E=\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(55 \mathrm{~N} / \mathrm{C})=4.9 \times 10^{-10} \mathrm{C} / \mathrm{m}^{2}
$$

Since the area of the plates is $A=1.0 \mathrm{~m}^{2}$, the magnitude of the charge on the plate is $Q=\sigma A=4.9 \times 10^{-10} \mathrm{C}$.
39. The forces acting on the ball are shown in the diagram below. The gravitational force has magnitude $m g$, where m is the mass of the ball; the electrical force has magnitude $q E$, where q is the charge on the ball and E is the magnitude of the electric field at the position of the ball; and, the tension in the thread is denoted by T. The electric field produced by the plate is normal to the plate and points to the right. Since the ball is positively charged, the electric force on it also points to the right. The tension in the thread makes the angle $\theta\left(=30^{\circ}\right)$ with the vertical.

Since the ball is in equilibrium the net force on it vanishes. The sum of the horizontal components yields $q E-T \sin \theta=0$ and the sum of the vertical components yields $T \cos \theta-m g=0$. The expression $T=q E / \sin \theta$, from the first equation, is substituted into the second to obtain $q E=m g \tan \theta$. The electric field produced by a large uniform plane of charge is given by $E=\sigma / 2 \varepsilon_{0}$, where σ is the surface charge density. Thus,

$$
\frac{q \sigma}{2 \varepsilon_{0}}=m g \tan \theta
$$

and

$$
\begin{aligned}
\sigma & =\frac{2 \varepsilon_{0} m g \tan \theta}{q}=\frac{2\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(1.0 \times 10^{-6} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \tan 30^{\circ}}{2.0 \times 10^{-8} \mathrm{C}} \\
& =5.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2} .
\end{aligned}
$$

40. The point where the individual fields cancel cannot be in the region between the sheet and the particle $(-d<x<0)$ since the sheet and the particle have opposite-signed charges. The point(s) could be in the region to the right of the particle $(x>0)$ and in the region to the left of the sheet $(x<d)$; this is where the condition

$$
\frac{|\sigma|}{2 \varepsilon_{0}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

must hold. Solving this with the given values, we find $r=x= \pm \sqrt{3 / 2 \pi} \approx \pm 0.691 \mathrm{~m}$.
If $d=0.20 \mathrm{~m}$ (which is less than the magnitude of r found above), then neither of the points $(x \approx \pm 0.691 \mathrm{~m})$ is in the "forbidden region" between the particle and the sheet. Thus, both values are allowed. Thus, we have
(a) $x=0.691 \mathrm{~m}$ on the positive axis, and
(b) $x=-0.691 \mathrm{~m}$ on the negative axis.
(c) If, however, $d=0.80 \mathrm{~m}$ (greater than the magnitude of r found above), then one of the points $(x \approx-0.691 \mathrm{~m})$ is in the "forbidden region" between the particle and the sheet and is disallowed. In this part, the fields cancel only at the point $x \approx+0.691 \mathrm{~m}$.
41. We use a Gaussian surface in the form of a box with rectangular sides. The cross section is shown with dashed lines in the diagram below.

It is centered at the central plane of the slab, so the left and right faces are each a distance x from the central plane. We take the thickness of the rectangular solid to be a, the same as its length, so the left and right faces are squares. The electric field is normal to the left and right faces and is uniform over them. Since $\rho=5.80 \mathrm{fC} / \mathrm{m}^{3}$ is positive, it points outward at both faces: toward the left at the left face and toward the right at the right face. Furthermore, the magnitude is the same at both faces. The electric flux through each of these faces is $E a^{2}$. The field is parallel to the other faces of the Gaussian surface and the flux through them is zero. The total flux through the Gaussian surface is $\Phi=2 E a^{2}$. The volume enclosed by the Gaussian surface is $2 a^{2} x$ and the charge contained within it is $q=2 a^{2} x \rho$. Gauss' law yields $2 \varepsilon_{0} E a^{2}=2 a^{2} x \rho$. We solve for the magnitude of the electric field: $E=\rho x / \varepsilon_{0}$.
(a) For $x=0, E=0$.
(b) For $x=2.00 \mathrm{~mm}=2.00 \times 10^{-3} \mathrm{~m}$,

$$
E=\left(5.80 \times 10^{-15}\right)\left(2.00 \times 10^{-3}\right) /\left(8.85 \times 10^{-12}\right)=1.31 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
$$

(c) For $x=d / 2=4.70 \mathrm{~mm}=4.70 \times 10^{-3} \mathrm{~m}$,

$$
E=\left(5.80 \times 10^{-15}\right)\left(4.70 \times 10^{-3}\right) /\left(8.85 \times 10^{-12}\right)=3.08 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
$$

(d) For $x=26.0 \mathrm{~mm}=2.60 \times 10^{-2} \mathrm{~m}$, we take a Gaussian surface of the same shape and orientation, but with $x>d / 2$, so the left and right faces are outside the slab. The total flux through the surface is again $\Phi=2 E a^{2}$ but the charge enclosed is now $q=a^{2} d \rho$. Gauss' law yields $2 \varepsilon_{0} E a^{2}=a^{2} d \rho$, so

$$
E=\frac{\rho d}{2 \varepsilon_{0}}=\frac{\left(5.80 \times 10^{-15}\right)\left(9.40 \times 10^{-3}\right)}{2\left(8.85 \times 10^{-12}\right)}=3.08 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
$$

42. We determine the (total) charge on the ball by examining the maximum value ($E=$ $5.0 \times 10^{7} \mathrm{~N} / \mathrm{C}$) shown in the graph (which occurs at $r=0.020 \mathrm{~m}$). Thus,

$$
E=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow \quad q=2.2 \times 10^{-6} \mathrm{C} .
$$

43. Charge is distributed uniformly over the surface of the sphere and the electric field it produces at points outside the sphere is like the field of a point particle with charge equal to the net charge on the sphere. That is, the magnitude of the field is given by $E=$ $q / 4 \pi \varepsilon_{0} r^{2}$, where q is the magnitude of the charge on the sphere and r is the distance from the center of the sphere to the point where the field is measured. Thus,

$$
q=4 \pi \varepsilon_{0} r^{2} E=\frac{(0.15 \mathrm{~m})^{2}\left(3.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=7.5 \times 10^{-9} \mathrm{C} .
$$

The field points inward, toward the sphere center, so the charge is negative: $-7.5 \times 10^{-9} \mathrm{C}$.
44. (a) The flux is still $-750 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$, since it depends only on the amount of charge enclosed.
(b) We use $\Phi=q / \varepsilon_{0}$ to obtain the charge q :

$$
q=\varepsilon_{0} \Phi=\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(-750 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)=-6.64 \times 10^{-9} \mathrm{C} .
$$

45. (a) Since $r_{1}=10.0 \mathrm{~cm}<r=12.0 \mathrm{~cm}<r_{2}=15.0 \mathrm{~cm}$,

$$
E(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \mathrm{C}^{2}\right)\left(4.00 \times 10^{-8} \mathrm{C}\right)}{(0.120 \mathrm{~m})^{2}}=2.50 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

(b) Since $r_{1}<r_{2}<r=20.0 \mathrm{~cm}$,

$$
E(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}+q_{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(4.00+2.00)\left(1 \times 10^{-8} \mathrm{C}\right)}{\left(0.200 \mathrm{~m}^{2}\right)}=1.35 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

46. The point where the individual fields cancel cannot be in the region between the shells since the shells have opposite-signed charges. It cannot be inside the radius R of one of the shells since there is only one field contribution there (which would not be canceled by another field contribution and thus would not lead to zero net field). We note shell 2 has greater magnitude of charge $\left(\left|\sigma_{2}\right| A_{2}\right)$ than shell 1 , which implies the point is not to the right of shell 2 (any such point would always be closer to the larger charge and thus no possibility for cancellation of equal-magnitude fields could occur). Consequently, the point should be in the region to the left of shell 1 (at a distance $r>R_{1}$ from its center); this is where the condition

$$
E_{1}=E_{2} \Rightarrow \frac{\left|q_{1}\right|}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left|q_{2}\right|}{4 \pi \varepsilon_{0}(r+L)^{2}}
$$

or

$$
\frac{\sigma_{1} A_{1}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left|\sigma_{2}\right| A_{2}}{4 \pi \varepsilon_{0}(r+L)^{2}}
$$

Using the fact that the area of a sphere is $A=4 \pi R^{2}$, this condition simplifies to

$$
r=\frac{L}{\left(R_{2} / R_{1}\right) \sqrt{\left|\sigma_{2}\right| / \sigma_{1}}-1}=3.3 \mathrm{~cm} .
$$

We note that this value satisfies the requirement $r>R_{1}$. The answer, then, is that the net field vanishes at $x=-r=-3.3 \mathrm{~cm}$.
47. To find an expression for the electric field inside the shell in terms of A and the distance from the center of the shell, select A so the field does not depend on the distance. We use a Gaussian surface in the form of a sphere with radius r_{g}, concentric with the spherical shell and within it ($a<r_{g}<b$). Gauss' law will be used to find the magnitude of the electric field a distance r_{g} from the shell center. The charge that is both in the shell and within the Gaussian sphere is given by the integral $q_{s}=\int \rho d V$ over the portion of the shell within the Gaussian surface. Since the charge distribution has spherical symmetry, we may take $d V$ to be the volume of a spherical shell with radius r and infinitesimal thickness $d r: d V=4 \pi r^{2} d r$. Thus,

$$
q_{s}=4 \pi \int_{a}^{r_{g}} \rho r^{2} d r=4 \pi \int_{a}^{r_{g}} \frac{A}{r} r^{2} d r=4 \pi A \int_{a}^{r_{g}} r d r=2 \pi A\left(r_{g}^{2}-a^{2}\right) .
$$

The total charge inside the Gaussian surface is $q+q_{s}=q+2 \pi A\left(r_{g}^{2}-a^{2}\right)$. The electric field is radial, so the flux through the Gaussian surface is $\Phi=4 \pi r_{g}^{2} E$, where E is the magnitude of the field. Gauss' law yields $4 \pi \varepsilon_{0} E r_{g}^{2}=q+2 \pi A\left(r_{g}^{2}-a^{2}\right)$. We solve for E :

$$
E=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{r_{g}^{2}}+2 \pi A-\frac{2 \pi A a^{2}}{r_{g}^{2}}\right] .
$$

For the field to be uniform, the first and last terms in the brackets must cancel. They do if $q-2 \pi A a^{2}=0$ or $A=q / 2 \pi a^{2}$. With $a=2.00 \times 10^{-2} \mathrm{~m}$ and $q=45.0 \times 10^{-15} \mathrm{C}$, we have $A=1.79 \times 10^{-11} \mathrm{C} / \mathrm{m}^{2}$.
48. Let E_{A} designate the magnitude of the field at $r=2.4 \mathrm{~cm}$. Thus $E_{A}=2.0 \times 10^{7} \mathrm{~N} / \mathrm{C}$, and is totally due to the particle. Since

$$
E_{\text {particle }}=\frac{q}{4 \pi \varepsilon_{0} r^{2}}
$$

then the field due to the particle at any other point will relate to E_{A} by a ratio of distances squared. Now, we note that at $r=3.0 \mathrm{~cm}$ the total contribution (from particle and shell) is $8.0 \times 10^{7} \mathrm{~N} / \mathrm{C}$. Therefore,

$$
E_{\text {shell }}+E_{\text {particle }}=E_{\text {shell }}+(2.4 / 3)^{2} E_{A}=8.0 \times 10^{7} \mathrm{~N} / \mathrm{C}
$$

Using the value for E_{A} noted above, we find $E_{\text {shell }}=6.6 \times 10^{7} \mathrm{~N} / \mathrm{C}$. Thus, with $r=0.030$ m , we find the charge Q using

$$
E_{\text {shell }}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow Q=6.6 \times 10^{-6} \mathrm{C}
$$

49. At all points where there is an electric field, it is radially outward. For each part of the problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere of charge and passes through the point where the electric field is to be found. The field is uniform on the surface, so $\oint \vec{E} \cdot d \vec{A}=4 \pi r^{2} E$, where r is the radius of the Gaussian surface.

For $r<a$, the charge enclosed by the Gaussian surface is $q_{1}(r / a)^{3}$. Gauss' law yields

$$
4 \pi r^{2} E=\left(\frac{q_{1}}{\varepsilon_{0}}\right)\left(\frac{r}{a}\right)^{3} \Rightarrow E=\frac{q_{1} r}{4 \pi \varepsilon_{0} a^{3}} .
$$

(a) For $r=0$, the above equation implies $E=0$.
(b) For $r=a / 2$, we have

$$
E=\frac{q_{1}(a / 2)}{4 \pi \varepsilon_{0} a^{3}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(5.00 \times 10^{-15} \mathrm{C}\right)}{2\left(2.00 \times 10^{-2} \mathrm{~m}\right)^{2}}=5.62 \times 10^{-2} \mathrm{~N} / \mathrm{C} .
$$

(c) For $r=a$, we have

$$
E=\frac{q_{1}}{4 \pi \varepsilon_{0} a^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(5.00 \times 10^{-15} \mathrm{C}\right)}{\left(2.00 \times 10^{-2} \mathrm{~m}\right)^{2}}=0.112 \mathrm{~N} / \mathrm{C} .
$$

In the case where $a<r<b$, the charge enclosed by the Gaussian surface is q_{1}, so Gauss' law leads to

$$
4 \pi r^{2} E=\frac{q_{1}}{\varepsilon_{0}} \Rightarrow E=\frac{q_{1}}{4 \pi \varepsilon_{0} r^{2}} .
$$

(d) For $r=1.50 a$, we have

$$
E=\frac{q_{1}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(5.00 \times 10^{-15} \mathrm{C}\right)}{\left(1.50 \times 2.00 \times 10^{-2} \mathrm{~m}\right)^{2}}=0.0499 \mathrm{~N} / \mathrm{C}
$$

(e) In the region $b<r<c$, since the shell is conducting, the electric field is zero. Thus, for $r=2.30 a$, we have $E=0$.
(f) For $r>c$, the charge enclosed by the Gaussian surface is zero. Gauss' law yields $4 \pi r^{2} E=0 \Rightarrow E=0$. Thus, $E=0$ at $r=3.50 a$.
(g) Consider a Gaussian surface that lies completely within the conducting shell. Since the electric field is everywhere zero on the surface, $\oint \vec{E} \cdot d \vec{A}=0$ and, according to Gauss' law, the net charge enclosed by the surface is zero. If Q_{i} is the charge on the inner surface of the shell, then $q_{1}+Q_{i}=0$ and $Q_{i}=-q_{1}=-5.00 \mathrm{fC}$.
(h) Let Q_{o} be the charge on the outer surface of the shell. Since the net charge on the shell is $-q, Q_{i}+Q_{o}=-q_{1}$. This means $Q_{o}=-q_{1}-Q_{i}=-q_{1}-\left(-q_{1}\right)=0$.
50. The field is zero for $0 \leq r \leq a$ as a result of Eq. 23-16. Thus,
(a) $E=0$ at $r=0$,
(b) $E=0$ at $r=a / 2.00$, and
(c) $E=0$ at $r=a$.

For $a \leq r \leq b$ the enclosed charge $q_{\text {enc }}$ (for $a \leq r \leq b$) is related to the volume by

$$
q_{\mathrm{enc}}=\rho\left(\frac{4 \pi r^{3}}{3}-\frac{4 \pi a^{3}}{3}\right) .
$$

Therefore, the electric field is

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\mathrm{enc}}}{r^{2}}=\frac{\rho}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{4 \pi r^{3}}{3}-\frac{4 \pi a^{3}}{3}\right)=\frac{\rho}{3 \varepsilon_{0}} \frac{r^{3}-a^{3}}{r^{2}}
$$

for $a \leq r \leq b$.
(d) For $r=1.50 a$, we have

$$
E=\frac{\rho}{3 \varepsilon_{0}} \frac{(1.50 a)^{3}-a^{3}}{(1.50 a)^{2}}=\frac{\rho a}{3 \varepsilon_{0}} \frac{2.375}{2.25}=\frac{\left(1.84 \times 10^{-9}\right)(0.100)}{3\left(8.85 \times 10^{-12}\right)} \frac{2.375}{2.25}=7.32 \mathrm{~N} / \mathrm{C} .
$$

(e) For $r=b=2.00 a$, the electric field is

$$
E=\frac{\rho}{3 \varepsilon_{0}} \frac{(2.00 a)^{3}-a^{3}}{(2.00 a)^{2}}=\frac{\rho a}{3 \varepsilon_{0}} \frac{7}{4}=\frac{\left(1.84 \times 10^{-9}\right)(0.100)}{3\left(8.85 \times 10^{-12}\right)} \frac{7}{4}=12.1 \mathrm{~N} / \mathrm{C} .
$$

(f) For $r \geq b$ we have $E=q_{\text {total }} / 4 \pi \varepsilon_{0} r^{2}$ or

$$
E=\frac{\rho}{3 \varepsilon_{0}} \frac{b^{3}-a^{3}}{r^{2}} .
$$

Thus, for $r=3.00 b=6.00 a$, the electric field is

$$
E=\frac{\rho}{3 \varepsilon_{0}} \frac{(2.00 a)^{3}-a^{3}}{(6.00 a)^{2}}=\frac{\rho a}{3 \varepsilon_{0}} \frac{7}{36}=\frac{\left(1.84 \times 10^{-9}\right)(0.100)}{3\left(8.85 \times 10^{-12}\right)} \frac{7}{4}=1.35 \mathrm{~N} / \mathrm{C} .
$$

51. (a) We integrate the volume charge density over the volume and require the result be equal to the total charge:

$$
\int d x \int d y \int d z \rho=4 \pi \int_{0}^{R} d r r^{2} \rho=Q .
$$

Substituting the expression $\rho=\rho_{s} r / R$, with $\rho_{s}=14.1 \mathrm{pC} / \mathrm{m}^{3}$, and performing the integration leads to

$$
4 \pi\left(\frac{\rho_{s}}{R}\right)\left(\frac{R^{4}}{4}\right)=Q
$$

or

$$
Q=\pi \rho_{s} R^{3}=\pi\left(14.1 \times 10^{-12} \mathrm{C} / \mathrm{m}^{3}\right)(0.0560 \mathrm{~m})^{3}=7.78 \times 10^{-15} \mathrm{C} .
$$

(b) At $r=0$, the electric field is zero $(E=0)$ since the enclosed charge is zero.

At a certain point within the sphere, at some distance r from the center, the field (see Eq. 23-8 through Eq. 23-10) is given by Gauss' law:

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\mathrm{enc}}}{r^{2}}
$$

where $q_{\text {enc }}$ is given by an integral similar to that worked in part (a):

$$
q_{\mathrm{enc}}=4 \pi \int_{0}^{r} d r r^{2} \rho=4 \pi\left(\frac{\rho_{s}}{R}\right)\left(\frac{r^{4}}{4}\right) .
$$

Therefore,

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi \rho_{s} r^{4}}{R r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi \rho_{s} r^{2}}{R} .
$$

(c) For $r=R / 2.00$, where $R=5.60 \mathrm{~cm}$, the electric field is

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi \rho_{s}(R / 2.00)^{2}}{R}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi \rho_{s} R}{4.00}=\frac{\left(8.99 \times 10^{9}\right) \pi\left(14.1 \times 10^{-12}\right)(0.0560)}{4.00}=5.58 \times 10^{-3} \mathrm{~N} / \mathrm{C}
$$

(d) For $r=R$, the electric field is

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\pi \rho_{s} R^{2}}{R}=\frac{\pi \rho_{s} R}{4 \pi \varepsilon_{0}}=\left(8.99 \times 10^{9}\right) \pi\left(14.1 \times 10^{-12}\right)(0.0560)=2.23 \times 10^{-2} \mathrm{~N} / \mathrm{C} .
$$

(e) The electric field strength as a function of r is depicted below:

52. Applying Eq. 23-20, we have

$$
E_{1}=\frac{\left|q_{1}\right|}{4 \pi \varepsilon_{0} R^{3}} r_{1}=\frac{\left|q_{1}\right|}{4 \pi \varepsilon_{0} R^{3}}\left(\frac{R}{2}\right)=\frac{\left|q_{1}\right|}{8 \pi \varepsilon_{0} R^{2}} .
$$

Also, outside sphere 2 we have

$$
E_{2}=\frac{\left|q_{2}\right|}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left|q_{2}\right|}{4 \pi \varepsilon_{0}(1.5 R)^{2}} .
$$

Equating these and solving for the ratio of charges, we arrive at $\frac{q_{2}}{q_{1}}=\frac{9}{8}=1.125$.
53. We use

$$
E(r)=\frac{q_{\text {encl }}}{4 \pi \varepsilon_{0} r^{2}}=\frac{1}{4 \pi \varepsilon_{0} r^{2}} \int_{0}^{r} \rho(r) 4 \pi r^{2} d r
$$

to solve for $\rho(r)$:

$$
\rho(r)=\frac{\varepsilon_{0}}{r^{2}} \frac{d}{d r}\left[r^{2} E(r)\right]=\frac{\varepsilon_{0}}{r^{2}} \frac{d}{d r}\left(K r^{6}\right)=6 K \varepsilon_{0} r^{3} .
$$

54. (a) We consider the radial field produced at points within a uniform cylindrical distribution of charge. The volume enclosed by a Gaussian surface in this case is $L \pi r^{2}$. Thus, Gauss' law leads to

$$
E=\frac{\left|q_{\mathrm{enc}}\right|}{\varepsilon_{0} A_{\text {cylinder }}}=\frac{|\rho|\left(L \pi r^{2}\right)}{\varepsilon_{0}(2 \pi r L)}=\frac{|\rho| r}{2 \varepsilon_{0}} .
$$

(b) We note from the above expression that the magnitude of the radial field grows with r.
(c) Since the charged powder is negative, the field points radially inward.
(d) The largest value of r which encloses charged material is $r_{\max }=R$. Therefore, with $|\rho|=0.0011 \mathrm{C} / \mathrm{m}^{3}$ and $R=0.050 \mathrm{~m}$, we obtain

$$
E_{\max }=\frac{|\rho| R}{2 \varepsilon_{0}}=3.1 \times 10^{6} \mathrm{~N} / \mathrm{C} .
$$

(e) According to condition 1 mentioned in the problem, the field is high enough to produce an electrical discharge (at $r=R$).
55. (a) The cube is totally within the spherical volume, so the charge enclosed is

$$
q_{\mathrm{enc}}=\rho V_{\text {cube }}=\left(500 \times 10^{-9}\right)(0.0400)^{3}=3.20 \times 10^{-11} \mathrm{C} .
$$

By Gauss' law, we find $\Phi=q_{\text {enc }} / \varepsilon_{0}=3.62 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(b) Now the sphere is totally contained within the cube (note that the radius of the sphere is less than half the side-length of the cube). Thus, the total charge is

$$
q_{\mathrm{enc}}=\rho V_{\text {sphere }}=4.5 \times 10^{-10} \mathrm{C} .
$$

By Gauss' law, we find $\Phi=q_{\text {enc }} / \varepsilon_{0}=51.1 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
56. (a) Since the volume contained within a radius of $\frac{1}{2} R$ is one-eighth the volume contained within a radius of R, so the charge at $0<r<R / 2$ is $Q / 8$. The fraction is $1 / 8=$ 0.125 .
(b) At $r=R / 2$, the magnitude of the field is

$$
E=\frac{Q / 8}{4 \pi \varepsilon_{0}(R / 2)^{2}}=\frac{Q}{8 \pi \varepsilon_{0} R^{2}}
$$

and is equivalent to half the field at the surface. Thus, the ratio is 0.500 .
57. (a) We use $m_{e} g=e E=e \sigma / \varepsilon_{0}$ to obtain the surface charge density.

$$
\sigma=\frac{m_{e} g \varepsilon_{0}}{e}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(9.8 \mathrm{~m} / \mathrm{s})\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} . \mathrm{m}^{2}}\right)}{1.60 \times 10^{-19} \mathrm{C}}=4.9 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}
$$

(b) Downward (since the electric force exerted on the electron must be upward).
58. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have

$$
E_{\text {non-constant }}=3 x \hat{\mathrm{i}} .
$$

The face of the cube located at $x=0$ (in the $y z$ plane) has area $A=4 \mathrm{~m}^{2}$ (and it "faces" the $+\hat{\mathrm{i}}$ direction) and has a "contribution" to the flux equal to $E_{\text {non-constant }} A=(3)(0)(4)=0$. The face of the cube located at $x=-2 \mathrm{~m}$ has the same area A (and this one "faces" the $-\hat{\mathrm{i}}$ direction) and a contribution to the flux: $-E_{\text {non-constant }} A=-(3)(-2)(4)=24$ (in SI units). Thus, the net flux is $\Phi=0+24=24 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{C}^{2}$. According to Gauss' law, we therefore have $q_{\mathrm{enc}}=\varepsilon_{0} \Phi=2.13 \times 10^{-10} \mathrm{C}$.
59. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 23-4 and Eq. 23-7), so we focus on the x dependent term only:

$$
E_{\text {non-constant }}=\left(-4.00 y^{2}\right) \hat{\mathrm{i}} \text { (in SI units) }
$$

The face of the cube located at $y=4.00$ has area $A=4.00 \mathrm{~m}^{2}$ (and it "faces" the $+\hat{\mathrm{j}}$ direction) and has a "contribution" to the flux equal to $E_{\text {non-constant }} A=(-4)\left(4^{2}\right)(4)=-256$ (in SI units). The face of the cube located at $y=2.00 \mathrm{~m}$ has the same area A (and this one "faces" the $-\hat{\mathrm{j}}$ direction) and a contribution to the flux: $-E_{\text {non-constant }} A=-(-4)\left(2^{2}\right)(4)=64$ (in SI units). Thus, the net flux is $\Phi=-256+64=-192 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{C}^{2}$. According to Gauss's law, we therefore have $q_{\mathrm{enc}}=\varepsilon_{0} \Phi=-1.70 \times 10^{-9} \mathrm{C}$.
60. (a) The field maximum occurs at the outer surface:

$$
E_{\max }=\left(\frac{|q|}{4 \pi \varepsilon_{0} r^{2}}\right)_{\mathrm{at} r=R}=\frac{|q|}{4 \pi \varepsilon_{0} R^{2}}
$$

Applying Eq. 23-20, we have

$$
E_{\text {internal }}=\frac{|q|}{4 \pi \varepsilon_{0} R^{3}} r=\frac{1}{4} E_{\max } \Rightarrow r=\frac{R}{4}=0.25 R .
$$

(b) Outside sphere 2 we have

$$
E_{\text {external }}=\frac{|q|}{4 \pi \varepsilon_{0} r^{2}}=\frac{1}{4} E_{\max } \quad \Rightarrow \quad r=2.0 R .
$$

61. The initial field (evaluated "just outside the outer surface" which means it is evaluated at $r=0.20 \mathrm{~m}$) is related to the charge q on the hollow conductor by Eq. 23-15. After the point charge Q is placed at the geometric center of the hollow conductor, the final field at that point is a combination of the initial and that due to Q (determined by Eq. 22-3).
(a) $q=4 \pi \varepsilon_{0} r^{2} E_{\text {initial }}=+2.0 \times 10^{-9} \mathrm{C}$.
(b) $Q=4 \pi \varepsilon_{0} r^{2}\left(E_{\text {final }}-E_{\text {initial }}\right)=-1.2 \times 10^{-9} \mathrm{C}$.
(c) In order to cancel the field (due to Q) within the conducting material, there must be an amount of charge equal to $-Q$ distributed uniformly on the inner surface. Thus, the answer is $+1.2 \times 10^{-9} \mathrm{C}$.
(d) Since the total excess charge on the conductor is q and is located on the surfaces, then the outer surface charge must equal the total minus the inner surface charge. Thus, the answer is $2.0 \times 10^{-9} \mathrm{C}-1.2 \times 10^{-9} \mathrm{C}=+0.80 \times 10^{-9} \mathrm{C}$.
62. Since the charge distribution is uniform, we can find the total charge q by multiplying ρ by the spherical volume $\left(\frac{4}{3} \pi r^{3}\right)$ with $r=R=0.050 \mathrm{~m}$. This gives $q=1.68 \mathrm{nC}$.
(a) Applying Eq. 23-20 with $r=0.035 \mathrm{~m}$, we have

$$
E_{\text {internal }}=\frac{|q|}{4 \pi \varepsilon_{0} R^{3}} r=4.2 \times 10^{3} \mathrm{~N} / \mathrm{C} .
$$

(b) Outside the sphere we have (with $r=0.080 \mathrm{~m}$)

$$
E_{\text {external }}=\frac{|q|}{4 \pi \varepsilon_{0} r^{2}}=2.4 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

63. (a) In order to have net charge $-10 \mu \mathrm{C}$ when $-14 \mu \mathrm{C}$ is known to be on the outer surface, then there must be $+4.0 \mu \mathrm{C}$ on the inner surface (since charges reside on the surfaces of a conductor in electrostatic situations).
(b) In order to cancel the electric field inside the conducting material, the contribution from the $+4 \mu \mathrm{C}$ on the inner surface must be canceled by that of the charged particle in the hollow. Thus, the particle's charge is $-4.0 \mu \mathrm{C}$.
64. The field at the proton's location (but not caused by the proton) has magnitude E. The proton's charge is e. The ball's charge has magnitude q. Thus, as long as the proton is at $r \geq R$ then the force on the proton (caused by the ball) has magnitude

$$
F=e E=e\left(\frac{q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{e q}{4 \pi \varepsilon_{0} r^{2}}
$$

where r is measured from the center of the ball (to the proton).This agrees with Coulomb's law from Chapter 22. We note that if $r=R$ then this expression becomes

$$
F_{R}=\frac{e q}{4 \pi \varepsilon_{0} R^{2}}
$$

(a) If we require $F=\frac{1}{2} F_{R}$, and solve for r, we obtain $r=\sqrt{2} R$. Since the problem asks for the measurement from the surface then the answer is $\sqrt{2} R-R=0.41 R$.
(b) Now we require $F_{\text {inside }}=\frac{1}{2} F_{R}$ where $F_{\text {inside }}=e E_{\text {inside }}$ and $E_{\text {inside }}$ is given by Eq. 23-20. Thus,

$$
e\left(\frac{q}{4 \pi \varepsilon_{0} R^{2}}\right) r=\frac{1}{2} \frac{e q}{4 \pi \varepsilon_{0} R^{2}} \quad \Rightarrow \quad r=\frac{1}{2} R=0.50 R .
$$

65. (a) At $x=0.040 \mathrm{~m}$, the net field has a rightward $(+x)$ contribution (computed using Eq. 23-13) from the charge lying between $x=-0.050 \mathrm{~m}$ and $x=0.040 \mathrm{~m}$, and a leftward ($-x$) contribution (again computed using Eq. 23-13) from the charge in the region from $x=0.040 \mathrm{~m}$ to $x=0.050 \mathrm{~m}$. Thus, since $\sigma=q / A=\rho V / A=\rho \Delta x$ in this situation, we have

$$
|\vec{E}|=\frac{\rho(0.090 \mathrm{~m})}{2 \varepsilon_{0}}-\frac{\rho(0.010 \mathrm{~m})}{2 \varepsilon_{0}}=5.4 \mathrm{~N} / \mathrm{C} .
$$

(b) In this case, the field contributions from all layers of charge point rightward, and we obtain

$$
|\vec{E}|=\frac{\rho(0.100 \mathrm{~m})}{2 \varepsilon_{0}}=6.8 \mathrm{~N} / \mathrm{C} .
$$

66. From Gauss's law, we have

$$
\Phi=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{\sigma \pi r^{2}}{\varepsilon_{0}}=\frac{\left(8.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}\right) \pi(0.050 \mathrm{~m})^{2}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}}=7.1 \mathrm{Nm}^{2} / \mathrm{C} .
$$

67. (a) For $r<R, E=0$ (see Eq. 23-16).
(b) For r slightly greater than R,

$$
E_{R}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \approx \frac{q}{4 \pi \varepsilon_{0} R^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(2.00 \times 10^{-7} \mathrm{C}\right)}{(0.250 \mathrm{~m})^{2}}=2.88 \times 10^{4} \mathrm{~N} / \mathrm{C}
$$

(c) For $r>R$,

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}=E_{R}\left(\frac{R}{r}\right)^{2}=\left(2.88 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)\left(\frac{0.250 \mathrm{~m}}{3.00 \mathrm{~m}}\right)^{2}=200 \mathrm{~N} / \mathrm{C} .
$$

68. (a) There is no flux through the sides, so we have two contributions to the flux, one from the $x=2$ end (with $\left.\Phi_{2}=+(2+2)\left(\pi(0.20)^{2}\right)=0.50 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)$ and one from the $x=0$ end (with $\left.\Phi_{0}=-(2)\left(\pi(0.20)^{2}\right)\right)$.
(b) By Gauss' law we have $q_{\mathrm{enc}}=\varepsilon_{0}\left(\Phi_{2}+\Phi_{0}\right)=2.2 \times 10^{-12} \mathrm{C}$.
69. (a) Outside the sphere, we use Eq. 23-15 and obtain $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}=15.0 \mathrm{~N} / \mathrm{C}$.
(b) With $q=+6.00 \times 10^{-12} \mathrm{C}$, Eq. 23-20 leads to $E=25.3 \mathrm{~N} / \mathrm{C}$.
70. Since the fields involved are uniform, the precise location of P is not relevant; what is important is it is above the three sheets, with the positively charged sheets contributing upward fields and the negatively charged sheet contributing a downward field, which conveniently conforms to usual conventions (of upward as positive and downward as negative). The net field is directed upward ($+\hat{\mathrm{j}}$), and (from Eq. 23-13) its magnitude is

$$
|\vec{E}|=\frac{\sigma_{1}}{2 \varepsilon_{0}}+\frac{\sigma_{2}}{2 \varepsilon_{0}}+\frac{\sigma_{3}}{2 \varepsilon_{0}}=\frac{1.0 \times 10^{-6}}{2 \times 8.85 \times 10^{-12}}=5.65 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

In unit-vector notation, we have $\vec{E}=\left(5.65 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{j}}$.
71. Let $\Phi_{0}=10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. The net flux through the entire surface of the dice is given by

$$
\Phi=\sum_{n=1}^{6} \Phi_{n}=\sum_{n=1}^{6}(-1)^{n} n \Phi_{0}=\Phi_{0}(-1+2-3+4-5+6)=3 \Phi_{0} .
$$

Thus, the net charge enclosed is

$$
q=\varepsilon_{0} \Phi=3 \varepsilon_{0} \Phi_{0}=3\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)=2.66 \times 10^{-8} \mathrm{C}
$$

72. (a) From Gauss' law,

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\mathrm{encl}}}{r^{3}} \vec{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left(4 \pi \rho r^{3} / 3\right) \vec{r}}{r^{3}}=\frac{\rho \vec{r}}{3 \varepsilon_{0}} .
$$

(b) The charge distribution in this case is equivalent to that of a whole sphere of charge density ρ plus a smaller sphere of charge density $-\rho$ which fills the void. By superposition

$$
\vec{E}(\vec{r})=\frac{\rho \vec{r}}{3 \varepsilon_{0}}+\frac{(-\rho)(\vec{r}-\vec{a})}{3 \varepsilon_{0}}=\frac{\rho \vec{a}}{3 \varepsilon_{0}} .
$$

73. We choose a coordinate system whose origin is at the center of the flat base, such that the base is in the $x y$ plane and the rest of the hemisphere is in the $z>0$ half space.
(a) $\Phi=\pi R^{2}(-\hat{\mathrm{k}}) \cdot E \hat{\mathrm{k}}=-\pi R^{2} E=-\pi(0.0568 \mathrm{~m})^{2}(2.50 \mathrm{~N} / \mathrm{C})=-0.0253 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
(b) Since the flux through the entire hemisphere is zero, the flux through the curved surface is $\vec{\Phi}_{c}=-\Phi_{\text {base }}=\pi R^{2} E=0.0253 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.
74. (a) The direction of the electric field at P_{1} is away from q_{1} and its magnitude is

$$
|\vec{E}|=\frac{q}{4 \pi \varepsilon_{0} r_{1}^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.0 \times 10^{-7} \mathrm{C}\right)}{(0.015 \mathrm{~m})^{2}}=4.0 \times 10^{6} \mathrm{~N} / \mathrm{C} .
$$

(b) $\vec{E}=0$, since P_{2} is inside the metal.
75. The field due to a sheet of charge is given by Eq. 23-13. Both sheets are horizontal (parallel to the $x y$ plane), producing vertical fields (parallel to the z axis). At points above the $z=0$ sheet (sheet A), its field points upward (towards $+z$); at points above the $z=2.0$ sheet (sheet B), its field does likewise. However, below the $z=2.0$ sheet, its field is oriented downward.
(a) The magnitude of the net field in the region between the sheets is

$$
|\vec{E}|=\frac{\sigma_{A}}{2 \varepsilon_{0}}+\frac{\sigma_{B}}{2 \varepsilon_{0}}=2.82 \times 10^{2} \mathrm{~N} / \mathrm{C}
$$

(b) The magnitude of the net field at points above both sheets is

$$
|\vec{E}|=\frac{\sigma_{A}}{2 \varepsilon_{0}}+\frac{\sigma_{B}}{2 \varepsilon_{0}}=6.21 \times 10^{2} \mathrm{~N} / \mathrm{C}
$$

76. Since the fields involved are uniform, the precise location of P is not relevant. Since the sheets are oppositely charged (though not equally so), the field contributions are additive (since P is between them). Using Eq. 23-13, we obtain

$$
\vec{E}=\frac{\sigma_{1}}{2 \varepsilon_{0}}+\frac{3 \sigma_{1}}{2 \varepsilon_{0}}=\frac{2 \sigma_{1}}{\varepsilon_{0}}
$$

directed towards the negatively charged sheet. The multiple is 2.00 .
77. We use Eqs. 23-15, 23-16 and the superposition principle.
(a) $E=0$ in the region inside the shell.
(b) $E=q_{a} / 4 \pi \varepsilon_{0} r^{2}$.
(c) $E=\left(q_{a}+q_{b}\right) / 4 \pi \varepsilon_{0} r^{2}$.
(d) Since $E=0$ for $r<a$ the charge on the inner surface of the inner shell is always zero. The charge on the outer surface of the inner shell is therefore q_{a}. Since $E=0$ inside the metallic outer shell the net charge enclosed in a Gaussian surface that lies in between the inner and outer surfaces of the outer shell is zero. Thus the inner surface of the outer shell must carry a charge $-q_{a}$, leaving the charge on the outer surface of the outer shell to be $q_{b}+q_{a}$.
78. The net enclosed charge q is given by

$$
q=\varepsilon_{0} \Phi=\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(-48 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)=-4.2 \times 10^{-10} \mathrm{C}
$$

79. (a) At A, the only field contribution is from the +5.00 pC particle in the hollow (this follows from Gauss' law - it is the only charge enclosed by a Gaussian spherical surface passing through point A, concentric with the shell). Thus, using k for $1 / 4 \pi \varepsilon_{0}$, we have $|\vec{E}|=k\left(5.00 \times 10^{-12}\right) /(0.5)^{2}=0.180$.
(b) The direction is radially outward.
(c) Point B is in the conducting material, where the field must be zero in any electrostatic situation.
(d) Point C is outside the sphere where the net charge at smaller values of radius is $(-3.00 \mathrm{pC}+5.00 \mathrm{pC})=2.00 \mathrm{pC}$. Therefore, we have

$$
|\vec{E}|=k\left(2.00 \times 10^{-12}\right) /(2)^{2}=4.50 \times 10^{-3} \mathrm{~N} / \mathrm{C}
$$

directed radially outward.
80. We can express Eq. 23-17 in terms of the charge density ρ as follows:

$$
E=\frac{q}{4 \pi \varepsilon_{0} r^{2}}=\frac{\rho \frac{4}{3} \pi R^{3}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\rho R^{3}}{3 \varepsilon_{0} r^{2}} .
$$

Thus, at $r=2 R$, we have (when the ball is solid)

$$
E_{1}=\frac{\rho R^{3}}{3 \varepsilon_{0}(2 R)^{2}}=\frac{\rho}{12 \varepsilon_{0} R} .
$$

Now, with the hollow core of radius $R / 2$, we have a similar field but without the contribution from those charges that would have been in that core:

$$
E_{\text {new }}=E_{1}-\left(\frac{\rho(R / 2)^{3}}{3 \varepsilon_{0} r^{2}}\right)_{\mathrm{at} r=2 R}=\frac{\rho}{12 \varepsilon_{0} R}-\frac{\rho}{96 \varepsilon_{0} R}=\frac{7 \rho}{96 \varepsilon_{0} R}
$$

which is equivalent to $\frac{7}{8} E_{1}$. Thus, the fraction is $7 / 8=0.875$.
81. The proton is in uniform circular motion, with the electrical force of the sphere on the proton providing the centripetal force. According to Newton's second law, $F=m v^{2} / r$, where F is the magnitude of the force, v is the speed of the proton, and r is the radius of its orbit, essentially the same as the radius of the sphere. The magnitude of the force on the proton is $F=e q / 4 \pi \varepsilon_{0} r^{2}$, where q is the magnitude of the charge on the sphere. Thus,

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{e q}{r^{2}}=\frac{m v^{2}}{r}
$$

so

$$
q=\frac{4 \pi \varepsilon_{0} m v^{2} r}{e}=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3.00 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}(0.0100 \mathrm{~m})}{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-9} \mathrm{C}\right)}=1.04 \times 10^{-9} \mathrm{C} .
$$

The force must be inward, toward the center of the sphere, and since the proton is positively charged, the electric field must also be inward. The charge on the sphere is negative: $q=-1.04 \times 10^{-9} \mathrm{C}$.
82. We interpret the question as referring to the field just outside the sphere (that is, at locations roughly equal to the radius r of the sphere). Since the area of a sphere is $A=$ $4 \pi r^{2}$ and the surface charge density is $\sigma=q / A$ (where we assume q is positive for brevity), then

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}}\left(\frac{q}{4 \pi r^{2}}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

which we recognize as the field of a point charge (see Eq. 22-3).
83. The field is radially outward and takes on equal magnitude-values over the surface of any sphere centered at the atom's center. We take the Gaussian surface to be such a sphere (of radius r). If E is the magnitude of the field, then the total flux through the Gaussian sphere is $\Phi=4 \pi r^{2} E$. The charge enclosed by the Gaussian surface is the positive charge at the center of the atom plus that portion of the negative charge within the surface. Since the negative charge is uniformly distributed throughout the large sphere of radius R, we can compute the charge inside the Gaussian sphere using a ratio of volumes. That is, the negative charge inside is $-Z e r^{3} / R^{3}$. Thus, the total charge enclosed is $Z e-Z e r^{3} / R^{3}$ for $r \leq R$. Gauss' law now leads to

$$
4 \pi \varepsilon_{0} r^{2} E=Z e\left(1-\frac{r^{3}}{R^{3}}\right) \Rightarrow E=\frac{Z e}{4 \pi \varepsilon_{0}}\left(\frac{1}{r^{2}}-\frac{r}{R^{3}}\right) .
$$

84. The electric field is radially outward from the central wire. We want to find its magnitude in the region between the wire and the cylinder as a function of the distance r from the wire. Since the magnitude of the field at the cylinder wall is known, we take the Gaussian surface to coincide with the wall. Thus, the Gaussian surface is a cylinder with radius R and length L, coaxial with the wire. Only the charge on the wire is actually enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian surface is $2 \pi R L$, and the flux through it is $\Phi=2 \pi R L E$. We assume there is no flux through the ends of the cylinder, so this Φ is the total flux. Gauss' law yields $q=2 \pi \varepsilon_{0} R L E$. Thus,

$$
q=2 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.014 \mathrm{~m})(0.16 \mathrm{~m})\left(2.9 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)=3.6 \times 10^{-9} \mathrm{C}
$$

85. (a) The diagram below shows a cross section (or, perhaps more appropriately, "end view") of the charged cylinder (solid circle).

Consider a Gaussian surface in the form of a cylinder with radius r and length ℓ, coaxial with the charged cylinder. An "end view" of the Gaussian surface is shown as a dotted circle. The charge enclosed by it is $q=\rho V=\pi r^{2} \ell \rho$, where $V=\pi r^{2} \ell$ is the volume of the cylinder.

If ρ is positive, the electric field lines are radially outward, normal to the Gaussian surface and distributed uniformly along it. Thus, the total flux through the Gaussian cylinder is $\Phi=E A_{\text {cylinder }}=E(2 \pi r \ell)$. Now, Gauss' law leads to

$$
2 \pi \varepsilon_{0} r \ell E=\pi r^{2} \ell \rho \Rightarrow E=\frac{\rho r}{2 \varepsilon_{0}}
$$

(b) Next, we consider a cylindrical Gaussian surface of radius $r>R$. If the external field $E_{\text {ext }}$ then the flux is $\Phi=2 \pi r \ell E_{\text {ext }}$. The charge enclosed is the total charge in a section of the charged cylinder with length ℓ. That is, $q=\pi R^{2} \ell \rho$. In this case, Gauss' law yields

$$
2 \pi \varepsilon_{0} r \ell E_{\mathrm{ext}}=\pi R^{2} \ell \rho \Rightarrow E_{\mathrm{ext}}=\frac{R^{2} \rho}{2 \varepsilon_{0} r} .
$$

86. (a) The mass flux is $w d \rho v=(3.22 \mathrm{~m})(1.04 \mathrm{~m})\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.207 \mathrm{~m} / \mathrm{s})=693 \mathrm{~kg} / \mathrm{s}$.
(b) Since water flows only through area $w d$, the flux through the larger area is still $693 \mathrm{~kg} / \mathrm{s}$.
(c) Now the mass flux is $(w d / 2) \rho v=(693 \mathrm{~kg} / \mathrm{s}) / 2=347 \mathrm{~kg} / \mathrm{s}$.
(d) Since the water flows through an area ($w d / 2$), the flux is $347 \mathrm{~kg} / \mathrm{s}$.
(e) Now the flux is $(w d \cos \theta) \rho v=(693 \mathrm{~kg} / \mathrm{s})\left(\cos 34^{\circ}\right)=575 \mathrm{~kg} / \mathrm{s}$.
87. (a) We note that the symbol " e " stands for the elementary charge in the manipulations below. From

$$
-e=\int_{0}^{\infty} \rho(r) 4 \pi r^{2} d r=\int_{0}^{\infty} A \exp \left(-2 r / a_{0}\right) 4 \pi r^{2} d r=\pi a_{0}^{3} A
$$

we get $A=-e / \pi a_{0}{ }^{3}$.
(b) The magnitude of the field is

$$
\begin{aligned}
E & =\frac{q_{\mathrm{encl}}}{4 \pi \varepsilon_{0} a_{0}^{2}}=\frac{1}{4 \pi \varepsilon_{0} a_{0}^{2}}\left(e+\int_{0}^{a_{0}} \rho(r) 4 \pi r^{2} d r\right)=\frac{e}{4 \pi \varepsilon_{0} a_{0}^{2}}\left(1-\frac{4}{a_{0}^{3}} \int_{0}^{a_{0}} \exp \left(-2 r / a_{0}\right) r^{2} d r\right) \\
& =\frac{5 e \exp (-2)}{4 \pi \varepsilon_{0} a_{0}^{2}} .
\end{aligned}
$$

We note that \vec{E} points radially outward.

1. (a) An Ampere is a Coulomb per second, so

$$
84 \mathrm{~A} \cdot \mathrm{~h}=\left(84 \frac{\mathrm{C} \cdot \mathrm{~h}}{\mathrm{~s}}\right)\left(3600 \frac{\mathrm{~s}}{\mathrm{~h}}\right)=3.0 \times 10^{5} \mathrm{C} .
$$

(b) The change in potential energy is $\Delta U=q \Delta V=\left(3.0 \times 10^{5} \mathrm{C}\right)(12 \mathrm{~V})=3.6 \times 10^{6} \mathrm{~J}$.
2. The magnitude is $\Delta U=e \Delta V=1.2 \times 10^{9} \mathrm{eV}=1.2 \mathrm{GeV}$.
3. The electric field produced by an infinite sheet of charge has magnitude $E=\sigma / 2 \varepsilon_{0}$, where σ is the surface charge density. The field is normal to the sheet and is uniform. Place the origin of a coordinate system at the sheet and take the x axis to be parallel to the field and positive in the direction of the field. Then the electric potential is

$$
V=V_{s}-\int_{0}^{x} E d x=V_{s}-E x,
$$

where V_{s} is the potential at the sheet. The equipotential surfaces are surfaces of constant x; that is, they are planes that are parallel to the plane of charge. If two surfaces are separated by Δx then their potentials differ in magnitude by $\Delta V=E \Delta x=\left(\sigma / 2 \varepsilon_{0}\right) \Delta x$. Thus,

$$
\Delta x=\frac{2 \varepsilon_{0} \Delta V}{\sigma}=\frac{2\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(50 \mathrm{~V})}{0.10 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}}=8.8 \times 10^{-3} \mathrm{~m} .
$$

4. (a) $V_{B}-V_{A}=\Delta U / q=-W /(-e)=-\left(3.94 \times 10^{-19} \mathrm{~J}\right) /\left(-1.60 \times 10^{-19} \mathrm{C}\right)=2.46 \mathrm{~V}$.
(b) $V_{C}-V_{A}=V_{B}-V_{A}=2.46 \mathrm{~V}$.
(c) $V_{C}-V_{B}=0$ (Since C and B are on the same equipotential line).
5. (a) $E=F / e=\left(3.9 \times 10^{-15} \mathrm{~N}\right) /\left(1.60 \times 10^{-19} \mathrm{C}\right)=2.4 \times 10^{4} \mathrm{~N} / \mathrm{C}$.
(b) $\Delta V=E \Delta s=\left(2.4 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)(0.12 \mathrm{~m})=2.9 \times 10^{3} \mathrm{~V}$.
6. (a) By Eq. 24-18, the change in potential is the negative of the "area" under the curve. Thus, using the area-of-a-triangle formula, we have

$$
V-10=-\int_{0}^{x=2} \vec{E} \cdot d \vec{s}=\frac{1}{2}(2)(20)
$$

which yields $V=30 \mathrm{~V}$.
(b) For any region within $0<x<3 \mathrm{~m},-\int \vec{E} \cdot d \vec{s}$ is positive, but for any region for which $x>3 \mathrm{~m}$ it is negative. Therefore, $V=V_{\max }$ occurs at $x=3 \mathrm{~m}$.

$$
V-10=-\int_{0}^{x=3} \vec{E} \cdot d \vec{s}=\frac{1}{2}(3)(20)
$$

which yields $V_{\text {max }}=40 \mathrm{~V}$.
(c) In view of our result in part (b), we see that now (to find $V=0$) we are looking for some $X>3 \mathrm{~m}$ such that the "area" from $x=3 \mathrm{~m}$ to $x=X$ is 40 V . Using the formula for a triangle $(3<x<4)$ and a rectangle $(4<x<X)$, we require

$$
\frac{1}{2}(1)(20)+(X-4)(20)=40 .
$$

Therefore, $X=5.5 \mathrm{~m}$.
7. (a) The work done by the electric field is (in SI units)

$$
W=\int_{i}^{f} q_{0} \vec{E} \cdot d \vec{s}=\frac{q_{0} \sigma}{2 \varepsilon_{0}} \int_{0}^{d} d z=\frac{q_{0} \sigma d}{2 \varepsilon_{0}}=\frac{\left(1.60 \times 10^{-19}\right)\left(5.80 \times 10^{-12}\right)(0.0356)}{2\left(8.85 \times 10^{-12}\right)}=1.87 \times 10^{-21} \mathrm{~J} .
$$

(b) Since $V-V_{0}=-W / q_{0}=-\sigma z / 2 \varepsilon_{0}$, with V_{0} set to be zero on the sheet, the electric potential at P is (in SI units)

$$
V=-\frac{\sigma z}{2 \varepsilon_{0}}=-\frac{\left(5.80 \times 10^{-12}\right)(0.0356)}{2\left(8.85 \times 10^{-12}\right)}=-1.17 \times 10^{-2} \mathrm{~V}
$$

8. We connect A to the origin with a line along the y axis, along which there is no change of potential (Eq. 24-18: $\int \vec{E} \cdot d \vec{s}=0$). Then, we connect the origin to B with a line along the x axis, along which the change in potential is

$$
\Delta V=-\int_{0}^{x=4} \vec{E} \cdot d \vec{s}=-4.00 \int_{0}^{4} x d x=-4.00\left(\frac{4^{2}}{2}\right)
$$

which yields $V_{B}-V_{A}=-32.0 \mathrm{~V}$.
9. (a) The potential as a function of r is (in SI units)

$$
\begin{aligned}
V(r) & =V(0)-\int_{0}^{r} E(r) d r=0-\int_{0}^{r} \frac{q r}{4 \pi \varepsilon_{0} R^{3}} d r=-\frac{q r^{2}}{8 \pi \varepsilon_{0} R^{3}} \\
& =-\frac{\left(8.99 \times 10^{9}\right)\left(3.50 \times 10^{-15}\right)(0.0145)^{2}}{2(0.0231)^{3}}=-2.68 \times 10^{-4} \mathrm{~V} .
\end{aligned}
$$

(b) Since $\Delta V=V(0)-V(R)=q / 8 \pi \varepsilon_{0} R$, we have (in SI units)

$$
V(R)=-\frac{q}{8 \pi \varepsilon_{0} R}=-\frac{\left(8.99 \times 10^{9}\right)\left(3.50 \times 10^{-15}\right)}{2(0.0231)}=-6.81 \times 10^{-4} \mathrm{~V} .
$$

10. The charge is

$$
q=4 \pi \varepsilon_{0} R V=\frac{(10 \mathrm{~m})(-1.0 \mathrm{~V})}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=-1.1 \times 10^{-9} \mathrm{C}
$$

11. (a) The charge on the sphere is

$$
q=4 \pi \varepsilon_{0} V R=\frac{(200 \mathrm{~V})(0.15 \mathrm{~m})}{8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}}=3.3 \times 10^{-9} \mathrm{C}
$$

(b) The (uniform) surface charge density (charge divided by the area of the sphere) is

$$
\sigma=\frac{q}{4 \pi R^{2}}=\frac{3.3 \times 10^{-9} \mathrm{C}}{4 \pi(0.15 \mathrm{~m})^{2}}=1.2 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2} .
$$

12. (a) The potential difference is

$$
\begin{aligned}
V_{A}-V_{B} & =\frac{q}{4 \pi \varepsilon_{0} r_{A}}-\frac{q}{4 \pi \varepsilon_{0} r_{B}}=\left(1.0 \times 10^{-6} \mathrm{C}\right)\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(\frac{1}{2.0 \mathrm{~m}}-\frac{1}{1.0 \mathrm{~m}}\right) \\
& =-4.5 \times 10^{3} \mathrm{~V} .
\end{aligned}
$$

(b) Since $V(r)$ depends only on the magnitude of \vec{r}, the result is unchanged.
13. First, we observe that $V(x)$ cannot be equal to zero for $x>d$. In fact $V(x)$ is always negative for $x>d$. Now we consider the two remaining regions on the x axis: $x<0$ and $0<x<d$.
(a) For $0<x<d$ we have $d_{1}=x$ and $d_{2}=d-x$. Let

$$
V(x)=k\left(\frac{q_{1}}{d_{1}}+\frac{q_{2}}{d_{2}}\right)=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{x}+\frac{-3}{d-x}\right)=0
$$

and solve: $x=d / 4$. With $d=24.0 \mathrm{~cm}$, we have $x=6.00 \mathrm{~cm}$.
(b) Similarly, for $x<0$ the separation between q_{1} and a point on the x axis whose coordinate is x is given by $d_{1}=-x$; while the corresponding separation for q_{2} is $d_{2}=d-x$. We set

$$
V(x)=k\left(\frac{q_{1}}{d_{1}}+\frac{q_{2}}{d_{2}}\right)=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{-x}+\frac{-3}{d-x}\right)=0
$$

to obtain $x=-d / 2$. With $d=24.0 \mathrm{~cm}$, we have $x=-12.0 \mathrm{~cm}$.
14. Since according to the problem statement there is a point in between the two charges on the x axis where the net electric field is zero, the fields at that point due to q_{1} and q_{2} must be directed opposite to each other. This means that q_{1} and q_{2} must have the same sign (i.e., either both are positive or both negative). Thus, the potentials due to either of them must be of the same sign. Therefore, the net electric potential cannot possibly be zero anywhere except at infinity.
15. A charge $-5 q$ is a distance $2 d$ from P, a charge $-5 q$ is a distance d from P, and two charges $+5 q$ are each a distance d from P, so the electric potential at P is (in SI units)

$$
V=\frac{q}{4 \pi \varepsilon_{0}}\left[-\frac{1}{2 d}-\frac{1}{d}+\frac{1}{d}+\frac{1}{d}\right]=\frac{q}{8 \pi \varepsilon_{0} d}=\frac{\left(8.99 \times 10^{9}\right)\left(5.00 \times 10^{-15}\right)}{2\left(4.00 \times 10^{-2}\right)}=5.62 \times 10^{-4} \mathrm{~V} .
$$

The zero of the electric potential was taken to be at infinity.
16. In applying Eq. 24-27, we are assuming $V \rightarrow 0$ as $r \rightarrow \infty$. All corner particles are equidistant from the center, and since their total charge is

$$
2 q_{1}-3 q_{1}+2 q_{1}-q_{1}=0,
$$

then their contribution to Eq. 24-27 vanishes. The net potential is due, then, to the two $+4 q_{2}$ particles, each of which is a distance of $a / 2$ from the center. In SI units, it is

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q_{2}}{a / 2}+\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q_{2}}{a / 2}=\frac{16 q_{2}}{4 \pi \varepsilon_{0} a}=\frac{16\left(8.99 \times 10^{9}\right)\left(6.00 \times 10^{-12}\right)}{0.39}=2.21 \mathrm{~V} .
$$

17. (a) The electric potential V at the surface of the drop, the charge q on the drop, and the radius R of the drop are related by $V=q / 4 \pi \varepsilon_{0} R$. Thus

$$
R=\frac{q}{4 \pi \varepsilon_{0} V}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(30 \times 10^{-12} \mathrm{C}\right)}{500 \mathrm{~V}}=5.4 \times 10^{-4} \mathrm{~m}
$$

(b) After the drops combine the total volume is twice the volume of an original drop, so the radius R^{\prime} of the combined drop is given by $\left(R^{\prime}\right)^{3}=2 R^{3}$ and $R^{\prime}=2^{1 / 3} R$. The charge is twice the charge of original drop: $q^{\prime}=2 q$. Thus,

$$
V^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{\prime}}{R^{\prime}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{2^{1 / 3} R}=2^{2 / 3} V=2^{2 / 3}(500 \mathrm{~V}) \approx 790 \mathrm{~V}
$$

18. When the charge q_{2} is infinitely far away, the potential at the origin is due only to the charge q_{1} :

$$
V_{1}=\frac{q_{1}}{4 \pi \varepsilon_{0} d}=5.76 \times 10^{-7} \mathrm{~V}
$$

Thus, $q_{1} / d=6.41 \times 10^{-17} \mathrm{C} / \mathrm{m}$. Next, we note that when q_{2} is located at $x=0.080 \mathrm{~m}$, the net potential vanishes $\left(V_{1}+V_{2}=0\right)$. Therefore,

$$
0=\frac{k q_{2}}{0.08 \mathrm{~m}}+\frac{k q_{1}}{d}
$$

Thus, we find $q_{2}=-\left(q_{1} / d\right)(0.08 \mathrm{~m})=-5.13 \times 10^{-18} \mathrm{C}=-32 e$.
19. We use Eq. 24-20:

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{2}}=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(1.47 \times 3.34 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)}{\left(52.0 \times 10^{-9} \mathrm{~m}\right)^{2}}=1.63 \times 10^{-5} \mathrm{~V}
$$

20. From Eq. 24-30 and Eq. 24-14, we have (for $\theta_{i}=0^{\circ}$)

$$
W_{a}=q \Delta V=e\left(\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}-\frac{p \cos \theta_{i}}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{e p}{4 \pi \varepsilon_{0} r^{2}}(\cos \theta-1) .
$$

where $r=20 \times 10^{-9} \mathrm{~m}$. For $\theta=180^{\circ}$ the graph indicates $W_{a}=-4.0 \times 10^{-30} \mathrm{~J}$, from which we can determine p. The magnitude of the dipole moment is therefore $5.6 \times 10^{-37} \mathrm{Cm}$.
21. (a) From Eq. 24-35, in SI units,

$$
\begin{aligned}
V & =2 \frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left[\frac{L / 2+\sqrt{\left(L^{2} / 4\right)+d^{2}}}{d}\right] \\
& =2\left(8.99 \times 10^{9}\right)\left(3.68 \times 10^{-12}\right) \ln \left[\frac{(0.06 / 2)+\sqrt{(0.06)^{2} / 4+(0.08)^{2}}}{0.08}\right] \\
& =2.43 \times 10^{-2} \mathrm{~V} .
\end{aligned}
$$

(b) The potential at P is $V=0$ due to superposition.
22. The potential is (in SI units)

$$
V_{P}=\frac{1}{4 \pi \varepsilon_{0}} \int_{\mathrm{rod}} \frac{d q}{R}=\frac{1}{4 \pi \varepsilon_{0} R} \int_{\mathrm{rod}} d q=\frac{-Q}{4 \pi \varepsilon_{0} R}=-\frac{\left(8.99 \times 10^{9}\right)\left(25.6 \times 10^{-12}\right)}{3.71 \times 10^{-2}}=-6.20 \mathrm{~V}
$$

We note that the result is exactly what one would expect for a point-charge $-Q$ at a distance R. This "coincidence" is due, in part, to the fact that V is a scalar quantity.
23. (a) All the charge is the same distance R from C, so the electric potential at C is (in SI units)

$$
V=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1}}{R}-\frac{6 Q_{1}}{R}\right]=-\frac{5 Q_{1}}{4 \pi \varepsilon_{0} R}=-\frac{5\left(8.99 \times 10^{9}\right)\left(4.20 \times 10^{-12}\right)}{8.20 \times 10^{-2}}=-2.30 \mathrm{~V}
$$

where the zero was taken to be at infinity.
(b) All the charge is the same distance from P. That distance is $\sqrt{R^{2}+D^{2}}$, so the electric potential at P is (in SI units)

$$
\begin{aligned}
V & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1}}{\sqrt{R^{2}+D^{2}}}-\frac{6 Q_{1}}{\sqrt{R^{2}+D^{2}}}\right]=-\frac{5 Q_{1}}{4 \pi \varepsilon_{0} \sqrt{R^{2}+D^{2}}} \\
& =-\frac{5\left(8.99 \times 10^{9}\right)\left(4.20 \times 10^{-12}\right)}{\sqrt{\left(8.20 \times 10^{-2}\right)^{2}+\left(6.71 \times 10^{-2}\right)^{2}}}=-1.78 \mathrm{~V}
\end{aligned}
$$

24. Since the charge distribution on the arc is equidistant from the point where V is evaluated, its contribution is identical to that of a point charge at that distance. We assume $V \rightarrow 0$ as $r \rightarrow \infty$ and apply Eq. 24-27:

$$
\begin{aligned}
V & =\frac{1}{4 \pi \varepsilon_{0}} \frac{+Q_{1}}{R}+\frac{1}{4 \pi \varepsilon_{0}} \frac{+4 Q_{1}}{2 R}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-2 Q_{1}}{R}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1}}{R} \\
& =\frac{\left(8.99 \times 10^{9}\right)\left(7.21 \times 10^{-12}\right)}{2.00}=3.24 \times 10^{-2} \mathrm{~V} .
\end{aligned}
$$

25. The disk is uniformly charged. This means that when the full disk is present each quadrant contributes equally to the electric potential at P, so the potential at P due to a single quadrant is one-fourth the potential due to the entire disk. First find an expression for the potential at P due to the entire disk. We consider a ring of charge with radius r and (infinitesimal) width $d r$. Its area is $2 \pi r d r$ and it contains charge $d q=2 \pi \sigma r d r$. All the charge in it is a distance $\sqrt{r^{2}+D^{2}}$ from P, so the potential it produces at P is

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \pi \sigma r d r}{\sqrt{r^{2}+D^{2}}}=\frac{\sigma r d r}{2 \varepsilon_{0} \sqrt{r^{2}+D^{2}}} .
$$

The total potential at P is

$$
V=\frac{\sigma}{2 \varepsilon_{0}} \int_{0}^{R} \frac{r d r}{\sqrt{r^{2}+D^{2}}}=\left.\frac{\sigma}{2 \varepsilon_{0}} \sqrt{r^{2}+D^{2}}\right|_{0} ^{R}=\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{R^{2}+D^{2}}-D\right] .
$$

The potential $V_{s q}$ at P due to a single quadrant is (in SI units)

$$
\begin{aligned}
V_{s q} & =\frac{V}{4}=\frac{\sigma}{8 \varepsilon_{0}}\left[\sqrt{R^{2}+D^{2}}-D\right]=\frac{\left(7.73 \times 10^{-15}\right)}{8\left(8.85 \times 10^{-12}\right)}\left[\sqrt{(0.640)^{2}+(0.259)^{2}}-0.259\right] \\
& =4.71 \times 10^{-5} \mathrm{~V} .
\end{aligned}
$$

26. The dipole potential is given by Eq. 24-30 (with $\theta=90^{\circ}$ in this case)

$$
V=\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}=0
$$

since $\cos \left(90^{\circ}\right)=0$. The potential due to the short arc is $q_{1} / 4 \pi \varepsilon_{0} r_{1}$ and that caused by the long arc is $q_{2} / 4 \pi \varepsilon_{0} r_{2}$. Since $q_{1}=+2 \mu \mathrm{C}, r_{1}=4.0 \mathrm{~cm}, q_{2}=-3 \mu \mathrm{C}$, and $r_{2}=6.0 \mathrm{~cm}$, the potentials of the arcs cancel. The result is zero.
27. Letting d denote 0.010 m , we have (in SI units)

$$
V=\frac{Q_{1}}{4 \pi \varepsilon_{0} d}+\frac{3 Q_{1}}{8 \pi \varepsilon_{0} d}-\frac{3 Q_{1}}{16 \pi \varepsilon_{0} d}=\frac{Q_{1}}{8 \pi \varepsilon_{0} d}=\frac{\left(8.99 \times 10^{9}\right)\left(30 \times 10^{-9}\right)}{2(0.01)}=1.3 \times 10^{4} \mathrm{~V}
$$

28. Consider an infinitesimal segment of the rod, located between x and $x+d x$. It has length $d x$ and contains charge $d q=\lambda d x$, where $\lambda=Q / L$ is the linear charge density of the rod. Its distance from P_{1} is $d+x$ and the potential it creates at P_{1} is

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{d+x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{d+x}
$$

To find the total potential at P_{1}, we integrate over the length of the rod and obtain (in SI units):

$$
\begin{aligned}
V & =\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{d x}{d+x}=\left.\frac{\lambda}{4 \pi \varepsilon_{0}} \ln (d+x)\right|_{0} ^{L}=\frac{Q}{4 \pi \varepsilon_{0} L} \ln \left(1+\frac{L}{d}\right) \\
& =\frac{\left(8.99 \times 10^{9}\right)\left(56.1 \times 10^{-15}\right)}{0.12} \ln \left(1+\frac{0.12}{0.025}\right)=7.39 \times 10^{-3} \mathrm{~V} .
\end{aligned}
$$

29. Consider an infinitesimal segment of the rod, located between x and $x+d x$. It has length $d x$ and contains charge $d q=\lambda d x=c x d x$. Its distance from P_{1} is $d+x$ and the potential it creates at P_{1} is

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{d+x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{c x d x}{d+x}
$$

To find the total potential at P_{1}, we integrate over the length of the rod and obtain (in SI units):

$$
\begin{aligned}
V & =\frac{c}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{x d x}{d+x}=\left.\frac{c}{4 \pi \varepsilon_{0}}[x-d \ln (x+d)]\right|_{0} ^{L}=\frac{c}{4 \pi \varepsilon_{0}}\left[L-d \ln \left(1+\frac{L}{d}\right)\right] \\
& =\left(8.99 \times 10^{9}\right)\left(28.9 \times 10^{-12}\right)\left[0.12-(0.03) \ln \left(1+\frac{0.12}{0.03}\right)\right]=1.86 \times 10^{-2} \mathrm{~V}
\end{aligned}
$$

30. The magnitude of the electric field is given by

$$
|E|=\left|-\frac{\Delta V}{\Delta x}\right|=\frac{2(5.0 \mathrm{~V})}{0.015 \mathrm{~m}}=6.7 \times 10^{2} \mathrm{~V} / \mathrm{m}
$$

At any point in the region between the plates, \vec{E} points away from the positively charged plate, directly towards the negatively charged one.
31. We use Eq. 24-41:

$$
\begin{aligned}
& \left.E_{x}(x, y)=-\frac{\partial V}{\partial x}=-\frac{\partial}{\partial x}\left(\left(2.0 \mathrm{~V} / \mathrm{m}^{2}\right) x^{2}-3.0 \mathrm{~V} / \mathrm{m}^{2}\right) y^{2}\right)=-2\left(2.0 \mathrm{~V} / \mathrm{m}^{2}\right) x ; \\
& \left.E_{y}(x, y)=-\frac{\partial V}{\partial y}=-\frac{\partial}{\partial y}\left(\left(2.0 \mathrm{~V} / \mathrm{m}^{2}\right) x^{2}-3.0 \mathrm{~V} / \mathrm{m}^{2}\right) y^{2}\right)=2\left(3.0 \mathrm{~V} / \mathrm{m}^{2}\right) y .
\end{aligned}
$$

We evaluate at $x=3.0 \mathrm{~m}$ and $y=2.0 \mathrm{~m}$ to obtain

$$
\vec{E}=(-12 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}+(12 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{j}} .
$$

32. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of only one variable.

$$
\begin{aligned}
\vec{E} & =-\left(\frac{d V}{d x}\right) \hat{\mathrm{i}}=-\frac{d}{d x}\left(1500 x^{2}\right) \hat{\mathrm{i}}=(-3000 x) \hat{\mathrm{i}} \\
& =\left(-3000 \mathrm{~V} / \mathrm{m}^{2}\right)(0.0130 \mathrm{~m}) \hat{\mathrm{i}}=(-39 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}
\end{aligned}
$$

(a) Thus, the magnitude of the electric field is $E=39 \mathrm{~V} / \mathrm{m}$.
(b) The direction of \vec{E} is $-\hat{i}$, or toward plate 1 .
33. We apply Eq. 24-41:

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}=-2.00 y z^{2} \\
& E_{y}=-\frac{\partial V}{\partial y}=-2.00 x z^{2} \\
& E_{z}=-\frac{\partial V}{\partial z}=-4.00 x y z
\end{aligned}
$$

which, at $(x, y, z)=(3.00,-2.00,4.00)$, gives $\left(E_{x}, E_{y}, E_{z}\right)=(64.0,-96.0,96.0)$ in SI units. The magnitude of the field is therefore

$$
|\vec{E}|=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=150 \mathrm{~V} / \mathrm{m}=150 \mathrm{~N} / \mathrm{C}
$$

34. (a) According to the result of problem 28, the electric potential at a point with coordinate x is given by

$$
V=\frac{Q}{4 \pi \varepsilon_{0} L} \ln \left(\frac{x-L}{x}\right) .
$$

At $x=-d$ we obtain (in SI units)

$$
\begin{aligned}
V & =\frac{Q}{4 \pi \varepsilon_{0} L} \ln \left(\frac{d+L}{d}\right)=\frac{\left(8.99 \times 10^{9}\right)\left(43.6 \times 10^{-15}\right)}{0.135} \ln \left(1+\frac{0.135}{d}\right) \\
& =\left(2.90 \times 10^{-3} \mathrm{~V}\right) \ln \left(1+\frac{0.135}{d}\right)
\end{aligned}
$$

(b) We differentiate the potential with respect to x to find the x component of the electric field (in SI units):

$$
\begin{aligned}
E_{x} & =-\frac{\partial V}{\partial x}=-\frac{Q}{4 \pi \varepsilon_{0} L} \frac{\partial}{\partial x} \ln \left(\frac{x-L}{x}\right)=-\frac{Q}{4 \pi \varepsilon_{0} L} \frac{x}{x-L}\left(\frac{1}{x}-\frac{x-L}{x^{2}}\right)=-\frac{Q}{4 \pi \varepsilon_{0} x(x-L)} \\
& =-\frac{\left(8.99 \times 10^{9}\right)\left(43.6 \times 10^{-15}\right)}{x(x+0.135)}=-\frac{\left(3.92 \times 10^{-4}\right)}{x(x+0.135)},
\end{aligned}
$$

or

$$
\left|E_{x}\right|=\frac{\left(3.92 \times 10^{-4}\right)}{x(x+0.135)} .
$$

(c) Since $E_{x}<0$, its direction relative to the positive x axis is 180°.
(d) At $x=-d$ we obtain (in SI units)

$$
\left|E_{x}\right|=\frac{\left(3.92 \times 10^{-4}\right)}{(0.0620)(0.0620+0.135)}=0.0321 \mathrm{~N} / \mathrm{C} .
$$

(e) Consider two points an equal infinitesimal distance on either side of P_{1}, along a line that is perpendicular to the x axis. The difference in the electric potential divided by their separation gives the transverse component of the electric field. Since the two points are situated symmetrically with respect to the rod, their potentials are the same and the potential difference is zero. Thus, the transverse component of the electric field E_{y} is zero.
35. The electric field (along some axis) is the (negative of the) derivative of the potential V with respect to the corresponding coordinate. In this case, the derivatives can be read off of the graphs as slopes (since the graphs are of straight lines). Thus,

$$
\begin{gathered}
E_{x}=-\frac{d V}{d x}=-\left(\frac{-500 \mathrm{~V}}{0.20 \mathrm{~m}}\right)=2500 \mathrm{~V} / \mathrm{m}=2500 \mathrm{~N} / \mathrm{C} \\
E_{y}=-\frac{d V}{d y}=-\left(\frac{300 \mathrm{~V}}{0.30 \mathrm{~m}}\right)=-1000 \mathrm{~V} / \mathrm{m}=-1000 \mathrm{~N} / \mathrm{C}
\end{gathered}
$$

These components imply the electric field has a magnitude of $2693 \mathrm{~N} / \mathrm{C}$ and a direction of -21.8° (with respect to the positive x axis). The force on the electron is given by $\vec{F}=q \vec{E}$ where $q=-e$. The minus sign associated with the value of q has the implication that \vec{F} points in the opposite direction from \vec{E} (which is to say that its angle is found by adding 180° to that of \vec{E}). With $e=1.60 \times 10^{-19} \mathrm{C}$, we obtain

$$
\vec{F}=\left(-1.60 \times 10^{-19} \mathrm{C}\right)[(2500 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}-(1000 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{j}}]=\left(-4.0 \times 10^{-16} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(1.60 \times 10^{-16} \mathrm{~N}\right) \hat{\mathrm{j}}
$$

36. (a) Consider an infinitesimal segment of the rod from x to $x+d x$. Its contribution to the potential at point P_{2} is

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda(x) d x}{\sqrt{x^{2}+y^{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{c x}{\sqrt{x^{2}+y^{2}}} d x
$$

Thus, (in SI units)

$$
\begin{aligned}
V & =\int_{\mathrm{rod}} d V_{P}=\frac{c}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{x}{\sqrt{x^{2}+y^{2}}} d x=\frac{c}{4 \pi \varepsilon_{0}}\left(\sqrt{L^{2}+y^{2}}-y\right) \\
& =\left(8.99 \times 10^{9}\right)\left(49.9 \times 10^{-12}\right)\left(\sqrt{(0.100)^{2}+(0.0356)^{2}}-0.0356\right) \\
& =3.16 \times 10^{-2} \mathrm{~V} .
\end{aligned}
$$

(b) The y component of the field there is

$$
\begin{aligned}
E_{y} & =-\frac{\partial V_{P}}{\partial y}=-\frac{c}{4 \pi \varepsilon_{0}} \frac{d}{d y}\left(\sqrt{L^{2}+y^{2}}-y\right)=\frac{c}{4 \pi \varepsilon_{0}}\left(1-\frac{y}{\sqrt{L^{2}+y^{2}}}\right) . \\
& =\left(8.99 \times 10^{9}\right)\left(49.9 \times 10^{-12}\right)\left(1-\frac{0.0356}{\sqrt{(0.100)^{2}+(0.0356)^{2}}}\right) \\
& =0.298 \mathrm{~N} / \mathrm{C} .
\end{aligned}
$$

(c) We obtained above the value of the potential at any point P strictly on the y-axis. In order to obtain $E_{x}(x, y)$ we need to first calculate $V(x, y)$. That is, we must find the potential for an arbitrary point located at (x, y). Then $E_{x}(x, y)$ can be obtained from $E_{x}(x, y)=-\partial V(x, y) / \partial x$.
37. We choose the zero of electric potential to be at infinity. The initial electric potential energy U_{i} of the system before the particles are brought together is therefore zero. After the system is set up the final potential energy is

$$
U_{f}=\frac{q^{2}}{4 \pi \varepsilon_{0}}\left(-\frac{1}{a}-\frac{1}{a}+\frac{1}{\sqrt{2} a}-\frac{1}{a}-\frac{1}{a}+\frac{1}{\sqrt{2} a}\right)=\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(\frac{1}{\sqrt{2}}-2\right) .
$$

Thus the amount of work required to set up the system is given by (in SI units)

$$
\begin{aligned}
W & =\Delta U=U_{f}-U_{i}=U_{f}=\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(\frac{1}{\sqrt{2}}-2\right)=\frac{2\left(8.99 \times 10^{9}\right)\left(2.30 \times 10^{-12}\right)^{2}}{(0.640)}\left(\frac{1}{\sqrt{2}}-2\right) \\
& =-1.92 \times 10^{-13} \mathrm{~J} .
\end{aligned}
$$

38. The work done must equal the change in the electric potential energy. From Eq. 2414 and Eq. 24-26, we find (with $r=0.020 \mathrm{~m}$)

$$
W=\frac{(3 e)(7 e)}{4 \pi \varepsilon_{0} r}=2.1 \times 10^{-25} \mathrm{~J} .
$$

39. (a) We use Eq. 24-43 with $q_{1}=q_{2}=-e$ and $r=2.00 \mathrm{~nm}$:

$$
U=k \frac{q_{1} q_{2}}{r}=k \frac{e^{2}}{r}=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{2.00 \times 10^{-9} \mathrm{~m}}=1.15 \times 10^{-19} \mathrm{~J} .
$$

(b) Since $U>0$ and $U \propto r^{-1}$ the potential energy U decreases as r increases.
40. The work required is

$$
W=\Delta U=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} Q}{2 d}+\frac{q_{2} Q}{d}\right]=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} Q}{2 d}+\frac{\left(-q_{1} / 2\right) Q}{d}\right]=0 .
$$

41. (a) Let $\ell=0.15 \mathrm{~m}$ be the length of the rectangle and $w=0.050 \mathrm{~m}$ be its width. Charge q_{1} is a distance ℓ from point A and charge q_{2} is a distance w, so the electric potential at A is

$$
\begin{aligned}
V_{A} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{\ell}+\frac{q_{2}}{w}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{-5.0 \times 10^{-6} \mathrm{C}}{0.15 \mathrm{~m}}+\frac{2.0 \times 10^{-6} \mathrm{C}}{0.050 \mathrm{~m}}\right] \\
& =6.0 \times 10^{4} \mathrm{~V} .
\end{aligned}
$$

(b) Charge q_{1} is a distance w from point b and charge q_{2} is a distance ℓ, so the electric potential at B is

$$
\begin{aligned}
V_{B} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{w}+\frac{q_{2}}{\ell}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{-5.0 \times 10^{-6} \mathrm{C}}{0.050 \mathrm{~m}}+\frac{2.0 \times 10^{-6} \mathrm{C}}{0.15 \mathrm{~m}}\right] \\
& =-7.8 \times 10^{5} \mathrm{~V}
\end{aligned}
$$

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by an external agent equals the change in the potential energy of the system. The potential energy is the product of the charge q_{3} and the electric potential. If U_{A} is the potential energy when q_{3} is at A and U_{B} is the potential energy when q_{3} is at B, then the work done in moving the charge from B to A is

$$
W=U_{A}-U_{B}=q_{3}\left(V_{A}-V_{B}\right)=\left(3.0 \times 10^{-6} \mathrm{C}\right)\left(6.0 \times 10^{4} \mathrm{~V}+7.8 \times 10^{5} \mathrm{~V}\right)=2.5 \mathrm{~J}
$$

(d) The work done by the external agent is positive, so the energy of the three-charge system increases.
(e) and (f) The electrostatic force is conservative, so the work is the same no matter which path is used.
42. Let $r=1.5 \mathrm{~m}, x=3.0 \mathrm{~m}, q_{1}=-9.0 \mathrm{nC}$, and $q_{2}=-6.0 \mathrm{pC}$. The work done by an external agent is given by

$$
\begin{aligned}
W & =\Delta U=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{\sqrt{r^{2}+x^{2}}}\right) \\
& =\left(-9.0 \times 10^{-9} \mathrm{C}\right)\left(-6.0 \times 10^{-12} \mathrm{C}\right)\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \cdot\left[\frac{1}{1.5 \mathrm{~m}}-\frac{1}{\sqrt{(1.5 \mathrm{~m})^{2}+(3.0 \mathrm{~m})^{2}}}\right] \\
& =1.8 \times 10^{-10} \mathrm{~J} .
\end{aligned}
$$

43. We use the conservation of energy principle. The initial potential energy is $U_{i}=$ $q^{2} / 4 \pi \varepsilon_{0} r_{1}$, the initial kinetic energy is $K_{i}=0$, the final potential energy is $U_{f}=q^{2} / 4 \pi \varepsilon_{0} r_{2}$, and the final kinetic energy is $K_{f}=\frac{1}{2} m v^{2}$, where v is the final speed of the particle.
Conservation of energy yields

$$
\frac{q^{2}}{4 \pi \varepsilon_{0} r_{1}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{1}{2} m v^{2} .
$$

The solution for v is

$$
\begin{aligned}
v & =\sqrt{\frac{2 q^{2}}{4 \pi \varepsilon_{0} m}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}=\sqrt{\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(2)\left(3.1 \times 10^{-6} \mathrm{C}\right)^{2}}{20 \times 10^{-6} \mathrm{~kg}}\left(\frac{1}{0.90 \times 10^{-3} \mathrm{~m}}-\frac{1}{2.5 \times 10^{-3} \mathrm{~m}}\right)} \\
& =2.5 \times 10^{3} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

44. The change in electric potential energy of the electron-shell system as the electron starts from its initial position and just reaches the shell is $\Delta U=(-e)(-V)=e V$. Thus from $\Delta U=K=\frac{1}{2} m_{e} v_{i}^{2}$ we find the initial electron speed to be (in SI units)

$$
v_{i}=\sqrt{\frac{2 \Delta U}{m_{e}}}=\sqrt{\frac{2 e V}{m_{e}}}=\sqrt{\frac{2\left(1.6 \times 10^{-19}\right)(125)}{9.11 \times 10^{-31}}}=6.63 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

45. We use conservation of energy, taking the potential energy to be zero when the moving electron is far away from the fixed electrons. The final potential energy is then $U_{f}=2 e^{2} / 4 \pi \varepsilon_{0} d$, where d is half the distance between the fixed electrons. The initial kinetic energy is $K_{i}=\frac{1}{2} m v^{2}$, where m is the mass of an electron and v is the initial speed of the moving electron. The final kinetic energy is zero. Thus $K_{i}=U_{f}$ or $\frac{1}{2} m v^{2}=2 e^{2} / 4 \pi \varepsilon_{0} d$. Hence

$$
v=\sqrt{\frac{4 e^{2}}{4 \pi \varepsilon_{0} d m}}=\sqrt{\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(4)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{(0.010 \mathrm{~m})\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}}=3.2 \times 10^{2} \mathrm{~m} / \mathrm{s}
$$

46. (a) The electric field between the plates is leftward in Fig, 24-50 since it points towards lower values of potential. The force (associated with the field, by Eq. 23-28) is evidently leftward, from the problem description (indicating deceleration of the rightward moving particle), so that $q>0$ (ensuring that \vec{F} is parallel to \vec{E}); it is a proton.
(b) We use conservation of energy:

$$
K_{0}+U_{0}=K+U \Rightarrow \frac{1}{2} m_{p} v_{0}^{2}+q V_{1}=\frac{1}{2} m_{p} v^{2}+q V_{2}
$$

Using $q=+1.6 \times 10^{-19} \mathrm{C}, m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}, v_{0}=90 \times 10^{3} \mathrm{~m} / \mathrm{s}, V_{1}=-70 \mathrm{~V}$ and $V_{2}=-50 \mathrm{~V}$, we obtain the final speed $v=6.53 \times 10^{4} \mathrm{~m} / \mathrm{s}$. We note that the value of d is not used in the solution.
47. Let the distance in question be r. The initial kinetic energy of the electron is $K_{i}=\frac{1}{2} m_{e} v_{i}^{2}$, where $v_{i}=3.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$. As the speed doubles, K becomes $4 K_{i}$. Thus

$$
\Delta U=\frac{-e^{2}}{4 \pi \varepsilon_{0} r}=-\Delta K=-\left(4 K_{i}-K_{i}\right)=-3 K_{i}=-\frac{3}{2} m_{e} v_{i}^{2},
$$

or

$$
r=\frac{2 e^{2}}{3\left(4 \pi \varepsilon_{0}\right) m_{e} v_{i}^{2}}=\frac{2\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)}{3\left(9.11 \times 10^{-19} \mathrm{~kg}\right)\left(3.2 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}}=1.6 \times 10^{-9} \mathrm{~m}
$$

48. When particle 3 is at $x=0.10 \mathrm{~m}$, the total potential energy vanishes. Using Eq. 24-43, we have (with meters understood at the length unit)

$$
0=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} d}+\frac{q_{1} q_{3}}{4 \pi \varepsilon_{0}(d+0.10)}+\frac{q_{3} q_{2}}{4 \pi \varepsilon_{0}(0.10)}
$$

This leads to

$$
q_{3}\left(\frac{q_{1}}{(d+0.10)}+\frac{q_{2}}{0.10}\right)=-\frac{q_{1} q_{2}}{d}
$$

which yields $q_{3}=-5.7 \mu \mathrm{C}$.
49. We apply conservation of energy for particle 3 (with $q^{\prime}=-15 \times 10^{-6} \mathrm{C}$):

$$
K_{0}+U_{0}=K_{f}+U_{f}
$$

where (letting $x= \pm 3 \mathrm{~m}$ and $q_{1}=q_{2}=50 \times 10^{-6} \mathrm{C}=q$)

$$
U=\frac{q_{1} q^{\prime}}{4 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}}+\frac{q_{2} q^{\prime}}{4 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}}=\frac{q q^{\prime}}{2 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}} .
$$

(a) We solve for K_{f} (with $y_{0}=4 \mathrm{~m}$):

$$
K_{f}=K_{0}+U_{0}-U_{f}=1.2 \mathrm{~J}+\frac{q q^{\prime}}{2 \pi \varepsilon_{0}}+\left(\frac{1}{\sqrt{x^{2}+y_{0}^{2}}}-\frac{1}{|x|}\right)=3.0 \mathrm{~J} .
$$

(b) We set $K_{f}=0$ and solve for y (choosing the negative root, as indicated in the problem statement):

$$
K_{0}+U_{0}=U_{f} \Rightarrow 1.2 \mathrm{~J}+\frac{q q^{\prime}}{2 \pi \varepsilon_{0} \sqrt{x^{2}+y_{0}^{2}}}=\frac{q q^{\prime}}{2 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}}
$$

This yields $y=-8.5 \mathrm{~m}$.
50. From Eq. 24-30 and Eq. 24-7, we have (for $\theta=180^{\circ}$)

$$
U=q V=-e\left(\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{e p}{4 \pi \varepsilon_{0} r^{2}}
$$

where $r=0.020 \mathrm{~m}$. Appealing to energy conservation, we set this expression equal to 100 eV and solve for p. The magnitude of the dipole moment is therefore $4.5 \times 10^{-12} \mathrm{C} \mathrm{m}$.
51. (a) Using $U=q V$ we can "translate" the graph of voltage into a potential energy graph (in eV units). From the information in the problem, we can calculate its kinetic energy (which is its total energy at $x=0$) in those units: $K_{i}=284 \mathrm{eV}$. This is less than the "height" of the potential energy "barrier" (500 eV high once we've translated the graph as indicated above). Thus, it must reach a turning point and then reverse its motion.
(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of its initial velocity. That is, its speed (upon leaving this region) is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
52. (a) The work done results in a potential energy gain:

$$
W=q \Delta V=(-e)\left(\frac{Q}{4 \pi \varepsilon_{0} R}\right)=+2.16 \times 10^{-13} \mathrm{~J}
$$

With $R=0.0800 \mathrm{~m}$, we find $Q=-1.20 \times 10^{-5} \mathrm{C}$.
(b) The work is the same, so the increase in the potential energy is $\Delta U=+2.16 \times 10^{-13} \mathrm{~J}$.
53. If the electric potential is zero at infinity, then the potential at the surface of the sphere is given by $V=q / 4 \pi \varepsilon_{0} r$, where q is the charge on the sphere and r is its radius. Thus

$$
q=4 \pi \varepsilon_{0} r V=\frac{(0.15 \mathrm{~m})(1500 \mathrm{~V})}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=2.5 \times 10^{-8} \mathrm{C}
$$

54. Since the electric potential throughout the entire conductor is a constant, the electric potential at its center is also +400 V .
55. (a) The electric potential is the sum of the contributions of the individual spheres. Let q_{1} be the charge on one, q_{2} be the charge on the other, and d be their separation. The point halfway between them is the same distance $d / 2(=1.0 \mathrm{~m})$ from the center of each sphere, so the potential at the halfway point is

$$
V=\frac{q_{1}+q_{2}}{4 \pi \varepsilon_{0} d / 2}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.0 \times 10^{-8} \mathrm{C}-3.0 \times 10^{-8} \mathrm{C}\right)}{1.0 \mathrm{~m}}=-1.8 \times 10^{2} \mathrm{~V}
$$

(b) The distance from the center of one sphere to the surface of the other is $d-R$, where R is the radius of either sphere. The potential of either one of the spheres is due to the charge on that sphere and the charge on the other sphere. The potential at the surface of sphere 1 is

$$
V_{1}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{R}+\frac{q_{2}}{d-R}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{1.0 \times 10^{-8} \mathrm{C}}{0.030 \mathrm{~m}}-\frac{3.0 \times 10^{-8} \mathrm{C}}{2.0 \mathrm{~m}-0.030 \mathrm{~m}}\right]=2.9 \times 10^{3} \mathrm{~V}
$$

(c) The potential at the surface of sphere 2 is

$$
V_{2}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{d-R}+\frac{q_{2}}{R}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{1.0 \times 10^{-8} \mathrm{C}}{2.0 \mathrm{~m}-0.030 \mathrm{~m}}-\frac{3.0 \times 10^{-8} \mathrm{C}}{0.030 \mathrm{~m}}\right]=-8.9 \times 10^{3} \mathrm{~V}
$$

56. (a) Since the two conductors are connected V_{1} and V_{2} must be equal to each other.

Let $V_{1}=q_{1} / 4 \pi \varepsilon_{0} R_{1}=V_{2}=q_{2} / 4 \pi \varepsilon_{0} R_{2}$ and note that $q_{1}+q_{2}=q$ and $R_{2}=2 R_{1}$. We solve for q_{1} and $q_{2}: q_{1}=q / 3, q_{2}=2 q / 3$, or
(b) $q_{1} / q=1 / 3=0.333$,
(c) and $q_{2} / q=2 / 3=0.667$.
(d) The ratio of surface charge densities is

$$
\frac{\sigma_{1}}{\sigma_{2}}=\frac{q_{1} / 4 \pi R_{1}^{2}}{q_{2} / 4 \pi R_{2}^{2}}=\left(\frac{q_{1}}{q_{2}}\right)\left(\frac{R_{2}}{R_{1}}\right)^{2}=2.00
$$

57. (a) The magnitude of the electric field is

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{4 \pi \varepsilon_{0} R^{2}}=\frac{\left(3.0 \times 10^{-8} \mathrm{C}\right)\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)}{(0.15 \mathrm{~m})^{2}}=1.2 \times 10^{4} \mathrm{~N} / \mathrm{C}
$$

(b) $V=R E=(0.15 \mathrm{~m})\left(1.2 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)=1.8 \times 10^{3} \mathrm{~V}$.
(c) Let the distance be x. Then

$$
\Delta V=V(x)-V=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R+x}-\frac{1}{R}\right)=-500 \mathrm{~V}
$$

which gives

$$
x=\frac{R \Delta V}{-V-\Delta V}=\frac{(0.15 \mathrm{~m})(-500 \mathrm{~V})}{-1800 \mathrm{~V}+500 \mathrm{~V}}=5.8 \times 10^{-2} \mathrm{~m} .
$$

58. Since the charge distribution is spherically symmetric we may write

$$
E(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\mathrm{encl}}}{r},
$$

where $q_{\text {encl }}$ is the charge enclosed in a sphere of radius r centered at the origin.
(a) For $r=4.00 \mathrm{~m}, R_{2}=1.00 \mathrm{~m}$ and $R_{1}=0.500 \mathrm{~m}$, with $r>R_{2}>R_{1}$ we have (in SI units)

$$
E(r)=\frac{q_{1}+q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(2.00 \times 10^{-6}+1.00 \times 10^{-6}\right)}{(4.00)^{2}}=1.69 \times 10^{3} \mathrm{~V} / \mathrm{m}
$$

(b) For $R_{2}>r=0.700 \mathrm{~m}>R_{2}$

$$
E(r)=\frac{q_{1}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(2.00 \times 10^{-6}\right)}{(0.700)^{2}}=3.67 \times 10^{4} \mathrm{~V} / \mathrm{m}
$$

(c) For $R_{2}>R_{1}>r$, the enclosed charge is zero. Thus, $E=0$.

The electric potential may be obtained using Eq. 24-18: $V(r)-V\left(r^{\prime}\right)=\int_{r}^{r^{\prime}} E(r) d r$.
(d) For $r=4.00 \mathrm{~m}>R_{2}>R_{1}$, we have

$$
V(r)=\frac{q_{1}+q_{2}}{4 \pi \varepsilon_{0} r}=\frac{\left(8.99 \times 10^{9}\right)\left(2.00 \times 10^{-6}+1.00 \times 10^{-6}\right)}{(4.00)}=6.74 \times 10^{3} \mathrm{~V}
$$

(e) For $r=1.00 \mathrm{~m}=R_{2}>R_{1}$, we have

$$
V(r)=\frac{q_{1}+q_{2}}{4 \pi \varepsilon_{0} r}=\frac{\left(8.99 \times 10^{9}\right)\left(2.00 \times 10^{-6}+1.00 \times 10^{-6}\right)}{(1.00)}=2.70 \times 10^{4} \mathrm{~V}
$$

(f) For $R_{2}>r=0.700 \mathrm{~m}>R_{2}$,

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r}+\frac{q_{2}}{R_{2}}\right)=\left(8.99 \times 10^{9}\right)\left(\frac{2.00 \times 10^{-6}}{0.700}+\frac{1.00 \times 10^{-6}}{1.00}\right)=3.47 \times 10^{4} \mathrm{~V}
$$

(g) For $R_{2}>r=0.500 \mathrm{~m}=R_{2}$,

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r}+\frac{q_{2}}{R_{2}}\right)=\left(8.99 \times 10^{9}\right)\left(\frac{2.00 \times 10^{-6}}{0.500}+\frac{1.00 \times 10^{-6}}{1.00}\right)=4.50 \times 10^{4} \mathrm{~V}
$$

(h) For $R_{2}>R_{1}>r$,

$$
V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{R_{1}}+\frac{q_{2}}{R_{2}}\right)=\left(8.99 \times 10^{9}\right)\left(\frac{2.00 \times 10^{-6}}{0.500}+\frac{1.00 \times 10^{-6}}{1.00}\right)=4.50 \times 10^{4} \mathrm{~V}
$$

(i) At $r=0$, the potential remains constant, $V=4.50 \times 10^{4} \mathrm{~V}$.
(j) The electric field and the potential as a function of r are depicted below:

59. Using Gauss' law, $q=\varepsilon_{0} \Phi=+495.8 \mathrm{nC}$. Consequently, $V=\frac{q}{4 \pi \varepsilon_{0} r}=37.1 \mathrm{kV}$.
60. (a) We use Eq. 24-18 to find the potential: $V_{\text {wall }}-V=-\int_{r}^{R} E d r$, or

$$
0-V=-\int_{r}^{R}\left(\frac{\rho r}{2 \varepsilon_{0}}\right) \Rightarrow-V=-\frac{\rho}{4 \varepsilon_{0}}\left(R^{2}-r^{2}\right)
$$

Consequently, $V=\rho\left(R^{2}-r^{2}\right) / 4 \varepsilon_{0}$.
(b) The value at $r=0$ is

$$
V_{\text {center }}=\frac{-1.1 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3}}{4\left(8.85 \times 10^{-12} \mathrm{C} / \mathrm{V} \cdot \mathrm{~m}\right)}\left((0.05 \mathrm{~m})^{2}-0\right)=-7.8 \times 10^{4} \mathrm{~V}
$$

Thus, the difference is $\left|V_{\text {center }}\right|=7.8 \times 10^{4} \mathrm{~V}$.
61. The electric potential energy in the presence of the dipole is

$$
U=q V_{\text {dipole }}=\frac{q p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}=\frac{(-e)(e d) \cos \theta}{4 \pi \varepsilon_{0} r^{2}} .
$$

Noting that $\theta_{i}=\theta_{f}=0^{\circ}$, conservation of energy leads to

$$
K_{f}+U_{f}=K_{i}+U_{i} \Rightarrow v=\sqrt{\frac{2 e^{2}}{4 \pi \varepsilon_{0} m d}\left(\frac{1}{25}-\frac{1}{49}\right)}=7.0 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

62. (a) When the proton is released, its energy is $K+U=4.0 \mathrm{eV}+3.0 \mathrm{eV}$ (the latter value is inferred from the graph). This implies that if we draw a horizontal line at the 7.0 Volt "height" in the graph and find where it intersects the voltage plot, then we can determine the turning point. Interpolating in the region between 1.0 cm and 3.0 cm , we find the turning point is at roughly $x=1.7 \mathrm{~cm}$.
(b) There is no turning point towards the right, so the speed there is nonzero, and is given by energy conservation:

$$
v=\sqrt{\frac{2(7.0 \mathrm{eV})}{m}}=\sqrt{\frac{2(7.0 \mathrm{eV})\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}}=20 \mathrm{~km} / \mathrm{s}
$$

(c) The electric field at any point P is the (negative of the) slope of the voltage graph evaluated at P. Once we know the electric field, the force on the proton follows immediately from $\vec{F}=q \vec{E}$, where $q=+e$ for the proton. In the region just to the left of x $=3.0 \mathrm{~cm}$, the field is $\vec{E}=(+300 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}$ and the force is $F=+4.8 \times 10^{-17} \mathrm{~N}$.
(d) The force \vec{F} points in the $+x$ direction, as the electric field \vec{E}.
(e) In the region just to the right of $x=5.0 \mathrm{~cm}$, the field is $\vec{E}=(-200 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}$ and the magnitude of the force is $F=3.2 \times 10^{-17} \mathrm{~N}$.
(f) The force \vec{F} points in the $-x$ direction, as the electric field \vec{E}.
63. Eq. 24-32 applies with $d q=\lambda d x=b x d x$ (along $0 \leq x \leq 0.20 \mathrm{~m}$).
(a) Here $r=x>0$, so that

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{0.20} \frac{b x d x}{x}=\frac{b(0.20)}{4 \pi \varepsilon_{0}}=36 \mathrm{~V}
$$

(b) Now $r=\sqrt{x^{2}+d^{2}}$ where $d=0.15 \mathrm{~m}$, so that

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{0.20} \frac{b x d x}{\sqrt{x^{2}+d^{2}}}=\left.\frac{b}{4 \pi \varepsilon_{0}}\left(\sqrt{x^{2}+d^{2}}\right)\right|_{0} ^{0.20}=18 \mathrm{~V}
$$

64. (a)When the electron is released, its energy is $K+U=3.0 \mathrm{eV}-6.0 \mathrm{eV}$ (the latter value is inferred from the graph along with the fact that $U=q V$ and $q=-e$). Because of the minus sign (of the charge) it is convenient to imagine the graph multiplied by a minus sign so that it represents potential energy in eV . Thus, the 2 V value shown at $x=0$ would become -2 eV , and the 6 V value at $x=4.5 \mathrm{~cm}$ becomes -6 eV , and so on. The total energy $(-3.0 \mathrm{eV})$ is constant and can then be represented on our (imagined) graph as a horizontal line at -3.0 V . This intersects the potential energy plot at a point we recognize as the turning point. Interpolating in the region between 1.0 cm and 4.0 cm , we find the turning point is at $x=1.75 \mathrm{~cm} \approx 1.8 \mathrm{~cm}$.
(b) There is no turning point towards the right, so the speed there is nonzero. Noting that the kinetic energy at $x=7.0 \mathrm{~cm}$ is $-3.0 \mathrm{eV}-(-5.0 \mathrm{eV})=2.0 \mathrm{eV}$, we find the speed using energy conservation:

$$
v=\sqrt{\frac{2(2.0 \mathrm{eV})}{m}}=\sqrt{\frac{2(2.0 \mathrm{eV})\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=8.4 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

(c) The electric field at any point P is the (negative of the) slope of the voltage graph evaluated at P. Once we know the electric field, the force on the electron follows immediately from $\vec{F}=q \vec{E}$, where $q=-e$ for the electron. In the region just to the left of $x=4.0 \mathrm{~cm}$, the field is $\vec{E}=(-133 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}$ and the magnitude of the force is $F=2.1 \times 10^{-17} \mathrm{~N}$.
(d) The force points in the $+x$ direction.
(e) In the region just to the right of $x=5.0 \mathrm{~cm}$, the field is $\vec{E}=+100 \mathrm{~V} / \mathrm{m} \hat{\mathrm{i}}$ and the force is $\vec{F}=\left(-1.6 \times 10^{-17} \mathrm{~N}\right) \hat{\mathrm{i}}$. Thus, the magnitude of the force is $F=1.6 \times 10^{-17} \mathrm{~N}$.
(f) The minus sign indicates that \vec{F} points in the $-x$ direction.
65. We treat the system as a superposition of a disk of surface charge density σ and radius R and a smaller, oppositely charged, disk of surface charge density $-\sigma$ and radius r. For each of these, Eq 24-37 applies (for $z>0$)

$$
V=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right)+\frac{-\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+r^{2}}-z\right)
$$

This expression does vanish as $r \rightarrow \infty$, as the problem requires. Substituting $r=0.200 R$ and $z=2.00 R$ and simplifying, we obtain

$$
V=\frac{\sigma R}{\varepsilon_{0}}\left(\frac{5 \sqrt{5}-\sqrt{101}}{10}\right)=\frac{\left(6.20 \times 10^{-12}\right)(0.130)}{8.85 \times 10^{-12}}\left(\frac{5 \sqrt{5}-\sqrt{101}}{10}\right)=1.03 \times 10^{-2} \mathrm{~V}
$$

66. Since the electric potential energy is not changed by the introduction of the third particle, we conclude that the net electric potential evaluated at P caused by the original two particles must be zero:

$$
\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}}+\frac{q_{2}}{4 \pi \varepsilon_{0} r_{2}}=0 .
$$

Setting $r_{1}=5 d / 2$ and $r_{2}=3 d / 2$ we obtain $q_{1}=-5 q_{2} / 3$, or $q_{1} / q_{2}=-5 / 3 \approx-1.7$.
67. The electric field throughout the conducting volume is zero, which implies that the potential there is constant and equal to the value it has on the surface of the charged sphere:

$$
V_{A}=V_{S}=\frac{q}{4 \pi \varepsilon_{0} R}
$$

where $q=30 \times 10^{-9} \mathrm{C}$ and $R=0.030 \mathrm{~m}$. For points beyond the surface of the sphere, the potential follows Eq. 24-26:

$$
V_{B}=\frac{q}{4 \pi \varepsilon_{0} r}
$$

where $r=0.050 \mathrm{~m}$.
(a) We see that

$$
V_{S}-V_{B}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R}-\frac{1}{r}\right)=3.6 \times 10^{3} \mathrm{~V} .
$$

(b) Similarly,

$$
V_{A}-V_{B}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R}-\frac{1}{r}\right)=3.6 \times 10^{3} \mathrm{~V} .
$$

68. The escape speed may be calculated from the requirement that the initial kinetic energy (of launch) be equal to the absolute value of the initial potential energy (compare with the gravitational case in chapter 14). Thus,

$$
\frac{1}{2} m v^{2}=\frac{e q}{4 \pi \varepsilon_{0} r}
$$

where $m=9.11 \times 10^{-31} \mathrm{~kg}, e=1.60 \times 10^{-19} \mathrm{C}, q=10000 e$, and $r=0.010 \mathrm{~m}$. This yields the answer $v=22490 \mathrm{~m} / \mathrm{s} \approx 2.2 \times 10^{4} \mathrm{~m} / \mathrm{s}$.
69. We apply conservation of energy for the particle with $q=7.5 \times 10^{-6} \mathrm{C}$ (which has zero initial kinetic energy):

$$
U_{0}=K_{f}+U_{f} \quad \text { where } U=\frac{q Q}{4 \pi \varepsilon_{0} r} .
$$

(a) The initial value of r is 0.60 m and the final value is $(0.6+0.4) \mathrm{m}=1.0 \mathrm{~m}$ (since the particles repel each other). Conservation of energy, then, leads to $K_{f}=0.90 \mathrm{~J}$.
(b) Now the particles attract each other so that the final value of r is $0.60-0.40=0.20 \mathrm{~m}$. Use of energy conservation yields $K_{f}=4.5 \mathrm{~J}$ in this case.
70. (a) Using $d=2 \mathrm{~m}$, we find the potential at P :

$$
V_{P}=\frac{1}{4 \pi \varepsilon_{0}} \frac{+2 e}{d}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-2 e}{2 d}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e}{d} .
$$

Thus, with $e=1.60 \times 10^{-19} \mathrm{C}$, we find $V_{P}=7.19 \times 10^{-10} \mathrm{~V}$. Note that we are implicitly assuming that $V \rightarrow 0$ as $r \rightarrow \infty$.
(b) Since $U=q V$, then the movable particle's contribution of the potential energy when it is at $r=\infty$ is zero, and its contribution to $U_{\text {system }}$ when it is at P is $(2 e) V_{P}=2.30 \times 10^{-28} \mathrm{~J}$. Thus, we obtain $W_{\text {app }}=2.30 \times 10^{-28} \mathrm{~J}$.
(c) Now, combining the contribution to $U_{\text {system }}$ from part (b) and from the original pair of fixed charges

$$
U_{\text {fixed }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(-2 e)}{\sqrt{4^{2}+2^{2}}}=-2.1 \times 10^{-28} \mathrm{~J}
$$

we obtain

$$
U_{\text {system }}=U_{\text {part (b) }}+U_{\text {fixed }}=2.43 \times 10^{-29} \mathrm{~J}
$$

71. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the change in the lower limit of integration (which is now $x=D$ instead of $x=0$). The result is therefore (cf. Eq. 24-35)

$$
V=\frac{\lambda}{4 \pi \varepsilon_{\mathrm{o}}} \ln \left(\frac{L+\sqrt{L^{2}+d^{2}}}{D+\sqrt{D^{2}+d^{2}}}\right)=\frac{2.0 \times 10^{-6}}{4 \pi \varepsilon_{\mathrm{o}}} \ln \left(\frac{4+\sqrt{17}}{1+\sqrt{2}}\right)=2.18 \times 10^{4} \mathrm{~V}
$$

72. Using Eq. 24-18, we have

$$
\Delta V=-\int_{2}^{3} \frac{A}{r^{4}} d r=\frac{A}{3}\left(\frac{1}{2^{3}}-\frac{1}{3^{3}}\right)=A\left(0.029 / \mathrm{m}^{3}\right)
$$

73. The work done results in a change of potential energy:

$$
W=\Delta U=\frac{2(0.12 \mathrm{C})^{2}}{4 \pi \varepsilon_{\mathrm{o}}\left(\frac{1.7 \mathrm{~m}}{2}\right)}-\frac{2(0.12 \mathrm{C})^{2}}{4 \pi \varepsilon_{\mathrm{o}}(1.7 \mathrm{~m})}=1.5 \times 10^{8} \mathrm{~J}
$$

At a rate of $P=0.83 \times 10^{3}$ Joules per second, it would take $W / P=1.8 \times 10^{5}$ seconds or about 2.1 days to do this amount of work.
74. The charges are equidistant from the point where we are evaluating the potential which is computed using Eq. 24-27 (or its integral equivalent). Eq. 24-27 implicitly assumes $V \rightarrow 0$ as $r \rightarrow \infty$. Thus, we have

$$
\begin{aligned}
V & =\frac{1}{4 \pi \varepsilon_{0}} \frac{+Q_{1}}{R}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-2 Q_{1}}{R}+\frac{1}{4 \pi \varepsilon_{0}} \frac{+3 Q_{1}}{R}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q_{1}}{R}=\frac{2\left(8.99 \times 10^{9}\right)\left(4.52 \times 10^{-12}\right)}{0.0850} \\
& =0.956 \mathrm{~V} .
\end{aligned}
$$

75. The radius of the cylinder (0.020 m , the same as r_{B}) is denoted R, and the field magnitude there ($160 \mathrm{~N} / \mathrm{C}$) is denoted E_{B}. The electric field beyond the surface of the sphere follows Eq. 23-12, which expresses inverse proportionality with r :

$$
\frac{|\vec{E}|}{E_{B}}=\frac{R}{r} \quad \text { for } r \geq R .
$$

(a) Thus, if $r=r_{C}=0.050 \mathrm{~m}$, we obtain $|\vec{E}|=(160)(0.020) /(0.050)=64 \mathrm{~N} / \mathrm{C}$.
(b) Integrating the above expression (where the variable to be integrated, r, is now denoted ρ) gives the potential difference between V_{B} and V_{C}.

$$
V_{B}-V_{C}=\int_{R}^{r} \frac{E_{B} R}{\rho} d \rho=E_{B} R \ln \left(\frac{r}{R}\right)=2.9 \mathrm{~V}
$$

(c) The electric field throughout the conducting volume is zero, which implies that the potential there is constant and equal to the value it has on the surface of the charged cylinder: $V_{A}-V_{B}=0$.
76. We note that for two points on a circle, separated by angle θ (in radians), the directline distance between them is $r=2 R \sin (\theta / 2)$. Using this fact, distinguishing between the cases where $N=$ odd and $N=$ even, and counting the pair-wise interactions very carefully, we arrive at the following results for the total potential energies. We use $k=1 / 4 \pi \varepsilon_{0}$. For configuration 1 (where all N electrons are on the circle), we have

$$
U_{1, N=\mathrm{even}}=\frac{N k e^{2}}{2 R}\left(\sum_{j=1}^{\frac{N}{2}-1} \frac{1}{\sin (j \theta / 2)}+\frac{1}{2}\right), \quad U_{1, N=\mathrm{odd}}=\frac{N k e^{2}}{2 R}\left(\sum_{j=1}^{\frac{N-1}{2}} \frac{1}{\sin (j \theta / 2)}\right)
$$

where $\theta=\frac{2 \pi}{N}$. For configuration 2, we find

$$
\begin{aligned}
& U_{2, N=\mathrm{even}}=\frac{(N-1) k e^{2}}{2 R}\left(\sum_{j=1}^{\frac{N}{2}-1} \frac{1}{\sin \left(j \theta^{\prime} / 2\right)}+2\right) \\
& U_{2, N=\mathrm{odd}}=\frac{(N-1) k e^{2}}{2 R}\left(\sum_{j=1}^{\frac{N-3}{2}} \frac{1}{\sin \left(j \theta^{\prime} / 2\right)}+\frac{5}{2}\right)
\end{aligned}
$$

where $\theta^{\prime}=\frac{2 \pi}{N-1}$. The results are all of the form

$$
U_{\text {lor } 2} \frac{k e^{2}}{2 R} \times \text { a pure number. }
$$

In our table, below, we have the results for those "pure numbers" as they depend on N and on which configuration we are considering. The values listed in the U rows are the potential energies divided by $k e^{2} / 2 R$.

N	4	5	6	7	8	9	10	11	12	13	14	15
U_{1}	3.83	6.88	10.96	16.13	22.44	29.92	38.62	48.58	59.81	72.35	86.22	101.5
U_{2}	4.73	7.83	11.88	16.96	23.13	30.44	39.92	48.62	59.58	71.81	85.35	100.2

We see that the potential energy for configuration 2 is greater than that for configuration 1 for $N<12$, but for $N \geq 12$ it is configuration 1 that has the greatest potential energy.
(a) $N=12$ is the smallest value such that $U_{2}<U_{1}$.
(b) For $N=12$, configuration 2 consists of 11 electrons distributed at equal distances around the circle, and one electron at the center. A specific electron e_{0} on the circle is R distance from the one in the center, and is

$$
r=2 R \sin \left(\frac{\pi}{11}\right) \approx 0.56 R
$$

distance away from its nearest neighbors on the circle (of which there are two - one on each side). Beyond the nearest neighbors, the next nearest electron on the circle is

$$
r=2 R \sin \left(\frac{2 \pi}{11}\right) \approx 1.1 R
$$

distance away from e_{0}. Thus, we see that there are only two electrons closer to e_{0} than the one in the center.
77. We note that the net potential (due to the "fixed" charges) is zero at the first location ("at ∞ ") being considered for the movable charge q (where $q=+2 e$). Thus, the work required is equal to the potential energy in the final configuration: $q V$ where

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{(+2 e)}{2 D}+\frac{1}{4 \pi \varepsilon_{0}} \frac{+e}{D}
$$

Using $D=4.00 \mathrm{~m}$ and $e=1.60 \times 10^{-19} \mathrm{C}$, we obtain

$$
W_{\text {app }}=q V=(2 e)\left(7.20 \times 10^{-10} \mathrm{~V}\right)=2.30 \times 10^{-28} \mathrm{~J} .
$$

78. Since the electric potential is a scalar quantity, this calculation is far simpler than it would be for the electric field. We are able to simply take half the contribution that would be obtained from a complete (whole) sphere. If it were a whole sphere (of the same density) then its charge would be $q_{\text {whole }}=8.00 \mu \mathrm{C}$. Then

$$
V=\frac{1}{2} V_{\text {whole }}=\frac{1}{2} \frac{q_{\text {whole }}}{4 \pi \varepsilon_{0} r}=\frac{1}{2} \frac{8.00 \times 10^{-6} \mathrm{C}}{4 \pi \varepsilon_{0}(0.15 \mathrm{~m})}=2.40 \times 10^{5} \mathrm{~V}
$$

79. The net potential at point P (the place where we are to place the third electron) due to the fixed charges is computed using Eq. 24-27 (which assumes $V \rightarrow 0$ as $r \rightarrow \infty$):

$$
V_{P}=\frac{1}{4 \pi \varepsilon_{0}} \frac{-e}{d}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-e}{d}=\frac{-e}{2 \pi \varepsilon_{0} d} .
$$

Thus, with $d=2.00 \times 10^{-6} \mathrm{~m}$ and $e=1.60 \times 10^{-19} \mathrm{C}$, we find $V_{P}=-1.438 \times 10^{-3} \mathrm{~V}$. Then the required "applied" work is, by Eq. 24-14,

$$
W_{\text {app }}=(-e) V_{P}=2.30 \times 10^{-22} \mathrm{~J} .
$$

80. The work done is equal to the change in the (total) electric potential energy U of the system, where

$$
U=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}}+\frac{q_{3} q_{2}}{4 \pi \varepsilon_{0} r_{23}}+\frac{q_{1} q_{3}}{4 \pi \varepsilon_{0} r_{13}}
$$

and the notation r_{13} indicates the distance between q_{1} and q_{3} (similar definitions apply to r_{12} and r_{23}).
(a) We consider the difference in U where initially $r_{12}=b$ and $r_{23}=a$, and finally $r_{12}=a$ and $r_{23}=b$ (r_{13} doesn't change). Converting the values given in the problem to SI units ($\mu \mathrm{C}$ to C, cm to m), we obtain $\Delta U=-24 \mathrm{~J}$.
(b) Now we consider the difference in U where initially $r_{23}=a$ and $r_{13}=a$, and finally r_{23} is again equal to a and r_{13} is also again equal to a (and of course, r_{12} doesn't change in this case). Thus, we obtain $\Delta U=0$.
81. (a) Clearly, the net voltage

$$
V=\frac{q}{4 \pi \varepsilon_{\mathrm{o}}|x|}+\frac{2 q}{4 \pi \varepsilon_{\mathrm{o}}|d-x|}
$$

is not zero for any finite value of x.
(b) The electric field cancels at a point between the charges:

$$
\frac{q}{4 \pi \varepsilon_{0} x^{2}}=\frac{2 q}{4 \pi \varepsilon_{0}(d-x)^{2}}
$$

which has the solution: $x=(\sqrt{2}-1) d=0.41 \mathrm{~m}$.
82. (a) The potential on the surface is

$$
V=\frac{q}{4 \pi \varepsilon_{0} R}=\frac{\left(4.0 \times 10^{-6} \mathrm{C}\right)\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)}{0.10 \mathrm{~m}}=3.6 \times 10^{5} \mathrm{~V}
$$

(b) The field just outside the sphere would be

$$
E=\frac{q}{4 \pi \varepsilon_{0} R^{2}}=\frac{V}{R}=\frac{3.6 \times 10^{5} \mathrm{~V}}{0.10 \mathrm{~m}}=3.6 \times 10^{6} \mathrm{~V} / \mathrm{m}
$$

which would have exceeded $3.0 \mathrm{MV} / \mathrm{m}$. So this situation cannot occur.
83. This can be approached more than one way, but the simplest is to observe that the net potential (using Eq. 24-27) due to $q_{1}=+2 e$ and $q_{3}=-2 e$ is zero at both the initial and final positions of the movable charge $q_{2}=+5 q$. This implies that no work is necessary to effect its change of position, which, in turn, implies there is no resulting change in potential energy of the configuration. Hence, the ratio is unity.
84. We use $E_{x}=-d V / d x$, where $d V / d x$ is the local slope of the V vs. x curve depicted in Fig. 24-54. The results are:
(a) $E_{x}(a b)=-6.0 \mathrm{~V} / \mathrm{m}$,
(b) $E_{x}(b c)=0$,
(c) $E_{x}(c d) 3.0 \mathrm{~V} / \mathrm{m}$,
(d) $E_{x}(d e)=3.0 \mathrm{~V} / \mathrm{m}$,
(e) $E_{x}(e f)=15 \mathrm{~V} / \mathrm{m}$,
(f) $E_{x}(f g)=0$,
$(\mathrm{g}) E_{x}(\mathrm{gh})=-3.0 \mathrm{~V} / \mathrm{m}$.
Since these values are constant during their respective time-intervals, their graph consists of several disconnected line-segments (horizontal) and is not shown here.
85. (a) We denote the surface charge density of the disk as σ_{1} for $0<r<R / 2$, and as σ_{2} for $R / 2<r<R$. Thus the total charge on the disk is given by

$$
\begin{aligned}
q & =\int_{\text {disk }} d q=\int_{0}^{R / 2} 2 \pi \sigma_{1} r d r+\int_{R / 2}^{R} 2 \pi \sigma_{2} r d r=\frac{\pi}{4} R^{2}\left(\sigma_{1}+3 \sigma_{2}\right) \\
& =\frac{\pi}{4}\left(2.20 \times 10^{-2} \mathrm{~m}\right)^{2}\left[1.50 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}+3\left(8.00 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}\right)\right] \\
& =1.48 \times 10^{-9} \mathrm{C} .
\end{aligned}
$$

(b) We use Eq. 24-36:

$$
\begin{aligned}
V(z) & =\int_{\text {disk }} d V=k\left[\int_{0}^{R / 2} \frac{\sigma_{1}\left(2 \pi R^{\prime}\right) d R^{\prime}}{\sqrt{z^{2}+R^{\prime 2}}}+\int_{R / 2}^{R} \frac{\sigma_{2}\left(2 \pi R^{\prime}\right) d R^{\prime}}{\sqrt{z^{2}+R^{\prime 2}}}\right] \\
& =\frac{\sigma_{1}}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+\frac{R^{2}}{4}}-z\right)+\frac{\sigma_{2}}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-\sqrt{z^{2}+\frac{R^{2}}{4}}\right)
\end{aligned}
$$

Substituting the numerical values of $\sigma_{1}, \sigma_{2}, R$ and z, we obtain $V(z)=7.95 \times 10^{2} \mathrm{~V}$.
86. The net potential (at point A or B) is computed using Eq. 24-27. Thus, using k for $1 / 4 \pi \varepsilon_{0}$, the difference is

$$
V_{A}-V_{B}=\left(\frac{k e}{d}+\frac{k(-5 e)}{5 d}\right)-\left(\frac{k e}{2 d}+\frac{k(-5 e)}{2 d}\right)=\frac{2 k e}{d}=\frac{2\left(8.99 \times 10^{9}\right)\left(1.6 \times 10^{-19}\right)}{5.60 \times 10^{-6}}=5.14 \times 10^{-4} \mathrm{~V}
$$

87. We denote $q=25 \times 10^{-9} \mathrm{C}, y=0.6 \mathrm{~m}, x=0.8 \mathrm{~m}$, with $V=$ the net potential (assuming $V \rightarrow 0$ as $r \rightarrow \infty)$. Then,

$$
\begin{aligned}
& V_{A}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{y}+\frac{1}{4 \pi \varepsilon_{0}} \frac{(-q)}{x} \\
& V_{B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{x}+\frac{1}{4 \pi \varepsilon_{0}} \frac{(-q)}{y}
\end{aligned}
$$

leads to

$$
V_{B}-V_{A}=\frac{2}{4 \pi \varepsilon_{0}} \frac{q}{x}-\frac{2}{4 \pi \varepsilon_{0}} \frac{q}{y}=\frac{q}{2 \pi \varepsilon_{0}}\left(\frac{1}{x}-\frac{1}{y}\right)
$$

which yields $\Delta V=-187 \mathrm{~V}$.
88. In the "inside" region between the plates, the individual fields (given by Eq. 24-13) are in the same direction $(-\hat{\mathrm{i}})$:

$$
\vec{E}_{\text {in }}=-\left(\frac{50 \times 10^{-9}}{2 \varepsilon_{0}}+\frac{25 \times 10^{-9}}{2 \varepsilon_{0}}\right) \hat{\mathrm{i}}=-4.2 \times 10^{3} \hat{\mathrm{i}}
$$

in SI units (N/C or V/m). And in the "outside" region where $x>0.5 \mathrm{~m}$, the individual fields point in opposite directions:

$$
\vec{E}_{\text {out }}=-\frac{50 \times 10^{-9}}{2 \varepsilon_{0}} \hat{\mathrm{i}}+\frac{25 \times 10^{-9}}{2 \varepsilon_{0}} \hat{\mathrm{i}}=-1.4 \times 10^{3} \hat{\mathrm{i}}
$$

Therefore, by Eq. 24-18, we have

$$
\begin{aligned}
\Delta V & =-\int_{0}^{0.8} \vec{E} \cdot d \vec{s}=-\int_{0}^{0.5}|\vec{E}|_{\text {in }} d x-\int_{0.5}^{0.8}|\vec{E}|_{\text {out }} d x=-\left(4.2 \times 10^{3}\right)(0.5)-\left(1.4 \times 10^{3}\right)(0.3) \\
& =2.5 \times 10^{3} \mathrm{~V} .
\end{aligned}
$$

89. (a) The charges are equal and are the same distance from C. We use the Pythagorean theorem to find the distance $r=\sqrt{(d / 2)^{2}+(d / 2)^{2}}=d / \sqrt{2}$. The electric potential at C is the sum of the potential due to the individual charges but since they produce the same potential, it is twice that of either one:

$$
V=\frac{2 q}{4 \pi \varepsilon_{0}} \frac{\sqrt{2}}{d}=\frac{2 \sqrt{2 q}}{4 \pi \varepsilon_{0} d}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(2) \sqrt{2}\left(2.0 \times 10^{-6} \mathrm{C}\right)}{0.020 \mathrm{~m}}=2.5 \times 10^{6} \mathrm{~V}
$$

(b) As you move the charge into position from far away the potential energy changes from zero to $q V$, where V is the electric potential at the final location of the charge. The change in the potential energy equals the work you must do to bring the charge in:

$$
W=q V=\left(2.0 \times 10^{-6} \mathrm{C}\right)\left(2.54 \times 10^{6} \mathrm{~V}\right)=5.1 \mathrm{~J}
$$

(c) The work calculated in part (b) represents the potential energy of the interactions between the charge brought in from infinity and the other two charges. To find the total potential energy of the three-charge system you must add the potential energy of the interaction between the fixed charges. Their separation is d so this potential energy is $q^{2} / 4 \pi \varepsilon_{0} d$. The total potential energy is

$$
U=W+\frac{q^{2}}{4 \pi \varepsilon_{0} d}=5.1 \mathrm{~J}+\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(2.0 \times 10^{-6} \mathrm{C}\right)^{2}}{0.020 \mathrm{~m}}=6.9 \mathrm{~J}
$$

90. The potential energy of the two-charge system is

$$
\begin{aligned}
U & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} q_{2}}{\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}}\right]=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(3.00 \times 10^{-6} \mathrm{C}\right)\left(-4.00 \times 10^{-6} \mathrm{C}\right)}{\sqrt{(3.50+2.00)^{2}+(0.500-1.50)^{2} \mathrm{~cm}}} \\
& =-1.93 \mathrm{~J} .
\end{aligned}
$$

Thus, -1.93 J of work is needed.
91. For a point on the axis of the ring the potential (assuming $V \rightarrow 0$ as $r \rightarrow \infty$) is

$$
V=\frac{q}{4 \pi \varepsilon_{0} \sqrt{z^{2}+R^{2}}}
$$

where $q=16 \times 10^{-6} \mathrm{C}$ and $R=0.0300 \mathrm{~m}$. Therefore,

$$
V_{B}-V_{A}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{\sqrt{z_{B}^{2}+R^{2}}}-\frac{1}{R}\right)
$$

where $z_{B}=0.040 \mathrm{~m}$. The result is $-1.92 \times 10^{6} \mathrm{~V}$.
92. The initial speed v_{i} of the electron satisfies $K_{i}=\frac{1}{2} m_{e} v_{i}^{2}=e \Delta V$, which gives

$$
v_{i}=\sqrt{\frac{2 e \Delta V}{m_{e}}}=\sqrt{\frac{2\left(1.60 \times 10^{-19} \mathrm{~J}\right)(625 \mathrm{~V})}{9.11 \times 10^{-31} \mathrm{~kg}}}=1.48 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

93. (a) The potential energy is

$$
U=\frac{q^{2}}{4 \pi \varepsilon_{0} d}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(5.0 \times 10^{-6} \mathrm{C}\right)^{2}}{1.00 \mathrm{~m}}=0.225 \mathrm{~J}
$$

relative to the potential energy at infinite separation.
(b) Each sphere repels the other with a force that has magnitude

$$
F=\frac{q^{2}}{4 \pi \varepsilon_{0} d^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(5.0 \times 10^{-6} \mathrm{C}\right)^{2}}{(1.00 \mathrm{~m})^{2}}=0.225 \mathrm{~N}
$$

According to Newton's second law the acceleration of each sphere is the force divided by the mass of the sphere. Let m_{A} and m_{B} be the masses of the spheres. The acceleration of sphere A is

$$
a_{A}=\frac{F}{m_{A}}=\frac{0.225 \mathrm{~N}}{5.0 \times 10^{-3} \mathrm{~kg}}=45.0 \mathrm{~m} / \mathrm{s}^{2}
$$

and the acceleration of sphere B is

$$
a_{B}=\frac{F}{m_{B}}=\frac{0.225 \mathrm{~N}}{10 \times 10^{-3} \mathrm{~kg}}=22.5 \mathrm{~m} / \mathrm{s}^{2} .
$$

(c) Energy is conserved. The initial potential energy is $U=0.225 \mathrm{~J}$, as calculated in part (a). The initial kinetic energy is zero since the spheres start from rest. The final potential energy is zero since the spheres are then far apart. The final kinetic energy is $\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}$, where v_{A} and v_{B} are the final velocities. Thus,

$$
U=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}
$$

Momentum is also conserved, so

$$
0=m_{A} v_{A}+m_{B} v_{B}
$$

These equations may be solved simultaneously for v_{A} and v_{B}. Substituting $v_{B}=-\left(m_{A} / m_{B}\right) v_{A}$, from the momentum equation into the energy equation, and collecting terms, we obtain $U=\frac{1}{2}\left(m_{A} / m_{B}\right)\left(m_{A}+m_{B}\right) v_{A}^{2}$. Thus,

$$
v_{A}=\sqrt{\frac{2 U m_{B}}{m_{A}\left(m_{A}+m_{B}\right)}}=\sqrt{\frac{2(0.225 \mathrm{~J})\left(10 \times 10^{-3} \mathrm{~kg}\right)}{\left(5.0 \times 10^{-3} \mathrm{~kg}\right)\left(5.0 \times 10^{-3} \mathrm{~kg}+10 \times 10^{-3} \mathrm{~kg}\right)}}=7.75 \mathrm{~m} / \mathrm{s}
$$

We thus obtain

$$
v_{B}=-\frac{m_{A}}{m_{B}} v_{A}=-\left(\frac{5.0 \times 10^{-3} \mathrm{~kg}}{10 \times 10^{-3} \mathrm{~kg}}\right)(7.75 \mathrm{~m} / \mathrm{s})=-3.87 \mathrm{~m} / \mathrm{s},
$$

or $\left|v_{B}\right|=3.87 \mathrm{~m} / \mathrm{s}$.
94. The particle with charge $-q$ has both potential and kinetic energy, and both of these change when the radius of the orbit is changed. We first find an expression for the total energy in terms of the orbit radius r. Q provides the centripetal force required for $-q$ to move in uniform circular motion. The magnitude of the force is $F=Q q / 4 \pi \varepsilon_{0} r^{2}$. The acceleration of $-q$ is v^{2} / r, where v is its speed. Newton's second law yields

$$
\frac{Q_{q}}{4 \pi \varepsilon_{0} r^{2}}=\frac{m v^{2}}{r} \Rightarrow m v^{2}=\frac{Q q}{4 \pi \varepsilon_{0} r},
$$

and the kinetic energy is $K=\frac{1}{2} m v^{2}=Q q / 8 \pi \varepsilon_{0} r$. The potential energy is $U=-Q q / 4 \pi \varepsilon_{0} r$, and the total energy is

$$
E=K+U=\frac{Q q}{8 \pi \varepsilon_{0} r}-\frac{Q q}{4 \pi \varepsilon_{0} r}=-\frac{Q q}{8 \pi \varepsilon_{0} r} .
$$

When the orbit radius is r_{1} the energy is $E_{1}=-Q q / 8 \pi \varepsilon_{0} r_{1}$ and when it is r_{2} the energy is $E_{2}=-Q q / 8 \pi \varepsilon_{0} r_{2}$. The difference $E_{2}-E_{1}$ is the work W done by an external agent to change the radius:

$$
W=E_{2}-E_{1}=-\frac{Q q}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=\frac{Q q}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) .
$$

95. (a) The total electric potential energy consists of three equal terms:

$$
U=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}+\frac{q_{2} q_{3}}{4 \pi \varepsilon_{0} r}+\frac{q_{1} q_{3}}{4 \pi \varepsilon_{0} r}
$$

where $q_{1}=q_{2}=q_{3}=-\frac{e}{3}$, and r as given in the problem. The result is $U=2.72 \times 10^{-14} \mathrm{~J}$.
(b) Dividing by the square of the speed of light (roughly $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$), we obtain a value in kilograms (about a third of the correct electron mass value): $3.02 \times 10^{-31} \mathrm{~kg}$.
96. A positive charge q is a distance $r-d$ from P, another positive charge q is a distance r from P, and a negative charge $-q$ is a distance $r+d$ from P. Sum the individual electric potentials created at P to find the total:

$$
V=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r-d}+\frac{1}{r}-\frac{1}{r+d}\right] .
$$

We use the binomial theorem to approximate $1 /(r-d)$ for r much larger than d :

$$
\frac{1}{r-d}=(r-d)^{-1} \approx(r)^{-1}-(r)^{-2}(-d)=\frac{1}{r}+\frac{d}{r^{2}} .
$$

Similarly,

$$
\frac{1}{r+d} \approx \frac{1}{r}-\frac{d}{r^{2}} .
$$

Only the first two terms of each expansion were retained. Thus,

$$
V \approx \frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}+\frac{d}{r^{2}}+\frac{1}{r}-\frac{1}{r}+\frac{d}{r^{2}}\right]=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}+\frac{2 d}{r^{2}}\right]=\frac{q}{4 \pi \varepsilon_{0} r}\left[1+\frac{2 d}{r}\right] .
$$

97. Assume the charge on Earth is distributed with spherical symmetry. If the electric potential is zero at infinity then at the surface of Earth it is $V=q / 4 \pi \varepsilon_{0} R$, where q is the charge on Earth and $R=6.37 \times 10^{6} \mathrm{~m}$ is the radius of Earth. The magnitude of the electric field at the surface is $E=q / 4 \pi \varepsilon_{0} R^{2}$, so

$$
V=E R=(100 \mathrm{~V} / \mathrm{m})\left(6.37 \times 10^{6} \mathrm{~m}\right)=6.4 \times 10^{8} \mathrm{~V}
$$

98. The net electric potential at point P is the sum of those due to the six charges:

$$
\begin{aligned}
V_{P}= & \sum_{i=1}^{6} V_{P i}=\sum_{i=1}^{6} \frac{q_{i}}{4 \pi \varepsilon_{0} r_{i}}=\frac{10^{-15}}{4 \pi \varepsilon_{0}}\left[\frac{5.00}{\sqrt{d^{2}+(d / 2)^{2}}}+\frac{-2.00}{d / 2}+\frac{-3.00}{\sqrt{d^{2}+(d / 2)^{2}}}\right. \\
& \left.+\frac{3.00}{\sqrt{d^{2}+(d / 2)^{2}}}+\frac{-2.00}{d / 2}+\frac{+5.00}{\sqrt{d^{2}+(d / 2)^{2}}}\right]=\frac{9.4 \times 10^{-16}}{4 \pi \varepsilon_{0}\left(2.54 \times 10^{-2}\right)}=3.34 \times 10^{-4} \mathrm{~V} .
\end{aligned}
$$

99. In the sketches shown next, the lines with the arrows are field lines and those without are the equipotentials (which become more circular the closer one gets to the individual charges). In all pictures, q_{2} is on the left and q_{1} is on the right (which is reversed from the way it is shown in the textbook).
(a)

(b)

100. (a) We use Gauss' law to find expressions for the electric field inside and outside the spherical charge distribution. Since the field is radial the electric potential can be written as an integral of the field along a sphere radius, extended to infinity. Since different expressions for the field apply in different regions the integral must be split into two parts, one from infinity to the surface of the distribution and one from the surface to a point inside. Outside the charge distribution the magnitude of the field is $E=q / 4 \pi \varepsilon_{0} r^{2}$ and the potential is $V=q / 4 \pi \varepsilon_{0} r$, where r is the distance from the center of the distribution. This is the same as the field and potential of a point charge at the center of the spherical distribution. To find an expression for the magnitude of the field inside the charge distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric with the distribution. The field is normal to the Gaussian surface and its magnitude is uniform over it, so the electric flux through the surface is $4 \pi r^{2} E$. The charge enclosed is $q r^{3} / R^{3}$. Gauss' law becomes

$$
4 \pi \varepsilon_{0} r^{2} E=\frac{q r^{3}}{R^{3}}
$$

so

$$
E=\frac{q r}{4 \pi \varepsilon_{0} R^{3}} .
$$

If V_{s} is the potential at the surface of the distribution $(r=R)$ then the potential at a point inside, a distance r from the center, is

$$
V=V_{s}-\int_{R}^{r} E d r=V_{s}-\frac{q}{4 \pi \varepsilon_{0} R^{3}} \int_{R}^{r} r d r=V_{s}-\frac{q r^{2}}{8 \pi \varepsilon_{0} R^{3}}+\frac{q}{8 \pi \varepsilon_{0} R} .
$$

The potential at the surface can be found by replacing r with R in the expression for the potential at points outside the distribution. It is $V_{s}=q / 4 \pi \varepsilon_{0} R$. Thus,

$$
V=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{R}-\frac{r^{2}}{2 R^{3}}+\frac{1}{2 R}\right]=\frac{q}{8 \pi \varepsilon_{0} R^{3}}\left(3 R^{2}-r^{2}\right) .
$$

(b) The potential difference is

$$
\Delta V=V_{s}-V_{c}=\frac{2 q}{8 \pi \varepsilon_{0} R}-\frac{3 q}{8 \pi \varepsilon_{0} R}=-\frac{q}{8 \pi \varepsilon_{0} R},
$$

or $|\Delta V|=q / 8 \pi \varepsilon_{0} R$.
101. (a) For $r>r_{2}$ the field is like that of a point charge and

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r},
$$

where the zero of potential was taken to be at infinity.
(b) To find the potential in the region $r_{1}<r<r_{2}$, first use Gauss's law to find an expression for the electric field, then integrate along a radial path from r_{2} to r. The Gaussian surface is a sphere of radius r, concentric with the shell. The field is radial and therefore normal to the surface. Its magnitude is uniform over the surface, so the flux through the surface is $\Phi=4 \pi r^{2} E$. The volume of the shell is $(4 \pi / 3)\left(r_{2}^{3}-r_{1}^{3}\right)$, so the charge density is

$$
\rho=\frac{3 Q}{4 \pi\left(r_{2}^{3}-r_{1}^{3}\right)},
$$

and the charge enclosed by the Gaussian surface is

$$
q=\left(\frac{4 \pi}{3}\right)\left(r^{3}-r_{1}^{3}\right) \rho=Q\left(\frac{r^{3}-r_{1}^{3}}{r_{2}^{3}-r_{1}^{3}}\right) .
$$

Gauss' law yields

$$
4 \pi \varepsilon_{0} r^{2} E=Q\left(\frac{r^{3}-r_{1}^{3}}{r_{2}^{3}-r_{1}^{3}}\right) \Rightarrow E=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r^{3}-r_{1}^{3}}{r^{2}\left(r_{2}^{3}-r_{1}^{3}\right)} .
$$

If V_{s} is the electric potential at the outer surface of the shell $\left(r=r_{2}\right)$ then the potential a distance r from the center is given by

$$
\begin{aligned}
V & =V_{s}-\int_{r_{2}}^{r} E d r=V_{s}-\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r_{2}^{3}-r_{1}^{3}} \int_{r_{2}}^{r}\left(r-\frac{r_{1}^{3}}{r^{2}}\right) d r \\
& =V_{s}-\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r_{2}^{3}-r_{1}^{3}}\left(\frac{r^{2}}{2}-\frac{r_{2}^{2}}{2}+\frac{r_{1}^{3}}{r}-\frac{r_{1}^{3}}{r_{2}}\right) .
\end{aligned}
$$

The potential at the outer surface is found by placing $r=r_{2}$ in the expression found in part (a). It is $V_{s}=Q / 4 \pi \varepsilon_{0} r_{2}$. We make this substitution and collect terms to find

$$
V=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r_{2}^{3}-r_{1}^{3}}\left(\frac{3 r_{2}^{2}}{2}-\frac{r^{2}}{2}-\frac{r_{1}^{3}}{r}\right) .
$$

Since $\rho=3 Q / 4 \pi\left(r_{2}^{3}-r_{1}^{3}\right)$ this can also be written

$$
V=\frac{\rho}{3 \varepsilon_{0}}\left(\frac{3 r_{2}^{2}}{2}-\frac{r^{2}}{2}-\frac{r_{1}^{3}}{r}\right)
$$

(c) The electric field vanishes in the cavity, so the potential is everywhere the same inside and has the same value as at a point on the inside surface of the shell. We put $r=r_{1}$ in the result of part (b). After collecting terms the result is

$$
V=\frac{Q}{4 \pi \varepsilon_{0}} \frac{3\left(r_{2}^{2}-r_{1}^{2}\right)}{2\left(r_{2}^{3}-r_{1}^{3}\right)},
$$

or in terms of the charge density $V=\frac{\rho}{2 \varepsilon_{0}}\left(r_{2}^{2}-r_{1}^{2}\right)$.
(d) The solutions agree at $r=r_{1}$ and at $r=r_{2}$.
102. The distance r being looked for is that where the alpha particle has (momentarily) zero kinetic energy. Thus, energy conservation leads to

$$
K_{0}+U_{0}=K+U \Rightarrow\left(0.48 \times 10^{-12} \mathrm{~J}\right)+\frac{(2 e)(92 e)}{4 \pi \varepsilon_{0} r_{0}}=0+\frac{(2 e)(92 e)}{4 \pi \varepsilon_{0} r}
$$

If we set $r_{0}=\infty$ (so $U_{0}=0$) then we obtain $r=8.8 \times 10^{-14} \mathrm{~m}$.
103. (a) The net potential is

$$
V=V_{1}+V_{2}=\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}}+\frac{q_{2}}{4 \pi \varepsilon_{0} r_{2}}
$$

where $r_{1}=\sqrt{x^{2}+y^{2}}$ and $r_{2}=\sqrt{(x-d)^{2}+y^{2}}$. The distance d is 8.6 nm . To find the locus of points resulting in $V=0$, we set V_{1} equal to the (absolute value of) V_{2} and square both sides. After simplifying and rearranging we arrive at an equation for a circle:

$$
y^{2}+\left(x+\frac{9 d}{16}\right)^{2}=\frac{225}{256} d^{2} .
$$

From this form, we recognize that the center of the circle is $-9 d / 16=-4.8 \mathrm{~nm}$.
(b) Also from this form, we identify the radius as the square root of the right-hand side: R $=15 \mathrm{~d} / 16=8.1 \mathrm{~nm}$.
(c) If one uses a graphing program with "implicitplot" features, it is certainly possible to set $V=5$ volts in the expression (shown in part (a)) and find its (or one of its) equipotential curves in the $x y$ plane. In fact, it will look very much like a circle. Algebraically, attempts to put the expression into any standard form for a circle will fail, but that can be a frustrating endeavor. Perhaps the easiest way to show that it is not truly a circle is to find where its "horizontal diameter" D_{x} and its "vertical diameter" D_{y} (not hard to do); we find $D_{x}=2.582 \mathrm{~nm}$ and $D_{y}=2.598 \mathrm{~nm}$. The fact that $D_{x} \neq D_{y}$ is evidence that it is not a true circle.
104. The electric field (along the radial axis) is the (negative of the) derivative of the voltage with respect to r. There are no other components of \vec{E} in this case, so (noting that the derivative of a constant is zero) we conclude that the magnitude of the field is

$$
E=-\frac{d V}{d r}=-\frac{Z e}{4 \pi \varepsilon_{0}}\left(\frac{d r^{-1}}{d r}+0+\frac{1}{2 R^{3}} \frac{d r^{2}}{d r}\right)=\frac{Z e}{4 \pi \varepsilon_{0}}\left(\frac{1}{r^{2}}-\frac{r}{R^{3}}\right)
$$

for $r \leq R$. This agrees with the Rutherford field expression shown in exercise 37 (in the textbook). We note that he has designed his voltage expression to be zero at $r=R$. Since the zero point for the voltage of this system (in an otherwise empty space) is arbitrary, then choosing $V=0$ at $r=R$ is certainly permissible.
105. If the electric potential is zero at infinity then at the surface of a uniformly charged sphere it is $V=q / 4 \pi \varepsilon_{0} R$, where q is the charge on the sphere and R is the sphere radius. Thus $q=4 \pi \varepsilon_{0} R V$ and the number of electrons is

$$
N=\frac{|q|}{e}=\frac{4 \pi \varepsilon_{0} R|V|}{e}=\frac{\left(1.0 \times 10^{-6} \mathrm{~m}\right)(400 \mathrm{~V})}{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}=2.8 \times 10^{5}
$$

106. We imagine moving all the charges on the surface of the sphere to the center of the the sphere. Using Gauss' law, we see that this would not change the electric field outside the sphere. The magnitude of the electric field E of the uniformly charged sphere as a function of r, the distance from the center of the sphere, is thus given by $E(r)=q /\left(4 \pi \varepsilon_{0} r^{2}\right)$ for $r>R$. Here R is the radius of the sphere. Thus, the potential V at the surface of the sphere (where $r=R$) is given by

$$
\begin{aligned}
V(R) & =\left.V\right|_{r=\infty}+\int_{R}^{\infty} E(r) d r=\int_{\infty}^{R} \frac{q}{4 \pi \varepsilon_{0} r^{2}} d r=\frac{q}{4 \pi \varepsilon_{0} R}=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(1.50 \times 10^{8} \mathrm{C}\right)}{0.160 \mathrm{~m}} \\
& =8.43 \times 10^{2} \mathrm{~V} .
\end{aligned}
$$

107. On the dipole axis $\theta=0$ or π, so $|\cos \theta|=1$. Therefore, magnitude of the electric field is

$$
|E(r)|=\left|-\frac{\partial V}{\partial r}\right|=\frac{p}{4 \pi \varepsilon_{0}}\left|\frac{d}{d r}\left(\frac{1}{r^{2}}\right)\right|=\frac{p}{2 \pi \varepsilon_{0} r^{3}} .
$$

108. The potential difference is

$$
\Delta V=E \Delta s=\left(1.92 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)(0.0150 \mathrm{~m})=2.90 \times 10^{3} \mathrm{~V}
$$

109. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V equipotential surface:

$$
r=\frac{q}{4 \pi \varepsilon_{0} V}=4.5 \mathrm{~m}
$$

(b) If the potential were a linear function of r then it would have equally spaced equipotentials, but since $V \propto 1 / r$ they are spaced more and more widely apart as r increases.
110. (a) Let the quark-quark separation be r. To "naturally" obtain the eV unit, we only plug in for one of the e values involved in the computation:

$$
\begin{aligned}
U_{\text {up-up }} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{\left(\frac{2 e}{3}\right)\left(\frac{2 e}{3}\right)}{r}=\frac{4 k e}{9 r} e=\frac{4\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{9\left(1.32 \times 10^{-15} \mathrm{~m}\right)} e \\
& =4.84 \times 10^{5} \mathrm{eV}=0.484 \mathrm{MeV} .
\end{aligned}
$$

(b) The total consists of all pair-wise terms:

$$
U=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{\left(\frac{2 e}{3}\right)\left(\frac{2 e}{3}\right)}{r}+\frac{\left(\frac{-e}{3}\right)\left(\frac{2 e}{3}\right)}{r}+\frac{\left(\frac{-e}{3}\right)\left(\frac{2 e}{3}\right)}{r}\right]=0 .
$$

111. (a) At the smallest center-to-center separation d_{p} the initial kinetic energy K_{i} of the proton is entirely converted to the electric potential energy between the proton and the nucleus. Thus,

$$
K_{i}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e q_{\text {lead }}}{d_{p}}=\frac{82 e^{2}}{4 \pi \varepsilon_{0} d_{p}} .
$$

In solving for d_{p} using the eV unit, we note that a factor of e cancels in the middle line:

$$
\begin{aligned}
d_{p} & =\frac{82 e^{2}}{4 \pi \varepsilon_{0} K_{i}}=k \frac{82 e^{2}}{4.80 \times 10^{6} e \mathrm{~V}}=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{82\left(1.6 \times 10^{-19} \mathrm{C}\right)}{4.80 \times 10^{6} \mathrm{~V}} \\
& =2.5 \times 10^{-14} \mathrm{~m}=25 \mathrm{fm} .
\end{aligned}
$$

It is worth recalling that a volt is a newton meter/coulomb, in making sense of the above manipulations.
(b) An alpha particle has 2 protons (as well as 2 neutrons). Therefore, using $r_{\text {min }}^{\prime}$ for the new separation, we find

$$
K_{i}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\alpha} q_{\text {lead }}}{d_{\alpha}}=2\left(\frac{82 e^{2}}{4 \pi \varepsilon_{0} d_{\alpha}}\right)=\frac{82 e^{2}}{4 \pi \varepsilon_{0} d_{p}}
$$

which leads to $d_{\alpha} / d_{p}=2.00$.
112. (a) The potential would be

$$
\begin{aligned}
V_{e} & =\frac{Q_{e}}{4 \pi \varepsilon_{0} R_{e}}=\frac{4 \pi R_{e}^{2} \sigma_{e}}{4 \pi \varepsilon_{0} R_{e}}=4 \pi R_{e} \sigma_{e} k \\
& =4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)\left(1.0 \text { electron } / \mathrm{m}^{2}\right)\left(-1.6 \times 10^{-9} \mathrm{C} / \text { electron }\right)\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \\
& =-0.12 \mathrm{~V}
\end{aligned}
$$

(b) The electric field is

$$
E=\frac{\sigma_{e}}{\varepsilon_{0}}=\frac{V_{e}}{R_{e}}=-\frac{0.12 \mathrm{~V}}{6.37 \times 10^{6} \mathrm{~m}}=-1.8 \times 10^{-8} \mathrm{~N} / \mathrm{C}
$$

or $|E|=1.8 \times 10^{-8} \mathrm{~N} / \mathrm{C}$.
(c) The minus sign in E indicates that \vec{E} is radially inward.
113. The electric potential energy is

$$
\begin{aligned}
U & =k \sum_{i \neq j} \frac{q_{i} q_{j}}{r_{i j}}=\frac{1}{4 \pi \varepsilon_{0} d}\left(q_{1} q_{2}+q_{1} q_{3}+q_{2} q_{4}+q_{3} q_{4}+\frac{q_{1} q_{4}}{\sqrt{2}}+\frac{q_{2} q_{3}}{\sqrt{2}}\right) \\
& =\frac{\left(8.99 \times 10^{9}\right)}{1.3}\left[(12)(-24)+(12)(31)+(-24)(17)+(31)(17)+\frac{(12)(17)}{\sqrt{2}}+\frac{(-24)(31)}{\sqrt{2}}\right]\left(10^{-19}\right)^{2} \\
& =-1.2 \times 10^{-6} \mathrm{~J} .
\end{aligned}
$$

114. (a) The charge on every part of the ring is the same distance from any point P on the axis. This distance is $r=\sqrt{z^{2}+R^{2}}$, where R is the radius of the ring and z is the distance from the center of the ring to P. The electric potential at P is

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{\sqrt{z^{2}+R^{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{z^{2}+R^{2}}} \int d q=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\sqrt{z^{2}+R^{2}}} .
$$

(b) The electric field is along the axis and its component is given by

$$
E=-\frac{\partial V}{\partial z}=-\frac{q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial z}\left(z^{2}+R^{2}\right)^{-1 / 2}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{2}\right)\left(z^{2}+R^{2}\right)^{-3 / 2}(2 z)=\frac{q}{4 \pi \varepsilon_{0}} \frac{z}{\left(z^{2}+R^{2}\right)^{3 / 2}} .
$$

This agrees with Eq. 23-16.
115. From the previous chapter, we know that the radial field due to an infinite linesource is

$$
E=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

which integrates, using Eq. 24-18, to obtain

$$
V_{i}=V_{f}+\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{r_{i}}^{r_{f}} \frac{d r}{r}=V_{f}+\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{f}}{r_{i}}\right) .
$$

The subscripts i and f are somewhat arbitrary designations, and we let $V_{i}=V$ be the potential of some point P at a distance $r_{i}=r$ from the wire and $V_{f}=V_{\mathrm{o}}$ be the potential along some reference axis (which intersects the plane of our figure, shown next, at the $x y$ coordinate origin, placed midway between the bottom two line charges - that is, the midpoint of the bottom side of the equilateral triangle) at a distance $r_{f}=a$ from each of the bottom wires (and a distance $a \sqrt{3}$ from the topmost wire). Thus, each side of the triangle is of length $2 a$. Skipping some steps, we arrive at an expression for the net potential created by the three wires (where we have set $V_{\mathrm{o}}=0$):

$$
V_{\mathrm{net}}=\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left(\frac{\left(x^{2}+(y-a \sqrt{3})^{2}\right)^{2}}{\left((x+a)^{2}+y^{2}\right)\left((x-a)^{2}+y^{2}\right)}\right)
$$

which forms the basis of our contour plot shown below. On the same plot we have shown four electric field lines, which have been sketched (as opposed to rigorously calculated) and are not meant to be as accurate as the equipotentials. The $\pm 2 \lambda$ by the top wire in our figure should be -2λ (the \pm typo is an artifact of our plotting routine).

116. From the previous chapter, we know that the radial field due to an infinite linesource is

$$
E=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

which integrates, using Eq. 24-18, to obtain

$$
V_{i}=V_{f}+\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{r_{i}}^{r_{f}} \frac{d r}{r}=V_{f}+\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{f}}{r_{i}}\right) .
$$

The subscripts i and f are somewhat arbitrary designations, and we let $V_{i}=V$ be the potential of some point P at a distance $r_{i}=r$ from the wire and $V_{f}=V_{\mathrm{o}}$ be the potential along some reference axis (which will be the z axis described in this problem) at a distance $r_{f}=a$ from the wire. In the "end-view" presented here, the wires and the z axis appear as points as they intersect the $x y$ plane. The potential due to the wire on the left (intersecting the plane at $x=-a$) is

$$
V_{\text {negative wire }}=V_{o}+\frac{(-\lambda)}{2 \pi \varepsilon_{0}} \ln \left(\frac{a}{\sqrt{(x+a)^{2}+y^{2}}}\right)
$$

and the potential due to the wire on the right (intersecting the plane at $x=+a$) is

$$
V_{\text {positive wire }}=V_{o}+\frac{(+\lambda)}{2 \pi \varepsilon_{0}} \ln \left(\frac{a}{\sqrt{(x-a)^{2}+y^{2}}}\right)
$$

Since potential is a scalar quantity, the net potential at point P is the addition of $V_{-\lambda}$ and $V_{+\lambda}$ which simplifies to

$$
V_{\text {net }}=2 V_{0}+\frac{\lambda}{2 \pi \varepsilon_{0}}\left(\ln \left(\frac{a}{\sqrt{(x-a)^{2}+y^{2}}}\right)-\ln \left(\frac{a}{\sqrt{(x+a)^{2}+y^{2}}}\right)\right)=\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left(\frac{(x+a)^{2}+y^{2}}{(x-a)^{2}+y^{2}}\right)
$$

where we have set the potential along the z axis equal to zero $\left(V_{o}=0\right)$ in the last step (which we are free to do). This is the expression used to obtain the equipotentials shown next. The center dot in the figure is the intersection of the z axis with the $x y$ plane, and the dots on either side are the intersections of the wires with the plane.

117. (a) With $V=1000 \mathrm{~V}$, we solve

$$
V=\frac{q}{4 \pi \varepsilon_{0} R} \quad \text { where } R=0.010 \mathrm{~m}
$$

for the net charge on the sphere, and find $q=1.1 \times 10^{-9} \mathrm{C}$. Dividing this by e yields 6.95 $\times 10^{9}$ electrons that entered the copper sphere. Now, half of the 3.7×10^{8} decays per second resulted in electrons entering the sphere, so the time required is

$$
\frac{6.95 \times 10^{9}}{\frac{1}{2}\left(3.7 \times 10^{8}\right)}=38 \text { seconds. }
$$

(b) We note that 100 keV is $1.6 \times 10^{-14} \mathrm{~J}$ (per electron that entered the sphere). Using the given heat capacity, we note that a temperature increase of $\Delta T=5.0 \mathrm{~K}=5.0 \mathrm{C}^{\circ}$ required 71.5 J of energy. Dividing this by $1.6 \times 10^{-14} \mathrm{~J}$, we find the number of electrons needed to enter the sphere (in order to achieve that temperature change); since this is half the number of decays, we multiply to 2 and find

$$
N=8.94 \times 10^{15} \text { decays }
$$

We divide N by 3.7×10^{8} to obtain the number of seconds. Converting to days, this becomes roughly 280 days.
118. The (implicit) equation for the pair (x, y) in terms of a specific V is

$$
V=\frac{q_{1}}{4 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}}+\frac{q_{2}}{4 \pi \varepsilon_{0} \sqrt{x^{2}+(y-d)^{2}}}
$$

where $d=0.50 \mathrm{~m}$. The values of q_{1} and q_{2} are given in the problem.
(a) We set $V=5.0 \mathrm{~V}$ and plotted (using MAPLE's implicit plotting routine) those points in the $x y$ plane which (when plugged into the above expression for V) yield 5.0 volts. The result is

(b) In this case, the same procedure yields these two equipotential lines:

(c) One way to search for the "crossover" case (from a single equipotential line, to two) is to "solve" for a point on the y axis (chosen here to be an absolute distance ξ below q_{1} that is, the point is at a negative value of y, specifically at $y=-\xi$) in terms of V (or more conveniently, in terms of the parameter $\eta=4 \pi \varepsilon_{0} V \times 10^{10}$). Thus, the above expression for V becomes simply

$$
\eta=\frac{-12}{\xi}+\frac{25}{d+\xi} .
$$

This leads to a quadratic equation with the (formal) solution

$$
\xi=\frac{13-d \eta \pm \sqrt{d^{2} \eta^{2}+169-74 d \eta}}{2 \eta}
$$

Clearly there is the possibility of having two solutions (implying two intersections of equipotential lines with the -y axis) when the square root term is nonzero. This suggests that we explore the special case where the square root term is zero; that is,

$$
\sqrt{d^{2} \eta^{2}+169-74 d \eta}=0 .
$$

Squaring both sides, using the fact that $d=0.50 \mathrm{~m}$ and recalling how we have defined the parameter η, this leads to a "critical value" of the potential (corresponding to the crossover case, between one and two equipotentials):

$$
\eta_{\text {critical }}=\frac{37-20 \sqrt{3}}{d} \Rightarrow \quad V_{\text {critical }}=\frac{\eta_{\text {critical }}}{4 \pi \varepsilon_{0} \times 10^{10}}=4.2 \mathrm{~V} .
$$

1. Charge flows until the potential difference across the capacitor is the same as the potential difference across the battery. The charge on the capacitor is then $q=C V$, and this is the same as the total charge that has passed through the battery. Thus,

$$
q=\left(25 \times 10^{-6} \mathrm{~F}\right)(120 \mathrm{~V})=3.0 \times 10^{-3} \mathrm{C}
$$

2. (a) The capacitance of the system is

$$
C=\frac{q}{\Delta V}=\frac{70 \mathrm{pC}}{20 \mathrm{~V}}=3.5 \mathrm{pF} .
$$

(b) The capacitance is independent of q; it is still 3.5 pF .
(c) The potential difference becomes

$$
\Delta V=\frac{q}{C}=\frac{200 \mathrm{pC}}{3.5 \mathrm{pF}}=57 \mathrm{~V} .
$$

3. (a) The capacitance of a parallel-plate capacitor is given by $C=\varepsilon_{0} A / d$, where A is the area of each plate and d is the plate separation. Since the plates are circular, the plate area is $A=\pi R^{2}$, where R is the radius of a plate. Thus,

$$
C=\frac{\varepsilon_{0} \pi R^{2}}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right) \pi\left(8.2 \times 10^{-2} \mathrm{~m}\right)^{2}}{1.3 \times 10^{-3} \mathrm{~m}}=1.44 \times 10^{-10} \mathrm{~F}=144 \mathrm{pF}
$$

(b) The charge on the positive plate is given by $q=C V$, where V is the potential difference across the plates. Thus,

$$
q=\left(1.44 \times 10^{-10} \mathrm{~F}\right)(120 \mathrm{~V})=1.73 \times 10^{-8} \mathrm{C}=17.3 \mathrm{nC} .
$$

4. We use $C=A \varepsilon_{0} / d$.
(a) Thus,

$$
d=\frac{A \varepsilon_{0}}{C}=\frac{\left(1.00 \mathrm{~m}^{2}\right)\left(8.85 \times 10^{-12} \frac{\mathrm{c}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}{1.00 \mathrm{~F}}=8.85 \times 10^{-12} \mathrm{~m} .
$$

(b) Since d is much less than the size of an atom $\left(\sim 10^{-10} \mathrm{~m}\right)$, this capacitor cannot be constructed.
5. Assuming conservation of volume, we find the radius of the combined spheres, then use $C=4 \pi \varepsilon_{0} R$ to find the capacitance. When the drops combine, the volume is doubled. It is then $V=2(4 \pi / 3) R^{3}$. The new radius R^{\prime} is given by

$$
\frac{4 \pi}{3}\left(R^{\prime}\right)^{3}=2 \frac{4 \pi}{3} R^{3} \quad \Rightarrow \quad R^{\prime}=2^{1 / 3} R .
$$

The new capacitance is

$$
C^{\prime}=4 \pi \varepsilon_{0} R^{\prime}=4 \pi \varepsilon_{0} 2^{1 / 3} R=5.04 \pi \varepsilon_{0} R .
$$

With $R=2.00 \mathrm{~mm}$, we obtain $C=5.04 \pi\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(2.00 \times 10^{-3} \mathrm{~m}\right)=2.80 \times 10^{-13} \mathrm{~F}$.
6. (a) We use Eq. 25-17:

$$
C=4 \pi \varepsilon_{0} \frac{a b}{b-a}=\frac{(40.0 \mathrm{~mm})(38.0 \mathrm{~mm})}{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)(40.0 \mathrm{~mm}-38.0 \mathrm{~mm})}=84.5 \mathrm{pF} .
$$

(b) Let the area required be A. Then $C=\varepsilon_{0} A /(b-a)$, or

$$
A=\frac{C(b-a)}{\varepsilon_{0}}=\frac{(84.5 \mathrm{pF})(40.0 \mathrm{~mm}-38.0 \mathrm{~mm})}{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}=191 \mathrm{~cm}^{2}
$$

7. The equivalent capacitance is given by $C_{\mathrm{eq}}=q / V$, where q is the total charge on all the capacitors and V is the potential difference across any one of them. For N identical capacitors in parallel, $C_{\mathrm{eq}}=N C$, where C is the capacitance of one of them. Thus, $N C=q / V$ and

$$
N=\frac{q}{V C}=\frac{1.00 \mathrm{C}}{(110 \mathrm{~V})\left(1.00 \times 10^{-6} \mathrm{~F}\right)}=9.09 \times 10^{3} .
$$

8. The equivalent capacitance is

$$
C_{\mathrm{eq}}=C_{3}+\frac{C_{1} C_{2}}{C_{1}+C_{2}}=4.00 \mu \mathrm{~F}+\frac{(10.0 \mu \mathrm{~F})(5.00 \mu \mathrm{~F})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}}=7.33 \mu \mathrm{~F} .
$$

9. The equivalent capacitance is

$$
C_{\mathrm{eq}}=\frac{\left(C_{1}+C_{2}\right) C_{3}}{C_{1}+C_{2}+C_{3}}=\frac{(10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F})(4.00 \mu \mathrm{~F})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F}}=3.16 \mu \mathrm{~F} .
$$

10. The charge that passes through meter A is

$$
q=C_{\mathrm{eq}} V=3 C V=3(25.0 \mu \mathrm{~F})(4200 \mathrm{~V})=0.315 \mathrm{C} .
$$

11. (a) and (b) The original potential difference V_{1} across C_{1} is

$$
V_{1}=\frac{C_{\mathrm{eq}} V}{C_{1}+C_{2}}=\frac{(3.16 \mu \mathrm{~F})(100.0 \mathrm{~V})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}}=21.1 \mathrm{~V}
$$

Thus $\Delta V_{1}=100.0 \mathrm{~V}-21.1 \mathrm{~V}=78.9 \mathrm{~V}$ and

$$
\Delta q_{1}=C_{1} \Delta V_{1}=(10.0 \mu \mathrm{~F})(78.9 \mathrm{~V})=7.89 \times 10^{-4} \mathrm{C}
$$

12. (a) The potential difference across C_{1} is $V_{1}=10.0 \mathrm{~V}$. Thus,

$$
q_{1}=C_{1} V_{1}=(10.0 \mu \mathrm{~F})(10.0 \mathrm{~V})=1.00 \times 10^{-4} \mathrm{C} .
$$

(b) Let $C=10.0 \mu \mathrm{~F}$. We first consider the three-capacitor combination consisting of C_{2} and its two closest neighbors, each of capacitance C. The equivalent capacitance of this combination is

$$
C_{\mathrm{eq}}=C+\frac{C_{2} C}{C+C_{2}}=1.50 C .
$$

Also, the voltage drop across this combination is

$$
V=\frac{C V_{1}}{C+C_{e q}}=\frac{C V_{1}}{C+1.50 C}=0.40 V_{1} .
$$

Since this voltage difference is divided equally between C_{2} and the one connected in series with it, the voltage difference across C_{2} satisfies $V_{2}=V / 2=V_{1} / 5$. Thus

$$
q_{2}=C_{2} V_{2}=(10.0 \mu \mathrm{~F})\left(\frac{10.0 \mathrm{~V}}{5}\right)=2.00 \times 10^{-5} \mathrm{C}
$$

13. The charge initially on the charged capacitor is given by $q=C_{1} V_{0}$, where $C_{1}=100 \mathrm{pF}$ is the capacitance and $V_{0}=50 \mathrm{~V}$ is the initial potential difference. After the battery is disconnected and the second capacitor wired in parallel to the first, the charge on the first capacitor is $q_{1}=C_{1} V$, where $V=35 \mathrm{~V}$ is the new potential difference. Since charge is conserved in the process, the charge on the second capacitor is $q_{2}=q-q_{1}$, where C_{2} is the capacitance of the second capacitor. Substituting $C_{1} V_{0}$ for q and $C_{1} V$ for q_{1}, we obtain $q_{2}=C_{1}\left(V_{0}-V\right)$. The potential difference across the second capacitor is also V, so the capacitance is

$$
C_{2}=\frac{q_{2}}{V}=\frac{V_{0}-V}{V} C_{1}=\frac{50 \mathrm{~V}-35 \mathrm{~V}}{35 \mathrm{~V}}(100 \mathrm{pF})=43 \mathrm{pF}
$$

14. The two $6.0 \mu \mathrm{~F}$ capacitors are in parallel and are consequently equivalent to $C_{\text {eq }}=12 \mu \mathrm{~F}$. Thus, the total charge stored (before the squeezing) is

$$
q_{\text {total }}=C_{\text {eq }} \mathrm{V}_{\text {battery }}=120 \mu \mathrm{C} .
$$

(a) and (b) As a result of the squeezing, one of the capacitors is now $12 \mu \mathrm{~F}$ (due to the inverse proportionality between C and d in Eq. 25-9) which represents an increase of $6.0 \mu \mathrm{~F}$ and thus a charge increase of

$$
\Delta q_{\text {total }}=\Delta C_{\text {eq }} \mathrm{V}_{\text {battery }}=(6.0 \mu \mathrm{~F})(10 \mathrm{~V})=60 \mu \mathrm{C}
$$

15. (a) First, the equivalent capacitance of the two $4.00 \mu \mathrm{~F}$ capacitors connected in series is given by $4.00 \mu \mathrm{~F} / 2=2.00 \mu \mathrm{~F}$. This combination is then connected in parallel with two other $2.00-\mu \mathrm{F}$ capacitors (one on each side), resulting in an equivalent capacitance $C=$ $3(2.00 \mu \mathrm{~F})=6.00 \mu \mathrm{~F}$. This is now seen to be in series with another combination, which consists of the two $3.0-\mu \mathrm{F}$ capacitors connected in parallel (which are themselves equivalent to $\left.C^{\prime}=2(3.00 \mu \mathrm{~F})=6.00 \mu \mathrm{~F}\right)$. Thus, the equivalent capacitance of the circuit is

$$
C_{\mathrm{eq}}=\frac{C C^{\prime}}{C+C^{\prime}}=\frac{(6.00 \mu \mathrm{~F})(6.00 \mu \mathrm{~F})}{6.00 \mu \mathrm{~F}+6.00 \mu \mathrm{~F}}=3.00 \mu \mathrm{~F}
$$

(b) Let $V=20.0 \mathrm{~V}$ be the potential difference supplied by the battery. Then

$$
q=C_{\mathrm{eq}} V=(3.00 \mu \mathrm{~F})(20.0 \mathrm{~V})=6.00 \times 10^{-5} \mathrm{C} .
$$

(c) The potential difference across C_{1} is given by

$$
V_{1}=\frac{C V}{C+C^{\prime}}=\frac{(6.00 \mu \mathrm{~F})(20.0 \mathrm{~V})}{6.00 \mu \mathrm{~F}+6.00 \mu \mathrm{~F}}=10.0 \mathrm{~V}
$$

(d) The charge carried by C_{1} is $q_{1}=C_{1} V_{1}=(3.00 \mu \mathrm{~F})(10.0 \mathrm{~V})=3.00 \times 10^{-5} \mathrm{C}$.
(e) The potential difference across C_{2} is given by $V_{2}=V-V_{1}=20.0 \mathrm{~V}-10.0 \mathrm{~V}=10.0 \mathrm{~V}$.
(f) The charge carried by C_{2} is $q_{2}=C_{2} V_{2}=(2.00 \mu \mathrm{~F})(10.0 \mathrm{~V})=2.00 \times 10^{-5} \mathrm{C}$.
(g) Since this voltage difference V_{2} is divided equally between C_{3} and the other $4.00-\mu \mathrm{F}$ capacitors connected in series with it, the voltage difference across C_{3} is given by $V_{3}=$ $V_{2} / 2=10.0 \mathrm{~V} / 2=5.00 \mathrm{~V}$.
(h) Thus, $q_{3}=C_{3} V_{3}=(4.00 \mu \mathrm{~F})(5.00 \mathrm{~V})=2.00 \times 10^{-5} \mathrm{C}$.
16. We determine each capacitance from the slope of the appropriate line in the graph. Thus, $C_{1}=(12 \mu \mathrm{C}) /(2.0 \mathrm{~V})=6.0 \mu \mathrm{~F}$. Similarly, $C_{2}=4.0 \mu \mathrm{~F}$ and $C_{3}=2.0 \mu \mathrm{~F}$. The total equivalent capacitance is

$$
C_{123}=\left(\left(C_{1}\right)^{-1}+\left(C_{3}+C_{2}\right)^{-1}\right)^{-1}=3.0 \mu \mathrm{~F} .
$$

This implies that the charge on capacitor 1 is $(3.0 \mu \mathrm{~F})(6.0 \mathrm{~V})=18 \mu \mathrm{C}$. The voltage across capacitor 1 is therefore $(18 \mu \mathrm{C}) /(6.0 \mu \mathrm{~F})=3.0 \mathrm{~V}$. From the discussion in section $25-4$, we conclude that the voltage across capacitor 2 must be $6.0 \mathrm{~V}-3.0 \mathrm{~V}=3.0 \mathrm{~V}$. Consequently, the charge on capacitor 2 is $(4.0 \mu \mathrm{~F})(3.0 \mathrm{~V})=12 \mu \mathrm{C}$.
17. (a) After the switches are closed, the potential differences across the capacitors are the same and the two capacitors are in parallel. The potential difference from a to b is given by $V_{a b}=Q / C_{\text {eq }}$, where Q is the net charge on the combination and $C_{\text {eq }}$ is the equivalent capacitance. The equivalent capacitance is $C_{\mathrm{eq}}=C_{1}+C_{2}=4.0 \times 10^{-6} \mathrm{~F}$. The total charge on the combination is the net charge on either pair of connected plates. The charge on capacitor 1 is

$$
q_{1}=C_{1} V=\left(1.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=1.0 \times 10^{-4} \mathrm{C}
$$

and the charge on capacitor 2 is

$$
q_{2}=C_{2} V=\left(3.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=3.0 \times 10^{-4} \mathrm{C},
$$

so the net charge on the combination is $3.0 \times 10^{-4} \mathrm{C}-1.0 \times 10^{-4} \mathrm{C}=2.0 \times 10^{-4} \mathrm{C}$. The potential difference is

$$
V_{a b}=\frac{2.0 \times 10^{-4} \mathrm{C}}{4.0 \times 10^{-6} \mathrm{~F}}=50 \mathrm{~V}
$$

(b) The charge on capacitor 1 is now $q_{1}=C_{1} V_{a b}=\left(1.0 \times 10^{-6} \mathrm{~F}\right)(50 \mathrm{~V})=5.0 \times 10^{-5} \mathrm{C}$.
(c) The charge on capacitor 2 is now $q_{2}=C_{2} V_{a b}=\left(3.0 \times 10^{-6} \mathrm{~F}\right)(50 \mathrm{~V})=1.5 \times 10^{-4} \mathrm{C}$.
18. Eq. 23-14 applies to each of these capacitors. Bearing in mind that $\sigma=q / A$, we find the total charge to be

$$
q_{\text {total }}=q_{1}+q_{2}=\sigma_{1} A_{1}+\sigma_{2} A_{2}=\varepsilon_{0} E_{1} A_{1}+\varepsilon_{0} E_{2} A_{2}=3.6 \mathrm{pC}
$$

where we have been careful to convert cm^{2} to m^{2} by dividing by 10^{4}.
19. (a) and (b) We note that the charge on C_{3} is $q_{3}=12 \mu \mathrm{C}-8.0 \mu \mathrm{C}=4.0 \mu \mathrm{C}$. Since the charge on C_{4} is $q_{4}=8.0 \mu \mathrm{C}$, then the voltage across it is $q_{4} / C_{4}=2.0 \mathrm{~V}$. Consequently, the voltage V_{3} across C_{3} is $2.0 \mathrm{~V} \Rightarrow C_{3}=q_{3} / V_{3}=2.0 \mu \mathrm{~F}$.

Now C_{3} and C_{4} are in parallel and are thus equivalent to $6 \mu \mathrm{~F}$ capacitor which would then be in series with C_{2}; thus, Eq 25-20 leads to an equivalence of $2.0 \mu \mathrm{~F}$ which is to be thought of as being in series with the unknown C_{1}. We know that the total effective capacitance of the circuit (in the sense of what the battery "sees" when it is hooked up) is $(12 \mu \mathrm{C}) / V_{\text {battery }}=4 \mu \mathrm{~F} / 3$. Using Eq 25-20 again, we find

$$
\frac{1}{2 \mu \mathrm{~F}}+\frac{1}{C_{1}}=\frac{3}{4 \mu \mathrm{~F}} \Rightarrow C_{1}=4.0 \mu \mathrm{~F}
$$

20. We note that the total equivalent capacitance is $C_{123}=\left[\left(C_{3}\right)^{-1}+\left(C_{1}+C_{2}\right)^{-1}\right]^{-1}=6 \mu \mathrm{~F}$.
(a) Thus, the charge that passed point a is $C_{123} V_{\text {batt }}=(6 \mu \mathrm{~F})(12 \mathrm{~V})=72 \mu \mathrm{C}$. Dividing this by the value $e=1.60 \times 10^{-19} \mathrm{C}$ gives the number of electrons: 4.5×10^{14}, which travel to the left - towards the positive terminal of the battery.
(b) The equivalent capacitance of the parallel pair is $C_{12}=C_{1}+C_{2}=12 \mu \mathrm{~F}$. Thus, the voltage across the pair (which is the same as the voltage across C_{1} and C_{2} individually) is

$$
\frac{72 \mu \mathrm{C}}{12 \mu \mathrm{~F}}=6 \mathrm{~V}
$$

Thus, the charge on C_{1} is $(4 \mu \mathrm{~F})(6 \mathrm{~V})=24 \mu \mathrm{C}$, and dividing this by e gives the number of electrons $\left(1.5 \times 10^{14}\right)$ which have passed (upward) though point b.
(c) Similarly, the charge on C_{2} is $(8 \mu \mathrm{~F})(6 \mathrm{~V})=48 \mu \mathrm{C}$, and dividing this by e gives the number of electrons $\left(3.0 \times 10^{14}\right)$ which have passed (upward) though point c.
(d) Finally, since C_{3} is in series with the battery, its charge is the same that passed through the battery (the same as passed through the switch). Thus, 4.5×10^{14} electrons passed rightward though point d. By leaving the rightmost plate of C_{3}, that plate is then the positive plate of the fully charged capacitor - making its leftmost plate (the one closest to the negative terminal of the battery) the negative plate, as it should be.
(e) As stated in (b), the electrons travel up through point b.
(f) As stated in (c), the electrons travel up through point c.
21. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced by an equivalent capacitance determined from

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{2}}+\frac{1}{C_{3}}=\frac{C_{2}+C_{3}}{C_{2} C_{3}} .
$$

Thus, $C_{\text {eq }}=C_{2} C_{3} /\left(C_{2}+C_{3}\right)$. The charge on the equivalent capacitor is the same as the charge on either of the two capacitors in the combination and the potential difference across the equivalent capacitor is given by $q_{2} / C_{\text {eq }}$. The potential difference across capacitor 1 is q_{1} / C_{1}, where q_{1} is the charge on this capacitor. The potential difference across the combination of capacitors 2 and 3 must be the same as the potential difference across capacitor 1 , so $q_{1} / C_{1}=q_{2} / C_{\text {eq }}$. Now some of the charge originally on capacitor 1 flows to the combination of 2 and 3 . If q_{0} is the original charge, conservation of charge yields $q_{1}+q_{2}=q_{0}=C_{1} V_{0}$, where V_{0} is the original potential difference across capacitor 1 .
(a) Solving the two equations

$$
\frac{q_{1}}{C_{1}}=\frac{q_{2}}{C_{\mathrm{eq}}} \quad \text { and } \quad q_{1}+q_{2}=C_{1} V_{0}
$$

for q_{1} and q_{2}, we obtain

$$
q_{1}=\frac{C_{1}^{2} V_{0}}{C_{\mathrm{eq}}+C_{1}}=\frac{C_{1}^{2} V_{0}}{\frac{C_{2} C_{3}}{C_{2}+C_{3}}+C_{1}}=\frac{C_{1}^{2}\left(C_{2}+C_{3}\right) V_{0}}{C_{1} C_{2}+C_{1} C_{3}+C_{2} C_{3}} .
$$

With $V_{0}=12.0 \mathrm{~V}, C_{1}=4.00 \mu \mathrm{~F}, C_{2}=6.00 \mu \mathrm{~F}$ and $C_{3}=3.00 \mu \mathrm{~F}$, we find $C_{\mathrm{eq}}=2.00 \mu \mathrm{~F}$ and $q_{1}=32.0 \mu \mathrm{C}$.
(b) The charge on capacitors 2 is

$$
q_{2}=C_{1} V_{0}-q_{1}=(4.00 \mu \mathrm{~F})(12.0 \mathrm{~V})-32.0 \mu \mathrm{~F}=16.0 \mu \mathrm{~F}
$$

(c) The charge on capacitor 3 is the same as that on capacitor 2:

$$
q_{3}=C_{1} V_{0}-q_{1}=(4.00 \mu \mathrm{~F})(12.0 \mathrm{~V})-32.0 \mu \mathrm{~F}=16.0 \mu \mathrm{~F}
$$

22. Initially the capacitors C_{1}, C_{2}, and C_{3} form a combination equivalent to a single capacitor which we denote C_{123}. This obeys the equation

$$
\frac{1}{C_{1}}+\frac{1}{C_{2}+C_{3}}=\frac{1}{C_{123}} .
$$

Hence, using $q=C_{123} V$ and the fact that $q=q_{1}=C_{1} V_{1}$, we arrive at

$$
V_{1}=\frac{C_{2}+C_{3}}{C_{1}+C_{2}+C_{3}} V .
$$

(a) As $C_{3} \rightarrow \infty$ this expression becomes $V_{1}=V$. Since the problem states that V_{1} approaches 10 volts in this limit, so we conclude $V=10 \mathrm{~V}$.
(b) and (c) At $C_{3}=0$, the graph indicates $V_{1}=2.0 \mathrm{~V}$. The above expression consequently implies $C_{1}=4 C_{2}$. Next we note that the graph shows that, at $C_{3}=6.0 \mu \mathrm{~F}$, the voltage across C_{1} is exactly half of the battery voltage. Thus,

$$
\frac{1}{2}=\frac{C_{2}+6.0 \mu \mathrm{~F}}{C_{1}+C_{2}+6.0 \mu \mathrm{~F}}=\frac{C_{2}+6.0 \mu \mathrm{~F}}{4 C_{2}+C_{2}+6.0 \mu \mathrm{~F}}
$$

which leads to $C_{2}=2.0 \mu \mathrm{~F}$. We conclude, too, that $C_{1}=8.0 \mu \mathrm{~F}$.
23. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are necessarily the same:

$$
q_{1}=q_{3}=\frac{C_{1} C_{3} V}{C_{1}+C_{3}}=\frac{(1.00 \mu \mathrm{~F})(3.00 \mu \mathrm{~F})(12.0 \mathrm{~V})}{1.00 \mu \mathrm{~F}+3.00 \mu \mathrm{~F}}=9.00 \mu \mathrm{C} .
$$

(b) Capacitors 2 and 4 are also in series:

$$
q_{2}=q_{4}=\frac{C_{2} C_{4} V}{C_{2}+C_{4}}=\frac{(2.00 \mu \mathrm{~F})(4.00 \mu \mathrm{~F})(12.0 \mathrm{~V})}{2.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F}}=16.0 \mu \mathrm{C}
$$

(c) $q_{3}=q_{1}=9.00 \mu \mathrm{C}$.
(d) $q_{4}=q_{2}=16.0 \mu \mathrm{C}$.
(e) With switch 2 also closed, the potential difference V_{1} across C_{1} must equal the potential difference across C_{2} and is

$$
V_{1}=\frac{C_{3}+C_{4}}{C_{1}+C_{2}+C_{3}+C_{4}} V=\frac{(3.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F})(12.0 \mathrm{~V})}{1.00 \mu \mathrm{~F}+2.00 \mu \mathrm{~F}+3.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F}}=8.40 \mathrm{~V}
$$

Thus, $q_{1}=C_{1} V_{1}=(1.00 \mu \mathrm{~F})(8.40 \mathrm{~V})=8.40 \mu \mathrm{C}$.
(f) Similarly, $q_{2}=C_{2} V_{1}=(2.00 \mu \mathrm{~F})(8.40 \mathrm{~V})=16.8 \mu \mathrm{C}$.
(g) $q_{3}=C_{3}\left(V-V_{1}\right)=(3.00 \mu \mathrm{~F})(12.0 \mathrm{~V}-8.40 \mathrm{~V})=10.8 \mu \mathrm{C}$.
(h) $q_{4}=C_{4}\left(V-V_{1}\right)=(4.00 \mu \mathrm{~F})(12.0 \mathrm{~V}-8.40 \mathrm{~V})=14.4 \mu \mathrm{C}$.
24. Let $\mathcal{V}=1.00 \mathrm{~m}^{3}$. Using Eq. 25-25, the energy stored is

$$
U=u \mathcal{V}=\frac{1}{2} \varepsilon_{0} E^{2} \mathcal{V}=\frac{1}{2}\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(150 \mathrm{~V} / \mathrm{m})^{2}\left(1.00 \mathrm{~m}^{3}\right)=9.96 \times 10^{-8} \mathrm{~J}
$$

25. The energy stored by a capacitor is given by $U=\frac{1}{2} C V^{2}$, where V is the potential difference across its plates. We convert the given value of the energy to Joules. Since a Joule is a watt-second, we multiply by $\left(10^{3} \mathrm{~W} / \mathrm{kW}\right)(3600 \mathrm{~s} / \mathrm{h})$ to obtain $10 \mathrm{~kW} \cdot \mathrm{~h}=3.6 \times 10^{7} \mathrm{~J}$. Thus,

$$
C=\frac{2 U}{V^{2}}=\frac{2\left(3.6 \times 10^{7} \mathrm{~J}\right)}{(1000 \mathrm{~V})^{2}}=72 \mathrm{~F}
$$

26. (a) The capacitance is

$$
C=\frac{\varepsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(40 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.0 \times 10^{-3} \mathrm{~m}}=3.5 \times 10^{-11} \mathrm{~F}=35 \mathrm{pF} .
$$

(b) $q=C V=(35 \mathrm{pF})(600 \mathrm{~V})=2.1 \times 10^{-8} \mathrm{C}=21 \mathrm{nC}$.
(c) $U=\frac{1}{2} C V^{2}=\frac{1}{2}(35 \mathrm{pF})(21 \mathrm{nC})^{2}=6.3 \times 10^{-6} \mathrm{~J}=6.3 \mu \mathrm{~J}$.
(d) $E=V / d=600 \mathrm{~V} / 1.0 \times 10^{-3} \mathrm{~m}=6.0 \times 10^{5} \mathrm{~V} / \mathrm{m}$.
(e) The energy density (energy per unit volume) is

$$
u=\frac{U}{A d}=\frac{6.3 \times 10^{-6} \mathrm{~J}}{\left(40 \times 10^{-4} \mathrm{~m}^{2}\right)\left(1.0 \times 10^{-3} \mathrm{~m}\right)}=1.6 \mathrm{~J} / \mathrm{m}^{3}
$$

27. The total energy is the sum of the energies stored in the individual capacitors. Since they are connected in parallel, the potential difference V across the capacitors is the same and the total energy is

$$
U=\frac{1}{2}\left(C_{1}+C_{2}\right) V^{2}=\frac{1}{2}\left(2.0 \times 10^{-6} \mathrm{~F}+4.0 \times 10^{-6} \mathrm{~F}\right)(300 \mathrm{~V})^{2}=0.27 \mathrm{~J}
$$

28. (a) The potential difference across C_{1} (the same as across C_{2}) is given by

$$
V_{1}=V_{2}=\frac{C_{3} V}{C_{1}+C_{2}+C_{3}}=\frac{(15.0 \mu \mathrm{~F})(100 \mathrm{~V})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}+15.0 \mu \mathrm{~F}}=50.0 \mathrm{~V} .
$$

Also, $V_{3}=V-V_{1}=V-V_{2}=100 \mathrm{~V}-50.0 \mathrm{~V}=50.0 \mathrm{~V}$. Thus,

$$
\begin{aligned}
& q_{1}=C_{1} V_{1}=(10.0 \mu \mathrm{~F})(50.0 \mathrm{~V})=5.00 \times 10^{-4} \mathrm{C} \\
& q_{2}=C_{2} V_{2}=(5.00 \mu \mathrm{~F})(50.0 \mathrm{~V})=2.50 \times 10^{-4} \mathrm{C} \\
& q_{3}=q_{1}+q_{2}=5.00 \times 10^{-4} \mathrm{C}+2.50 \times 10^{-4} \mathrm{C}=7.50 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

(b) The potential difference V_{3} was found in the course of solving for the charges in part (a). Its value is $V_{3}=50.0 \mathrm{~V}$.
(c) The energy stored in C_{3} is

$$
U_{3}=\frac{1}{2} C_{3} V_{3}^{2}=\frac{1}{2}(15.0 \mu \mathrm{~F})(50.0 \mathrm{~V})^{2}=1.88 \times 10^{-2} \mathrm{~J}
$$

(d) From part (a), we have $q_{1}=5.00 \times 10^{-4} \mathrm{C}$, and
(e) $V_{1}=50.0 \mathrm{~V}$.
(f) The energy stored in C_{1} is

$$
U_{1}=\frac{1}{2} C_{1} V_{1}^{2}=\frac{1}{2}(10.0 \mu \mathrm{~F})(50.0 \mathrm{~V})^{2}=1.25 \times 10^{-2} \mathrm{~J}
$$

(g) Again, from part (a), $q_{2}=2.50 \times 10^{-4} \mathrm{C}$, and
(h) $V_{2}=50.0 \mathrm{~V}$.
(i) The energy stored in C_{2} is

$$
U_{2}=\frac{1}{2} C_{2} V_{2}^{2}=\frac{1}{2}(5.00 \mu \mathrm{~F})(50.0 \mathrm{~V})^{2}=6.25 \times 10^{-3} \mathrm{~J} .
$$

29. The energy per unit volume is

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{1}{2} \varepsilon_{0}\left(\frac{e}{4 \pi \varepsilon_{0} r^{2}}\right)^{2}=\frac{e^{2}}{32 \pi^{2} \varepsilon_{0} r^{4}} .
$$

(a) At $r=1.00 \times 10^{-3} \mathrm{~m}$, with $e=1.60 \times 10^{-19} \mathrm{C}$ and $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$, we have $u=9.16 \times 10^{-18} \mathrm{~J} / \mathrm{m}^{3}$.
(b) Similarly, at $r=1.00 \times 10^{-6} \mathrm{~m}, u=9.16 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$,
(c) at $r=1.00 \times 10^{-9} \mathrm{~m}, u=9.16 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$, and
(d) at $r=1.00 \times 10^{-12} \mathrm{~m}, u=9.16 \times 10^{18} \mathrm{~J} / \mathrm{m}^{3}$.
(e) From the expression above $u \propto r^{-4}$. Thus, for $r \rightarrow 0$, the energy density $u \rightarrow \infty$.
30. (a) The charge q_{3} in the Figure is $q_{3}=C_{3} V=(4.00 \mu \mathrm{~F})(100 \mathrm{~V})=4.00 \times 10^{-4} \mathrm{C}$.
(b) $V_{3}=V=100 \mathrm{~V}$.
(c) Using $U_{i}=\frac{1}{2} C_{i} V_{i}^{2}$, we have $U_{3}=\frac{1}{2} C_{3} V_{3}^{2}=2.00 \times 10^{-2} \mathrm{~J}$.
(d) From the Figure,

$$
q_{1}=q_{2}=\frac{C_{1} C_{2} V}{C_{1}+C_{2}}=\frac{(10.0 \mu \mathrm{~F})(5.00 \mu \mathrm{~F})(100 \mathrm{~V})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}}=3.33 \times 10^{-4} \mathrm{C} .
$$

(e) $V_{1}=q_{1} / C_{1}=3.33 \times 10^{-4} \mathrm{C} / 10.0 \mu \mathrm{~F}=33.3 \mathrm{~V}$.
(f) $U_{1}=\frac{1}{2} C_{1} V_{1}^{2}=5.55 \times 10^{-3} \mathrm{~J}$.
(g) From part (d), we have $q_{2}=q_{1}=3.33 \times 10^{-4} \mathrm{C}$.
(h) $V_{2}=V-V_{1}=100 \mathrm{~V}-33.3 \mathrm{~V}=66.7 \mathrm{~V}$.
(i) $U_{2}=\frac{1}{2} C_{2} V_{2}^{2}=1.11 \times 10^{-2} \mathrm{~J}$.
31. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate capacitor is given by $\varepsilon_{0} A / d_{i}$, the charge is $q=C V=\varepsilon_{0} A V_{i} / d_{i}$. After the plates are pulled apart, their separation is d_{f} and the potential difference is V_{f}. Then $q=\varepsilon_{0} A V_{f} / 2 d_{f}$ and

$$
V_{f}=\frac{d_{f}}{\varepsilon_{0} A} q=\frac{d_{f}}{\varepsilon_{0} A} \frac{\varepsilon_{0} A}{d_{i}} V_{i}=\frac{d_{f}}{d_{i}} V_{i} .
$$

With $d_{i}=3.00 \times 10^{-3} \mathrm{~m}, V_{i}=6.00 \mathrm{~V}$ and $d_{f}=8.00 \times 10^{-3} \mathrm{~m}$, we have $V_{f}=16.0 \mathrm{~V}$.
(b) The initial energy stored in the capacitor is (in SI units)

$$
U_{i}=\frac{1}{2} C V_{i}^{2}=\frac{\varepsilon_{0} A V_{i}^{2}}{2 d_{i}}=\frac{\left(8.85 \times 10^{-12}\right)\left(8.50 \times 10^{-4}\right)(6.00)^{2}}{2\left(3.00 \times 10^{-3}\right)}=4.51 \times 10^{-11} \mathrm{~J} .
$$

(c) The final energy stored is

$$
U_{f}=\frac{1}{2} \frac{\varepsilon_{0} A}{d_{f}} V_{f}^{2}=\frac{1}{2} \frac{\varepsilon_{0} A}{d_{f}}\left(\frac{d_{f}}{d_{i}} V_{i}\right)^{2}=\frac{d_{f}}{d_{i}}\left(\frac{\varepsilon_{0} A V_{i}^{2}}{d_{i}}\right)=\frac{d_{f}}{d_{i}} U_{i}
$$

With $d_{f} / d_{i}=8.00 / 3.00$, we have $U_{f}=1.20 \times 10^{-10} \mathrm{~J}$.
(d) The work done to pull the plates apart is the difference in the energy:

$$
W=U_{f}-U_{i}=7.52 \times 10^{-11} \mathrm{~J}
$$

32. We use $E=q / 4 \pi \varepsilon_{0} R^{2}=V / R$. Thus

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{1}{2} \varepsilon_{0}\left(\frac{V}{R}\right)^{2}=\frac{1}{2}\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(\frac{8000 \mathrm{~V}}{0.050 \mathrm{~m}}\right)^{2}=0.11 \mathrm{~J} / \mathrm{m}^{3} .
$$

33. (a) They each store the same charge, so the maximum voltage is across the smallest capacitor. With 100 V across $10 \mu \mathrm{~F}$, then the voltage across the $20 \mu \mathrm{~F}$ capacitor is 50 V and the voltage across the $25 \mu \mathrm{~F}$ capacitor is 40 V . Therefore, the voltage across the arrangement is 190 V .
(b) Using Eq. 25-21 or Eq. 25-22, we sum the energies on the capacitors and obtain $U_{\text {total }}$ $=0.095 \mathrm{~J}$.
34. If the original capacitance is given by $C=\varepsilon_{0} A / d$, then the new capacitance is $C^{\prime}=\varepsilon_{0} \kappa A / 2 d$. Thus $C^{\prime} / C=\kappa / 2$ or

$$
\kappa=2 C^{\prime} / C=2(2.6 \mathrm{pF} / 1.3 \mathrm{pF})=4.0 .
$$

35. The capacitance with the dielectric in place is given by $C=\kappa C_{0}$, where C_{0} is the capacitance before the dielectric is inserted. The energy stored is given by $U=\frac{1}{2} C V^{2}=\frac{1}{2} \kappa C_{0} V^{2}$, so

$$
\kappa=\frac{2 U}{C_{0} V^{2}}=\frac{2\left(7.4 \times 10^{-6} \mathrm{~J}\right)}{\left(7.4 \times 10^{-12} \mathrm{~F}\right)(652 \mathrm{~V})^{2}}=4.7
$$

According to Table 25-1, you should use Pyrex.
36. (a) We use $C=\varepsilon_{0} A / d$ to solve for d :

$$
d=\frac{\varepsilon_{0} A}{C}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.35 \mathrm{~m}^{2}\right)}{50 \times 10^{-12} \mathrm{~F}}=6.2 \times 10^{-2} \mathrm{~m} .
$$

(b) We use $C \propto \kappa$. The new capacitance is $C^{\prime}=C\left(\kappa / \kappa_{\text {air }}\right)=(50 \mathrm{pf})(5.6 / 1.0)=2.8 \times 10^{2} \mathrm{pF}$.
37. The capacitance of a cylindrical capacitor is given by

$$
C=\kappa C_{0}=\frac{2 \pi \kappa \varepsilon_{0} L}{\ln (b / a)},
$$

where C_{0} is the capacitance without the dielectric, κ is the dielectric constant, L is the length, a is the inner radius, and b is the outer radius. The capacitance per unit length of the cable is

$$
\frac{C}{L}=\frac{2 \pi \kappa \varepsilon_{0}}{\ln (b / a)}=\frac{2 \pi(2.6)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)}{\ln [(0.60 \mathrm{~mm}) /(0.10 \mathrm{~mm})]}=8.1 \times 10^{-11} \mathrm{~F} / \mathrm{m}=81 \mathrm{pF} / \mathrm{m} .
$$

38. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we know C_{1} and C_{2}. From Eq. 25-9,

$$
C_{2}=\frac{\varepsilon_{0} A}{d}=2.21 \times 10^{-11} \mathrm{~F}
$$

and from Eq. 25-27,

$$
C_{1}=\frac{\kappa \varepsilon_{0} A}{d}=6.64 \times 10^{-11} \mathrm{~F}
$$

This leads to $q_{1}=C_{1} V_{1}=8.00 \times 10^{-10} \mathrm{C}$ and $q_{2}=C_{2} V_{2}=2.66 \times 10^{-10} \mathrm{C}$. The addition of these gives the desired result: $q_{\text {tot }}=1.06 \times 10^{-9} \mathrm{C}$. Alternatively, the circuit could be reduced to find the $q_{\text {tot }}$.
39. The capacitance is given by $C=\kappa C_{0}=\kappa \varepsilon_{0} A / d$, where C_{0} is the capacitance without the dielectric, κ is the dielectric constant, A is the plate area, and d is the plate separation. The electric field between the plates is given by $E=V / d$, where V is the potential difference between the plates. Thus, $d=V / E$ and $C=\kappa \varepsilon_{0} A E / V$. Thus,

$$
A=\frac{C V}{\kappa \varepsilon_{0} E} .
$$

For the area to be a minimum, the electric field must be the greatest it can be without breakdown occurring. That is,

$$
A=\frac{\left(7.0 \times 10^{-8} \mathrm{~F}\right)\left(4.0 \times 10^{3} \mathrm{~V}\right)}{2.8\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(18 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)}=0.63 \mathrm{~m}^{2}
$$

40. (a) We use Eq. 25-14:

$$
C=2 \pi \varepsilon_{0} \kappa \frac{L}{\ln (b / a)}=\frac{(4.7)(0.15 \mathrm{~m})}{2\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \ln (3.8 \mathrm{~cm} / 3.6 \mathrm{~cm})}=0.73 \mathrm{nF} .
$$

(b) The breakdown potential is $(14 \mathrm{kV} / \mathrm{mm})(3.8 \mathrm{~cm}-3.6 \mathrm{~cm})=28 \mathrm{kV}$.
41. Using Eq. 25-29, with $\sigma=q / A$, we have

$$
|\vec{E}|=\frac{q}{\kappa \varepsilon_{0} A}=200 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

which yields $q=3.3 \times 10^{-7}$ C. Eq. 25-21 and Eq. 25-27 therefore lead to

$$
U=\frac{q^{2}}{2 C}=\frac{q^{2} d}{2 \kappa \varepsilon_{0} A}=6.6 \times 10^{-5} \mathrm{~J}
$$

42. The capacitor can be viewed as two capacitors C_{1} and C_{2} in parallel, each with surface area $A / 2$ and plate separation d, filled with dielectric materials with dielectric constants κ_{1} and κ_{2}, respectively. Thus, (in SI units),

$$
\begin{aligned}
C & =C_{1}+C_{2}=\frac{\varepsilon_{0}(A / 2) \kappa_{1}}{d}+\frac{\varepsilon_{0}(A / 2) \kappa_{2}}{d}=\frac{\varepsilon_{0} A}{d}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right) \\
& =\frac{\left(8.85 \times 10^{-12}\right)\left(5.56 \times 10^{-4}\right)}{5.56 \times 10^{-3}} \frac{7.00+12.00}{2}=8.41 \times 10^{-12} \mathrm{~F} .
\end{aligned}
$$

43. We assume there is charge q on one plate and charge $-q$ on the other. The electric field in the lower half of the region between the plates is

$$
E_{1}=\frac{q}{\kappa_{1} \varepsilon_{0} A},
$$

where A is the plate area. The electric field in the upper half is

$$
E_{2}=\frac{q}{\kappa_{2} \varepsilon_{0} A} .
$$

Let $d / 2$ be the thickness of each dielectric. Since the field is uniform in each region, the potential difference between the plates is

$$
V=\frac{E_{1} d}{2}+\frac{E_{2} d}{2}=\frac{q d}{2 \varepsilon_{0} A}\left[\frac{1}{\kappa_{1}}+\frac{1}{\kappa_{2}}\right]=\frac{q d}{2 \varepsilon_{0} A} \frac{\kappa_{1}+\kappa_{2}}{\kappa_{1} \kappa_{2}},
$$

so

$$
C=\frac{q}{V}=\frac{2 \varepsilon_{0} A}{d} \frac{\kappa_{1} \kappa_{2}}{\kappa_{1}+\kappa_{2}} .
$$

This expression is exactly the same as that for $C_{\text {eq }}$ of two capacitors in series, one with dielectric constant κ_{1} and the other with dielectric constant κ_{2}. Each has plate area A and plate separation $d / 2$. Also we note that if $\kappa_{1}=\kappa_{2}$, the expression reduces to $C=\kappa_{1} \varepsilon_{0} A / d$, the correct result for a parallel-plate capacitor with plate area A, plate separation d, and dielectric constant κ_{1}.

With $A=7.89 \times 10^{-4} \mathrm{~m}^{2}, d=4.62 \times 10^{-3} \mathrm{~m}, \kappa_{1}=11.0$ and $\kappa_{2}=12.0$, the capacitance is, (in SI units)

$$
C=\frac{2\left(8.85 \times 10^{-12}\right)\left(7.89 \times 10^{-4}\right)}{4.62 \times 10^{-3}} \frac{(11.0)(12.0)}{11.0+12.0}=1.73 \times 10^{-11} \mathrm{~F} .
$$

44. Let $C_{1}=\varepsilon_{0}(A / 2) \kappa_{1} / 2 d=\varepsilon_{0} A \kappa_{1} / 4 d, C_{2}=\varepsilon_{0}(A / 2) \kappa_{2} / d=\varepsilon_{0} A \kappa_{2} / 2 d$, and $C_{3}=\varepsilon_{0} A \kappa_{3} / 2 d$. Note that C_{2} and C_{3} are effectively connected in series, while C_{1} is effectively connected in parallel with the $C_{2}-C_{3}$ combination. Thus,

$$
C=C_{1}+\frac{C_{2} C_{3}}{C_{2}+C_{3}}=\frac{\varepsilon_{0} A \kappa_{1}}{4 d}+\frac{\left(\varepsilon_{0} A / d\right)\left(\kappa_{2} / 2\right)\left(\kappa_{3} / 2\right)}{\kappa_{2} / 2+\kappa_{3} / 2}=\frac{\varepsilon_{0} A}{4 d}\left(\kappa_{1}+\frac{2 \kappa_{2} \kappa_{3}}{\kappa_{2}+\kappa_{3}}\right) .
$$

With $A=1.05 \times 10^{-3} \mathrm{~m}^{2}, d=3.56 \times 10^{-3} \mathrm{~m}, \kappa_{1}=21.0, \kappa_{2}=42.0$ and $\kappa_{3}=58.0$, the capacitance is, (in SI units)

$$
C=\frac{\left(8.85 \times 10^{-12}\right)\left(1.05 \times 10^{-3}\right)}{4(3.56) \times 10^{-3}}\left(21.0+\frac{2(42.0)(58.0)}{42.0+58.0}\right)=4.55 \times 10^{-11} \mathrm{~F} .
$$

45. (a) The electric field in the region between the plates is given by $E=V / d$, where V is the potential difference between the plates and d is the plate separation. The capacitance is given by $C=\kappa \varepsilon_{0} A / d$, where A is the plate area and κ is the dielectric constant, so $d=\kappa \varepsilon_{0} A / C$ and

$$
E=\frac{V C}{\kappa \varepsilon_{0} A}=\frac{(50 \mathrm{~V})\left(100 \times 10^{-12} \mathrm{~F}\right)}{5.4\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(100 \times 10^{-4} \mathrm{~m}^{2}\right)}=1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}
$$

(b) The free charge on the plates is $q_{f}=C V=\left(100 \times 10^{-12} \mathrm{~F}\right)(50 \mathrm{~V})=5.0 \times 10^{-9} \mathrm{C}$.
(c) The electric field is produced by both the free and induced charge. Since the field of a large uniform layer of charge is $q / 2 \varepsilon_{0} A$, the field between the plates is

$$
E=\frac{q_{f}}{2 \varepsilon_{0} A}+\frac{q_{f}}{2 \varepsilon_{0} A}-\frac{q_{i}}{2 \varepsilon_{0} A}-\frac{q_{i}}{2 \varepsilon_{0} A},
$$

where the first term is due to the positive free charge on one plate, the second is due to the negative free charge on the other plate, the third is due to the positive induced charge on one dielectric surface, and the fourth is due to the negative induced charge on the other dielectric surface. Note that the field due to the induced charge is opposite the field due to the free charge, so they tend to cancel. The induced charge is therefore

$$
\begin{aligned}
q_{i} & =q_{f}-\varepsilon_{0} A E=5.0 \times 10^{-9} \mathrm{C}-\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(100 \times 10^{-4} \mathrm{~m}^{2}\right)\left(1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}\right) \\
& =4.1 \times 10^{-9} \mathrm{C}=4.1 \mathrm{nC}
\end{aligned}
$$

46. (a) The electric field E_{1} in the free space between the two plates is $E_{1}=q / \mathcal{E}_{0} A$ while that inside the slab is $E_{2}=E_{1} / \kappa=q / \kappa \varepsilon_{0} A$. Thus,

$$
V_{0}=E_{1}(d-b)+E_{2} b=\left(\frac{q}{\varepsilon_{0} A}\right)\left(d-b+\frac{b}{\kappa}\right),
$$

and the capacitance is

$$
C=\frac{q}{V_{0}}=\frac{\varepsilon_{0} A \kappa}{\kappa(d-b)+b}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N}^{2}}\right)\left(115 \times 10^{-4} \mathrm{~m}^{2}\right)(2.61)}{(2.61)(0.0124 \mathrm{~m}-0.00780 \mathrm{~m})+(0.00780 \mathrm{~m})}=13.4 \mathrm{pF} .
$$

(b) $q=C V=\left(13.4 \times 10^{-12} \mathrm{~F}\right)(85.5 \mathrm{~V})=1.15 \mathrm{nC}$.
(c) The magnitude of the electric field in the gap is

$$
E_{1}=\frac{q}{\varepsilon_{0} A}=\frac{1.15 \times 10^{-9} \mathrm{C}}{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(115 \times 10^{-4} \mathrm{~m}^{2}\right)}=1.13 \times 10^{4} \mathrm{~N} / \mathrm{C} .
$$

(d) Using Eq. 25-34, we obtain

$$
E_{2}=\frac{E_{1}}{\kappa}=\frac{1.13 \times 10^{4} \mathrm{~N} / \mathrm{C}}{2.61}=4.33 \times 10^{3} \mathrm{~N} / \mathrm{C} .
$$

47. (a) According to Eq. 25-17 the capacitance of an air-filled spherical capacitor is given by

$$
C_{0}=4 \pi \varepsilon_{0}\left(\frac{a b}{b-a}\right)
$$

When the dielectric is inserted between the plates the capacitance is greater by a factor of the dielectric constant κ. Consequently, the new capacitance is

$$
C=4 \pi \kappa \varepsilon_{0}\left(\frac{a b}{b-a}\right)=\frac{23.5}{8.99 \times 10^{9}} \frac{(0.0120)(0.0170)}{0.0170-0.0120}=0.107 \mathrm{nF} .
$$

(b) The charge on the positive plate is

$$
q=C V=(0.107 \mathrm{nF})(73.0 \mathrm{~V})=7.79 \mathrm{nC}
$$

(c) Let the charge on the inner conductor be $-q$. Immediately adjacent to it is the induced charge q^{\prime}. Since the electric field is less by a factor $1 / \kappa$ than the field when no dielectric is present, then $-q+q^{\prime}=-q / \kappa$. Thus,

$$
\begin{aligned}
q^{\prime} & =\frac{\kappa-1}{\kappa} q=4 \pi(\kappa-1) \varepsilon_{0} \frac{a b}{b-a} V \\
& =\left(\frac{23.5-1.00}{23.5}\right)(7.79 \mathrm{nC})=7.45 \mathrm{nC} .
\end{aligned}
$$

48. (a) We apply Gauss's law with dielectric: $q / \varepsilon_{0}=\kappa E A$, and solve for κ.

$$
\kappa=\frac{q}{\varepsilon_{0} E A}=\frac{8.9 \times 10^{-7} \mathrm{C}}{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(1.4 \times 10^{-6} \mathrm{~V} / \mathrm{m}\right)\left(100 \times 10^{-4} \mathrm{~m}^{2}\right)}=7.2
$$

(b) The charge induced is

$$
q^{\prime}=q\left(1-\frac{1}{\kappa}\right)=\left(8.9 \times 10^{-7} \mathrm{C}\right)\left(1-\frac{1}{7.2}\right)=7.7 \times 10^{-7} \mathrm{C} .
$$

49. (a) Initially, the capacitance is

$$
C_{0}=\frac{\varepsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.12 \mathrm{~m}^{2}\right)}{1.2 \times 10^{-2} \mathrm{~m}}=89 \mathrm{pF}
$$

(b) Working through Sample Problem 25-7 algebraically, we find:

$$
C=\frac{\varepsilon_{0} A \kappa}{\kappa(d-b)+b}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{c}^{2}}{\mathrm{~N} \mathrm{~m}^{2}}\right)\left(0.12 \mathrm{~m}^{2}\right)(4.8)}{(4.8)(1.2-0.40)\left(10^{-2} \mathrm{~m}\right)+\left(4.0 \times 10^{-3} \mathrm{~m}\right)}=1.2 \times 10^{2} \mathrm{pF}
$$

(c) Before the insertion, $q=C_{0} V(89 \mathrm{pF})(120 \mathrm{~V})=11 \mathrm{nC}$.
(d) Since the battery is disconnected, q will remain the same after the insertion of the slab, with $q=11 \mathrm{nC}$.
(e) $E=q / \varepsilon_{0} A=11 \times 10^{-9} \mathrm{C} /\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.12 \mathrm{~m}^{2}\right)=10 \mathrm{kV} / \mathrm{m}$.
(f) $E^{\prime}=E / \kappa=(10 \mathrm{kV} / \mathrm{m}) / 4.8=2.1 \mathrm{kV} / \mathrm{m}$.
(g) $V=E(d-b)+E^{\prime} b=(10 \mathrm{kV} / \mathrm{m})(0.012 \mathrm{~m}-0.0040 \mathrm{~m})+(2.1 \mathrm{kV} / \mathrm{m})\left(0.40 \times 10^{-3} \mathrm{~m}\right)=$ 88 V .
(h) The work done is

$$
W_{\mathrm{ext}}=\Delta U=\frac{q^{2}}{2}\left(\frac{1}{C}-\frac{1}{C_{0}}\right)=\frac{\left(11 \times 10^{-9} \mathrm{C}\right)^{2}}{2}\left(\frac{1}{89 \times 10^{-12} \mathrm{~F}}-\frac{1}{120 \times 10^{-12} \mathrm{~F}}\right)=-1.7 \times 10^{-7} \mathrm{~J} .
$$

50. (a) Eq. 25-22 yields

$$
U=\frac{1}{2} C V^{2}=\frac{1}{2}\left(200 \times 10^{-12} \mathrm{~F}\right)\left(7.0 \times 10^{3} \mathrm{~V}\right)^{2}=4.9 \times 10^{-3} \mathrm{~J}
$$

(b) Our result from part (a) is much less than the required 150 mJ , so such a spark should not have set off an explosion.
51.One way to approach this is to note that - since they are identical - the voltage is evenly divided between them. That is, the voltage across each capacitor is $V=(10 / n)$ volt. With $C=2.0 \times 10^{-6} \mathrm{~F}$, the electric energy stored by each capacitor is $\frac{1}{2} C V^{2}$. The total energy stored by the capacitors is n times that value, and the problem requires the total be equal to $25 \times 10^{-6} \mathrm{~J}$. Thus,

$$
\frac{n}{2}\left(2.0 \times 10^{-6}\right)\left(\frac{10}{n}\right)^{2}=25 \times 10^{-6}
$$

leads to $n=4$.
52. Initially the capacitors C_{1}, C_{2}, and C_{3} form a series combination equivalent to a single capacitor which we denote C_{123}. Solving the equation

$$
\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}=\frac{1}{C_{123}},
$$

we obtain $C_{123}=2.40 \mu \mathrm{~F}$. With $V=12.0 \mathrm{~V}$, we then obtain $q=C_{123} V=28.8 \mu \mathrm{C}$. In the final situation, C_{2} and C_{4} are in parallel and are thus effectively equivalent to $C_{24}=12.0 \mu \mathrm{~F}$. Similar to the previous computation, we use

$$
\frac{1}{C_{1}}+\frac{1}{C_{24}}+\frac{1}{C_{3}}=\frac{1}{C_{1234}}
$$

and find $C_{1234}=3.00 \mu \mathrm{~F}$. Therefore, the final charge is $q=C_{1234} V=36.0 \mu \mathrm{C}$.
(a) This represents a change (relative to the initial charge) of $\Delta q=7.20 \mu \mathrm{C}$.
(b) The capacitor C_{24} which we imagined to replace the parallel pair C_{2} and C_{4} is in series with C_{1} and C_{3} and thus also has the final charge $q=36.0 \mu \mathrm{C}$ found above. The voltage across C_{24} would be $V_{24}=q / C_{24}=36.0 / 12.0=3.00 \mathrm{~V}$. This is the same voltage across each of the parallel pair. In particular, $V_{4}=3.00 \mathrm{~V}$ implies that $q_{4}=C_{4} V_{4}=18.0 \mu \mathrm{C}$.
(c) The battery supplies charges only to the plates where it is connected. The charges on the rest of the plates are due to electron transfers between them, in accord with the new distribution of voltages across the capacitors. So, the battery does not directly supply the charge on capacitor 4.
53. In series, their equivalent capacitance (and thus their total energy stored) is smaller than either one individually (by Eq. 25-20). In parallel, their equivalent capacitance (and thus their total energy stored) is larger than either one individually (by Eq. 25-19). Thus, the middle two values quoted in the problem must correspond to the individual capacitors. We use Eq. 25-22 and find
(a) $100 \mu \mathrm{~J}=\frac{1}{2} C_{1}(10 \mathrm{~V})^{2} \quad \Rightarrow \quad C_{1}=2.0 \mu \mathrm{~F}$
(b) $300 \mu \mathrm{~J}=\frac{1}{2} C_{2}(10 \mathrm{~V})^{2} \quad \Rightarrow \quad C_{2}=6.0 \mu \mathrm{~F}$.
54. We note that the voltage across C_{3} is $V_{3}=(12 \mathrm{~V}-2 \mathrm{~V}-5 \mathrm{~V})=5 \mathrm{~V}$. Thus, its charge is $q_{3}=C_{3} V_{3}=4 \mu \mathrm{C}$.
(a) Therefore, since C_{1}, C_{2} and C_{3} are in series (so they have the same charge), then

$$
C_{1}=\frac{4 \mu \mathrm{C}}{2 \mathrm{~V}}=2.0 \mu \mathrm{~F}
$$

(b) Similarly, $C_{2}=4 / 5=0.80 \mu \mathrm{~F}$.
55. (a) The number of (conduction) electrons per cubic meter is $n=8.49 \times 10^{28} \mathrm{~m}^{3}$. The volume in question is the face area multiplied by the depth: $A \cdot d$. The total number of electrons which have moved to the face is

$$
N=\frac{-3.0 \times 10^{-6} \mathrm{C}}{-1.6 \times 10^{-19} \mathrm{C}} \approx 1.9 \times 10^{13}
$$

Using the relation $N=n A d$, we obtain $d=1.1 \times 10^{-12} \mathrm{~m}$, a remarkably small distance!
56. Initially, the total equivalent capacitance is $C_{12}=\left[\left(C_{1}\right)^{-1}+\left(C_{2}\right)^{-1}\right]^{-1}=3.0 \mu \mathrm{~F}$, and the charge on the positive plate of each one is $(3.0 \mu \mathrm{~F})(10 \mathrm{~V})=30 \mu \mathrm{C}$. Next, the capacitor (call is C_{1}) is squeezed as described in the problem, with the effect that the new value of C_{1} is $12 \mu \mathrm{~F}$ (see Eq. 25-9). The new total equivalent capacitance then becomes

$$
C_{12}=\left[\left(C_{1}\right)^{-1}+\left(C_{2}\right)^{-1}\right]^{-1}=4.0 \mu \mathrm{~F},
$$

and the new charge on the positive plate of each one is $(4.0 \mu \mathrm{~F})(10 \mathrm{~V})=40 \mu \mathrm{C}$.
(a) Thus we see that the charge transferred from the battery as a result of the squeezing is $40 \mu \mathrm{C}-30 \mu \mathrm{C}=10 \mu \mathrm{C}$.
(b) The total increase in positive charge (on the respective positive plates) stored on the capacitors is twice the value found in part (a) (since we are dealing with two capacitors in series): $20 \mu \mathrm{C}$.
57. (a) Put five such capacitors in series. Then, the equivalent capacitance is $2.0 \mu \mathrm{~F} / 5=$ $0.40 \mu \mathrm{~F}$. With each capacitor taking a $200-\mathrm{V}$ potential difference, the equivalent capacitor can withstand 1000 V .
(b) As one possibility, you can take three identical arrays of capacitors, each array being a five-capacitor combination described in part (a) above, and hook up the arrays in parallel. The equivalent capacitance is now $C_{\mathrm{eq}}=3(0.40 \mu \mathrm{~F})=1.2 \mu \mathrm{~F}$. With each capacitor taking a $200-\mathrm{V}$ potential difference the equivalent capacitor can withstand 1000 V .
58. Equation 25-14 leads to $C_{1}=2.53 \mathrm{pF}$ and $C_{1}=2.17 \mathrm{pF}$. Initially, the total equivalent capacitance is

$$
C_{12}=\left[\left(C_{1}\right)^{-1}+\left(C_{2}\right)^{-1}\right]^{-1}=1.488 \mathrm{pF}
$$

and the charge on the positive plate of each one is $(1.488 \mathrm{pF})(10 \mathrm{~V})=14.88 \mathrm{pC}$. Next, capacitor 2 is modified as described in the problem, with the effect that the new value of C_{2} is 2.17 pF (again using Eq. 25-14). The new total equivalent capacitance is

$$
C_{12}=\left[\left(C_{1}\right)^{-1}+\left(C_{2}\right)^{-1}\right]^{-1}=1.170 \mathrm{pF}
$$

and the new charge on the positive plate of each one is $(1.170 \mathrm{pF})(10 \mathrm{~V})=11.70 \mathrm{pC}$. Thus we see that the charge transferred from the battery (considered in absolute value) as a result of the modification is $14.88 \mathrm{pC}-11.70 \mathrm{pC}=3.18 \mathrm{pC}$.
(a) This charge, divided by e gives the number of electrons that pass point P. Thus,

$$
\frac{3.18 \times 10^{-12}}{1.6 \times 10^{-19}}=2.0 \times 10^{7}
$$

(b) These electrons move rightwards in the figure (that is, away from the battery) since the positive plates (the ones closest to point P) of the capacitors have suffered a decease in their positive charges. The usual reason for a metal plate to be positive is that it has more protons than electrons. Thus, in this problem some electrons have "returned" to the positive plates (making them less positive).
59. (a) We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated either as heat or radio waves. Charge is conserved; therefore, if $Q=$ $C_{1} V_{\text {bat }}=40 \mu \mathrm{C}$, and q_{1} and q_{2} are the charges on C_{1} and C_{2} after the switch is thrown to the right and equilibrium is reached, then

$$
Q=q_{1}+q_{2} .
$$

Reducing the right portion of the circuit (the C_{3}, C_{4} parallel pair which are in series with C_{2}) we have an equivalent capacitance of $C^{\prime}=8.0 \mu \mathrm{~F}$ which has charge $q^{\prime}=q_{2}$ and potential difference equal to that of C_{1}. Thus, $V_{1}=V^{\prime}$, or

$$
\frac{q_{1}}{C_{1}}=\frac{q_{2}}{C^{\prime}}
$$

which yields $4 q_{1}=q_{2}$. Therefore, $Q=q_{1}+4 q_{1}$. This leads to $q_{1}=8.0 \mu \mathrm{C}$ and consequently to $q_{2}=32 \mu \mathrm{C}$.
(b) From Eq. $25-1$, we have $V_{2}=(32 \mu \mathrm{C})(16 \mu \mathrm{~F})=2.0 \mathrm{~V}$.
60. (a) We calculate the charged surface area of the cylindrical volume as follows:

$$
A=2 \pi r h+\pi r^{2}=2 \pi(0.20 \mathrm{~m})(0.10 \mathrm{~m})+\pi(0.20 \mathrm{~m})^{2}=0.25 \mathrm{~m}^{2}
$$

where we note from the figure that although the bottom is charged, the top is not. Therefore, the charge is $q=\sigma A=-0.50 \mu \mathrm{C}$ on the exterior surface, and consequently (according to the assumptions in the problem) that same charge q is induced in the interior of the fluid.
(b) By Eq. 25-21, the energy stored is

$$
U=\frac{q^{2}}{2 C}=\frac{\left(5.0 \times 10^{-7} \mathrm{C}\right)^{2}}{2\left(35 \times 10^{-12} \mathrm{~F}\right)}=3.6 \times 10^{-3} \mathrm{~J} .
$$

(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is that it will probably not cause a spark; however, there is not enough of a safety factor to be sure.
61. (a) In the top right portion of the circuit is a pair of $4.00 \mu \mathrm{~F}$ which we reduce to a single $8.00 \mu \mathrm{~F}$ capacitor (which is then in series with the bottom capacitor that the problem is asking about). The further reduction with the bottom $4.00 \mu \mathrm{~F}$ capacitor results in an equivalence of $\frac{8}{3} \mu \mathrm{~F}$, which clearly has the battery voltage across it -- and therefore has charge $\left(\frac{8}{3} \mu \mathrm{~F}\right)(9.00 \mathrm{~V})=24.0 \mu \mathrm{C}$. This is seen to be the same as the charge on the bottom capacitor.
(b) The voltage across the bottom capacitor is

$$
V=\frac{q}{C}=\frac{24.0 \mu \mathrm{C}}{4.00 \mu \mathrm{~F}}=6.00 \mathrm{~V}
$$

62. We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated either as heat or radio waves. Charge is conserved; therefore, if $Q=C_{1} V_{\text {bat }}=$ $100 \mu \mathrm{C}$, and q_{1}, q_{2} and q_{3} are the charges on C_{1}, C_{2} and C_{3} after the switch is thrown to the right and equilibrium is reached, then

$$
Q=q_{1}+q_{2}+q_{3}
$$

Since the parallel pair C_{2} and C_{3} are identical, it is clear that $q_{2}=q_{3}$. They are in parallel with C_{1} so that $V_{1}=V_{3}$, or

$$
\frac{q_{1}}{C_{1}}=\frac{q_{3}}{C_{3}}
$$

which leads to $q_{1}=q_{3} / 2$. Therefore,

$$
Q=\left(\frac{1}{2} q_{3}\right)+q_{3}+q_{3}
$$

which yields $q_{3}=40 \mu \mathrm{C}$ and consequently $q_{1}=20 \mu \mathrm{C}$.
63. The pair C_{3} and C_{4} are in parallel and consequently equivalent to $30 \mu \mathrm{~F}$. Since this numerical value is identical to that of the others (with which it is in series, with the battery), we observe that each has one-third the battery voltage across it. Hence, 3.0 V is across C_{4}, producing a charge

$$
q_{4}=C_{4} V_{4}=(15 \mu \mathrm{~F})(3.0 \mathrm{~V})=45 \mu \mathrm{C} .
$$

64. (a) We reduce the parallel group C_{2}, C_{3} and C_{4}, and the parallel pair C_{5} and C_{6}, obtaining equivalent values $C^{\prime}=12 \mu \mathrm{~F}$ and $C^{\prime \prime}=12 \mu \mathrm{~F}$, respectively. We then reduce the series group C_{1}, C^{\prime} and $C^{\prime \prime}$ to obtain an equivalent capacitance of $C_{\text {eq }}=3 \mu \mathrm{~F}$ hooked to the battery. Thus, the charge stored in the system is

$$
q_{\mathrm{sys}}=C_{\mathrm{eq}} V_{\mathrm{bat}}=36 \mu \mathrm{C} .
$$

(b) Since $q_{\mathrm{sys}}=q_{1}$ then the voltage across C_{1} is

$$
V_{1}=\frac{q_{1}}{C_{1}}=\frac{36 \mu \mathrm{C}}{6.0 \mu \mathrm{~F}}=6.0 \mathrm{~V}
$$

The voltage across the series-pair C^{\prime} and $C^{\prime \prime}$ is consequently $V_{\text {bat }}-V_{1}=6.0 \mathrm{~V}$. Since $C^{\prime}=$ $C^{\prime \prime}$, we infer $V^{\prime}=V^{\prime \prime}=6.0 / 2=3.0 \mathrm{~V}$, which, in turn, is equal to V_{4}, the potential across C_{4}. Therefore,

$$
q_{4}=C_{4} V_{4}=(4.0 \mu \mathrm{~F})(3.0 \mathrm{~V})=12 \mu \mathrm{C} .
$$

65. (a) The potential across C_{1} is 10 V , so the charge on it is

$$
q_{1}=C_{1} V_{1}=(10.0 \mu \mathrm{~F})(10.0 \mathrm{~V})=100 \mu \mathrm{C} .
$$

(b) Reducing the right portion of the circuit produces an equivalence equal to $6.00 \mu \mathrm{~F}$, with 10.0 V across it. Thus, a charge of $60.0 \mu \mathrm{C}$ is on it - and consequently also on the bottom right capacitor. The bottom right capacitor has, as a result, a potential across it equal to

$$
V=\frac{q}{C}=\frac{60 \mu \mathrm{C}}{10 \mu \mathrm{~F}}=6.00 \mathrm{~V}
$$

which leaves $10.0 \mathrm{~V}-6.00 \mathrm{~V}=4.00 \mathrm{~V}$ across the group of capacitors in the upper right portion of the circuit. Inspection of the arrangement (and capacitance values) of that group reveals that this 4.00 V must be equally divided by C_{2} and the capacitor directly below it (in series with it). Therefore, with 2.00 V across C_{2} we find

$$
q_{2}=C_{2} V_{2}=(10.0 \mu \mathrm{~F})(2.00 \mathrm{~V})=20.0 \mu \mathrm{C}
$$

66. The pair C_{1} and C_{2} are in parallel, as are the pair C_{3} and C_{4}; they reduce to equivalent values $6.0 \mu \mathrm{~F}$ and $3.0 \mu \mathrm{~F}$, respectively. These are now in series and reduce to $2.0 \mu \mathrm{~F}$, across which we have the battery voltage. Consequently, the charge on the $2.0 \mu \mathrm{~F}$ equivalence is $(2.0 \mu \mathrm{~F})(12 \mathrm{~V})=24 \mu \mathrm{C}$. This charge on the $3.0 \mu \mathrm{~F}$ equivalence (of C_{3} and C_{4}) has a voltage of

$$
V=\frac{q}{C}=\frac{24 \mu \mathrm{C}}{3 \mu \mathrm{~F}}=8.0 \mathrm{~V}
$$

Finally, this voltage on capacitor C_{4} produces a charge $(2.0 \mu \mathrm{~F})(8.0 \mathrm{~V})=16 \mu \mathrm{C}$.
67. For maximum capacitance the two groups of plates must face each other with maximum area. In this case the whole capacitor consists of $(n-1)$ identical single capacitors connected in parallel. Each capacitor has surface area A and plate separation d so its capacitance is given by $C_{0}=\varepsilon_{0} A / d$. Thus, the total capacitance of the combination is (in SI units)

$$
C=(n-1) C_{0}=\frac{(n-1) \varepsilon_{0} A}{d}=\frac{(8-1)\left(8.85 \times 10^{-12}\right)\left(1.25 \times 10^{-4}\right)}{3.40 \times 10^{-3}}=2.28 \times 10^{-12} \mathrm{~F} .
$$

68. (a) Here D is not attached to anything, so that the $6 C$ and $4 C$ capacitors are in series (equivalent to $2.4 C$). This is then in parallel with the $2 C$ capacitor, which produces an equivalence of $4.4 C$. Finally the $4.4 C$ is in series with C and we obtain

$$
C_{\mathrm{eq}}=\frac{(C)(4.4 C)}{C+4.4 C}=0.82 C=41 \mu \mathrm{~F}
$$

where we have used the fact that $C=50 \mu \mathrm{~F}$.
(b) Now, B is the point which is not attached to anything, so that the $6 C$ and $2 C$ capacitors are now in series (equivalent to $1.5 C$), which is then in parallel with the $4 C$ capacitor (and thus equivalent to $5.5 C$). The $5.5 C$ is then in series with the C capacitor; consequently,

$$
C_{\mathrm{eq}}=\frac{(C)(5.5 C)}{C+5.5 C}=0.85 C=42 \mu \mathrm{~F} .
$$

69. (a) In the first case the two capacitors are effectively connected in series, so the output potential difference is $V_{\text {out }}=C V_{\text {in }} / 2 C=V_{\text {in }} / 2=50.0 \mathrm{~V}$.
(b) In the second case the lower diode acts as a wire so $V_{\text {out }}=0$.
70. The voltage across capacitor 1 is

$$
V_{1}=\frac{q_{1}}{C_{1}}=\frac{30 \mu \mathrm{C}}{10 \mu \mathrm{~F}}=3.0 \mathrm{~V} .
$$

Since $V_{1}=V_{2}$, the total charge on capacitor 2 is

$$
q_{2}=C_{2} V_{2}=(20 \mu \mathrm{~F})(2 \mathrm{~V})=60 \mu \mathrm{C},
$$

which means a total of $90 \mu \mathrm{C}$ of charge is on the pair of capacitors C_{1} and C_{2}. This implies there is a total of $90 \mu \mathrm{C}$ of charge also on the C_{3} and C_{4} pair. Since $C_{3}=C_{4}$, the charge divides equally between them, so $q_{3}=q_{4}=45 \mu \mathrm{C}$. Thus, the voltage across capacitor 3 is

$$
V_{3}=\frac{q_{3}}{C_{3}}=\frac{45 \mu \mathrm{C}}{20 \mu \mathrm{~F}}=2.3 \mathrm{~V} .
$$

Therefore, $\left|V_{A}-V_{B}\right|=V_{1}+V_{3}=5.3 \mathrm{~V}$.
71. (a) The equivalent capacitance is

$$
C_{\mathrm{eq}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{(6.00 \mu \mathrm{~F})(4.00 \mu \mathrm{~F})}{6.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F}}=2.40 \mu \mathrm{~F} .
$$

(b) $q_{1}=C_{\mathrm{eq}} V=(2.40 \mu \mathrm{~F})(200 \mathrm{~V})=4.80 \times 10^{-4} \mathrm{C}$.
(c) $V_{1}=q_{1} / C_{1}=4.80 \times 10^{-4} \mathrm{C} / 6.00 \mu \mathrm{~F}=80.0 \mathrm{~V}$.
(d) $q_{2}=q_{1}=4.80 \times 10^{-4} \mathrm{C}$.
(e) $V_{2}=V-V_{1}=200 \mathrm{~V}-80.0 \mathrm{~V}=120 \mathrm{~V}$.
72. (a) Now $C_{\text {eq }}=C_{1}+C_{2}=6.00 \mu \mathrm{~F}+4.00 \mu \mathrm{~F}=10.0 \mu \mathrm{~F}$.
(b) $q_{1}=C_{1} V=(6.00 \mu \mathrm{~F})(200 \mathrm{~V})=1.20 \times 10^{-3} \mathrm{C}$.
(c) $V_{1}=200 \mathrm{~V}$.
(d) $q_{2}=C_{2} V=(4.00 \mu \mathrm{~F})(200 \mathrm{~V})=8.00 \times 10^{-4} \mathrm{C}$.
(e) $V_{2}=V_{1}=200 \mathrm{~V}$.
73. We cannot expect simple energy conservation to hold since energy is presumably dissipated either as heat in the hookup wires or as radio waves while the charge oscillates in the course of the system "settling down" to its final state (of having 40 V across the parallel pair of capacitors C and $60 \mu \mathrm{~F}$). We do expect charge to be conserved. Thus, if Q is the charge originally stored on C and q_{1}, q_{2} are the charges on the parallel pair after "settling down," then

$$
\begin{aligned}
Q & =q_{1}+q_{2} \\
C(100 \mathrm{~V}) & =C(40 \mathrm{~V})+(60 \mu \mathrm{~F})(40 \mathrm{~V})
\end{aligned}
$$

which leads to the solution $C=40 \mu \mathrm{~F}$.
74. We first need to find an expression for the energy stored in a cylinder of radius R and length L, whose surface lies between the inner and outer cylinders of the capacitor ($a<R$ $<b)$. The energy density at any point is given by $u=\frac{1}{2} \varepsilon_{0} E^{2}$, where E is the magnitude of the electric field at that point. If q is the charge on the surface of the inner cylinder, then the magnitude of the electric field at a point a distance r from the cylinder axis is given by

$$
E=\frac{q}{2 \pi \varepsilon_{0} L r}
$$

(see Eq. 25-12), and the energy density at that point is given by

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{q^{2}}{8 \pi^{2} \varepsilon_{0} L^{2} r^{2}} .
$$

The energy in the cylinder is the volume integral

$$
U_{R}=\int u d V
$$

Now, $d \mathcal{V}=2 \pi r L d r$, so

$$
U_{R}=\int_{a}^{R} \frac{q^{2}}{8 \pi^{2} \varepsilon_{0} L^{2} r^{2}} 2 \pi r L d r=\frac{q^{2}}{4 \pi \varepsilon_{0} L} \int_{a}^{R} \frac{d r}{r}=\frac{q^{2}}{4 \pi \varepsilon_{0} L} \ln \frac{R}{a} .
$$

To find an expression for the total energy stored in the capacitor, we replace R with b :

$$
U_{b}=\frac{q^{2}}{4 \pi \varepsilon_{0} L} \ln \frac{b}{a}
$$

We want the ratio U_{R} / U_{b} to be $1 / 2$, so

$$
\ln \frac{R}{a}=\frac{1}{2} \ln \frac{b}{a}
$$

or, since $\frac{1}{2} \ln (b / a)=\ln (\sqrt{b / a}), \ln (R / a)=\ln (\sqrt{b / a})$. This means $R / a=\sqrt{b / a}$ or $R=\sqrt{a b}$.
75. (a) Since the field is constant and the capacitors are in parallel (each with 600 V across them) with identical distances $(d=0.00300 \mathrm{~m})$ between the plates, then the field in A is equal to the field in B :

$$
|\vec{E}|=\frac{V}{d}=2.00 \times 10^{5} \mathrm{~V} / \mathrm{m}
$$

(b) $|\vec{E}|=2.00 \times 10^{5} \mathrm{~V} / \mathrm{m}$. See the note in part (a).
(c) For the air-filled capacitor, Eq. 25-4 leads to

$$
\sigma=\frac{q}{A}=\varepsilon_{0}|\vec{E}|=1.77 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
$$

(d) For the dielectric-filled capacitor, we use Eq. 25-29:

$$
\sigma=\kappa \varepsilon_{0}|\vec{E}|=4.60 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
$$

(e) Although the discussion in the textbook (§25-8) is in terms of the charge being held fixed (while a dielectric is inserted), it is readily adapted to this situation (where comparison is made of two capacitors which have the same voltage and are identical except for the fact that one has a dielectric). The fact that capacitor B has a relatively large charge but only produces the field that A produces (with its smaller charge) is in line with the point being made (in the text) with Eq. 25-34 and in the material that follows. Adapting Eq. $25-35$ to this problem, we see that the difference in charge densities between parts (c) and (d) is due, in part, to the (negative) layer of charge at the top surface of the dielectric; consequently,

$$
\sigma^{\prime}=\left(1.77 \times 10^{-6}\right)-\left(4.60 \times 10^{-6}\right)=-2.83 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
$$

76. (a) The equivalent capacitance is $C_{\text {eq }}=C_{1} C_{2} /\left(C_{1}+C_{2}\right)$. Thus the charge q on each capacitor is

$$
q=q_{1}=q_{2}=C_{\mathrm{eq}} V=\frac{C_{1} C_{2} V}{C_{1}+C_{2}}=\frac{(2.00 \mu \mathrm{~F})(8.00 \mu \mathrm{~F})(300 \mathrm{~V})}{2.00 \mu \mathrm{~F}+8.00 \mu \mathrm{~F}}=4.80 \times 10^{-4} \mathrm{C}
$$

(b) The potential difference is $V_{1}=q / C_{1}=4.80 \times 10^{-4} \mathrm{C} / 2.0 \mu \mathrm{~F}=240 \mathrm{~V}$.
(c) As noted in part (a), $q_{2}=q_{1}=4.80 \times 10^{-4} \mathrm{C}$.
(d) $V_{2}=V-V_{1}=300 \mathrm{~V}-240 \mathrm{~V}=60.0 \mathrm{~V}$.

Now we have $q^{\prime} / C_{1}=q^{\prime} / C_{2}=V^{\prime}\left(V^{\prime}\right.$ being the new potential difference across each capacitor) and $q^{\prime}{ }_{1}+q^{\prime}{ }_{2}=2 q$. We solve for $q^{\prime}{ }_{1}, q_{2}^{\prime}$ and V :
(e) $q_{1}^{\prime}=\frac{2 C_{1} q}{C_{1}+C_{2}}=\frac{2(2.00 \mu \mathrm{~F})\left(4.80 \times 10^{-4} \mathrm{C}\right)}{2.00 \mu \mathrm{~F}+8.00 \mu \mathrm{~F}}=1.92 \times 10^{-4} \mathrm{C}$.
(f) $V_{1}^{\prime}=\frac{q_{1}^{\prime}}{C_{1}}=\frac{1.92 \times 10^{-4} C}{2.00 \mu \mathrm{~F}}=96.0 \mathrm{~V}$.
(g) $q_{2}^{\prime}=2 q-q_{1}=7.68 \times 10^{-4} \mathrm{C}$.
(h) $V_{2}^{\prime}=V_{1}^{\prime}=96.0 \mathrm{~V}$.
(i) In this circumstance, the capacitors will simply discharge themselves, leaving $q_{1}=0$,
(j) $V_{1}=0$,
(k) $q_{2}=0$,
(1) and $V_{2}=V_{1}=0$.
77. We use $U=\frac{1}{2} C V^{2}$. As V is increased by ΔV, the energy stored in the capacitor increases correspondingly from U to $U+\Delta U: U+\Delta U=\frac{1}{2} C(V+\Delta V)^{2}$. Thus, $(1+\Delta V / V)^{2}=1+\Delta U / U$, or

$$
\frac{\Delta V}{V}=\sqrt{1+\frac{\Delta U}{U}}-1=\sqrt{1+10 \%}-1=4.9 \% .
$$

78. (a) The voltage across C_{1} is 12 V , so the charge is

$$
q_{1}=C_{1} V_{1}=24 \mu \mathrm{C} .
$$

(b) We reduce the circuit, starting with C_{4} and C_{3} (in parallel) which are equivalent to $4 \mu \mathrm{~F}$. This is then in series with C_{2}, resulting in an equivalence equal to $\frac{4}{3} \mu \mathrm{~F}$ which would have 12 V across it. The charge on this $\frac{4}{3} \mu \mathrm{~F}$ capacitor (and therefore on C_{2}) is $\left(\frac{4}{3} \mu \mathrm{~F}\right)(12 \mathrm{~V})=16 \mu \mathrm{C}$. Consequently, the voltage across C_{2} is

$$
V_{2}=\frac{q_{2}}{C_{2}}=\frac{16 \mu \mathrm{C}}{2 \mu \mathrm{~F}}=8 \mathrm{~V} .
$$

This leaves $12-8=4 \mathrm{~V}$ across C_{4} (similarly for C_{3}).
79. We reduce the circuit, starting with C_{1} and C_{2} (in series) which are equivalent to $4 \mu \mathrm{~F}$. This is then parallel to C_{3} and results in a total of $8 \mu \mathrm{~F}$, which is now in series with C_{4} and can be further reduced. However, the final step in the reduction is not necessary, as we observe that the $8 \mu \mathrm{~F}$ equivalence from the top 3 capacitors has the same capacitance as C_{4} and therefore the same voltage; since they are in series, that voltage is then $12 / 2=$ 6.0 V.
80. We use $C=\varepsilon_{0} \kappa A / d \propto \kappa / d$. To maximize C we need to choose the material with the greatest value of κ / d. It follows that the mica sheet should be chosen.
81. We may think of this as two capacitors in series C_{1} and C_{2}, the former with the $\kappa_{1}=$ 3.00 material and the latter with the $\kappa_{2}=4.00$ material. Upon using Eq. 25-9, Eq. 25-27 and then reducing C_{1} and C_{2} to an equivalent capacitance (connected directly to the battery) with Eq. 25-20, we obtain

$$
C_{\mathrm{eq}}=\left(\frac{\kappa_{1} \kappa_{2}}{\kappa_{1}+\kappa_{2}}\right) \frac{\varepsilon_{0} A}{d}=1.52 \times 10^{-10} \mathrm{~F} .
$$

Therefore, $q=C_{\mathrm{eq}} V=1.06 \times 10^{-9} \mathrm{C}$.
82. (a) The length d is effectively shortened by b so $C^{\prime}=\varepsilon_{0} A /(d-b)=0.708 \mathrm{pF}$.
(b) The energy before, divided by the energy after inserting the slab is

$$
\frac{U}{U^{\prime}}=\frac{q^{2} / 2 C}{q^{2} / 2 C^{\prime}}=\frac{C^{\prime}}{C}=\frac{\varepsilon_{0} A /(d-b)}{\varepsilon_{0} A / d}=\frac{d}{d-b}=\frac{5.00}{5.00-2.00}=1.67
$$

(c) The work done is

$$
W=\Delta U=U^{\prime}-U=\frac{q^{2}}{2}\left(\frac{1}{C^{\prime}}-\frac{1}{C}\right)=\frac{q^{2}}{2 \varepsilon_{0} A}(d-b-d)=-\frac{q^{2} b}{2 \varepsilon_{0} A}=-5.44 \mathrm{~J}
$$

(d) Since $W<0$ the slab is sucked in.
83. (a) $C^{\prime}=\varepsilon_{0} A /(d-b)=0.708 \mathrm{pF}$, the same as part (a) in problem 82 .
(b) Now,

$$
\frac{U}{U^{\prime}}=\frac{\frac{1}{2} C V^{2}}{\frac{1}{2} C^{\prime} V^{2}}=\frac{C}{C^{\prime}}=\frac{\varepsilon_{0} A / d}{\varepsilon_{0} A /(d-b)}=\frac{d-b}{d}=\frac{5.00-2.00}{5.00}=0.600
$$

(c) The work done is

$$
W=\Delta U=U^{\prime}-U=\frac{1}{2}\left(C^{\prime}-C\right) V^{2}=\frac{\varepsilon_{0} A}{2}\left(\frac{1}{d-b}-\frac{1}{d}\right) V^{2}=\frac{\varepsilon_{0} A b V^{2}}{2 d(d-b)}=1.02 \times 10^{-9} \mathrm{~J} .
$$

(d) In Problem 82 where the capacitor is disconnected from the battery and the slab is sucked in, F is certainly given by $-d U / d x$. However, that relation does not hold when the battery is left attached because the force on the slab is not conservative. The charge distribution in the slab causes the slab to be sucked into the gap by the charge distribution on the plates. This action causes an increase in the potential energy stored by the battery in the capacitor.
84. We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated either as heat or radio waves. Charge is conserved; therefore, if $Q=48 \mu \mathrm{C}$, and q_{1} and q_{3} are the charges on C_{1} and C_{3} after the switch is thrown to the right (and equilibrium is reached), then

$$
Q=q_{1}+q_{3} .
$$

We note that $V_{1 \text { and 2 }}=V_{3}$ because of the parallel arrangement, and $V_{1}=\frac{1}{2} V_{1 \text { and } 2}$ since they are identical capacitors. This leads to

$$
\begin{aligned}
2 V_{1} & =V_{3} \\
2 \frac{q_{1}}{C_{1}} & =\frac{q_{3}}{C_{3}} \\
2 q_{1} & =q_{3}
\end{aligned}
$$

where the last step follows from multiplying both sides by $2.00 \mu \mathrm{~F}$. Therefore,

$$
Q=q_{1}+\left(2 q_{1}\right)
$$

which yields $q_{1}=16.0 \mu \mathrm{C}$ and $q_{3}=32.0 \mu \mathrm{C}$.

1. (a) The charge that passes through any cross section is the product of the current and time. Since $4.0 \mathrm{~min}=(4.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=240 \mathrm{~s}, q=i t=(5.0 \mathrm{~A})(240 \mathrm{~s})=1.2 \times 10^{3} \mathrm{C}$.
(b) The number of electrons N is given by $q=N e$, where e is the magnitude of the charge on an electron. Thus,

$$
N=q / e=(1200 \mathrm{C}) /\left(1.60 \times 10^{-19} \mathrm{C}\right)=7.5 \times 10^{21} .
$$

2. We adapt the discussion in the text to a moving two-dimensional collection of charges. Using σ for the charge per unit area and w for the belt width, we can see that the transport of charge is expressed in the relationship $i=\sigma v w$, which leads to

$$
\sigma=\frac{i}{v w}=\frac{100 \times 10^{-6} \mathrm{~A}}{(30 \mathrm{~m} / \mathrm{s})\left(50 \times 10^{-2} \mathrm{~m}\right)}=6.7 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} .
$$

3. Suppose the charge on the sphere increases by Δq in time Δt. Then, in that time its potential increases by

$$
\Delta V=\frac{\Delta q}{4 \pi \varepsilon_{0} r}
$$

where r is the radius of the sphere. This means

$$
\Delta q=4 \pi \varepsilon_{0} r \Delta V
$$

Now, $\Delta q=\left(i_{\text {in }}-i_{\text {out }}\right) \Delta t$, where $i_{\text {in }}$ is the current entering the sphere and $i_{\text {out }}$ is the current leaving. Thus,

$$
\begin{aligned}
\Delta t & =\frac{\Delta q}{i_{\text {in }}-i_{\text {out }}}=\frac{4 \pi \varepsilon_{0} r \Delta V}{i_{\text {in }}-i_{\text {out }}} \\
& =\frac{(0.10 \mathrm{~m})(1000 \mathrm{~V})}{\left(8.99 \times 10^{9} \mathrm{~F} / \mathrm{m}\right)(1.0000020 \mathrm{~A}-1.0000000 \mathrm{~A})}=5.6 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

4. We express the magnitude of the current density vector in SI units by converting the diameter values in mils to inches (by dividing by 1000) and then converting to meters (by multiplying by 0.0254) and finally using

$$
J=\frac{i}{A}=\frac{i}{\pi R^{2}}=\frac{4 i}{\pi D^{2}} .
$$

For example, the gauge 14 wire with $D=64 \mathrm{mil}=0.0016 \mathrm{~m}$ is found to have a (maximum safe) current density of $J=7.2 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$. In fact, this is the wire with the largest value of J allowed by the given data. The values of J in SI units are plotted below as a function of their diameters in mils.

5. (a) The magnitude of the current density is given by $J=n q v_{d}$, where n is the number of particles per unit volume, q is the charge on each particle, and v_{d} is the drift speed of the particles. The particle concentration is $n=2.0 \times 10^{8} / \mathrm{cm}^{3}=2.0 \times 10^{14} \mathrm{~m}^{-3}$, the charge is

$$
q=2 e=2\left(1.60 \times 10^{-19} \mathrm{C}\right)=3.20 \times 10^{-19} \mathrm{C} \text {, }
$$

and the drift speed is $1.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$. Thus,

$$
J=\left(2 \times 10^{14} / \mathrm{m}\right)\left(3.2 \times 10^{-19} \mathrm{C}\right)\left(1.0 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)=6.4 \mathrm{~A} / \mathrm{m}^{2} .
$$

(b) Since the particles are positively charged the current density is in the same direction as their motion, to the north.
(c) The current cannot be calculated unless the cross-sectional area of the beam is known. Then $i=J A$ can be used.
6. (a) The magnitude of the current density vector is

$$
J=\frac{i}{A}=\frac{i}{\pi d^{2} / 4}=\frac{4\left(1.2 \times 10^{-10} \mathrm{~A}\right)}{\pi\left(2.5 \times 10^{-3} \mathrm{~m}\right)^{2}}=2.4 \times 10^{-5} \mathrm{~A} / \mathrm{m}^{2} .
$$

(b) The drift speed of the current-carrying electrons is

$$
v_{d}=\frac{J}{n e}=\frac{2.4 \times 10^{-5} \mathrm{~A} / \mathrm{m}^{2}}{\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}=1.8 \times 10^{-15} \mathrm{~m} / \mathrm{s} .
$$

7. The cross-sectional area of wire is given by $A=\pi r^{2}$, where r is its radius (half its thickness). The magnitude of the current density vector is $J=i / A=i / \pi r^{2}$, so

$$
r=\sqrt{\frac{i}{\pi J}}=\sqrt{\frac{0.50 \mathrm{~A}}{\pi\left(440 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right)}}=1.9 \times 10^{-4} \mathrm{~m}
$$

The diameter of the wire is therefore $d=2 r=2\left(1.9 \times 10^{-4} \mathrm{~m}\right)=3.8 \times 10^{-4} \mathrm{~m}$.
8. (a) Since $1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}$, the magnitude of the current density vector is

$$
J=n e v=\left(\frac{8.70}{10^{-6} \mathrm{~m}^{3}}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(470 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)=6.54 \times 10^{-7} \mathrm{~A} / \mathrm{m}^{2}
$$

(b) Although the total surface area of Earth is $4 \pi R_{E}^{2}$ (that of a sphere), the area to be used in a computation of how many protons in an approximately unidirectional beam (the solar wind) will be captured by Earth is its projected area. In other words, for the beam, the encounter is with a "target" of circular area πR_{E}^{2}. The rate of charge transport implied by the influx of protons is

$$
i=A J=\pi R_{E}^{2} J=\pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}\left(6.54 \times 10^{-7} \mathrm{~A} / \mathrm{m}^{2}\right)=8.34 \times 10^{7} \mathrm{~A} .
$$

9. We use $v_{d}=J / n e=i / A n e$. Thus,

$$
\begin{aligned}
t & =\frac{L}{v_{d}}=\frac{L}{i / \text { Ane }}=\frac{\text { LAne }}{i}=\frac{(0.85 \mathrm{~m})\left(0.21 \times 10^{-14} \mathrm{~m}^{2}\right)\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{300 \mathrm{~A}} \\
& =8.1 \times 10^{2} \mathrm{~s}=13 \mathrm{~min} .
\end{aligned}
$$

10. We note that the radial width $\Delta r=10 \mu \mathrm{~m}$ is small enough (compared to $r=1.20 \mathrm{~mm}$) that we can make the approximation

$$
\int B r 2 \pi r d r \approx B r 2 \pi r \Delta r
$$

Thus, the enclosed current is $2 \pi B r^{2} \Delta r=18.1 \mu \mathrm{~A}$. Performing the integral gives the same answer.
11. (a) The current resulting from this non-uniform current density is

$$
i=\int_{\text {cylinder }} J_{a} d A=\frac{J_{0}}{R} \int_{0}^{R} r \cdot 2 \pi r d r=\frac{2}{3} \pi R^{2} J_{0}=\frac{2}{3} \pi\left(3.40 \times 10^{-3} \mathrm{~m}\right)^{2}\left(5.50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right)=1.33 \mathrm{~A} .
$$

(b) In this case,

$$
\begin{aligned}
i & =\int_{\text {cylinder }} J_{b} d A=\int_{0}^{R} J_{0}\left(1-\frac{r}{R}\right) 2 \pi r d r=\frac{1}{3} \pi R^{2} J_{0}=\frac{1}{3} \pi\left(3.40 \times 10^{-3} \mathrm{~m}\right)^{2}\left(5.50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right) \\
& =0.666 \mathrm{~A}
\end{aligned}
$$

(c) The result is different from that in part (a) because J_{b} is higher near the center of the cylinder (where the area is smaller for the same radial interval) and lower outward, resulting in a lower average current density over the cross section and consequently a lower current than that in part (a). So, J_{a} has its maximum value near the surface of the wire.
12. Assuming \vec{J} is directed along the wire (with no radial flow) we integrate, starting with Eq. 26-4,

$$
i=\int|\vec{J}| d A=\int_{9 R / 10}^{R}\left(k r^{2}\right) 2 \pi r d r=\frac{1}{2} k \pi\left(R^{4}-0.656 R^{4}\right)
$$

where $k=3.0 \times 10^{8}$ and SI units understood. Therefore, if $R=0.00200 \mathrm{~m}$, we obtain $i=2.59 \times 10^{-3} \mathrm{~A}$.
13. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows:

$$
\sigma=\frac{1}{\rho}=\frac{L}{R A}=\frac{L}{(V / i) A}=\frac{L i}{V A}=\frac{(1.0 \mathrm{~m})(4.0 \mathrm{~A})}{(2.0 \mathrm{~V})\left(1.0 \times 10^{-6} \mathrm{~m}^{2}\right)}=2.0 \times 10^{6} / \Omega \cdot \mathrm{m} .
$$

14. We use $R / L=\rho / A=0.150 \Omega / \mathrm{km}$.
(a) For copper $J=i / A=(60.0 \mathrm{~A})(0.150 \Omega / \mathrm{km}) /\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)=5.32 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}$.
(b) We denote the mass densities as ρ_{m}. For copper,

$$
(m / L)_{c}=\left(\rho_{m} A\right)_{c}=\left(8960 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right) /(0.150 \Omega / \mathrm{km})=1.01 \mathrm{~kg} / \mathrm{m}
$$

(c) For aluminum $J=(60.0 \mathrm{~A})(0.150 \Omega / \mathrm{km}) /\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)=3.27 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}$.
(d) The mass density of aluminum is

$$
(m / L)_{a}=\left(\rho_{m} A\right)_{a}=\left(2700 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right) /(0.150 \Omega / \mathrm{km})=0.495 \mathrm{~kg} / \mathrm{m} .
$$

15. The resistance of the wire is given by $R=\rho L / A$, where ρ is the resistivity of the material, L is the length of the wire, and A is its cross-sectional area. In this case,

$$
A=\pi r^{2}=\pi\left(0.50 \times 10^{-3} \mathrm{~m}\right)^{2}=7.85 \times 10^{-7} \mathrm{~m}^{2}
$$

Thus,

$$
\rho=\frac{R A}{L}=\frac{\left(50 \times 10^{-3} \Omega\right)\left(7.85 \times 10^{-7} \mathrm{~m}^{2}\right)}{2.0 \mathrm{~m}}=2.0 \times 10^{-8} \Omega \cdot \mathrm{~m} .
$$

16. (a) $i=V / R=23.0 \mathrm{~V} / 15.0 \times 10^{-3} \Omega=1.53 \times 10^{3} \mathrm{~A}$.
(b) The cross-sectional area is $A=\pi r^{2}=\frac{1}{4} \pi D^{2}$. Thus, the magnitude of the current density vector is

$$
J=\frac{i}{A}=\frac{4 i}{\pi D^{2}}=\frac{4\left(1.53 \times 10^{-3} \mathrm{~A}\right)}{\pi\left(6.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=5.41 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2} .
$$

(c) The resistivity is

$$
\rho=R A / L=\left(15.0 \times 10^{-3} \Omega\right)(\pi)\left(6.00 \times 10^{3} \mathrm{~m}\right)^{2} /[4(4.00 \mathrm{~m})]=10.6 \times 10^{-8} \Omega \cdot \mathrm{~m} .
$$

(d) The material is platinum.
17. Since the potential difference V and current i are related by $V=i R$, where R is the resistance of the electrician, the fatal voltage is $V=\left(50 \times 10^{-3} \mathrm{~A}\right)(2000 \Omega)=100 \mathrm{~V}$.
18. The thickness (diameter) of the wire is denoted by D. We use $R \propto L / A$ (Eq. 26-16) and note that $A=\frac{1}{4} \pi D^{2} \propto D^{2}$. The resistance of the second wire is given by

$$
R_{2}=R\left(\frac{A_{1}}{A_{2}}\right)\left(\frac{L_{2}}{L_{1}}\right)=R\left(\frac{D_{1}}{D_{2}}\right)^{2}\left(\frac{L_{2}}{L_{1}}\right)=R(2)^{2}\left(\frac{1}{2}\right)=2 R .
$$

19. The resistance of the coil is given by $R=\rho L / A$, where L is the length of the wire, ρ is the resistivity of copper, and A is the cross-sectional area of the wire. Since each turn of wire has length $2 \pi r$, where r is the radius of the coil, then

$$
L=(250) 2 \pi r=(250)(2 \pi)(0.12 \mathrm{~m})=188.5 \mathrm{~m} .
$$

If r_{w} is the radius of the wire itself, then its cross-sectional area is $A=\pi r^{2} w=\pi(0.65 \times$ $\left.10^{-3} \mathrm{~m}\right)^{2}=1.33 \times 10^{-6} \mathrm{~m}^{2}$. According to Table $26-1$, the resistivity of copper is $1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$. Thus,

$$
R=\frac{\rho L}{A}=\frac{\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(188.5 \mathrm{~m})}{1.33 \times 10^{-6} \mathrm{~m}^{2}}=2.4 \Omega
$$

20. (a) Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 26-11) that the electric fields (in the various rods) are directly proportional to their current-densities. Thus, $J_{1}: J_{2}: J_{3}$ are in the ratio 2.5/4/1.5 (see Fig. 26-24). Now the currents in the rods must be the same (they are "in series") so

$$
J_{1} A_{1}=J_{3} A_{3} \quad \text { and } \quad J_{2} A_{2}=J_{3} A_{3} .
$$

Since $A=\pi r^{2}$ this leads (in view of the aforementioned ratios) to

$$
4 r_{2}^{2}=1.5 r_{3}^{2} \quad \text { and } \quad 2.5 r_{1}^{2}=1.5 r_{3}^{2} .
$$

Thus, with $r_{3}=2 \mathrm{~mm}$, the latter relation leads to $r_{1}=1.55 \mathrm{~mm}$.
(b) The $4 r_{2}{ }^{2}=1.5 r_{3}^{2}$ relation leads to $r_{2}=1.22 \mathrm{~mm}$.
21. Since the mass density of the material do not change, the volume remains the same. If L_{0} is the original length, L is the new length, A_{0} is the original cross-sectional area, and A is the new cross-sectional area, then $L_{0} A_{0}=L A$ and $A=L_{0} A_{0} / L=L_{0} A_{0} / 3 L_{0}=A_{0} / 3$. The new resistance is

$$
R=\frac{\rho L}{A}=\frac{\rho 3 L_{0}}{A_{0} / 3}=9 \frac{\rho L_{0}}{A_{0}}=9 R_{0}
$$

where R_{0} is the original resistance. Thus, $R=9(6.0 \Omega)=54 \Omega$.
22. The cross-sectional area is $A=\pi r^{2}=\pi(0.002 \mathrm{~m})^{2}$. The resistivity from Table 26-1 is $\rho=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$. Thus, with $L=3 \mathrm{~m}$, Ohm's Law leads to $V=i R=i \rho L / A$, or

$$
12 \times 10^{-6} \mathrm{~V}=i\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(3.0 \mathrm{~m}) / \pi(0.002 \mathrm{~m})^{2}
$$

which yields $i=0.00297 \mathrm{~A}$ or roughly 3.0 mA .
23. The resistance of conductor A is given by

$$
R_{A}=\frac{\rho L}{\pi r_{A}^{2}},
$$

where r_{A} is the radius of the conductor. If r_{o} is the outside diameter of conductor B and r_{i} is its inside diameter, then its cross-sectional area is $\pi\left(r_{o}{ }^{2}-r_{i}^{2}\right)$, and its resistance is

$$
R_{B}=\frac{\rho L}{\pi\left(r_{o}^{2}-r_{i}^{2}\right)} .
$$

The ratio is

$$
\frac{R_{A}}{R_{B}}=\frac{r_{o}^{2}-r_{i}^{2}}{r_{A}^{2}}=\frac{(1.0 \mathrm{~mm})^{2}-(0.50 \mathrm{~mm})^{2}}{(0.50 \mathrm{~mm})^{2}}=3.0 .
$$

24. The absolute values of the slopes (for the straight-line segments shown in the graph of Fig. 26-26(b)) are equal to the respective electric field magnitudes. Thus, applying Eq. 26-5 and Eq. 26-13 to the three sections of the resistive strip, we have

$$
\begin{aligned}
& J_{1}=\frac{i}{A}=\sigma_{1} E_{1}=\sigma_{1}\left(0.50 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) \\
& J_{2}=\frac{i}{A}=\sigma_{2} E_{2}=\sigma_{2}\left(4.0 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) \\
& J_{3}=\frac{i}{A}=\sigma_{3} E_{3}=\sigma_{3}\left(1.0 \times 10^{3} \mathrm{~V} / \mathrm{m}\right)
\end{aligned}
$$

We note that the current densities are the same since the values of i and A are the same (see the problem statement) in the three sections, so $J_{1}=J_{2}=J_{3}$.
(a) Thus we see that

$$
\sigma_{1}=2 \sigma_{3}=2\left(3.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}\right)=6.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1} .
$$

(b) Similarly, $\sigma_{2}=\sigma_{3} / 4=\left(3.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}\right) / 4=7.50 \times 10^{6}(\Omega \cdot \mathrm{~m})^{-1}$.
25. The resistance at operating temperature T is $R=V / i=2.9 \mathrm{~V} / 0.30 \mathrm{~A}=9.67 \Omega$. Thus, from $R-R_{0}=R_{0} \alpha\left(T-T_{0}\right)$, we find

$$
T=T_{0}+\frac{1}{\alpha}\left(\frac{R}{R_{0}}-1\right)=20^{\circ} \mathrm{C}+\left(\frac{1}{4.5 \times 10^{-3} / \mathrm{K}}\right)\left(\frac{9.67 \Omega}{1.1 \Omega}-1\right)=1.9 \times 10^{3}{ }^{\circ} \mathrm{C} .
$$

Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the value of α used in this calculation is not inconsistent with the other units involved. Table $26-1$ has been used.
26. First we find $R=\rho L / A=2.69 \times 10^{-5} \Omega$. Then $i=\mathrm{V} / R=1.115 \times 10^{-4} \mathrm{~A}$. Finally, $\Delta Q=i \Delta t=3.35 \times 10^{-7} \mathrm{C}$.
27. We use $J=E / \rho$, where E is the magnitude of the (uniform) electric field in the wire, J is the magnitude of the current density, and ρ is the resistivity of the material. The electric field is given by $E=V / L$, where V is the potential difference along the wire and L is the length of the wire. Thus $J=V / L \rho$ and

$$
\rho=\frac{V}{L J}=\frac{115 \mathrm{~V}}{(10 \mathrm{~m})\left(1.4 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right)}=8.2 \times 10^{-4} \Omega \cdot \mathrm{~m} .
$$

28. We use $J=\sigma E=\left(n_{+}+n_{-}\right) e v_{d}$, which combines Eq. 26-13 and Eq. 26-7.
(a) $J=\sigma E=\left(2.70 \times 10^{-14} / \Omega \cdot \mathrm{m}\right)(120 \mathrm{~V} / \mathrm{m})=3.24 \times 10^{-12} \mathrm{~A} / \mathrm{m}^{2}$.
(b) The drift velocity is

$$
v_{d}=\frac{\sigma E}{\left(n_{+}+n_{-}\right) e}=\frac{\left(2.70 \times 10^{-14} / \Omega \cdot \mathrm{m}\right)(120 \mathrm{~V} / \mathrm{m})}{\left[(620+550) / \mathrm{cm}^{3}\right]\left(1.60 \times 10^{-19} \mathrm{C}\right)}=1.73 \mathrm{~cm} / \mathrm{s} .
$$

29. (a) $i=V / R=35.8 \mathrm{~V} / 935 \Omega=3.83 \times 10^{-2} \mathrm{~A}$.
(b) $J=i / A=\left(3.83 \times 10^{-2} \mathrm{~A}\right) /\left(3.50 \times 10^{-4} \mathrm{~m}^{2}\right)=109 \mathrm{~A} / \mathrm{m}^{2}$.
(c) $v_{d}=J / n e=\left(109 \mathrm{~A} / \mathrm{m}^{2}\right) /\left[\left(5.33 \times 10^{22} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\right]=1.28 \times 10^{-2} \mathrm{~m} / \mathrm{s}$.
(d) $E=V / L=35.8 \mathrm{~V} / 0.158 \mathrm{~m}=227 \mathrm{~V} / \mathrm{m}$.
30. We use $R \propto L / A$. The diameter of a 22-gauge wire is $1 / 4$ that of a 10 -gauge wire. Thus from $R=\rho L / A$ we find the resistance of 25 ft of 22-gauge copper wire to be

$$
R=(1.00 \Omega)(25 \mathrm{ft} / 1000 \mathrm{ft})(4)^{2}=0.40 \Omega .
$$

31. (a) The current in each strand is $i=0.750 \mathrm{~A} / 125=6.00 \times 10^{-3} \mathrm{~A}$.
(b) The potential difference is $V=i R=\left(6.00 \times 10^{-3} \mathrm{~A}\right)\left(2.65 \times 10^{-6} \Omega\right)=1.59 \times 10^{-8} \mathrm{~V}$.
(c) The resistance is $R_{\text {total }}=2.65 \times 10^{-6} \Omega / 125=2.12 \times 10^{-8} \Omega$.
32. The number density of conduction electrons in copper is $n=8.49 \times 10^{28} / \mathrm{m}^{3}$. The electric field in section 2 is $(10.0 \mu \mathrm{~V}) /(2.00 \mathrm{~m})=5.00 \mu \mathrm{~V} / \mathrm{m}$. Since $\rho=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$ for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude $J_{2}=(5.00 \mu \mathrm{~V} / \mathrm{m}) /\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)=296 \mathrm{~A} / \mathrm{m}^{2}$ in section 2 . Conservation of electric current from section 1 into section 2 implies

$$
\begin{gathered}
J_{1} A_{1}=J_{2} A_{2} \\
J_{1}\left(4 \pi R^{2}\right)=J_{2}\left(\pi R^{2}\right)
\end{gathered}
$$

(see Eq. 26-5). This leads to $J_{1}=74 \mathrm{~A} / \mathrm{m}^{2}$. Now, Eq. 26-7 immediately yields

$$
\mathrm{v}_{d}=\frac{J_{1}}{n e}=5.44 \times 10^{-9} \mathrm{~m} / \mathrm{s}
$$

for the drift speed of conduction-electrons in section 1.
33. (a) The current i is shown in Fig. 26-29 entering the truncated cone at the left end and leaving at the right. This is our choice of positive x direction. We make the assumption that the current density J at each value of x may be found by taking the ratio i / A where A $=\pi r^{2}$ is the cone's cross-section area at that particular value of x. The direction of \vec{J} is identical to that shown in the figure for i (our $+x$ direction). Using Eq. 26-11, we then find an expression for the electric field at each value of x, and next find the potential difference V by integrating the field along the x axis, in accordance with the ideas of Chapter 25. Finally, the resistance of the cone is given by $R=V / i$. Thus,

$$
J=\frac{i}{\pi r^{2}}=\frac{E}{\rho}
$$

where we must deduce how r depends on x in order to proceed. We note that the radius increases linearly with x, so (with c_{1} and c_{2} to be determined later) we may write

$$
r=c_{1}+c_{2} x
$$

Choosing the origin at the left end of the truncated cone, the coefficient c_{1} is chosen so that $r=a$ (when $x=0$); therefore, $c_{1}=a$. Also, the coefficient c_{2} must be chosen so that (at the right end of the truncated cone) we have $r=b$ (when $x=L$); therefore, $c_{2}=$ $(b-a) / L$. Our expression, then, becomes

$$
r=a+\left(\frac{b-a}{L}\right) x
$$

Substituting this into our previous statement and solving for the field, we find

$$
E=\frac{i \rho}{\pi}\left(a+\frac{b-a}{L} x\right)^{-2}
$$

Consequently, the potential difference between the faces of the cone is

$$
\begin{aligned}
V & =-\int_{0}^{L} E d x=-\frac{i \rho}{\pi} \int_{0}^{L}\left(a+\frac{b-a}{L} x\right)^{-2} d x=\left.\frac{i \rho}{\pi} \frac{L}{b-a}\left(a+\frac{b-a}{L} x\right)^{-1}\right|_{0} ^{L} \\
& =\frac{i \rho}{\pi} \frac{L}{b-a}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{i \rho}{\pi} \frac{L}{b-a} \frac{b-a}{a b}=\frac{i \rho L}{\pi a b}
\end{aligned}
$$

The resistance is therefore

$$
R=\frac{V}{i}=\frac{\rho L}{\pi a b}=\frac{(731 \Omega \cdot \mathrm{~m})\left(1.94 \times 10^{-2} \mathrm{~m}\right)}{\pi\left(2.00 \times 10^{-3} \mathrm{~m}\right)\left(2.30 \times 10^{-3} \mathrm{~m}\right)}=9.81 \times 10^{5} \Omega
$$

Note that if $b=a$, then $R=\rho L / \pi a^{2}=\rho L / A$, where $A=\pi a^{2}$ is the cross-sectional area of the cylinder.
34. From Eq. 26-25, $\rho \propto \tau^{-1} \propto v_{\text {eff. }}$. The connection with $v_{\text {eff }}$ is indicated in part (b) of Sample Problem 26-6, which contains useful insight regarding the problem we are working now. According to Chapter 20, $v_{\text {eff }} \propto \sqrt{T}$. Thus, we may conclude that $\rho \propto \sqrt{T}$.
35. (a) Electrical energy is converted to heat at a rate given by

$$
P=\frac{V^{2}}{R}
$$

where V is the potential difference across the heater and R is the resistance of the heater. Thus,

$$
P=\frac{(120 \mathrm{~V})^{2}}{14 \Omega}=1.0 \times 10^{3} \mathrm{~W}=1.0 \mathrm{~kW}
$$

(b) The cost is given by $(1.0 \mathrm{~kW})(5.0 \mathrm{~h})(5.0$ cents $/ \mathrm{kW} \cdot \mathrm{h})=\mathrm{US} \$ 0.25$.
36. Since $P=i V, q=i t=P t / V=(7.0 \mathrm{~W})(5.0 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h}) / 9.0 \mathrm{~V}=1.4 \times 10^{4} \mathrm{C}$.
37. The relation $P=V^{2} / R$ implies $P \propto V^{2}$. Consequently, the power dissipated in the second case is

$$
P=\left(\frac{1.50 \mathrm{~V}}{3.00 \mathrm{~V}}\right)^{2}(0.540 \mathrm{~W})=0.135 \mathrm{~W}
$$

38. The resistance is $R=P / i^{2}=(100 \mathrm{~W}) /(3.00 \mathrm{~A})^{2}=11.1 \Omega$.
39. (a) The power dissipated, the current in the heater, and the potential difference across the heater are related by $P=i V$. Therefore,

$$
i=\frac{P}{V}=\frac{1250 \mathrm{~W}}{115 \mathrm{~V}}=10.9 \mathrm{~A} .
$$

(b) Ohm's law states $V=i R$, where R is the resistance of the heater. Thus,

$$
R=\frac{V}{i}=\frac{115 \mathrm{~V}}{10.9 \mathrm{~A}}=10.6 \Omega .
$$

(c) The thermal energy E generated by the heater in time $t=1.0 \mathrm{~h}=3600 \mathrm{~s}$ is

$$
E=P t=(1250 \mathrm{~W})(3600 \mathrm{~s})=4.50 \times 10^{6} \mathrm{~J} .
$$

40. (a) From $P=V^{2} / R$ we find $R=V^{2} / P=(120 \mathrm{~V})^{2} / 500 \mathrm{~W}=28.8 \Omega$.
(b) Since $i=P / V$, the rate of electron transport is

$$
\frac{i}{e}=\frac{P}{e V}=\frac{500 \mathrm{~W}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(120 \mathrm{~V})}=2.60 \times 10^{19} / \mathrm{s} .
$$

41. (a) From $P=V^{2} / R=A V^{2} / \rho L$, we solve for the length:

$$
L=\frac{A V^{2}}{\rho P}=\frac{\left(2.60 \times 10^{-6} \mathrm{~m}^{2}\right)(75.0 \mathrm{~V})^{2}}{\left(5.00 \times 10^{-7} \Omega \cdot \mathrm{~m}\right)(500 \mathrm{~W})}=5.85 \mathrm{~m}
$$

(b) Since $L \propto V^{2}$ the new length should be

$$
L^{\prime}=L\left(\frac{V^{\prime}}{V}\right)^{2}=(5.85 \mathrm{~m})\left(\frac{100 \mathrm{~V}}{75.0 \mathrm{~V}}\right)^{2}=10.4 \mathrm{~m}
$$

42. The slopes of the lines yield $P_{1}=8 \mathrm{~mW}$ and $P_{2}=4 \mathrm{~mW}$. Their sum (by energy conservation) must be equal to that supplied by the battery: $P_{\text {batt }}=(8+4) \mathrm{mW}=12 \mathrm{~mW}$.
43. (a) The monthly cost is $(100 \mathrm{~W})(24 \mathrm{~h} /$ day $)(31$ day $/$ month $)(6$ cents $/ \mathrm{kW} \cdot \mathrm{h})=$ 446 cents $=$ US\$4.46, assuming a 31-day month.
(b) $R=V^{2} / P=(120 \mathrm{~V})^{2} / 100 \mathrm{~W}=144 \Omega$.
(c) $i=P / V=100 \mathrm{~W} / 120 \mathrm{~V}=0.833 \mathrm{~A}$.
44. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4:

$$
i=\int|\vec{J}| d A=\int_{0}^{R} k r^{2} 2 \pi r d r=\frac{1}{2} k \pi R^{4}=3.50 \mathrm{~A}
$$

where $k=2.75 \times 10^{10} \mathrm{~A} / \mathrm{m}^{4}$ and $R=0.00300 \mathrm{~m}$. The rate of thermal energy generation is found from Eq. 26-26: $P=i V=210 \mathrm{~W}$. Assuming a steady rate, the thermal energy generated in 40 s is $(210 \mathrm{~J} / \mathrm{s})(3600 \mathrm{~s})=7.56 \times 10^{5} \mathrm{~J}$.
45. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have

$$
|\vec{E}|=\rho|\vec{J}|=\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(\frac{2.00 \mathrm{~A}}{2.00 \times 10^{-6} \mathrm{~m}^{2}}\right)=1.69 \times 10^{-2} \mathrm{~V} / \mathrm{m}
$$

(b) Using $L=4.0 \mathrm{~m}$, the resistance is found from Eq. 26-16: $R=\rho L / A=0.0338 \Omega$. The rate of thermal energy generation is found from Eq. 26-27:

$$
P=i^{2} R=(2.00 \mathrm{~A})^{2}(0.0338 \Omega)=0.135 \mathrm{~W} .
$$

Assuming a steady rate, the thermal energy generated in 30 minutes is $(0.135 \mathrm{~J} / \mathrm{s})(30 \times$ $60 \mathrm{~s})=2.43 \times 10^{2} \mathrm{~J}$.
46. From $P=\mathrm{V}^{2} / R$, we have $R=(5.0 \mathrm{~V})^{2} /(200 \mathrm{~W})=0.125 \Omega$. To meet the conditions of the problem statement, we must therefore set

$$
\int_{0}^{L} 5.00 x d x=0.125 \Omega
$$

Thus,

$$
\frac{5}{2} L^{2}=0.125 \quad \Rightarrow \quad L=0.224 \mathrm{~m}
$$

47. (a) We use Eq. 26-16 to compute the resistances in SI units:

$$
R_{C}=\rho_{C} \frac{L_{C}}{\pi r_{C}^{2}}=\left(2 \times 10^{-6}\right) \frac{1}{\pi(0.0005)^{2}}=2.5 \Omega
$$

The voltage follows from Ohm's law:

$$
\left|V_{1}-V_{2}\right|=V_{C}=i R_{C}=5.1 \mathrm{~V} .
$$

(b) Similarly,

$$
R_{D}=\rho_{D} \frac{L_{D}}{\pi r_{D}^{2}}=\left(1 \times 10^{-6}\right) \frac{1}{\pi(0.00025)^{2}}=5.1 \Omega
$$

and $\left|V_{2}-V_{3}\right|=V_{D}=i R_{D}=10 \mathrm{~V}$.
(c) The power is calculated from Eq. 26-27: $P_{C}=i^{2} R_{C}=10 \mathrm{~W}$.
(d) Similarly, $P_{D}=i^{2} R_{D}=20 \mathrm{~W}$.
48. (a) Current is the transport of charge; here it is being transported "in bulk" due to the volume rate of flow of the powder. From Chapter 14, we recall that the volume rate of flow is the product of the cross-sectional area (of the stream) and the (average) stream velocity. Thus, $i=\rho A v$ where ρ is the charge per unit volume. If the cross-section is that of a circle, then $i=\rho \pi R^{2} v$.
(b) Recalling that a Coulomb per second is an Ampere, we obtain

$$
i=\left(1.1 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3}\right) \pi(0.050 \mathrm{~m})^{2}(2.0 \mathrm{~m} / \mathrm{s})=1.7 \times 10^{-5} \mathrm{~A} .
$$

(c) The motion of charge is not in the same direction as the potential difference computed in problem 57 of Chapter 25. It might be useful to think of (by analogy) Eq. 7-48; there, the scalar (dot) product in $P=\vec{F} \cdot \vec{v}$ makes it clear that $P=0$ if $\vec{F} \perp \vec{v}$. This suggests that a radial potential difference and an axial flow of charge will not together produce the needed transfer of energy (into the form of a spark).
(d) With the assumption that there is (at least) a voltage equal to that computed in problem 60 of Chapter 24, in the proper direction to enable the transference of energy (into a spark), then we use our result from that problem in Eq. 26-26:

$$
P=i V=\left(1.7 \times 10^{-5} \mathrm{~A}\right)\left(7.8 \times 10^{4} \mathrm{~V}\right)=1.3 \mathrm{~W}
$$

(e) Recalling that a Joule per second is a Watt, we obtain $(1.3 \mathrm{~W})(0.20 \mathrm{~s})=0.27 \mathrm{~J}$ for the energy that can be transferred at the exit of the pipe.
(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark was likely to have occurred at the exit of the pipe, going into the silo.
49. (a) We are told that $r_{B}=\frac{1}{2} r_{A}$ and $L_{B}=2 L_{A}$. Thus, using Eq. 26-16,

$$
R_{B}=\rho \frac{L_{B}}{\pi r_{B}^{2}}=\rho \frac{2 L A}{\frac{1}{4} \pi r_{A}^{2}}=8 R_{A}=64 \Omega .
$$

(b) The current densities are assumed uniform.

$$
\frac{J_{A}}{J_{B}}=\frac{i / \pi r_{A}^{2}}{i / \pi r_{B}^{2}}=\frac{i / \pi r_{A}^{2}}{4 i / \pi r_{A}^{2}}=0.25 .
$$

50. (a) Circular area depends, of course, on r^{2}, so the horizontal axis of the graph in Fig. $26-33(b)$ is effectively the same as the area (enclosed at variable radius values), except for a factor of π. The fact that the current increases linearly in the graph means that $i / A=$ $J=$ constant. Thus, the answer is "yes, the current density is uniform."
(b) We find $i /\left(\pi r^{2}\right)=(0.005 \mathrm{~A}) /\left(\pi \times 4 \times 10^{-6} \mathrm{~m}^{2}\right)=398 \approx 4.0 \times 10^{2} \mathrm{~A} / \mathrm{m}^{2}$.
51. Using $A=\pi r^{2}$ with $r=5 \times 10^{-4} \mathrm{~m}$ with Eq. 26-5 yields

$$
|\vec{J}|=\frac{i}{A}=2.5 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}
$$

Then, with $|\vec{E}|=5.3 \mathrm{~V} / \mathrm{m}$, Eq. 26-10 leads to

$$
\rho=\frac{5.3 \mathrm{~V} / \mathrm{m}}{2.5 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}}=2.1 \times 10^{-6} \Omega \cdot \mathrm{~m} .
$$

52. We find the drift speed from Eq. 26-7:

$$
v_{d}=\frac{|\vec{J}|}{n e}=1.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

At this (average) rate, the time required to travel $L=5.0 \mathrm{~m}$ is

$$
t=\frac{L}{v_{d}}=3.4 \times 10^{4} \mathrm{~s}
$$

53. (a) Referring to Fig. 26-34, the electric field would point down (towards the bottom of the page) in the strip, which means the current density vector would point down, too (by Eq. 26-11). This implies (since electrons are negatively charged) that the conductionelectrons would be "drifting" upward in the strip.
(b) Eq. 24-6 immediately gives 12 eV , or (using $e=1.60 \times 10^{-19} \mathrm{C}$) $1.9 \times 10^{-18} \mathrm{~J}$ for the work done by the field (which equals, in magnitude, the potential energy change of the electron).
(c) Since the electrons don't (on average) gain kinetic energy as a result of this work done, it is generally dissipated as heat. The answer is as in part (b): 12 eV or $1.9 \times 10^{-18} \mathrm{~J}$.
54. Since $100 \mathrm{~cm}=1 \mathrm{~m}$, then $10^{4} \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}$. Thus,

$$
R=\frac{\rho L}{A}=\frac{\left(3.00 \times 10^{-7} \Omega \cdot \mathrm{~m}\right)\left(10.0 \times 10^{3} \mathrm{~m}\right)}{56.0 \times 10^{-4} \mathrm{~m}^{2}}=0.536 \Omega .
$$

55. (a) The charge that strikes the surface in time Δt is given by $\Delta q=i \Delta t$, where i is the current. Since each particle carries charge $2 e$, the number of particles that strike the surface is

$$
N=\frac{\Delta q}{2 e}=\frac{i \Delta t}{2 e}=\frac{\left(0.25 \times 10^{-6} \mathrm{~A}\right)(3.0 \mathrm{~s})}{2\left(1.6 \times 10^{-19} \mathrm{C}\right)}=2.3 \times 10^{12}
$$

(b) Now let N be the number of particles in a length L of the beam. They will all pass through the beam cross section at one end in time $t=L / v$, where v is the particle speed. The current is the charge that moves through the cross section per unit time. That is, $i=$ $2 e N / t=2 e N v / L$. Thus $N=i L / 2 e v$. To find the particle speed, we note the kinetic energy of a particle is

$$
K=20 \mathrm{MeV}=\left(20 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=3.2 \times 10^{-12} \mathrm{~J}
$$

Since $K=\frac{1}{2} m v^{2}$, then the speed is $v=\sqrt{2 K / m}$. The mass of an alpha particle is (very nearly) 4 times the mass of a proton, or $m=4\left(1.67 \times 10^{-27} \mathrm{~kg}\right)=6.68 \times 10^{-27} \mathrm{~kg}$, so

$$
v=\sqrt{\frac{2\left(3.2 \times 10^{-12} \mathrm{~J}\right)}{6.68 \times 10^{-27} \mathrm{~kg}}}=3.1 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

and

$$
N=\frac{i L}{2 e v}=\frac{\left(0.25 \times 10^{-6}\right)\left(20 \times 10^{-2} \mathrm{~m}\right)}{2\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.1 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}=5.0 \times 10^{3} .
$$

(c) We use conservation of energy, where the initial kinetic energy is zero and the final kinetic energy is $20 \mathrm{MeV}=3.2 \times 10^{-12} \mathrm{~J}$. We note, too, that the initial potential energy is $U_{i}=q V=2 \mathrm{eV}$, and the final potential energy is zero. Here V is the electric potential through which the particles are accelerated. Consequently,

$$
K_{f}=U_{i}=2 e V \Rightarrow V=\frac{K_{f}}{2 e}=\frac{3.2 \times 10^{-12} \mathrm{~J}}{2\left(1.60 \times 10^{-19} \mathrm{C}\right)}=1.0 \times 10^{7} \mathrm{~V} .
$$

56. (a) Since $P=i^{2} R=J^{2} A^{2} R$, the current density is

$$
\begin{aligned}
J & =\frac{1}{A} \sqrt{\frac{P}{R}}=\frac{1}{A} \sqrt{\frac{P}{\rho L / A}}=\sqrt{\frac{P}{\rho L A}} \\
& =\sqrt{\frac{1.0 \mathrm{~W}}{\pi\left(3.5 \times 10^{-5} \Omega \cdot \mathrm{~m}\right)\left(2.0 \times 10^{-2} \mathrm{~m}\right)\left(5.0 \times 10^{-3} \mathrm{~m}\right)^{2}}}=1.3 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2} .
\end{aligned}
$$

(b) From $P=i V=J A V$ we get

$$
V=\frac{P}{A J}=\frac{P}{\pi r^{2} J}=\frac{1.0 \mathrm{~W}}{\pi\left(5.0 \times 10^{-3} \mathrm{~m}\right)^{2}\left(1.3 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}\right)}=9.4 \times 10^{-2} \mathrm{~V} .
$$

57. Let R_{H} be the resistance at the higher temperature $\left(800^{\circ} \mathrm{C}\right)$ and let R_{L} be the resistance at the lower temperature $\left(200^{\circ} \mathrm{C}\right)$. Since the potential difference is the same for the two temperatures, the power dissipated at the lower temperature is $P_{L}=V^{2} / R_{L}$, and the power dissipated at the higher temperature is $P_{H}=V^{2} / R_{H}$, so $P_{L}=\left(R_{H} / R_{L}\right) P_{H}$. Now $R_{L}=R_{H}+\alpha R_{H} \Delta T$, where ΔT is the temperature difference $T_{L}-T_{H}=-600 \mathrm{C}^{\circ}=-600 \mathrm{~K}$. Thus,

$$
P_{L}=\frac{R_{H}}{R_{H}+\alpha R_{H} \Delta T} P_{H}=\frac{P_{H}}{1+\alpha \Delta T}=\frac{500 \mathrm{~W}}{1+\left(4.0 \times 10^{-4} / \mathrm{K}\right)(-600 \mathrm{~K})}=660 \mathrm{~W} .
$$

58. (a) We use $P=V^{2} / R \propto V^{2}$, which gives $\Delta P \propto \Delta V^{2} \approx 2 V \Delta V$. The percentage change is roughly

$$
\Delta P / P=2 \Delta V / V=2(110-115) / 115=-8.6 \% .
$$

(b) A drop in V causes a drop in P, which in turn lowers the temperature of the resistor in the coil. At a lower temperature R is also decreased. Since $P \propto R^{-1}$ a decrease in R will result in an increase in P, which partially offsets the decrease in P due to the drop in V. Thus, the actual drop in P will be smaller when the temperature dependency of the resistance is taken into consideration.
59. (a) The current is

$$
\begin{aligned}
i & =\frac{V}{R}=\frac{V}{\rho L / A}=\frac{\pi V d^{2}}{4 \rho L} \\
& =\frac{\pi(1.20 \mathrm{~V})\left[(0.0400 \mathrm{in} .)\left(2.54 \times 10^{-2} \mathrm{~m} / \mathrm{in} .\right)\right]^{2}}{4\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(33.0 \mathrm{~m})}=1.74 \mathrm{~A} .
\end{aligned}
$$

(b) The magnitude of the current density vector is

$$
|\vec{J}|=\frac{i}{A}=\frac{4 i}{\pi d^{2}}=\frac{4(1.74 \mathrm{~A})}{\pi\left[(0.0400 \mathrm{in} .)\left(2.54 \times 10^{-2} \mathrm{~m} / \mathrm{in} .\right)\right]^{2}}=2.15 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2} .
$$

(c) $E=V / L=1.20 \mathrm{~V} / 33.0 \mathrm{~m}=3.63 \times 10^{-2} \mathrm{~V} / \mathrm{m}$.
(d) $P=V i=(1.20 \mathrm{~V})(1.74 \mathrm{~A})=2.09 \mathrm{~W}$.
60. (a) Since
$\rho=R A / L=\pi R d^{2} / 4 L=\pi\left(1.09 \times 10^{-3} \Omega\right)\left(5.50 \times 10^{-3} \mathrm{~m}\right)^{2} /[4(1.60 \mathrm{~m})]=1.62 \times 10^{-8} \Omega \cdot \mathrm{~m}$, the material is silver.
(b) The resistance of the round disk is

$$
R=\rho \frac{L}{A}=\frac{4 \rho L}{\pi d^{2}}=\frac{4\left(1.62 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(1.00 \times 10^{-3} \mathrm{~m}\right)}{\pi\left(2.00 \times 10^{-2} \mathrm{~m}\right)^{2}}=5.16 \times 10^{-8} \Omega .
$$

61. Eq. 26-26 gives the rate of thermal energy production:

$$
P=i V=(10.0 \mathrm{~A})(120 \mathrm{~V})=1.20 \mathrm{~kW} .
$$

Dividing this into the 180 kJ necessary to cook the three hot-dogs leads to the result $t=150 \mathrm{~s}$.
62. (a) We denote the copper wire with subscript c and the aluminum wire with subscript a.

$$
R=\rho_{a} \frac{L}{A}=\frac{\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(1.3 \mathrm{~m})}{\left(5.2 \times 10^{-3} \mathrm{~m}\right)^{2}}=1.3 \times 10^{-3} \Omega
$$

(b) Let $R=\rho_{c} L /\left(\pi d^{2} / 4\right)$ and solve for the diameter d of the copper wire:

$$
d=\sqrt{\frac{4 \rho_{c} L}{\pi R}}=\sqrt{\frac{4\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(1.3 \mathrm{~m})}{\pi\left(1.3 \times 10^{-3} \Omega\right)}}=4.6 \times 10^{-3} \mathrm{~m} .
$$

63. We use $P=i^{2} R=i^{2} \rho L / A$, or $L / A=P / i^{2} \rho$.
(a) The new values of L and A satisfy

$$
\left(\frac{L}{A}\right)_{\text {new }}=\left(\frac{P}{i^{2} \rho}\right)_{\text {new }}=\frac{30}{4^{2}}\left(\frac{P}{i^{2} \rho}\right)_{\text {old }}=\frac{30}{16}\left(\frac{L}{A}\right)_{\text {old }}
$$

Consequently, $(L / A)_{\text {new }}=1.875(L / A)_{\text {old }}$, and

$$
L_{\text {new }}=\sqrt{1.875} L_{\text {old }}=1.37 L_{\text {old }} \Rightarrow \frac{L_{\text {new }}}{L_{\text {old }}}=1.37 .
$$

(b) Similarly, we note that $(L A)_{\text {new }}=(L A)_{\text {old }}$, and

$$
A_{\text {new }}=\sqrt{1 / 1.875} A_{\text {old }}=0.730 A_{\text {old }} \Rightarrow \frac{A_{\text {new }}}{A_{\text {old }}}=0.730
$$

64. The horsepower required is

$$
P=\frac{i V}{0.80}=\frac{(10 \mathrm{~A})(12 \mathrm{~V})}{(0.80)(746 \mathrm{~W} / \mathrm{hp})}=0.20 \mathrm{hp} .
$$

65. We find the current from Eq. 26-26: $i=P / V=2.00$ A. Then, from Eq. 26-1 (with constant current), we obtain

$$
\Delta q=i \Delta t=2.88 \times 10^{4} \mathrm{C}
$$

66. We find the resistance from $A=\pi r^{2}$ and Eq. 26-16:

$$
R=\rho \frac{L}{A}=\left(1.69 \times 10^{-8}\right) \frac{45}{1.3 \times 10^{-5}}=0.061 \Omega
$$

Then the rate of thermal energy generation is found from Eq. 26-28: $P=V^{2} / R=2.4 \mathrm{~kW}$. Assuming a steady rate, the thermal energy generated in 40 s is $(2.4)(40)=95 \mathrm{~kJ}$.
67. We find the rate of energy consumption from Eq. 26-28:

$$
P=\frac{V^{2}}{R}=\frac{90^{2}}{400}=20.3 \mathrm{~W} .
$$

Assuming a steady rate, the energy consumed is $(20.3 \mathrm{~J} / \mathrm{s})(2.00 \times 3600 \mathrm{~s})=1.46 \times 10^{5} \mathrm{~J}$.
68. We use Eq. 26-28:

$$
R=\frac{V^{2}}{P}=\frac{200^{2}}{3000}=13.3 \Omega
$$

69. The slope of the graph is $P=5.0 \times 10^{-4} \mathrm{~W}$. Using this in the $P=\mathrm{V}^{2} / R$ relation leads to $V=0.10 \mathrm{Vs}$.
70. The rate at which heat is being supplied is $P=i V=(5.2 \mathrm{~A})(12 \mathrm{~V})=62.4 \mathrm{~W}$. Considered on a one-second time-frame, this means 62.4 J of heat are absorbed the liquid each second. Using Eq. 18-16, we find the heat of transformation to be

$$
L=\frac{Q}{m}=\frac{62.4 \mathrm{~J}}{21 \times 10^{-6} \mathrm{~kg}}=3.0 \times 10^{6} \mathrm{~J} / \mathrm{kg} .
$$

71. (a) The current is $4.2 \times 10^{18} e$ divided by 1 second. Using $e=1.60 \times 10^{-19} \mathrm{C}$ we obtain 0.67 A for the current.
(b) Since the electric field points away from the positive terminal (high potential) and towards the negative terminal (low potential), then the current density vector (by Eq. 2611) must also point towards the negative terminal.
72. Combining Eq. 26-28 with Eq. 26-16 demonstrates that the power is inversely proportional to the length (when the voltage is held constant, as in this case). Thus, a new length equal to $7 / 8$ of its original value leads to

$$
P=\frac{8}{7}(2.0 \mathrm{~kW})=2.4 \mathrm{~kW}
$$

73. (a) Since the field is considered to be uniform inside the wire, then its magnitude is, by Eq. 24-42,

$$
|\vec{E}|=\frac{|\Delta V|}{L}=\frac{50}{200}=0.25 \mathrm{~V} / \mathrm{m} .
$$

Using Eq. 26-11, with $\rho=1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$, we obtain

$$
\vec{E}=\rho \vec{J} \Rightarrow \vec{J}=1.5 \times 10^{7} \hat{\mathrm{i}}
$$

in SI units ($\mathrm{A} / \mathrm{m}^{2}$).
(b) The electric field points towards lower values of potential (see Eq. 24-40) so \vec{E} is directed towards point B (which we take to be the $\hat{\mathrm{i}}$ direction in our calculation).
74. We use Eq. 26-17: $\rho-\rho_{0}=\rho \alpha\left(T-T_{0}\right)$, and solve for T :

$$
T=T_{0}+\frac{1}{\alpha}\left(\frac{\rho}{\rho_{0}}-1\right)=20^{\circ} \mathrm{C}+\frac{1}{4.3 \times 10^{-3} / \mathrm{K}}\left(\frac{58 \Omega}{50 \Omega}-1\right)=57^{\circ} \mathrm{C}
$$

We are assuming that $\rho / \rho_{0}=R / R_{0}$.
75. (a) With $\rho=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$ (from Table 26-1) and $L=1000 \mathrm{~m}$, Eq. 26-16 leads to

$$
A=\rho \frac{L}{R}=\left(1.69 \times 10^{-8}\right) \frac{1000}{33}=5.1 \times 10^{-7} \mathrm{~m}^{2}
$$

Then, $A=\pi r^{2}$ yields $r=4.0 \times 10^{-4} \mathrm{~m}$; doubling that gives the diameter as $8.1 \times 10^{-4} \mathrm{~m}$.
(b) Repeating the calculation in part (a) with $\rho=2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}$ leads to a diameter of $1.0 \times 10^{-3} \mathrm{~m}$.
76. (a) The charge q that flows past any cross section of the beam in time Δt is given by q $=i \Delta t$, and the number of electrons is $N=q / e=(i / e) \Delta t$. This is the number of electrons that are accelerated. Thus

$$
N=\frac{(0.50 \mathrm{~A})\left(0.10 \times 10^{-6} \mathrm{~s}\right)}{1.60 \times 10^{-19} \mathrm{C}}=3.1 \times 10^{11} .
$$

(b) Over a long time t the total charge is $Q=n q t$, where n is the number of pulses per unit time and q is the charge in one pulse. The average current is given by $i_{\text {avg }}=Q / t=n q$. Now $q=i \Delta t=(0.50 \mathrm{~A})\left(0.10 \times 10^{-6} \mathrm{~s}\right)=5.0 \times 10^{-8} \mathrm{C}$, so

$$
i_{\text {avg }}=(500 / \mathrm{s})\left(5.0 \times 10^{-8} \mathrm{C}\right)=2.5 \times 10^{-5} \mathrm{~A} .
$$

(c) The accelerating potential difference is $V=K / e$, where K is the final kinetic energy of an electron. Since $K=50 \mathrm{MeV}$, the accelerating potential is $V=50 \mathrm{kV}=5.0 \times 10^{7} \mathrm{~V}$. The average power is

$$
P_{\text {avg }}=i_{\text {avg }} V=\left(2.5 \times 10^{-5} \mathrm{~A}\right)\left(5.0 \times 10^{7} \mathrm{~V}\right)=1.3 \times 10^{3} \mathrm{~W}
$$

(d) During a pulse the power output is

$$
P=i V=(0.50 \mathrm{~A})\left(5.0 \times 10^{7} \mathrm{~V}\right)=2.5 \times 10^{7} \mathrm{~W}
$$

This is the peak power.
77. The power dissipated is given by the product of the current and the potential difference: $P=i V=\left(7.0 \times 10^{-3} \mathrm{~A}\right)\left(80 \times 10^{3} \mathrm{~V}\right)=560 \mathrm{~W}$.
78. (a) Let ΔT be the change in temperature and κ be the coefficient of linear expansion for copper. Then $\Delta L=\kappa L \Delta T$ and

$$
\frac{\Delta L}{L}=\kappa \Delta T=\left(1.7 \times 10^{-5} / \mathrm{K}\right)\left(1.0^{\circ} \mathrm{C}\right)=1.7 \times 10^{-5} .
$$

This is equivalent to 0.0017%. Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the value of κ used in this calculation is not inconsistent with the other units involved. Incorporating a factor of 2 for the two-dimensional nature of A, the fractional change in area is

$$
\frac{\Delta A}{A}=2 \kappa \Delta T=2\left(1.7 \times 10^{-5} / \mathrm{K}\right)\left(1.0^{\circ} \mathrm{C}\right)=3.4 \times 10^{-5}
$$

which is 0.0034%. For small changes in the resistivity ρ, length L, and area A of a wire, the change in the resistance is given by

$$
\Delta R=\frac{\partial R}{\partial \rho} \Delta \rho+\frac{\partial R}{\partial L} \Delta L+\frac{\partial R}{\partial A} \Delta A .
$$

Since $R=\rho L / A, \partial R / \partial \rho=L / A=R / \rho, \partial R / \partial L=\rho / A=R / L$, and $\partial R / \partial A=-\rho L / A^{2}=-R / A$. Furthermore, $\Delta \rho / \rho=\alpha \Delta T$, where α is the temperature coefficient of resistivity for copper $\left(4.3 \times 10^{-3} / \mathrm{K}=4.3 \times 10^{-3} / \mathrm{C}^{\circ}\right.$, according to Table 26-1). Thus,

$$
\begin{aligned}
\frac{\Delta R}{R} & =\frac{\Delta \rho}{\rho}+\frac{\Delta L}{L}-\frac{\Delta A}{A}=(\alpha+\kappa-2 \kappa) \Delta T=(\alpha-\kappa) \Delta T \\
& =\left(4.3 \times 10^{-3} / \mathrm{C}^{\circ}-1.7 \times 10^{-5} / \mathrm{C}^{\circ}\right)\left(1.0 \mathrm{C}^{\circ}\right)=4.3 \times 10^{-3}
\end{aligned}
$$

This is 0.43%, which we note (for the purposes of the next part) is primarily determined by the $\Delta \rho / \rho$ term in the above calculation.
(b) As shown in part (a), the percentage change in L is 0.0017%.
(c) As shown in part (a), the percentage change in A is 0.0034%.
(d) The fractional change in resistivity is much larger than the fractional change in length and area. Changes in length and area affect the resistance much less than changes in resistivity.
79. (a) In Eq. 26-17, we let $\rho=2 \rho_{0}$ where ρ_{0} is the resistivity at $T_{0}=20^{\circ} \mathrm{C}$:

$$
\rho-\rho_{0}=2 \rho_{0}-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right)
$$

and solve for the temperature T :

$$
T=T_{0}+\frac{1}{\alpha}=20^{\circ} \mathrm{C}+\frac{1}{4.3 \times 10^{-3} / \mathrm{K}} \approx 250^{\circ} \mathrm{C} .
$$

(b) Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the value of α used in this calculation is not inconsistent with the other units involved. It is worth noting that this agrees well with Fig. 26-10.
80. Since values from the referred-to graph can only be crudely estimated, we do not present a graph here, but rather indicate a few values. Since $R=V / i$ then we see $R=\infty$ when $i=0$ (which the graph seems to show throughout the range $-\infty<V<2 \mathrm{~V}$) and $V \neq 0$. For voltages values larger than 2 V , the resistance changes rapidly according to the ratio V / i. For instance, $R \approx 3.1 / 0.002=1550 \Omega$ when $V=3.1 \mathrm{~V}$, and $R \approx 3.8 / 0.006=$ 633Ω when $V=3.8 \mathrm{~V}$.
81. (a) $V=i R=i \rho \frac{L}{A}=\frac{(12 \mathrm{~A})\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(4.0 \times 10^{-2} \mathrm{~m}\right)}{\pi\left(5.2 \times 10^{-3} \mathrm{~m} / 2\right)^{2}}=3.8 \times 10^{-4} \mathrm{~V}$.
(b) Since it moves in the direction of the electron drift which is against the direction of the current, its tail is negative compared to its head.
(c) The time of travel relates to the drift speed:

$$
\begin{aligned}
t & =\frac{L}{v_{d}}=\frac{l A n e}{i}=\frac{\pi L d^{2} n e}{4 i} \\
& =\frac{\pi\left(1.0 \times 10^{-2} \mathrm{~m}\right)\left(5.2 \times 10^{-3} \mathrm{~m}\right)^{2}\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{4(12 \mathrm{~A})} \\
& =238 \mathrm{~s}=3 \min 58 \mathrm{~s} .
\end{aligned}
$$

82. Using Eq. 7-48 and Eq. 26-27, the rate of change of mechanical energy of the pistonEarth system, $m g v$, must be equal to the rate at which heat is generated from the coil: $m g v$ $=i^{2} R$. Thus

$$
v=\frac{i^{2} R}{m g}=\frac{(0.240 \mathrm{~A})^{2}(550 \Omega)}{(12 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.27 \mathrm{~m} / \mathrm{s} .
$$

83. (a) $i=\left(n_{h}+n_{e}\right) e\left(2.25 \times 10^{15} / \mathrm{s}+3.50 \times 10^{15} / \mathrm{s}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)=9.20 \times 10^{-4} \mathrm{~A}$.
(b) The magnitude of the current density vector is

$$
|\overrightarrow{\mathbf{J}}|=\frac{i}{A}=\frac{9.20 \times 10^{-4} \mathrm{~A}}{\pi\left(0.165 \times 10^{-3} \mathrm{~m}\right)^{2}}=1.08 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}
$$

1. (a) The cost is $(100 \mathrm{~W} \cdot 8.0 \mathrm{~h} / 2.0 \mathrm{~W} \cdot \mathrm{~h})(\$ 0.80)=\$ 3.2 \times 10^{2}$.
(b) The cost is $\left(100 \mathrm{~W} \cdot 8.0 \mathrm{~h} / 10^{3} \mathrm{~W} \cdot \mathrm{~h}\right)(\$ 0.06)=\$ 0.048=4.8$ cents.
2. The chemical energy of the battery is reduced by $\Delta E=q \mathcal{E}$, where q is the charge that passes through in time $\Delta t=6.0 \mathrm{~min}$, and ε is the emf of the battery. If i is the current, then $q=i \Delta t$ and

$$
\Delta E=i \varepsilon \Delta t=(5.0 \mathrm{~A})(6.0 \mathrm{~V})(6.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=1.1 \times 10^{4} \mathrm{~J}
$$

We note the conversion of time from minutes to seconds.
3. If P is the rate at which the battery delivers energy and Δt is the time, then $\Delta E=P \Delta t$ is the energy delivered in time Δt. If q is the charge that passes through the battery in time Δt and ε is the emf of the battery, then $\Delta E=q \varepsilon$. Equating the two expressions for ΔE and solving for Δt, we obtain

$$
\Delta t=\frac{q \varepsilon}{P}=\frac{(120 \mathrm{~A} \cdot \mathrm{~h})(12.0 \mathrm{~V})}{100 \mathrm{~W}}=14.4 \mathrm{~h} .
$$

4. (a) The energy transferred is

$$
U=P t=\frac{\varepsilon^{2} t}{r+R}=\frac{(2.0 \mathrm{~V})^{2}(2.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})}{1.0 \Omega+5.0 \Omega}=80 \mathrm{~J} .
$$

(b) The amount of thermal energy generated is

$$
U^{\prime}=i^{2} R t=\left(\frac{\varepsilon}{r+R}\right)^{2} R t=\left(\frac{2.0 \mathrm{~V}}{1.0 \Omega+5.0 \Omega}\right)^{2}(5.0 \Omega)(2.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=67 \mathrm{~J} .
$$

(c) The difference between U and U^{\prime}, which is equal to 13 J , is the thermal energy that is generated in the battery due to its internal resistance.
5. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R_{1}. We use Kirchhoff's loop rule: $\varepsilon_{1}-i R_{2}-i R_{1}-\varepsilon_{2}=0$. We solve for i :

$$
i=\frac{\varepsilon_{1}-\varepsilon_{2}}{R_{1}+R_{2}}=\frac{12 \mathrm{~V}-6.0 \mathrm{~V}}{4.0 \Omega+8.0 \Omega}=0.50 \mathrm{~A} .
$$

A positive value is obtained, so the current is counterclockwise around the circuit.
If i is the current in a resistor R, then the power dissipated by that resistor is given by $P=i^{2} R$.
(b) For $R_{1}, P_{1}=(0.50 \mathrm{~A})^{2}(4.0 \Omega)=1.0 \mathrm{~W}$,
(c) and for $R_{2}, P_{2}=(0.50 \mathrm{~A})^{2}(8.0 \Omega)=2.0 \mathrm{~W}$.

If i is the current in a battery with emf ε, then the battery supplies energy at the rate $P=i \varepsilon$ provided the current and emf are in the same direction. The battery absorbs energy at the rate $P=i \varepsilon$ if the current and emf are in opposite directions.
(d) For $\varepsilon_{1}, P_{1}=(0.50 \mathrm{~A})(12 \mathrm{~V})=6.0 \mathrm{~W}$
(e) and for $\varepsilon_{2}, P_{2}=(0.50 \mathrm{~A})(6.0 \mathrm{~V})=3.0 \mathrm{~W}$.
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery supplies energy to the circuit; the battery is discharging.
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs energy from the circuit. It is charging.
6. The current in the circuit is

$$
i=(150 \mathrm{~V}-50 \mathrm{~V}) /(3.0 \Omega+2.0 \Omega)=20 \mathrm{~A}
$$

So from $V_{Q}+150 \mathrm{~V}-(2.0 \Omega) i=V_{P}$, we get $V_{Q}=100 \mathrm{~V}+(2.0 \Omega)(20 \mathrm{~A})-150 \mathrm{~V}=-10 \mathrm{~V}$.
7. (a) The potential difference is $V=\varepsilon+$ ir $=12 \mathrm{~V}+(0.040 \Omega)(50 \mathrm{~A})=14 \mathrm{~V}$.
(b) $P=i^{2} r=(50 \mathrm{~A})^{2}(0.040 \Omega)=1.0 \times 10^{2} \mathrm{~W}$.
(c) $P^{\prime}=i V=(50 \mathrm{~A})(12 \mathrm{~V})=6.0 \times 10^{2} \mathrm{~W}$.
(d) In this case $V=\varepsilon-i r=12 \mathrm{~V}-(0.040 \Omega)(50 \mathrm{~A})=10 \mathrm{~V}$.
(e) $P_{r}=i^{2} r=1.0 \times 10^{2} \mathrm{~W}$.
8. (a) We solve $i=\left(\varepsilon_{2}-\varepsilon_{1}\right) /\left(r_{1}+r_{2}+R\right)$ for R :

$$
R=\frac{\varepsilon_{2}-\varepsilon_{1}}{i}-r_{1}-r_{2}=\frac{3.0 \mathrm{~V}-2.0 \mathrm{~V}}{1.0 \times 10^{-3} \mathrm{~A}}-3.0 \Omega-3.0 \Omega=9.9 \times 10^{2} \Omega
$$

(b) $P=i^{2} R=\left(1.0 \times 10^{-3} \mathrm{~A}\right)^{2}\left(9.9 \times 10^{2} \Omega\right)=9.9 \times 10^{-4} \mathrm{~W}$.
9. (a) If i is the current and ΔV is the potential difference, then the power absorbed is given by $P=i \Delta V$. Thus,

$$
\Delta V=\frac{P}{i}=\frac{50 \mathrm{~W}}{1.0 \mathrm{~A}}=50 \mathrm{~V} .
$$

Since the energy of the charge decreases, point A is at a higher potential than point B ; that is, $V_{A}-V_{B}=50 \mathrm{~V}$.
(b) The end-to-end potential difference is given by $V_{A}-V_{B}=+i R+\varepsilon$, where ε is the emf of element C and is taken to be positive if it is to the left in the diagram. Thus,

$$
\mathcal{E}=V_{A}-V_{B}-i R=50 \mathrm{~V}-(1.0 \mathrm{~A})(2.0 \Omega)=48 \mathrm{~V} .
$$

(c) A positive value was obtained for ε, so it is toward the left. The negative terminal is at B.
10. (a) For each wire, $R_{\text {wire }}=\rho L / A$ where $A=\pi r^{2}$. Consequently, we have

$$
R_{\text {wire }}=\left(1.69 \times 10^{-8}\right)(0.200) / \pi(0.00100)^{2}=0.0011 \Omega .
$$

The total resistive load on the battery is therefore $2 R_{\text {wire }}+6.00 \Omega$. Dividing this into the battery emf gives the current $i=1.9993 \mathrm{~A}$. The voltage across the 6.00Ω resistor is therefore $(1.9993 \mathrm{~A})(6.00 \Omega)=11.996 \mathrm{~V} \approx 12 \mathrm{~V}$.
(b) Similarly, we find the voltage-drop across each wire to be 2.15 mV .
(c) $P=i^{2} R=(1.9993 \mathrm{~A})(6 \Omega)^{2}=23.98 \mathrm{~W} \approx 24.0 \mathrm{~W}$.
(d) Similarly, we find the power dissipated in each wire to be 4.30 mW .
11. Let the emf be V. Then $V=i R=i^{\prime}\left(R+R^{\prime}\right)$, where $i=5.0 \mathrm{~A}, i^{\prime}=4.0 \mathrm{~A}$ and $R^{\prime}=2.0 \Omega$. We solve for R :

$$
R=\frac{i^{\prime} R^{\prime}}{i-i^{\prime}}=\frac{(4.0)(2.0)}{5.0-4.0}=8.0 \Omega .
$$

12. (a) Here we denote the battery emf's as V_{1} and V_{2}. The loop rule gives

$$
V_{2}-i r_{2}+V_{1}-i r_{1}-i R=0 \Rightarrow i=\frac{V_{2}+V_{1}}{r_{1}+r_{2}+R}
$$

The terminal voltage of battery 1 is $V_{1 T}$ and (see Fig. 27-4(a)) is easily seen to be equal to $\mathrm{V}_{1}-i r_{1}$; similarly for battery 2 . Thus,

$$
V_{1 T}=V_{1}-\frac{r_{1}\left(V_{2}+V_{1}\right)}{r_{1}+r_{2}+R} \text { and } V_{2 T}=V_{2}-\frac{r_{1}\left(V_{2}+V_{1}\right)}{r_{1}+r_{2}+R} .
$$

The problem tells us that V_{1} and V_{2} each equal 1.20 V . From the graph in Fig. 27-30(b) we see that $V_{2 T}=0$ and $V_{1 T}=0.40 \mathrm{~V}$ for $R=0.10 \Omega$. This supplies us (in view of the above relations for terminal voltages) with simultaneous equations, which, when solved, lead to $r_{1}=0.20 \Omega$.
(b) The simultaneous solution also gives $r_{2}=0.30 \Omega$.
13. To be as general as possible, we refer to the individual emf's as ε_{1} and ε_{2} and wait until the latter steps to equate them $\left(\varepsilon_{1}=\varepsilon_{2}=\varepsilon\right)$. The batteries are placed in series in such a way that their voltages add; that is, they do not "oppose" each other. The total resistance in the circuit is therefore $R_{\text {total }}=R+r_{1}+r_{2}$ (where the problem tells us $r_{1}>r_{2}$), and the "net emf" in the circuit is $\varepsilon_{1}+\varepsilon_{2}$. Since battery 1 has the higher internal resistance, it is the one capable of having a zero terminal voltage, as the computation in part (a) shows.
(a) The current in the circuit is

$$
i=\frac{\varepsilon_{1}+\varepsilon_{2}}{r_{1}+r_{2}+R},
$$

and the requirement of zero terminal voltage leads to

$$
\varepsilon_{1}=i r_{1} \Rightarrow R=\frac{\varepsilon_{2} r_{1}-\varepsilon_{1} r_{2}}{\varepsilon_{1}}=\frac{(12.0)(0.016)-(12.0)(0.012)}{12.0}=0.004 \Omega
$$

Note that $R=r_{1}-r_{2}$ when we set $\varepsilon_{1}=\varepsilon_{2}$.
(b) As mentioned above, this occurs in battery 1.
14. (a) Let the emf of the solar cell be ε and the output voltage be V. Thus,

$$
V=\varepsilon-i r=\varepsilon-\left(\frac{V}{R}\right) r
$$

for both cases. Numerically, we get

$$
\begin{aligned}
& 0.10 \mathrm{~V}=\varepsilon-(0.10 \mathrm{~V} / 500 \Omega) r \\
& 0.15 \mathrm{~V}=\varepsilon-(0.15 \mathrm{~V} / 1000 \Omega) r
\end{aligned}
$$

We solve for ε and r.
(a) $r=1.0 \times 10^{3} \Omega$.
(b) $\varepsilon=0.30 \mathrm{~V}$.
(c) The efficiency is

$$
\frac{V^{2} / R}{P_{\text {received }}}=\frac{0.15 \mathrm{~V}}{(1000 \Omega)\left(5.0 \mathrm{~cm}^{2}\right)\left(2.0 \times 10^{-3} \mathrm{~W} / \mathrm{cm}^{2}\right)}=2.3 \times 10^{-3}=0.23 \%
$$

15. The potential difference across each resistor is $V=25.0 \mathrm{~V}$. Since the resistors are identical, the current in each one is $i=V / R=(25.0 \mathrm{~V}) /(18.0 \Omega)=1.39 \mathrm{~A}$. The total current through the battery is then $i_{\text {total }}=4(1.39 \mathrm{~A})=5.56 \mathrm{~A}$. One might alternatively use the idea of equivalent resistance; for four identical resistors in parallel the equivalent resistance is given by

$$
\frac{1}{R_{\mathrm{eq}}}=\sum \frac{1}{R}=\frac{4}{R}
$$

When a potential difference of 25.0 V is applied to the equivalent resistor, the current through it is the same as the total current through the four resistors in parallel. Thus

$$
i_{\text {total }}=V / R_{\mathrm{eq}}=4 V / R=4(25.0 \mathrm{~V}) /(18.0 \Omega)=5.56 \mathrm{~A} .
$$

16. Let the resistances of the two resistors be R_{1} and R_{2}, with $R_{1}<R_{2}$. From the statements of the problem, we have

$$
R_{1} R_{2} /\left(R_{1}+R_{2}\right)=3.0 \Omega \text { and } R_{1}+R_{2}=16 \Omega .
$$

So R_{1} and R_{2} must be 4.0Ω and 12Ω, respectively.
(a) The smaller resistance is $R_{1}=4.0 \Omega$.
(b) The larger resistance is $R_{2}=12 \Omega$.
17. We note that two resistors in parallel, R_{1} and R_{2}, are equivalent to

$$
R_{12}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

This situation (Figure 27-32) consists of a parallel pair which are then in series with a single $R_{3}=2.50 \Omega$ resistor. Thus, the situation has an equivalent resistance of

$$
R_{\mathrm{eq}}=R_{3}+R_{12}=2.50 \Omega+\frac{(4.00 \Omega)(4.00 \Omega)}{4.00 \Omega+4.00 \Omega}=4.50 \Omega
$$

18. (a) $R_{\text {eq }}(F H)=(10.0 \Omega)(10.0 \Omega)(5.00 \Omega) /[(10.0 \Omega)(10.0 \Omega)+2(10.0 \Omega)(5.00 \Omega)]=$ 2.50Ω.
(b) $R_{\mathrm{eq}}(F G)=(5.00 \Omega) R /(R+5.00 \Omega)$, where

$$
R=5.00 \Omega+(5.00 \Omega)(10.0 \Omega) /(5.00 \Omega+10.0 \Omega)=8.33 \Omega
$$

So $R_{\mathrm{eq}}(F G)=(5.00 \Omega)(8.33 \Omega) /(5.00 \Omega+8.33 \Omega)=3.13 \Omega$.
19. Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is upward.
(a) When the loop rule is applied to the lower loop, the result is

$$
\varepsilon_{2}-i_{1} R_{1}=0
$$

The equation yields

$$
i_{1}=\frac{\varepsilon_{2}}{R_{1}}=\frac{5.0 \mathrm{~V}}{100 \Omega}=0.050 \mathrm{~A} .
$$

(b) When it is applied to the upper loop, the result is

$$
\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-i_{2} R_{2}=0 .
$$

The equation yields

$$
i_{2}=\frac{\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}}{R_{2}}=\frac{6.0 \mathrm{~V}-5.0 \mathrm{~V}-4.0 \mathrm{~V}}{50 \Omega}=-0.060 \mathrm{~A}
$$

or $\left|i_{2}\right|=0.060 \mathrm{~A}$. The negative sign indicates that the current in R_{2} is actually downward.
(c) If V_{b} is the potential at point b, then the potential at point a is $V_{a}=V_{b}+\varepsilon_{3}+\varepsilon_{2}$, so V_{a} $-V_{b}=\varepsilon_{3}+\varepsilon_{2}=4.0 \mathrm{~V}+5.0 \mathrm{~V}=9.0 \mathrm{~V}$.
20. The currents i_{1}, i_{2} and i_{3} are obtained from Eqs. 27-18 through 27-20:

$$
\begin{aligned}
& i_{1}=\frac{\varepsilon_{1}\left(R_{2}+R_{3}\right)-\varepsilon_{2} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}=\frac{(4.0 \mathrm{~V})(10 \Omega+5.0 \Omega)-(1.0 \mathrm{~V})(5.0 \Omega)}{(10 \Omega)(10 \Omega)+(10 \Omega)(5.0 \Omega)+(10 \Omega)(5.0 \Omega)}=0.275 \mathrm{~A}, \\
& i_{2}=\frac{\varepsilon_{1} R_{3}-\varepsilon_{2}\left(R_{1}+R_{2}\right)}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}=\frac{(4.0 \mathrm{~V})(5.0 \Omega)-(1.0 \mathrm{~V})(10 \Omega+5.0 \Omega)}{(10 \Omega)(10 \Omega)+(10 \Omega)(5.0 \Omega)+(10 \Omega)(5.0 \Omega)}=0.025 \mathrm{~A}, \\
& i_{3}=i_{2}-i_{1}=0.025 \mathrm{~A}-0.275 \mathrm{~A}=-0.250 \mathrm{~A} .
\end{aligned}
$$

$V_{d}-V_{c}$ can now be calculated by taking various paths. Two examples: from $V_{d}-i_{2} R_{2}=$ V_{c} we get

$$
V_{d}-V_{c}=i_{2} R_{2}=(0.0250 \mathrm{~A})(10 \Omega)=+0.25 \mathrm{~V}
$$

from $V_{d}+i_{3} R_{3}+\varepsilon_{2}=V_{c}$ we get

$$
V_{d}-V_{c}=i_{3} R_{3}-\varepsilon_{2}=-(-0.250 \mathrm{~A})(5.0 \Omega)-1.0 \mathrm{~V}=+0.25 \mathrm{~V} .
$$

21. Let r be the resistance of each of the narrow wires. Since they are in parallel the resistance R of the composite is given by

$$
\frac{1}{R}=\frac{9}{r},
$$

or $R=r / 9$. Now $r=4 \rho \ell / \pi d^{2}$ and $R=4 \rho \ell / \pi D^{2}$, where ρ is the resistivity of copper. A $=\pi d^{2} / 4$ was used for the cross-sectional area of a single wire, and a similar expression was used for the cross-sectional area of the thick wire. Since the single thick wire is to have the same resistance as the composite,

$$
\frac{4 \rho \ell}{\pi D^{2}}=\frac{4 \rho \ell}{9 \pi d^{2}} \Rightarrow D=3 d
$$

22. Using the junction rule $\left(i_{3}=i_{1}+i_{2}\right)$ we write two loop rule equations:

$$
\begin{aligned}
& 10.0 \mathrm{~V}-i_{1} R_{1}-\left(i_{1}+i_{2}\right) R_{3}=0 \\
& 5.00 \mathrm{~V}-i_{2} R_{2}-\left(i_{1}+i_{2}\right) R_{3}=0
\end{aligned}
$$

(a) Solving, we find $i_{2}=0$, and
(b) $i_{3}=i_{1}+i_{2}=1.25 \mathrm{~A}$ (downward, as was assumed in writing the equations as we did).
23. First, we note V_{4}, that the voltage across R_{4} is equal to the sum of the voltages across R_{5} and R_{6} :

$$
V_{4}=i_{6}\left(R_{5}+R_{6}\right)=(1.40 \mathrm{~A})(8.00 \Omega+4.00 \Omega)=16.8 \mathrm{~V} .
$$

The current through R_{4} is then equal to $i_{4}=V_{4} / R_{4}=16.8 \mathrm{~V} /(16.0 \Omega)=1.05 \mathrm{~A}$.
By the junction rule, the current in R_{2} is $i_{2}=i_{4}+i_{6}=1.05 \mathrm{~A}+1.40 \mathrm{~A}=2.45 \mathrm{~A}$, so its voltage is $V_{2}=(2.00 \Omega)(2.45 \mathrm{~A})=4.90 \mathrm{~V}$.

The loop rule tells us the voltage across R_{3} is $V_{3}=V_{2}+V_{4}=21.7 \mathrm{~V}$ (implying that the current through it is $\left.i_{3}=V_{3} /(2.00 \Omega)=10.85 \mathrm{~A}\right)$.

The junction rule now gives the current in R_{1} as $i_{1}=i_{2}+i_{3}=2.45 \mathrm{~A}+10.85 \mathrm{~A}=13.3 \mathrm{~A}$, implying that the voltage across it is $V_{1}=(13.3 \mathrm{~A})(2.00 \Omega)=26.6 \mathrm{~V}$. Therefore, by the loop rule,

$$
\varepsilon=V_{1}+V_{3}=26.6 \mathrm{~V}+21.7 \mathrm{~V}=48.3 \mathrm{~V}
$$

24. (a) By the loop rule, it remains the same. This question is aimed at student conceptualization of voltage; many students apparently confuse the concepts of voltage and current and speak of "voltage going through" a resistor - which would be difficult to rectify with the conclusion of this problem.
(b) The loop rule still applies, of course, but (by the junction rule and Ohm's law) the voltages across R_{1} and R_{3} (which were the same when the switch was open) are no longer equal. More current is now being supplied by the battery which means more current is in R_{3}, implying its voltage-drop has increased (in magnitude). Thus, by the loop rule (since the battery voltage has not changed) the voltage across R_{1} has decreased a corresponding amount. When the switch was open, the voltage across R_{1} was 6.0 V (easily seen from symmetry considerations). With the switch closed, R_{1} and R_{2} are equivalent (by Eq. 2724) to 3.0Ω, which means the total load on the battery is 9.0Ω. The current therefore is 1.33 A which implies the voltage-drop across R_{3} is 8.0 V . The loop rule then tells us that voltage-drop across R_{1} is $12 \mathrm{~V}-8.0 \mathrm{~V}=4.0 \mathrm{~V}$. This is a decrease of 2.0 volts from the value it had when the switch was open.
25. The voltage difference across R_{3} is $V_{3}=\varepsilon R^{\prime} /\left(R^{\prime}+2.00 \Omega\right)$, where

$$
R^{\prime}=(5.00 \Omega R) /\left(5.00 \Omega+R_{3}\right) .
$$

Thus,

$$
\begin{aligned}
P_{3} & =\frac{V_{3}^{2}}{R_{3}}=\frac{1}{R_{3}}\left(\frac{\varepsilon R^{\prime}}{R^{\prime}+2.00 \Omega}\right)^{2}=\frac{1}{R_{3}}\left(\frac{\varepsilon}{1+2.00 \Omega / R^{\prime}}\right)^{2}=\frac{\varepsilon^{2}}{R_{3}}\left[1+\frac{(2.00 \Omega)(5.00 \Omega+R)}{(5.00 \Omega) R_{3}}\right]^{-2} \\
& \equiv \frac{\varepsilon^{2}}{f\left(R_{3}\right)}
\end{aligned}
$$

where we use the equivalence symbol \equiv to define the expression $f\left(R_{3}\right)$. To maximize P_{3} we need to minimize the expression $f\left(R_{3}\right)$. We set

$$
\frac{d f\left(R_{3}\right)}{d R_{3}}=-\frac{4.00 \Omega^{2}}{R_{3}{ }^{2}}+\frac{49}{25}=0
$$

to obtain $R_{3}=\sqrt{\left(4.00 \Omega^{2}\right)(25) / 49}=1.43 \Omega$.
26. (a) The voltage across $R_{3}=6.0 \Omega$ is $V_{3} i R_{3}=(6.0 \mathrm{~A})(6.0 \Omega)=36 \mathrm{~V}$. Now, the voltage across $R_{1}=2.0 \Omega$ is

$$
\left(V_{A}-V_{B}\right)-V_{3}=78-36=42 \mathrm{~V},
$$

which implies the current is $i_{1}=(42 \mathrm{~V}) /(2.0 \Omega)=21 \mathrm{~A}$. By the junction rule, then, the current in $R_{2}=4.0 \Omega$ is $i_{2}=i_{1}-i=21-6.0=15 \mathrm{~A}$. The total power dissipated by the resistors is (using Eq. 26-27)

$$
i_{1}^{2}(2.0 \Omega)+i_{2}^{2}(4.0 \Omega)+i^{2}(6.0 \Omega)=1998 \mathrm{~W} \approx 2.0 \mathrm{~kW} .
$$

By contrast, the power supplied (externally) to this section is $P_{A}=i_{A}\left(V_{A}-V_{B}\right)$ where $i_{A}=$ $i_{1}=21 \mathrm{~A}$. Thus, $P_{A}=1638 \mathrm{~W}$. Therefore, the "Box" must be providing energy.
(b) The rate of supplying energy is $(1998-1638) \mathrm{W}=3.6 \times 10^{2} \mathrm{~W}$.
27. (a) We note that the R_{1} resistors occur in series pairs, contributing net resistance $2 R_{1}$ in each branch where they appear. Since $\varepsilon_{2}=\varepsilon_{3}$ and $R_{2}=2 R_{1}$, from symmetry we know that the currents through ε_{2} and ε_{3} are the same: $i_{2}=i_{3}=i$. Therefore, the current through ε_{1} is $i_{1}=2 i$. Then from $V_{b}-V_{a}=\varepsilon_{2}-i R_{2}=\varepsilon_{1}+\left(2 R_{1}\right)(2 i)$ we get

$$
i=\frac{\varepsilon_{2}-\varepsilon_{1}}{4 R_{1}+R_{2}}=\frac{4.0 \mathrm{~V}-2.0 \mathrm{~V}}{4(1.0 \Omega)+2.0 \Omega}=0.33 \mathrm{~A} .
$$

Therefore, the current through \mathcal{E}_{1} is $i_{1}=2 i=0.67 \mathrm{~A}$.
(b) The direction of i_{1} is downward.
(c) The current through ε_{2} is $i_{2}=0.33 \mathrm{~A}$.
(d) The direction of i_{2} is upward.
(e) From part (a), we have $i_{3}=i_{2}=0.33 \mathrm{~A}$.
(f) The direction of i_{3} is also upward.
(g) $V_{a}-V_{b}=-i R_{2}+\varepsilon_{2}=-(0.333 \mathrm{~A})(2.0 \Omega)+4.0 \mathrm{~V}=3.3 \mathrm{~V}$.
28. (a) For typing convenience, we denote the emf of battery 2 as V_{2} and the emf of battery 1 as V_{1}. The loop rule (examining the left-hand loop) gives $V_{2}+i_{1} R_{1}-V_{1}=0$. Since V_{1} is held constant while V_{2} and i_{1} vary, we see that this expression (for large enough V_{2}) will result in a negative value for i_{1} - so the downward sloping line (the line that is dashed in Fig. 27-41(b)) must represent i_{1}. It appears to be zero when $V_{2}=6 \mathrm{~V}$. With $i_{1}=0$, our loop rule gives $V_{1}=V_{2}$ which implies that $V_{1}=6.0 \mathrm{~V}$.
(b) At $V_{2}=2 \mathrm{~V}$ (in the graph) it appears that $i_{1}=0.2 \mathrm{~A}$. Now our loop rule equation (with the conclusion about V_{1} found in part (a)) gives $R_{1}=20 \Omega$.
(c) Looking at the point where the upward-sloping i_{2} line crosses the axis (at $V_{2}=4 \mathrm{~V}$), we note that $i_{1}=0.1 \mathrm{~A}$ there and that the loop rule around the right-hand loop should give

$$
V_{1}-i_{1} R_{1}=i_{1} R_{2} \quad \text { when } i_{1}=0.1 \mathrm{~A} \text { and } i_{2}=0 .
$$

This leads directly to $R_{2}=40 \Omega$.
29. Let the resistors be divided into groups of n resistors each, with all the resistors in the same group connected in series. Suppose there are m such groups that are connected in parallel with each other. Let R be the resistance of any one of the resistors. Then the equivalent resistance of any group is $n R$, and $R_{\text {eq }}$, the equivalent resistance of the whole array, satisfies

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{1}^{m} \frac{1}{n R}=\frac{m}{n R} .
$$

Since the problem requires $R_{\text {eq }}=10 \Omega=R$, we must select $n=m$. Next we make use of Eq. 27-16. We note that the current is the same in every resistor and there are $n \cdot m=n^{2}$ resistors, so the maximum total power that can be dissipated is $P_{\text {total }}=n^{2} P$, where $P=1.0 \mathrm{~W}$ is the maximum power that can be dissipated by any one of the resistors. The problem demands $P_{\text {total }} \geq 5.0 P$, so n^{2} must be at least as large as 5.0. Since n must be an integer, the smallest it can be is 3 . The least number of resistors is $n^{2}=9$.
30. (a) R_{2}, R_{3} and R_{4} are in parallel. By finding a common denominator and simplifying, the equation $1 / R=1 / R_{2}+1 / R_{3}+1 / R_{4}$ gives an equivalent resistance of

$$
\begin{aligned}
R & =\frac{R_{2} R_{3} R_{4}}{R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}}=\frac{(50.0 \Omega)(50.0 \Omega)(75.0 \Omega)}{(50.0 \Omega)(50.0 \Omega)+(50.0 \Omega)(75.0 \Omega)+(50.0 \Omega)(75.0 \Omega)} \\
& =18.8 \Omega
\end{aligned}
$$

Thus, considering the series contribution of resistor R_{1}, the equivalent resistance for the network is $R_{\mathrm{eq}}=R_{1}+R=100 \Omega+18.8 \Omega=118.8 \Omega \approx 119 \Omega$.
(b) $i_{1}=\varepsilon / R_{\text {eq }}=6.0 \mathrm{~V} /(118.8 \Omega)=5.05 \times 10^{-2} \mathrm{~A}$.
(c) $i_{2}=\left(\varepsilon-V_{1}\right) / R_{2}=\left(\varepsilon-i_{1} R_{1}\right) / R_{2}=\left[6.0 \mathrm{~V}-\left(5.05 \times 10^{-2} \mathrm{~A}\right)(100 \Omega)\right] / 50 \Omega=1.90 \times 10^{-2} \mathrm{~A}$.
(d) $i_{3}=\left(\varepsilon-V_{1}\right) / R_{3}=i_{2} R_{2} / R_{3}=\left(1.90 \times 10^{-2} \mathrm{~A}\right)(50.0 \Omega / 50.0 \Omega)=1.90 \times 10^{-2} \mathrm{~A}$.
(e) $i_{4}=i_{1}-i_{2}-i_{3}=5.05 \times 10^{-2} \mathrm{~A}-2\left(1.90 \times 10^{-2} \mathrm{~A}\right)=1.25 \times 10^{-2} \mathrm{~A}$.
31. (a) The batteries are identical and, because they are connected in parallel, the potential differences across them are the same. This means the currents in them are the same. Let i be the current in either battery and take it to be positive to the left. According to the junction rule the current in R is $2 i$ and it is positive to the right. The loop rule applied to either loop containing a battery and R yields

$$
\varepsilon-i r-2 i R=0 \Rightarrow i=\frac{\varepsilon}{r+2 R} .
$$

The power dissipated in R is

$$
P=(2 i)^{2} R=\frac{4 \varepsilon^{2} R}{(r+2 R)^{2}} .
$$

We find the maximum by setting the derivative with respect to R equal to zero. The derivative is

$$
\frac{d P}{d R}=\frac{4 \varepsilon^{2}}{(r+2 R)^{3}}-\frac{16 \varepsilon^{2} R}{(r+2 R)^{3}}=\frac{4 \varepsilon^{2}(r-2 R)}{(r+2 R)^{3}} .
$$

The derivative vanishes (and P is a maximum) if $R=r / 2$. With $r=0.300 \Omega$, we have $R=0.150 \Omega$.
(b) We substitute $R=r / 2$ into $P=4 \varepsilon^{2} R /(r+2 R)^{2}$ to obtain

$$
P_{\max }=\frac{4 \varepsilon^{2}(r / 2)}{[r+2(r / 2)]^{2}}=\frac{\varepsilon^{2}}{2 r}=\frac{(12.0 \mathrm{~V})^{2}}{2(0.300 \Omega)}=240 \mathrm{~W} .
$$

32. (a) By symmetry, when the two batteries are connected in parallel the current i going through either one is the same. So from $\mathcal{\varepsilon}=\operatorname{ir}+(2 i) R$ with $r=0.200 \Omega$ and $R=2.00 r$, we get

$$
i_{R}=2 i=\frac{2 \varepsilon}{r+2 R}=\frac{2(12.0 \mathrm{~V})}{0.200 \Omega+2(0.400 \Omega)}=24.0 \mathrm{~A} .
$$

(b) When connected in series $2 \varepsilon-i_{R} r-i_{R} r-i_{R} R=0$, or $i_{R}=2 \varepsilon /(2 r+R)$.

$$
i_{R}=2 i=\frac{2 \varepsilon}{2 r+R}=\frac{2(12.0 \mathrm{~V})}{2(0.200 \Omega)+0.400 \Omega}=30.0 \mathrm{~A} .
$$

(c) In series, since $R>r$.
(d) If $R=r / 2.00$, then for parallel connection,

$$
i_{R}=2 i=\frac{2 \varepsilon}{r+2 R}=\frac{2(12.0 \mathrm{~V})}{0.200 \Omega+2(0.100 \Omega)}=60.0 \mathrm{~A} .
$$

(e) For series connection, we have

$$
i_{R}=2 i=\frac{2 \varepsilon}{2 r+R}=\frac{2(12.0 \mathrm{~V})}{2(0.200 \Omega)+0.100 \Omega}=48.0 \mathrm{~A} .
$$

(f) In parallel, since $R<r$.
33. (a) We first find the currents. Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is to the left. Let i_{3} be the current in R_{3} and take it to be positive if it is upward. The junction rule produces

$$
i_{1}+i_{2}+i_{3}=0
$$

The loop rule applied to the left-hand loop produces

$$
\varepsilon_{1}-i_{1} R_{1}+i_{3} R_{3}=0
$$

and applied to the right-hand loop produces

$$
\varepsilon_{2}-i_{2} R_{2}+i_{3} R_{3}=0 .
$$

We substitute $i_{3}=-i_{2}-i_{1}$, from the first equation, into the other two to obtain

$$
\varepsilon_{1}-i_{1} R_{1}-i_{2} R_{3}-i_{1} R_{3}=0
$$

and

$$
\varepsilon_{2}-i_{2} R_{2}-i_{2} R_{3}-i_{1} R_{3}=0 .
$$

Solving the above equations yield
$i_{1}=\frac{\varepsilon_{1}\left(R_{2}+R_{3}\right)-\varepsilon_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=\frac{(3.00 \mathrm{~V})(2.00 \Omega+5.00 \Omega)-(1.00 \mathrm{~V})(5.00 \Omega)}{(4.00 \Omega)(2.00 \Omega)+(4.00 \Omega)(5.00 \Omega)+(2.00 \Omega)(5.00 \Omega)}=0.421 \mathrm{~A}$.
$i_{2}=\frac{\varepsilon_{2}\left(R_{1}+R_{3}\right)-\varepsilon_{1} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=\frac{(1.00 \mathrm{~V})(4.00 \Omega+5.00 \Omega)-(3.00 \mathrm{~V})(5.00 \Omega)}{(4.00 \Omega)(2.00 \Omega)+(4.00 \Omega)(5.00 \Omega)+(2.00 \Omega)(5.00 \Omega)}=-0.158 \mathrm{~A}$.
$i_{3}=-\frac{\varepsilon_{2} R_{1}+\varepsilon_{1} R_{2}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=-\frac{(1.00 \mathrm{~V})(4.00 \Omega)+(3.00 \mathrm{~V})(2.00 \Omega)}{(4.00 \Omega)(2.00 \Omega)+(4.00 \Omega)(5.00 \Omega)+(2.00 \Omega)(5.00 \Omega)}=-0.263 \mathrm{~A}$.
Note that the current i_{3} in R_{3} is actually downward and the current i_{2} in R_{2} is to the right. The current i_{1} in R_{1} is to the right.
(a) The power dissipated in R_{1} is $P_{1}=i_{1}^{2} R_{1}=(0.421 \mathrm{~A})^{2}(4.00 \Omega)=0.709 \mathrm{~W}$.
(b) The power dissipated in R_{2} is $P_{2}=i_{2}^{2} R_{2}=(-0.158 \mathrm{~A})^{2}(2.00 \Omega)=0.0499 \mathrm{~W} \approx 0.050 \mathrm{~W}$.
(c) The power dissipated in R_{3} is $P_{3}=i_{3}^{2} R_{3}=(-0.263 \mathrm{~A})^{2}(5.00 \Omega)=0.346 \mathrm{~W}$.
(d) The power supplied by ε_{1} is $i_{3} \varepsilon_{1}=(0.421 \mathrm{~A})(3.00 \mathrm{~V})=1.26 \mathrm{~W}$.
(e) The power "supplied" by ε_{2} is $i_{2} \varepsilon_{2}=(-0.158 \mathrm{~A})(1.00 \mathrm{~V})=-0.158 \mathrm{~W}$. The negative sign indicates that ε_{2} is actually absorbing energy from the circuit.
34. (a) When $R_{3}=0$ all the current passes through R_{1} and R_{3} and avoids R_{2} altogether. Since that value of the current (through the battery) is 0.006 A (see Fig. 27-45(b)) for R_{3} $=0$ then (using Ohm's law) $R_{1}=(12 \mathrm{~V}) /(0.006 \mathrm{~A})=2.0 \times 10^{3} \Omega$.
(b) When $R_{3}=\infty$ all the current passes through R_{1} and R_{2} and avoids R_{3} altogether. Since that value of the current (through the battery) is 0.002 A (stated in problem) for $R_{3}=\infty$ then (using Ohm's law) $R_{2}=(12 \mathrm{~V}) /(0.002 \mathrm{~A})-R_{1}=4.0 \times 10^{3} \Omega$.
35. (a) The copper wire and the aluminum sheath are connected in parallel, so the potential difference is the same for them. Since the potential difference is the product of the current and the resistance, $i_{C} R_{C}=i_{A} R_{A}$, where i_{C} is the current in the copper, i_{A} is the current in the aluminum, R_{C} is the resistance of the copper, and R_{A} is the resistance of the aluminum. The resistance of either component is given by $R=\rho L / A$, where ρ is the resistivity, L is the length, and A is the cross-sectional area. The resistance of the copper wire is $R_{C}=\rho_{C} L / \pi a^{2}$, and the resistance of the aluminum sheath is $R_{A}=\rho_{A} L / \pi\left(b^{2}-a^{2}\right)$. We substitute these expressions into $i_{C} R_{C}=i_{A} R_{A}$, and cancel the common factors L and π to obtain

$$
\frac{i_{C} \rho_{C}}{a^{2}}=\frac{i_{A} \rho_{A}}{b^{2}-a^{2}} .
$$

We solve this equation simultaneously with $i=i_{C}+i_{A}$, where i is the total current. We find

$$
i_{C}=\frac{r_{C}^{2} \rho_{C} i}{\left(r_{A}^{2}-r_{C}^{2}\right) \rho_{C}+r_{C}^{2} \rho_{A}}
$$

and

$$
i_{A}=\frac{\left(r_{A}^{2}-r_{C}^{2}\right) \rho_{C} i}{\left(r_{A}^{2}-r_{C}^{2}\right) \rho_{C}+r_{C}^{2} \rho_{A}}
$$

The denominators are the same and each has the value

$$
\begin{aligned}
\left(b^{2}-a^{2}\right) \rho_{C}+a^{2} \rho_{A}= & {\left[\left(0.380 \times 10^{-3} \mathrm{~m}\right)^{2}-\left(0.250 \times 10^{-3} \mathrm{~m}\right)^{2}\right]\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right) } \\
& +\left(0.250 \times 10^{-3} \mathrm{~m}\right)^{2}\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right) \\
= & 3.10 \times 10^{-15} \Omega \cdot \mathrm{~m}^{3}
\end{aligned}
$$

Thus,

$$
i_{C}=\frac{\left(0.250 \times 10^{-3} \mathrm{~m}\right)^{2}\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(2.00 \mathrm{~A})}{3.10 \times 10^{-15} \Omega \cdot \mathrm{~m}^{3}}=1.11 \mathrm{~A}
$$

(b) and

$$
i_{A}=\frac{\left[\left(0.380 \times 10^{-3} \mathrm{~m}\right)^{2}-\left(0.250 \times 10^{-3} \mathrm{~m}\right)^{2}\right]\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(2.00 \mathrm{~A})}{3.10 \times 10^{-15} \Omega \cdot \mathrm{~m}^{3}}=0.893 \mathrm{~A} .
$$

(c) Consider the copper wire. If V is the potential difference, then the current is given by $V=i_{C} R_{C}=i_{C} \rho_{C} L / \pi a^{2}$, so

$$
L=\frac{\pi a^{2} V}{i_{C} \rho_{C}}=\frac{(\pi)\left(0.250 \times 10^{-3} \mathrm{~m}\right)^{2}(12.0 \mathrm{~V})}{(1.11 \mathrm{~A})\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)}=126 \mathrm{~m}
$$

36. (a) We use $P=\varepsilon^{2} / R_{\text {eq }}$, where

$$
R_{\mathrm{eq}}=7.00 \Omega+\frac{(12.0 \Omega)(4.00 \Omega) R}{(12.0 \Omega)(4.0 \Omega)+(12.0 \Omega) R+(4.00 \Omega) R}
$$

Put $P=60.0 \mathrm{~W}$ and $\varepsilon=24.0 \mathrm{~V}$ and solve for $R: R=19.5 \Omega$.
(b) Since $P \propto R_{\mathrm{eq}}$, we must minimize R_{eq}, which means $R=0$.
(c) Now we must maximize $R_{\text {eq }}$, or set $R=\infty$.
(d) Since $R_{\mathrm{eq}, \min }=7.00 \Omega, P_{\max }=\varepsilon^{2} / R_{\mathrm{eq}, \min }=(24.0 \mathrm{~V})^{2} / 7.00 \Omega=82.3 \mathrm{~W}$.
(e) Since

$$
\begin{aligned}
& R_{\mathrm{eq}, \max }=7.00 \Omega+(12.0 \Omega)(4.00 \Omega) /(12.0 \Omega+4.00 \Omega)=10.0 \Omega, \\
& P_{\min }=\varepsilon^{2} / R_{\mathrm{eq}, \max }=(24.0 \mathrm{~V})^{2} / 10.0 \Omega=57.6 \mathrm{~W} .
\end{aligned}
$$

37. (a) The current in R_{1} is given by

$$
i_{1}=\frac{\varepsilon}{R_{1}+R_{2} R_{3} /\left(R_{2}+R_{3}\right)}=\frac{5.0 \mathrm{~V}}{2.0 \Omega+(4.0 \Omega)(6.0 \Omega) /(4.0 \Omega+6.0 \Omega)}=1.14 \mathrm{~A} .
$$

Thus

$$
i_{3}=\frac{\varepsilon-V_{1}}{R_{3}}=\frac{\varepsilon-i_{1} R_{1}}{R_{3}}=\frac{5.0 \mathrm{~V}-(1.14 \mathrm{~A})(2.0 \Omega)}{6.0 \Omega}=0.45 \mathrm{~A} .
$$

(b) We simply interchange subscripts 1 and 3 in the equation above. Now

$$
i_{3}=\frac{\varepsilon}{R_{3}+\left(R_{2} R_{1} /\left(R_{2}+R_{1}\right)\right)}=\frac{5.0 \mathrm{~V}}{6.0 \Omega+((2.0 \Omega)(4.0 \Omega) /(2.0 \Omega+4.0 \Omega))}=0.6818 \mathrm{~A}
$$

and

$$
i_{1}=\frac{5.0 \mathrm{~V}-(0.6818 \mathrm{~A})(6.0 \Omega)}{2.0 \Omega}=0.45 \mathrm{~A},
$$

the same as before.
38. (a) Since $i=\varepsilon /\left(r+R_{\mathrm{ext}}\right)$ and $i_{\max }=\varepsilon / r$, we have $R_{\mathrm{ext}}=R\left(i_{\max } / i-1\right)$ where $r=1.50$ $\mathrm{V} / 1.00 \mathrm{~mA}=1.50 \times 10^{3} \Omega$. Thus,

$$
R_{\mathrm{ext}}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.100-1)=1.35 \times 10^{4} \Omega .
$$

(b) $R_{\text {ext }}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.500-1)=1.50 \times 10^{3} \Omega$.
(c) $R_{\text {ext }}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.900-1)=167 \Omega$.
(d) Since $r=20.0 \Omega+R, R=1.50 \times 10^{3} \Omega-20.0 \Omega=1.48 \times 10^{3} \Omega$.
39. The current in R_{2} is i. Let i_{1} be the current in R_{1} and take it to be downward. According to the junction rule the current in the voltmeter is $i-i_{1}$ and it is downward. We apply the loop rule to the left-hand loop to obtain

$$
\varepsilon-i R_{2}-i_{1} R_{1}-i r=0 .
$$

We apply the loop rule to the right-hand loop to obtain

$$
i_{1} R_{1}-\left(i-i_{1}\right) R_{V}=0
$$

The second equation yields

$$
i=\frac{R_{1}+R_{V}}{R_{V}} i_{1} .
$$

We substitute this into the first equation to obtain

$$
\varepsilon-\frac{\left(R_{2}+r\right)\left(R_{1}+R_{V}\right)}{R_{V}} i_{1}+R_{1} i_{1}=0
$$

This has the solution

$$
i_{1}=\frac{\varepsilon R_{V}}{\left(R_{2}+r\right)\left(R_{1}+R_{V}\right)+R_{1} R_{V}}
$$

The reading on the voltmeter is

$$
\begin{aligned}
i_{1} R_{1} & =\frac{\varepsilon R_{V} R_{1}}{\left(R_{2}+r\right)\left(R_{1}+R_{V}\right)+R_{1} R_{V}}=\frac{(3.0 \mathrm{~V})\left(5.0 \times 10^{3} \Omega\right)(250 \Omega)}{(300 \Omega+100 \Omega)\left(250 \Omega+5.0 \times 10^{3} \Omega\right)+(250 \Omega)\left(5.0 \times 10^{3} \Omega\right)} \\
& =1.12 \mathrm{~V} .
\end{aligned}
$$

The current in the absence of the voltmeter can be obtained by taking the limit as R_{V} becomes infinitely large. Then

$$
i_{1} R_{1}=\frac{\varepsilon R_{1}}{R_{1}+R_{2}+r}=\frac{(3.0 \mathrm{~V})(250 \Omega)}{250 \Omega+300 \Omega+100 \Omega}=1.15 \mathrm{~V}
$$

The fractional error is $(1.12-1.15) /(1.15)=-0.030$, or -3.0%.
40. (a) $\varepsilon=V+i r=12 \mathrm{~V}+(10.0 \mathrm{~A})(0.0500 \Omega)=12.5 \mathrm{~V}$.
(b) Now $\mathcal{\varepsilon}=V^{\prime}+\left(i_{\text {motor }}+8.00 \mathrm{~A}\right) r$, where $V^{\prime}=i_{A}^{\prime} R_{\text {light }}=(8.00 \mathrm{~A})(12.0 \mathrm{~V} / 10 \mathrm{~A})=9.60 \mathrm{~V}$. Therefore,

$$
i_{\text {motor }}=\frac{\varepsilon-V^{\prime}}{r}-8.00 \mathrm{~A}=\frac{12.5 \mathrm{~V}-9.60 \mathrm{~V}}{0.0500 \Omega}-8.00 \mathrm{~A}=50.0 \mathrm{~A} .
$$

41. Since the current in the ammeter is i, the voltmeter reading is $V^{\prime}=V+i R_{A}=i(R+$ R_{A}), or $R=V^{\prime} / i-R_{A}=R^{\prime}-R_{A}$, where $R^{\prime}=V^{\prime} / i$ is the apparent reading of the resistance.

Now, from the lower loop of the circuit diagram, the current through the voltmeter is $i_{V}=\varepsilon /\left(R_{\mathrm{eq}}+R_{0}\right)$, where

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{V}}+\frac{1}{R_{A}+R} \Rightarrow R_{\mathrm{eq}}=\frac{R_{V}\left(R+R_{A}\right)}{R_{V}+R+R_{A}}=\frac{(300 \Omega)(85.0 \Omega+3.00 \Omega)}{300 \Omega+85.0 \Omega+3.00 \Omega}=68.0 \Omega .
$$

The voltmeter reading is then

$$
V^{\prime}=i_{V} R_{\mathrm{eq}}=\frac{\varepsilon R_{\mathrm{eq}}}{R_{\mathrm{eq}}+R_{0}}=\frac{(12.0 \mathrm{~V})(68.0 \Omega)}{68.0 \Omega+100 \Omega}=4.86 \mathrm{~V}
$$

(a) The ammeter reading is

$$
i=\frac{V^{\prime}}{R+R_{A}}=\frac{4.86 \mathrm{~V}}{85.0 \Omega+3.00 \Omega}=0.0552 \mathrm{~A} .
$$

(b) As shown above, the voltmeter reading is $V^{\prime}=4.86 \mathrm{~V}$.
(c) $R^{\prime}=V^{\prime} / i=4.86 \mathrm{~V} /\left(5.52 \times 10^{-2} \mathrm{~A}\right)=88.0 \Omega$.
(d) Since $R=R^{\prime}-R_{A}$, if R_{A} is decreased, the difference between R^{\prime} and R decreases. In fact, when $R_{A}=0, R^{\prime}=R$.
42. The currents in R and R_{V} are i and $i^{\prime}-i$, respectively. Since $V=i R=\left(i^{\prime}-i\right) R_{V}$ we have, by dividing both sides by $V, 1=\left(i^{\prime} / V-i / V\right) R_{V}=\left(1 / R^{\prime}-1 / R\right) R_{V}$. Thus,

$$
\frac{1}{R}=\frac{1}{R^{\prime}}-\frac{1}{R_{V}} \Rightarrow R^{\prime}=\frac{R R_{V}}{R+R_{V}}
$$

The equivalent resistance of the circuit is $R_{\mathrm{eq}}=R_{A}+R_{0}+R^{\prime}=R_{A}+R_{0}+\frac{R R_{V}}{R+R_{V}}$.
(a) The ammeter reading is

$$
\begin{aligned}
i^{\prime} & =\frac{\varepsilon}{R_{\mathrm{eq}}}=\frac{\varepsilon}{R_{A}+R_{0}+R_{V} R /\left(R+R_{V}\right)}=\frac{12.0 \mathrm{~V}}{3.00 \Omega+100 \Omega+(300 \Omega)(85.0 \Omega) /(300 \Omega+85.0 \Omega)} \\
& =7.09 \times 10^{-2} \mathrm{~A} .
\end{aligned}
$$

(b) The voltmeter reading is

$$
V=\varepsilon-i^{\prime}\left(R_{A}+R_{0}\right)=12.0 \mathrm{~V}-(0.0709 \mathrm{~A})(103.00 \Omega)=4.70 \mathrm{~V}
$$

(c) The apparent resistance is $R^{\prime}=V / i^{\prime}=4.70 \mathrm{~V} /\left(7.09 \times 10^{-2} \mathrm{~A}\right)=66.3 \Omega$.
(d) If R_{V} is increased, the difference between R and R^{\prime} decreases. In fact, $R^{\prime} \rightarrow R$ as $R_{V} \rightarrow \infty$.
43. Let i_{1} be the current in R_{1} and R_{2}, and take it to be positive if it is toward point a in R_{1}. Let i_{2} be the current in R_{s} and R_{x}, and take it to be positive if it is toward b in R_{s}. The loop rule yields $\left(R_{1}+R_{2}\right) i_{1}-\left(R_{x}+R_{s}\right) i_{2}=0$. Since points a and b are at the same potential, $i_{1} R_{1}=i_{2} R_{s}$. The second equation gives $i_{2}=i_{1} R_{1} / R_{s}$, which is substituted into the first equation to obtain

$$
\left(R_{1}+R_{2}\right) i_{1}=\left(R_{x}+R_{s}\right) \frac{R_{1}}{R_{s}} i_{1} \Rightarrow R_{x}=\frac{R_{2} R_{s}}{R_{1}} .
$$

44. (a) We use $q=q_{0} e^{-t / \tau}$, or $t=\tau \ln \left(q_{0} / q\right)$, where $\tau=R C$ is the capacitive time constant. Thus, $t_{1 / 3}=\tau \ln \left[q_{0} /\left(2 q_{0} / 3\right)\right]=\tau \ln (3 / 2)=0.41 \tau$, or $t_{1 / 3} / \tau=0.41$.
(b) $t_{2 / 3}=\tau \ln \left[q_{0} /\left(q_{0} / 3\right)\right]=\tau \ln 3=1.1 \tau$, or $t_{2 / 3} / \tau=1.1$.
45. During charging, the charge on the positive plate of the capacitor is given by

$$
q=C \varepsilon\left(1-e^{-t / \tau}\right)
$$

where C is the capacitance, ε is applied emf, and $\tau=R C$ is the capacitive time constant. The equilibrium charge is $q_{\mathrm{eq}}=C \varepsilon$. We require $q=0.99 q_{\mathrm{eq}}=0.99 C \varepsilon$, so

$$
0.99=1-e^{-t / \tau} .
$$

Thus, $e^{-t / \tau}=0.01$. Taking the natural logarithm of both sides, we obtain $t / \tau=-\ln 0.01=$ 4.61 or $t=4.61 \tau$.
46. (a) $\tau=R C=\left(1.40 \times 10^{6} \Omega\right)\left(1.80 \times 10^{-6} \mathrm{~F}\right)=2.52 \mathrm{~s}$.
(b) $q_{o}=\varepsilon C=(12.0 \mathrm{~V})(1.80 \mu \mathrm{~F})=21.6 \mu \mathrm{C}$.
(c) The time t satisfies $q=q_{0}\left(1-e^{-t / R C}\right)$, or

$$
t=R C \ln \left(\frac{q_{0}}{q_{0}-q}\right)=(2.52 \mathrm{~s}) \ln \left(\frac{21.6 \mu \mathrm{C}}{21.6 \mu \mathrm{C}-16.0 \mu \mathrm{C}}\right)=3.40 \mathrm{~s} .
$$

47. (a) The voltage difference V across the capacitor is $V(t)=\varepsilon\left(1-e^{-t / R C}\right)$. At $t=1.30 \mu \mathrm{~s}$ we have $V(t)=5.00 \mathrm{~V}$, so $5.00 \mathrm{~V}=(12.0 \mathrm{~V})\left(1-e^{-1.30 \mu \mathrm{~s} / R C}\right)$, which gives

$$
\tau=(1.30 \mu \mathrm{~s}) / \ln (12 / 7)=2.41 \mu \mathrm{~s}
$$

(b) $C=\tau / R=2.41 \mu \mathrm{~s} / 15.0 \mathrm{k} \Omega=161 \mathrm{pF}$.
48. Here we denote the battery emf as V. Then the requirement stated in the problem that the resistor voltage be equal to the capacitor voltage becomes $i R=V_{\text {cap }}$, or

$$
V \mathrm{e}^{-t / R C}=V\left(1-\mathrm{e}^{-t / R C}\right)
$$

where Eqs. 27-34 and 27-35 have been used. This leads to $t=R C \ln 2$, or $t=0.208 \mathrm{~ms}$.
49. (a) The potential difference V across the plates of a capacitor is related to the charge q on the positive plate by $V=q / C$, where C is capacitance. Since the charge on a discharging capacitor is given by $q=q_{0} e^{-t / \tau}$, this means $V=V_{0} e^{-t / \tau}$ where V_{0} is the initial potential difference. We solve for the time constant τ by dividing by V_{0} and taking the natural logarithm:

$$
\tau=-\frac{t}{\ln \left(V / V_{0}\right)}=-\frac{10.0 \mathrm{~s}}{\ln [(1.00 \mathrm{~V}) /(100 \mathrm{~V})]}=2.17 \mathrm{~s}
$$

(b) At $t=17.0 \mathrm{~s}, t / \tau=(17.0 \mathrm{~s}) /(2.17 \mathrm{~s})=7.83$, so

$$
V=V_{0} e^{-t / \tau}=(100 \mathrm{~V}) e^{-7.83}=3.96 \times 10^{-2} \mathrm{~V}
$$

50. The potential difference across the capacitor varies as a function of time t as $V(t)=V_{0} e^{-t / R C}$. Using $V=V_{0} / 4$ at $t=2.0 \mathrm{~s}$, we find

$$
R=\frac{t}{C \ln \left(V_{0} / V\right)}=\frac{2.0 \mathrm{~s}}{\left(2.0 \times 10^{-6} \mathrm{~F}\right) \ln 4}=7.2 \times 10^{5} \Omega
$$

51. (a) The initial energy stored in a capacitor is given by $U_{C}=q_{0}^{2} / 2 C$, where C is the capacitance and q_{0} is the initial charge on one plate. Thus

$$
q_{0}=\sqrt{2 C U_{C}}=\sqrt{2\left(1.0 \times 10^{-6} \mathrm{~F}\right)(0.50 \mathrm{~J})}=1.0 \times 10^{-3} \mathrm{C} .
$$

(b) The charge as a function of time is given by $q=q_{0} e^{-t / \tau}$, where τ is the capacitive time constant. The current is the derivative of the charge

$$
i=-\frac{d q}{d t}=\frac{q_{0}}{\tau} e^{-t / \tau},
$$

and the initial current is $i_{0}=q_{0} / \tau$. The time constant is

$$
\tau=R C=\left(1.0 \times 10^{-6} \mathrm{~F}\right)\left(1.0 \times 10^{6} \Omega\right)=1.0 \mathrm{~s} .
$$

Thus $i_{0}=\left(1.0 \times 10^{-3} \mathrm{C}\right) /(1.0 \mathrm{~s})=1.0 \times 10^{-3} \mathrm{~A}$.
(c) We substitute $q=q_{0} e^{-t / \tau}$ into $V_{C}=q / C$ to obtain

$$
V_{C}=\frac{q_{0}}{C} e^{-t / \tau}=\left(\frac{1.0 \times 10^{-3} \mathrm{C}}{1.0 \times 10^{-6} \mathrm{~F}}\right) e^{-t / 1.0 \mathrm{~s}}=\left(1.0 \times 10^{3} \mathrm{~V}\right) e^{-1.0 t},
$$

where t is measured in seconds.
(d) We substitute $i=\left(q_{0} / \tau\right) e^{-t / \tau}$ into $V_{R}=i R$ to obtain

$$
V_{R}=\frac{q_{0} R}{\tau} e^{-t / \tau}=\frac{\left(1.0 \times 10^{-3} \mathrm{C}\right)\left(1.0 \times 10^{6} \Omega\right)}{1.0 \mathrm{~s}} e^{-t / 1.0 \mathrm{~s}}=\left(1.0 \times 10^{3} \mathrm{~V}\right) e^{-1.0 t}
$$

where t is measured in seconds.
(e) We substitute $i=\left(q_{0} / \tau\right) e^{-t / \tau}$ into $P=i^{2} R$ to obtain

$$
P=\frac{q_{0}^{2} R}{\tau^{2}} e^{-2 t / \tau}=\frac{\left(1.0 \times 10^{-3} \mathrm{C}\right)^{2}\left(1.0 \times 10^{6} \Omega\right)}{(1.0 \mathrm{~s})^{2}} e^{-2 t / 1.0 \mathrm{~s}}=(1.0 \mathrm{~W}) e^{-2.0 t},
$$

where t is again measured in seconds.
52. The time it takes for the voltage difference across the capacitor to reach V_{L} is given by $V_{L}=\varepsilon\left(1-e^{-t / R C}\right)$. We solve for R :

$$
R=\frac{t}{C \ln \left[\varepsilon /\left(\varepsilon-V_{L}\right)\right]}=\frac{0.500 \mathrm{~s}}{\left(0.150 \times 10^{-6} \mathrm{~F}\right) \ln [95.0 \mathrm{~V} /(95.0 \mathrm{~V}-72.0 \mathrm{~V})]}=2.35 \times 10^{6} \Omega
$$

where we used $t=0.500 \mathrm{~s}$ given (implicitly) in the problem.
53. At $t=0$ the capacitor is completely uncharged and the current in the capacitor branch is as it would be if the capacitor were replaced by a wire. Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is downward. Let i_{3} be the current in R_{3} and take it to be positive if it is downward. The junction rule produces $i_{1}=i_{2}+i_{3}$, the loop rule applied to the left-hand loop produces

$$
\varepsilon-i_{1} R_{1}-i_{2} R_{2}=0,
$$

and the loop rule applied to the right-hand loop produces

$$
i_{2} R_{2}-i_{3} R_{3}=0 .
$$

Since the resistances are all the same we can simplify the mathematics by replacing R_{1}, R_{2}, and R_{3} with R.
(a) Solving the three simultaneous equations, we find

$$
i_{1}=\frac{2 \varepsilon}{3 R}=\frac{2\left(1.2 \times 10^{3} \mathrm{~V}\right)}{3\left(0.73 \times 10^{6} \Omega\right)}=1.1 \times 10^{-3} \mathrm{~A}
$$

(b) $i_{2}=\frac{\varepsilon}{3 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{3\left(0.73 \times 10^{6} \Omega\right)}=5.5 \times 10^{-4} \mathrm{~A}$.
(c) $i_{3}=i_{2}=5.5 \times 10^{-4} \mathrm{~A}$.

At $t=\infty$ the capacitor is fully charged and the current in the capacitor branch is 0 . Thus, $i_{1}=i_{2}$, and the loop rule yields

$$
\varepsilon-i_{1} R_{1}-i_{1} R_{2}=0 .
$$

(d) The solution is

$$
i_{1}=\frac{\varepsilon}{2 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{2\left(0.73 \times 10^{6} \Omega\right)}=8.2 \times 10^{-4} \mathrm{~A} .
$$

(e) $i_{2}=i_{1}=8.2 \times 10^{-4} \mathrm{~A}$.
(f) As stated before, the current in the capacitor branch is $i_{3}=0$.

We take the upper plate of the capacitor to be positive. This is consistent with current flowing into that plate. The junction equation is $i_{1}=i_{2}+i_{3}$, and the loop equations are

$$
\varepsilon-i_{1} R-i_{2} R=0 \text { and }-\frac{q}{C}-i_{3} R+i_{2} R=0 .
$$

We use the first equation to substitute for i_{1} in the second and obtain $\varepsilon-2 i_{2} R-i_{3} R=0$. Thus $i_{2}=\left(\varepsilon-i_{3} R\right) / 2 R$. We substitute this expression into the third equation above to obtain $-(q / C)-\left(i_{3} R\right)+(\varepsilon / 2)-\left(i_{3} R / 2\right)=0$. Now we replace i_{3} with $d q / d t$ to obtain

$$
\frac{3 R}{2} \frac{d q}{d t}+\frac{q}{C}=\frac{\varepsilon}{2} .
$$

This is just like the equation for an $R C$ series circuit, except that the time constant is $\tau=$ $3 R C / 2$ and the impressed potential difference is $\varepsilon / 2$. The solution is

$$
q=\frac{C \varepsilon}{2}\left(1-e^{-2 t / 3 R C}\right) .
$$

The current in the capacitor branch is

$$
i_{3}(t)=\frac{d q}{d t}=\frac{\varepsilon}{3 R} e^{-2 t / 3 R C} .
$$

The current in the center branch is

$$
i_{2}(t)=\frac{\varepsilon}{2 R}-\frac{i_{3}}{2}=\frac{\varepsilon}{2 R}-\frac{\varepsilon}{6 R} e^{-2 t / 3 R C}=\frac{\varepsilon}{6 R}\left(3-e^{-2 t / 3 R C}\right)
$$

and the potential difference across R_{2} is

$$
V_{2}(t)=i_{2} R=\frac{\varepsilon}{6}\left(3-e^{-2 t / 3 R C}\right) .
$$

(g) For $t=0, e^{-2 t / 3 R C}$ is 1 and $V_{2}=\varepsilon / 3=\left(1.2 \times 10^{3} \mathrm{~V}\right) / 3=4.0 \times 10^{2} \mathrm{~V}$.
(h) For $t=\infty, e^{-2 t / 3 R C}$ is 0 and $V_{2}=\varepsilon / 2=\left(1.2 \times 20^{3} \mathrm{~V}\right) / 2=6.0 \times 10^{2} \mathrm{~V}$.
(i) A plot of V_{2} as a function of time is shown in the following graph.

54. In the steady state situation, the capacitor voltage will equal the voltage across $R_{2}=$
$15 \mathrm{k} \Omega$:

$$
V_{0}=R_{2} \frac{\varepsilon}{R_{1}+R_{2}}=(15.0 \mathrm{k} \Omega)\left(\frac{20.0 \mathrm{~V}}{10.0 \mathrm{k} \Omega+15.0 \mathrm{k} \Omega}\right)=12.0 \mathrm{~V} .
$$

Now, multiplying Eq. 27-39 by the capacitance leads to $V=V_{0} e^{-t / R C}$ describing the voltage across the capacitor (and across $R_{2}=15.0 \mathrm{k} \Omega$) after the switch is opened (at $t=0$). Thus, with $t=0.00400 \mathrm{~s}$, we obtain

$$
V=(12) e^{-0.004 /(15000)\left(0.4 \times 10^{-6}\right)}=6.16 \mathrm{~V} .
$$

Therefore, using Ohm's law, the current through R_{2} is $6.16 / 15000=4.11 \times 10^{-4} \mathrm{~A}$.
55. (a) The charge on the positive plate of the capacitor is given by

$$
q=C \varepsilon\left(1-e^{-t / \tau}\right)
$$

where ε is the emf of the battery, C is the capacitance, and τ is the time constant. The value of τ is

$$
\tau=R C=\left(3.00 \times 10^{6} \Omega\right)\left(1.00 \times 10^{-6} \mathrm{~F}\right)=3.00 \mathrm{~s} .
$$

At $t=1.00 \mathrm{~s}, t / \tau=(1.00 \mathrm{~s}) /(3.00 \mathrm{~s})=0.333$ and the rate at which the charge is increasing is

$$
\frac{d q}{d t}=\frac{C \varepsilon}{\tau} e^{-t / \tau}=\frac{\left(1.00 \times 10^{-6}\right)(4.00 \mathrm{~V})}{3.00 \mathrm{~s}} e^{-0.333}=9.55 \times 10^{-7} \mathrm{C} / \mathrm{s} .
$$

(b) The energy stored in the capacitor is given by $U_{C}=\frac{q^{2}}{2 C}$, and its rate of change is

$$
\frac{d U_{C}}{d t}=\frac{q}{C} \frac{d q}{d t}
$$

Now

$$
q=C \varepsilon\left(1-e^{-t / \tau}\right)=\left(1.00 \times 10^{-6}\right)(4.00 \mathrm{~V})\left(1-e^{-0.333}\right)=1.13 \times 10^{-6} \mathrm{C},
$$

so

$$
\frac{d U_{C}}{d t}=\left(\frac{1.13 \times 10^{-6} \mathrm{C}}{1.00 \times 10^{-6} \mathrm{~F}}\right)\left(9.55 \times 10^{-7} \mathrm{C} / \mathrm{s}\right)=1.08 \times 10^{-6} \mathrm{~W}
$$

(c) The rate at which energy is being dissipated in the resistor is given by $P=i^{2} R$. The current is $9.55 \times 10^{-7} \mathrm{~A}$, so

$$
P=\left(9.55 \times 10^{-7} \mathrm{~A}\right)^{2}\left(3.00 \times 10^{6} \Omega\right)=2.74 \times 10^{-6} \mathrm{~W}
$$

(d) The rate at which energy is delivered by the battery is

$$
i \varepsilon=\left(9.55 \times 10^{-7} \mathrm{~A}\right)(4.00 \mathrm{~V})=3.82 \times 10^{-6} \mathrm{~W}
$$

The energy delivered by the battery is either stored in the capacitor or dissipated in the resistor. Conservation of energy requires that $i \varepsilon=(q / C)(d q / d t)+i^{2} R$. Except for some round-off error the numerical results support the conservation principle.
56. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 3:2 as described in the problem, and solve for the time: we obtain

$$
t=\frac{\ln \left(\frac{3}{2}\right)}{\left(\frac{1}{R_{2} C_{2}}-\frac{1}{R_{1} C_{1}}\right)}=162 \mu \mathrm{~s} .
$$

57. We use the result of problem 50: $R=t /\left[C \ln \left(V_{0} / V\right)\right]$.
(a) Then, for $t_{\min }=10.0 \mu \mathrm{~s}$

$$
R_{\min }=\frac{10.0 \mu \mathrm{~s}}{(0.220 \mu \mathrm{~F}) \ln (5.00 / 0.800)}=24.8 \Omega
$$

(b) For $t_{\text {max }}=6.00 \mathrm{~ms}$,

$$
R_{\max }=\left(\frac{6.00 \mathrm{~ms}}{10.0 \mu \mathrm{~s}}\right)(24.8 \Omega)=1.49 \times 10^{4} \Omega
$$

where in the last equation we used $\tau=R C$.
58. (a) We denote $L=10 \mathrm{~km}$ and $\alpha=13 \Omega / \mathrm{km}$. Measured from the east end we have

$$
R_{1}=100 \Omega=2 \alpha(L-x)+R,
$$

and measured from the west end $R_{2}=200 \Omega=2 \alpha x+R$. Thus,

$$
x=\frac{R_{2}-R_{1}}{4 \alpha}+\frac{L}{2}=\frac{200 \Omega-100 \Omega}{4(13 \Omega / \mathrm{km})}+\frac{10 \mathrm{~km}}{2}=6.9 \mathrm{~km} .
$$

(b) Also, we obtain

$$
R=\frac{R_{1}+R_{2}}{2}-\alpha L=\frac{100 \Omega+200 \Omega}{2}-(13 \Omega / \mathrm{km})(10 \mathrm{~km})=20 \Omega .
$$

59. (a) From symmetry we see that the current through the top set of batteries (i) is the same as the current through the second set. This implies that the current through the $R=$ 4.0Ω resistor at the bottom is $i_{R}=2 i$. Thus, with r denoting the internal resistance of each battery (equal to 4.0Ω) and ε denoting the 20 V emf , we consider one loop equation (the outer loop), proceeding counterclockwise:

$$
3(\varepsilon-i r)-(2 i) R=0 .
$$

This yields $i=3.0 \mathrm{~A}$. Consequently, $i_{R}=6.0 \mathrm{~A}$.
(b) The terminal voltage of each battery is $\mathcal{E}-i r=8.0 \mathrm{~V}$.
(c) Using Eq. 27-17, we obtain $P=i \varepsilon=(3)(20)=60 \mathrm{~W}$.
(d) Using Eq. 26-27, we have $P=i^{2} r=36 \mathrm{~W}$.
60. The equivalent resistance in Fig. 27-59 (with n parallel resistors) is

$$
R_{\mathrm{eq}}=R+\frac{R}{n}=\frac{(n+1) R}{n} .
$$

The current in the battery in this case should be $i_{n}=\frac{V_{\text {battery }}}{R_{\text {eq }}}=\frac{n V_{\text {battery }}}{(n+1) R}$. If there were $n+1$ parallel resistors, then

$$
i_{n+1}=\frac{(n+1) V_{\text {battery }}}{(n+2) R} .
$$

For the relative increase to be $0.0125(=1 / 80)$, we require

$$
\frac{i_{n+1}-i_{n}}{i_{n}}=\frac{i_{n+1}}{i_{n}}-1=\frac{\left(\frac{n+1}{n+2}\right)}{\left(\frac{n}{n+1}\right)}-1=\frac{1}{80} .
$$

This leads to the second-degree equation $n^{2}+2 n-80=(n+10)(n-8)=0$. Clearly the only physically interesting solution to this is $n=8$. Thus, there are eight resistors in parallel (as well as that resistor in series shown towards the bottom) in Fig. 27-59.
61. (a) The magnitude of the current density vector is

$$
\begin{aligned}
J_{A} & =\frac{i}{A}=\frac{V}{\left(R_{1}+R_{2}\right) A}=\frac{4 \mathrm{~V}}{\left(R_{1}+R_{2}\right) \pi D^{2}}=\frac{4(60.0 \mathrm{~V})}{\pi(0.127 \Omega+0.729 \Omega)\left(2.60 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =1.32 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

(b) $V_{A}=V R_{1} /\left(R_{1}+R_{2}\right)=(60.0 \mathrm{~V})(0.127 \Omega) /(0.127 \Omega+0.729 \Omega)=8.90 \mathrm{~V}$,
(c) The resistivity for A is

$$
\rho_{A}=R_{A} A / L_{A}=\pi R_{A} D^{2} / 4 L_{A}=\pi(0.127 \Omega)\left(2.60 \times 10^{-3} \mathrm{~m}\right)^{2} /[4(40.0 \mathrm{~m})]=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m} .
$$

So A is made of copper.
(d) $J_{B}=J_{A}=1.32 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2}$.
(e) $V_{B}=V-V_{A}=60.0 \mathrm{~V}-8.9 \mathrm{~V}=51.1 \mathrm{~V}$.
(f) The resistivity for B is $\rho_{B}=9.68 \times 10^{-8} \Omega \cdot \mathrm{~m}$, so B is made of iron.
62. Line 1 has slope $R_{1}=6 \mathrm{k} \Omega$. Line 2 has slope $R_{2}=4 \mathrm{k} \Omega$. Line 3 has slope $R_{3}=2 \mathrm{k} \Omega$. The parallel pair equivalence is $R_{12}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)=2.4 \mathrm{k} \Omega$. That in series with R_{3} gives an equivalence of $4.4 \mathrm{k} \Omega$. The current through the battery is therefore $(6 \mathrm{~V}) /(4.4 \mathrm{k} \Omega)$ and the voltage drop across R_{3} is $(6 \mathrm{~V})(2 \mathrm{k} \Omega) /(4.4 \mathrm{k} \Omega)=2.73 \mathrm{~V}$. Subtracting this (because of the loop rule) from the battery voltage leaves us with the voltage across R_{2}. Then Ohm's law gives the current through $R_{2}:(6 \mathrm{~V}-2.73 \mathrm{~V}) /(4 \mathrm{k} \Omega)=0.82 \mathrm{~mA}$
63. (a) Since $R_{\text {tank }}=140 \Omega, i=12 \mathrm{~V} /(10 \Omega+140 \Omega)=8.0 \times 10^{-2} \mathrm{~A}$.
(b) Now, $R_{\text {tank }}=(140 \Omega+20 \Omega) / 2=80 \Omega$, so $i=12 \mathrm{~V} /(10 \Omega+80 \Omega)=0.13 \mathrm{~A}$.
(c) When full, $R_{\operatorname{tank}}=20 \Omega$ so $i=12 \mathrm{~V} /(10 \Omega+20 \Omega)=0.40 \mathrm{~A}$.
64. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total drop along the upper branch must be 12 V). The current there is consequently $i=(5.0 \mathrm{~V}) /(200 \Omega)=25 \mathrm{~mA}$. Then the resistance of resistor 1 must be $(2.0 \mathrm{~V}) / i=80 \Omega$.
(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200Ω, also.
65. (a) Here we denote the battery emf as V. See Fig. 27-4(a): $V_{T}=V-i r$.
(b) Doing a least squares fit for the V_{T} versus i values listed, we obtain

$$
V_{T}=13.61-0.0599 i
$$

which implies $V=13.6$ volts.
(c) It also implies the internal resistance is 0.060Ω.
66. (a) The loop rule (proceeding counterclockwise around the right loop) leads to ε_{2} $i_{1} R_{1}=0$ (where i_{1} was assumed downward). This yields $i_{1}=0.0600 \mathrm{~A}$.
(b) The direction of i_{1} is downward.
(c) The loop rule (counterclockwise around the left loop) gives

$$
\left(+\varepsilon_{1}\right)+\left(+i_{1} R_{1}\right)+\left(-i_{2} R_{2}\right)=0
$$

where i_{2} has been assumed leftward. This yields $i_{3}=0.180 \mathrm{~A}$.
(d) A positive value of i_{3} implies that our assumption on the direction is correct, i.e., it flows leftward.
(e) The junction rule tells us that the current through the 12 V battery is $0.180+0.0600=$ 0.240 A .
(f) The direction is upward.
67. (a) The charge q on the capacitor as a function of time is $q(t)=(\varepsilon C)\left(1-e^{-t / R C}\right)$, so the charging current is $i(t)=d q / d t=(\varepsilon / R) e^{-t / R C}$. The energy supplied by the emf is then

$$
U=\int_{0}^{\infty} \varepsilon i d t=\frac{\varepsilon^{2}}{R} \int_{0}^{\infty} e^{-t / R C} d t=C \varepsilon^{2}=2 U_{C}
$$

where $U_{C}=\frac{1}{2} C \varepsilon^{2}$ is the energy stored in the capacitor.
(b) By directly integrating $i^{2} R$ we obtain

$$
U_{R}=\int_{0}^{\infty} i^{2} R d t=\frac{\varepsilon^{2}}{R} \int_{0}^{\infty} e^{-2 t / R C} d t=\frac{1}{2} C \varepsilon^{2}
$$

68. (a) Using Eq. 27-4, we take the derivative of the power $P=i^{2} R$ with respect to R and set the result equal to zero:

$$
\frac{d P}{d R}=\frac{d}{d R}\left(\frac{\varepsilon^{2} R}{(R+r)^{2}}\right)=\frac{\varepsilon^{2}(r-R)}{(R+r)^{3}}=0
$$

which clearly has the solution $R=r$.
(b) When $R=r$, the power dissipated in the external resistor equals

$$
P_{\max }=\left.\frac{\varepsilon^{2} R}{(R+r)^{2}}\right|_{R=r}=\frac{\varepsilon^{2}}{4 r} .
$$

69. Here we denote the battery emf as V. Eq. 27-30 leads to

$$
i=\frac{\mathrm{V}}{R}-\frac{q}{R C}=\frac{12}{4}-\frac{8}{(4)(4)}=2.5 \mathrm{~A} .
$$

70. The equivalent resistance of the series pair of $R_{3}=R_{4}=2.0 \Omega$ is $R_{34}=4.0 \Omega$, and the equivalent resistance of the parallel pair of $R_{1}=R_{2}=4.0 \Omega$ is $R_{12}=2.0 \Omega$. Since the voltage across R_{34} must equal that across R_{12} :

$$
V_{34}=V_{12} \Rightarrow i_{34} R_{34}=i_{12} R_{12} \quad \Rightarrow \quad i_{34}=\frac{1}{2} i_{12}
$$

This relation, plus the junction rule condition $I=i_{12}+i_{34}=6.00 \mathrm{~A}$ leads to the solution $i_{12}=4.0 \mathrm{~A}$. It is clear by symmetry that $i_{1}=i_{12} / 2=2.00 \mathrm{~A}$.
71. (a) The work done by the battery relates to the potential energy change:

$$
q \Delta V=e V=e(12.0 \mathrm{~V})=12.0 \mathrm{eV}
$$

(b) $P=i V=n e V=\left(3.40 \times 10^{18} / \mathrm{s}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)(12.0 \mathrm{~V})=6.53 \mathrm{~W}$.
72. (a) Since $P=\varepsilon^{2} / R_{\text {eq }}$, the higher the power rating the smaller the value of $R_{\text {eq }}$. To achieve this, we can let the low position connect to the larger resistance $\left(R_{1}\right)$, middle position connect to the smaller resistance $\left(R_{2}\right)$, and the high position connect to both of them in parallel.
(b) For $P=300 \mathrm{~W}, R_{\text {eq }}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)=(144 \Omega) R_{2} /\left(144 \Omega+R_{2}\right)=(120 \mathrm{~V})^{2} / 300 \mathrm{~W}$. We obtain $R_{2}=72 \Omega$.
(c) For $P=100 \mathrm{~W}, R_{\text {eq }}=R_{1}=\varepsilon^{2} / P=(120 \mathrm{~V})^{2} / 100 \mathrm{~W}=144 \Omega$;
73. The internal resistance of the battery is $r=(12 \mathrm{~V}-11.4 \mathrm{~V}) / 50 \mathrm{~A}=0.012 \Omega<0.020 \Omega$, so the battery is OK. The resistance of the cable is

$$
R=3.0 \mathrm{~V} / 50 \mathrm{~A}=0.060 \Omega>0.040 \Omega
$$

so the cable is defective.
74. (a) If S_{1} is closed, and S_{2} and S_{3} are open, then $i_{a}=\varepsilon / 2 R_{1}=120 \mathrm{~V} / 40.0 \Omega=3.00 \mathrm{~A}$.
(b) If S_{3} is open while S_{1} and S_{2} remain closed, then

$$
R_{\mathrm{eq}}=R_{1}+R_{1}\left(R_{1}+R_{2}\right) /\left(2 R_{1}+R_{2}\right)=20.0 \Omega+(20.0 \Omega) \times(30.0 \Omega) /(50.0 \Omega)=32.0 \Omega,
$$ so $i_{a}=\varepsilon / R_{\text {eq }}=120 \mathrm{~V} / 32.0 \Omega=3.75 \mathrm{~A}$.

(c) If all three switches S_{1}, S_{2} and S_{3} are closed, then $R_{\text {eq }}=R_{1}+R_{1} R^{\prime} /\left(R_{1}+R^{\prime}\right)$ where

$$
R^{\prime}=R_{2}+R_{1}\left(R_{1}+R_{2}\right) /\left(2 R_{1}+R_{2}\right)=22.0 \Omega,
$$

i.e.,

$$
R_{\mathrm{eq}}=20.0 \Omega+(20.0 \Omega)(22.0 \Omega) /(20.0 \Omega+22.0 \Omega)=30.5 \Omega,
$$

so $i_{a}=\varepsilon / R_{\text {eq }}=120 \mathrm{~V} / 30.5 \Omega=3.94 \mathrm{~A}$.
75. (a) Reducing the bottom two series resistors to a single $R^{\prime}=4.00 \Omega$ (with current i_{1} through it), we see we can make a path (for use with the loop rule) that passes through R, the $\varepsilon_{4}=5.00 \mathrm{~V}$ battery, the $\varepsilon_{1}=20.0 \mathrm{~V}$ battery, and the $\varepsilon_{3}=5.00 \mathrm{~V}$. This leads to

$$
i_{1}=\frac{\varepsilon_{1}+\varepsilon_{3}+\varepsilon_{4}}{4.0 \Omega}=\frac{30.0 \mathrm{~V}}{4.0 \Omega}=7.50 \mathrm{~A} .
$$

(b) The direction of i_{1} is leftward.
(c) The voltage across the bottom series pair is $i_{1} R^{\prime}=30.0 \mathrm{~V}$. This must be the same as the voltage across the two resistors directly above them, one of which has current i_{2} through it and the other (by symmetry) has current $\frac{1}{2} i_{2}$ through it. Therefore,

$$
30.0 \mathrm{~V}=i_{2}(2.00 \Omega)+\frac{1}{2} i_{2}(2.00 \Omega)
$$

leads to $i_{2}=10.0 \mathrm{~A}$.
(d) The direction of i_{2} is also leftward.
(e) We use Eq. 27-17: $P_{4}=\left(i_{1}+i_{2}\right) \varepsilon_{4}=87.5 \mathrm{~W}$.
(f) The energy is being supplied to the circuit since the current is in the "forward" direction through the battery.
76. The bottom two resistors are in parallel, equivalent to a $2.0 R$ resistance. This, then, is in series with resistor R on the right, so that their equivalence is $R^{\prime}=3.0 R$. Now, near the top left are two resistors ($2.0 R$ and $4.0 R$) which are in series, equivalent to $R^{\prime \prime}=6.0 R$. Finally, R^{\prime} and $R^{\prime \prime}$ are in parallel, so the net equivalence is

$$
R_{\mathrm{eq}}=\frac{\left(R^{\prime}\right)\left(R^{\prime}\right)}{R^{\prime}+R^{\prime \prime}}=2.0 R=20 \Omega
$$

where in the final step we use the fact that $R=10 \Omega$.
77. (a) The four resistors R_{1}, R_{2}, R_{3} and R_{4} on the left reduce to

$$
R_{\mathrm{eq}}=R_{12}+R_{34}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+\frac{R_{3} R_{4}}{R_{3}+R_{4}}=7.0 \Omega+3.0 \Omega=10 \Omega
$$

With $\varepsilon=30 \mathrm{~V}$ across $R_{e q}$ the current there is $i_{2}=3.0 \mathrm{~A}$.
(b) The three resistors on the right reduce to

$$
R_{\mathrm{eq}}^{\prime}=R_{56}+R_{7}=\frac{R_{5} R_{6}}{R_{5}+R_{6}}+R_{7}=\frac{(6.0 \Omega)(2.0 \Omega)}{6.0 \Omega+2.0 \Omega}+1.5 \Omega=3.0 \Omega .
$$

With $\varepsilon=30 \mathrm{~V}$ across R_{eq}^{\prime} the current there is $i_{4}=10 \mathrm{~A}$.
(c) By the junction rule, $i_{1}=i_{2}+i_{4}=13 \mathrm{~A}$.
(d) By symmetry, $i_{3}=\frac{1}{2} i_{2}=1.5 \mathrm{~A}$.
(e) By the loop rule (proceeding clockwise),

$$
30 \mathrm{~V}-i_{4}(1.5 \Omega)-i_{5}(2.0 \Omega)=0
$$

readily yields $i_{5}=7.5 \mathrm{~A}$.
78. (a) We analyze the lower left loop and find $i_{1}=\varepsilon_{1} / R=(12.0 \mathrm{~V}) /(4.00 \Omega)=3.00 \mathrm{~A}$.
(b) The direction of i_{1} is downward.
(c) Letting $R=4.00 \Omega$, we apply the loop rule to the tall rectangular loop in the center of the figure (proceeding clockwise):

$$
\varepsilon_{2}+\left(+i_{1} R\right)+\left(-i_{2} R\right)+\left(-\frac{i_{2}}{2} R\right)+\left(-i_{2} R\right)=0
$$

Using the result from part (a), we find $i_{2}=1.60 \mathrm{~A}$.
(d) The direction of i_{2} is downward (as was assumed in writing the equation as we did).
(e) Battery 1 is supplying this power since the current is in the "forward" direction through the battery.
(f) We apply Eq. 27-17: The current through the $\varepsilon_{1}=12.0 \mathrm{~V}$ battery is, by the junction rule, $1.60+3.00=4.60 \mathrm{~A}$ and $P=(4.60)(12.0 \mathrm{~V})=55.2 \mathrm{~W}$.
(g) Battery 2 is supplying this power since the current is in the "forward" direction through the battery.
(h) $P=i_{2}(4.00 \mathrm{~V})=6.40 \mathrm{~W}$.
79. (a) We reduce the parallel pair of resistors (at the bottom of the figure) to a single R, $=1.00 \Omega$ resistor and then reduce it with its series 'partner' (at the lower left of the figure) to obtain an equivalence of R " $=2.00 \Omega+1.00 \Omega=3.00 \Omega$. It is clear that the current through R " is the i_{1} we are solving for. Now, we employ the loop rule, choose a path that includes $R^{\prime \prime}$ and all the batteries (proceeding clockwise). Thus, assuming i_{1} goes leftward through R ", we have

$$
5.00 \mathrm{~V}+20.0 \mathrm{~V}-10.0 \mathrm{~V}-i_{1} R^{\prime \prime}=0
$$

which yields $i_{1}=5.00 \mathrm{~A}$.
(b) Since i_{1} is positive, our assumption regarding its direction (leftward) was correct.
(c) Since the current through the $\mathcal{E}_{1}=20.0 \mathrm{~V}$ battery is "forward", battery 1 is supplying energy.
(d) The rate is $P_{1}=(5.00 \mathrm{~A})(20.0 \mathrm{~V})=100 \mathrm{~W}$.
(e) Reducing the parallel pair (which are in parallel to the $\varepsilon_{2}=10.0 \mathrm{~V}$ battery) to a single $R^{\prime}=1.00 \Omega$ resistor (and thus with current $i^{\prime}=(10.0 \mathrm{~V}) /(1.00 \Omega)=10.0 \mathrm{~A}$ downward through it), we see that the current through the battery (by the junction rule) must be $i=i^{\prime}$ $-i_{1}=5.00 \mathrm{~A}$ upward (which is the "forward" direction for that battery). Thus, battery 2 is supplying energy.
(f) Using Eq. 27-17, we obtain $P_{2}=50.0 \mathrm{~W}$.
(g) The set of resistors that are in parallel with the $\varepsilon_{3}=5 \mathrm{~V}$ battery is reduced to $R^{\prime \prime \prime}=$ 0.800Ω (accounting for the fact that two of those resistors are actually reduced in series, first, before the parallel reduction is made $)$, which has current $i^{\prime \prime \prime}=(5.00 \mathrm{~V}) /(0.800 \Omega)=$ 6.25 A downward through it. Thus, the current through the battery (by the junction rule) must be $i=i^{\prime \prime \prime}+i_{1}=11.25 \mathrm{~A}$ upward (which is the "forward" direction for that battery). Thus, battery 3 is supplying energy.
(h) Eq. 27-17 leads to $P_{3}=56.3 \mathrm{~W}$.
80. (a) The parallel set of three identical $R_{2}=18 \Omega$ resistors reduce to $R=6.0 \Omega$, which is now in series with the $R_{1}=6.0 \Omega$ resistor at the top right, so that the total resistive load across the battery is $R^{\prime}=R_{1}+R=12 \Omega$. Thus, the current through R^{\prime} is $(12 \mathrm{~V}) / R^{\prime}=1.0 \mathrm{~A}$, which is the current through R. By symmetry, we see one-third of that passes through any one of those 18Ω resistors; therefore, $i_{1}=0.333 \mathrm{~A}$.
(b) The direction of i_{1} is clearly rightward.
(c) We use Eq. 26-27: $P=i^{2} R^{\prime}=(1.0)^{2}(12)=12 \mathrm{~W}$. Thus, in 60 s , the energy dissipated is $(12 \mathrm{~J} / \mathrm{s})(60 \mathrm{~s})=720 \mathrm{~J}$.
81. We denote silicon with subscript s and iron with i. Let $T_{0}=20^{\circ}$. If

$$
\begin{aligned}
R(T) & =R_{s}(T)+R_{i}(T)=R_{s}\left(T_{0}\right)\left[1+\alpha\left(T-T_{0}\right)\right]+R_{i}\left(T_{0}\right)\left[1+\alpha_{i}\left(T-T_{0}\right)\right] \\
& =\left(R_{s}(T)_{0} \alpha_{s}+R_{i}\left(T_{0}\right) \alpha_{i}\right)+(\text { temperature independent terms })
\end{aligned}
$$

is to be temperature-independent, we must require that $R_{s}\left(T_{0}\right) \alpha_{s}+R_{i}\left(T_{0}\right) \alpha_{i}=0$. Also note that $R_{s}\left(T_{0}\right)+R_{i}\left(T_{0}\right)=R=1000 \Omega$. We solve for $R_{s}\left(T_{0}\right)$ and $R_{i}\left(T_{0}\right)$ to obtain

$$
R_{s}\left(T_{0}\right)=\frac{R \alpha_{i}}{\alpha_{i}-\alpha_{s}}=\frac{(1000 \Omega)\left(6.5 \times 10^{-3}\right)}{6.5 \times 10^{-3}+70 \times 10^{-3}}=85.0 \Omega
$$

(b) $R_{i}\left(T_{0}\right)=1000 \Omega-85.0 \Omega=915 \Omega$.
82. (a) Since $R_{\text {eq }}<R$, the two resistors ($R=12.0 \Omega$ and R_{x}) must be connected in parallel:

$$
R_{\mathrm{eq}}=3.00 \Omega=\frac{R_{x} R}{R+R_{x}}=\frac{R_{x}(12.0 \Omega)}{12.0 \Omega+R_{x}} .
$$

We solve for $R_{x}: R_{x}=R_{\text {eq }} R /\left(R-R_{\text {eq }}\right)=(3.00 \Omega)(12.0 \Omega) /(12.0 \Omega-3.00 \Omega)=4.00 \Omega$.
(b) As stated above, the resistors must be connected in parallel.
83. Consider the lowest branch with the two resistors $R_{4}=3.00 \Omega$ and $R_{5}=5.00 \Omega$. The voltage difference across R_{5} is

$$
V=i_{5} R_{5}=\frac{\varepsilon R_{5}}{R_{4}+R_{5}}=\frac{(120 \mathrm{~V})(5.00 \Omega)}{3.00 \Omega+5.00 \Omega}=7.50 \mathrm{~V}
$$

84. When connected in series, the rate at which electric energy dissipates is $P_{s}=\varepsilon^{2} /\left(R_{1}+\right.$ $\left.R_{2}\right)$. When connected in parallel, the corresponding rate is $P_{p}=\varepsilon^{2}\left(R_{1}+R_{2}\right) / R_{1} R_{2}$. Letting $P_{p} / P_{s}=5$, we get $\left(R_{1}+R_{2}\right)^{2} / R_{1} R_{2}=5$, where $R_{1}=100 \Omega$. We solve for $R_{2}: R_{2}=38 \Omega$ or 260Ω.
(a) Thus, the smaller value of R_{2} is 38Ω.
(b) The larger value of R_{2} is 260Ω.
85. (a) We reduce the parallel pair of identical 2.0Ω resistors (on the right side) to $R^{\prime}=$ 1.0Ω, and we reduce the series pair of identical 2.0Ω resistors (on the upper left side) to $R^{\prime \prime}=4.0 \Omega$. With R denoting the 2.0Ω resistor at the bottom (between V_{2} and V_{1}), we now have three resistors in series which are equivalent to

$$
R+R^{\prime}+R^{\prime \prime}=7.0 \Omega
$$

across which the voltage is 7.0 V (by the loop rule, this is $12 \mathrm{~V}-5.0 \mathrm{~V}$), implying that the current is 1.0 A (clockwise). Thus, the voltage across R^{\prime} is $(1.0 \mathrm{~A})(1.0 \Omega)=1.0 \mathrm{~V}$, which means that (examining the right side of the circuit) the voltage difference between ground and V_{1} is $12-1=11 \mathrm{~V}$. Noting the orientation of the battery, we conclude $V_{1}=-11 \mathrm{~V}$.
(b) The voltage across $R^{\prime \prime}$ is $(1.0 \mathrm{~A})(4.0 \Omega)=4.0 \mathrm{~V}$, which means that (examining the left side of the circuit) the voltage difference between ground and V_{2} is $5.0+4.0=9.0 \mathrm{~V}$. Noting the orientation of the battery, we conclude $V_{2}=-9.0 \mathrm{~V}$. This can be verified by considering the voltage across R and the value we obtained for V_{1}.
86. (a) From $P=V^{2} / R$ we find $V=\sqrt{P R}=\sqrt{(10 \mathrm{~W})(0.10 \Omega)}=1.0 \mathrm{~V}$.
(b) From $i=V / R=(\varepsilon-V) / r$ we find

$$
r=R\left(\frac{\varepsilon-V}{V}\right)=(0.10 \Omega)\left(\frac{1.5 \mathrm{~V}-1.0 \mathrm{~V}}{1.0 \mathrm{~V}}\right)=0.050 \Omega
$$

87. (a) $R_{\mathrm{eq}}(A B)=20.0 \Omega / 3=6.67 \Omega$ (three 20.0Ω resistors in parallel).
(b) $R_{\mathrm{eq}}(A C)=20.0 \Omega / 3=6.67 \Omega$ (three 20.0Ω resistors in parallel).
(c) $R_{\mathrm{eq}}(B C)=0$ (as B and C are connected by a conducting wire).
88. Note that there is no voltage drop across the ammeter. Thus, the currents in the bottom resistors are the same, which we call i (so the current through the battery is $2 i$ and the voltage drop across each of the bottom resistors is $i R$). The resistor network can be reduced to an equivalence of

$$
R_{\mathrm{eq}}=\frac{(2 R)(R)}{2 R+R}+\frac{(R)(R)}{R+R}=\frac{7}{6} R
$$

which means that we can determine the current through the battery (and also through each of the bottom resistors):

$$
2 i=\frac{\varepsilon}{R_{\mathrm{eq}}} \Rightarrow i=\frac{3 \varepsilon}{7 R} .
$$

By the loop rule (going around the left loop, which includes the battery, resistor $2 R$ and one of the bottom resistors), we have

$$
\varepsilon-i_{2 R}(2 R)-i R=0 \Rightarrow i_{2 R}=\frac{\varepsilon-i R}{2 R}
$$

Substituting $i=3 \varepsilon / 7 R$, this gives $i_{2 R}=2 \varepsilon / 7 R$. The difference between $i_{2 R}$ and i is the current through the ammeter. Thus,

$$
i_{\text {ammeter }}=i-i_{2 R}=\frac{3 \varepsilon}{7 R}-\frac{2 \varepsilon}{7 R}=\frac{\varepsilon}{7 R} \Rightarrow \frac{i_{\text {ammeter }}}{\varepsilon / R}=\frac{1}{7}=0.143 .
$$

89. When S is open for a long time, the charge on C is $q_{i}=\varepsilon_{2} C$. When S is closed for a long time, the current i in R_{1} and R_{2} is

$$
i=\left(\varepsilon_{2}-\varepsilon_{1}\right) /\left(R_{1}+R_{2}\right)=(3.0 \mathrm{~V}-1.0 \mathrm{~V}) /(0.20 \Omega+0.40 \Omega)=3.33 \mathrm{~A} .
$$

The voltage difference V across the capacitor is then

$$
V=\varepsilon_{2}-i R_{2}=3.0 \mathrm{~V}-(3.33 \mathrm{~A})(0.40 \Omega)=1.67 \mathrm{~V}
$$

Thus the final charge on C is $q_{f}=V C$. So the change in the charge on the capacitor is

$$
\Delta q=q_{f}-q_{i}=\left(V-\varepsilon_{2}\right) C=(1.67 \mathrm{~V}-3.0 \mathrm{~V})(10 \mu \mathrm{~F})=-13 \mu \mathrm{C} .
$$

90. Using the junction and the loop rules, we have

$$
\begin{aligned}
20.0-i_{1} R_{1}-i_{3} R_{3} & =0 \\
20.0-i_{1} R_{1}-i_{2} R_{2}-50 & =0 \\
i_{2}+i_{3} & =i_{1}
\end{aligned}
$$

Requiring no current through the battery 1 means that $i_{1}=0$, or $i_{2}=i_{3}$. Solving the above equations with $R_{1}=10.0 \Omega$ and $R_{2}=20.0 \Omega$, we obtain

$$
i_{1}=\frac{40-3 R_{3}}{20+3 R_{3}}=0 \Rightarrow R_{3}=\frac{40}{3}=13.3 \Omega
$$

91. (a) The capacitor is initially uncharged, which implies (by the loop rule) that there is zero voltage (at $t=0$) across the $R_{2}=10 \mathrm{k} \Omega$ resistor, and that 30 V is across the $R_{1}=20$ $\mathrm{k} \Omega$ resistor. Therefore, by Ohm; law, $i_{10}=(30 \mathrm{~V}) /(20 \mathrm{k} \Omega)=1.5 \times 10^{-3} \mathrm{~A}$.
(b) $i_{20}=0$,
(c) As $t \rightarrow \infty$ the current to the capacitor reduces to zero and the $20 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ resistors behave more like a series pair (having the same current), equivalent to $30 \mathrm{k} \Omega$. The current through them, then, at long times, is

$$
i=(30 \mathrm{~V}) /(30 \mathrm{k} \Omega)=1.0 \times 10^{-3} \mathrm{~A}
$$

92. (a) The six resistors to the left of $\varepsilon_{1}=16 \mathrm{~V}$ battery can be reduced to a single resistor $R=8.0 \Omega$, through which the current must be $i_{R}=\varepsilon_{1} / R=2.0 \mathrm{~A}$. Now, by the loop rule, the current through the 3.0Ω and 1.0Ω resistors at the upper right corner is

$$
i^{\prime}=\frac{16.0 \mathrm{~V}-8.0 \mathrm{~V}}{3.0 \Omega+1.0 \Omega}=2.0 \mathrm{~A}
$$

in a direction that is "backward" relative to the $\varepsilon_{2}=8.0 \mathrm{~V}$ battery. Thus, by the junction rule,

$$
i_{1}=i_{R}+i^{\prime}=4.0 \mathrm{~A} .
$$

(b) The direction of i_{1} is upward (that is, in the "forward" direction relative to ε_{1}).
(c) The current i_{2} derives from a succession of symmetric splittings of i_{R} (reversing the procedure of reducing those six resistors to find R in part (a)). We find

$$
i_{2}=\frac{1}{2}\left(\frac{1}{2} i_{R}\right)=0.50 \mathrm{~A} .
$$

(d) The direction of i_{2} is clearly downward.
(e) Using our conclusion from part (a) in Eq. 27-17, we have $P=i_{1} \varepsilon_{1}=(4.0)(16)=64 \mathrm{~W}$.
(f) Using results from part (a) in Eq. 27-17, we obtain $P=i^{\prime} \varepsilon_{2}=(2.0)(8.0)=16 \mathrm{~W}$.
(g) Energy is being supplied in battery 1.
(h) Energy is being absorbed in battery 2.
93. With the unit Ω understood, the equivalent resistance for this circuit is

$$
R_{\mathrm{eq}}=\frac{20 R_{3}+100}{R_{3}+10} .
$$

Therefore, the power supplied by the battery (equal to the power dissipated in the resistors) is

$$
P=\frac{V^{2}}{R_{3}}=V^{2} \frac{R_{3}+10}{20 R_{3}+100}
$$

where $V=12 \mathrm{~V}$. We attempt to extremize the expression by working through the $d P / d R_{3}$ $=0$ condition and do not find a value of R_{3} that satisfies it.
(a) We note, then, that the function is a monotonically decreasing function of R_{3}, with R_{3} $=0$ giving the maximum possible value (since $R_{3}<0$ values are not being allowed).
(b) With the value $R_{3}=0$, we obtain $P=14.4 \mathrm{~W}$.
94. (a) The symmetry of the problem allows us to use i_{2} as the current in both of the R_{2} resistors and i_{1} for the R_{1} resistors. We see from the junction rule that $i_{3}=i_{1}-i_{2}$. There are only two independent loop rule equations:

$$
\begin{array}{r}
\varepsilon-i_{2} R_{2}-i_{1} R_{1}=0 \\
\varepsilon-2 i_{1} R_{1}-\left(i_{1}-i_{2}\right) R_{3}=0
\end{array}
$$

where in the latter equation, a zigzag path through the bridge has been taken. Solving, we find $i_{1}=0.002625 \mathrm{~A}, i_{2}=0.00225 \mathrm{~A}$ and $i_{3}=i_{1}-i_{2}=0.000375 \mathrm{~A}$. Therefore, $V_{A}-V_{B}=$ $i_{1} R_{1}=5.25 \mathrm{~V}$.
(b) It follows also that $V_{B}-V_{C}=i_{3} R_{3}=1.50 \mathrm{~V}$.
(c) We find $V_{C}-V_{D}=i_{1} R_{1}=5.25 \mathrm{~V}$.
(d) Finally, $V_{A}-V_{C}=i_{2} R_{2}=6.75 \mathrm{~V}$.
95. (a) Using the junction rule $\left(i_{1}=i_{2}+i_{3}\right)$ we write two loop rule equations:

$$
\begin{aligned}
& \varepsilon_{1}-i_{2} R_{2}-\left(i_{2}+i_{3}\right) R_{1}=0 \\
& \varepsilon_{2}-i_{3} R_{3}-\left(i_{2}+i_{3}\right) R_{1}=0 .
\end{aligned}
$$

Solving, we find $i_{2}=0.0109 \mathrm{~A}$ (rightward, as was assumed in writing the equations as we did), $i_{3}=0.0273 \mathrm{~A}$ (leftward), and $i_{1}=i_{2}+i_{3}=0.0382 \mathrm{~A}$ (downward).
(b) downward. See the results in part (a).
(c) $i_{2}=0.0109 \mathrm{~A}$. See the results in part (a).
(d) rightward. See the results in part (a).
(e) $i_{3}=0.0273 \mathrm{~A}$. See the results in part (a).
(f) leftward. See the results in part (a).
(g) The voltage across R_{1} equals $V_{A}:(0.0382 \mathrm{~A})(100 \Omega)=+3.82 \mathrm{~V}$.
96. (a) R_{2} and R_{3} are in parallel; their equivalence is in series with R_{1}. Therefore,

$$
R_{\mathrm{eq}}=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=300 \Omega
$$

(b) The current through the battery is $\varepsilon / R_{\mathrm{eq}}=0.0200 \mathrm{~A}$, which is also the current through R_{1}. Hence, the voltage across R_{1} is $V_{1}=(0.0200 \mathrm{~A})(100 \Omega)=2.00 \mathrm{~V}$.
(c) From the loop rule,

$$
\varepsilon-V_{1}-i_{3} R_{3}=0
$$

which yields $i_{3}=6.67 \times 10^{-3} \mathrm{~A}$.
97. From $V_{a}-\varepsilon_{1}=V_{c}-i r_{1}-i R$ and $i=\left(\varepsilon_{1}-\varepsilon_{2}\right) /\left(R+r_{1}+r_{2}\right)$, we get

$$
\begin{aligned}
V_{a}-V_{c} & =\varepsilon_{1}-i\left(r_{1}+R\right)=\varepsilon_{1}-\left(\frac{\varepsilon_{1}-\varepsilon_{2}}{R+r_{1}+r_{2}}\right)\left(r_{1}+R\right) \\
& =4.4 \mathrm{~V}-\left(\frac{4.4 \mathrm{~V}-2.1 \mathrm{~V}}{5.5 \Omega+1.8 \Omega+2.3 \Omega}\right)(2.3 \Omega+5.5 \Omega) \\
& =2.5 \mathrm{~V}
\end{aligned}
$$

98. The potential difference across R_{2} is

$$
V_{2}=i R_{2}=\frac{\varepsilon R_{2}}{R_{1}+R_{2}+R_{3}}=\frac{(12 \mathrm{~V})(4.0 \Omega)}{3.0 \Omega+4.0 \Omega+5.0 \Omega}=4.0 \mathrm{~V} .
$$

99. (a) By symmetry, we see that i_{3} is half the current that goes through the battery. The battery current is found by dividing ε by the equivalent resistance of the circuit, which is easily found to be 6.00Ω. Thus,

$$
i_{3}=\frac{1}{2} i_{\text {bat }}=\frac{1}{2}\left(\frac{12 \mathrm{~V}}{6.0 \Omega}\right)=1.00 \mathrm{~A}
$$

and is clearly downward (in the figure).
(b) We use Eq. 27-17: $P=i_{\text {bat }} \mathcal{E}=24.0 \mathrm{~W}$.
100. The current in the ammeter is given by $i_{A}=\varepsilon /\left(r+R_{1}+R_{2}+R_{A}\right)$. The current in R_{1} and R_{2} without the ammeter is $i=\varepsilon /\left(r+R_{1}+R_{2}\right)$. The percent error is then

$$
\begin{aligned}
\frac{\Delta i}{i} & =\frac{i-i_{A}}{i}=1-\frac{r+R_{1}+R_{2}}{r+R_{1}+R_{2}+R_{A}}=\frac{R_{A}}{r+R_{1}+R_{2}+R_{A}} \\
& =\frac{0.10 \Omega}{2.0 \Omega+5.0 \Omega+4.0 \Omega+0.10 \Omega}=0.90 \% .
\end{aligned}
$$

101. When all the batteries are connected in parallel, each supplies a current i; thus, $i_{R}=$ $N i$. Then from $\varepsilon=i r+i_{R} R=i r+N i r$, we get $i_{R}=N \varepsilon /[(N+1) r]$. When all the batteries are connected in series, $i_{r}=i_{R}$ and

$$
\mathcal{E}_{\text {total }}=N \mathcal{E}=N i_{r} r+i_{R} R=N i_{R} r+i_{R} r,
$$

so $i_{R}=N \varepsilon /[(N+1) r]$.
102. (a) Dividing Eq. 27-39 by capacitance turns it into an equation that describes the dependence of the voltage on time: $\mathrm{V}_{C}=\mathrm{V}_{0} e^{-t / \tau}$;
(b) Taking logarithms of this equation produces a form amenable to a least squares fit:

$$
\begin{gathered}
\ln \left(\mathrm{V}_{C}\right)=-\frac{1}{\tau} t+\ln \left(\mathrm{V}_{0}\right) \\
\ln \left(\mathrm{V}_{C}\right)=-1.2994 t+2.525
\end{gathered}
$$

Thus, we have the emf equal to $\mathrm{V}_{0}=\mathrm{e}^{2.525}=12.49 \mathrm{~V} \approx 12 \mathrm{~V}$;
(c) This also tells us that the time constant is $\tau=1 / 1.2994=0.77 \mathrm{~s}$.
(d) Since $\tau=R C$ then we find $C=3.8 \mu \mathrm{~F}$.
103. Here we denote the supply emf as V (understood to be in volts). The situation is much like that shown in Fig. 27-4, with r now interpreted as the resistance of the transmission line and R interpreted as the resistance of the "consumer" (the reason the circuit has been turned on in the first place - to supply power to some resistive load R). From Eq. 27-4 and Eq. 26-27 (remembering that we are asked to find the power dissipated in the transmission line) we obtain

$$
P_{\text {line }}=\left(\frac{\mathrm{V}^{2}}{(R+r)^{2}}\right) r .
$$

Now r is considered constant, certainly, but what about R ? The load will not be the same in the two cases (where $\mathrm{V}=110000$ and $\mathrm{V}^{\prime}=110$) because the problem requires us to consider the total power supplied to be constant, so

$$
P_{\text {total }}=\left(\frac{\mathrm{V}^{2}}{(R+r)^{2}}\right)(R+r)=P_{\text {total }}^{\prime}=\left(\frac{\mathrm{V}^{\prime 2}}{\left(R^{\prime}+r\right)^{2}}\right)\left(R^{\prime}+r\right)
$$

which implies (taking ratio of $P_{\text {total }}$ to $P_{\text {total }}^{\prime}$)

$$
1=\frac{\mathrm{V}^{2}\left(R^{\prime}+r\right)}{\mathrm{V}^{\prime 2}(R+r)}
$$

Now, as the problem directs, we take ratio of $P_{\text {line }}$ to $P_{\text {line }}^{\prime}$ and obtain

$$
\frac{P_{\text {line }}}{P_{\text {line }}^{\prime}}=\frac{\mathrm{V}^{2}\left(R^{\prime}+r\right)^{2}}{\mathrm{~V}^{\prime 2}(R+r)^{2}}=\frac{\mathrm{V}^{\prime 2}}{\mathrm{~V}^{2}}=1.00 \times 10^{-6}
$$

104. The resistor by the letter i is above three other resistors; together, these four resistors are equivalent to a resistor $R=10 \Omega$ (with current i). As if we were presented with a maze, we find a path through R that passes through any number of batteries (10, it turns out) but no other resistors, which - as in any good maze - winds "all over the place." Some of the ten batteries are opposing each other (particularly the ones along the outside), so that their net emf is only $\varepsilon=40 \mathrm{~V}$.
(a) The current through R is then $i=\varepsilon / R=4.0 \mathrm{~A}$.
(b) The direction is upward in the figure.
105. The maximum power output is $(120 \mathrm{~V})(15 \mathrm{~A})=1800 \mathrm{~W}$. Since $1800 \mathrm{~W} / 500 \mathrm{~W}=$ 3.6 , the maximum number of 500 W lamps allowed is 3 .
106. The part of R_{0} connected in parallel with R is given by $R_{1}=R_{0} x / L$, where $L=10 \mathrm{~cm}$. The voltage difference across R is then $V_{R}=\varepsilon R^{\prime} / R_{\text {eq }}$, where $R^{\prime}=R R_{1} /\left(R+R_{1}\right)$ and $R_{\text {eq }}=$ $R_{0}(1-x / L)+R^{\prime}$. Thus

$$
P_{R}=\frac{V_{R}^{2}}{R}=\frac{1}{R}\left(\frac{\varepsilon R R_{1} /\left(R+R_{1}\right)}{R_{0}(1-x / L)+R R_{1} /\left(R+R_{1}\right)}\right)^{2}=\frac{100 R\left(\varepsilon x / R_{0}\right)^{2}}{\left(100 R / R_{0}+10 x-x^{2}\right)^{2}},
$$

where x is measured in cm .
107. The power delivered by the motor is $P=(2.00 \mathrm{~V})(0.500 \mathrm{~m} / \mathrm{s})=1.00 \mathrm{~W}$. From $P=$ $i^{2} R_{\text {motor }}$ and $\varepsilon=i\left(r+R_{\text {motor }}\right.$) we then find $i^{2} r-i \varepsilon+P=0$ (which also follows directly from the conservation of energy principle). We solve for i :

$$
i=\frac{\varepsilon \pm \sqrt{\varepsilon^{2}-4 r P}}{2 r}=\frac{2.00 \mathrm{~V} \pm \sqrt{(2.00 \mathrm{~V})^{2}-4(0.500 \Omega)(1.00 \mathrm{~W})}}{2(0.500 \Omega)}
$$

The answer is either 3.41 A or 0.586 A .
(a) The larger i is 3.41 A .
(b) We use $V=\varepsilon$ - ir $=2.00 \mathrm{~V}-i(0.500 \Omega)$. We substitute value of i obtained in part (a) into the above formula to get $V=0.293 \mathrm{~V}$.
(c) The smaller i is 0.586 A .
(d) The corresponding V is 1.71 V .
108. (a) Placing a wire (of resistance r) with current i running directly from point a to point b in Fig. 27-51 divides the top of the picture into a left and a right triangle. If we label the currents through each resistor with the corresponding subscripts (for instance, i_{s} goes toward the lower right through R_{s} and i_{x} goes toward the upper right through R_{x}), then the currents must be related as follows:

$$
\begin{array}{lll}
i_{0}=i_{1}+i_{s} & \text { and } & i_{1}=i+i_{2} \\
i_{s}+i=i_{x} & \text { and } & i_{2}+i_{x}=i_{0}
\end{array}
$$

where the last relation is not independent of the previous three. The loop equations for the two triangles and also for the bottom loop (containing the battery and point b) lead to

$$
\begin{aligned}
i_{s} R_{s}-i_{1} R_{1}-i r & =0 \\
i_{2} R_{s}-i_{x} R_{x}-i r & =0 \\
\varepsilon-i_{0} R_{0}-i_{s} R_{s}-i_{x} R_{x} & =0 .
\end{aligned}
$$

We incorporate the current relations from above into these loop equations in order to obtain three well-posed "simultaneous" equations, for three unknown currents (i_{s}, i_{1} and $i)$:

$$
\begin{array}{r}
i_{s} R_{s}-i_{1} R_{1}-i r=0 \\
i_{1} R_{2}-i_{s} R_{x}-i\left(r+R_{x}+R_{2}\right)=0 \\
\varepsilon-i_{s}\left(R_{0}+R_{s}+R_{x}\right)-i_{1} R_{0}-i R_{x}=0
\end{array}
$$

The problem statement further specifies $R_{1}=R_{2}=R$ and $R_{0}=0$, which causes our solution for i to simplify significantly. It becomes

$$
i=\frac{\varepsilon\left(R_{s}-R_{x}\right)}{2 r R_{s}+2 R_{x} R_{s}+R_{s} R+2 r R_{x}+R_{x} R}
$$

which is equivalent to the result shown in the problem statement.
(b) Examining the numerator of our final result in part (a), we see that the condition for i $=0$ is $R_{s}=R_{x}$. Since $R_{1}=R_{2}=R$, this is equivalent to $R_{x}=R_{s} R_{2} / R_{1}$, consistent with the result of Problem 43.
109. (a) They are in parallel and the portions of A and B between the load and their respective sliding contacts have the same potential difference. It is clearly important not to "short" the system (particularly if the load turns out to have very little resistance) by having the sliding contacts too close to the load-ends of A and B to start with. Thus, we suggest putting the contacts roughly in the middle of each. Since $R_{A}>R_{B}$, larger currents generally go through B (depending on the position of the sliding contact) than through A. Therefore, B is analogous to a "coarse" control, as A is to a "fine control." Hence, we recommend adjusting the current roughly with B, and then making fine adjustments with A.
(b) Relatively large percentage changes in A cause only small percentage charges in the resistance of the parallel combination, thus permitting fine adjustment; any change in A causes half as much change in this combination.
110. (a) In the process described in the problem, no charge is gained or lost. Thus, $q=$ constant. Hence,

$$
q=C_{1} V_{1}=C_{2} V_{2} \Rightarrow V_{2}=V_{1} \frac{C_{1}}{C_{2}}=(200)\left(\frac{150}{10}\right)=3.0 \times 10^{3} \mathrm{~V} .
$$

(b) Eq. 27-39, with $\tau=R C$, describes not only the discharging of q but also of V. Thus,

$$
V=V_{0} e^{-t / \tau} \Rightarrow t=R C \ln \left(\frac{V_{0}}{V}\right)=\left(300 \times 10^{9} \Omega\right)\left(10 \times 10^{-12} \mathrm{~F}\right) \ln \left(\frac{3000}{100}\right)
$$

which yields $t=10 \mathrm{~s}$. This is a longer time than most people are inclined to wait before going on to their next task (such as handling the sensitive electronic equipment).
(c) We solve $V=V_{0} e^{-t / R C}$ for R with the new values $V_{0}=1400 \mathrm{~V}$ and $t=0.30 \mathrm{~s}$. Thus,

$$
R=\frac{t}{C \ln \left(V_{0} / V\right)}=\frac{0.30 \mathrm{~s}}{\left(10 \times 10^{-12} \mathrm{~F}\right) \ln (1400 / 100)}=1.1 \times 10^{10} \Omega .
$$

111. In the steady state situation, there is no current going to the capacitors, so the resistors all have the same current. By the loop rule,

$$
20.0 \mathrm{~V}=(5.00 \Omega) i+(10.0 \Omega) i+(15.0 \Omega) i
$$

which yields $i=\frac{2}{3} \mathrm{~A}$. Consequently, the voltage across the $R_{1}=5.00 \Omega$ resistor is (5.00 $\Omega)(2 / 3 \mathrm{~A})=10 / 3 \mathrm{~V}$, and is equal to the voltage V_{1} across the $C_{1}=5.00 \mu \mathrm{~F}$ capacitor. Using Eq. 26-22, we find the stored energy on that capacitor:

$$
U_{1}=\frac{1}{2} C_{1}\left(V_{1}\right)^{2}=\frac{1}{2}\left(5.00 \times 10^{-6}\right)\left(\frac{10}{3}\right)^{2}=2.78 \times 10^{-5} \mathrm{~J} .
$$

Similarly, the voltage across the $R_{2}=10.0 \Omega$ resistor is $(10.0 \Omega)(2 / 3 \mathrm{~A})=20 / 3 \mathrm{~V}$ and is equal to the voltage V_{2} across the $C_{2}=10.0 \mu \mathrm{~F}$ capacitor. Hence,

$$
U_{2}=\frac{1}{2} C_{2}\left(V_{2}\right)^{2}=\frac{1}{2}\left(10 \times 10^{-6}\right)\left(\frac{20}{3}\right)^{2}=2.22 \times 10^{-4} \mathrm{~J} .
$$

Therefore, the total capacitor energy is $U_{1}+U_{2}=2.50 \times 10^{-4} \mathrm{~J}$.
112. (a) Applying the junction rule twice and the loop rule three times, we obtain

$$
\begin{array}{r}
i_{1}-i_{2}+i_{4}+i_{5}=0 \\
i_{3}+i_{4}+i_{5}=0 \\
-16 \mathrm{~V}+4 \mathrm{~V}+(7 \Omega) i_{1}+(5 \Omega) i_{2}=0 \\
10 \mathrm{~V}-4 \mathrm{~V}-(5 \Omega) i_{2}+(8 \Omega) i_{3}-(9 \Omega) i_{4}=0 \\
12 \mathrm{~V}+(9 \Omega) i_{4}-(4 \Omega) i_{5}=0
\end{array}
$$

(b) Examining the coefficients of the currents in the above relations, we find

$$
[A]=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
7 & 5 & 0 & 0 & 0 \\
0 & -5 & 8 & -9 & 0 \\
0 & 0 & 0 & 9 & -4
\end{array}\right] \text { ohms, }[C]=\left[\begin{array}{c}
0 \\
0 \\
12 \\
-6 \\
-12
\end{array}\right] \text { volts; }
$$

(c) $i_{1}=306 / 427 \approx 0.717 \mathrm{~A}$, $i_{2}=426 / 305 \approx 1.40 \mathrm{~A}$, $i_{3}=-1452 / 2135 \approx-0.680 \mathrm{~A}$, $i_{4}=-1524 / 2135 \approx-0.714 \mathrm{~A}$, $i_{5}=2976 / 2135 \approx 1.39 \mathrm{~A}$
113. (a) $\mathrm{V}_{9}=(9.00 \Omega)\left(\left|i_{4}\right|\right)=6.43 \mathrm{~V}$;
(b) $P_{7}=\left(i_{1}\right)^{2}(7.00 \Omega)=3.60 \mathrm{~W}$;
(c) $(12.0 \mathrm{~V})\left(i_{5}\right)=16.7 \mathrm{~W}$;
(d) $-(4.00 \mathrm{~V})\left(i_{2}\right)=-5.60 \mathrm{~W}$;
(e) a (see the true direction of the current labeled i_{4})
114. (a) Next, we graph Eq. 27-4 (scaled by a factor of 100) for $\varepsilon=2.0 \mathrm{~V}$ and $r=100 \Omega$ over the range $0 \leq R \leq 500 \Omega$. We multiplied the SI output of Eq. 27-4 by 100 so that this graph would not be vanishingly small with the other graph (see part (b)) when they are plotted together.
(b) In the same graph, we show $V_{R}=i R$ over the same range. The graph of current i is the one that starts at 2 (which corresponds to 0.02 A in SI units) and the graph of voltage V_{R} is the one that starts at 0 (when $R=0$). The value of V_{R} are in SI units (not scaled by any factor).

(c) In our final graph, we show the dependence of power $P=i V_{R}$ (dissipated in resistor R) as a function of R. The units of the vertical axis are Watts. We note that it is maximum when $R=r$.

1. (a) Eq. 28-3 leads to

$$
v=\frac{F_{B}}{e B \sin \phi}=\frac{6.50 \times 10^{-17} \mathrm{~N}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.60 \times 10^{-3} \mathrm{~T}\right) \sin 23.0^{\circ}}=4.00 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

(b) The kinetic energy of the proton is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(4.00 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}=1.34 \times 10^{-16} \mathrm{~J} .
$$

This is $\left(1.34 \times 10^{-16} \mathrm{~J}\right) /\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=835 \mathrm{eV}$.
2. (a) We use Eq. 28-3:

$$
F_{B}=|q| v B \sin \phi=\left(+3.2 \times 10^{-19} \mathrm{C}\right)(550 \mathrm{~m} / \mathrm{s})(0.045 \mathrm{~T})\left(\sin 52^{\circ}\right)=6.2 \times 10^{-18} \mathrm{~N} .
$$

(b) $a=F_{B} / m=\left(6.2 \times 10^{-18} \mathrm{~N}\right) /\left(6.6 \times 10^{-27} \mathrm{~kg}\right)=9.5 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$.
(c) Since it is perpendicular to \vec{v}, \vec{F}_{B} does not do any work on the particle. Thus from the work-energy theorem both the kinetic energy and the speed of the particle remain unchanged.
3. (a) The force on the electron is

$$
\begin{aligned}
\vec{F}_{B} & =q \vec{v} \times \vec{B}=q\left(v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}\right) \times\left(B_{x} \hat{\mathrm{i}}+B_{y} \overrightarrow{\mathrm{j}}\right)=q\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}} \\
& =\left(-1.6 \times 10^{-19} \mathrm{C}\right)\left[\left(2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(-0.15 \mathrm{~T})-\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(0.030 \mathrm{~T})\right] \\
& =\left(6.2 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{k}}
\end{aligned}
$$

Thus, the magnitude of \vec{F}_{B} is $6.2 \times 10^{14} \mathrm{~N}$, and \vec{F}_{B} points in the positive z direction.
(b) This amounts to repeating the above computation with a change in the sign in the charge. Thus, \vec{F}_{B} has the same magnitude but points in the negative z direction, namely, $\vec{F}_{B}=-\left(6.2 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{k}}$.
4. The magnetic force on the proton is

$$
\vec{F}=q \overrightarrow{\mathrm{v}} \times \vec{B}
$$

where $q=+e$. Using Eq. 3-30 this becomes
$\left(4 \times 10^{-17}\right) \hat{\mathrm{i}}+\left(2 \times 10^{-17}\right) \hat{\mathrm{j}}=e\left[\left(0.03 v_{\mathrm{y}}+40\right) \hat{\mathrm{i}}+\left(20-0.03 v_{\mathrm{x}}\right) \hat{\mathrm{j}}-\left(0.02 v_{\mathrm{x}}+0.01 v_{\mathrm{y}}\right) \hat{\mathrm{k}}\right]$
with SI units understood. Equating corresponding components, we find
(a) $v_{\mathrm{x}}=-3.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$, and
(b) $v_{y}=7.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
5. Using Eq. 28-2 and Eq. 3-30, we obtain

$$
\vec{F}=q\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}}=q\left(v_{x}\left(3 B_{x}\right)-v_{y} B_{x}\right) \hat{\mathrm{k}}
$$

where we use the fact that $B_{y}=3 B_{x}$. Since the force (at the instant considered) is $F_{z} \hat{\mathrm{k}}$ where $F_{z}=6.4 \times 10^{-19} \mathrm{~N}$, then we are led to the condition

$$
q\left(3 v_{x}-v_{y}\right) B_{x}=F_{z} \Rightarrow B_{x}=\frac{F_{z}}{q\left(3 v_{x}-v_{y}\right)}
$$

Substituting $V_{x}=2.0 \mathrm{~m} / \mathrm{s}, v_{y}=4.0 \mathrm{~m} / \mathrm{s}$ and $q=-1.6 \times 10^{-19} \mathrm{C}$, we obtain $B_{x}=-2.0 \mathrm{~T}$.
6. Letting $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=0$, we get $v B \sin \phi=E$. We note that (for given values of the fields) this gives a minimum value for speed whenever the $\sin \phi$ factor is at its maximum value (which is 1 , corresponding to $\phi=90^{\circ}$). So

$$
v_{\min }=E / B=\left(1.50 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) /(0.400 \mathrm{~T})=3.75 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

7. Straight line motion will result from zero net force acting on the system; we ignore gravity. Thus, $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=0$. Note that $\vec{v} \perp \vec{B}$ so $|\vec{v} \times \vec{B}|=v B$. Thus, obtaining the speed from the formula for kinetic energy, we obtain

$$
B=\frac{E}{v}=\frac{E}{\sqrt{2 K / m_{e}}}=\frac{100 \mathrm{~V} /\left(20 \times 10^{-3} \mathrm{~m}\right)}{\sqrt{2\left(1.0 \times 10^{3} \mathrm{~V}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right) /\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}}=2.67 \times 10^{-4} \mathrm{~T}
$$

In unit-vector notation, $\vec{B}=-\left(2.67 \times 10^{-4} \mathrm{~T}\right) \hat{\mathrm{k}}$.
8. We apply $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=m_{e} \vec{a}$ to solve for \vec{E} :

$$
\begin{aligned}
\vec{E} & =\frac{m_{e} \vec{a}}{q}+\vec{B} \times \vec{v} \\
& =\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.00 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}}{-1.60 \times 10^{-19} \mathrm{C}}+(400 \mu \mathrm{~T}) \hat{\mathrm{i}} \times[(12.0 \mathrm{~km} / \mathrm{s}) \hat{\mathrm{j}}+(15.0 \mathrm{~km} / \mathrm{s}) \hat{\mathrm{k}}] \\
& =(-11.4 \hat{\mathrm{i}}-6.00 \hat{\mathrm{j}}+4.80 \hat{\mathrm{k}}) \mathrm{V} / \mathrm{m} .
\end{aligned}
$$

9. Since the total force given by $\vec{F}=e(\vec{E}+\vec{v} \times \vec{B})$ vanishes, the electric field \vec{E} must be perpendicular to both the particle velocity \vec{v} and the magnetic field \vec{B}. The magnetic field is perpendicular to the velocity, so $\vec{v} \times \vec{B}$ has magnitude $v B$ and the magnitude of the electric field is given by $E=v B$. Since the particle has charge e and is accelerated through a potential difference $V, \frac{1}{2} m v^{2}=e V$ and $v=\sqrt{2 e V / m}$. Thus,

$$
E=B \sqrt{\frac{2 e V}{m}}=(1.2 \mathrm{~T}) \sqrt{\frac{2\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(10 \times 10^{3} \mathrm{~V}\right)}{\left(9.99 \times 10^{-27} \mathrm{~kg}\right)}}=6.8 \times 10^{5} \mathrm{~V} / \mathrm{m}
$$

10. (a) The force due to the electric field $(\vec{F}=q \vec{E})$ is distinguished from that associated with the magnetic field ($\vec{F}=q \vec{v} \times \vec{B}$) in that the latter vanishes at the speed is zero and the former is independent of speed. The graph (Fig.28-34) shows that the force (y component) is negative at $\mathrm{v}=0$ (specifically, its value is $-2.0 \times 10^{-19} \mathrm{~N}$ there) which (because $q=-e$) implies that the electric field points in the $+y$ direction. Its magnitude is

$$
E=\left(2.0 \times 10^{-19}\right) /\left(1.60 \times 10^{-19}\right)=1.25 \mathrm{~V} / \mathrm{m} .
$$

(b) We are told that the x and z components of the force remain zero throughout the motion, implying that the electron continues to move along the x axis, even though magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11). The exception to this is discussed in section 28-3, where the forces due to the electric and magnetic fields cancel. This implies (Eq. 28-7) $B=E / v=2.50 \times 10^{-2} \mathrm{~T}$.

For $\vec{F}=q \overrightarrow{\mathrm{v}} \times \vec{B}$ to be in the opposite direction of $\vec{F}=q \vec{E}$ we must have $\overrightarrow{\mathrm{v}} \times \vec{B}$ in the opposite direction from \vec{E} which points in the $+y$ direction, as discussed in part (a). Since the velocity is in the $+x$ direction, then (using the right-hand rule) we conclude that the magnetic field must point in the $+z$ direction $(\hat{\mathrm{i}} \times \hat{\mathrm{k}}=-\hat{\mathrm{j}})$. In unit-vector notation, we have $\vec{B}=\left(2.50 \times 10^{-2} \mathrm{~T}\right) \hat{\mathrm{k}}$.
11. For a free charge q inside the metal strip with velocity \vec{v} we have $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$. We set this force equal to zero and use the relation between (uniform) electric field and potential difference. Thus,

$$
v=\frac{E}{B}=\frac{\left|V_{x}-V_{y}\right| / d_{x y}}{B}=\frac{\left(3.90 \times 10^{-9} \mathrm{~V}\right)}{\left(1.20 \times 10^{-3} \mathrm{~T}\right)\left(0.850 \times 10^{-2} \mathrm{~m}\right)}=0.382 \mathrm{~m} / \mathrm{s} .
$$

12. We use Eq. 28-12 to solve for V :

$$
V=\frac{i B}{n l e}=\frac{(23 \mathrm{~A})(0.65 \mathrm{~T})}{\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)(150 \mu \mathrm{~m})\left(1.6 \times 10^{-19} \mathrm{C}\right)}=7.4 \times 10^{-6} \mathrm{~V}
$$

13. (a) We seek the electrostatic field established by the separation of charges (brought on by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as $|\vec{E}|=v|\vec{B}|=(20.0 \mathrm{~m} / \mathrm{s})(0.030 \mathrm{~T})=0.6 \mathrm{~V} / \mathrm{m}$. Its direction may be inferred from Figure 288 ; its direction is opposite to that defined by $\vec{v} \times \vec{B}$. In summary,

$$
\vec{E}=-(0.600 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{k}}
$$

which insures that $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$ vanishes.
(b) Eq. 28-9 yields $V=(0.600 \mathrm{~V} / \mathrm{m})(2.00 \mathrm{~m})=1.20 \mathrm{~V}$.
14. We note that \vec{B} must be along the x axis because when the velocity is along that axis there is no induced voltage. Combining Eq. 28-7 and Eq. 28-9 leads to $d=V / v B$ where one must interpret the symbols carefully to ensure that $\vec{d}, \overrightarrow{\mathrm{v}}$ and \vec{B} are mutually perpendicular. Thus, when the velocity if parallel to the y axis the absolute value of the voltage (which is considered in the same "direction" as \vec{d}) is 0.012 V , and

$$
d=d_{\mathrm{z}}=(0.012) /(3)(0.02)=0.20 \mathrm{~m}
$$

And when the velocity if parallel to the z axis the absolute value of the appropriate voltage is 0.018 V , and $d=d_{y}=(0.018) /(3)(0.02)=0.30 \mathrm{~m}$. Thus, our answers are
(a) $d_{x}=25 \mathrm{~cm}$ (which we arrive at "by elimination" - since we already have figured out d_{y} and d_{z}),
(b) $d_{y}=30 \mathrm{~cm}$, and
(c) $d_{\mathrm{z}}=20 \mathrm{~cm}$
15. From Eq. 28-16, we find

$$
B=\frac{m_{e} v}{e r}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.30 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.350 \mathrm{~m})}=2.11 \times 10^{-5} \mathrm{~T} .
$$

16. (a) The accelerating process may be seen as a conversion of potential energy eV into kinetic energy. Since it starts from rest, $\frac{1}{2} m_{e} v^{2}=e V$ and

$$
v=\sqrt{\frac{2 \mathrm{eV}}{m_{e}}}=\sqrt{\frac{2\left(1.60 \times 10^{-19} \mathrm{C}\right)(350 \mathrm{~V})}{9.11 \times 10^{-31} \mathrm{~kg}}}=1.11 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

(b) Eq. 28-16 gives

$$
r=\frac{m_{e} v}{e B}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.11 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(200 \times 10^{-3} \mathrm{~T}\right)}=3.16 \times 10^{-4} \mathrm{~m} .
$$

17. (a) From $K=\frac{1}{2} m_{e} v^{2}$ we get

$$
v=\sqrt{\frac{2 K}{m_{e}}}=\sqrt{\frac{2\left(1.20 \times 10^{3} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{eV} / \mathrm{J}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=2.05 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

(b) From $r=m_{e} v / q B$ we get

$$
B=\frac{m_{e} v}{q r}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.05 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(25.0 \times 10^{-2} \mathrm{~m}\right)}=4.67 \times 10^{-4} \mathrm{~T}
$$

(c) The "orbital" frequency is

$$
f=\frac{v}{2 \pi r}=\frac{2.07 \times 10^{7} \mathrm{~m} / \mathrm{s}}{2 \pi\left(25.0 \times 10^{-2} \mathrm{~m}\right)}=1.31 \times 10^{7} \mathrm{~Hz}
$$

(d) $T=1 / f=\left(1.31 \times 10^{7} \mathrm{~Hz}\right)^{-1}=7.63 \times 10^{-8} \mathrm{~s}$.
18. (a) Using Eq. 28-16, we obtain

$$
v=\frac{r q B}{m_{\alpha}}=\frac{2 e B}{4.00 \mathrm{u}}=\frac{2\left(4.50 \times 10^{-2} \mathrm{~m}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.20 \mathrm{~T})}{(4.00 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}=2.60 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) $T=2 \pi r / v=2 \pi\left(4.50 \times 10^{-2} \mathrm{~m}\right) /\left(2.60 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)=1.09 \times 10^{-7} \mathrm{~s}$.
(c) The kinetic energy of the alpha particle is

$$
K=\frac{1}{2} m_{\alpha} v^{2}=\frac{(4.00 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)\left(2.60 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=1.40 \times 10^{5} \mathrm{eV} .
$$

(d) $\Delta V=K / q=1.40 \times 10^{5} \mathrm{eV} / 2 e=7.00 \times 10^{4} \mathrm{~V}$.
19. (a) The frequency of revolution is

$$
f=\frac{B q}{2 \pi m_{e}}=\frac{\left(35.0 \times 10^{-6} \mathrm{~T}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{2 \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}=9.78 \times 10^{5} \mathrm{~Hz}
$$

(b) Using Eq. 28-16, we obtain

$$
r=\frac{m_{e} v}{q B}=\frac{\sqrt{2 m_{e} K}}{q B}=\frac{\sqrt{2\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(100 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(35.0 \times 10^{-6} \mathrm{~T}\right)}=0.964 \mathrm{~m} .
$$

20. Referring to the solution of problem 19 part (b), we see that $r=\sqrt{2 m K} / q B$ implies K $=(r q B)^{2} / 2 m \propto q^{2} m^{-1}$. Thus,
(a) $K_{\alpha}=\left(q_{\alpha} / q_{p}\right)^{2}\left(m_{p} / m_{\alpha}\right) K_{p}=(2)^{2}(1 / 4) K_{p}=K_{p}=1.0 \mathrm{MeV}$;
(b) $K_{d}=\left(q_{d} / q_{p}\right)^{2}\left(m_{p} / m_{d}\right) K_{p}=(1)^{2}(1 / 2) K_{p}=1.0 \mathrm{MeV} / 2=0.50 \mathrm{MeV}$.
21. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance traveled parallel to \vec{B} is $d_{\|}=\mathrm{v}_{\|} T=\mathrm{v}_{\|}\left(2 \pi m_{e} /|q| B\right)$ using Eq. 28-17. Thus,

$$
\mathrm{v}_{\|}=\frac{d_{\|} e B}{2 \pi m_{e}}=50.3 \mathrm{~km} / \mathrm{s}
$$

using the values given in this problem. Also, since the magnetic force is $|q| B \mathrm{v}_{\perp}$, then we find $\mathrm{v}_{\perp}=41.7 \mathrm{~km} / \mathrm{s}$. The speed is therefore $\mathrm{v}=\sqrt{\mathrm{v}_{\perp}{ }^{2}+\mathrm{v}_{\|}{ }^{2}}=65.3 \mathrm{~km} / \mathrm{s}$.
22. Using $F=\frac{m v^{2}}{r}$ (for the centripetal force) and $K=\frac{1}{2} m v^{2}$, we can easily derive the relation

$$
K=\frac{1}{2} F r .
$$

With the values given in the problem, we thus obtain $K=2.09 \times 10^{-22} \mathrm{~J}$.
23. (a) If v is the speed of the positron then $v \sin \phi$ is the component of its velocity in the plane that is perpendicular to the magnetic field. Here ϕ is the angle between the velocity and the field $\left(89^{\circ}\right)$. Newton's second law yields $e B v \sin \phi=m_{e}(v \sin \phi)^{2} / r$, where r is the radius of the orbit. Thus $r=\left(m_{e} v / e B\right) \sin \phi$. The period is given by

$$
T=\frac{2 \pi r}{v \sin \phi}=\frac{2 \pi m_{e}}{e B}=\frac{2 \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.100 \mathrm{~T})}=3.58 \times 10^{-10} \mathrm{~s}
$$

The equation for r is substituted to obtain the second expression for T.
(b) The pitch is the distance traveled along the line of the magnetic field in a time interval of one period. Thus $p=v T \cos \phi$. We use the kinetic energy to find the speed: $K=\frac{1}{2} m_{e} v^{2}$ means

$$
v=\sqrt{\frac{2 K}{m_{e}}}=\sqrt{\frac{2\left(2.00 \times 10^{3} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=2.65 \times 10^{7} \mathrm{~m} / \mathrm{s} .
$$

Thus

$$
p=\left(2.65 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)\left(3.58 \times 10^{-10} \mathrm{~s}\right) \cos 89^{\circ}=1.66 \times 10^{-4} \mathrm{~m}
$$

(c) The orbit radius is

$$
R=\frac{m_{e} v \sin \phi}{e B}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.65 \times 10^{7} \mathrm{~m} / \mathrm{s}\right) \sin 89^{\circ}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.100 \mathrm{~T})}=1.51 \times 10^{-3} \mathrm{~m}
$$

24. We consider the point at which it enters the field-filled region, velocity vector pointing downward. The field points out of the page so that $\vec{v} \times \vec{B}$ points leftward, which indeed seems to be the direction it is "pushed"'; therefore, $q>0$ (it is a proton).
(a) Eq. 28-17 becomes $T=2 \pi m_{\mathrm{p}} / e|\vec{B}|$, or

$$
2\left(130 \times 10^{-9}\right)=\frac{2 \pi\left(1.67 \times 10^{-27}\right)}{\left(1.60 \times 10^{-19}\right)|\vec{B}|}
$$

which yields $|\vec{B}|=0.252 \mathrm{~T}$.
(b) Doubling the kinetic energy implies multiplying the speed by $\sqrt{2}$. Since the period T does not depend on speed, then it remains the same (even though the radius increases by a factor of $\sqrt{2}$). Thus, $t=T / 2=130 \mathrm{~ns}$, again.
25. (a) We solve for B from $m=B^{2} q x^{2} / 8 V$ (see Sample Problem 28-3):

$$
B=\sqrt{\frac{8 V m}{q x^{2}}} .
$$

We evaluate this expression using $x=2.00 \mathrm{~m}$:

$$
B=\sqrt{\frac{8\left(100 \times 10^{3} \mathrm{~V}\right)\left(3.92 \times 10^{-25} \mathrm{~kg}\right)}{\left(3.20 \times 10^{-19} \mathrm{C}\right)(2.00 \mathrm{~m})^{2}}}=0.495 \mathrm{~T}
$$

(b) Let N be the number of ions that are separated by the machine per unit time. The current is $i=q N$ and the mass that is separated per unit time is $M=m N$, where m is the mass of a single ion. M has the value

$$
M=\frac{100 \times 10^{-6} \mathrm{~kg}}{3600 \mathrm{~s}}=2.78 \times 10^{-8} \mathrm{~kg} / \mathrm{s}
$$

Since $N=M / m$ we have

$$
i=\frac{q M}{m}=\frac{\left(3.20 \times 10^{-19} \mathrm{C}\right)\left(2.78 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\right)}{3.92 \times 10^{-25} \mathrm{~kg}}=2.27 \times 10^{-2} \mathrm{~A} .
$$

(c) Each ion deposits energy $q V$ in the cup, so the energy deposited in time Δt is given by

$$
E=N q V \Delta t=\frac{i q V}{q} \Delta t=i V \Delta t .
$$

For $\Delta t=1.0 \mathrm{~h}$,

$$
E=\left(2.27 \times 10^{-2} \mathrm{~A}\right)\left(100 \times 10^{3} \mathrm{~V}\right)(3600 \mathrm{~s})=8.17 \times 10^{6} \mathrm{~J}
$$

To obtain the second expression, i / q is substituted for N.
26. Eq. 28-17 gives $T=2 \pi m_{e} / e B$. Thus, the total time is

$$
\left(\frac{T}{2}\right)_{1}+t_{\mathrm{gap}}+\left(\frac{T}{2}\right)_{2}=\frac{\pi m_{e}}{e}\left(\frac{1}{B_{1}}+\frac{1}{B_{2}}\right)+t_{\mathrm{gap}} .
$$

The time spent in the gap (which is where the electron is accelerating in accordance with Eq. 2-15) requires a few steps to figure out: letting $t=t_{\text {gap }}$ then we want to solve

$$
\begin{gathered}
d=\mathrm{v}_{\mathrm{o}} t+\frac{1}{2} a t^{2} \\
0.25 \mathrm{~m}=\sqrt{\frac{2 K_{\mathrm{o}}}{m_{e}}} t+\frac{1}{2} \frac{e \Delta V}{m_{e} d} t^{2}
\end{gathered}
$$

for t. We find in this way that the time spent in the gap is $t \approx 6 \mathrm{~ns}$. Thus, the total time is 8.7 ns.
27. Each of the two particles will move in the same circular path, initially going in the opposite direction. After traveling half of the circular path they will collide. Therefore, using Eq. 28-17, the time is given by

$$
t=\frac{T}{2}=\frac{\pi m}{B q}=\frac{\pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{\left(3.53 \times 10^{-3} \mathrm{~T}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}=5.07 \times 10^{-9} \mathrm{~s}
$$

28. (a) Using Eq. 28-23 and Eq. 28-18, we find

$$
f_{\text {osc }}=\frac{q B}{2 \pi m_{p}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.20 \mathrm{~T})}{2 \pi\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=1.83 \times 10^{7} \mathrm{~Hz}
$$

(b) From $r=m_{p} v / q B=\sqrt{2 m_{P} k} / q B$ we have

$$
K=\frac{(r q B)^{2}}{2 m_{p}}=\frac{\left[(0.500 \mathrm{~m})\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.20 \mathrm{~T})\right]^{2}}{2\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=1.72 \times 10^{7} \mathrm{eV}
$$

29. We approximate the total distance by the number of revolutions times the circumference of the orbit corresponding to the average energy. This should be a good approximation since the deuteron receives the same energy each revolution and its period does not depend on its energy. The deuteron accelerates twice in each cycle, and each time it receives an energy of $q V=80 \times 10^{3} \mathrm{eV}$. Since its final energy is 16.6 MeV , the number of revolutions it makes is

$$
n=\frac{16.6 \times 10^{6} \mathrm{eV}}{2\left(80 \times 10^{3} \mathrm{eV}\right)}=104
$$

Its average energy during the accelerating process is 8.3 MeV . The radius of the orbit is given by $r=m v / q B$, where v is the deuteron's speed. Since this is given by $v=\sqrt{2 K / m}$, the radius is

$$
r=\frac{m}{q B} \sqrt{\frac{2 K}{m}}=\frac{1}{q B} \sqrt{2 K m} .
$$

For the average energy

$$
r=\frac{\sqrt{2\left(8.3 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)\left(3.34 \times 10^{-27} \mathrm{~kg}\right)}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.57 \mathrm{~T})}=0.375 \mathrm{~m}
$$

The total distance traveled is about $n 2 \pi r=(104)(2 \pi)(0.375)=2.4 \times 10^{2} \mathrm{~m}$.
30. (a) The magnitude of the field required to achieve resonance is

$$
B=\frac{2 \pi f m_{p}}{q}=\frac{2 \pi\left(12.0 \times 10^{6} \mathrm{~Hz}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}{1.60 \times 10^{-19} \mathrm{C}}=0.787 \mathrm{~T}
$$

(b) The kinetic energy is given by

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2}=\frac{1}{2} m(2 \pi R f)^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right) 4 \pi^{2}(0.530 \mathrm{~m})^{2}\left(12.0 \times 10^{6} \mathrm{~Hz}\right)^{2} \\
& =1.33 \times 10^{-12} \mathrm{~J}=8.34 \times 10^{6} \mathrm{eV}
\end{aligned}
$$

(c) The required frequency is

$$
f=\frac{q B}{2 \pi m_{p}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.57 \mathrm{~T})}{2 \pi\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=2.39 \times 10^{7} \mathrm{~Hz}
$$

(d) The kinetic energy is given by

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2}=\frac{1}{2} m(2 \pi R f)^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right) 4 \pi^{2}(0.530 \mathrm{~m})^{2}\left(2.39 \times 10^{7} \mathrm{~Hz}\right)^{2} \\
& =5.3069 \times 10^{-12} \mathrm{~J}=3.32 \times 10^{7} \mathrm{eV}
\end{aligned}
$$

31. (a) By conservation of energy (using $q V$ for the potential energy which is converted into kinetic form) the kinetic energy gained in each pass is 200 eV .
(b) Multiplying the part (a) result by $n=100$ gives $\Delta K=n(200 \mathrm{eV})=20.0 \mathrm{keV}$.
(c) Combining Eq. 28-16 with the kinetic energy relation $\left(n(200 \mathrm{eV})=\frac{1}{2} m_{p} \mathrm{v}^{2}\right.$ in this particular application) leads to the expression

$$
r=\frac{m_{p}}{e B} \sqrt{\frac{2 n(200 \mathrm{eV})}{m_{p}}} .
$$

which shows that r is proportional to \sqrt{n}. Thus, the percent increase defined in the problem in going from $n=100$ to $n=101$ is $\sqrt{101 / 100}-1=0.00499$ or 0.499%.
32. The magnetic force on the (straight) wire is

$$
F_{B}=i B L \sin \theta=(13.0 \mathrm{~A})(1.50 \mathrm{~T})(1.80 \mathrm{~m})\left(\sin 35.0^{\circ}\right)=20.1 \mathrm{~N} .
$$

33. (a) The magnitude of the magnetic force on the wire is given by $F_{B}=i L B \sin \phi$, where i is the current in the wire, L is the length of the wire, B is the magnitude of the magnetic field, and ϕ is the angle between the current and the field. In this case $\phi=70^{\circ}$. Thus,

$$
F_{B}=(5000 \mathrm{~A})(100 \mathrm{~m})\left(60.0 \times 10^{-6} \mathrm{~T}\right) \sin 70^{\circ}=28.2 \mathrm{~N} .
$$

(b) We apply the right-hand rule to the vector product $\vec{F}_{B}=i \vec{L} \times \vec{B}$ to show that the force is to the west.
34. (a) From symmetry, we conclude that any x-component of force will vanish (evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in the $\hat{\mathrm{k}}$ direction produces on each part of the bent wire a y-component of force pointing in the $-\hat{j}$ direction; each of these components has magnitude

$$
\left|F_{y}\right|=i \ell|\vec{B}| \sin 30^{\circ}=8 \mathrm{~N} .
$$

Therefore, the force (in Newtons) on the wire shown in the figure is $-16 \hat{\mathrm{j}}$.
(b) The force exerted on the left half of the bent wire points in the $-\hat{k}$ direction, by the right-hand rule, and the force exerted on the right half of the wire points in the $+\hat{\mathrm{k}}$ direction. It is clear that the magnitude of each force is equal, so that the force (evaluated over the entirety of the bent wire as shown) must necessarily vanish.
35. (a) The magnetic force on the wire must be upward and have a magnitude equal to the gravitational force $m g$ on the wire. Since the field and the current are perpendicular to each other the magnitude of the magnetic force is given by $F_{B}=i L B$, where L is the length of the wire. Thus,

$$
i L B=m g \Rightarrow i=\frac{m g}{L B}=\frac{(0.0130 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(0.620 \mathrm{~m})(0.440 \mathrm{~T})}=0.467 \mathrm{~A} .
$$

(b) Applying the right-hand rule reveals that the current must be from left to right.
36. The magnetic force on the wire is

$$
\begin{aligned}
\vec{F}_{B} & =i \vec{L} \times \vec{B}=i L \hat{\mathrm{i}} \times\left(B_{y} \hat{\mathrm{j}}+B_{z} \hat{\mathrm{k}}\right)=i L\left(-B_{z} \hat{\mathrm{j}}+B_{y} \hat{\mathrm{k}}\right) \\
& =(0.500 \mathrm{~A})(0.500 \mathrm{~m})[-(0.0100 \mathrm{~T}) \hat{\mathrm{j}}+(0.00300 \mathrm{~T}) \hat{\mathrm{k}}] \\
& =\left(-2.50 \times 10^{-3} \hat{\mathrm{j}}+0.750 \times 10^{-3} \hat{\mathrm{k}}\right) \mathrm{N} .
\end{aligned}
$$

37. (a) The magnetic force must push horizontally on the rod to overcome the force of friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both the normal force and the force of friction. The forces acting on the rod are: \vec{F}, the force of the magnetic field; $m g$, the magnitude of the (downward) force of gravity; \vec{F}_{N}, the normal force exerted by the stationary rails upward on the rod; and \vec{f}, the (horizontal) force of friction. For definiteness, we assume the rod is on the verge of moving eastward, which means that \vec{f} points westward (and is equal to its maximum possible value $\mu_{s} F_{N}$).
Thus, \vec{F} has an eastward component F_{x} and an upward component F_{y}, which can be related to the components of the magnetic field once we assume a direction for the current in the rod. Thus, again for definiteness, we assume the current flows northward. Then, by the right-hand rule, a downward component $\left(B_{d}\right)$ of \vec{B} will produce the eastward F_{x}, and a westward component $\left(B_{w}\right)$ will produce the upward F_{y}. Specifically,

$$
F_{x}=i L B_{d} \quad \text { and } \quad F_{y}=i L B_{w} .
$$

Considering forces along a vertical axis, we find

$$
F_{N}=m g-F_{y}=m g-i L B_{w}
$$

so that

$$
f=f_{s, \max }=\mu_{s}\left(m g-i L B_{w}\right) .
$$

It is on the verge of motion, so we set the horizontal acceleration to zero:

$$
F_{x}-f=0 \Rightarrow i L B_{d}=\mu_{s}\left(m g-i L B_{w}\right) .
$$

The angle of the field components is adjustable, and we can minimize with respect to it. Defining the angle by $B_{w}=B \sin \theta$ and $B_{d}=B \cos \theta$ (which means θ is being measured from a vertical axis) and writing the above expression in these terms, we obtain

$$
i L B \cos \theta=\mu_{s}(m g-i L B \sin \theta) \Rightarrow B=\frac{\mu_{s} m g}{i L\left(\cos \theta+\mu_{s} \sin \theta\right)}
$$

which we differentiate (with respect to θ) and set the result equal to zero. This provides a determination of the angle:

$$
\theta=\tan ^{-1}\left(\mu_{s}\right)=\tan ^{-1}(0.60)=31^{\circ} .
$$

Consequently,

$$
B_{\min }=\frac{0.60(1.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(50 \mathrm{~A})(1.0 \mathrm{~m})\left(\cos 31^{\circ}+0.60 \sin 31^{\circ}\right)}=0.10 \mathrm{~T}
$$

(b) As shown above, the angle is $\theta=\tan ^{-1}\left(\mu_{s}\right)=\tan ^{-1}(0.60)=31^{\circ}$.
38. We use $d \vec{F}_{B}=i d \vec{L} \times \vec{B}$, where $d \vec{L}=d x \hat{\mathrm{i}}$ and $\vec{B}=B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}$. Thus,

$$
\begin{aligned}
\vec{F}_{B} & =\int i d \vec{L} \times \vec{B}=\int_{x_{i}}^{x_{f}} i d x \hat{\mathrm{i}} \times\left(B_{x} \hat{\mathrm{i}}+B_{y} \hat{\mathrm{j}}\right)=i \int_{x_{i}}^{x_{f}} B_{y} d x \hat{\mathrm{k}} \\
& =(-5.0 \mathrm{~A})\left(\int_{1.0}^{3.0}\left(8.0 x^{2} d x\right)(\mathrm{m} \cdot \mathrm{mT})\right) \hat{\mathrm{k}}=(-0.35 \mathrm{~N}) \hat{\mathrm{k}} .
\end{aligned}
$$

39. The applied field has two components: $B_{x}>0$ and $B_{z}>0$. Considering each straightsegment of the rectangular coil, we note that Eq. 28-26 produces a non-zero force only for the component of \vec{B} which is perpendicular to that segment; we also note that the equation is effectively multiplied by $N=20$ due to the fact that this is a 20 -turn coil. Since we wish to compute the torque about the hinge line, we can ignore the force acting on the straight-segment of the coil which lies along the y axis (forces acting at the axis of rotation produce no torque about that axis). The top and bottom straight-segments experience forces due to Eq. 28-26 (caused by the B_{z} component), but these forces are (by the right-hand rule) in the $\pm y$ directions and are thus unable to produce a torque about the y axis. Consequently, the torque derives completely from the force exerted on the straight-segment located at $x=0.050 \mathrm{~m}$, which has length $L=0.10 \mathrm{~m}$ and is shown in Figure 28-41 carrying current in the $-y$ direction. Now, the B_{z} component will produce a force on this straight-segment which points in the $-x$ direction (back towards the hinge) and thus will exert no torque about the hinge. However, the B_{x} component (which is equal to $B \cos \theta$ where $B=0.50 \mathrm{~T}$ and $\theta=30^{\circ}$) produces a force equal to $N i L B_{x}$ which points (by the right-hand rule) in the $+z$ direction. Since the action of this force is perpendicular to the plane of the coil, and is located a distance x away from the hinge, then the torque has magnitude

$$
\tau=\left(N i L B_{x}\right)(x)=N i L x B \cos \theta=(20)(0.10)(0.10)(0.050)(0.50) \cos 30^{\circ}=0.0043
$$

in SI units ($\mathrm{N} \cdot \mathrm{m}$). Since $\vec{\tau}=\vec{r} \times \vec{F}$, the direction of the torque is $-y$. In unit-vector notation, the torque is $\vec{\tau}=\left(-4.3 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}\right) \hat{\mathrm{j}}$

An alternative way to do this problem is through the use of Eq. 28-37. We do not show those details here, but note that the magnetic moment vector (a necessary part of Eq. 2837) has magnitude

$$
|\vec{\mu}|=N i A=(20)(0.10 \mathrm{~A})\left(0.0050 \mathrm{~m}^{2}\right)
$$

and points in the $-z$ direction. At this point, Eq. 3-30 may be used to obtain the result for the torque vector.
40. We establish coordinates such that the two sides of the right triangle meet at the origin, and the $\ell_{y}=50 \mathrm{~cm}$ side runs along the $+y$ axis, while the $\ell_{x}=120 \mathrm{~cm}$ side runs along the $+x$ axis. The angle made by the hypotenuse (of length 130 cm) is $\theta=\tan ^{-1}$ $(50 / 120)=22.6^{\circ}$, relative to the 120 cm side. If one measures the angle counterclockwise from the $+x$ direction, then the angle for the hypotenuse is $180^{\circ}-22.6^{\circ}=+157^{\circ}$. Since we are only asked to find the magnitudes of the forces, we have the freedom to assume the current is flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the $+z$ axis. We take \vec{B} to be in the same direction as that of the current flow in the hypotenuse. Then, with $B=|\vec{B}|=0.0750 \mathrm{~T}$,

$$
B_{x}=-B \cos \theta=-0.0692 \mathrm{~T} \text { and } B_{y}=B \sin \theta=0.0288 \mathrm{~T} .
$$

(a) Eq. 28-26 produces zero force when $\vec{L} \| \vec{B}$ so there is no force exerted on the hypotenuse of length 130 cm .
(b) On the 50 cm side, the B_{x} component produces a force $i \ell_{y} B_{x} \hat{\mathrm{k}}$, and there is no contribution from the B_{y} component. Using SI units, the magnitude of the force on the ℓ_{y} side is therefore

$$
(4.00 \mathrm{~A})(0.500 \mathrm{~m})(0.0692 \mathrm{~T})=0.138 \mathrm{~N} .
$$

(c) On the 120 cm side, the B_{y} component produces a force $i \ell_{x} B_{y} \hat{\mathrm{k}}$, and there is no contribution from the B_{x} component. Using SI units, the magnitude of the force on the ℓ_{x} side is also

$$
(4.00 \mathrm{~A})(1.20 \mathrm{~m})(0.0288 \mathrm{~T})=0.138 \mathrm{~N} .
$$

(d) The net force is

$$
i \ell_{y} B_{x} \hat{\mathrm{k}}+i \ell_{x} B_{y} \hat{\mathrm{k}}=0,
$$

keeping in mind that $B_{x}<0$ due to our initial assumptions. If we had instead assumed \vec{B} went the opposite direction of the current flow in the hypotenuse, then $B_{x}>0$ but $B_{y}<0$ and a zero net force would still be the result.
41. Consider an infinitesimal segment of the loop, of length $d s$. The magnetic field is perpendicular to the segment, so the magnetic force on it has magnitude $d F=i B d s$. The horizontal component of the force has magnitude $d F_{h}=(i B \cos \theta) d s$ and points inward toward the center of the loop. The vertical component has magnitude $d F_{v}=(i B \sin \theta) d s$ and points upward. Now, we sum the forces on all the segments of the loop. The horizontal component of the total force vanishes, since each segment of wire can be paired with another, diametrically opposite, segment. The horizontal components of these forces are both toward the center of the loop and thus in opposite directions. The vertical component of the total force is

$$
\begin{aligned}
F_{v} & =i B \sin \theta \int d s=2 \pi a i B \sin \theta=2 \pi(0.018 \mathrm{~m})\left(4.6 \times 10^{-3} \mathrm{~A}\right)\left(3.4 \times 10^{-3} \mathrm{~T}\right) \sin 20^{\circ} \\
& =6.0 \times 10^{-7} \mathrm{~N} .
\end{aligned}
$$

We note that i, B, and θ have the same value for every segment and so can be factored from the integral.
42. We use $\tau_{\max }=|\vec{\mu} \times \vec{B}|_{\max }=\mu B=i \pi r^{2} B$, and note that $i=q f=q v / 2 \pi r$. So

$$
\begin{aligned}
\tau_{\max } & =\left(\frac{q v}{2 \pi r}\right) \pi r^{2} B=\frac{1}{2} q v r B=\frac{1}{2}\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(5.29 \times 10^{-11} \mathrm{~m}\right)\left(7.10 \times 10^{-3} \mathrm{~T}\right) \\
& =6.58 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

43. (a) The current in the galvanometer should be 1.62 mA when the potential difference across the resistor-galvanometer combination is 1.00 V . The potential difference across the galvanometer alone is $i R_{g}=\left(1.62 \times 10^{-3} \mathrm{~A}\right)(75.3 \Omega)=0.122 \mathrm{~V}$, so the resistor must be in series with the galvanometer and the potential difference across it must be $1.00 \mathrm{~V}-$ $0.122 \mathrm{~V}=0.878 \mathrm{~V}$. The resistance should be

$$
R=(0.878 \mathrm{~V}) /\left(1.62 \times 10^{-3} \mathrm{~A}\right)=542 \Omega
$$

(b) As stated above, the resistor is in series with the galvanometer.
(c) The current in the galvanometer should be 1.62 mA when the total current in the resistor and galvanometer combination is 50.0 mA . The resistor should be in parallel with the galvanometer, and the current through it should be $50.0 \mathrm{~mA}-1.62 \mathrm{~mA}=48.38 \mathrm{~mA}$. The potential difference across the resistor is the same as that across the galvanometer, 0.122 V , so the resistance should be $R=(0.122 \mathrm{~V}) /\left(48.38 \times 10^{-3} \mathrm{~A}\right)=2.52 \Omega$.
(d) As stated in (c), the resistor is in parallel with the galvanometer.
44. The insight central to this problem is that for a given length of wire (formed into a rectangle of various possible aspect ratios), the maximum possible area is enclosed when the ratio of height to width is 1 (that is, when it is a square). The maximum possible value for the width, the problem says, is $x=4 \mathrm{~cm}$ (this is when the height is very close to zero, so the total length of wire is effectively 8 cm). Thus, when it takes the shape of a square the value of x must be $1 / 4$ of 8 cm ; that is, $x=2 \mathrm{~cm}$ when it encloses maximum area (which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of $A=(0.02 \mathrm{~m})^{2}=$ $0.0004 \mathrm{~m}^{2}$. Since $N=1$ and the torque in this case is given as $4.8 \times 10^{-4} \mathrm{Nm}$, then the aforementioned equations lead immediately to $i=0.0030 \mathrm{~A}$.
45. We use Eq. $28-37$ where $\vec{\mu}$ is the magnetic dipole moment of the wire loop and \vec{B} is the magnetic field, as well as Newton's second law. Since the plane of the loop is parallel to the incline the dipole moment is normal to the incline. The forces acting on the cylinder are the force of gravity $m g$, acting downward from the center of mass, the normal force of the incline F_{N}, acting perpendicularly to the incline through the center of mass, and the force of friction f, acting up the incline at the point of contact. We take the x axis to be positive down the incline. Then the x component of Newton's second law for the center of mass yields

$$
m g \sin \theta-f=m a
$$

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of rotation. The magnetic field produces a torque with magnitude $\mu B \sin \theta$, and the force of friction produces a torque with magnitude $f r$, where r is the radius of the cylinder. The first tends to produce an angular acceleration in the counterclockwise direction, and the second tends to produce an angular acceleration in the clockwise direction. Newton's second law for rotation about the center of the cylinder, $\tau=I \alpha$, gives

$$
f r-\mu B \sin \theta=I \alpha .
$$

Since we want the current that holds the cylinder in place, we set $a=0$ and $\alpha=0$, and use one equation to eliminate f from the other. The result is $m g r=\mu B$. The loop is rectangular with two sides of length L and two of length $2 r$, so its area is $A=2 r L$ and the dipole moment is $\mu=N i A=2 N i r L$. Thus, $m g r=2 N i r L B$ and

$$
i=\frac{m g}{2 N L B}=\frac{(0.250 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{2(10.0)(0.100 \mathrm{~m})(0.500 \mathrm{~T})}=2.45 \mathrm{~A} .
$$

46. From $\mu=N i A=i \pi r^{2}$ we get

$$
i=\frac{\mu}{\pi r^{2}}=\frac{8.00 \times 10^{22} \mathrm{~J} / \mathrm{T}}{\pi\left(3500 \times 10^{3} \mathrm{~m}\right)^{2}}=2.08 \times 10^{9} \mathrm{~A} .
$$

47. (a) The magnitude of the magnetic dipole moment is given by $\mu=N i A$, where N is the number of turns, i is the current in each turn, and A is the area of a loop. In this case the loops are circular, so $A=\pi r^{2}$, where r is the radius of a turn. Thus

$$
i=\frac{\mu}{N \pi r^{2}}=\frac{2.30 \mathrm{~A} \cdot \mathrm{~m}^{2}}{(160)(\pi)(0.0190 \mathrm{~m})^{2}}=12.7 \mathrm{~A} .
$$

(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or the plane of the loop is parallel to the field). It is given by

$$
\tau_{\max }=\mu B=\left(2.30 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)\left(35.0 \times 10^{-3} \mathrm{~T}\right)=8.05 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m}
$$

48. (a) $\mu=N A i=\pi r^{2} i=\pi(0.150 \mathrm{~m})^{2}(2.60 \mathrm{~A})=0.184 \mathrm{~A} \cdot \mathrm{~m}^{2}$.
(b) The torque is

$$
\tau=|\vec{\mu} \times \vec{B}|=\mu B \sin \theta=\left(0.184 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)(12.0 \mathrm{~T}) \sin 41.0^{\circ}=1.45 \mathrm{~N} \cdot \mathrm{~m} .
$$

49. (a) The area of the loop is $A=\frac{1}{2}(30 \mathrm{~cm})(40 \mathrm{~cm})=6.0 \times 10^{2} \mathrm{~cm}^{2}$, so

$$
\mu=i A=(5.0 \mathrm{~A})\left(6.0 \times 10^{-2} \mathrm{~m}^{2}\right)=0.30 \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

(b) The torque on the loop is

$$
\tau=\mu B \sin \theta=\left(0.30 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)\left(80 \times 10^{3} \mathrm{~T}\right) \sin 90^{\circ}=2.4 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m} .
$$

50. (a) The kinetic energy gained is due to the potential energy decrease as the dipole swings from a position specified by angle θ to that of being aligned (zero angle) with the field. Thus,

$$
K=U_{i}-U_{f}=-\mu B \cos \theta-\left(-\mu B \cos 0^{\circ}\right)
$$

Therefore, using SI units, the angle is

$$
\theta=\cos ^{-1}\left(1-\frac{K}{\mu B}\right)=\cos ^{-1}\left(1-\frac{0.00080}{(0.020)(0.052)}\right)=77^{\circ}
$$

(b) Since we are making the assumption that no energy is dissipated in this process, then the dipole will continue its rotation (similar to a pendulum) until it reaches an angle $\theta=$ 77° on the other side of the alignment axis.
51. (a) The magnitude of the magnetic moment vector is

$$
\mu=\sum_{n} i_{n} A_{n}=\pi r_{1}^{2} i_{1}+\pi r_{2}^{2} i_{2}=\pi(7.00 \mathrm{~A})\left[(0.200 \mathrm{~m})^{2}+(0.300 \mathrm{~m})^{2}\right]=2.86 \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

(b) Now,

$$
\mu=\pi r_{2}^{2} i_{2}-\pi r_{1}^{2} i_{1}=\pi(7.00 \mathrm{~A})\left[(0.300 \mathrm{~m})^{2}-(0.200 \mathrm{~m})^{2}\right]=1.10 \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

52. Let $a=30.0 \mathrm{~cm}, b=20.0 \mathrm{~cm}$, and $c=10.0 \mathrm{~cm}$. From the given hint, we write

$$
\begin{aligned}
\vec{\mu} & =\vec{\mu}_{1}+\vec{\mu}_{2}=i a b(-\hat{\mathrm{k}})+i a c(\hat{\mathrm{j}})=i a(\hat{\mathrm{j}}-b \hat{\mathrm{k}})=(5.00 \mathrm{~A})(0.300 \mathrm{~m})[(0.100 \mathrm{~m}) \hat{\mathrm{j}}-(0.200 \mathrm{~m}) \hat{\mathrm{k}}] \\
& =(0.150 \hat{\mathrm{j}}-0.300 \hat{\mathrm{k}}) \mathrm{A} \cdot \mathrm{~m}^{2} .
\end{aligned}
$$

53. The magnetic dipole moment is $\vec{\mu}=\mu(0.60 \hat{i}-0.80 \hat{\mathrm{j}})$, where

$$
\mu=N i A=N i \pi r^{2}=1(0.20 \mathrm{~A}) \pi(0.080 \mathrm{~m})^{2}=4.02 \times 10^{-4} \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r is its radius.
(a) The torque is

$$
\begin{aligned}
\vec{\tau} & =\vec{\mu} \times \vec{B}=\mu(0.60 \hat{\mathrm{i}}-0.80 \hat{\mathrm{j}}) \times(0.25 \hat{\mathrm{i}}+0.30 \hat{\mathrm{k}}) \\
& =\mu[(0.60)(0.30)(\hat{\mathrm{i}} \times \hat{\mathrm{k}})-(0.80)(0.25)(\hat{\mathrm{j}} \times \hat{\mathrm{i}})-(0.80)(0.30)(\hat{\mathrm{j}} \times \hat{\mathrm{k}})] \\
& =\mu[-0.18 \hat{\mathrm{j}}+0.20 \hat{\mathrm{k}}-0.24 \hat{\mathrm{i}}] .
\end{aligned}
$$

Here $\hat{i} \times \hat{k}=-\hat{j}, \hat{j} \times \hat{i}=-\hat{k}$, and $\hat{j} \times \hat{k}=\hat{i}$ are used. We also use $\hat{i} \times \hat{i}=0$. Now, we substitute the value for μ to obtain

$$
\vec{\tau}=\left(-9.7 \times 10^{-4} \hat{\mathrm{i}}-7.2 \times 10^{-4} \hat{\mathrm{j}}+8.0 \times 10^{-4} \hat{\mathrm{k}}\right) \mathrm{N} \cdot \mathrm{~m}
$$

(b) The potential energy of the dipole is given by

$$
\begin{aligned}
U & =-\vec{\mu} \cdot \vec{B}=-\mu(0.60 \hat{\mathrm{i}}-0.80 \hat{\mathrm{j}}) \cdot(0.25 \hat{\mathrm{i}}+0.30 \hat{\mathrm{k}}) \\
& =-\mu(0.60)(0.25)=-0.15 \mu=-6.0 \times 10^{-4} \mathrm{~J} .
\end{aligned}
$$

Here $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1, \hat{\mathrm{i}} \cdot \hat{\mathrm{k}}=0, \hat{\mathrm{j}} \cdot \hat{\mathrm{i}}=0$, and $\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=0$ are used.
54. Looking at the point in the graph (Fig. 28-47-2(b)) corresponding to $i_{2}=0$ (which means that coil 2 has no magnetic moment) we are led to conclude that the magnetic moment of coil 1 must be $2.0 \times 10^{-5} \mathrm{Am}^{2}$. Looking at the point where the line crosses the axis (at $i_{2}=5 \mathrm{~mA}$) we conclude (since the magnetic moments cancel there) that the magnitude of coil 2's moment must also be $2.0 \times 10^{-5} \mathrm{Am}^{2}$ when $i_{2}=0.005 \mathrm{~A}$ which means (Eq. 28-35) $N_{2} A_{2}=\left(2.0 \times 10^{-5}\right) /(0.005)=0.004$ in SI units. Now the problem has us consider the direction of coil 2 's current changed so that the net moment is the sum of two (positive) contributions - from coil 1 and coil $2-$ specifically for the case that $i_{2}=$ 0.007 A . We find that total moment is $\left(2.0 \times 10^{-5} \mathrm{Am}^{2}\right)+\left(N_{2} A_{2} i_{2}\right)=4.8 \times 10^{-5} \mathrm{Am}^{2}$.
55. If N closed loops are formed from the wire of length L, the circumference of each loop is L / N, the radius of each loop is $R=L / 2 \pi N$, and the area of each loop is $A=\pi R^{2}=\pi(L / 2 \pi N)^{2}=L^{2} / 4 \pi N^{2}$.
(a) For maximum torque, we orient the plane of the loops parallel to the magnetic field, so the dipole moment is perpendicular (i.e., at a 90° angle) to the field.
(b) The magnitude of the torque is then

$$
\tau=N i A B=(N i)\left(\frac{L^{2}}{4 \pi N^{2}}\right) B=\frac{i L^{2} B}{4 \pi N} .
$$

To maximize the torque, we take the number of turns N to have the smallest possible value, 1 . Then $\tau=i L^{2} B / 4 \pi$.
(c) The magnitude of the maximum torque is

$$
\tau=\frac{i L^{2} B}{4 \pi}=\frac{\left(4.51 \times 10^{-3} \mathrm{~A}\right)(0.250 \mathrm{~m})^{2}\left(5.71 \times 10^{-3} \mathrm{~T}\right)}{4 \pi}=1.28 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}
$$

56. Eq. 28-39 gives $U=-\vec{\mu} \cdot \vec{B}=-\mu B \cos \phi$, so at $\phi=0$ (corresponding to the lowest point on the graph in Fig. 28-48) the mechanical energy is

$$
K+U=K_{\mathrm{o}}+(-\mu B)=6.7 \times 10^{-4} \mathrm{~J}+\left(-5 \times 10^{-4} \mathrm{~J}\right)=1.7 \times 10^{-4} \mathrm{~J}
$$

The turning point occurs where $K=0$, which implies $U_{\text {turn }}=1.7 \times 10^{-4} \mathrm{~J}$. So the angle where this takes place is given by

$$
\phi=-\cos ^{-1}\left(\frac{1.7 \times 10^{-4} \mathrm{~J}}{\mu B}\right)=110^{\circ}
$$

where we have used the fact (see above) that $\mu B=5 \times 10^{-4} \mathrm{~J}$.
57. Let $v_{\|}=v \cos \theta$. The electron will proceed with a uniform speed $v_{\|}$in the direction of \vec{B} while undergoing uniform circular motion with frequency f in the direction perpendicular to $B: f=e B / 2 \pi m_{e}$. The distance d is then

$$
d=v_{\|} T=\frac{v_{\|}}{f}=\frac{(v \cos \theta) 2 \pi m_{e}}{e B}=\frac{2 \pi\left(1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(\cos 10^{\circ}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.0 \times 10^{-3} \mathrm{~T}\right)}=0.53 \mathrm{~m} .
$$

58. Combining Eq. 28-16 with energy conservation (eV $=\frac{1}{2} m_{e} \mathrm{v}^{2}$ in this particular application) leads to the expression

$$
r=\frac{m_{e}}{e B} \sqrt{\frac{2 e V}{m_{e}}}
$$

which suggests that the slope of the r versus \sqrt{V} graph should be $\sqrt{2 m_{e} / e B^{2}}$. From Fig. $28-49$, we estimate the slope to be 5×10^{-5} in SI units. Setting this equal to $\sqrt{2 m_{e} / e B^{2}}$ and solving we find $B=6.7 \times 10^{-2} \mathrm{~T}$.
59. The period of revolution for the iodine ion is $T=2 \pi r / v=2 \pi m / B q$, which gives

$$
m=\frac{B q T}{2 \pi}=\frac{\left(45.0 \times 10^{-3} \mathrm{~T}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.29 \times 10^{-3} \mathrm{~s}\right)}{(7)(2 \pi)\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}=127 \mathrm{u}
$$

60. Let ξ stand for the ratio ($m /|q|$) we wish to solve for. Then Eq. 28-17 can be written as $T=2 \pi \xi / B$. Noting that the horizontal axis of the graph (Fig. 28-50) is inverse-field $(1 / B)$ then we conclude (from our previous expression) that the slope of the line in the graph must be equal to $2 \pi \xi$. We estimate that slope as $7.5 \times 10^{-9} \mathrm{~T} \cdot \mathrm{~s}$, which implies $\xi=$ $1.2 \times 10^{-9} \mathrm{~kg} / \mathrm{C}$.
61. The fact that the fields are uniform, with the feature that the charge moves in a straight line, implies the speed is constant (if it were not, then the magnetic force would vary while the electric force could not - causing it to deviate from straight-line motion). This is then the situation leading to Eq. 28-7, and we find

$$
|\vec{E}|=v|\vec{B}|=500 \mathrm{~V} / \mathrm{m} .
$$

Its direction (so that $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$ vanishes) is downward, or $-\hat{\mathrm{j}}$, in the "page" coordinates. In unit-vector notation, $\vec{E}=(-500 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{j}}$
62. The unit vector associated with the current element (of magnitude $d \ell$) is $-\hat{\mathrm{j}}$. The (infinitesimal) force on this element is

$$
d \vec{F}=i d \ell(-\hat{\mathrm{j}}) \times(0.3 y \hat{\mathrm{i}}+0.4 \hat{\mathrm{j}})
$$

with SI units (and 3 significant figures) understood. Since $\hat{j} \times \hat{i}=-\hat{k}$ and $\hat{j} \times \hat{j}=0$, we obtain

$$
d \vec{F}=0.3 i y d l \hat{\mathrm{k}}=\left(6.00 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}\right) y d l \hat{\mathrm{k}}
$$

We integrate the force element found above, using the symbol ξ to stand for the coefficient $6.00 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}$, and obtain

$$
\vec{F}=\int d \vec{F}=\xi \hat{\mathrm{k}} \int_{0}^{0.25} y d y=\xi \hat{\mathrm{k}}\left(\frac{0.25^{2}}{2}\right)=\left(1.88 \times 10^{-5} \mathrm{~N}\right) \hat{\mathrm{k}} .
$$

63. By the right-hand rule, we see that $\vec{v} \times \vec{B}$ points along $-\overrightarrow{\mathrm{k}}$. From Eq. 28-2 $(\vec{F}=q \vec{v} \times \vec{B})$, we find that for the force to point along $+\hat{\mathrm{k}}$, we must have $q<0$. Now, examining the magnitudes (in SI units) in Eq. 28-3, we find $|\vec{F}|=|q| v|\vec{B}| \sin \phi$, or

$$
0.48=|q|(4000)(0.0050) \sin 35^{\circ}
$$

which yields $|q|=0.040 \mathrm{C}$. In summary, then, $q=-40 \mathrm{mC}$.
64. (a) The net force on the proton is given by

$$
\begin{aligned}
\vec{F} & =\vec{F}_{E}+\vec{F}_{B}=q \vec{E}+q \vec{v} \times \vec{B} \\
& =\left(1.60 \times 10^{-19} \mathrm{C}\right)\left[(4.00 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{k}}+(2000 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} \times\left(-2.50 \times 10^{-3} \mathrm{~T}\right) \hat{\mathrm{i}}\right] \\
& =\left(1.44 \times 10^{-18} \mathrm{~N}\right) \hat{\mathrm{k}} .
\end{aligned}
$$

(b) In this case

$$
\begin{aligned}
\vec{F} & =\vec{F}_{E}+\vec{F}_{B}=q \vec{E}+q \vec{v} \times \vec{B} \\
& =\left(1.60 \times 10^{-19} \mathrm{C}\right)[(-4.00 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{k}}+(2000 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} \times(-2.50 \mathrm{mT}) \hat{\mathrm{i}}] \\
& =\left(1.60 \times 10^{-19} \mathrm{~N}\right) \hat{\mathrm{k}} .
\end{aligned}
$$

(c) In the final case,

$$
\begin{aligned}
\vec{F} & =\vec{F}_{E}+\vec{F}_{B}=q \vec{E}+q \vec{v} \times \vec{B} \\
& =\left(1.60 \times 10^{-19} \mathrm{C}\right)[(4.00 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{i}}+(2000 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} \times(-2.50 \mathrm{mT}) \hat{\mathrm{i}}] \\
& =\left(6.41 \times 10^{-19} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(8.01 \times 10^{-19} \mathrm{~N}\right) \hat{\mathrm{k}} .
\end{aligned}
$$

65. Letting $B_{x}=B_{y}=B_{1}$ and $B_{z}=B_{2}$ and using Eq. 28-2 and Eq. 3-30, we obtain (with SI units understood)

$$
\begin{aligned}
\vec{F} & =q \vec{v} \times \vec{B} \\
4 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+12 \hat{\mathrm{k}} & =2\left(\left(4 B_{2}-6 B_{1}\right) \hat{\mathrm{i}}+\left(6 B_{1}-2 B_{2}\right) \hat{\mathrm{j}}+\left(2 B_{1}-4 B_{1}\right) \hat{\mathrm{k}}\right) .
\end{aligned}
$$

Equating like components, we find $B_{1}=-3$ and $B_{2}=-4$. In summary (with the unit Tesla understood), $\vec{B}=-3.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}$.
66. (a) Eq. 3-20 gives $\phi=\cos ^{-1}(2 / 19)=84^{\circ}$.
(b) No, the magnetic field can only change the direction of motion of a free (unconstrained) particle, not its speed or its kinetic energy.
(c) No, as reference to to Fig. 28-11 should make clear.
(d) We find $\mathrm{v}_{\perp}=\mathrm{v} \sin \phi=61.3 \mathrm{~m} / \mathrm{s}$, so $r=m \mathrm{v}_{\perp} / e B=5.7 \mathrm{~nm}$.
67. (a) Using Eq. 28-35 and Figure 28-23, we have

$$
\vec{\mu}=(N i A)(-\hat{\mathrm{j}})=-0.0240 \hat{\mathrm{j}} \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

Then, Eq. 28-38 gives $U=-\vec{\mu} \cdot \vec{B}=-(-0.0240)\left(-3.00 \times 10^{-3}\right)=-7.20 \times 10^{-5} \mathrm{~J}$.
(b) Using the fact that $\hat{j} \times \hat{j}=0$, Eq. 28-37 leads to

$$
\begin{aligned}
\vec{\tau} & =\vec{\mu} \times \vec{B}=(-0.0240 \hat{\mathrm{j}}) \times\left(2.00 \times 10^{-3} \hat{\mathrm{i}}\right)+(-0.0240 \hat{\mathrm{j}}) \times\left(-4.00 \times 10^{-3} \hat{\mathrm{k}}\right) \\
& =\left(4.80 \times 10^{-5} \hat{\mathrm{k}}+9.60 \times 10^{-5} \hat{\mathrm{i}}\right) \mathrm{N} \cdot \mathrm{~m}
\end{aligned}
$$

68. (a) We use Eq. 28-10: $v_{d}=E / B=\left(10 \times 10^{-6} \mathrm{~V} / 1.0 \times 10^{-2} \mathrm{~m}\right) /(1.5 \mathrm{~T})=6.7 \times 10^{-4} \mathrm{~m} / \mathrm{s}$.
(b) We rewrite Eq. 28-12 in terms of the electric field:

$$
n=\frac{B i}{V \ell e}=\frac{B i}{(E d) \ell e}=\frac{B i}{E A e}
$$

which we use $A=\ell d$. In this experiment, $A=(0.010 \mathrm{~m})\left(10 \times 10^{-6} \mathrm{~m}\right)=1.0 \times 10^{-7} \mathrm{~m}^{2}$. By Eq. 28-10, v_{d} equals the ratio of the fields (as noted in part (a)), so we are led to

$$
n=\frac{B i}{E A e}=\frac{i}{v_{d} A e}=\frac{3.0 \mathrm{~A}}{\left(6.7 \times 10^{-4} \mathrm{~m} / \mathrm{s}\right)\left(1.0 \times 10^{-7} \mathrm{~m}^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)}=2.8 \times 10^{29} / \mathrm{m}^{3} .
$$

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in terms of horizontal north, south, east, west and vertical $u p$ and down directions. We assume \vec{B} points up and the conductor's width of 0.010 m is along an east-west line. We take the current going northward. The conduction electrons experience a westward magnetic force (by the right-hand rule), which results in the west side of the conductor being negative and the east side being positive (with reference to the Hall voltage which becomes established).
69. The contribution to the force by the magnetic field $\left(\vec{B}=B_{x} \hat{\mathrm{i}}=-0.020 \hat{\mathrm{i}} \mathrm{T}\right)$ is given by Eq. 28-2:

$$
\begin{aligned}
\vec{F}_{B} & =q \vec{v} \times \vec{B}=q\left(\left(17000 \hat{\mathrm{i}} \times B_{x} \hat{\mathrm{i}}\right)+\left(-11000 \hat{\mathrm{j}} \times B_{x} \hat{\mathrm{i}}\right)+\left(7000 \hat{\mathrm{k}} \times B_{x} \hat{\mathrm{i}}\right)\right) \\
& =q(-220 \hat{\mathrm{k}}-140 \hat{\mathrm{j}})
\end{aligned}
$$

in SI units. And the contribution to the force by the electric field $\left(\vec{E}=E_{y} \hat{\mathrm{j}}=300 \hat{\mathrm{j}} \mathrm{V} / \mathrm{m}\right)$ is given by Eq. 23-1: $\vec{F}_{E}=q E_{y} \hat{\mathrm{j}}$. Using $q=5.0 \times 10^{-6} \mathrm{C}$, the net force on the particle is

$$
\vec{F}=(0.00080 \hat{\mathrm{j}}-0.0011 \hat{\mathrm{k}}) \mathrm{N} .
$$

70. (a) We use Eq. 28-2 and Eq. 3-30:

$$
\begin{aligned}
\vec{F}= & q \vec{v} \times \vec{B}=(+e)\left(\left(v_{y} B_{z}-v_{z} B_{y}\right) \hat{\mathrm{i}}+\left(v_{z} B_{x}-v_{x} B_{z}\right) \hat{\mathrm{j}}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}}\right) \\
= & \left(1.60 \times 10^{-19}\right)(((4)(0.008)-(-6)(-0.004)) \hat{\mathrm{i}}+ \\
& ((-6)(0.002)-(-2)(0.008)) \hat{\mathrm{j}}+((-2)(-0.004)-(4)(0.002)) \hat{\mathrm{k}}) \\
= & \left(1.28 \times 10^{-21}\right) \hat{\mathrm{i}}+\left(6.41 \times 10^{-22}\right) \hat{\mathrm{j}}
\end{aligned}
$$

with SI units understood.
(b) By definition of the cross product, $\vec{v} \perp \vec{F}$. This is easily verified by taking the dot (scalar) product of \vec{v} with the result of part (a), yielding zero, provided care is taken not to introduce any round-off error.
(c) There are several ways to proceed. It may be worthwhile to note, first, that if B_{z} were 6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, the angle θ between \vec{B} and \vec{v} is presumably "close" to 180°. Here, we use Eq. 3-20:

$$
\theta=\cos ^{-1}\left(\frac{\vec{v} \cdot \vec{B}}{|\vec{v}||\vec{B}|}\right)=\cos ^{-1}\left(\frac{-68}{\sqrt{56} \sqrt{84}}\right)=173^{\circ}
$$

71. (a) The magnetic force on the wire is $F_{B}=i d B$, pointing to the left. Thus

$$
\begin{aligned}
v & =a t=\frac{F_{B} t}{m}=\frac{i d B t}{m} \\
& =\frac{\left(9.13 \times 10^{-3} \mathrm{~A}\right)\left(2.56 \times 10^{-2} \mathrm{~m}\right)\left(5.63 \times 10^{-2} \mathrm{~T}\right)(0.0611 \mathrm{~s})}{2.41 \times 10^{-5} \mathrm{~kg}}=3.34 \times 10^{-2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) The direction is to the left (away from the generator).
72. (a) We are given $\vec{B}=B_{x} \hat{\mathrm{i}}=6 \times 10^{-5} \hat{\mathrm{i}} \mathrm{T}$, so that $\vec{v} \times \vec{B}=-v_{y} B_{x} \hat{\mathrm{k}}$ where $v_{y}=4 \times 10^{4} \mathrm{~m} / \mathrm{s}$. We note that the magnetic force on the electron is $(-e)\left(-v_{y} B_{x} \hat{\mathrm{k}}\right)$ and therefore points in the $+\hat{\mathrm{k}}$ direction, at the instant the electron enters the field-filled region. In these terms, Eq. 28-16 becomes

$$
r=\frac{m_{e} v_{y}}{e B_{x}}=0.0038 \mathrm{~m}
$$

(b) One revolution takes $T=2 \pi r / v_{y}=0.60 \mu \mathrm{~s}$, and during that time the "drift" of the electron in the x direction (which is the pitch of the helix) is $\Delta x=v_{x} T=0.019 \mathrm{~m}$ where v_{x} $=32 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
(c) Returning to our observation of force direction made in part (a), we consider how this is perceived by an observer at some point on the $-x$ axis. As the electron moves away from him, he sees it enter the region with positive v_{y} (which he might call "upward'') but "pushed" in the $+z$ direction (to his right). Hence, he describes the electron's spiral as clockwise.
73. The force associated with the magnetic field must point in the \hat{j} direction in order to cancel the force of gravity in the $-\hat{\mathrm{j}}$ direction. By the right-hand rule, \vec{B} points in the $-\hat{\mathrm{k}}$ direction (since $\hat{\mathrm{i}} \times(-\hat{\mathrm{k}})=\hat{\mathrm{j}}$). Note that the charge is positive; also note that we need to assume $B_{y}=0$. The magnitude $\left|B_{z}\right|$ is given by Eq. 28-3 (with $\phi=90^{\circ}$). Therefore, with $m=10 \times 10^{-3} \mathrm{~kg}, v=2.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$ and $q=80 \times 10^{-6} \mathrm{C}$, we find

$$
\vec{B}=B_{z} \hat{\mathrm{k}}=-\left(\frac{m g}{q v}\right) \hat{\mathrm{k}}=(-0.061 \mathrm{~T}) \hat{\mathrm{k}}
$$

74. With the \vec{B} pointing "out of the page," we evaluate the force (using the right-hand rule) at, say, the dot shown on the left edge of the particle's path, where its velocity is down. If the particle were positively charged, then the force at the dot would be toward the left, which is at odds with the figure (showing it being bent towards the right). Therefore, the particle is negatively charged; it is an electron.
(a) Using Eq. 28-3 (with angle ϕ equal to 90°), we obtain

$$
v=\frac{|\vec{F}|}{e|\vec{B}|}=4.99 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

(b) Using either Eq. 28-14 or Eq. 28-16, we find $r=0.00710 \mathrm{~m}$.
(c) Using Eq. 28-17 (in either its first or last form) readily yields $T=8.93 \times 10^{-9} \mathrm{~s}$.
75. The current is in the $+\hat{\mathrm{i}}$ direction. Thus, the $\hat{\mathrm{i}}$ component of \vec{B} has no effect, and (with x in meters) we evaluate

$$
\vec{F}=(3.00 \mathrm{~A}) \int_{0}^{1}\left(-0.600 \mathrm{~T} / \mathrm{m}^{2}\right) x^{2} d x(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=\left(-1.80 \frac{1^{3}}{3} \mathrm{~A} \cdot \mathrm{~T} \cdot \mathrm{~m}\right) \hat{\mathrm{k}}=(-0.600 \mathrm{~N}) \hat{\mathrm{k}}
$$

76. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. Using Eq. 28-3,

$$
\begin{aligned}
F_{B, \max } & =|q| v B \sin \left(90^{\circ}\right)=e v B=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(7.20 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(83.0 \times 10^{-3} \mathrm{~T}\right) \\
& =9.56 \times 10^{-14} \mathrm{~N} .
\end{aligned}
$$

(b) The smallest value occurs if they are parallel: $F_{B, \min }=|q| v B \sin (0)=0$.
(c) By Newton's second law, $a=F_{B} / m_{e}=|q| v B \sin \theta / m_{e}$, so the angle θ between \vec{v} and \vec{B} is

$$
\theta=\sin ^{-1}\left(\frac{m_{e} a}{|q| v B}\right)=\sin ^{-1}\left[\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(4.90 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(1.60 \times 10^{-16} \mathrm{C}\right)\left(7.20 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(83.0 \times 10^{-3} \mathrm{~T}\right)}\right]=0.267^{\circ} .
$$

77. (a) We use $\vec{\tau}=\vec{\mu} \times \vec{B}$, where $\vec{\mu}$ points into the wall (since the current goes clockwise around the clock). Since \vec{B} points towards the one-hour (or " 5 -minute") mark, and (by the properties of vector cross products) $\vec{\tau}$ must be perpendicular to it, then (using the right-hand rule) we find $\vec{\tau}$ points at the 20 -minute mark. So the time interval is 20 min .
(b) The torque is given by

$$
\begin{aligned}
\tau & =|\vec{\mu} \times \vec{B}|=\mu B \sin 90^{\circ}=N i A B=\pi N i r^{2} B=6 \pi(2.0 \mathrm{~A})(0.15 \mathrm{~m})^{2}\left(70 \times 10^{-3} \mathrm{~T}\right) \\
& =5.9 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

78. From $m=B^{2} q x^{2} / 8 V$ we have $\Delta m=\left(B^{2} q / 8 V\right)(2 x \Delta x)$. Here $x=\sqrt{8 V m / B^{2} q}$, which we substitute into the expression for Δm to obtain

$$
\Delta m=\left(\frac{B^{2} q}{8 V}\right) 2 \sqrt{\frac{8 m V}{B^{2} q}} \Delta x=B \sqrt{\frac{m q}{2 V}} \Delta x .
$$

Thus, the distance between the spots made on the photographic plate is

$$
\begin{aligned}
\Delta x & =\frac{\Delta m}{B} \sqrt{\frac{2 V}{m q}} \\
& =\frac{(37 \mathrm{u}-35 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}{0.50 \mathrm{~T}} \sqrt{\frac{2\left(7.3 \times 10^{3} \mathrm{~V}\right)}{(36 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}} \\
& =8.2 \times 10^{-3} \mathrm{~m} .
\end{aligned}
$$

79. (a) Since $K=q V$ we have $K_{p}=\frac{1}{2} K_{\alpha}\left(\right.$ as $\left.q_{\alpha}=2 K_{p}\right)$, or $K_{p} / K_{\alpha}=0.50$.
(b) Similarly, $q_{\alpha}=2 K_{d}, K_{d} / K_{\alpha}=0.50$.
(c) Since $r=\sqrt{2 m K} / q B \propto \sqrt{m K} / q$, we have

$$
r_{d}=\sqrt{\frac{m_{d} K_{d}}{m_{p} K_{p}}} \frac{q_{p} r_{p}}{q_{d}}=\sqrt{\frac{(2.00 \mathrm{u}) K_{p}}{(1.00 \mathrm{u}) K_{p}}} r_{p}=10 \sqrt{2} \mathrm{~cm}=14 \mathrm{~cm}
$$

(d) Similarly, for the alpha particle, we have

$$
r_{\alpha}=\sqrt{\frac{m_{\alpha} K_{\alpha}}{m_{p} K_{p}}} \frac{q_{p} r_{p}}{q_{\alpha}}=\sqrt{\frac{(4.00 \mathrm{u}) K_{\alpha}}{(1.00 \mathrm{u})\left(K_{\alpha} / 2\right)}} \frac{e r_{p}}{2 e}=10 \sqrt{2} \mathrm{~cm}=14 \mathrm{~cm} .
$$

80. (a) Equating the magnitude of the electric force $\left(F_{e}=e E\right)$ with that of the magnetic force (Eq. 28-3), we obtain $B=E / v \sin \phi$. The field is smallest when the $\sin \phi$ factor is at its largest value; that is, when $\phi=90^{\circ}$. Now, we use $K=\frac{1}{2} m v^{2}$ to find the speed:

$$
v=\sqrt{\frac{2 K}{m_{e}}}=\sqrt{\frac{2\left(2.5 \times 10^{3} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=2.96 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

Thus,

$$
B=\frac{E}{v}=\frac{10 \times 10^{3} \mathrm{~V} / \mathrm{m}}{2.96 \times 10^{7} \mathrm{~m} / \mathrm{s}}=3.4 \times 10^{-4} \mathrm{~T}
$$

The direction of the magnetic field must be perpendicular to both the electric field $(-\hat{\mathrm{j}})$ and the velocity of the electron $(+\hat{\mathrm{i}})$. Since the electric force $\vec{F}_{e}=(-e) \vec{E}$ points in the $+\hat{\mathrm{j}}$ direction, the magnetic force $\vec{F}_{B}=(-e) \vec{v} \times \vec{B}$ points in the $-\hat{\mathrm{j}}$ direction. Hence, the direction of the magnetic field is $-\hat{\mathrm{k}}$. In unit-vector notation, $\vec{B}=\left(-3.4 \times 10^{-4} \mathrm{~T}\right) \hat{\mathrm{k}}$.
81. (a) In Chapter 27, the electric field (called E_{C} in this problem) which "drives" the current through the resistive material is given by Eq. 27-11, which (in magnitude) reads $E_{C}=\rho J$. Combining this with Eq. 27-7, we obtain

$$
E_{C}=\rho n e v_{d} .
$$

Now, regarding the Hall effect, we use Eq. 28-10 to write $E=v_{d} B$. Dividing one equation by the other, we get $E / E_{c}=B / n e \rho$.
(b) Using the value of copper's resistivity given in Chapter 27, we obtain

$$
\frac{E}{E_{c}}=\frac{B}{n e \rho}=\frac{0.65 \mathrm{~T}}{\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)}=2.84 \times 10^{-3}
$$

82. (a) For the magnetic field to have an effect on the moving electrons, we need a nonnegligible component of \vec{B} to be perpendicular to \vec{v} (the electron velocity). It is most efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the page. The magnetic force on an electron has magnitude $F_{B}=e v B$, and the acceleration of the electron has magnitude $a=v^{2} / r$. Newton's second law yields $e v B=m_{e} \nu^{2} / r$, so the radius of the circle is given by $r=m_{e} v / e B$ in agreement with Eq. 28-16. The kinetic energy of the electron is $K=\frac{1}{2} m_{e} v^{2}$, so $v=\sqrt{2 K / m_{e}}$. Thus,

$$
r=\frac{m_{e}}{e B} \sqrt{\frac{2 K}{m_{e}}}=\sqrt{\frac{2 m_{e} K}{e^{2} B^{2}}} .
$$

This must be less than d, so $\sqrt{\frac{2 m_{e} K}{e^{2} B^{2}}} \leq d$, or $B \geq \sqrt{\frac{2 m_{e} K}{e^{2} d^{2}}}$.
(b) If the electrons are to travel as shown in Fig. 28-33, the magnetic field must be out of the page. Then the magnetic force is toward the center of the circular path, as it must be (in order to make the circular motion possible).
83. The equation of motion for the proton is

$$
\begin{aligned}
\vec{F} & =q \vec{v} \times \vec{B}=q\left(v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}\right) \times B \hat{\mathrm{i}}=q B\left(v_{z} \hat{\mathrm{j}}-v_{y} \hat{\mathrm{k}}\right) \\
& =m_{p} \vec{a}=m_{p}\left[\left(\frac{d v_{x}}{d t}\right) \hat{\mathrm{i}}+\left(\frac{d v_{y}}{d t}\right) \hat{\mathrm{j}}+\left(\frac{d v_{z}}{d t}\right) \hat{\mathrm{k}}\right] .
\end{aligned}
$$

Thus,

$$
\frac{d v_{x}}{d t}=0, \quad \frac{d v_{y}}{d t}=\omega v_{z}, \quad \frac{d v_{z}}{d t}=-\omega v_{y}
$$

where $\omega=e B / m$. The solution is $v_{x}=v_{0 x}, v_{y}=v_{0 y} \cos \omega t$ and $v_{z}=-v_{0 y} \sin \omega t$. In summary, we have $\vec{v}(t)=v_{0 x} \hat{\mathrm{i}}+v_{0 y} \cos (\omega t) \hat{\mathrm{j}}-v_{0 y}(\sin \omega t) \hat{\mathrm{k}}$.
84. Referring to the solution of problem 19 part (b), we see that $r=\sqrt{2 m K} / q B$ implies the proportionality: $r \infty \sqrt{m K} / q B$. Thus,
(a) $\frac{r_{d}}{r_{p}}=\sqrt{\frac{m_{d} K_{d}}{m_{p} K_{p}}} \frac{q_{p}}{q_{d}}=\sqrt{\frac{2.0 \mathrm{u}}{1.0 \mathrm{u}}} \frac{e}{e}=\sqrt{2} \approx 1.4$, and
(b) $\frac{r_{\alpha}}{r_{p}}=\sqrt{\frac{m_{\alpha} K_{\alpha}}{m_{p} K_{p}}} \frac{q_{p}}{q_{\alpha}}=\sqrt{\frac{4.0 \mathrm{u}}{1.0 \mathrm{u}}} \frac{e}{2 e}=1.0$.
85. (a) The textbook uses "geomagnetic north" to refer to Earth's magnetic pole lying in the northern hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic field is downward. The right-hand rule indicates that $\vec{v} \times \vec{B}$ is to the west, but since the electron is negatively charged (and $\vec{F}=q \vec{v} \times \vec{B}$), the magnetic force on it is to the east.

We combine $F=m_{e} a$ with $F=e v B \sin \phi$. Here, $B \sin \phi$ represents the downward component of Earth's field (given in the problem). Thus, $a=e v B / m_{e}$. Now, the electron speed can be found from its kinetic energy. Since $K=\frac{1}{2} m v^{2}$,

$$
v=\sqrt{\frac{2 K}{m_{e}}}=\sqrt{\frac{2\left(12.0 \times 10^{3} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=6.49 \times 10^{7} \mathrm{~m} / \mathrm{s} .
$$

Therefore,
$a=\frac{e v B}{m_{e}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(6.49 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)\left(55.0 \times 10^{-6} \mathrm{~T}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}=6.27 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2} \approx 6.3 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$.
(b) We ignore any vertical deflection of the beam which might arise due to the horizontal component of Earth's field. Technically, then, the electron should follow a circular arc. However, the deflection is so small that many of the technicalities of circular geometry may be ignored, and a calculation along the lines of projectile motion analysis (see Chapter 4) provides an adequate approximation:

$$
\Delta x=v t \Rightarrow t=\frac{\Delta x}{v}=\frac{0.200 \mathrm{~m}}{6.49 \times 10^{7} \mathrm{~m} / \mathrm{s}}
$$

which yields a time of $t=3.08 \times 10^{-9} \mathrm{~s}$. Then, with our y axis oriented eastward,

$$
\Delta y=\frac{1}{2} a t^{2}=\frac{1}{2}\left(6.27 \times 10^{14}\right)\left(3.08 \times 10^{-9}\right)^{2}=0.00298 \mathrm{~m} \approx 0.0030 \mathrm{~m} .
$$

86. We replace the current loop of arbitrary shape with an assembly of small adjacent rectangular loops filling the same area which was enclosed by the original loop (as nearly as possible). Each rectangular loop carries a current i flowing in the same sense as the original loop. As the sizes of these rectangles shrink to infinitesimally small values, the assembly gives a current distribution equivalent to that of the original loop. The magnitude of the torque $\Delta \vec{\tau}$ exerted by \vec{B} on the nth rectangular loop of area ΔA_{n} is given by $\Delta \tau_{n}=N i B \sin \theta \Delta A_{n}$. Thus, for the whole assembly

$$
\tau=\sum_{n} \Delta \tau_{n}=N i B \sum_{n} \Delta A_{n}=N i A B \sin \theta .
$$

87. The total magnetic force on the loop L is

$$
\vec{F}_{B}=i \oint_{L}(d \vec{L} \times \vec{B})=i\left(\oint_{L} d \vec{L}\right) \times \vec{B}=0 .
$$

We note that $\oint_{L} d \vec{L}=0$. If \vec{B} is not a constant, however, then the equality

$$
\oint_{L}(d \vec{L} \times \vec{B})=\left(\oint_{L} d \vec{L}\right) \times \vec{B}
$$

is not necessarily valid, so \vec{F}_{B} is not always zero.
88. (a) Since \vec{B} is uniform,

$$
\vec{F}_{B}=\int_{\text {wire }} i d \vec{L} \times \vec{B}=i\left(\int_{\text {wire }} d \vec{L}\right) \times \vec{B}=i \vec{L}_{a b} \times \vec{B}
$$

where we note that $\int_{\text {wire }} d \vec{L}=\vec{L}_{a b}$, with $\vec{L}_{a b}$ being the displacement vector from a to b.
(b) Now $\vec{L}_{a b}=0$, so $\vec{F}_{B}=i \vec{L}_{a b} \times \vec{B}=0$.
89. With $F_{\mathrm{z}}=v_{\mathrm{z}}=B_{x}=0$, Eq. 28-2 (and Eq. 3-30) gives

$$
F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}=q\left(v_{y} B_{z} \hat{\mathrm{i}}-v_{x} B_{z} \hat{\mathrm{j}}+v_{x} B_{y} \hat{\mathrm{k}}\right)
$$

where $q=-e$ for the electron. The last term immediately implies $B_{y}=0$, and either of the other two terms (along with the values stated in the problem, bearing in mind that " fN " means femtonewtons or $10^{-15} \mathrm{~N}$) can be used to solve for B_{z}. We therefore find that the magnetic field is given by $\vec{B}=(0.75 \mathrm{~T}) \hat{\mathrm{k}}$.

1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a distance r from the wire, is given by

$$
B=\frac{\mu_{0} i}{2 \pi r} .
$$

With $r=20 \mathrm{ft}=6.10 \mathrm{~m}$, we have

$$
B=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(100 \mathrm{~A})}{2 \pi(6.10 \mathrm{~m})}=3.3 \times 10^{-6} \mathrm{~T}=3.3 \mu \mathrm{~T} .
$$

(b) This is about one-sixth the magnitude of the Earth's field. It will affect the compass reading.
2. The straight segment of the wire produces no magnetic field at C (see the straight sections discussion in Sample Problem 29-1). Also, the fields from the two semi-circular loops cancel at C (by symmetry). Therefore, $B_{C}=0$.
3. (a) The field due to the wire, at a point 8.0 cm from the wire, must be $39 \mu \mathrm{~T}$ and must be directed due south. Since $B=\mu_{0} i / 2 \pi r$,

$$
i=\frac{2 \pi r B}{\mu_{0}}=\frac{2 \pi(0.080 \mathrm{~m})\left(39 \times 10^{-6} \mathrm{~T}\right)}{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}}=16 \mathrm{~A} .
$$

(b) The current must be from west to east to produce a field which is directed southward at points below it.
4. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the current in segments $A H$ and $J D$ do not contribute to the field at point C. Using Eq. 29-9 (with $\phi=\pi$) and the right-hand rule, we find that the current in the semicircular arc $H J$ contributes $\mu_{0} i / 4 R_{1}$ (into the page) to the field at C. Also, arc $D A$ contributes $\mu_{0} i / 4 R_{2}$ (out of the page) to the field there. Thus, the net field at C is

$$
B=\frac{\mu_{0} i}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.281 \mathrm{~A})}{4}\left(\frac{1}{0.0315 \mathrm{~m}}-\frac{1}{0.0780 \mathrm{~m}}\right)=1.67 \times 10^{-6} \mathrm{~T} .
$$

(b) The direction of the field is into the page.
5. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the current in the straight segments collinear with P do not contribute to the field at that point. Using Eq. 29-9 (with $\phi=\theta$) and the right-hand rule, we find that the current in the semicircular arc of radius b contributes $\mu_{0} i \theta / 4 \pi b$ (out of the page) to the field at P. Also, the current in the large radius arc contributes $\mu_{0} i \theta / 4 \pi a$ (into the page) to the field there. Thus, the net field at P is

$$
\begin{aligned}
B & =\frac{\mu_{0} i \theta}{4}\left(\frac{1}{b}-\frac{1}{a}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.411 \mathrm{~A})\left(74^{\circ} \cdot \pi / 180^{\circ}\right)}{4 \pi}\left(\frac{1}{0.107 \mathrm{~m}}-\frac{1}{0.135 \mathrm{~m}}\right) \\
& =1.02 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

(b) The direction is out of the page.
6. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the current in the straight segments collinear with C do not contribute to the field at that point.

Eq. 29-9 (with $\phi=\pi$) indicates that the current in the semicircular arc contributes $\mu_{0} i / 4 R$ to the field at C. Thus, the magnitude of the magnetic field is

$$
B=\frac{\mu_{0} i}{4 R}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.0348 \mathrm{~A})}{4(0.0926 \mathrm{~m})}=1.18 \times 10^{-7} \mathrm{~T} .
$$

(b) The right-hand rule shows that this field is into the page.
7. (a) The currents must be opposite or antiparallel, so that the resulting fields are in the same direction in the region between the wires. If the currents are parallel, then the two fields are in opposite directions in the region between the wires. Since the currents are the same, the total field is zero along the line that runs halfway between the wires.
(b) At a point halfway between they have the same magnitude, $\mu_{0} i / 2 \pi r$. Thus the total field at the midpoint has magnitude $B=\mu_{0} i / \pi r$ and

$$
i=\frac{\pi r B}{\mu_{0}}=\frac{\pi(0.040 \mathrm{~m})\left(300 \times 10^{-6} \mathrm{~T}\right)}{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}}=30 \mathrm{~A} .
$$

8. (a) Since they carry current in the same direction, then (by the right-hand rule) the only region in which their fields might cancel is between them. Thus, if the point at which we are evaluating their field is r away from the wire carrying current i and is $d-r$ away from the wire carrying current $3.00 i$, then the canceling of their fields leads to

$$
\frac{\mu_{0} i}{2 \pi r}=\frac{\mu_{0}(3 i)}{2 \pi(d-r)} \Rightarrow r=\frac{d}{4}=\frac{16.0 \mathrm{~cm}}{4}=4.0 \mathrm{~cm} .
$$

(b) Doubling the currents does not change the location where the magnetic field is zero.
9. (a) $B_{P 1}=\mu_{0} i_{1} / 2 \pi r_{1}$ where $i_{1}=6.5 \mathrm{~A}$ and $r_{1}=d_{1}+d_{2}=0.75 \mathrm{~cm}+1.5 \mathrm{~cm}=2.25 \mathrm{~cm}$, and $B_{P 2}=\mu_{0} i_{2} / 2 \pi r_{2}$ where $r_{2}=d_{2}=1.5 \mathrm{~cm}$. From $B_{P 1}=B_{P 2}$ we get

$$
i_{2}=i_{1}\left(\frac{r_{2}}{r_{1}}\right)=(6.5 \mathrm{~A})\left(\frac{1.5 \mathrm{~cm}}{2.25 \mathrm{~cm}}\right)=4.3 \mathrm{~A} .
$$

(b) Using the right-hand rule, we see that the current i_{2} carried by wire 2 must be out of the page.
10. With the "usual" x and y coordinates used in Fig. 29-40, then the vector \vec{r} pointing from a current element to P is $\vec{r}=-s \hat{\mathrm{i}}+R \hat{\mathrm{j}}$. Since $\overrightarrow{d s}=d s \hat{\mathrm{i}}$, then $|\overrightarrow{d s} \times \vec{r}|=R d s$. Therefore, with $r=\sqrt{s^{2}+R^{2}}$, Eq. 29-3 becomes

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i R d s}{\left(s^{2}+R^{2}\right)^{3 / 2}}
$$

(a) Clearly, considered as a function of s (but thinking of " $d s$ " as some finite-sized constant value), the above expression is maximum for $s=0$. Its value in this case is $d B_{\max }=\mu_{\mathrm{o}} i d s / 4 \pi R^{2}$.
(b) We want to find the s value such that $d B=\frac{1}{10} d B_{\text {max }}$. This is a non-trivial algebra exercise, but is nonetheless straightforward. The result is $s=\sqrt{10^{2 / 3}-1} R$. If we set $R=$ 2.00 cm , then we obtain $s=3.82 \mathrm{~cm}$.
11. We assume the current flows in the $+x$ direction and the particle is at some distance d in the $+y$ direction (away from the wire). Then, the magnetic field at the location of a proton with charge q is $\vec{B}=\frac{\mu_{0} i}{2 \pi d} \hat{\mathrm{k}}$. Thus,

$$
\vec{F}=q \vec{v} \times \vec{B}=\frac{\mu_{0} i q}{2 \pi d}(\vec{v} \times \hat{\mathrm{k}}) .
$$

In this situation, $\vec{v}=v(-\hat{\mathrm{j}})$ (where v is the speed and is a positive value), and $q>0$. Thus,

$$
\begin{aligned}
\vec{F} & =\frac{\mu_{0} i q v}{2 \pi d}((-\hat{\mathrm{j}}) \times \hat{\mathrm{k}})=-\frac{\mu_{0} i q v}{2 \pi d} \hat{\mathrm{i}}=-\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.350 \mathrm{~A})\left(1.60 \times 10^{-19} \mathrm{C}\right)(200 \mathrm{~m} / \mathrm{s})}{2 \pi(0.0289 \mathrm{~m})} \hat{\mathrm{i}} \\
& =\left(-7.75 \times 10^{-23} \mathrm{~N}\right) \hat{\mathrm{i}} .
\end{aligned}
$$

12. The fact that $B_{y}=0$ at $x=10 \mathrm{~cm}$ implies the currents are in opposite directions. Thus

$$
B_{y}=\frac{\mu_{0} i_{1}}{2 \pi(L+x)}-\frac{\mu_{0} i_{2}}{2 \pi x}=\frac{\mu_{0} i_{2}}{2 \pi}\left(\frac{4}{L+x}-\frac{1}{x}\right) .
$$

using Eq. 29-4 and the fact that $i_{1}=4 i_{2}$. To get the maximum, we take the derivative with respect to x and set equal to zero. This leads to $3 x^{2}-2 L x-L^{2}=0$ which factors and becomes $(3 x+L)(x-L)=0$, which has the physically acceptable solution: $x=L$. This produces the maximum B_{y} : $\mu_{o} i_{2} / 2 \pi L$. To proceed further, we must determine L. Examination of the datum at $x=10 \mathrm{~cm}$ in Fig. 29-42(b) leads (using our expression above for B_{y} and setting that to zero) to $L=30 \mathrm{~cm}$.
(a) The maximum value of B_{y} occurs at $x=L=30 \mathrm{~cm}$.
(b) With $i_{2}=0.003$ A we find $\mu_{\mathrm{o}} i_{2} / 2 \pi L=2.0 \mathrm{nT}$.
(c) and (d) Fig. 29-42(b) shows that as we get very close to wire 2 (where its field strongly dominates over that of the more distant wire 1) B_{y} points along the $-y$ direction. The right-hand rule leads us to conclude that wire 2 's current is consequently is into the page. We previously observed that the currents were in opposite directions, so wire 1's current is out of the page.
13. Each of the semi-infinite straight wires contributes $\mu_{0} i / 4 \pi R$ (Eq. 29-7) to the field at the center of the circle (both contributions pointing "out of the page"). The current in the arc contributes a term given by Eq. 29-9 pointing into the page, and this is able to produce zero total field at that location if $B_{\text {arc }}=2.00 B_{\text {semininfinte }}$, or

$$
\frac{\mu_{0} i \phi}{4 \pi R}=2.00\left(\frac{\mu_{0} i}{4 \pi R}\right)
$$

which yields $\phi=2.00 \mathrm{rad}$.
14. Initially, $B_{\text {net } y}=0$, and $B_{\text {net } x}=B_{2}+B_{4}=2\left(\mu_{\mathrm{o}} i / 2 \pi d\right)$ using Eq. 29-4, where $d=0.15$ m . To obtain the 30° condition described in the problem, we must have

$$
\begin{aligned}
B_{\text {net } y} & =B_{\text {net } x} \tan \left(30^{\circ}\right) \\
B_{1}^{\prime}-B_{3} & =2\left(\mu_{0} i / 2 \pi d\right) \tan \left(30^{\circ}\right)
\end{aligned}
$$

where $B_{3}=\mu_{0} i / 2 \pi d$ and $B_{1}{ }^{\prime}=\mu_{0} i / 2 \pi d^{\prime}$. Since $\tan \left(30^{\circ}\right)=1 / \sqrt{3}$, this leads to

$$
d^{\prime}=\frac{\sqrt{3} d}{\sqrt{3}+2} .
$$

(a) With $d=15.0 \mathrm{~cm}$, this gives $d^{\prime}=7.0 \mathrm{~cm}$. Being very careful about the geometry of the situation, then we conclude that we must move wire 1 to $x=-7.0 \mathrm{~cm}$.
(b) To restore the initial symmetry, we would have to move wire 3 to $x=+7.0 \mathrm{~cm}$.
15. Each wire produces a field with magnitude given by $B=\mu_{0} i / 2 \pi r$, where r is the distance from the corner of the square to the center. According to the Pythagorean theorem, the diagonal of the square has length $\sqrt{2} a$, so $r=a / \sqrt{2}$ and $B=\mu_{0} i / \sqrt{2} \pi a$. The fields due to the wires at the upper left and lower right corners both point toward the upper right corner of the square. The fields due to the wires at the upper right and lower left corners both point toward the upper left corner. The horizontal components cancel and the vertical components sum to

$$
B_{\text {total }}=4 \frac{\mu_{0} i}{\sqrt{2} \pi a} \cos 45^{\circ}=\frac{2 \mu_{0} i}{\pi a}=\frac{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(20 \mathrm{~A})}{\pi(0.20 \mathrm{~m})}=8.0 \times 10^{-5} \mathrm{~T}
$$

In the calculation $\cos 45^{\circ}$ was replaced with $1 / \sqrt{2}$. The total field points upward, or in the $+y$ direction. Thus, $\vec{B}_{\text {total }}=\left(8.0 \times 10^{-5} \mathrm{~T}\right) \hat{\mathrm{j}}$.
16. We consider Eq. 29-6 but with a finite upper limit ($L / 2$ instead of ∞). This leads to

$$
B=\frac{\mu_{0} i}{2 \pi R} \frac{L / 2}{\sqrt{R^{2}+(L / 2)^{2}}} .
$$

In terms of this expression, the problem asks us to see how large L must be (compared with R) such that the infinite wire expression B_{∞} (Eq. 29-4) can be used with no more than a 1% error. Thus we must solve

$$
\frac{B_{\infty}-B}{B}=0.01 .
$$

This is a non-trivial algebra exercise, but is nonetheless straightforward. The result is

$$
L=\frac{200 R}{\sqrt{201}} \approx 14.1 R \quad \Rightarrow \quad \frac{L}{R} \approx 14.1
$$

17. Our x axis is along the wire with the origin at the midpoint. The current flows in the positive x direction. All segments of the wire produce magnetic fields at P_{1} that are out of the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P_{1} is given by

$$
d B=\frac{\mu_{0} i}{4 \pi} \frac{\sin \theta}{r^{2}} d x
$$

where θ (the angle between the segment and a line drawn from the segment to P_{1}) and r (the length of that line) are functions of x. Replacing r with $\sqrt{x^{2}+R^{2}}$ and $\sin \theta$ with $R / r=R / \sqrt{x^{2}+R^{2}}$, we integrate from $x=-L / 2$ to $x=L / 2$. The total field is

$$
\begin{aligned}
B & =\frac{\mu_{0} i R}{4 \pi} \int_{-L / 2}^{L / 2} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\left.\frac{\mu_{0} i R}{4 \pi} \frac{1}{R^{2}} \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}}\right|_{-L / 2} ^{L / 2}=\frac{\mu_{0} i}{2 \pi R} \frac{L}{\sqrt{L^{2}+4 R^{2}}} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.0582 \mathrm{~A})}{2 \pi(0.131 \mathrm{~m})} \frac{0.180 \mathrm{~m}}{\sqrt{(0.180 \mathrm{~m})^{2}+4(0.131 \mathrm{~m})^{2}}}=5.03 \times 10^{-8} \mathrm{~T} .
\end{aligned}
$$

18. Using the law of cosines and the requirement that $B=100 \mathrm{nT}$, we have

$$
\theta=\cos ^{-1}\left(\frac{B_{1}{ }^{2}+B_{2}{ }^{2}-B^{2}}{-2 B_{1} B_{2}}\right)=144^{\circ}
$$

where Eq. 29-10 has been used to determine $B_{1}(168 \mathrm{nT})$ and $B_{2}(151 \mathrm{nT})$.
19. Our x axis is along the wire with the origin at the right endpoint, and the current is in the positive x direction. All segments of the wire produce magnetic fields at P_{2} that are out of the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P_{2} is given by

$$
d B=\frac{\mu_{0} i}{4 \pi} \frac{\sin \theta}{r^{2}} d x
$$

where θ (the angle between the segment and a line drawn from the segment to P_{2}) and r (the length of that line) are functions of x. Replacing r with $\sqrt{x^{2}+R^{2}}$ and $\sin \theta$ with $R / r=R / \sqrt{x^{2}+R^{2}}$, we integrate from $x=-L$ to $x=0$. The total field is

$$
\begin{aligned}
B & =\frac{\mu_{0} i R}{4 \pi} \int_{-L}^{0} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\left.\frac{\mu_{0} i R}{4 \pi} \frac{1}{R^{2}} \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}}\right|_{-L} ^{0}=\frac{\mu_{0} i}{4 \pi R} \frac{L}{\sqrt{L^{2}+R^{2}}} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.693 \mathrm{~A})}{4 \pi(0.251 \mathrm{~m})} \frac{0.136 \mathrm{~m}}{\sqrt{(0.136 \mathrm{~m})^{2}+(0.251 \mathrm{~m})^{2}}}=1.32 \times 10^{-7} \mathrm{~T} .
\end{aligned}
$$

20. In the one case we have $B_{\text {small }}+B_{\mathrm{big}}=47.25 \mu \mathrm{~T}$, and the other case gives $B_{\text {small }}-B_{\mathrm{big}}$ $=15.75 \mu \mathrm{~T}$ (cautionary note about our notation: $B_{\text {small }}$ refers to the field at the center of the small-radius arc, which is actually a bigger field than $B_{\mathrm{big}}!$). Dividing one of these equations by the other and canceling out common factors (see Eq. 29-9) we obtain

$$
\frac{\frac{1}{r_{\text {small }}}+\frac{1}{r_{\mathrm{big}}}}{\frac{1}{r_{\text {small }}}-\frac{1}{r_{\mathrm{big}}}}=3 .
$$

The solution of this is straightforward: $r_{\text {small }}=\frac{1}{2} r_{\text {big }}$. Using the given fact that the big radius 4.00 cm , then we conclude that the small radius is 2.00 cm .
21. (a) The contribution to B_{C} from the (infinite) straight segment of the wire is

$$
B_{C 1}=\frac{\mu_{0} i}{2 \pi R} .
$$

The contribution from the circular loop is $B_{C 2}=\frac{\mu_{0} i}{2 R}$. Thus,

$$
B_{C}=B_{C 1}+B_{C 2}=\frac{\mu_{0} i}{2 R}\left(1+\frac{1}{\pi}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(5.78 \times 10^{-3} \mathrm{~A}\right)}{2(0.0189 \mathrm{~m})}\left(1+\frac{1}{\pi}\right)=2.53 \times 10^{-7} \mathrm{~T} .
$$

\vec{B}_{C} points out of the page, or in the $+z$ direction. In unit-vector notation, $\vec{B}_{C}=\left(2.53 \times 10^{-7} \mathrm{~T}\right) \hat{\mathrm{k}}$
(b) Now $\vec{B}_{C 1} \perp \vec{B}_{C 2}$ so

$$
B_{C}=\sqrt{B_{C 1}^{2}+B_{C 2}^{2}}=\frac{\mu_{0} i}{2 R} \sqrt{1+\frac{1}{\pi^{2}}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(5.78 \times 10^{-3} \mathrm{~A}\right)}{2(0.0189 \mathrm{~m})} \sqrt{1+\frac{1}{\pi^{2}}}=2.02 \times 10^{-7} \mathrm{~T} .
$$

and \vec{B}_{C} points at an angle (relative to the plane of the paper) equal to

$$
\tan ^{-1}\left(\frac{B_{C 1}}{B_{C 2}}\right)=\tan ^{-1}\left(\frac{1}{\pi}\right)=17.66^{\circ} .
$$

In unit-vector notation,

$$
\vec{B}_{C}=2.02 \times 10^{-7} \mathrm{~T}\left(\cos 17.66^{\circ} \hat{\mathrm{i}}+\sin 17.66^{\circ} \hat{\mathrm{k}}\right)=\left(1.92 \times 10^{-7} \mathrm{~T}\right) \hat{\mathrm{i}}+\left(6.12 \times 10^{-8} \mathrm{~T}\right) \hat{\mathrm{k}}
$$

22. Letting "out of the page" in Fig. 29-50(a) be the positive direction, the net field is

$$
B=\frac{\mu_{0} i_{1} \phi}{4 \pi R}-\frac{\mu_{0} i_{2}}{2 \pi(R / 2)}
$$

from Eqs. 29-9 and 29-4. Referring to Fig. 29-50, we see that $B=0$ when $i_{2}=0.5 \mathrm{~A}$, so (solving the above expression with B set equal to zero) we must have

$$
\phi=4\left(i_{2} / i_{1}\right)=4(0.5 / 2)=1.00 \mathrm{rad}\left(\text { or } 57.3^{\circ}\right) .
$$

23. Consider a section of the ribbon of thickness $d x$ located a distance x away from point P. The current it carries is $d i=i d x / w$, and its contribution to B_{P} is

$$
d B_{P}=\frac{\mu_{0} d i}{2 \pi x}=\frac{\mu_{0} i d x}{2 \pi x w} .
$$

Thus,

$$
\begin{aligned}
B_{P} & =\int d B_{P}=\frac{\mu_{0} i}{2 \pi w} \int_{d}^{d+w} \frac{d x}{x}=\frac{\mu_{0} i}{2 \pi w} \ln \left(1+\frac{w}{d}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(4.61 \times 10^{-6} \mathrm{~A}\right)}{2 \pi(0.0491 \mathrm{~m})} \ln \left(1+\frac{0.0491}{0.0216}\right) \\
& =2.23 \times 10^{-11} \mathrm{~T} .
\end{aligned}
$$

and \vec{B}_{P} points upward. In unit-vector notation, $\vec{B}_{P}=\left(2.23 \times 10^{-11} \mathrm{~T}\right) \hat{\mathrm{j}}$
24. Initially we have

$$
B_{i}=\frac{\mu_{0} i \phi}{4 \pi R}+\frac{\mu_{0} i \phi}{4 \pi r}
$$

using Eq. 29-9. In the final situation we use Pythagorean theorem and write

$$
B_{f}^{2}=B_{z}^{2}+B_{y}{ }^{2}=\left(\frac{\mu_{0} i \phi}{4 \pi R}\right)^{2}+\left(\frac{\mu_{0} i \phi}{4 \pi r}\right)^{2} .
$$

If we square B_{i} and divide by B_{f}^{2}, we obtain

$$
\left(\frac{B_{i}}{B_{f}}\right)^{2}=\frac{\left(\frac{1}{R}+\frac{1}{r}\right)^{2}}{\frac{1}{R^{2}}+\frac{1}{r^{2}}}
$$

From the graph (see Fig. 29-52(c) - note the maximum and minimum values) we estimate $B_{i} / B_{f}=12 / 10=1.2$, and this allows us to solve for r in terms of R :

$$
r=R \frac{1 \pm 1.2 \sqrt{2-1.2^{2}}}{1.2^{2}-1}=2.3 \mathrm{~cm} \text { or } 43.1 \mathrm{~cm} .
$$

Since we require $r<R$, then the acceptable answer is $r=2.3 \mathrm{~cm}$.
25. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the current in the straight segments collinear with P do not contribute to the field at that point. We use the result of problem 16 to evaluate the contributions to the field at P, noting that the nearest wire-segments (each of length a) produce magnetism into the page at P and the further wire-segments (each of length $2 a$) produce magnetism pointing out of the page at P. Thus, we find (into the page)

$$
\begin{aligned}
B_{P} & =2\left(\frac{\sqrt{2} \mu_{0} i}{8 \pi a}\right)-2\left(\frac{\sqrt{2} \mu_{0} i}{8 \pi(2 a)}\right)=\frac{\sqrt{2} \mu_{0} i}{8 \pi a}=\frac{\sqrt{2}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(13 \mathrm{~A})}{8 \pi(0.047 \mathrm{~m})} \\
& =1.96 \times 10^{-5} \mathrm{~T} \approx 2.0 \times 10^{-5} \mathrm{~T} .
\end{aligned}
$$

(b) The direction of the field is into the page.
26. By the right-hand rule (which is "built-into" Eq. 29-3) the field caused by wire 1's current, evaluated at the coordinate origin, is along the $+y$ axis. Its magnitude B_{1} is given by Eq. 29-4. The field caused by wire 2's current will generally have both an x and a y component which are related to its magnitude B_{2} (given by Eq. 29-4) and sines and cosines of some angle. A little trig (and the use of the right-hand rule) leads us to conclude that when wire 2 is at angle θ_{2} (shown in Fig. 29-54) then its components are

$$
B_{2 x}=B_{2} \sin \theta_{2}, B_{2 y}=-B_{2} \cos \theta_{2} .
$$

The magnitude-squared of their net field is then (by Pythagoras' theorem) the sum of the square of their net x-component and the square of their net y-component:

$$
B^{2}=\left(B_{2} \sin \theta_{2}\right)^{2}+\left(B_{1}-B_{2} \cos \theta_{2}\right)^{2}=B_{1}^{2}+B_{2}^{2}-2 B_{1} B_{2} \cos \theta_{2} .
$$

(since $\sin ^{2}+\cos ^{2}=1$), which we could also have gotten directly by using the law of cosines. We have $B_{1}=\mu_{\mathrm{o}} i_{1} / 2 \pi R=60 \mathrm{nT}$ and $B_{2}=\mu_{\mathrm{o}} i_{2} / 2 \pi R=40 \mathrm{nT}$, so with the requirement that the net field have magnitude $B=80 \mathrm{nT}$, we find

$$
\theta_{2}=\cos ^{-1}\left(\frac{B_{1}{ }^{2}+B_{2}{ }^{2}-B^{2}}{2 B_{1} B_{2}}\right)=\cos ^{-1}(-1 / 4)=104^{\circ},
$$

where the positive value has been chosen.
27. Eq. 29-13 gives the magnitude of the force between the wires, and finding the x component of it amounts to multiplying that magnitude by $\cos \phi=\frac{d_{2}}{\sqrt{d_{1}{ }^{2}+d_{2}{ }^{2}}}$. Therefore, the x-component of the force per unit length is

$$
\frac{F_{x}}{L}=\frac{\mu_{0} i_{1} i_{2} d_{2}}{2 \pi\left(d_{1}{ }^{2}+d_{2}{ }^{2}\right)}=8.84 \times 10^{-11} \mathrm{~N} / \mathrm{m} .
$$

28. Using a magnifying glass, we see that all but i_{2} are directed into the page. Wire 3 is therefore attracted to all but wire 2 . Letting $d=0.500 \mathrm{~m}$, we find the net force (per meter length) using Eq. 29-13, with positive indicated a rightward force:

$$
\frac{|\vec{F}|}{\ell}=\frac{\mu_{0} i_{3}}{2 \pi}\left(-\frac{i_{1}}{2 d}+\frac{i_{2}}{d}+\frac{i_{4}}{d}+\frac{i_{5}}{2 d}\right)
$$

which yields $|\vec{F}| / \ell=8.00 \times 10^{-7} \mathrm{~N} / \mathrm{m}$.
29. We label these wires 1 through 5, left to right, and use Eq. 29-13. Then,
(a) The magnetic force on wire 1 is

$$
\begin{aligned}
\vec{F}_{1} & =\frac{\mu_{0} i^{2} l}{2 \pi}\left(\frac{1}{d}+\frac{1}{2 d}+\frac{1}{3 d}+\frac{1}{4 d}\right) \hat{\mathrm{j}}=\frac{25 \mu_{0} i^{2} l}{24 \pi d} \hat{\mathrm{j}}=\frac{25\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(3.00 \mathrm{~A})^{2}(10.0 \mathrm{~m})}{24 \pi\left(8.00 \times 10^{-2} \mathrm{~m}\right)} \hat{\mathrm{j}} \\
& =\left(4.69 \times 10^{-4} \mathrm{~N}\right) \hat{\mathrm{j}}
\end{aligned}
$$

(b) Similarly, for wire 2, we have

$$
\vec{F}_{2}=\frac{\mu_{0} i^{2} l}{2 \pi}\left(\frac{1}{2 d}+\frac{1}{3 d}\right) \hat{\mathrm{j}}=\frac{5 \mu_{0} i^{2} l}{12 \pi d} \hat{\mathrm{j}}=\left(1.88 \times 10^{-4} \mathrm{~N}\right) \hat{\mathrm{j}} .
$$

(c) $F_{3}=0$ (because of symmetry).
(d) $\vec{F}_{4}=-\vec{F}_{2}=\left(-1.88 \times 10^{-4} \mathrm{~N}\right) \hat{\mathrm{j}}$, and
(e) $\vec{F}_{5}=-\vec{F}_{1}=-\left(4.69 \times 10^{-4} \mathrm{~N}\right) \hat{\mathrm{j}}$.
30. Using Eq. 29-13, the force on, say, wire 1 (the wire at the upper left of the figure) is along the diagonal (pointing towards wire 3 which is at the lower right). Only the forces (or their components) along the diagonal direction contribute. With $\theta=45^{\circ}$, we find

$$
\begin{aligned}
F_{1} & =\vec{F}_{12}+\vec{F}_{13}+\vec{F}_{14} \left\lvert\,=2 F_{12} \cos \theta+F_{13}=2\left(\frac{\mu_{0} i^{2}}{2 \pi a}\right) \cos 45^{\circ}+\frac{\mu_{0} i^{2}}{2 \sqrt{2} \pi a}=\frac{3}{2 \sqrt{2} \pi}\left(\frac{\mu_{0} i^{2}}{a}\right)\right. \\
& =\frac{3}{2 \sqrt{2} \pi} \frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(15.0 \mathrm{~A})^{2}}{\left(8.50 \times 10^{-2} \mathrm{~m}\right)}=1.12 \times 10^{-3} \mathrm{~N} / \mathrm{m} .
\end{aligned}
$$

The direction of \vec{F}_{1} is along $\hat{r}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}) / \sqrt{2}$. In unit-vector notation, we have

$$
\vec{F}_{1}=\frac{\left(1.12 \times 10^{-3} \mathrm{~N} / \mathrm{m}\right)}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})=\left(7.94 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{i}}+\left(-7.94 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{j}}
$$

31. We use Eq. 29-13 and the superposition of forces: $\vec{F}_{4}=\vec{F}_{14}+\vec{F}_{24}+\vec{F}_{34}$. With $\theta=45^{\circ}$, the situation is as shown next:

The components of \vec{F}_{4} are given by

$$
F_{4 x}=-F_{43}-F_{42} \cos \theta=-\frac{\mu_{0} i^{2}}{2 \pi a}-\frac{\mu_{0} i^{2} \cos 45^{\circ}}{2 \sqrt{2} \pi a}=-\frac{3 \mu_{0} i^{2}}{4 \pi a}
$$

and

$$
F_{4 y}=F_{41}-F_{42} \sin \theta=\frac{\mu_{0} i^{2}}{2 \pi a}-\frac{\mu_{0} i^{2} \sin 45^{\circ}}{2 \sqrt{2} \pi a}=\frac{\mu_{0} i^{2}}{4 \pi a} .
$$

Thus,

$$
\begin{aligned}
F_{4} & =\left(F_{4 x}^{2}+F_{4 y}^{2}\right)^{1 / 2}=\left[\left(-\frac{3 \mu_{0} i^{2}}{4 \pi a}\right)^{2}+\left(\frac{\mu_{0} i^{2}}{4 \pi a}\right)^{2}\right]^{1 / 2}=\frac{\sqrt{10} \mu_{0} i^{2}}{4 \pi a}=\frac{\sqrt{10}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(7.50 \mathrm{~A})^{2}}{4 \pi(0.135 \mathrm{~m})} \\
& =1.32 \times 10^{-4} \mathrm{~N} / \mathrm{m} .
\end{aligned}
$$

and \vec{F}_{4} makes an angle ϕ with the positive x axis, where

$$
\phi=\tan ^{-1}\left(\frac{F_{4 y}}{F_{4 x}}\right)=\tan ^{-1}\left(-\frac{1}{3}\right)=162^{\circ} .
$$

In unit-vector notation, we have

$$
\vec{F}_{1}=\left(1.32 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right)\left[\cos 162^{\circ} \hat{\mathrm{i}}+\sin 162^{\circ} \hat{\mathrm{j}}\right]=\left(-1.25 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{i}}+\left(4.17 \times 10^{-5} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{j}}
$$

32. (a) The fact that the curve in Fig. 29-57(b) passes through zero implies that the currents in wires 1 and 3 exert forces in opposite directions on wire 2. Thus, current i_{1} points out of the page. When wire 3 is a great distance from wire 2 , the only field that affects wire 2 is that caused by the current in wire 1 ; in this case the force is negative according to Fig. 29-57(b). This means wire 2 is attracted to wire 1 , which implies (by the discussion in section 29-2) that wire 2's current is in the same direction as wire 1 's current: out of the page. With wire 3 infinitely far away, the force per unit length is given (in magnitude) as $6.27 \times 10^{-7} \mathrm{~N} / \mathrm{m}$. We set this equal to $F_{12}=\mu_{\mathrm{o}} i_{1} i_{2} / 2 \pi d$. When wire 3 is at $x=0.04 \mathrm{~m}$ the curve passes through the zero point previously mentioned, so the force between 2 and 3 must equal F_{12} there. This allows us to solve for the distance between wire 1 and wire 2 :

$$
d=(0.04 \mathrm{~m})(0.750 \mathrm{~A}) /(0.250 \mathrm{~A})=0.12 \mathrm{~m} .
$$

Then we solve $6.27 \times 10^{-7} \mathrm{~N} / \mathrm{m}=\mu_{\mathrm{o}} i_{1} i_{2} / 2 \pi d$ and obtain $i_{2}=0.50 \mathrm{~A}$.
(b) The direction of i_{2} is out of the page.
33. The magnitudes of the forces on the sides of the rectangle which are parallel to the long straight wire (with $i_{1}=30.0 \mathrm{~A}$) are computed using Eq. 29-13, but the force on each of the sides lying perpendicular to it (along our y axis, with the origin at the top wire and $+y$ downward) would be figured by integrating as follows:

$$
F_{\perp \text { sides }}=\int_{a}^{a+b} \frac{i_{2} \mu_{0} i_{1}}{2 \pi y} d y
$$

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the remaining two (parallel) sides of length L, we obtain

$$
\begin{aligned}
F & =\frac{\mu_{0} i_{1} i_{2} L}{2 \pi}\left(\frac{1}{a}-\frac{1}{a+d}\right)=\frac{\mu_{0} i_{1} i_{2} b}{2 \pi a(a+b)} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(30.0 \mathrm{~A})(20.0 \mathrm{~A})(8.00 \mathrm{~cm})\left(300 \times 10^{-2} \mathrm{~m}\right)}{2 \pi(1.00 \mathrm{~cm}+8.00 \mathrm{~cm})}=3.20 \times 10^{-3} \mathrm{~N},
\end{aligned}
$$

and \vec{F} points toward the wire, or $+\hat{\mathrm{j}}$. In unit-vector notation, we have $\vec{F}=\left(3.20 \times 10^{-3} \mathrm{~N}\right) \hat{\mathrm{j}}$
34. A close look at the path reveals that only currents $1,3,6$ and 7 are enclosed. Thus, noting the different current directions described in the problem, we obtain

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0}(7 i-6 i+3 i+i)=5 \mu_{0} i=5\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(4.50 \times 10^{-3} \mathrm{~A}\right)=2.83 \times 10^{-8} \mathrm{~T} \cdot \mathrm{~m} .
$$

35. (a) Two of the currents are out of the page and one is into the page, so the net current enclosed by the path is 2.0 A , out of the page. Since the path is traversed in the clockwise sense, a current into the page is positive and a current out of the page is negative, as indicated by the right-hand rule associated with Ampere's law. Thus,

$$
\oint \vec{B} \cdot d \vec{s}=-\mu_{0} i=-(2.0 \mathrm{~A})\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)=-2.5 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} .
$$

(b) The net current enclosed by the path is zero (two currents are out of the page and two are into the page), so $\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\text {enc }}=0$.
36. We use Ampere's law: $\oint \vec{B} \cdot d \vec{s}=\mu_{0} i$, where the integral is around a closed loop and i is the net current through the loop.
(a) For path 1, the result is

$$
\oint_{1} \vec{B} \cdot d \vec{s}=\mu_{0}(-5.0 \mathrm{~A}+3.0 \mathrm{~A})=(-2.0 \mathrm{~A})\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)=-2.5 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} .
$$

(b) For path 2, we find

$$
\oint_{2} \vec{B} \cdot d \vec{s}=\mu_{0}(-5.0 \mathrm{~A}-5.0 \mathrm{~A}-3.0 \mathrm{~A})=(-13.0 \mathrm{~A})\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)=-1.6 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m} .
$$

37. We use Eq. 29-20 $B=\mu_{0} i r / 2 \pi a^{2}$ for the B-field inside the wire $(r<a)$ and Eq. 29-17 $B=\mu_{0} i / 2 \pi r$ for that outside the wire $(r>a)$.
(a) At $r=0, B=0$.
(b) At $r=0.0100 \mathrm{~m}, B=\frac{\mu_{0} i r}{2 \pi a^{2}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(170 \mathrm{~A})(0.0100 \mathrm{~m})}{2 \pi(0.0200 \mathrm{~m})^{2}}=8.50 \times 10^{-4} \mathrm{~T}$.
(c) At $r=a=0.0200 \mathrm{~m}, B=\frac{\mu_{0} i r}{2 \pi a^{2}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(170 \mathrm{~A})(0.0200 \mathrm{~m})}{2 \pi(0.0200 \mathrm{~m})^{2}}=1.70 \times 10^{-3} \mathrm{~T}$.
(d) At $r=0.0400 \mathrm{~m}, B=\frac{\mu_{0} i}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(170 \mathrm{~A})}{2 \pi(0.0400 \mathrm{~m})}=8.50 \times 10^{-4} \mathrm{~T}$.
38. (a) The field at the center of the pipe (point C) is due to the wire alone, with a magnitude of

$$
B_{C}=\frac{\mu_{0} i_{\mathrm{wire}}}{2 \pi(3 R)}=\frac{\mu_{0} i_{\mathrm{wire}}}{6 \pi R} .
$$

For the wire we have $B_{P \text {, wire }}>B_{C, \text { wire }}$. Thus, for $B_{P}=B_{C}=B_{C \text {, wire }}, i_{\text {wire }}$ must be into the page:

$$
B_{P}=B_{P, \text { wire }}-B_{P, \text { pipe }}=\frac{\mu_{0} i_{\text {wire }}}{2 \pi R}-\frac{\mu_{0} i}{2 \pi(2 R)} .
$$

Setting $B_{C}=-B_{P}$ we obtain $i_{\text {wire }}=3 i / 8=3\left(8.00 \times 10^{-3} \mathrm{~A}\right) / 8=3.00 \times 10^{-3} \mathrm{~A}$.
(b) The direction is into the page.
39. For $r \leq a$,

$$
B(r)=\frac{\mu_{0} i_{\mathrm{enc}}}{2 \pi r}=\frac{\mu_{0}}{2 \pi r} \int_{0}^{r} J(r) 2 \pi r d r=\frac{\mu_{0}}{2 \pi} \int_{0}^{r} J_{0}\left(\frac{r}{a}\right) 2 \pi r d r=\frac{\mu_{0} J_{0} r^{2}}{3 a} .
$$

(a) At $r=0, B=0$.
(b) At $r=a / 2$, we have

$$
B(r)=\frac{\mu_{0} J_{0} r^{2}}{3 a}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(310 \mathrm{~A} / \mathrm{m}^{2}\right)\left(3.1 \times 10^{-3} \mathrm{~m} / 2\right)^{2}}{3\left(3.1 \times 10^{-3} \mathrm{~m}\right)}=1.0 \times 10^{-7} \mathrm{~T} .
$$

(c) At $r=a$,

$$
B(r=a)=\frac{\mu_{0} J_{0} a}{3}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(310 \mathrm{~A} / \mathrm{m}^{2}\right)\left(3.1 \times 10^{-3} \mathrm{~m}\right)}{3}=4.0 \times 10^{-7} \mathrm{~T} .
$$

40. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with the intent to sum them) of all 1200 loops to the field at, say, the center of the solenoid. This would make use of all the information given in the problem statement, but this is not the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal solenoid (which does not make use of the coil radius) is the preferred method:

$$
B=\mu_{0} i n=\mu_{0} i\left(\frac{N}{\ell}\right)
$$

where $i=3.60 \mathrm{~A}, \ell=0.950 \mathrm{~m}$ and $N=1200$. This yields $B=0.00571 \mathrm{~T}$.
41. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with the intent to sum them) of all 200 loops to the field at, say, the center of the solenoid. This would make use of all the information given in the problem statement, but this is not the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal solenoid (which does not make use of the coil diameter) is the preferred method:

$$
B=\mu_{0} i n=\mu_{0} i\left(\frac{N}{\ell}\right)
$$

where $i=0.30 \mathrm{~A}, \ell=0.25 \mathrm{~m}$ and $N=200$. This yields $B=0.0030 \mathrm{~T}$.
42. We find N, the number of turns of the solenoid, from the magnetic field $B=\mu_{0} i n=\mu_{o} i N / \ell: N=B \ell / \mu_{0} i$. Thus, the total length of wire used in making the solenoid is

$$
2 \pi r N=\frac{2 \pi r B \ell}{\mu_{0} i}=\frac{2 \pi\left(2.60 \times 10^{-2} \mathrm{~m}\right)\left(23.0 \times 10^{-3} \mathrm{~T}\right)(1.30 \mathrm{~m})}{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(18.0 \mathrm{~A})}=108 \mathrm{~m} .
$$

43. (a) We use Eq. 29-24. The inner radius is $r=15.0 \mathrm{~cm}$, so the field there is

$$
B=\frac{\mu_{0} i N}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.800 \mathrm{~A})(500)}{2 \pi(0.150 \mathrm{~m})}=5.33 \times 10^{-4} \mathrm{~T}
$$

(b) The outer radius is $r=20.0 \mathrm{~cm}$. The field there is

$$
B=\frac{\mu_{0} i N}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.800 \mathrm{~A})(500)}{2 \pi(0.200 \mathrm{~m})}=4.00 \times 10^{-4} \mathrm{~T} .
$$

44. The orbital radius for the electron is

$$
r=\frac{m v}{e B}=\frac{m v}{e \mu_{0} n i}
$$

which we solve for i :

$$
\begin{aligned}
i & =\frac{m v}{e \mu_{0} n r}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(0.0460)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(100 / 0.0100 \mathrm{~m})\left(2.30 \times 10^{-2} \mathrm{~m}\right)} \\
& =0.272 \mathrm{~A} .
\end{aligned}
$$

45. (a) We denote the \vec{B}-fields at point P on the axis due to the solenoid and the wire as \vec{B}_{s} and \vec{B}_{w}, respectively. Since \vec{B}_{s} is along the axis of the solenoid and \vec{B}_{w} is perpendicular to it, $\vec{B}_{s} \perp \vec{B}_{w}$ respectively. For the net field \vec{B} to be at 45° with the axis we then must have $B_{s}=B_{w}$. Thus,

$$
B_{s}=\mu_{0} i_{s} n=B_{w}=\frac{\mu_{0} i_{w}}{2 \pi d}
$$

which gives the separation d to point P on the axis:

$$
d=\frac{i_{w}}{2 \pi i_{s} n}=\frac{6.00 \mathrm{~A}}{2 \pi\left(20.0 \times 10^{-3} \mathrm{~A}\right)(10 \text { turns } / \mathrm{cm})}=4.77 \mathrm{~cm} .
$$

(b) The magnetic field strength is

$$
B=\sqrt{2} B_{s}=\sqrt{2}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(20.0 \times 10^{-3} \mathrm{~A}\right)(10 \text { turns } / 0.0100 \mathrm{~m})=3.55 \times 10^{-5} \mathrm{~T}
$$

46. As the problem states near the end, some idealizations are being made here to keep the calculation straightforward (but are slightly unrealistic). For circular motion (with speed v_{\perp} which represents the magnitude of the component of the velocity perpendicular to the magnetic field [the field is shown in Fig. 29-19]), the period is (see Eq. 28-17)

$$
T=2 \pi r / v_{\perp}=2 \pi m / e B
$$

Now, the time to travel the length of the solenoid is $t=L / v_{\|}$where $v_{\|}$is the component of the velocity in the direction of the field (along the coil axis) and is equal to $v \cos \theta$ where $\theta=30^{\circ}$. Using Eq. 29-23 ($B=\mu_{0} i n$) with $n=N / L$, we find the number of revolutions made is $t / T=1.6 \times 10^{6}$.
47. The magnitude of the magnetic dipole moment is given by $\mu=N i A$, where N is the number of turns, i is the current, and A is the area. We use $A=\pi R^{2}$, where R is the radius. Thus,

$$
\mu=(200)(0.30 \mathrm{~A}) \pi(0.050 \mathrm{~m})^{2}=0.47 \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

48. (a) We set $z=0$ in Eq. 29-26 (which is equivalent using to Eq. 29-10 multiplied by the number of loops). Thus, $B(0) \propto i / R$. Since case b has two loops,

$$
\frac{B_{b}}{B_{a}}=\frac{2 i / R_{b}}{i / R_{a}}=\frac{2 R_{a}}{R_{b}}=4.0
$$

(b) The ratio of their magnetic dipole moments is

$$
\frac{\mu_{b}}{\mu_{a}}=\frac{2 i A_{b}}{i A_{a}}=\frac{2 R_{b}^{2}}{R_{a}^{2}}=2\left(\frac{1}{2}\right)^{2}=\frac{1}{2}=0.50 .
$$

49. (a) The magnitude of the magnetic dipole moment is given by $\mu=N i A$, where N is the number of turns, i is the current, and A is the area. We use $A=\pi R^{2}$, where R is the radius. Thus,

$$
\mu=\operatorname{Ni} \pi R^{2}=(300)(4.0 \mathrm{~A}) \pi(0.025 \mathrm{~m})^{2}=2.4 \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 29-27:

$$
B=\frac{\mu_{0}}{2 \pi} \frac{\mu}{z^{3}} .
$$

We solve for z :

$$
z=\left(\frac{\mu_{0}}{2 \pi} \frac{\mu}{B}\right)^{1 / 3}=\left(\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(2.36 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)}{2 \pi\left(5.0 \times 10^{-6} \mathrm{~T}\right)}\right)^{1 / 3}=46 \mathrm{~cm}
$$

50. We use Eq. 29-26 and note that the contributions to \vec{B}_{P} from the two coils are the same. Thus,

$$
B_{P}=\frac{2 \mu_{0} i R^{2} N}{2\left[R^{2}+(R / 2)^{2}\right]^{3 / 2}}=\frac{8 \mu_{0} N i}{5 \sqrt{5} R}=\frac{8\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(200)(0.0122 \mathrm{~A})}{5 \sqrt{5}(0.25 \mathrm{~m})}=8.78 \times 10^{-6} \mathrm{~T}
$$

\vec{B}_{P} is in the positive x direction.
51. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle ($\phi=\pi \mathrm{rad}$), and use superposition to obtain the result:

$$
\begin{aligned}
B & =\frac{\mu_{0} i \pi}{4 \pi \alpha}+\frac{\mu_{0} i \pi}{4 \pi b}=\frac{\mu_{0} i}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.0562 \mathrm{~A})}{4}\left(\frac{1}{0.0572 \mathrm{~m}}+\frac{1}{0.0936 \mathrm{~m}}\right) \\
& =4.97 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

(b) By the right-hand rule, \vec{B} points into the paper at P (see Fig. 29-6(c)).
(c) The enclosed area is $A=\left(\pi a^{2}+\pi b^{2}\right) / 2$ which means the magnetic dipole moment has magnitude

$$
|\vec{\mu}|=\frac{\pi i}{2}\left(a^{2}+b^{2}\right)=\frac{\pi(0.0562 \mathrm{~A})}{2}\left[(0.0572 \mathrm{~m})^{2}+(0.0936 \mathrm{~m})^{2}\right]=1.06 \times 10^{-3} \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

(d) The direction of $\vec{\mu}$ is the same as the \vec{B} found in part (a): into the paper.
52. By imagining that each of the segments $b g$ and $c f$ (which are shown in the figure as having no current) actually has a pair of currents, where both currents are of the same magnitude (i) but opposite direction (so that the pair effectively cancels in the final sum), one can justify the superposition.
(a) The dipole moment of path abcdefgha is

$$
\begin{aligned}
\vec{\mu} & =\vec{\mu}_{b c f g b}+\vec{\mu}_{a b g h a}+\vec{\mu}_{c d e f c}=\left(i a^{2}\right)(\hat{\mathrm{j}}-\hat{\mathrm{i}}+\hat{\mathrm{i}})=i a^{2} \hat{\mathrm{j}} \\
& =(6.0 \mathrm{~A})(0.10 \mathrm{~m})^{2} \hat{\mathrm{j}}=\left(6.0 \times 10^{-2} \mathrm{~A} \cdot \mathrm{~m}^{2}\right) \hat{\mathrm{j}} .
\end{aligned}
$$

(b) Since both points are far from the cube we can use the dipole approximation. For $(x, y, z)=(0,5.0 \mathrm{~m}, 0)$

$$
\vec{B}(0,5.0 \mathrm{~m}, 0) \approx \frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{y^{3}}=\frac{\left(1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(6.0 \times 10^{-2} \mathrm{~m}^{2} \cdot \mathrm{~A}\right) \hat{\mathrm{j}}}{2 \pi(5.0 \mathrm{~m})^{3}}=\left(9.6 \times 10^{-11} \mathrm{~T}\right) \hat{\mathrm{j}}
$$

53. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively.

$$
B_{1}=\frac{\mu_{0} i_{1}}{2 R_{1}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(15 \mathrm{~A})}{2(0.12 \mathrm{~m})}=7.9 \times 10^{-5} \mathrm{~T} .
$$

(b) The torque has magnitude equal to

$$
\begin{aligned}
\tau & =\left|\vec{\mu}_{2} \times \vec{B}_{1}\right|=\mu_{2} B_{1} \sin 90^{\circ}=N_{2} i_{2} A_{2} B_{1}=\pi N_{2} i_{2} r_{2}^{2} B_{1} \\
& =\pi(50)(1.3 \mathrm{~A})\left(0.82 \times 10^{-2} \mathrm{~m}\right)^{2}\left(7.9 \times 10^{-5} \mathrm{~T}\right)=1.1 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

54. Using Eq. 29-26, we find that the net y-component field is

$$
B_{y}=\frac{\mu_{0} i_{1} R^{2}}{2\left(R^{2}+z_{1}^{2}\right)^{3 / 2}}-\frac{\mu_{0} i_{2} R^{2}}{2\left(R^{2}+z_{2}^{2}\right)^{3 / 2}},
$$

where $z_{1}{ }^{2}=L^{2}$ (see Fig. 29-68(a)) and $z_{2}{ }^{2}=y^{2}$ (because the central axis here is denoted y instead of z). The fact that there is a minus sign between the two terms, above, is due to the observation that the datum in Fig. 29-68(b) corresponding to $B_{y}=0$ would be impossible without it (physically, this means that one of the currents is clockwise and the other is counterclockwise).
(a) As $y \rightarrow \infty$, only the first term contributes and (with $B_{y}=7.2 \times 10^{-6} \mathrm{~T}$ given in this case) we can solve for i_{1}. We obtain $i_{1}=(45 / 16 \pi) \mathrm{A} \approx 0.90 \mathrm{~A}$.
(b) With loop 2 at $y=0.06 \mathrm{~m}$ (see Fig. 29-68(b)) we are able to determine i_{2} from

$$
\frac{\mu_{0} i_{1} R^{2}}{2\left(R^{2}+L^{2}\right)^{3 / 2}}=\frac{\mu_{0} i_{2} R^{2}}{2\left(R^{2}+y^{2}\right)^{3 / 2}} .
$$

We obtain $i_{2}=(117 \sqrt{13} / 50 \pi) \mathrm{A} \approx 2.7 \mathrm{~A}$.
55. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 29-7) and a semicircular arc (Eq. 29-9 with $\phi=\pi \mathrm{rad}$). The direction of \vec{B} is out of the page, as can be checked by referring to Fig. 29-6(c). The magnitude of \vec{B} at point a is therefore

$$
B_{a}=2\left(\frac{\mu_{0} i}{4 \pi R}\right)+\frac{\mu_{0} i \pi}{4 \pi R}=\frac{\mu_{0} i}{2 R}\left(\frac{1}{\pi}+\frac{1}{2}\right)
$$

With $i=10$ A and $R=0.0050 \mathrm{~m}$, we obtain $B_{a}=1.0 \times 10^{-3} \mathrm{~T}$.
(b) The direction of this field is out of the page, as Fig. 29-6(c) makes clear.
(c) The last remark in the problem statement implies that treating b as a point midway between two infinite wires is a good approximation. Thus, using Eq. 29-4,

$$
B_{b}=2\left(\frac{\mu_{0} i}{2 \pi R}\right)=8.0 \times 10^{-4} \mathrm{~T}
$$

(d) This field, too, points out of the page.
56. Using the Pythagorean theorem, we have

$$
B^{2}=B_{1}{ }^{2}+B_{2}{ }^{2}=\left(\frac{\mu_{0} i_{1} \phi}{4 \pi R}\right)^{2}+\left(\frac{\mu_{0} i_{2}}{2 \pi R}\right)^{2}
$$

which, when thought of as the equation for a line in a B^{2} versus $i_{2}{ }^{2}$ graph, allows us to identify the first term as the " y-intercept" $\left(1 \times 10^{-10}\right)$ and the part of the second term which multiplies $i_{2}{ }^{2}$ as the "slope" $\left(5 \times 10^{-10}\right)$. The latter observation leads to the conclusion that $R=8.9 \mathrm{~mm}$, and then our observation about the " y-intercept" determines the angle subtended by the arc: $\phi=1.8 \mathrm{rad}$.
57. We refer to the center of the circle (where we are evaluating \vec{B}) as C. Recalling the straight sections discussion in Sample Problem 29-1, we see that the current in the straight segments which are collinear with C do not contribute to the field there. Eq. 29-9 (with $\phi=\pi / 2 \mathrm{rad}$) and the right-hand rule indicates that the currents in the two arcs contribute

$$
\frac{\mu_{0} i(\pi / 2)}{4 \pi R}-\frac{\mu_{0} i(\pi / 2)}{4 \pi R}=0
$$

to the field at C. Thus, the non-zero contributions come from those straight-segments which are not collinear with C. There are two of these "semi-infinite" segments, one a vertical distance R above C and the other a horizontal distance R to the left of C. Both contribute fields pointing out of the page (see Fig. 29-6(c)). Since the magnitudes of the two contributions (governed by Eq. 29-7) add, then the result is

$$
B=2\left(\frac{\mu_{0} i}{4 \pi R}\right)=\frac{\mu_{0} i}{2 \pi R}
$$

exactly what one would expect from a single infinite straight wire (see Eq. 29-4). For such a wire to produce such a field (out of the page) with a leftward current requires that the point of evaluating the field be below the wire (again, see Fig. 29-6(c)).
58. We use Eq. 29-4 to relate the magnitudes of the magnetic fields B_{1} and B_{2} to the currents (i_{1} and i_{2}, respectively) in the two long wires. The angle of their net field is

$$
\theta=\tan ^{-1}\left(B_{2} / B_{1}\right)=\tan ^{-1}\left(i_{2} / i_{1}\right)=53.13^{\circ} .
$$

The accomplish the net field rotation described in the problem, we must achieve a final angle $\theta^{\prime}=53.13^{\circ}-20^{\circ}=33.13^{\circ}$. Thus, the final value for the current i_{1} must be $i_{2} / \tan \theta^{\prime}$ $=61.3 \mathrm{~mA}$.
59. Using the right-hand rule (and symmetry), we see that $\vec{B}_{\text {net }}$ points along what we will refer to as the y axis (passing through P), consisting of two equal magnetic field y components. Using Eq. 29-17,

$$
\left|\vec{B}_{\text {net }}\right|=2 \frac{\mu_{0} i}{2 \pi \mathrm{r}} \sin \theta
$$

where $i=4.00 \mathrm{~A}, r=r=\sqrt{d_{2}^{2}+d_{1}^{2} / 4}=5.00 \mathrm{~m}$, and

$$
\theta=\tan ^{-1}\left(\frac{d_{2}}{\frac{1}{2} d_{1}}\right)=53.1^{\circ} .
$$

Therefore, $\left|\vec{B}_{\text {net }}\right|=2.56 \times 10^{-7} \mathrm{~T}$.
60. The radial segments do not contribute to \vec{B} (at the center) and the arc-segments contribute according to Eq. 29-9 (with angle in radians). If $\hat{\mathrm{k}}$ designates the direction "out of the page" then

$$
\vec{B}=\frac{\mu_{0} i(\pi \mathrm{rad})}{4 \pi(4.00 \mathrm{~m})} \hat{\mathrm{k}}+\frac{\mu_{0} i\left(\frac{\pi}{2} \mathrm{rad}\right)}{4 \pi(2.00 \mathrm{~m})} \hat{\mathrm{k}}-\frac{\mu_{0} i\left(\frac{\pi}{2} \mathrm{rad}\right)}{4 \pi(2.00 \mathrm{~m})} \hat{\mathrm{k}}
$$

where $i=2.00 \mathrm{~A}$. This yields $\vec{B}=\left(1.57 \times 10^{-7} \mathrm{~T}\right) \hat{\mathrm{k}}$, or $|\vec{B}|=1.57 \times 10^{-7} \mathrm{~T}$.
61. (a) The magnetic field at a point within the hole is the sum of the fields due to two current distributions. The first is that of the solid cylinder obtained by filling the hole and has a current density that is the same as that in the original cylinder (with the hole). The second is the solid cylinder that fills the hole. It has a current density with the same magnitude as that of the original cylinder but is in the opposite direction. If these two situations are superposed the total current in the region of the hole is zero. Now, a solid cylinder carrying current i which is uniformly distributed over a cross section, produces a magnetic field with magnitude

$$
B=\frac{\mu_{0} i r}{2 \pi R^{2}}
$$

at a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For the cylinder of this problem the current density is

$$
J=\frac{i}{A}=\frac{i}{\pi\left(a^{2}-b^{2}\right)},
$$

where $A=\pi\left(a^{2}-b^{2}\right)$ is the cross-sectional area of the cylinder with the hole. The current in the cylinder without the hole is

$$
I_{1}=J A=\pi J a^{2}=\frac{i a^{2}}{a^{2}-b^{2}}
$$

and the magnetic field it produces at a point inside, a distance r_{1} from its axis, has magnitude

$$
B_{1}=\frac{\mu_{0} I_{1} r_{1}}{2 \pi a^{2}}=\frac{\mu_{0} i r_{1} a^{2}}{2 \pi a^{2}\left(a^{2}-b^{2}\right)}=\frac{\mu_{0} i r_{2}}{2 \pi\left(a^{2}-b^{2}\right)}
$$

The current in the cylinder that fills the hole is

$$
I_{2}=\pi J b^{2}=\frac{i b^{2}}{a^{2}-b^{2}}
$$

and the field it produces at a point inside, a distance r_{2} from the its axis, has magnitude

$$
B_{2}=\frac{\mu_{0} I_{2} r_{2}}{2 \pi b^{2}}=\frac{\mu_{0} i r_{2} b^{2}}{2 \pi b^{2}\left(a^{2}-b^{2}\right)}=\frac{\mu_{0} i r_{2}}{2 \pi\left(a^{2}-b^{2}\right)}
$$

At the center of the hole, this field is zero and the field there is exactly the same as it would be if the hole were filled. Place $r_{1}=d$ in the expression for B_{1} and obtain

$$
B=\frac{\mu_{0} i d}{2 \pi\left(a^{2}-b^{2}\right)}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(5.25 \mathrm{~A})(0.0200 \mathrm{~m})}{2 \pi\left[(0.0400 \mathrm{~m})^{2}-(0.0150 \mathrm{~m})^{2}\right]}=1.53 \times 10^{-5} \mathrm{~T}
$$

for the field at the center of the hole. The field points upward in the diagram if the current is out of the page.
(b) If $b=0$ the formula for the field becomes

$$
B=\frac{\mu_{0} i d}{2 \pi a^{2}} .
$$

This correctly gives the field of a solid cylinder carrying a uniform current i, at a point inside the cylinder a distance d from the axis. If $d=0$ the formula gives $B=0$. This is correct for the field on the axis of a cylindrical shell carrying a uniform current.
(c) Consider a rectangular path with two long sides (side 1 and 2, each with length L) and two short sides (each of length less than b). If side 1 is directly along the axis of the hole, then side 2 would be also parallel to it and also in the hole. To ensure that the short sides do not contribute significantly to the integral in Ampere's law, we might wish to make L very long (perhaps longer than the length of the cylinder), or we might appeal to an argument regarding the angle between \vec{B} and the short sides (which is 90° at the axis of the hole). In any case, the integral in Ampere's law reduces to

$$
\begin{aligned}
\oint_{\text {rectangle }} \vec{B} \cdot d \vec{s} & =\mu_{0} i_{\text {enclosed }} \\
\int_{\text {side1 }} \vec{B} \cdot d \vec{s}+\int_{\text {side } 2} \vec{B} \cdot d \vec{s} & =\mu_{0} i_{\text {inhole }} \\
\left(B_{\text {side1 } 1}-B_{\text {side2 } 2}\right) L & =0
\end{aligned}
$$

where $B_{\text {side } 1}$ is the field along the axis found in part (a). This shows that the field at offaxis points (where $B_{\text {side } 2}$ is evaluated) is the same as the field at the center of the hole; therefore, the field in the hole is uniform.
62. We note that when there is no y-component of magnetic field from wire 1 (which, by the right-hand rule, relates to when wire 1 is at $90^{\circ}=\pi / 2 \mathrm{rad}$), the total y-component of magnetic field is zero (see Fig. 29-76(c)). This means wire \#2 is either at $+\pi / 2 \mathrm{rad}$ or $-\pi / 2 \mathrm{rad}$.
(a) We now make the assumption that wire $\# 2$ must be at $-\pi / 2 \mathrm{rad}\left(-90^{\circ}\right.$, the bottom of the cylinder) since it would pose an obstacle for the motion of wire \#1 (which is needed to make these graphs) if it were anywhere in the top semicircle.
(b) Looking at the $\theta_{1}=90^{\circ}$ datum in Fig. 29-76(b)) - where there is a maximum in $B_{\text {net } x}$ (equal to $+6 \mu \mathrm{~T}$) - we are led to conclude that $B_{1 x}=6.0 \mu \mathrm{~T}-2.0 \mu \mathrm{~T}=+4.0 \mu \mathrm{~T}$ in that situation. Using Eq. 29-4, we obtain $i_{1}=B_{1 x} 2 \pi R / \mu_{\mathrm{o}}=4.0 \mathrm{~A}$.
(c) The fact that Fig. 29-76(b) increases as θ_{1} progresses from 0 to 90° implies that wire 1 's current is out of the page, and this is consistent with the cancellation of $B_{\text {net } y}$ at $\theta_{1}=$ 90°, noted earlier (with regard to Fig. 29-76(c)).
(d) Referring now to Fig. 29-76(b) we note that there is no x-component of magnetic field from wire 1 when $\theta_{1}=0$, so that plot tells us that $B_{2 x}=+2.0 \mu \mathrm{~T}$. Using Eq. 29-4, we have $i_{2}=B_{2 x} 2 \pi R / \mu_{\mathrm{o}}=2.0 \mathrm{~A}$ for the magnitudes of the currents.
(e) We can conclude (by the right-hand rule) that wire 2's current is into the page.
63. Using Eq. 29-20 and Eq. 29-17, we have

$$
\left|\vec{B}_{1}\right|=\left(\frac{\mu_{0} i}{2 \pi R^{2}}\right) r_{1} \quad\left|\vec{B}_{2}\right|=\frac{\mu_{0} i}{2 \pi r_{2}}
$$

where $r_{1}=0.0040 \mathrm{~m},\left|\vec{B}_{1}\right|=2.8 \times 10^{-4} \mathrm{~T}, r_{2}=0.010 \mathrm{~m}$ and $\left|\vec{B}_{2}\right|=2.0 \times 10^{-4} \mathrm{~T}$. Point 2 is known to be external to the wire since $\left|\vec{B}_{2}\right|<\left|\vec{B}_{1}\right|$. From the second equation, we find $i=$ 10 A . Plugging this into the first equation yields $R=5.3 \times 10^{-3} \mathrm{~m}$.
64. Eq. 29-1 is maximized (with respect to angle) by setting $\theta=90^{\circ}$ ($=\pi / 2 \mathrm{rad}$). Its value in this case is $d B_{\max }=\mu_{\mathrm{o}} i d s / 4 \pi R^{2}$. From Fig. 29-77(b), we have $B_{\max }=60 \times 10^{-12} \mathrm{~T}$. We can relate this $B_{\max }$ to our $d B_{\max }$ by setting " $d s^{\prime \prime}$ equal to $1 \times 10^{-6} \mathrm{~m}$ and $R=0.025 \mathrm{~m}$. This allows us to solve for the current: $i=0.375$ A. Plugging this into Eq. 29-4 (for the infinite wire) gives $B_{\infty}=3.0 \mu \mathrm{~T}$.
65. Eq. 29-4 gives

$$
i=\frac{2 \pi R B}{\mu_{0}}=\frac{2 \pi(0.880 \mathrm{~m})\left(7.30 \times 10^{-6} \mathrm{~T}\right)}{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}}=32.1 \mathrm{~A} .
$$

66. (a) By the right-hand rule, the magnetic field \vec{B}_{1} (evaluated at a) produced by wire 1 (the wire at bottom left) is at $\phi=150^{\circ}$ (measured counterclockwise from the $+x$ axis, in the $x y$ plane), and the field produced by wire 2 (the wire at bottom right) is at $\phi=210^{\circ}$. By symmetry $\left(\vec{B}_{1}=\vec{B}_{2}\right)$ we observe that only the x-components survive, yielding

$$
\vec{B}_{1}+\vec{B}_{2}=\left(2 \frac{\mu_{0} i}{2 \pi \ell} \cos 150^{\circ}\right) \hat{\mathrm{i}}=\left(-3.46 \times 10^{-5} \mathrm{~T}\right) \hat{\mathrm{i}}
$$

where $i=10 \mathrm{~A}, \ell=0.10 \mathrm{~m}$, and Eq. 29-4 has been used. To cancel this, wire b must carry current into the page (that is, the $-\hat{\mathrm{k}}$ direction) of value

$$
i_{b}=\left(3.46 \times 10^{-5}\right) \frac{2 \pi r}{\mu_{0}}=15 \mathrm{~A}
$$

where $r=\sqrt{3} \ell / 2=0.087 \mathrm{~m}$ and Eq. 29-4 has again been used.
(b) As stated above, to cancel this, wire b must carry current into the page (that is, the $-z$ direction)
67. (a) The field in this region is entirely due to the long wire (with, presumably, negligible thickness). Using Eq. 29-17,

$$
|\vec{B}|=\frac{\mu_{0} i_{w}}{2 \pi r}=4.8 \times 10^{-3} \mathrm{~T}
$$

where $i_{w}=24 \mathrm{~A}$ and $r=0.0010 \mathrm{~m}$.
(b) Now the field consists of two contributions (which are anti-parallel) - from the wire (Eq. 29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area):

$$
|\vec{B}|=\frac{\mu_{0} i_{w}}{2 \pi r}-\frac{\mu_{0} i_{\text {enc }}}{2 \pi r}=\frac{\mu_{0} i_{w}}{2 \pi r}-\frac{\mu_{0} i_{c}}{2 \pi r}\left(\frac{\pi r^{2}-\pi R_{i}^{2}}{\pi R_{0}^{2}-\pi R_{i}^{2}}\right)
$$

where $r=0.0030 \mathrm{~m}, R_{i}=0.0020 \mathrm{~m}, R_{o}=0.0040 \mathrm{~m}$ and $i_{c}=24 \mathrm{~A}$. Thus, we find $|\vec{B}|=9.3 \times 10^{-4} \mathrm{~T}$.
(c) Now, in the external region, the individual fields from the two conductors cancel completely (since $i_{c}=i_{w}$): $\vec{B}=0$.
68. (a) We designate the wire along $y=r_{A}=0.100 \mathrm{~m}$ wire A and the wire along $y=r_{B}=$ 0.050 m wire B. Using Eq. 29-4, we have

$$
\vec{B}_{\mathrm{net}}=\vec{B}_{A}+\vec{B}_{B}=-\frac{\mu_{0} i_{A}}{2 \pi r_{A}} \hat{\mathrm{k}}-\frac{\mu_{0} i_{B}}{2 \pi r_{B}} \hat{\mathrm{k}}=\left(-52.0 \times 10^{-6} \mathrm{~T}\right) \hat{\mathrm{k}}
$$

(b) This will occur for some value $r_{B}<y<r_{A}$ such that

$$
\frac{\mu_{0} i_{A}}{2 \pi\left(r_{A}-y\right)}=\frac{\mu_{0} i_{B}}{2 \pi\left(y-r_{B}\right)} .
$$

Solving, we find $y=13 / 160 \approx 0.0813 \mathrm{~m}$.
(c) We eliminate the $y<r_{B}$ possibility due to wire B carrying the larger current. We expect a solution in the region $y>r_{A}$ where

$$
\frac{\mu_{0} i_{A}}{2 \pi\left(y-r_{A}\right)}=\frac{\mu_{0} i_{B}}{2 \pi\left(y-r_{B}\right)} .
$$

Solving, we find $y=7 / 40 \approx 0.0175 \mathrm{~m}$.
69. (a) As illustrated in Sample Problem 29-1, the radial segments do not contribute to \vec{B}_{P} and the arc-segments contribute according to Eq. 29-9 (with angle in radians). If $\hat{\mathrm{k}}$ designates the direction "out of the page" then

$$
\vec{B}=\frac{\mu_{0}(0.40 \mathrm{~A})(\pi \mathrm{rad})}{4 \pi(0.050 \mathrm{~m})} \hat{\mathrm{k}}-\frac{\mu_{0}(0.80 \mathrm{~A})\left(\frac{2 \pi}{3} \mathrm{rad}\right)}{4 \pi(0.040 \mathrm{~m})} \hat{\mathrm{k}}
$$

which yields $\vec{B}=-1.7 \times 10^{-6} \hat{\mathrm{k}} \mathrm{T}$, or $|\vec{B}|=1.7 \times 10^{-6} \mathrm{~T}$.
(b) The direction is $-\hat{\mathrm{k}}$, or into the page.
(c) If the direction of i_{1} is reversed, we then have

$$
\vec{B}=-\frac{\mu_{0}(0.40 \mathrm{~A})(\pi \mathrm{rad})}{4 \pi(0.050 \mathrm{~m})} \hat{\mathrm{k}}-\frac{\mu_{0}(0.80 \mathrm{~A})\left(\frac{2 \pi}{3} \mathrm{rad}\right)}{4 \pi(0.040 \mathrm{~m})} \hat{\mathrm{k}}
$$

which yields $\vec{B}=\left(-6.7 \times 10^{-6} \mathrm{~T}\right) \hat{\mathrm{k}}$, or $|\vec{B}|=6.7 \times 10^{-6} \mathrm{~T}$.
(d) The direction is $-\hat{\mathrm{k}}$, or into the page.
70. We note that the distance from each wire to P is $r=d / \sqrt{2}=0.071 \mathrm{~m}$. In both parts, the current is $i=100 \mathrm{~A}$.
(a) With the currents parallel, application of the right-hand rule (to determine each of their contributions to the field at P) reveals that the vertical components cancel and the horizontal components add, yielding the result:

$$
B=2\left(\frac{\mu_{0} i}{2 \pi r}\right) \cos 45.0^{\circ}=4.00 \times 10^{-4} \mathrm{~T}
$$

and directed in the $-x$ direction. In unit-vector notation, we have $\vec{B}=\left(-4.00 \times 10^{-4} \mathrm{~T}\right) \hat{\mathrm{i}}$.
(b) Now, with the currents anti-parallel, application of the right-hand rule shows that the horizontal components cancel and the vertical components add. Thus,

$$
B=2\left(\frac{\mu_{0} i}{2 \pi r}\right) \sin 45.0^{\circ}=4.00 \times 10^{-4} \mathrm{~T}
$$

and directed in the $+y$ direction. In unit-vector notation, we have $\vec{B}=\left(4.00 \times 10^{-4} \mathrm{~T}\right) \hat{\mathrm{j}}$.
71. Since the radius is $R=0.0013 \mathrm{~m}$, then the $i=50 \mathrm{~A}$ produces

$$
B=\frac{\mu_{0} i}{2 \pi R}=0.0077 \mathrm{~T}
$$

at the edge of the wire. The three equations, Eq. 29-4, Eq. 29-17 and Eq. 29-20, agree at this point.
72. The area enclosed by the loop L is $A=\frac{1}{2}(4 d)(3 d)=6 d^{2}$. Thus

$$
\oint_{c} \vec{B} \cdot d \vec{s}=\mu_{0} i=\mu_{0} j A=\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(15 \mathrm{~A} / \mathrm{m}^{2}\right)(6)(0.20 \mathrm{~m})^{2}=4.5 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} .
$$

73. (a) With cylindrical symmetry, we have, external to the conductors,

$$
|\vec{B}|=\frac{\mu_{0} i_{\mathrm{enc}}}{2 \pi r}
$$

which produces $i_{\text {enc }}=25 \mathrm{~mA}$ from the given information. Therefore, the thin wire must carry 5.0 mA .
(b) The direction is downward, opposite to the 30 mA carried by the thin conducting surface.
74. (a) All wires carry parallel currents and attract each other; thus, the "top" wire is pulled downward by the other two:

$$
|\vec{F}|=\frac{\mu_{0} L(5.0 \mathrm{~A})(3.2 \mathrm{~A})}{2 \pi(0.10 \mathrm{~m})}+\frac{\mu_{0} L(5.0 \mathrm{~A})(5.0 \mathrm{~A})}{2 \pi(0.20 \mathrm{~m})}
$$

where $L=3.0 \mathrm{~m}$. Thus, $|\vec{F}|=1.7 \times 10^{-4} \mathrm{~N}$.
(b) Now, the "top" wire is pushed upward by the center wire and pulled downward by the bottom wire:

$$
|\vec{F}|=\frac{\mu_{0} L(5.0 \mathrm{~A})(3.2 \mathrm{~A})}{2 \pi(0.10 \mathrm{~m})}-\frac{\mu_{0} L(5.0 \mathrm{~A})(5.0 \mathrm{~A})}{2 \pi(0.20 \mathrm{~m})}=2.1 \times 10^{-5} \mathrm{~N}
$$

75. We use $B(x, y, z)=\left(\mu_{0} / 4 \pi\right) i \Delta \vec{s} \times \vec{r} / r^{3}$, where $\Delta \vec{s}=\Delta \hat{j}$ and $\vec{r}=x \hat{i}+y \hat{\mathrm{j}}+z \vec{k}$. Thus,

$$
\vec{B}(x, y, z)=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{i \Delta \hat{\mathrm{j}} \times(x \vec{i}+y \hat{\mathrm{j}}+z \vec{k})}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{\mu_{0} i \Delta s(z \hat{\mathrm{i}}-x \hat{\mathrm{k}})}{4 \pi\left(x^{2}+y^{s}+z^{2}\right)^{3 / 2}} .
$$

(a) The field on the z axis (at $z=5.0 \mathrm{~m}$) is

$$
\vec{B}(0,0,5.0 \mathrm{~m})=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(2.0 \mathrm{~A})\left(3.0 \times 10^{-2} \mathrm{~m}\right)(5.0 \mathrm{~m}) \hat{\mathrm{i}}}{4 \pi\left(0^{2}+0^{2}+(5.0 \mathrm{~m})^{2}\right)^{3 / 2}}=\left(2.4 \times 10^{-10} \mathrm{~T}\right) \hat{\mathrm{i}}
$$

(b) $\vec{B}(0,6.0 \mathrm{~m}, 0)$, since $x=z=0$.
(c) The field in the $x y$ plane, at $(x, y)=(7,7)$, is

$$
\vec{B}(7.0 \mathrm{~m}, 7.0 \mathrm{~m}, 0)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(2.0 \mathrm{~A})\left(3.0 \times 10^{-2} \mathrm{~m}\right)(-7.0 \mathrm{~m}) \hat{\mathrm{k}}}{4 \pi\left((7.0 \mathrm{~m})^{2}+(7.0 \mathrm{~m})^{2}+0^{2}\right)^{3 / 2}}=\left(-4.3 \times 10^{-11} \mathrm{~T}\right) \hat{\mathrm{k}} .
$$

(d) The field in the $x y$ plane, at $(x, y)=(-3,-4)$, is

$$
\vec{B}(-3.0 \mathrm{~m},-4.0 \mathrm{~m}, 0)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(2.0 \mathrm{~A})\left(3.0 \times 10^{-2} \mathrm{~m}\right)(3.0 \mathrm{~m}) \hat{\mathrm{k}}}{4 \pi\left((-3.0 \mathrm{~m})^{2}+(-4.0 \mathrm{~m})^{2}+0^{2}\right)^{3 / 2}}=\left(1.4 \times 10^{-10} \mathrm{~T}\right) \hat{\mathrm{k}} .
$$

76. (a) The radial segments do not contribute to \vec{B}_{P} and the arc-segments contribute according to Eq. 29-9 (with angle in radians). If \hat{k} designates the direction "out of the page" then

$$
\vec{B}_{P}=\frac{\mu_{0} i\left(\frac{7 \pi}{4} \mathrm{rad}\right)}{4 \pi(4.00 \mathrm{~m})} \hat{\mathrm{k}}-\frac{\mu_{0} i\left(\frac{7 \pi}{4} \mathrm{rad}\right)}{4 \pi(2.00 \mathrm{~m})} \hat{\mathrm{k}}
$$

where $i=0.200 \mathrm{~A}$. This yields $\vec{B}=-2.75 \times 10^{-8} \hat{\mathrm{k} ~ T}$, or $|\vec{B}|=2.75 \times 10^{-8} \mathrm{~T}$.
(b) The direction is $-\hat{\mathrm{k}}$, or into the page.
77. The contribution to $\vec{B}_{\text {net }}$ from the first wire is (using Eq. 29-4)

$$
\vec{B}_{1}=\frac{\mu_{0}(30 \mathrm{~A})}{2 \pi(2.0 \mathrm{~m})} \hat{\mathrm{k}}=\left(3.0 \times 10^{-6} \mathrm{~T}\right) \hat{\mathrm{k}}
$$

The distance from the second wire to the point where we are evaluating $\vec{B}_{\text {net }}$ is $4 \mathrm{~m}-2 \mathrm{~m}$ $=2 \mathrm{~m}$. Thus,

$$
\vec{B}_{2}=\frac{\mu_{0}(40 \mathrm{~A})}{2 \pi(2 \mathrm{~m})} \hat{\mathrm{i}}=\left(4.0 \times 10^{-6} \mathrm{~T}\right) \hat{\mathrm{i}}
$$

and consequently is perpendicular to \vec{B}_{1}. The magnitude of $\mid \vec{B}$ net \mid is therefore $\sqrt{3.0^{2}+4.0^{2}}=5.0 \mu \mathrm{~T}$.
78. Using Eq. 29-20, $|\vec{B}|=\left(\frac{\mu_{0} i}{2 \pi R^{2}}\right) r$, we find that $r=0.00128 \mathrm{~m}$ gives the desired field value.
79. The points must be along a line parallel to the wire and a distance r from it, where r satisfies $B_{\text {wire }}=\frac{\mu_{0} i}{2 \pi r}=B_{\text {ext }}$, or

$$
r=\frac{\mu_{0} i}{2 \pi B_{\text {ext }}}=\frac{\left(1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(100 \mathrm{~A})}{2 \pi\left(5.0 \times 10^{-3} \mathrm{~T}\right)}=4.0 \times 10^{-3} \mathrm{~m}
$$

80. (a) The magnitude of the magnetic field on the axis of a circular loop, a distance z from the loop center, is given by Eq. 29-26:

$$
B=\frac{N \mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{3 / 2}},
$$

where R is the radius of the loop, N is the number of turns, and i is the current. Both of the loops in the problem have the same radius, the same number of turns, and carry the same current. The currents are in the same sense, and the fields they produce are in the same direction in the region between them. We place the origin at the center of the lefthand loop and let x be the coordinate of a point on the axis between the loops. To calculate the field of the left-hand loop, we set $z=x$ in the equation above. The chosen point on the axis is a distance $s-x$ from the center of the right-hand loop. To calculate the field it produces, we put $z=s-x$ in the equation above. The total field at the point is therefore

$$
B=\frac{N \mu_{0} i R^{2}}{2}\left[\frac{1}{\left(R^{2}+x^{2}\right)^{3 / 2}}+\frac{1}{\left(R^{2}+x^{2}-2 s x+s^{2}\right)^{3 / 2}}\right] .
$$

Its derivative with respect to x is

$$
\frac{d B}{d x}=-\frac{N \mu_{0} i R^{2}}{2}\left[\frac{3 x}{\left(R^{2}+x^{2}\right)^{5 / 2}}+\frac{3(x-s)}{\left(R^{2}+x^{2}-2 s x+s^{2}\right)^{5 / 2}}\right] .
$$

When this is evaluated for $x=s / 2$ (the midpoint between the loops) the result is

$$
\left.\frac{d B}{d x}\right|_{s / 2}=-\frac{N \mu_{0} i R^{2}}{2}\left[\frac{3 s / 2}{\left(R^{2}+s^{2} / 4\right)^{5 / 2}}-\frac{3 s / 2}{\left(R^{2}+s^{2} / 4-s^{2}+s^{2}\right)^{5 / 2}}\right]=0
$$

independent of the value of s.
(b) The second derivative is

$$
\begin{aligned}
\frac{d^{2} B}{d x^{2}}= & \frac{N \mu_{0} i R^{2}}{2}\left[-\frac{3}{\left(R^{2}+x^{2}\right)^{5 / 2}}+\frac{15 x^{2}}{\left(R^{2}+x^{2}\right)^{7 / 2}}\right. \\
& \left.-\frac{3}{\left(R^{2}+x^{2}-2 s x+s^{2}\right)^{5 / 2}}+\frac{15(x-s)^{2}}{\left(R^{2}+x^{2}-2 s x+s^{2}\right)^{7 / 2}}\right]
\end{aligned}
$$

At $x=s / 2$,

$$
\begin{aligned}
\left.\frac{d^{2} B}{d x^{2}}\right|_{s / 2} & =\frac{N \mu_{0} i R^{2}}{2}\left[-\frac{6}{\left(R^{2}+s^{2} / 4\right)^{5 / 2}}+\frac{30 s^{2} / 4}{\left(R^{2}+s^{2} / 4\right)^{7 / 2}}\right] \\
& =\frac{N \mu_{0} R^{2}}{2}\left[\frac{-6\left(R^{2}+s^{2} / 4\right)+30 s^{2} / 4}{\left(R^{2}+s^{2} / 4\right)^{7 / 2}}\right]=3 N \mu_{0} i R^{2} \frac{s^{2}-R^{2}}{\left(R^{2}+s^{2} / 4\right)^{7 / 2}} .
\end{aligned}
$$

Clearly, this is zero if $s=R$.
81. The center of a square is a distance $R=a / 2$ from the nearest side (each side being of length $L=a$). There are four sides contributing to the field at the center. The result is

$$
B_{\text {center }}=4\left(\frac{\mu_{0} i}{2 \pi(a / 2)}\right)\left(\frac{a}{\sqrt{a^{2}+4(a / 2)^{2}}}\right)=\frac{2 \sqrt{2} \mu_{0} i}{\pi a} .
$$

82. We refer to the side of length L as the long side and that of length W as the short side. The center is a distance $W / 2$ from the midpoint of each long side, and is a distance $L / 2$ from the midpoint of each short side. There are two of each type of side, so the result of problem 11 leads to

$$
B=2 \frac{\mu_{0} i}{2 \pi(W / 2)} \frac{L}{\sqrt{L^{2}+4(W / 2)^{2}}}+2 \frac{\mu_{0} i}{2 \pi(L / 2)} \frac{W}{\sqrt{W^{2}+4(L / 2)^{2}}} .
$$

The final form of this expression, shown in the problem statement, derives from finding the common denominator of the above result and adding them, while noting that

$$
\frac{L^{2}+W^{2}}{\sqrt{W^{2}+L^{2}}}=\sqrt{W^{2}+L^{2}} .
$$

83. We imagine the square loop in the $y z$ plane (with its center at the origin) and the evaluation point for the field being along the x axis (as suggested by the notation in the problem). The origin is a distance $a / 2$ from each side of the square loop, so the distance from the evaluation point to each side of the square is, by the Pythagorean theorem,

$$
R=\sqrt{(a / 2)^{2}+x^{2}}=\frac{1}{2} \sqrt{a^{2}+4 x^{2}} .
$$

Only the x components of the fields (contributed by each side) will contribute to the final result (other components cancel in pairs), so a trigonometric factor of

$$
\frac{a / 2}{R}=\frac{a}{\sqrt{a^{2}+4 x^{2}}}
$$

multiplies the expression of the field given by the result of problem 11 (for each side of length $L=a$). Since there are four sides, we find

$$
B(x)=4\left(\frac{\mu_{0} i}{2 \pi R}\right)\left(\frac{a}{\sqrt{a^{2}+4 R^{2}}}\right)\left(\frac{a}{\sqrt{a^{2}+4 x^{2}}}\right)=\frac{4 \mu_{0} i a^{2}}{2 \pi\left(\frac{1}{2}\right)\left(\sqrt{a^{2}+4 x^{2}}\right)^{2} \sqrt{a^{2}+4(a / 2)^{2}+4 x^{2}}}
$$

which simplifies to the desired result. It is straightforward to set $x=0$ and see that this reduces to the expression found in problem 12 (noting that $\frac{4}{\sqrt{2}}=2 \sqrt{2}$).
84. Using the result of problem 12 and Eq. 29-10, we wish to show that

$$
\frac{2 \sqrt{2} \mu_{0} i}{\pi a}>\frac{\mu_{0} i}{2 R}, \quad \text { or } \quad \frac{4 \sqrt{2}}{\pi a}>\frac{1}{R}
$$

but to do this we must relate the parameters a and R. If both wires have the same length L then the geometrical relationships $4 a=L$ and $2 \pi R=L$ provide the necessary connection:

$$
4 a=2 \pi R \Rightarrow a=\frac{\pi R}{2}
$$

Thus, our proof consists of the observation that

$$
\frac{4 \sqrt{2}}{\pi a}=\frac{8 \sqrt{2}}{\pi^{2} R}>\frac{1}{R}
$$

as one can check numerically (that $8 \sqrt{2} / \pi^{2}>1$).
85. The two small wire-segments, each of length $a / 4$, shown in Fig. 29-83 nearest to point P, are labeled 1 and 8 in the figure below.

Let $-\hat{\mathrm{k}}$ be a unit vector pointing into the page. We use the results of problem 19 to calculate $B_{P 1}$ through $B_{P 8}$:

$$
\begin{aligned}
& B_{P 1}=B_{P 8}=\frac{\sqrt{2} \mu_{0} i}{8 \pi(a / 4)}=\frac{\sqrt{2} \mu_{0} i}{2 \pi a}, \\
& B_{P 4}=B_{P 5}=\frac{\sqrt{2} \mu_{0} i}{8 \pi(3 a / 4)}=\frac{\sqrt{2} \mu_{0} i}{6 \pi a}, \\
& B_{P 2}=B_{P 7}=\frac{\mu_{0} i}{4 \pi(a / 4)} \cdot \frac{3 a / 4}{\left[(3 a / 4)^{2}+(a / 4)^{2}\right]^{1 / 2}}=\frac{3 \mu_{0} i}{\sqrt{10} \pi a},
\end{aligned}
$$

and

$$
B_{P 3}=B_{P 6}=\frac{\mu_{0} i}{4 \pi(3 a / 4)} \cdot \frac{a / 4}{\left[(a / 4)^{2}+(3 a / 4)^{2}\right]^{1 / 2}}=\frac{\mu_{0} i}{3 \sqrt{10} \pi a} .
$$

Finally,

$$
\begin{aligned}
\vec{B}_{P} & =\sum_{n=1}^{8} B_{P n}(-\hat{\mathrm{k}})=2 \frac{\mu_{0} i}{\pi a}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{6}+\frac{3}{\sqrt{10}}+\frac{1}{3 \sqrt{10}}\right)(-\hat{\mathrm{k}}) \\
& =\frac{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(10 \mathrm{~A})}{\pi\left(8.0 \times 10^{-2} \mathrm{~m}\right)}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{6}+\frac{3}{\sqrt{10}}+\frac{1}{3 \sqrt{10}}\right)(-\hat{\mathrm{k}}) \\
& =\left(2.0 \times 10^{-4} \mathrm{~T}\right)(-\hat{\mathrm{k}}) .
\end{aligned}
$$

86. (a) Consider a segment of the projectile between y and $y+d y$. We use Eq. 29-12 to find the magnetic force on the segment, and Eq. 29-7 for the magnetic field of each semiinfinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in rail 1 is in the $+\hat{\mathrm{i}}$ direction, and the current in rail 2 is in the $-\hat{\mathrm{i}}$ direction. The field (in the region between the wires) set up by wire 1 is into the paper (the $-\hat{\mathrm{k}}$ direction) and that set up by wire 2 is also into the paper. The force element (a function of y) acting on the segment of the projectile (in which the current flows in the $-\hat{\mathrm{j}}$ direction) is given below. The coordinate origin is at the bottom of the projectile.

$$
d \vec{F}=d \vec{F}_{1}+d \vec{F}_{2}=i d y(-\hat{\mathrm{j}}) \times \vec{B}_{1}+d y(-\hat{\mathrm{j}}) \times \vec{B}_{2}=i\left[B_{1}+B_{2}\right] \hat{\mathrm{i}} d y=i\left[\frac{\mu_{0} i}{4 \pi(2 R+w-y)}+\frac{\mu_{0} i}{4 \pi y}\right] \hat{\mathrm{i}} d y .
$$

Thus, the force on the projectile is

$$
\vec{F}=\int d \vec{F}=\frac{i^{2} \mu_{0}}{4 \pi} \int_{R}^{R+w}\left(\frac{1}{2 R+w-y}+\frac{1}{y}\right) d y \hat{\mathrm{i}}=\frac{\mu_{0} i^{2}}{2 \pi} \ln \left(1+\frac{w}{R}\right) \hat{\mathrm{i}} .
$$

(b) Using the work-energy theorem, we have

$$
\Delta K=\frac{1}{2} m v_{f}^{2}=W_{\mathrm{ext}}=\int \vec{F} \cdot d \vec{s}=F L
$$

Thus, the final speed of the projectile is

$$
\begin{aligned}
v_{f} & =\left(\frac{2 W_{\text {ext }}}{m}\right)^{1 / 2}=\left[\frac{2}{m} \frac{\mu_{0} i^{2}}{2 \pi} \ln \left(1+\frac{w}{R}\right) L\right]^{1 / 2} \\
& =\left[\frac{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(450 \times 10^{3} \mathrm{~A}\right)^{2} \ln (1+1.2 \mathrm{~cm} / 6.7 \mathrm{~cm})(4.0 \mathrm{~m})}{2 \pi\left(10 \times 10^{-3} \mathrm{~kg}\right)}\right]^{1 / 2} \\
& =2.3 \times 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

87. We take the current $(i=50 \mathrm{~A})$ to flow in the $+x$ direction, and the electron to be at a point P which is $r=0.050 \mathrm{~m}$ above the wire (where "up" is the $+y$ direction). Thus, the field produced by the current points in the $+z$ direction at P. Then, combining Eq. 29-4 with Eq. 28-2, we obtain $\vec{F}_{e}=\left(-e \mu_{0} i / 2 \pi r\right)(\vec{v} \times \hat{\mathrm{k}})$.
(a) The electron is moving down: $\vec{v}=-\hat{\mathrm{j}}$ (where $v=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ is the speed) so

$$
\vec{F}_{e}=\frac{-e \mu_{0} i v}{2 \pi r}(-\hat{\mathrm{i}})=\left(3.2 \times 10^{-16} \mathrm{~N}\right) \hat{\mathrm{i}}
$$

or $\left|\vec{F}_{e}\right|=3.2 \times 10^{-16} \mathrm{~N}$.
(b) In this case, the electron is in the same direction as the current: $\vec{v}=v \hat{\dot{i}}$ so

$$
\vec{F}_{e}=\frac{-e \mu_{0} i v}{2 \pi r}(-\hat{\mathrm{j}})=\left(3.2 \times 10^{-16} \mathrm{~N}\right) \hat{\mathrm{j}},
$$

or $\left|\vec{F}_{e}\right|=3.2 \times 10^{-16} \mathrm{~N}$.
(c) Now, $\vec{v}= \pm \hat{\mathrm{k}}$ so $\vec{F}_{e} \propto \hat{\mathrm{k}} \times \hat{\mathrm{k}}=0$.
88. Eq. 29-17 applies for each wire, with $r=\sqrt{R^{2}+(d / 2)^{2}}$ (by the Pythagorean theorem). The vertical components of the fields cancel, and the two (identical) horizontal components add to yield the final result

$$
B=2\left(\frac{\mu_{0} i}{2 \pi r}\right)\left(\frac{d / 2}{r}\right)=\frac{\mu_{0} i d}{2 \pi\left(R^{2}+(d / 2)^{2}\right)}=1.25 \times 10^{-6} \mathrm{~T},
$$

where $(d / 2) / r$ is a trigonometric factor to select the horizontal component. It is clear that this is equivalent to the expression in the problem statement. Using the right-hand rule, we find both horizontal components point in the $+x$ direction. Thus, in unit-vector notation, we have $\vec{B}=\left(1.25 \times 10^{-6} \mathrm{~T}\right) \hat{\mathrm{i}}$.
89. The "current per unit x-length" may be viewed as current density multiplied by the thickness Δy of the sheet; thus, $\lambda=J \Delta y$. Ampere's law may be (and often is) expressed in terms of the current density vector as follows

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \int \vec{J} \cdot d \vec{A}
$$

where the area integral is over the region enclosed by the path relevant to the line integral (and \vec{J} is in the $+z$ direction, out of the paper). With J uniform throughout the sheet, then it is clear that the right-hand side of this version of Ampere's law should reduce, in this problem, to $\mu_{0} J A=\mu_{0} J \Delta y \Delta x=\mu_{0} \lambda \Delta x$.
(a) Figure 29-86 certainly has the horizontal components of \vec{B} drawn correctly at points P and P^{\prime} (as reference to Fig. 29-4 will confirm [consider the current elements nearest each of those points]), so the question becomes: is it possible for \vec{B} to have vertical components in the figure? Our focus is on point P. Fig. 29-4 suggests that the current element just to the right of the nearest one (the one directly under point P) will contribute a downward component, but by the same reasoning the current element just to the left of the nearest one should contribute an upward component to the field at P. The current elements are all equivalent, as is reflected in the horizontal-translational symmetry built into this problem; therefore, all vertical components should cancel in pairs. The field at P must be purely horizontal, as drawn.
(b) The path used in evaluating $\oint \vec{B} \cdot d \vec{S}$ is rectangular, of horizontal length Δx (the horizontal sides passing through points P and P^{\prime} respectively) and vertical size $\delta y>\Delta y$. The vertical sides have no contribution to the integral since \vec{B} is purely horizontal (so the scalar dot product produces zero for those sides), and the horizontal sides contribute two equal terms, as shown next. Ampere's law yields

$$
2 B \Delta x=\mu_{0} \lambda \Delta x \Rightarrow B=\frac{1}{2} \mu_{0} \lambda
$$

90. In this case $L=2 \pi r$ is roughly the length of the toroid so

$$
B=\mu_{0} i_{0}\left(\frac{N}{2 \pi r}\right)=\mu_{0} n i_{0}
$$

This result is expected, since from the perspective of a point inside the toroid the portion of the toroid in the vicinity of the point resembles part of a long solenoid.
91. (a) For the circular path L of radius r concentric with the conductor

$$
\oint_{L} \vec{B} \cdot d \vec{s}=2 \pi r B=\mu_{0} i_{\mathrm{enc}}=\mu_{0} i \frac{\pi\left(r^{2}-b^{2}\right)}{\pi\left(a^{2}-b^{2}\right)} .
$$

Thus, $B=\frac{\mu_{0} i}{2 \pi\left(a^{2}-b^{2}\right)}\left(\frac{r^{2}-b^{2}}{r}\right)$.
(b) At $r=a$, the magnetic field strength is

$$
\frac{\mu_{0} i}{2 \pi\left(a^{2}-b^{2}\right)}\left(\frac{a^{2}-b^{2}}{a}\right)=\frac{\mu_{0} i}{2 \pi a} .
$$

At $r=b, B \propto r^{2}-b^{2}=0$. Finally, for $b=0$

$$
B=\frac{\mu_{0} i}{2 \pi a^{2}} \frac{r^{2}}{r}=\frac{\mu_{0} i r}{2 \pi a^{2}}
$$

which agrees with Eq. 29-20.
(c) The field is zero for $r<b$ and is equal to Eq. 29-17 for $r>a$, so this along with the result of part (a) provides a determination of B over the full range of values. The graph (with SI units understood) is shown below.

92. (a) Eq. 29-20 applies for $r<c$. Our sign choice is such that i is positive in the smaller cylinder and negative in the larger one.

$$
B=\frac{\mu_{0} i r}{2 \pi c^{2}}, r \leq c
$$

(b) Eq. 29-17 applies in the region between the conductors.

$$
B=\frac{\mu_{0} i}{2 \pi r}, c \leq r \leq b .
$$

(c) Within the larger conductor we have a superposition of the field due to the current in the inner conductor (still obeying Eq. 29-17) plus the field due to the (negative) current in that part of the outer conductor at radius less than r. The result is

$$
B=\frac{\mu_{0} i}{2 \pi r}-\frac{\mu_{0} i}{2 \pi r}\left(\frac{r^{2}-b^{2}}{a^{2}-b^{2}}\right), \quad b<r \leq a .
$$

If desired, this expression can be simplified to read

$$
B=\frac{\mu_{0} i}{2 \pi r}\left(\frac{a^{2}-r^{2}}{a^{2}-b^{2}}\right)
$$

(d) Outside the coaxial cable, the net current enclosed is zero. So $B=0$ for $r \geq a$.
(e) We test these expressions for one case. If $a \rightarrow \infty$ and $b \rightarrow \infty$ (such that $a>b$) then we have the situation described on page 696 of the textbook.
(f) Using SI units, the graph of the field is shown below:

93. We use Ampere's law. For the dotted loop shown on the diagram $i=0$. The integral $\int \vec{B} \cdot d \vec{s}$ is zero along the bottom, right, and top sides of the loop. Along the right side the field is zero, along the top and bottom sides the field is perpendicular to $d \vec{s}$. If ℓ is the length of the left edge, then direct integration yields $\oint \vec{B} \cdot d \vec{s}=B \ell$, where B is the magnitude of the field at the left side of the loop. Since neither B nor ℓ is zero, Ampere's law is contradicted. We conclude that the geometry shown for the magnetic field lines is in error. The lines actually bulge outward and their density decreases gradually, not discontinuously as suggested by the figure.

1. The amplitude of the induced emf in the loop is

$$
\begin{aligned}
\varepsilon_{m} & =A \mu_{0} n i_{0} \omega=\left(6.8 \times 10^{-6} \mathrm{~m}^{2}\right)\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(85400 / \mathrm{m})(1.28 \mathrm{~A})(212 \mathrm{rad} / \mathrm{s}) \\
& =1.98 \times 10^{-4} \mathrm{~V}
\end{aligned}
$$

2. (a) $|\varepsilon|=\left|\frac{d \Phi_{B}}{d t}\right|=\frac{d}{d t}\left(6.0 t^{2}+7.0 t\right)=12 t+7.0=12(2.0)+7.0=31 \mathrm{mV}$.
(b) Appealing to Lenz's law (especially Fig. 30-5(a)) we see that the current flow in the loop is clockwise. Thus, the current is to left through R.
3. (a) We use $\varepsilon=-d \Phi_{B} / d t=-\pi r^{2} d B / d t$. For $0<t<2.0 \mathrm{~s}$:

$$
\varepsilon=-\pi r^{2} \frac{d B}{d t}=-\pi(0.12 \mathrm{~m})^{2}\left(\frac{0.5 \mathrm{~T}}{2.0 \mathrm{~s}}\right)=-1.1 \times 10^{-2} \mathrm{~V} .
$$

(b) $2.0 \mathrm{~s}<t<4.0 \mathrm{~s}: \varepsilon \propto d B / d t=0$.
(c) $4.0 \mathrm{~s}<t<6.0 \mathrm{~s}$:

$$
\varepsilon=-\pi r^{2} \frac{d B}{d t}=-\pi(0.12 \mathrm{~m})^{2}\left(\frac{-0.5 \mathrm{~T}}{6.0 \mathrm{~s}-4.0 \mathrm{~s}}\right)=1.1 \times 10^{-2} \mathrm{~V}
$$

4. The resistance of the loop is

$$
R=\rho \frac{L}{A}=\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left[\frac{\pi(0.10 \mathrm{~m})}{\pi\left(2.5 \times 10^{-3}\right)^{2} / 4}\right]=1.1 \times 10^{-3} \Omega .
$$

We use $i=|\varepsilon| / R=\left|d \Phi_{B} / d t\right| / R=\left(\pi r^{2} / R\right)|d B / d t|$. Thus

$$
\left|\frac{d B}{d t}\right|=\frac{i R}{\pi r^{2}}=\frac{(10 \mathrm{~A})\left(1.1 \times 10^{-3} \Omega\right)}{\pi(0.05 \mathrm{~m})^{2}}=1.4 \mathrm{~T} / \mathrm{s} .
$$

5. The total induced emf is given by

$$
\begin{aligned}
\varepsilon & =-N \frac{d \Phi_{B}}{d t}=-N A\left(\frac{d B}{d t}\right)=-N A \frac{d}{d t}\left(\mu_{0} n i\right)=-N \mu_{0} n A \frac{d i}{d t}=-N \mu_{0} n\left(\pi r^{2}\right) \frac{d i}{d t} \\
& =-(120)\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(22000 / \mathrm{m}) \pi(0.016 \mathrm{~m})^{2}\left(\frac{1.5 \mathrm{~A}}{0.025 \mathrm{~s}}\right) \\
& =0.16 \mathrm{~V}
\end{aligned}
$$

Ohm's law then yields $i=|\varepsilon| / R=0.016 \mathrm{~V} / 5.3 \Omega=0.030 \mathrm{~A}$.
6. Using Faraday's law, the induced emf is

$$
\begin{aligned}
\mathcal{E} & =-\frac{d \Phi_{B}}{d t}=-\frac{d(B A)}{d t}=-B \frac{d A}{d t}=-B \frac{d\left(\pi r^{2}\right)}{d t}=-2 \pi r B \frac{d r}{d t} \\
& =-2 \pi(0.12 \mathrm{~m})(0.800 \mathrm{~T})(-0.750 \mathrm{~m} / \mathrm{s}) \\
& =0.452 \mathrm{~V} .
\end{aligned}
$$

7. The flux $\Phi_{B}=B A \cos \theta$ does not change as the loop is rotated. Faraday's law only leads to a nonzero induced emf when the flux is changing, so the result in this instance is 0 .
8. The field (due to the current in the straight wire) is out-of-the-page in the upper half of the circle and is into the page in the lower half of the circle, producing zero net flux, at any time. There is no induced current in the circle.
9. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through the circuit is $\Phi_{B}=L^{2} B / 2$, and the induced emf is

$$
\varepsilon_{i}=-\frac{d \Phi_{B}}{d t}=-\frac{L^{2}}{2} \frac{d B}{d t} .
$$

Now $B=0.042-0.870 t$ and $d B / d t=-0.870 \mathrm{~T} / \mathrm{s}$. Thus,

$$
\varepsilon_{i}=\frac{(2.00 \mathrm{~m})^{2}}{2}(0.870 \mathrm{~T} / \mathrm{s})=1.74 \mathrm{~V}
$$

The magnetic field is out of the page and decreasing so the induced emf is counterclockwise around the circuit, in the same direction as the emf of the battery. The total emf is

$$
\varepsilon+\varepsilon_{i}=20.0 \mathrm{~V}+1.74 \mathrm{~V}=21.7 \mathrm{~V}
$$

(b) The current is in the sense of the total emf (counterclockwise).
10. Fig. 30-41(b) demonstrates that $\frac{d B}{d t}$ (the slope of that line) is $0.003 \mathrm{~T} / \mathrm{s}$. Thus, in absolute value, Faraday's law becomes

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-A \frac{d B}{d t}
$$

where $A=8 \times 10^{-4} \mathrm{~m}^{2}$. We related the induced emf to resistance and current using Ohm's law. The current is estimated from Fig. 30-41(c) to be $i=\frac{d q}{d t}=0.002 \mathrm{~A}$ (the slope of that line). Therefore, the resistance of the loop is

$$
R=|\varepsilon| / i=\frac{\left(8 \times 10^{-4}\right)(0.003)}{0.002}=0.0012 \Omega .
$$

11. (a) It should be emphasized that the result, given in terms of $\sin (2 \pi f t)$, could as easily be given in terms of $\cos (2 \pi f t)$ or even $\cos (2 \pi f t+\phi)$ where ϕ is a phase constant as discussed in Chapter 15. The angular position θ of the rotating coil is measured from some reference line (or plane), and which line one chooses will affect whether the magnetic flux should be written as $B A \cos \theta, B A \sin \theta$ or $B A \cos (\theta+\phi)$. Here our choice is such that $\Phi_{B}=B A \cos \theta$. Since the coil is rotating steadily, θ increases linearly with time. Thus, $\theta=\omega t$ (equivalent to $\theta=2 \pi f t$) if θ is understood to be in radians (and ω would be the angular velocity). Since the area of the rectangular coil is $A=a b$, Faraday's law leads to

$$
\varepsilon=-N \frac{d(B A \cos \theta)}{d t}=-N B A \frac{d \cos (2 \pi f t)}{d t}=N B a b 2 \pi f \sin (2 \pi f t)
$$

which is the desired result, shown in the problem statement. The second way this is written $\left(\varepsilon_{0} \sin (2 \pi f t)\right)$ is meant to emphasize that the voltage output is sinusoidal (in its time dependence) and has an amplitude of $\varepsilon_{0}=2 \pi f N a b B$.
(b) We solve $\varepsilon_{0}=150 \mathrm{~V}=2 \pi f N a b B$ when $f=60.0 \mathrm{rev} / \mathrm{s}$ and $B=0.500 \mathrm{~T}$. The three unknowns are N, a, and b which occur in a product; thus, we obtain $N a b=0.796 \mathrm{~m}^{2}$.
12. (a) Since the flux arises from a dot product of vectors, the result of one sign for B_{1} and B_{2} and of the opposite sign for B_{3} (we choose the minus sign for the flux from B_{1} and B_{2}, and therefore a plus sign for the flux from B_{3}). The induced emf is

$$
\begin{aligned}
\mathcal{E} & =-\Sigma \frac{d \Phi_{B}}{d t}=A\left(\frac{d B_{1}}{d t}+\frac{d B_{2}}{d t}-\frac{d B_{3}}{d t}\right) \\
& =(0.10 \mathrm{~m})(0.20 \mathrm{~m})\left(2.0 \times 10^{-6} \mathrm{~T} / \mathrm{s}+1.0 \times 10^{-6} \mathrm{~T} / \mathrm{s}-5.0 \times 10^{-6} \mathrm{~T} / \mathrm{s}\right) \\
& =-4.0 \times 10^{-8} \mathrm{~V} .
\end{aligned}
$$

The minus sign meaning that the effect is dominated by the changes in B_{3}. Its magnitude (using Ohm's law) is $|\varepsilon| / R=8.0 \mu \mathrm{~A}$.
(b) Consideration of Lenz's law leads to the conclusion that the induced current is therefore counterclockwise.
13. The amount of charge is

$$
\begin{aligned}
q(t) & =\frac{1}{R}\left[\Phi_{B}(0)-\Phi_{B}(t)\right]=\frac{A}{R}[B(0)-B(t)]=\frac{1.20 \times 10^{-3} \mathrm{~m}^{2}}{13.0 \Omega}[1.60 \mathrm{~T}-(-1.60 \mathrm{~T})] \\
& =2.95 \times 10^{-2} \mathrm{C}
\end{aligned}
$$

14. We note that 1 gauss $=10^{-4} \mathrm{~T}$. The amount of charge is

$$
\begin{aligned}
q(t) & =\frac{N}{R}\left[B A \cos 20^{\circ}-\left(-B A \cos 20^{\circ}\right)\right]=\frac{2 N B A \cos 20^{\circ}}{R} \\
& =\frac{2(1000)\left(0.590 \times 10^{-4} \mathrm{~T}\right) \pi(0.100 \mathrm{~m})^{2}\left(\cos 20^{\circ}\right)}{85.0 \Omega+140 \Omega}=1.55 \times 10^{-5} \mathrm{C} .
\end{aligned}
$$

Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth.
15. (a) The frequency is

$$
f=\frac{\omega}{2 \pi}=\frac{(40 \mathrm{rev} / \mathrm{s})(2 \pi \mathrm{rad} / \mathrm{rev})}{2 \pi}=40 \mathrm{~Hz} .
$$

(b) First, we define angle relative to the plane of Fig. 30-44, such that the semicircular wire is in the $\theta=0$ position and a quarter of a period (of revolution) later it will be in the $\theta=\pi / 2$ position (where its midpoint will reach a distance of a above the plane of the figure). At the moment it is in the $\theta=\pi / 2$ position, the area enclosed by the "circuit" will appear to us (as we look down at the figure) to that of a simple rectangle (call this area A_{0} which is the area it will again appear to enclose when the wire is in the $\theta=3 \pi / 2$ position). Since the area of the semicircle is $\pi a^{2} / 2$ then the area (as it appears to us) enclosed by the circuit, as a function of our angle θ, is

$$
A=A_{0}+\frac{\pi a^{2}}{2} \cos \theta
$$

where (since θ is increasing at a steady rate) the angle depends linearly on time, which we can write either as $\theta=\omega t$ or $\theta=2 \pi f t$ if we take $t=0$ to be a moment when the arc is in the $\theta=0$ position. Since \vec{B} is uniform (in space) and constant (in time), Faraday's law leads to

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-B \frac{d A}{d t}=-B \frac{d\left(A_{0}+\frac{\pi a^{2}}{2} \cos \theta\right)}{d t}=-B \frac{\pi a^{2}}{2} \frac{d \cos (2 \pi f t)}{d t}
$$

which yields $\mathcal{E}=B \pi^{2} a^{2} f \sin (2 \pi f t)$. This (due to the sinusoidal dependence) reinforces the conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage amplitude:

$$
\varepsilon_{m}=B \pi^{2} a^{2} f=(0.020 \mathrm{~T}) \pi^{2}(0.020 \mathrm{~m})^{2}(40 / \mathrm{s})=3.2 \times 10^{-3} \mathrm{~V}
$$

16. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero component perpendicular) to the coil, and must be changing with time.
(a) For $\vec{B}=\left(4.00 \times 10^{-2} \mathrm{~T} / \mathrm{m}\right) y \hat{\mathrm{k}}, d B / d t=0$ and hence $\varepsilon=0$.
(b) None.
(c) For $\vec{B}=\left(6.00 \times 10^{-2} \mathrm{~T} / \mathrm{s}\right) t \hat{\mathrm{k}}$,

$$
\mathcal{E}=-\frac{d \Phi_{B}}{d t}=-A \frac{d B}{d t}=-(0.400 \mathrm{~m} \times 0.250 \mathrm{~m})(0.0600 \mathrm{~T} / \mathrm{s})=-6.00 \mathrm{mV}
$$

or $|\varepsilon|=6.00 \mathrm{mV}$.
(d) Clockwise;
(e) For $\vec{B}=\left(8.00 \times 10^{-2} \mathrm{~T} / \mathrm{m} \cdot \mathrm{s}\right) y t \hat{\mathrm{k}}$,

$$
\Phi_{B}=(0.400)(0.0800 t) \int y d y=1.00 \times 10^{-3} t
$$

in SI units. The induced emf is $\varepsilon=-d \Phi B / d t=-1.00 \mathrm{mV}$, or $|\varepsilon|=1.00 \mathrm{mV}$.
(f) Clockwise.
(g) $\Phi_{B}=0 \Rightarrow \varepsilon=0$.
(h) None.
(i) $\Phi_{B}=0 \Rightarrow \varepsilon=0$
(j) None.
17. First we write $\Phi_{B}=B A \cos \theta$. We note that the angular position θ of the rotating coil is measured from some reference line or plane, and we are implicitly making such a choice by writing the magnetic flux as $B A \cos \theta$ (as opposed to, say, $B A \sin \theta$). Since the coil is rotating steadily, θ increases linearly with time. Thus, $\theta=\omega t$ if θ is understood to be in radians (here, $\omega=2 \pi f$ is the angular velocity of the coil in radians per second, and f $=1000 \mathrm{rev} / \mathrm{min} \approx 16.7 \mathrm{rev} / \mathrm{s}$ is the frequency). Since the area of the rectangular coil is $A=$ $0.500 \times 0.300=0.150 \mathrm{~m}^{2}$, Faraday's law leads to

$$
\varepsilon=-N \frac{d(B A \cos \theta)}{d t}=-N B A \frac{d \cos (2 \pi f t)}{d t}=N B A 2 \pi f \sin (2 \pi f t)
$$

which means it has a voltage amplitude of

$$
\varepsilon_{\max }=2 \pi f N A B=2 \pi(16.7 \mathrm{rev} / \mathrm{s})(100 \text { turns })\left(0.15 \mathrm{~m}^{2}\right)(3.5 \mathrm{~T})=5.50 \times 10^{3} \mathrm{~V}
$$

18. (a) Since $\vec{B}=B \hat{\mathrm{i}}$ uniformly, then only the area "projected" onto the $y z$ plane will contribute to the flux (due to the scalar [dot] product). This "projected" area corresponds to one-fourth of a circle. Thus, the magnetic flux Φ_{B} through the loop is

$$
\Phi_{B}=\int \vec{B} \cdot d \vec{A}=\frac{1}{4} \pi r^{2} B .
$$

Thus,

$$
\begin{aligned}
|\varepsilon| & =\left|\frac{d \Phi_{B}}{d t}\right|=\left|\frac{d}{d t}\left(\frac{1}{4} \pi r^{2} B\right)\right|=\frac{\pi r^{2}}{4}\left|\frac{d B}{d t}\right| \\
& =\frac{1}{4} \pi(0.10 \mathrm{~m})^{2}\left(3.0 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right)=2.4 \times 10^{-5} \mathrm{~V}
\end{aligned}
$$

(b) We have a situation analogous to that shown in Fig. 30-5(a). Thus, the current in segment $b c$ flows from c to b (following Lenz's law).
19. (a) In the region of the smaller loop the magnetic field produced by the larger loop may be taken to be uniform and equal to its value at the center of the smaller loop, on the axis. Eq. 29-27, with $z=x$ (taken to be much greater than R), gives

$$
\vec{B}=\frac{\mu_{0} i R^{2}}{2 x^{3}} \hat{\mathrm{i}}
$$

where the $+x$ direction is upward in Fig. 30-47. The magnetic flux through the smaller loop is, to a good approximation, the product of this field and the area $\left(\pi r^{2}\right)$ of the smaller loop:

$$
\Phi_{B}=\frac{\pi \mu_{0} i r^{2} R^{2}}{2 x^{3}} .
$$

(b) The emf is given by Faraday's law:

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-\left(\frac{\pi \mu_{0} i r^{2} R^{2}}{2}\right) \frac{d}{d t}\left(\frac{1}{x^{3}}\right)=-\left(\frac{\pi \mu_{0} i r^{2} R^{2}}{2}\right)\left(-\frac{3}{x^{4}} \frac{d x}{d t}\right)=\frac{3 \pi \mu_{0} i r^{2} R^{2} v}{2 x^{4}} .
$$

(c) As the smaller loop moves upward, the flux through it decreases, and we have a situation like that shown in Fig. 30-5(b). The induced current will be directed so as to produce a magnetic field that is upward through the smaller loop, in the same direction as the field of the larger loop. It will be counterclockwise as viewed from above, in the same direction as the current in the larger loop.
20. Since $\frac{d \cos \phi}{d t}=-\frac{d \phi}{d t} \sin \phi$, Faraday's law (with $N=1$) becomes (in absolute value)

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-B A \frac{d \phi}{d t} \sin \phi
$$

which yields $|\varepsilon|=0.018 \mathrm{~V}$.
21. (a) Eq. 29-10 gives the field at the center of the large loop with $R=1.00 \mathrm{~m}$ and current $i(t)$. This is approximately the field throughout the area $\left(A=2.00 \times 10^{-4} \mathrm{~m}^{2}\right)$ enclosed by the small loop. Thus, with $B=\mu_{0} i / 2 R$ and $i(t)=i_{0}+k t$, where $i_{0}=200 \mathrm{~A}$ and

$$
k=(-200 \mathrm{~A}-200 \mathrm{~A}) / 1.00 \mathrm{~s}=-400 \mathrm{~A} / \mathrm{s},
$$

we find
(a) $B(t=0)=\frac{\mu_{0} i_{0}}{2 R}=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(200 \mathrm{~A})}{2(1.00 \mathrm{~m})}=1.26 \times 10^{-4} \mathrm{~T}$,
(b) $B(t=0.500 \mathrm{~s})=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)[200 \mathrm{~A}-(400 \mathrm{~A} / \mathrm{s})(0.500 \mathrm{~s})]}{2(1.00 \mathrm{~m})}=0$.
(c) $B(t=1.00 \mathrm{~s})=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)[200 \mathrm{~A}-(400 \mathrm{~A} / \mathrm{s})(1.00 \mathrm{~s})]}{2(1.00 \mathrm{~m})}=-1.26 \times 10^{-4} \mathrm{~T}$,
or $|B(t=1.00 \mathrm{~s})|=1.26 \times 10^{-4} \mathrm{~T}$.
(d) yes, as indicated by the flip of sign of $B(\mathrm{t})$ in (c).
(e) Let the area of the small loop be a. Then $\Phi_{B}=B a$, and Faraday's law yields

$$
\begin{aligned}
\varepsilon & =-\frac{d \Phi_{B}}{d t}=-\frac{d(B a)}{d t}=-a \frac{d B}{d t}=-a\left(\frac{\Delta B}{\Delta t}\right) \\
& =-\left(2.00 \times 10^{-4} \mathrm{~m}^{2}\right)\left(\frac{-1.26 \times 10^{-4} \mathrm{~T}-1.26 \times 10^{-4} \mathrm{~T}}{1.00 \mathrm{~s}}\right) \\
& =5.04 \times 10^{-8} \mathrm{~V}
\end{aligned}
$$

22. (a) First, we observe that a large portion of the figure contributes flux which "cancels out." The field (due to the current in the long straight wire) through the part of the rectangle above the wire is out of the page (by the right-hand rule) and below the wire it is into the page. Thus, since the height of the part above the wire is $b-a$, then a strip below the wire (where the strip borders the long wire, and extends a distance $b-a$ away from it) has exactly the equal-but-opposite flux which cancels the contribution from the part above the wire. Thus, we obtain the non-zero contributions to the flux:

$$
\Phi_{B}=\int B d A=\int_{b-a}^{a}\left(\frac{\mu_{0} i}{2 \pi r}\right)(b d r)=\frac{\mu_{0} i b}{2 \pi} \ln \left(\frac{a}{b-a}\right) .
$$

Faraday's law, then, (with SI units and 3 significant figures understood) leads to

$$
\begin{aligned}
\varepsilon & =-\frac{d \Phi_{B}}{d t}=-\frac{d}{d t}\left[\frac{\mu_{0} i b}{2 \pi} \ln \left(\frac{a}{b-a}\right)\right]=-\frac{\mu_{0} b}{2 \pi} \ln \left(\frac{a}{b-a}\right) \frac{d i}{d t} \\
& =-\frac{\mu_{0} b}{2 \pi} \ln \left(\frac{a}{b-a}\right) \frac{d}{d t}\left(\frac{9}{2} t^{2}-10 t\right) \\
& =\frac{-\mu_{0} b(9 t-10)}{2 \pi} \ln \left(\frac{a}{b-a}\right) .
\end{aligned}
$$

With $a=0.120 \mathrm{~m}$ and $b=0.160 \mathrm{~m}$, then, at $t=3.00 \mathrm{~s}$, the magnitude of the emf induced in the rectangular loop is

$$
|\varepsilon|=\frac{\left(4 \pi \times 10^{-7}\right)(0.16)(9(3)-10)}{2 \pi} \ln \left(\frac{0.12}{0.16-0.12}\right)=5.98 \times 10^{-7} \mathrm{~V}
$$

(b) We note that $d i / d t>0$ at $t=3 \mathrm{~s}$. The situation is roughly analogous to that shown in Fig. 30-5(c). From Lenz's law, then, the induced emf (hence, the induced current) in the loop is counterclockwise.
23. (a) Consider a (thin) strip of area of height $d y$ and width $\ell=0.020 \mathrm{~m}$. The strip is located at some $0<y<\ell$. The element of flux through the strip is

$$
d \Phi_{B}=B d A=\left(4 t^{2} y\right)(\ell d y)
$$

where SI units (and 2 significant figures) are understood. To find the total flux through the square loop, we integrate:

$$
\Phi_{B}=\int d \Phi_{B}=\int_{0}^{\ell}\left(4 t^{2} y \ell\right) d y=2 t^{2} \ell^{3}
$$

Thus, Faraday's law yields

$$
|\varepsilon|=\left|\frac{d \Phi_{B}}{d t}\right|=4 t \ell^{3}
$$

At $t=2.5 \mathrm{~s}$, we find the magnitude of the induced emf is $8.0 \times 10^{-5} \mathrm{~V}$.
(b) Its "direction" (or "sense'") is clockwise, by Lenz's law.
24. (a) We assume the flux is entirely due to the field generated by the long straight wire (which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about the possibility of an overall minus sign since we are asked to find the absolute value of the flux.

$$
\left|\Phi_{B}\right|=\int_{r-b / 2}^{r+b / 2}\left(\frac{\mu_{0} i}{2 \pi r}\right)(a d r)=\frac{\mu_{0} i a}{2 \pi} \ln \left(\frac{r+\frac{b}{2}}{r-\frac{b}{2}}\right) .
$$

When $r=1.5 b$, we have

$$
\left|\Phi_{B}\right|=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(4.7 \mathrm{~A})(0.022 \mathrm{~m})}{2 \pi} \ln (2.0)=1.4 \times 10^{-8} \mathrm{~Wb}
$$

(b) Implementing Faraday's law involves taking a derivative of the flux in part (a), and recognizing that $\frac{d r}{d t}=v$. The magnitude of the induced emf divided by the loop resistance then gives the induced current:

$$
\begin{aligned}
i_{\text {loop }} & =\left|\frac{\varepsilon}{R}\right|=-\frac{\mu_{0} i a}{2 \pi R}\left|\frac{d}{d t} \ln \left(\frac{r+\frac{b}{2}}{r-\frac{b}{2}}\right)\right|=\frac{\mu_{0} i a b v}{2 \pi R\left[r^{2}-(b / 2)^{2}\right]} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(4.7 \mathrm{~A})(0.022 \mathrm{~m})(0.0080 \mathrm{~m})\left(3.2 \times 10^{-3} \mathrm{~m} / \mathrm{s}\right)}{2 \pi\left(4.0 \times 10^{-4} \Omega\right)\left[2(0.0080 \mathrm{~m})^{2}\right]} \\
& =1.0 \times 10^{-5} \mathrm{~A} .
\end{aligned}
$$

25. (a) We refer to the (very large) wire length as L and seek to compute the flux per meter: Φ_{B} / L. Using the right-hand rule discussed in Chapter 29, we see that the net field in the region between the axes of anti-parallel currents is the addition of the magnitudes of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection symmetry in the problem, where the plane of symmetry is midway between the two wires (at what we will call $x=\ell / 2$, where $\ell=20 \mathrm{~mm}=0.020 \mathrm{~m}$); the net field at any point $0<x<\ell / 2$ is the same at its "mirror image" point $\ell-x$. The central axis of one of the wires passes through the origin, and that of the other passes through $x=\ell$. We make use of the symmetry by integrating over $0<x<\ell / 2$ and then multiplying by 2 :

$$
\Phi_{B}=2 \int_{0}^{\ell / 2} B d A=2 \int_{0}^{d / 2} B(L d x)+2 \int_{d / 2}^{\ell / 2} B(L d x)
$$

where $d=0.0025 \mathrm{~m}$ is the diameter of each wire. We will use $R=d / 2$, and r instead of x in the following steps. Thus, using the equations from Ch. 29 referred to above, we find

$$
\begin{aligned}
\frac{\Phi_{B}}{L} & =2 \int_{0}^{R}\left(\frac{\mu_{0} i}{2 \pi R^{2}} r+\frac{\mu_{0} i}{2 \pi(\ell-r)}\right) d r+2 \int_{R}^{\ell / 2}\left(\frac{\mu_{0} i}{2 \pi r}+\frac{\mu_{0} i}{2 \pi(\ell-r)}\right) d r \\
& =\frac{\mu_{0} i}{2 \pi}\left(1-2 \ln \left(\frac{\ell-R}{\ell}\right)\right)+\frac{\mu_{0} i}{\pi} \ln \left(\frac{\ell-R}{R}\right) \\
& =0.23 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}+1.08 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}
\end{aligned}
$$

which yields $\Phi_{B} / L=1.3 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}$ or $1.3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}$.
(b) The flux (per meter) existing within the regions of space occupied by one or the other wires was computed above to be $0.23 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}$. Thus,

$$
\frac{0.23 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}}{1.3 \times 10^{-5} \mathrm{~T} \cdot \mathrm{~m}}=0.17=17 \%
$$

(c) What was described in part (a) as a symmetry plane at $x=\ell / 2$ is now (in the case of parallel currents) a plane of vanishing field (the fields subtract from each other in the region between them, as the right-hand rule shows). The flux in the $0<x<\ell / 2$ region is now of opposite sign of the flux in the $\ell / 2<x<\ell$ region which causes the total flux (or, in this case, flux per meter) to be zero.
26. Noting that $|\Delta B|=B$, we find the thermal energy is

$$
\begin{aligned}
P_{\text {thermal }} \Delta t & =\frac{\varepsilon^{2} \Delta t}{R}=\frac{1}{R}\left(-\frac{d \Phi_{B}}{d t}\right)^{2} \Delta t=\frac{1}{R}\left(-A \frac{\Delta B}{\Delta t}\right)^{2} \Delta t=\frac{A^{2} B^{2}}{R \Delta t} \\
& =\frac{\left(2.00 \times 10^{-4} \mathrm{~m}^{2}\right)^{2}\left(17.0 \times 10^{-6} \mathrm{~T}\right)^{2}}{\left(5.21 \times 10^{-6} \Omega\right)\left(2.96 \times 10^{-3} \mathrm{~s}\right)} \\
& =7.50 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

27. Thermal energy is generated at the rate $P=\varepsilon^{2} / R$ (see Eq. 27-23). Using Eq. 27-16, the resistance is given by $R=\rho L / A$, where the resistivity is $1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$ (by Table 27-1) and $A=\pi d^{2} / 4$ is the cross-sectional area of the wire ($d=0.00100 \mathrm{~m}$ is the wire thickness). The area enclosed by the loop is

$$
A_{\text {loop }}=\pi r_{\text {loop }}^{2}=\pi\left(\frac{L}{2 \pi}\right)^{2}
$$

since the length of the wire $(L=0.500 \mathrm{~m})$ is the circumference of the loop. This enclosed area is used in Faraday's law (where we ignore minus signs in the interest of finding the magnitudes of the quantities):

$$
\varepsilon=\frac{d \Phi_{B}}{d t}=A_{\text {loop }} \frac{d B}{d t}=\frac{L^{2}}{4 \pi} \frac{d B}{d t}
$$

where the rate of change of the field is $d B / d t=0.0100 \mathrm{~T} / \mathrm{s}$. Consequently, we obtain

$$
P=\frac{\left(\frac{L^{2}}{4 \pi} \frac{d B^{2}}{d t}\right)}{4 \rho L / \pi d^{2}}=\frac{d^{2} L^{3}}{64 \pi \rho}\left(\frac{d B}{d t}\right)^{2}=3.68 \times 10^{-6} \mathrm{~W} .
$$

28. Eq. 27-23 gives ε^{2} / R as the rate of energy transfer into thermal forms $\left(d E_{\mathrm{th}} / d t\right.$, which, from Fig. 30-51(c), is roughly $40 \mathrm{~nJ} / \mathrm{s}$). Interpreting ε as the induced emf (in absolute value) in the single-turn loop ($N=1$) from Faraday's law, we have

$$
\varepsilon=\frac{d \Phi_{B}}{d t}=A \frac{d B}{d t} .
$$

Eq. 29-23 gives $B=\mu_{\mathrm{o}} n i$ for the solenoid (and note that the field is zero outside of the solenoid - which implies that $A=A_{\text {coil }}$), so our expression for the magnitude of the induced emf becomes

$$
\varepsilon=\mu_{\mathrm{o}} n A_{\text {coil }} \frac{d i_{\text {coil }}}{d t}
$$

where Fig. 30-51(b) suggests that $d i_{\text {coil }} / d t=0.5 \mathrm{~A} / \mathrm{s}$. With $n=8000$ (in SI units) and $A_{\text {coil }}$ $=\pi(0.02)^{2}$ (note that the loop radius does not come into the computations of this problem, just the coil's), we find $\mathrm{V}=6.3$ microvolts. Returning to our earlier observations, we can now solve for the resistance: $R=\varepsilon^{2} /\left(d E_{\mathrm{th}} / d t\right)=1.0 \mathrm{~m} \Omega$.
29. (a) Eq. 30-8 leads to

$$
\varepsilon=B L v=(0.350 \mathrm{~T})(0.250 \mathrm{~m})(0.55 \mathrm{~m} / \mathrm{s})=0.0481 \mathrm{~V} .
$$

(b) By Ohm's law, the induced current is $i=0.0481 \mathrm{~V} / 18.0 \Omega=0.00267$ A. By Lenz's law, the current is clockwise in Fig. 30-52.
(c) Eq. 26-22 leads to $P=i^{2} R=0.000129 \mathrm{~W}$.
30. Noting that $F_{\text {net }}=B i L-m g=0$, we solve for the current:

$$
i=\frac{m g}{B L}=\frac{|\varepsilon|}{R}=\frac{1}{R}\left|\frac{d \Phi_{B}}{d t}\right|=\frac{B}{R}\left|\frac{d A}{d t}\right|=\frac{B v_{t} L}{R},
$$

which yields $v_{t}=m g R / B^{2} L^{2}$.
31. (a) Eq. 30-8 leads to

$$
\varepsilon=B L v=(1.2 \mathrm{~T})(0.10 \mathrm{~m})(5.0 \mathrm{~m} / \mathrm{s})=0.60 \mathrm{~V} .
$$

(b) By Lenz's law, the induced emf is clockwise. In the rod itself, we would say the emf is directed up the page.
(c) By Ohm's law, the induced current is $i=0.60 \mathrm{~V} / 0.40 \Omega=1.5 \mathrm{~A}$.
(d) The direction is clockwise.
(e) Eq. 27-22 leads to $P=i^{2} R=0.90 \mathrm{~W}$.
(f) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic field is directed rightward and has magnitude

$$
F=i L B=(1.5 \mathrm{~A})(0.10 \mathrm{~m})(1.2 \mathrm{~T})=0.18 \mathrm{~N} .
$$

To keep the rod moving at constant velocity, therefore, a leftward force (due to some external agent) having that same magnitude must be continuously supplied to the rod.
(g) Using Eq. 7-48, we find the power associated with the force being exerted by the external agent: $P=F v=(0.18 \mathrm{~N})(5.0 \mathrm{~m} / \mathrm{s})=0.90 \mathrm{~W}$, which is the same as our result from part (e).
32. (a) The "height" of the triangular area enclosed by the rails and bar is the same as the distance traveled in time $v: d=v t$, where $v=5.20 \mathrm{~m} / \mathrm{s}$. We also note that the "base" of that triangle (the distance between the intersection points of the bar with the rails) is $2 d$. Thus, the area of the triangle is

$$
A=\frac{1}{2}(\text { base })(\text { height })=\frac{1}{2}(2 v t)(v t)=v^{2} t^{2} .
$$

Since the field is a uniform $B=0.350 \mathrm{~T}$, then the magnitude of the flux (in SI units) is

$$
\Phi_{B}=B A=(0.350)(5.20)^{2} t^{2}=9.46 t^{2} .
$$

At $t=3.00 \mathrm{~s}$, we obtain $\Phi_{B}=85.2 \mathrm{~Wb}$.
(b) The magnitude of the emf is the (absolute value of) Faraday's law:

$$
\varepsilon=\frac{d \Phi_{B}}{d t}=9.46 \frac{d t^{2}}{d t}=18.9 t
$$

in SI units. At $t=3.00 \mathrm{~s}$, this yields $\mathcal{\varepsilon}=56.8 \mathrm{~V}$.
(c) Our calculation in part (b) shows that $n=1$.
33. (a) Letting x be the distance from the right end of the rails to the rod, we find an expression for the magnetic flux through the area enclosed by the rod and rails. By Eq. 29-17, the field is $B=\mu_{0} i / 2 \pi r$, where r is the distance from the long straight wire. We consider an infinitesimal horizontal strip of length x and width $d r$, parallel to the wire and a distance r from it; it has area $A=x d r$ and the flux $d \Phi_{B}=\left(\mu_{0} i x / 2 \pi r\right) d r$. By Eq. 30-1, the total flux through the area enclosed by the rod and rails is

$$
\Phi_{B}=\frac{\mu_{0} i x}{2 \pi} \int_{a}^{a+L} \frac{d r}{r}=\frac{\mu_{0} i x}{2 \pi} \ln \left(\frac{a+L}{a}\right) .
$$

According to Faraday's law the emf induced in the loop is

$$
\begin{aligned}
\varepsilon & =\frac{d \Phi_{B}}{d t}=\frac{\mu_{0} i}{2 \pi} \frac{d x}{d t} \ln \left(\frac{a+L}{a}\right)=\frac{\mu_{0} i v}{2 \pi} \ln \left(\frac{a+L}{a}\right) \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(100 \mathrm{~A})(5.00 \mathrm{~m} / \mathrm{s})}{2 \pi} \ln \left(\frac{1.00 \mathrm{~cm}+10.0 \mathrm{~cm}}{1.00 \mathrm{~cm}}\right)=2.40 \times 10^{-4} \mathrm{~V} .
\end{aligned}
$$

(b) By Ohm's law, the induced current is

$$
i_{\ell}=\varepsilon / R=\left(2.40 \times 10^{-4} \mathrm{~V}\right) /(0.400 \Omega)=6.00 \times 10^{-4} \mathrm{~A}
$$

Since the flux is increasing the magnetic field produced by the induced current must be into the page in the region enclosed by the rod and rails. This means the current is clockwise.
(c) Thermal energy is being generated at the rate

$$
P=i_{\ell}^{2} R=\left(6.00 \times 10^{-4} \mathrm{~A}\right)^{2}(0.400 \Omega)=1.44 \times 10^{-7} \mathrm{~W}
$$

(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the external agent must have the same magnitude as the magnetic force and must be in the opposite direction. The magnitude of the magnetic force on an infinitesimal segment of the rod, with length $d r$ at a distance r from the long straight wire, is

$$
d F_{B}=i_{\ell} B d r=\left(\mu_{0} i_{\ell}, / 2 \pi r\right) d r .
$$

We integrate to find the magnitude of the total magnetic force on the rod:

$$
\begin{aligned}
F_{B} & =\frac{\mu_{0} i_{\ell} i}{2 \pi} \int_{a}^{a+L} \frac{d r}{r}=\frac{\mu_{0} i_{\ell} i}{2 \pi} \ln \left(\frac{a+L}{a}\right) \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(6.00 \times 10^{-4} \mathrm{~A}\right)(100 \mathrm{~A})}{2 \pi} \ln \left(\frac{1.00 \mathrm{~cm}+10.0 \mathrm{~cm}}{1.00 \mathrm{~cm}}\right) \\
& =2.87 \times 10^{-8} \mathrm{~N} .
\end{aligned}
$$

Since the field is out of the page and the current in the rod is upward in the diagram, the force associated with the magnetic field is toward the right. The external agent must therefore apply a force of $2.87 \times 10^{-8} \mathrm{~N}$, to the left.
(e) By Eq. 7-48, the external agent does work at the rate

$$
P=F v=\left(2.87 \times 10^{-8} \mathrm{~N}\right)(5.00 \mathrm{~m} / \mathrm{s})=1.44 \times 10^{-7} \mathrm{~W}
$$

This is the same as the rate at which thermal energy is generated in the rod. All the energy supplied by the agent is converted to thermal energy.
34. (a) For path 1, we have

$$
\begin{aligned}
\oint_{1} \vec{E} \cdot d \vec{s} & =-\frac{d \vec{\Phi}_{B 1}}{d t}=\frac{d}{d t}\left(B_{1} A_{1}\right)=A_{1} \frac{d B_{1}}{d t}=\pi r_{1}^{2} \frac{d B_{1}}{d t}=\pi(0.200 \mathrm{~m})^{2}\left(-8.50 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right) \\
& =-1.07 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

(b) For path 2, the result is

$$
\oint_{2} \vec{E} \cdot d \vec{s}=-\frac{d \vec{\Phi}_{B 2}}{d t}=\pi r_{2}^{2} \frac{d B_{2}}{d t}=\pi(0.300 \mathrm{~m})^{2}\left(-8.50 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right)=-2.40 \times 10^{-3} \mathrm{~V}
$$

(c) For path 3, we have

$$
\oint_{3} \vec{E} \cdot d \vec{s}=\oint_{1} \vec{E} \cdot d \vec{s}-\oint_{2} \vec{E} \cdot d \vec{s}=-1.07 \times 10^{-3} \mathrm{~V}-\left(-2.4 \times 10^{-3} \mathrm{~V}\right)=1.33 \times 10^{-3} \mathrm{~V}
$$

35. (a) The point at which we are evaluating the field is inside the solenoid, so Eq. 30-25 applies. The magnitude of the induced electric field is

$$
E=\frac{1}{2} \frac{d B}{d t} r=\frac{1}{2}\left(6.5 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right)(0.0220 \mathrm{~m})=7.15 \times 10^{-5} \mathrm{~V} / \mathrm{m}
$$

(b) Now the point at which we are evaluating the field is outside the solenoid and Eq. 3027 applies. The magnitude of the induced field is

$$
E=\frac{1}{2} \frac{d B}{d t} \frac{R^{2}}{r}=\frac{1}{2}\left(6.5 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right) \frac{(0.0600 \mathrm{~m})^{2}}{(0.0820 \mathrm{~m})}=1.43 \times 10^{-4} \mathrm{~V} / \mathrm{m} .
$$

36. From the "kink" in the graph of Fig. 30-57, we conclude that the radius of the circular region is 2.0 cm . For values of r less than that, we have (from the absolute value of Eq. 30-20)

$$
E(2 \pi r)=\frac{d \Phi_{B}}{d t}=A \frac{d B}{d t}=\pi r^{2} \frac{d B}{d t}=\pi r^{2} a t
$$

which means that $E / r=a / 2$. This corresponds to the slope of that graph (the linear portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, $a=0.030 \mathrm{~T} / \mathrm{s}$.
37. The magnetic field B can be expressed as

$$
B(t)=B_{0}+B_{1} \sin \left(\omega t+\phi_{0}\right),
$$

where $B_{0}=(30.0 \mathrm{~T}+29.6 \mathrm{~T}) / 2=29.8 \mathrm{~T}$ and $B_{1}=(30.0 \mathrm{~T}-29.6 \mathrm{~T}) / 2=0.200 \mathrm{~T}$. Then from Eq. 30-25

$$
E=\frac{1}{2}\left(\frac{d B}{d t}\right) r=\frac{r}{2} \frac{d}{d t}\left[B_{0}+B_{1} \sin \left(\omega t+\phi_{0}\right)\right]=\frac{1}{2} B_{1} \omega r \cos \left(\omega t+\phi_{0}\right) .
$$

We note that $\omega=2 \pi f$ and that the factor in front of the cosine is the maximum value of the field. Consequently,

$$
E_{\max }=\frac{1}{2} B_{1}(2 \pi f) r=\frac{1}{2}(0.200 \mathrm{~T})(2 \pi)(15 \mathrm{~Hz})\left(1.6 \times 10^{-2} \mathrm{~m}\right)=0.15 \mathrm{~V} / \mathrm{m} .
$$

38. (a) We interpret the question as asking for N multiplied by the flux through one turn:

$$
\Phi_{\mathrm{turns}}=N \Phi_{B}=N B A=N B\left(\pi r^{2}\right)=(30.0)\left(2.60 \times 10^{-3} \mathrm{~T}\right)(\pi)(0.100 \mathrm{~m})^{2}=2.45 \times 10^{-3} \mathrm{~Wb}
$$

(b) Eq. 30-33 leads to

$$
L=\frac{N \Phi_{B}}{i}=\frac{2.45 \times 10^{-3} \mathrm{~Wb}}{3.80 \mathrm{~A}}=6.45 \times 10^{-4} \mathrm{H} .
$$

39. Since $N \Phi_{B}=L i$, we obtain

$$
\Phi_{B}=\frac{L i}{N}=\frac{\left(8.0 \times 10^{-3} \mathrm{H}\right)\left(5.0 \times 10^{-3} \mathrm{~A}\right)}{400}=1.0 \times 10^{-7} \mathrm{~Wb} .
$$

40. (a) We imagine dividing the one-turn solenoid into N small circular loops placed along the width W of the copper strip. Each loop carries a current $\Delta i=i / N$. Then the magnetic field inside the solenoid is

$$
B=\mu_{0} n \Delta i=\mu_{0}(N / W)(i / N)=\mu_{0} i / W=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.035 \mathrm{~A})}{0.16 \mathrm{~m}}=2.7 \times 10^{-7} \mathrm{~T}
$$

(b) Eq. 30-33 leads to

$$
L=\frac{\Phi_{B}}{i}=\frac{\pi R^{2} B}{i}=\frac{\pi R^{2}\left(\mu_{0} i / W\right)}{i}=\frac{\pi \mu_{0} R^{2}}{W}=\frac{\pi\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.018 \mathrm{~m})^{2}}{0.16 \mathrm{~m}}=8.0 \times 10^{-9} \mathrm{H} .
$$

41. We refer to the (very large) wire length as ℓ and seek to compute the flux per meter: Φ_{B} / ℓ. Using the right-hand rule discussed in Chapter 29, we see that the net field in the region between the axes of antiparallel currents is the addition of the magnitudes of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection symmetry in the problem, where the plane of symmetry is midway between the two wires (at $x=d / 2$); the net field at any point $0<x<d / 2$ is the same at its "mirror image" point $d-x$. The central axis of one of the wires passes through the origin, and that of the other passes through $x=d$. We make use of the symmetry by integrating over $0<x<d / 2$ and then multiplying by 2 :

$$
\Phi_{B}=2 \int_{0}^{d / 2} B d A=2 \int_{0}^{a} B(\ell d x)+2 \int_{a}^{d / 2} B(\ell d x)
$$

where $d=0.0025 \mathrm{~m}$ is the diameter of each wire. We will use r instead of x in the following steps. Thus, using the equations from Ch. 29 referred to above, we find

$$
\begin{aligned}
\frac{\Phi_{B}}{\ell} & =2 \int_{0}^{a}\left(\frac{\mu_{0} i}{2 \pi a^{2}} r+\frac{\mu_{0} i}{2 \pi(d-r)}\right) d r+2 \int_{a}^{d / 2}\left(\frac{\mu_{0} i}{2 \pi r}+\frac{\mu_{0} i}{2 \pi(d-r)}\right) d r \\
& =\frac{\mu_{0} i}{2 \pi}\left(1-2 \ln \left(\frac{d-a}{d}\right)\right)+\frac{\mu_{0} i}{\pi} \ln \left(\frac{d-a}{a}\right)
\end{aligned}
$$

where the first term is the flux within the wires and will be neglected (as the problem suggests). Thus, the flux is approximately $\Phi_{B} \approx \mu_{0} i \ell / \pi \ln ((d-a) / a)$. Now, we use Eq. 30-33 (with $N=1$) to obtain the inductance per unit length:

$$
\frac{L}{\ell}=\frac{\Phi_{B}}{\ell i}=\frac{\mu_{0}}{\pi} \ln \left(\frac{d-a}{a}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)}{\pi} \ln \left(\frac{142-1.53}{1.53}\right)=1.81 \times 10^{-6} \mathrm{H} / \mathrm{m} .
$$

42. (a) Speaking anthropomorphically, the coil wants to fight the changes-so if it wants to push current rightward (when the current is already going rightward) then i must be in the process of decreasing.
(b) From Eq. 30-35 (in absolute value) we get

$$
L=\left|\frac{\varepsilon}{d i / d t}\right|=\frac{17 \mathrm{~V}}{2.5 \mathrm{kA} / \mathrm{s}}=6.8 \times 10^{-4} \mathrm{H} .
$$

43. Since $\varepsilon=-L(d i / d t)$, we may obtain the desired induced emf by setting

$$
\frac{d i}{d t}=-\frac{\varepsilon}{L}=-\frac{60 \mathrm{~V}}{12 \mathrm{H}}=-5.0 \mathrm{~A} / \mathrm{s},
$$

or $|d i / d t|=5.0 \mathrm{~A} / \mathrm{s}$. We might, for example, uniformly reduce the current from 2.0 A to zero in 40 ms .
44. During periods of time when the current is varying linearly with time, Eq. 30-35 (in absolute values) becomes $|\varepsilon|=L|\Delta i / \Delta t|$. For simplicity, we omit the absolute value signs in the following.
(a) For $0<t<2 \mathrm{~ms}$

$$
\varepsilon=L \frac{\Delta i}{\Delta t}=\frac{(4.6 \mathrm{H})(7.0 \mathrm{~A}-0)}{2.0 \times 10^{-3} \mathrm{~s}}=1.6 \times 10^{4} \mathrm{~V}
$$

(b) For $2 \mathrm{~ms}<t<5 \mathrm{~ms}$

$$
\varepsilon=L \frac{\Delta i}{\Delta t}=\frac{(4.6 \mathrm{H})(5.0 \mathrm{~A}-7.0 \mathrm{~A})}{(5.0-2.0) 10^{-3} \mathrm{~s}}=3.1 \times 10^{3} \mathrm{~V}
$$

(c) For $5 \mathrm{~ms}<t<6 \mathrm{~ms}$

$$
\varepsilon=L \frac{\Delta i}{\Delta t}=\frac{(4.6 \mathrm{H})(0-5.0 \mathrm{~A})}{(6.0-5.0) 10^{-3} \mathrm{~s}}=2.3 \times 10^{4} \mathrm{~V}
$$

45. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is proportional to resistance. Since the (independent) voltages for series elements add ($V_{1}+$ V_{2}), then inductances in series must $a d d, L_{\text {eq }}=L_{1}+L_{2}$, just as was the case for resistances. Note that to ensure the independence of the voltage values, it is important that the inductors not be too close together (the related topic of mutual inductance is treated in $\S 30-12$). The requirement is that magnetic field lines from one inductor should not have significant presence in any other.
(b) Just as with resistors, $L_{\mathrm{eq}}=\sum_{n=1}^{N} L_{n}$.
46. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is proportional to resistance. Now, the (independent) voltages for parallel elements are equal $\left(V_{1}=V_{2}\right)$, and the currents (which are generally functions of time) add $\left(i_{1}(t)+i_{2}(t)\right.$ $=i(t)$). This leads to the Eq. 27-21 for resistors. We note that this condition on the currents implies

$$
\frac{d i_{1}(t)}{d t}+\frac{d i_{2}(t)}{d t}=\frac{d i(t)}{d t} .
$$

Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, as opposed to current itself, the conditions that led to the parallel resistor formula also applies to inductors. Therefore,

$$
\frac{1}{L_{\mathrm{eq}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}} .
$$

Note that to ensure the independence of the voltage values, it is important that the inductors not be too close together (the related topic of mutual inductance is treated in $\S 30-12$). The requirement is that the field of one inductor not have significant influence (or "coupling'") in the next.
(b) Just as with resistors, $\frac{1}{L_{\text {eq }}}=\sum_{n=1}^{N} \frac{1}{L_{n}}$.
47. Using the results from Problems 45 and 46, the equivalent resistance is

$$
\begin{aligned}
L_{\mathrm{eq}} & =L_{1}+L_{4}+L_{23}=L_{1}+L_{4}+\frac{L_{2} L_{3}}{L_{2}+L_{3}} \\
& =30.0 \mathrm{mH}+15.0 \mathrm{mH}+\frac{(50.0 \mathrm{mH})(20.0 \mathrm{mH})}{50.0 \mathrm{mH}+20.0 \mathrm{mH}} \\
& =59.3 \mathrm{mH}
\end{aligned}
$$

48. The steady state value of the current is also its maximum value, ε / R, which we denote as i_{m}. We are told that $i=i_{m} / 3$ at $t_{0}=5.00 \mathrm{~s}$. Eq. 30-41 becomes $i=i_{m}\left(1-e^{-t_{0} / \tau_{L}}\right)$ which leads to

$$
\tau_{L}=-\frac{t_{0}}{\ln \left(1-i / i_{m}\right)}=-\frac{5.00 \mathrm{~s}}{\ln (1-1 / 3)}=12.3 \mathrm{~s} .
$$

49. Starting with zero current at $t=0$ (the moment the switch is closed) the current in the circuit increases according to

$$
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right),
$$

where $\tau_{L}=L / R$ is the inductive time constant and ε is the battery emf. To calculate the time at which $i=0.9990 \varepsilon / R$, we solve for t :

$$
0.990 \frac{\varepsilon}{R}=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right) \Rightarrow \ln (0.0010)=-(t / \tau) \Rightarrow t / \tau_{L}=6.91 .
$$

50. (a) Immediately after the switch is closed $\varepsilon-\varepsilon_{L}=i R$. But $i=0$ at this instant, so $\varepsilon_{L}=$ \mathcal{E}, or $\varepsilon_{L} / \mathcal{E}=1.00$
(b) $\varepsilon_{L}(t)=\varepsilon e^{-t / \tau_{L}}=\varepsilon e^{-2.0 \tau_{L} / \tau_{L}}=\varepsilon e^{-2.0}=0.135 \varepsilon$, or $\varepsilon_{L} / \varepsilon=0.135$.
(c) From $\varepsilon_{L}(t)=\varepsilon e^{-t / \tau_{L}}$ we obtain

$$
\frac{t}{\tau_{L}}=\ln \left(\frac{\varepsilon}{\varepsilon_{L}}\right)=\ln 2 \Rightarrow t=\tau_{L} \ln 2=0.693 \tau_{L} \quad \Rightarrow \quad t / \tau_{L}=0.693
$$

51. The current in the circuit is given by $i=i_{0} e^{-t / \tau_{L}}$, where i_{0} is the current at time $t=0$ and τ_{L} is the inductive time constant (L / R). We solve for τ_{L}. Dividing by i_{0} and taking the natural logarithm of both sides, we obtain

$$
\ln \left(\frac{i}{i_{0}}\right)=-\frac{t}{\tau_{L}}
$$

This yields

$$
\tau_{L}=-\frac{t}{\ln \left(i / i_{0}\right)}=-\frac{1.0 \mathrm{~s}}{\ln \left(\left(10 \times 10^{-3} \mathrm{~A}\right) /(1.0 \mathrm{~A})\right)}=0.217 \mathrm{~s}
$$

Therefore, $R=L / \tau_{L}=10 \mathrm{H} / 0.217 \mathrm{~s}=46 \Omega$.
52. (a) The inductor prevents a fast build-up of the current through it, so immediately after the switch is closed, the current in the inductor is zero. It follows that

$$
i_{1}=\frac{\varepsilon}{R_{1}+R_{2}}=\frac{100 \mathrm{~V}}{10.0 \Omega+20.0 \Omega}=3.33 \mathrm{~A} .
$$

(b) $i_{2}=i_{1}=3.33 \mathrm{~A}$.
(c) After a suitably long time, the current reaches steady state. Then, the emf across the inductor is zero, and we may imagine it replaced by a wire. The current in R_{3} is $i_{1}-i_{2}$. Kirchhoff's loop rule gives

$$
\varepsilon-i_{1} R_{1}-i_{2} R_{2}=0 \quad \text { and } \quad \varepsilon-i_{1} R_{1}-\left(i_{1}-i_{2}\right) R_{3}=0
$$

We solve these simultaneously for i_{1} and i_{2}, and find

$$
\begin{aligned}
i_{1} & =\frac{\varepsilon\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=\frac{(100 \mathrm{~V})(20.0 \Omega+30.0 \Omega)}{(10.0 \Omega)(20.0 \Omega)+(10.0 \Omega)(30.0 \Omega)+(20.0 \Omega)(30.0 \Omega)} \\
& =4.55 \mathrm{~A},
\end{aligned}
$$

(d) and

$$
\begin{aligned}
i_{2} & =\frac{\varepsilon R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=\frac{(100 \mathrm{~V})(30.0 \Omega)}{(10.0 \Omega)(20.0 \Omega)+(10.0 \Omega)(30.0 \Omega)+(20.0 \Omega)(30.0 \Omega)} \\
& =2.73 \mathrm{~A} .
\end{aligned}
$$

(e) The left-hand branch is now broken. We take the current (immediately) as zero in that branch when the switch is opened (that is, $i_{1}=0$).
(f) The current in R_{3} changes less rapidly because there is an inductor in its branch. In fact, immediately after the switch is opened it has the same value that it had before the switch was opened. That value is $4.55 \mathrm{~A}-2.73 \mathrm{~A}=1.82 \mathrm{~A}$. The current in R_{2} is the same but in the opposite direction as that in R_{3}, i.e., $i_{2}=-1.82 \mathrm{~A}$.

A long time later after the switch is reopened, there are no longer any sources of emf in the circuit, so all currents eventually drop to zero. Thus,
(g) $i_{1}=0$, and
(h) $i_{2}=0$.
53. (a) If the battery is switched into the circuit at $t=0$, then the current at a later time t is given by

$$
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right),
$$

where $\tau_{L}=L / R$. Our goal is to find the time at which $i=0.800 \varepsilon / R$. This means

$$
0.800=1-e^{-t / \tau_{L}} \Rightarrow e^{-t / \tau_{L}}=0.200
$$

Taking the natural logarithm of both sides, we obtain $-\left(t / \tau_{L}\right)=\ln (0.200)=-1.609$. Thus

$$
t=1.609 \tau_{L}=\frac{1.609 L}{R}=\frac{1.609\left(6.30 \times 10^{-6} \mathrm{H}\right)}{1.20 \times 10^{3} \Omega}=8.45 \times 10^{-9} \mathrm{~s} .
$$

(b) At $t=1.0 \tau_{L}$ the current in the circuit is

$$
i=\frac{\varepsilon}{R}\left(1-e^{-1.0}\right)=\left(\frac{14.0 \mathrm{~V}}{1.20 \times 10^{3} \Omega}\right)\left(1-e^{-1.0}\right)=7.37 \times 10^{-3} \mathrm{~A} .
$$

54. From the graph we get $\Phi / i=2 \times 10^{-4}$ in SI units. Therefore, with $N=25$, we find the self-inductance is $L=N \Phi / i=5 \times 10^{-3} \mathrm{H}$. From the derivative of Eq. 30-41 (or a combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the battery emf)

$$
\frac{d i}{d t}=\frac{\mathrm{V}}{R} \frac{R}{L} e^{-t / \tau_{L}}=\frac{\mathrm{V}}{L} e^{-t / \tau_{L}}=7.1 \times 10^{2} \mathrm{~A} / \mathrm{s} .
$$

55. Applying the loop theorem

$$
\varepsilon-L\left(\frac{d i}{d t}\right)=i R
$$

we solve for the (time-dependent) emf, with SI units understood:

$$
\begin{aligned}
\varepsilon & =L \frac{d i}{d t}+i R=L \frac{d}{d t}(3.0+5.0 t)+(3.0+5.0 t) R=(6.0)(5.0)+(3.0+5.0 t)(4.0) \\
& =(42+20 t)
\end{aligned}
$$

56. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its outer radius. Since it has a square cross section, $h=b-a=0.12 \mathrm{~m}-0.10 \mathrm{~m}=0.02 \mathrm{~m}$. We derive the flux using Eq. 29-24 and the self-inductance using Eq. 30-33:

$$
\Phi_{B}=\int_{a}^{b} B d A=\int_{a}^{b}\left(\frac{\mu_{0} N i}{2 \pi r}\right) h d r=\frac{\mu_{0} N i h}{2 \pi} \ln \left(\frac{b}{a}\right)
$$

and

$$
L=N \Phi_{B} / i=\left(\mu_{0} N^{2} h / 2 \pi\right) \ln (b / a) .
$$

Now, since the inner circumference of the toroid is $l=2 \pi a=2 \pi(10 \mathrm{~cm}) \approx 62.8 \mathrm{~cm}$, the number of turns of the toroid is roughly $N \approx 62.8 \mathrm{~cm} / 1.0 \mathrm{~mm}=628$. Thus

$$
L=\frac{\mu_{0} N^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right) \approx \frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(628)^{2}(0.02 \mathrm{~m})}{2 \pi} \ln \left(\frac{12}{10}\right)=2.9 \times 10^{-4} \mathrm{H} .
$$

(b) Noting that the perimeter of a square is four times its sides, the total length ℓ of the wire is $\ell=(628) 4(2.0 \mathrm{~cm})=50 \mathrm{~m}$, the resistance of the wire is

$$
R=(50 \mathrm{~m})(0.02 \Omega / \mathrm{m})=1.0 \Omega .
$$

Thus

$$
\tau_{L}=\frac{L}{R}=\frac{2.9 \times 10^{-4} \mathrm{H}}{1.0 \Omega}=2.9 \times 10^{-4} \mathrm{~s}
$$

57. (a) We assume i is from left to right through the closed switch. We let i_{1} be the current in the resistor and take it to be downward. Let i_{2} be the current in the inductor, also assumed downward. The junction rule gives $i=i_{1}+i_{2}$ and the loop rule gives $i_{1} R-$ $L\left(d i_{2} / d t\right)=0$. According to the junction rule, $\left(d i_{1} / d t\right)=-\left(d i_{2} / d t\right)$. We substitute into the loop equation to obtain

$$
L \frac{d i_{1}}{d t}+i_{1} R=0
$$

This equation is similar to Eq. 30-46, and its solution is the function given as Eq. 30-47:

$$
i_{1}=i_{0} e^{-R t / L}
$$

where i_{0} is the current through the resistor at $t=0$, just after the switch is closed. Now just after the switch is closed, the inductor prevents the rapid build-up of current in its branch, so at that moment $i_{2}=0$ and $i_{1}=i$. Thus $i_{0}=i$, so

$$
i_{1}=i e^{-R t / L} \quad \text { and } \quad i_{2}=i-i_{1}=i\left(1-e^{-R t / L}\right)
$$

(b) When $i_{2}=i_{1}$,

$$
e^{-R t / L}=1-e^{-R t / L} \Rightarrow e^{-R t / L}=\frac{1}{2} .
$$

Taking the natural logarithm of both sides (and using $\ln (1 / 2)=-\ln 2$) we obtain

$$
\left(\frac{R t}{L}\right)=\ln 2 \Rightarrow t=\frac{L}{R} \ln 2
$$

58. Let $U_{B}(t)=\frac{1}{2} L i^{2}(t)$. We require the energy at time t to be half of its final value: $U(t)=\frac{1}{2} U_{B}(t \rightarrow \infty)=\frac{1}{4} L i_{f}^{2}$. This gives $i(t)=i_{f} / \sqrt{2}$. But $i(t)=i_{f}\left(1-e^{-t / \tau_{L}}\right)$, so

$$
1-e^{-t / \tau_{L}}=\frac{1}{\sqrt{2}} \quad \Rightarrow \quad \frac{t}{\tau_{L}}=-\ln \left(1-\frac{1}{\sqrt{2}}\right)=1.23
$$

59. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the inductor is

$$
\frac{d U_{B}}{d t}=\frac{d\left(\frac{1}{2} L i^{2}\right)}{d t}=L i \frac{d i}{d t}=L\left(\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right)\right)\left(\frac{\varepsilon}{R} \frac{1}{\tau_{L}} e^{-t / \tau_{L}}\right)=\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right) e^{-t / \tau_{L}}
$$

where $\tau_{L}=L / R$ has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal energy is

$$
P_{\text {thermal }}=i^{2} R=\frac{\varepsilon^{2}}{R^{2}}\left(1-e^{-t / \tau_{L}}\right)^{2} R=\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right)^{2} .
$$

We equate this to $d U_{B} / d t$, and solve for the time:

$$
\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right)^{2}=\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right) e^{-t / \tau_{L}} \Rightarrow t=\tau_{L} \ln 2=(37.0 \mathrm{~ms}) \ln 2=25.6 \mathrm{~ms}
$$

60. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the inductor is

$$
\frac{d U_{B}}{d t}=\frac{d\left(\frac{1}{2} L i^{2}\right)}{d t}=L i \frac{d i}{d t}=L\left(\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right)\right)\left(\frac{\varepsilon}{R} \frac{1}{\tau_{L}} e^{-t / \tau_{L}}\right)=\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right) e^{-t / \tau_{L}} .
$$

Now,

$$
\tau_{L}=L / R=2.0 \mathrm{H} / 10 \Omega=0.20 \mathrm{~s}
$$

and $\mathcal{E}=100 \mathrm{~V}$, so the above expression yields $d U_{B} / d t=2.4 \times 10^{2} \mathrm{~W}$ when $t=0.10 \mathrm{~s}$.
(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal energy is

$$
P_{\text {thermal }}=i^{2} R=\frac{\varepsilon^{2}}{R^{2}}\left(1-e^{-t / \tau_{L}}\right)^{2} R=\frac{\varepsilon^{2}}{R}\left(1-e^{-t / \tau_{L}}\right)^{2} .
$$

At $t=0.10 \mathrm{~s}$, this yields $P_{\text {thermal }}=1.5 \times 10^{2} \mathrm{~W}$.
(c) By energy conservation, the rate of energy being supplied to the circuit by the battery is

$$
P_{\text {battery }}=P_{\text {thermal }}+\frac{d U_{B}}{d t}=3.9 \times 10^{2} \mathrm{~W} .
$$

We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 3041).
61. (a) If the battery is applied at time $t=0$ the current is given by

$$
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right),
$$

where ε is the emf of the battery, R is the resistance, and τ_{L} is the inductive time constant (L / R). This leads to

$$
e^{-t / \tau_{L}}=1-\frac{i R}{\varepsilon} \Rightarrow-\frac{t}{\tau_{L}}=\ln \left(1-\frac{i R}{\varepsilon}\right)
$$

Since

$$
\ln \left(1-\frac{i R}{\varepsilon}\right)=\ln \left[1-\frac{\left(2.00 \times 10^{-3} \mathrm{~A}\right)\left(10.0 \times 10^{3} \Omega\right)}{50.0 \mathrm{~V}}\right]=-0.5108
$$

the inductive time constant is

$$
\tau_{L}=t / 0.5108=\left(5.00 \times 10^{-3} \mathrm{~s}\right) / 0.5108=9.79 \times 10^{-3} \mathrm{~s}
$$

and the inductance is

$$
L=\tau_{L} R=\left(9.79 \times 10^{-3} \mathrm{~s}\right)\left(10.0 \times 10^{3} \Omega\right)=97.9 \mathrm{H}
$$

(b) The energy stored in the coil is

$$
U_{B}=\frac{1}{2} L i^{2}=\frac{1}{2}(97.9 \mathrm{H})\left(2.00 \times 10^{-3} \mathrm{~A}\right)^{2}=1.96 \times 10^{-4} \mathrm{~J} .
$$

62. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 30-41 for the current):

$$
\begin{aligned}
\int_{0}^{t} P_{\text {battery }} d t & =\int_{0}^{t} \frac{\varepsilon^{2}}{R}\left(1-e^{-R t / L}\right) d t=\frac{\varepsilon^{2}}{R}\left[t+\frac{L}{R}\left(e^{-R t / L}-1\right)\right] \\
& =\frac{(10.0 \mathrm{~V})^{2}}{6.70 \Omega}\left[2.00 \mathrm{~s}+\frac{(5.50 \mathrm{H})\left(e^{-(6.70 \Omega)(2.00 \mathrm{~s}) / 5.50 \mathrm{H}}-1\right)}{6.70 \Omega}\right] \\
& =18.7 \mathrm{~J} .
\end{aligned}
$$

(b) The energy stored in the magnetic field is given by Eq. 30-49:

$$
\begin{aligned}
U_{B} & =\frac{1}{2} L i^{2}(t)=\frac{1}{2} L\left(\frac{\varepsilon}{R}\right)^{2}\left(1-e^{-R t / L}\right)^{2} \\
& =\frac{1}{2}(5.50 \mathrm{H})\left(\frac{10.0 \mathrm{~V}}{6.70 \Omega}\right)^{2}\left[1-e^{-(6.70 \Omega)(2.00 \mathrm{~s}) / 5.50 \mathrm{H}}\right]^{2} \\
& =5.10 \mathrm{~J} .
\end{aligned}
$$

(c) The difference of the previous two results gives the amount "lost" in the resistor:
$18.7 \mathrm{~J}-5.10 \mathrm{~J}=13.6 \mathrm{~J}$.
63. (a) At any point the magnetic energy density is given by $u_{B}=B^{2} / 2 \mu_{0}$, where B is the magnitude of the magnetic field at that point. Inside a solenoid $B=\mu_{0} n i$, where n, for the solenoid of this problem, is $(950$ turns $) /(0.850 \mathrm{~m})=1.118 \times 10^{3} \mathrm{~m}^{-1}$. The magnetic energy density is

$$
u_{B}=\frac{1}{2} \mu_{0} n^{2} i^{2}=\frac{1}{2}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.118 \times 10^{3} \mathrm{~m}^{-1}\right)^{2}(6.60 \mathrm{~A})^{2}=34.2 \mathrm{~J} / \mathrm{m}^{3}
$$

(b) Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in the field is $U_{B}=u_{B}$, where is the volume of the solenoid. is calculated as the product of the cross-sectional area and the length. Thus

$$
U_{B}=\left(34.2 \mathrm{~J} / \mathrm{m}^{3}\right)\left(17.0 \times 10^{-4} \mathrm{~m}^{2}\right)(0.850 \mathrm{~m})=4.94 \times 10^{-2} \mathrm{~J}
$$

64. The magnetic energy stored in the toroid is given by $U_{B}=\frac{1}{2} L i^{2}$, where L is its inductance and i is the current. By Eq. 30-54, the energy is also given by $U_{B}=u_{B}$, where u_{B} is the average energy density and is the volume. Thus

$$
i=\sqrt{\frac{2 u_{B}}{L}}=\sqrt{\frac{2\left(70.0 \mathrm{~J} / \mathrm{m}^{3}\right)\left(0.0200 \mathrm{~m}^{3}\right)}{90.0 \times 10^{-3} \mathrm{H}}}=5.58 \mathrm{~A} .
$$

65. We set $u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}=u_{B}=\frac{1}{2} B^{2} / \mu_{0}$ and solve for the magnitude of the electric field:

$$
E=\frac{B}{\sqrt{\varepsilon_{0} \mu_{0}}}=\frac{0.50 \mathrm{~T}}{\sqrt{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)}}=1.5 \times 10^{8} \mathrm{~V} / \mathrm{m}
$$

66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is

$$
B=\frac{\mu_{0} i}{2 R}=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(100 \mathrm{~A})}{2\left(50 \times 10^{-3} \mathrm{~m}\right)}=1.3 \times 10^{-3} \mathrm{~T}
$$

(b) The energy per unit volume in the immediate vicinity of the center of the loop is

$$
u_{B}=\frac{B^{2}}{2 \mu_{0}}=\frac{\left(1.3 \times 10^{-3} \mathrm{~T}\right)^{2}}{2\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)}=0.63 \mathrm{~J} / \mathrm{m}^{3} .
$$

67. (a) The energy per unit volume associated with the magnetic field is

$$
u_{B}=\frac{B^{2}}{2 \mu_{0}}=\frac{1}{2 \mu_{0}}\left(\frac{\mu_{0} i}{2 R}\right)^{2}=\frac{\mu_{0} i^{2}}{8 R^{2}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(10 \mathrm{~A})^{2}}{8\left(2.5 \times 10^{-3} \mathrm{~m} / 2\right)^{2}}=1.0 \mathrm{~J} / \mathrm{m}^{3} .
$$

(b) The electric energy density is

$$
\begin{aligned}
u_{E} & =\frac{1}{2} \varepsilon_{0} E^{2}=\frac{\varepsilon_{0}}{2}(\rho J)^{2}=\frac{\varepsilon_{0}}{2}\left(\frac{i R}{\ell}\right)^{2}=\frac{1}{2}\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left[(10 \mathrm{~A})\left(3.3 \Omega / 10^{3} \mathrm{~m}\right)\right]^{2} \\
& =4.8 \times 10^{-15} \mathrm{~J} / \mathrm{m}^{3}
\end{aligned}
$$

Here we used $J=i / A$ and $R=\rho \ell / A$ to obtain $\rho J=i R / \ell$.
68. We use $\varepsilon_{2}=-M d i_{1} / d t \approx M|\Delta i / \Delta t|$ to find M :

$$
M=\left|\frac{\varepsilon}{\Delta i_{1} / \Delta t}\right|=\frac{30 \times 10^{3} \mathrm{~V}}{6.0 \mathrm{~A} /\left(2.5 \times 10^{-3} \mathrm{~s}\right)}=13 \mathrm{H}
$$

69. (a) Eq. 30-65 yields

$$
M=\frac{\varepsilon_{1}}{\left|d i_{2} / d t\right|}=\frac{25.0 \mathrm{mV}}{15.0 \mathrm{~A} / \mathrm{s}}=1.67 \mathrm{mH}
$$

(b) Eq. 30-60 leads to

$$
N_{2} \Phi_{21}=M i_{1}=(1.67 \mathrm{mH})(3.60 \mathrm{~A})=6.00 \mathrm{mWb} .
$$

70. (a) The flux in coil 1 is

$$
\frac{L_{1} i_{1}}{N_{1}}=\frac{(25 \mathrm{mH})(6.0 \mathrm{~mA})}{100}=1.5 \mu \mathrm{~Wb}
$$

(b) The magnitude of the self-induced emf is

$$
L_{1} \frac{d i_{1}}{d t}=(25 \mathrm{mH})(4.0 \mathrm{~A} / \mathrm{s})=1.0 \times 10^{2} \mathrm{mV}
$$

(c) In coil 2, we find

$$
\Phi_{21}=\frac{M i_{1}}{N_{2}}=\frac{(3.0 \mathrm{mH})(6.0 \mathrm{~mA})}{200}=90 \mathrm{nWb} .
$$

(d) The mutually induced emf is

$$
\varepsilon_{21}=M \frac{d i_{1}}{d t}=(3.0 \mathrm{mH})(4.0 \mathrm{~A} / \mathrm{s})=12 \mathrm{mV} .
$$

71. (a) We assume the current is changing at (nonzero) rate $d i / d t$ and calculate the total emf across both coils. First consider the coil 1 . The magnetic field due to the current in that coil points to the right. The magnetic field due to the current in coil 2 also points to the right. When the current increases, both fields increase and both changes in flux contribute emf's in the same direction. Thus, the induced emf's are

$$
\varepsilon_{1}=-\left(L_{1}+M\right) \frac{d i}{d t} \text { and } \varepsilon_{2}=-\left(L_{2}+M\right) \frac{d i}{d t} .
$$

Therefore, the total emf across both coils is

$$
\varepsilon=\varepsilon_{1}+\varepsilon_{2}=-\left(L_{1}+L_{2}+2 M\right) \frac{d i}{d t}
$$

which is exactly the emf that would be produced if the coils were replaced by a single coil with inductance $L_{\text {eq }}=L_{1}+L_{2}+2 M$.
(b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather than the front (as pictured in the diagram). Then the field produced by coil 2 at the site of coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite signs. An increasing current in coil 1 tends to increase the flux in that coil, but an increasing current in coil 2 tends to decrease it. The emf across coil 1 is

$$
\varepsilon_{1}=-\left(L_{1}-M\right) \frac{d i}{d t}
$$

Similarly, the emf across coil 2 is

$$
\varepsilon_{2}=-\left(L_{2}-M\right) \frac{d i}{d t}
$$

The total emf across both coils is

$$
\varepsilon=-\left(L_{1}+L_{2}-2 M\right) \frac{d i}{d t} .
$$

This the same as the emf that would be produced by a single coil with inductance

$$
L_{\mathrm{eq}}=L_{1}+L_{2}-2 M .
$$

72. The coil-solenoid mutual inductance is

$$
M=M_{c s}=\frac{N \Phi_{c s}}{i_{s}}=\frac{N\left(\mu_{0} i_{s} n \pi R^{2}\right)}{i_{s}}=\mu_{0} \pi R^{2} n N .
$$

As long as the magnetic field of the solenoid is entirely contained within the cross-section of the coil we have $\Phi_{s c}=B_{s} A_{s}=B_{s} \pi R^{2}$, regardless of the shape, size, or possible lack of close-packing of the coil.
73. The flux over the loop cross section due to the current i in the wire is given by

$$
\Phi=\int_{a}^{a+b} B_{\mathrm{wire}} l d r=\int_{a}^{a+b} \frac{\mu_{0} i l}{2 \pi r} d r=\frac{\mu_{0} i l}{2 \pi} \ln \left(1+\frac{b}{a}\right) .
$$

Thus,

$$
M=\frac{N \Phi}{i}=\frac{N \mu_{0} l}{2 \pi} \ln \left(1+\frac{b}{a}\right) .
$$

From the formula for M obtained above, we have

$$
M=\frac{(100)\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(0.30 \mathrm{~m})}{2 \pi} \ln \left(1+\frac{8.0}{1.0}\right)=1.3 \times 10^{-5} \mathrm{H}
$$

74. (a) The current is given by Eq. 30-41

$$
i=(\varepsilon / R)\left(1-e^{-t / \tau_{L}}\right)=2.00 \mathrm{~A} \text {, }
$$

where $L=0.018 \mathrm{H}$ and $\varepsilon=12 \mathrm{~V}$. If $R=1.00 \Omega$ (so $\tau_{L}=L / R=0.018 \mathrm{~s}$), we obtain $t=$ 0.00328 s when we solve this equation.
(b) For $R=5.00 \Omega$ we find $t=0.00645 \mathrm{~s}$.
(c) If we set $R=6.00 \Omega$ then $\varepsilon / R=2.00 \mathrm{~A}$ so $e^{-t / \tau_{L}}=0$, which means $t=\infty$.
(d) The trend in our answers to parts (a), (b) and (c) lead us to expect the smaller the resistance then the smaller to value of t. If we consider what happens to Eq. 30-39 in the extreme case where $R \rightarrow 0$, we find that the time-derivative of the current becomes equal to the emf divided by the self-inductance, which leads to a linear dependence of current on time: $i=(\varepsilon / L) t$. In fact, this is what one have obtained starting from Eq. 30-41 and considering its $R \rightarrow 0$ limit. Thus, this case seems self-consistent, so we conclude that it is meaningful and that $R=0$ is actually a valid answer here.
(e) Thus $t=L i / \varepsilon=0.00300 \mathrm{~s}$ in this "least-time" scenario.
75. Faraday's law (for a single turn, with B changing in time) gives

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-A \frac{d B}{d t}=-\pi r^{2} \frac{d B}{d t} .
$$

In this problem, we find $\frac{d B}{d t}=-\frac{B_{0}}{\tau} \mathrm{e}^{-t / \tau}$. Thus, $\varepsilon=\pi r^{2} \frac{B_{0}}{\tau} \mathrm{e}^{-t / \tau}$.
76. From the datum at $t=0$ in Fig. 30-69(b) we see $0.0015 \mathrm{~A}=\mathrm{V}_{\text {battery }} / R$, which implies that the resistance is $R=(6 \mu \mathrm{~V}) /(0.0015 \mathrm{~A})=0.004 \Omega$. Now, the value of the current during $10 \mathrm{~s}<t<20 \mathrm{~s}$ leads us to equate $\left(\mathrm{V}_{\text {battery }}+\mathcal{E}_{\text {nduced }}\right) / R=0.0005 \mathrm{~A}$. This shows that the induced emf is $\varepsilon_{\text {induced }}=-4 \mu \mathrm{~V}$. Now we use Faraday's law:

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-A \frac{d B}{d t}=-A a .
$$

Plugging in $\varepsilon=-4 \times 10^{-6} \mathrm{~V}$ and $A=5 \times 10^{-4} \mathrm{~m}^{2}$, we obtain $a=0.0080 \mathrm{~T} / \mathrm{s}$.
77. Using Ohm's law, we relate the induced current to the emf and (the absolute value of) Faraday's law:

$$
i=\varepsilon / R=\frac{1}{R} \frac{d \Phi_{B}}{d t}
$$

As the loop is crossing the boundary between regions 1 and 2 (so that " x " amount of its length is in region 2 while " $D-x$ " amount of its length remains in region 1) the flux is

$$
\Phi_{B}=x H B_{2}+(D-x) H B_{1}=D H B_{1}+x H\left(B_{2}-B_{1}\right)
$$

which means

$$
\frac{d \Phi_{B}}{d t}=\frac{d x}{d t} H\left(B_{2}-B_{1}\right)=v H\left(B_{2}-B_{1}\right) \Rightarrow \quad i=v H\left(B_{2}-B_{1}\right) / R
$$

Similar considerations hold (replacing " B_{1} " with 0 and " B_{2} " with B_{1}) for the loop crossing initially from the zero-field region (to the left of Fig. 30-70(a)) into region 1.
(a) In this latter case, appeal to Fig. 30-70(b) leads to

$$
3.0 \times 10^{-6} \mathrm{~A}=(0.40 \mathrm{~m} / \mathrm{s})(0.015 \mathrm{~m}) B_{1} /(0.020 \Omega)
$$

which yields $B_{1}=10 \mu \mathrm{~T}$.
(b) Lenz's law considerations lead us to conclude that the direction of the region 1 field is out of the page.
(c) Similarly, $i=\mathrm{v} H\left(B_{2}-B_{1}\right) / R$ leads to $\overrightarrow{B_{2}}=3.3 \mu \mathrm{~T}$,
(d) The direction of $\overrightarrow{B_{2}}$ is out of the page.
78. The energy stored when the current is i is

$$
U_{B}=\frac{1}{2} L i^{2}
$$

where L is the self-inductance. The rate at which this is developed is

$$
\frac{d U_{B}}{d t}=L i \frac{d i}{d t}
$$

where i is given by Eq. 30-41 and $\mathrm{d} /$ dt is gotten by taking the derivative of that equation (or by using Eq. 30-37). Thus, using the symbol V to stand for the battery voltage (12.0 volts) and R for the resistance (20.0Ω), we have

$$
\frac{d U_{B}}{d t}=\frac{\mathrm{V}^{2}}{R}\left(1-e^{-t / \tau_{L}}\right) e^{-t / \tau_{L}}=1.15 \mathrm{~W}
$$

79. (a) Before the fuse blows, the current through the resistor remains zero. We apply the loop theorem to the battery-fuse-inductor loop: $\varepsilon-L d i / d t=0$. So $i=\varepsilon t / L$. As the fuse blows at $t=t_{0}, i=i_{0}=3.0 \mathrm{~A}$. Thus,

$$
t_{0}=\frac{i_{0} L}{\varepsilon}=\frac{(3.0 \mathrm{~A})(5.0 \mathrm{H})}{10 \mathrm{~V}}=1.5 \mathrm{~s} .
$$

(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15.
80. Since $A=\ell^{2}$, we have $d A / d t=2 \ell d \ell / d t$. Thus, Faraday's law, with $N=1$, becomes (in absolute value)

$$
\varepsilon=\frac{d \Phi_{B}}{d t}=B \frac{d A}{d t}=2 \ell B \frac{d \ell}{d t}
$$

which yields $\varepsilon=0.0029 \mathrm{~V}$.
81. We write $i=i_{0} e^{-t / \tau_{L}}$ and note that $i=10 \% i_{0}$. We solve for t :

$$
t=\tau_{L} \ln \left(\frac{i_{0}}{i}\right)=\frac{L}{R} \ln \left(\frac{i_{0}}{i}\right)=\frac{2.00 \mathrm{H}}{3.00 \Omega} \ln \left(\frac{i_{0}}{0.100 i_{0}}\right)=1.54 \mathrm{~s} \mathrm{.}
$$

82. It is important to note that the x that is used in the graph of Fig. 30-72(b) is not the x at which the energy density is being evaluated. The x in Fig. 30-72(b) is the location of wire 2 . The energy density (Eq. 30-54) is being evaluated at the coordinate origin throughout this problem. We note the curve in Fig. 30-72(b) has a zero; this implies that the magnetic fields (caused by the individual currents) are in opposite directions (at the origin), which further implies that the currents have the same direction. Since the magnitudes of the fields must be equal (for them to cancel) when the x of Fig. 30-72(b) is equal to 0.20 m , then we have (using Eq. 29-4) $B_{1}=B_{2}$, or

$$
\frac{\mu_{\mathrm{o}} i_{1}}{2 \pi d}=\frac{\mu_{\mathrm{o}} i_{2}}{2 \pi(0.20 \mathrm{~m})}
$$

which leads to $d=\frac{1}{3}(0.20 \mathrm{~m})$ once we substitute $i_{1}=\frac{1}{3} i_{2}$ and simplify. We can also use the given fact that when the energy density is completely caused by B_{1} (this occurs when x becomes infinitely large because then $B_{2}=0$) its value is $u_{B}=1.96 \times 10^{-9}$ (in SI units) in order to solve for B_{1} :

$$
B_{1}=\sqrt{2 \mu_{\mathrm{o}} u_{B}} .
$$

(a) This combined with $B_{1}=\frac{\mu_{0} i_{1}}{2 \pi d}$ allows us to find wire 1's current: $i_{1} \approx 23 \mathrm{~mA}$.
(b) Since $i_{2}=3 i_{1}$ then $i_{2}=70 \mathrm{~mA}$ (approximately).
83. (a) As the switch closes at $t=0$, the current being zero in the inductor serves as an initial condition for the building-up of current in the circuit. Thus, at $t=0$ any current through the battery is also that through the 20Ω and 10Ω resistors. Hence,

$$
i=\frac{\varepsilon}{30 \Omega}=0.40 \mathrm{~A}
$$

which results in a voltage drop across the 10Ω resistor equal to $(0.40)(10)=4.0 \mathrm{~V}$. The inductor must have this same voltage across it $\left|\varepsilon_{L}\right|$, and we use (the absolute value of) Eq. 30-35:

$$
\frac{d i}{d t}=\frac{\left|\varepsilon_{L}\right|}{L}=\frac{4.0}{0.010}=400 \mathrm{~A} / \mathrm{s}
$$

(b) Applying the loop rule to the outer loop, we have

$$
\mathcal{E}-(0.50 \mathrm{~A})(20 \Omega)-\left|\varepsilon_{L}\right|=0 .
$$

Therefore, $\left|\varepsilon_{L}\right|=2.0 \mathrm{~V}$, and Eq. 30-35 leads to

$$
\frac{d i}{d t}=\frac{\left|\varepsilon_{L}\right|}{L}=\frac{2.0}{0.010}=200 \mathrm{~A} / \mathrm{s}
$$

(c) As $t \rightarrow \infty$, the inductor has $\varepsilon_{L}=0$ (since the current is no longer changing). Thus, the loop rule (for the outer loop) leads to

$$
\varepsilon-i(20 \Omega)-\left|\varepsilon_{L}\right|=0 \Rightarrow i=0.60 \mathrm{~A}
$$

84. (a) From Eq. 30-35, we find $L=(3.00 \mathrm{mV}) /(5.00 \mathrm{~A} / \mathrm{s})=0.600 \mathrm{mH}$.
(b) Since $N \Phi=i L$ (where $\Phi=40.0 \mu \mathrm{~Wb}$ and $i=8.00 \mathrm{~A}$), we obtain $N=120$.
85. (a) The magnitude of the average induced emf is

$$
\varepsilon_{\mathrm{avg}}=\left|\frac{-d \Phi_{B}}{d t}\right|=\left|\frac{\Delta \Phi_{B}}{\Delta t}\right|=\frac{B A_{i}}{t}=\frac{(2.0 \mathrm{~T})(0.20 \mathrm{~m})^{2}}{0.20 \mathrm{~s}}=0.40 \mathrm{~V}
$$

(b) The average induced current is

$$
i_{\mathrm{avg}}=\frac{\varepsilon_{\mathrm{avg}}}{R}=\frac{0.40 \mathrm{~V}}{20 \times 10^{-3} \Omega}=20 \mathrm{~A} .
$$

86. In absolute value, Faraday's law (for a single turn, with B changing in time) gives

$$
\frac{d \Phi_{B}}{d t}=A \frac{d B}{d t}=\pi R^{2} \frac{d B}{d t}
$$

for the magnitude of the induced emf. Dividing it by R^{2} then allows us to relate this to the slope of the graph in Fig. 30-74(b) [particularly the first part of the graph], which we estimate to be $80 \mu \mathrm{~V} / \mathrm{m}^{2}$.
(a) Thus, $\frac{d B_{1}}{d t}=\left(80 \mu \mathrm{~V} / \mathrm{m}^{2}\right) / \pi \approx 25 \mu \mathrm{~T} / \mathrm{s}$.
(b) Similar reasoning for region 2 (corresponding to the slope of the second part of the graph in Fig. 30-74(b)) leads to an emf equal to

$$
\pi r_{1}^{2}\left(\frac{d B_{1}}{d t}-\frac{d B_{2}}{d t}\right)+\pi R^{2} \frac{d B_{2}}{d t}
$$

which means the second slope (which we estimate to be $40 \mu \mathrm{~V} / \mathrm{m}^{2}$) is equal to $\pi \frac{d B_{2}}{d t}$. Therefore, $\frac{d B_{2}}{d t}=\left(40 \mu \mathrm{~V} / \mathrm{m}^{2}\right) / \pi \approx 13 \mu \mathrm{~T} / \mathrm{s}$.
(c) Considerations of Lenz's law leads to the conclusion that B_{2} is increasing.
87. The induced electric field E as a function of r is given by $E(r)=(r / 2)(d B / d t)$.
(a) The acceleration of the electron released at point a is

$$
\vec{a}_{a}=\frac{e E}{m} \hat{\mathrm{i}}=\frac{e r}{2 m}\left(\frac{d B}{d t}\right) \hat{\mathrm{i}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(5.0 \times 10^{-2} \mathrm{~m}\right)\left(10 \times 10^{-3} \mathrm{~T} / \mathrm{s}\right)}{2\left(9.11 \times 10^{-27} \mathrm{~kg}\right)} \hat{\mathrm{i}}=\left(4.4 \times 10^{7} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}
$$

(b) At point b we have $a_{b} \propto r_{b}=0$.
(c) The acceleration of the electron released at point c is

$$
\vec{a}_{c}=-\vec{a}_{a}=-\left(4.4 \times 10^{7} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}
$$

88. Because of the decay of current (Eq. 30-45) that occurs after the switches are closed on B, the flux will decay according to

$$
\Phi_{1}=\Phi_{10} e^{-t / \tau_{L 1}}, \Phi_{2}=\Phi_{20} e^{-t / \tau_{L 2}} .
$$

where each time-constant is given by Eq. 30-42. Setting the fluxes equal to each other and solving for time leads to

$$
t=\frac{\ln \left(\frac{\Phi_{20}}{\Phi_{10}}\right)}{\frac{R_{2}}{L_{2}}-\frac{R_{1}}{L_{1}}}=\frac{\ln (1.5)}{\frac{30}{0.003}-\frac{25}{0.005}} .
$$

Thus, $t=81.1 \mu \mathrm{~s}$.
89. (a) When switch S is just closed, $V_{1}=\varepsilon$ and $i_{1}=\varepsilon / R_{1}=10 \mathrm{~V} / 5.0 \Omega=2.0 \mathrm{~A}$.
(b) Since now $\varepsilon_{L}=\varepsilon$, we have $i_{2}=0$.
(c) $i_{s}=i_{1}+i_{2}=2.0 \mathrm{~A}+0=2.0 \mathrm{~A}$.
(d) Since $V_{L}=\varepsilon, V_{2}=\varepsilon-\varepsilon_{L}=0$.
(e) $V_{L}=\varepsilon=10 \mathrm{~V}$.
(f) $d i_{2} / d t=V_{L} / L=\varepsilon / L=10 \mathrm{~V} / 5.0 \mathrm{H}=2.0 \mathrm{~A} / \mathrm{s}$.
(g) After a long time, we still have $V_{1}=\varepsilon$, so $i_{1}=2.0 \mathrm{~A}$.
(h) Since now $V_{L}=0, i_{2}=\varepsilon / R_{2}=10 \mathrm{~V} / 10 \Omega=1.0 \mathrm{~A}$.
(i) $i_{s}=i_{1}+i_{2}=2.0 \mathrm{~A}+1.0 \mathrm{~A}=3.0 \mathrm{~A}$.
(j) Since $V_{L}=0, V_{2}=\varepsilon-V_{L}=\varepsilon=10 \mathrm{~V}$.
(k) $V_{L}=0$.
(1) $d i_{2} / d t=V_{L} / L=0$.
90. Eq. 30-41 applies, and the problem requires

$$
i R=L \frac{d i}{d t}=\varepsilon-i R
$$

at some time t (where Eq. 30-39 has been used in that last step). Thus, we have $2 i R=\varepsilon$, or

$$
2\left[(\varepsilon / R)\left(1-e^{-t / \tau_{L}}\right)\right] R=\varepsilon
$$

where Eq. 30-42 gives the inductive time constant as $\tau_{L}=L / R$. We note that the emf ε cancels out of that final equation, and we are able to rearrange (and take natural \log) and solve. We obtain $t=0.520 \mathrm{~ms}$.
91. Taking the derivative of Eq. 30-41, we have

$$
\frac{d i}{d t}=\left(\varepsilon / R \tau_{L}\right) e^{-t / \tau_{L}}=(\varepsilon / L) e^{-t / \tau_{L}}
$$

With $\tau_{L}=L / R$ (Eq. 30-42), $L=0.023 \mathrm{H}$ and $\varepsilon=12 \mathrm{~V}, t=0.00015 \mathrm{~s}$, and $d i / d t=280 \mathrm{~A} / \mathrm{s}$, we obtain $e^{-t / \tau_{L}}=0.537$. Taking the natural \log and rearranging leads to $R=95.4 \Omega$.
92. We use the expression for the flux Φ_{B} over the toroid cross-section derived in our solution to problem 52 to obtain the coil-toroid mutual inductance:

$$
M_{c t}=\frac{N_{c} \Phi_{c t}}{i_{t}}=\frac{N_{c}}{i_{t}} \frac{\mu_{0} i_{t} N_{t} h}{2 \pi} \ln \left(\frac{b}{a}\right)=\frac{\mu_{0} N_{1} N_{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)
$$

where $N_{t}=N_{1}$ and $N_{c}=N_{2}$.
93. From the given information, we find

$$
\frac{d B}{d t}=\frac{0.030 \mathrm{~T}}{0.015 \mathrm{~s}}=2.0 \mathrm{~T} / \mathrm{s} .
$$

Thus, with $N=1$ and $\cos 30^{\circ}=\sqrt{3} / 2$, and using Faraday's law with Ohm's law, we have

$$
i=\frac{|\varepsilon|}{R}=\frac{N \pi r^{2}}{R} \frac{\sqrt{3}}{2} \frac{d B}{d t}=0.021 \mathrm{~A}
$$

94. The self-inductance and resistance of the coil may be treated as a "pure" inductor in series with a "pure" resistor, in which case the situation described in the problem may be addressed by using Eq. 30-41. The derivative of that solution is

$$
\frac{d i}{d t}=\left(\varepsilon / R \tau_{L}\right) e^{-t / \tau_{L}}=(\varepsilon / L) e^{-t / /_{L}}
$$

With $\tau_{L}=0.28 \mathrm{~ms}$ (by Eq. 30-42), $L=0.050 \mathrm{H}$ and $\varepsilon=45 \mathrm{~V}$, we obtain $d i / d t=12 \mathrm{~A} / \mathrm{s}$ when $t=1.2 \mathrm{~ms}$.
95. (a) The energy density is

$$
u_{B}=\frac{B_{e}^{2}}{2 \mu_{0}}=\frac{\left(50 \times 10^{-6} \mathrm{~T}\right)^{2}}{2\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)}=1.0 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}
$$

(b) The volume of the shell of thickness h is $\mathcal{V} \approx 4 \pi R_{e}^{2} h$, where R_{e} is the radius of the Earth. So

$$
U_{B} \approx V u_{B} \approx 4 \pi\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}\left(16 \times 10^{3} \mathrm{~m}\right)\left(1.0 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}\right)=8.4 \times 10^{15} \mathrm{~J} .
$$

96. (a) From Eq. 30-28, we have

$$
L=N \Phi / i=(150)\left(50 \times 10^{-9}\right) /(0.002)=3.75 \mathrm{mH} .
$$

(b) The answer for L (which should be considered the constant of proportionality in Eq. 30-35) does not change; it is still 3.75 mH .
(c) The equations of Chapter 28 display a simple proportionality between magnetic field and the current that creates it. Thus, if the current has doubled, so has the field (and consequently the flux). The answer is $2(50)=100 \mathrm{nWb}$.
(d) The magnitude of the induced emf is (from Eq. 30-35)

$$
\left.L \frac{d i}{d t}\right|_{\max }=(0.00375 \mathrm{H})(0.003 \mathrm{~A})(377 \mathrm{rad} / \mathrm{s})=0.00424 \mathrm{~V} .
$$

97. (a) At $t=0.50$, the magnetic field is decreasing at a rate of $3 / 2 \mathrm{mT} / \mathrm{s}$, leading to

$$
i=\frac{|\varepsilon|}{R}=\frac{A|d B / d t|}{R}=\frac{(3.0)(3 / 2)}{9.0}=0.50 \mathrm{~mA} .
$$

(b) By Lenz's law, the current is counterclockwise.
(c) At $t=1.5 \mathrm{~s}$, the magnetic field is decreasing at a rate of $3 / 2 \mathrm{mT} / \mathrm{s}$, same as that in (a). Thus, $i=0.50 \mathrm{~mA}$.
(d) By Lenz's law, the current is counterclockwise.
(e) For $t=3.0 \mathrm{~s}$, there is no change in flux and therefore no induced current.
(f) None.
98. For $t<0$, no current goes through L_{2}, so $i_{2}=0$ and $i_{1}=\varepsilon / R$. As the switch is opened there will be a very brief sparking across the gap. i_{1} drops while i_{2} increases, both very quickly. The loop rule can be written as

$$
\varepsilon-i_{1} R-L_{1} \frac{d i_{1}}{d t}-i_{2} R-L_{2} \frac{d i_{2}}{d t}=0
$$

where the initial value of i_{1} at $t=0$ is given by ε / R and that of i_{2} at $t=0$ is 0 . We consider the situation shortly after $t=0$. Since the sparking is very brief, we can reasonably assume that both i_{1} and i_{2} get equalized quickly, before they can change appreciably from their respective initial values. Here, the loop rule requires that $L_{1}\left(d i_{1} / d t\right)$, which is large and negative, must roughly cancel $L_{2}\left(d i_{2} / d t\right)$, which is large and positive:

$$
L_{1} \frac{d i_{1}}{d t} \approx-L_{2} \frac{d i_{2}}{d t} .
$$

Let the common value reached by i_{1} and i_{2} be i, then

$$
\frac{d i_{1}}{d t} \approx \frac{\Delta i_{1}}{\Delta t}=\frac{i-\varepsilon / R}{\Delta t}
$$

and

$$
\frac{d i_{2}}{d t} \approx \frac{\Delta i_{2}}{\Delta t}=\frac{i-0}{\Delta t} .
$$

The equations above yield

$$
L_{1}\left(i-\frac{\varepsilon}{R}\right)=-L_{2}(i-0) \Rightarrow i=\frac{\varepsilon L_{1}}{L_{2} R_{1}+L_{1} R_{2}}=\frac{L_{1}}{L_{1}+L_{2}} \frac{\varepsilon}{R} .
$$

99. (a) As the switch closes at $t=0$, the current being zero in the inductor serves as an initial condition for the building-up of current in the circuit. Thus, at $t=0$ the current through the battery is also zero.
(b) With no current anywhere in the circuit at $t=0$, the loop rule requires the emf of the inductor ε_{L} to cancel that of the battery $(\varepsilon=40 \mathrm{~V})$. Thus, the absolute value of Eq. 30-35 yields

$$
\frac{d i_{\text {bat }}}{d t}=\frac{\left|\varepsilon_{L}\right|}{L}=\frac{40}{0.050}=8.0 \times 10^{2} \mathrm{~A} / \mathrm{s} .
$$

(c) This circuit becomes equivalent to that analyzed in $\S 30-9$ when we replace the parallel set of 20000Ω resistors with $R=10000 \Omega$. Now, with $\tau_{L}=L / R=5 \times 10^{-6} \mathrm{~s}$, we have t / τ_{L} $=3 / 5$, and we apply Eq. 30-41:

$$
i_{\text {bat }}=\frac{\varepsilon}{R}\left(1-e^{-3 / 5}\right) \approx 1.8 \times 10^{-3} \mathrm{~A} .
$$

(d) The rate of change of the current is figured from the loop rule (and Eq. 30-35):

$$
\varepsilon-i_{\mathrm{bat}} R-\left|\varepsilon_{L}\right|=0 .
$$

Using the values from part (c), we obtain $\left|\varepsilon_{L}\right| \approx 22 \mathrm{~V}$. Then,

$$
\frac{d i_{\text {bat }}}{d t}=\frac{\left|\varepsilon_{L}\right|}{L}=\frac{22}{0.050} \approx 4.4 \times 10^{2} \mathrm{~A} / \mathrm{s} .
$$

(e) As $t \rightarrow \infty$, the circuit reaches a steady state condition, so that $d i_{\text {bat }} / d t=0$ and $\varepsilon_{L}=0$. The loop rule then leads to

$$
\varepsilon-i_{\mathrm{bat}} R-\left|\varepsilon_{L}\right|=0 \Rightarrow i_{\mathrm{bat}}=\frac{40}{10000}=4.0 \times 10^{-3} \mathrm{~A} .
$$

(f) As $t \rightarrow \infty$, the circuit reaches a steady state condition, $d i_{\mathrm{bat}} / d t=0$.
100. (a) $i_{0}=\varepsilon / R=100 \mathrm{~V} / 10 \Omega=10 \mathrm{~A}$.
(b) $U_{B}=\frac{1}{2} L i_{0}^{2}=\frac{1}{2}(2.0 \mathrm{H})(10 \mathrm{~A})^{2}=1.0 \times 10^{2} \mathrm{~J}$.
101. (a) The magnetic flux Φ_{B} through the loop is given by

$$
\Phi_{B}=2 B\left(\pi r^{2} / 2\right)\left(\cos 45^{\circ}\right)=\pi r^{2} B / \sqrt{2} .
$$

Thus

$$
\begin{aligned}
\varepsilon & =-\frac{d \Phi_{B}}{d t}=-\frac{d}{d t}\left(\frac{\pi r^{2} B}{\sqrt{2}}\right)=-\frac{\pi r^{2}}{\sqrt{2}}\left(\frac{\Delta B}{\Delta t}\right)=-\frac{\pi\left(3.7 \times 10^{-2} \mathrm{~m}\right)^{2}}{\sqrt{2}}\left(\frac{0-76 \times 10^{-3} \mathrm{~T}}{4.5 \times 10^{-3} \mathrm{~s}}\right) \\
& =5.1 \times 10^{-2} \mathrm{~V} .
\end{aligned}
$$

(a) The direction of the induced current is clockwise when viewed along the direction of \vec{B}.
102. Using Eq. 30-41

$$
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right)
$$

where $\tau_{L}=2.0 \mathrm{~ns}$, we find

$$
t=\tau_{L} \ln \left(\frac{1}{1-i R / \varepsilon}\right) \approx 1.0 \mathrm{~ns}
$$

103. The area enclosed by any turn of the coil is πr^{2} where $r=0.15 \mathrm{~m}$, and the coil has N $=50$ turns. Thus, the magnitude of the induced emf, using Eq. 30-5, is

$$
|\varepsilon|=N \pi r^{2}\left|\frac{d B}{d t}\right|=\left(3.53 \mathrm{~m}^{2}\right)\left|\frac{d B}{d t}\right|
$$

where $\left|\frac{d B}{d t}\right|=(0.0126 \mathrm{~T} / \mathrm{s})|\cos \omega t|$. Thus, using Ohm's law, we have

$$
i=\frac{|\varepsilon|}{R}=\frac{(3.53)(0.0126)}{4.0}|\cos \omega t|
$$

When $t=0.020 \mathrm{~s}$, this yields $i=0.011 \mathrm{~A}$.
104. (a) $L=\Phi / i=26 \times 10^{-3} \mathrm{~Wb} / 5.5 \mathrm{~A}=4.7 \times 10^{-3} \mathrm{H}$.
(b) We use Eq. 30-41 to solve for t :

$$
\begin{aligned}
t & =-\tau_{L} \ln \left(1-\frac{i R}{\varepsilon}\right)=-\frac{L}{R} \ln \left(1-\frac{i R}{\varepsilon}\right)=-\frac{4.7 \times 10^{-3} \mathrm{H}}{0.75 \Omega} \ln \left[1-\frac{(2.5 \mathrm{~A})(0.75 \Omega)}{6.0 \mathrm{~V}}\right] \\
& =2.4 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

105. (a) We use $U_{B}=\frac{1}{2} L i^{2}$ to solve for the self-inductance:

$$
L=\frac{2 U_{B}}{i^{2}}=\frac{2\left(25.0 \times 10^{-3} \mathrm{~J}\right)}{\left(60.0 \times 10^{-3} \mathrm{~A}\right)^{2}}=13.9 \mathrm{H}
$$

(b) Since $U_{B} \propto i^{2}$, for U_{B} to increase by a factor of $4, i$ must increase by a factor of 2 . Therefore, i should be increased to $2(60.0 \mathrm{~mA})=120 \mathrm{~mA}$.
106. (a) The self-inductance per meter is

$$
\frac{L}{\ell}=\mu_{0} n^{2} A=\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(100 \text { turns } / \mathrm{cm})^{2}(\pi)(1.6 \mathrm{~cm})^{2}=0.10 \mathrm{H} / \mathrm{m} .
$$

(b) The induced emf per meter is

$$
\frac{\varepsilon}{\ell}=\frac{L}{\ell} \frac{d i}{d t}=(0.10 \mathrm{H} / \mathrm{m})(13 \mathrm{~A} / \mathrm{s})=1.3 \mathrm{~V} / \mathrm{m} .
$$

107. Using Eq. 30-41, we find

$$
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right) \Rightarrow \tau_{L}=\frac{t}{\ln \left(\frac{1}{1-i R / \varepsilon}\right)}=22.4 \mathrm{~s}
$$

Thus, from Eq. 30-42 (the definition of the time constant), we obtain

$$
L=(22.4 \mathrm{~s})(2.0 \Omega)=45 \mathrm{H} .
$$

108. (a) As the switch closes at $t=0$, the current being zero in the inductors serves as an initial condition for the building-up of current in the circuit. Thus, the current through any element of this circuit is also zero at that instant. Consequently, the loop rule requires the emf $\left(\varepsilon_{L 1}\right)$ of the $L_{1}=0.30 \mathrm{H}$ inductor to cancel that of the battery. We now apply (the absolute value of) Eq. 30-35

$$
\frac{d i}{d t}=\frac{\left|\varepsilon_{L 1}\right|}{L_{1}}=\frac{6.0}{0.30}=20 \mathrm{~A} / \mathrm{s} .
$$

(b) What is being asked for is essentially the current in the battery when the emf's of the inductors vanish (as $t \rightarrow \infty$). Applying the loop rule to the outer loop, with $R_{1}=8.0 \Omega$, we have

$$
\varepsilon-i R_{1}-\left|\varepsilon_{L 1}\right|-\left|\varepsilon_{L 2}\right|=0 \Rightarrow i=\frac{6.0 \mathrm{~V}}{R_{1}}=0.75 \mathrm{~A} .
$$

1. (a) All the energy in the circuit resides in the capacitor when it has its maximum charge. The current is then zero. If Q is the maximum charge on the capacitor, then the total energy is

$$
U=\frac{Q^{2}}{2 C}=\frac{\left(2.90 \times 10^{-6} \mathrm{C}\right)^{2}}{2\left(3.60 \times 10^{-6} \mathrm{~F}\right)}=1.17 \times 10^{-6} \mathrm{~J}
$$

(b) When the capacitor is fully discharged, the current is a maximum and all the energy resides in the inductor. If I is the maximum current, then $U=L I^{2} / 2$ leads to

$$
I=\sqrt{\frac{2 U}{L}}=\sqrt{\frac{2\left(1.168 \times 10^{-6} \mathrm{~J}\right)}{75 \times 10^{-3} \mathrm{H}}}=5.58 \times 10^{-3} \mathrm{~A} .
$$

2. According to $U=\frac{1}{2} L I^{2}=\frac{1}{2} Q^{2} / C$, the current amplitude is

$$
I=\frac{Q}{\sqrt{L C}}=\frac{3.00 \times 10^{-6} \mathrm{C}}{\sqrt{\left(1.10 \times 10^{-3} \mathrm{H}\right)\left(4.00 \times 10^{-6} \mathrm{~F}\right)}}=4.52 \times 10^{-2} \mathrm{~A} .
$$

3. We find the capacitance from $U=\frac{1}{2} Q^{2} / C$:

$$
C=\frac{Q^{2}}{2 U}=\frac{\left(1.60 \times 10^{-6} \mathrm{C}\right)^{2}}{2\left(140 \times 10^{-6} \mathrm{~J}\right)}=9.14 \times 10^{-9} \mathrm{~F}
$$

4. (a) The period is $T=4(1.50 \mu \mathrm{~s})=6.00 \mu \mathrm{~s}$.
(b) The frequency is the reciprocal of the period:

$$
f=\frac{1}{T}=\frac{1}{6.00 \mu \mathrm{~s}}=1.67 \times 10^{5} \mathrm{~Hz}
$$

(c) The magnetic energy does not depend on the direction of the current (since $U_{B} \propto i^{2}$), so this will occur after one-half of a period, or $3.00 \mu \mathrm{~s}$.
5. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to refer also to Fig. 31-1. The values of t when plate A will again have maximum positive charge are multiples of the period:

$$
t_{A}=n T=\frac{n}{f}=\frac{n}{2.00 \times 10^{3} \mathrm{~Hz}}=n(5.00 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$ The earliest time is $(n=1) t_{A}=5.00 \mu \mathrm{~s}$.
(b) We note that it takes $t=\frac{1}{2} T$ for the charge on the other plate to reach its maximum positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A acquires its most negative charge. From that time onward, this situation will repeat once every period. Consequently,

$$
t=\frac{1}{2} T+(n-1) T=\frac{1}{2}(2 n-1) T=\frac{(2 n-1)}{2 f}=\frac{(2 n-1)}{2\left(2 \times 10^{3} \mathrm{~Hz}\right)}=(2 n-1)(2.50 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$ The earliest time is $(n=1) t=2.50 \mu \mathrm{~s}$.
(c) At $t=\frac{1}{4} T$, the current and the magnetic field in the inductor reach maximum values for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every halfperiod (compare steps c and g in Fig. 31-1). Therefore,

$$
t_{L}=\frac{T}{4}+\frac{(n-1) T}{2}=(2 n-1) \frac{T}{4}=(2 n-1)(1.25 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$. The earliest time is $(n=1) t=1.25 \mu \mathrm{~s}$.
6. (a) The angular frequency is

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{F / x}{m}}=\sqrt{\frac{8.0 \mathrm{~N}}{\left(2.0 \times 10^{-13} \mathrm{~m}\right)(0.50 \mathrm{~kg})}}=89 \mathrm{rad} / \mathrm{s} .
$$

(b) The period is $1 / f$ and $f=\omega / 2 \pi$. Therefore,

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{89 \mathrm{rad} / \mathrm{s}}=7.0 \times 10^{-2} \mathrm{~s}
$$

(c) From $\omega=(L C)^{-1 / 2}$, we obtain

$$
C=\frac{1}{\omega^{2} L}=\frac{1}{(89 \mathrm{rad} / \mathrm{s})^{2}(5.0 \mathrm{H})}=2.5 \times 10^{-5} \mathrm{~F} .
$$

7. (a) The mass m corresponds to the inductance, so $m=1.25 \mathrm{~kg}$.
(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total energy is given by $U=Q^{2} / 2 C$, where Q is the maximum charge on the capacitor and C is the capacitance,

$$
C=\frac{Q^{2}}{2 U}=\frac{\left(175 \times 10^{-6} \mathrm{C}\right)^{2}}{2\left(5.70 \times 10^{-6} \mathrm{~J}\right)}=2.69 \times 10^{-3} \mathrm{~F}
$$

and

$$
k=\frac{1}{2.69 \times 10^{-3} \mathrm{~m} / \mathrm{N}}=372 \mathrm{~N} / \mathrm{m} .
$$

(c) The maximum displacement corresponds to the maximum charge, so $x_{\text {max }}=1.75 \times 10^{-4} \mathrm{~m}$.
(d) The maximum speed $v_{\max }$ corresponds to the maximum current. The maximum current is

$$
I=Q \omega=\frac{Q}{\sqrt{L C}}=\frac{175 \times 10^{-6} \mathrm{C}}{\sqrt{(1.25 \mathrm{H})\left(2.69 \times 10^{-3} \mathrm{~F}\right)}}=3.02 \times 10^{-3} \mathrm{~A} .
$$

Consequently, $v_{\max }=3.02 \times 10^{-3} \mathrm{~m} / \mathrm{s}$.
8. We apply the loop rule to the entire circuit:

$$
\begin{aligned}
\varepsilon_{\text {total }} & =\varepsilon_{L_{1}}+\varepsilon_{C_{1}}+\varepsilon_{R_{1}}+\cdots=\sum_{j}\left(\varepsilon_{L_{j}}+\varepsilon_{C_{j}}+\varepsilon_{R_{j}}\right)=\sum_{j}\left(L_{j} \frac{d i}{d t}+\frac{q}{C_{j}}+i R_{j}\right) \\
& =L \frac{d i}{d t}+\frac{q}{C}+i R \quad \text { with } L=\sum_{j} L_{j}, \frac{1}{C}=\sum_{j} \frac{1}{C_{j}}, R=\sum_{j} R_{j}
\end{aligned}
$$

where we require $\varepsilon_{\text {total }}=0$. This is equivalent to the simple $L R C$ circuit shown in Fig. 3124(b).
9. The time required is $t=T / 4$, where the period is given by $T=2 \pi / \omega=2 \pi \sqrt{L C}$. Consequently,

$$
t=\frac{T}{4}=\frac{2 \pi \sqrt{L C}}{4}=\frac{2 \pi \sqrt{(0.050 \mathrm{H})\left(4.0 \times 10^{-6} \mathrm{~F}\right)}}{4}=7.0 \times 10^{-4} \mathrm{~s}
$$

10. We find the inductance from $f=\omega / 2 \pi=(2 \pi \sqrt{L C})^{-1}$.

$$
L=\frac{1}{4 \pi^{2} f^{2} C}=\frac{1}{4 \pi^{2}\left(10 \times 10^{3} \mathrm{~Hz}\right)^{2}\left(6.7 \times 10^{-6} \mathrm{~F}\right)}=3.8 \times 10^{-5} \mathrm{H}
$$

11. (a) $Q=C V_{\max }=\left(1.0 \times 10^{-9} \mathrm{~F}\right)(3.0 \mathrm{~V})=3.0 \times 10^{-9} \mathrm{C}$.
(b) From $U=\frac{1}{2} L I^{2}=\frac{1}{2} Q^{2} / C$ we get

$$
I=\frac{Q}{\sqrt{L C}}=\frac{3.0 \times 10^{-9} \mathrm{C}}{\sqrt{\left(3.0 \times 10^{-3} \mathrm{H}\right)\left(1.0 \times 10^{-9} \mathrm{~F}\right)}}=1.7 \times 10^{-3} \mathrm{~A} .
$$

(c) When the current is at a maximum, the magnetic field is at maximum:

$$
U_{B, \max }=\frac{1}{2} L I^{2}=\frac{1}{2}\left(3.0 \times 10^{-3} \mathrm{H}\right)\left(1.7 \times 10^{-3} \mathrm{~A}\right)^{2}=4.5 \times 10^{-9} \mathrm{~J} .
$$

12. The capacitors C_{1} and C_{2} can be used in four different ways: (1) C_{1} only; (2) C_{2} only; (3) C_{1} and C_{2} in parallel; and (4) C_{1} and C_{2} in series.
(a) The smallest oscillation frequency is

$$
f_{3}=\frac{1}{2 \pi \sqrt{L\left(C_{1}+C_{2}\right)}}=\frac{1}{2 \pi \sqrt{\left(1.0 \times 10^{-2} \mathrm{H}\right)\left(2.0 \times 10^{-6} \mathrm{~F}+5.0 \times 10^{-6} \mathrm{~F}\right)}}=6.0 \times 10^{2} \mathrm{~Hz}
$$

(b) The second smallest oscillation frequency is

$$
f_{1}=\frac{1}{2 \pi \sqrt{L C_{1}}}=\frac{1}{2 \pi \sqrt{\left(1.0 \times 10^{-2} \mathrm{H}\right)\left(5.0 \times 10^{-6} \mathrm{~F}\right)}}=7.1 \times 10^{2} \mathrm{~Hz}
$$

(c) The second largest oscillation frequency is

$$
f_{2}=\frac{1}{2 \pi \sqrt{L C_{2}}}=\frac{1}{2 \pi \sqrt{\left(1.0 \times 10^{-2} \mathrm{H}\right)\left(2.0 \times 10^{-6} \mathrm{~F}\right)}}=1.1 \times 10^{3} \mathrm{~Hz}
$$

(d) The largest oscillation frequency is

$$
f_{4}=\frac{1}{2 \pi \sqrt{L C_{1} C_{2} /\left(C_{1}+C_{2}\right)}}=\frac{1}{2 \pi} \sqrt{\frac{2.0 \times 10^{-6} \mathrm{~F}+5.0 \times 10^{-6} \mathrm{~F}}{\left(1.0 \times 10^{-2} \mathrm{H}\right)\left(2.0 \times 10^{-6} \mathrm{~F}\right)\left(5.0 \times 10^{-6} \mathrm{~F}\right)}}=1.3 \times 10^{3} \mathrm{~Hz}
$$

13. (a) After the switch is thrown to position b the circuit is an $L C$ circuit. The angular frequency of oscillation is $\omega=1 / \sqrt{L C}$. Consequently,

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(54.0 \times 10^{-3} \mathrm{H}\right)\left(6.20 \times 10^{-6} \mathrm{~F}\right)}}=275 \mathrm{~Hz} .
$$

(b) When the switch is thrown, the capacitor is charged to $V=34.0 \mathrm{~V}$ and the current is zero. Thus, the maximum charge on the capacitor is $Q=V C=(34.0 \mathrm{~V})\left(6.20 \times 10^{-6} \mathrm{~F}\right)=$ $2.11 \times 10^{-4} \mathrm{C}$. The current amplitude is

$$
I=\omega Q=2 \pi f Q=2 \pi(275 \mathrm{~Hz})\left(2.11 \times 10^{-4} \mathrm{C}\right)=0.365 \mathrm{~A} .
$$

14. For the first circuit $\omega=\left(L_{1} C_{1}\right)^{-1 / 2}$, and for the second one $\omega=\left(L_{2} C_{2}\right)^{-1 / 2}$. When the two circuits are connected in series, the new frequency is

$$
\begin{aligned}
\omega^{\prime} & =\frac{1}{\sqrt{L_{\mathrm{eq}} C_{\mathrm{eq}}}}=\frac{1}{\sqrt{\left(L_{1}+L_{2}\right) C_{1} C_{2} /\left(C_{1}+C_{2}\right)}}=\frac{1}{\sqrt{\left(L_{1} C_{1} C_{2}+L_{2} C_{2} C_{1}\right) /\left(C_{1}+C_{2}\right)}} \\
& =\frac{1}{\sqrt{L_{1} C_{1}}} \frac{1}{\sqrt{\left(C_{1}+C_{2}\right) /\left(C_{1}+C_{2}\right)}}=\omega,
\end{aligned}
$$

where we use $\omega^{-1}=\sqrt{L_{1} C_{1}}=\sqrt{L_{2} C_{2}}$.
15. (a) Since the frequency of oscillation f is related to the inductance L and capacitance C by $f=1 / 2 \pi \sqrt{L C}$, the smaller value of C gives the larger value of f. Consequently, $f_{\text {max }}=1 / 2 \pi \sqrt{L C_{\text {min }}}, f_{\text {min }}=1 / 2 \pi \sqrt{L C_{\text {max }}}$, and

$$
\frac{f_{\max }}{f_{\min }}=\frac{\sqrt{C_{\max }}}{\sqrt{C_{\min }}}=\frac{\sqrt{365 \mathrm{pF}}}{\sqrt{10 \mathrm{pF}}}=6.0 .
$$

(b) An additional capacitance C is chosen so the ratio of the frequencies is

$$
r=\frac{1.60 \mathrm{MHz}}{0.54 \mathrm{MHz}}=2.96
$$

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds to that of the tuning capacitor. If C is in picofarads, then

$$
\frac{\sqrt{C+365 \mathrm{pF}}}{\sqrt{C+10 \mathrm{pF}}}=2.96 .
$$

The solution for C is

$$
C=\frac{(365 \mathrm{pF})-(2.96)^{2}(10 \mathrm{pF})}{(2.96)^{2}-1}=36 \mathrm{pF} .
$$

(c) We solve $f=1 / 2 \pi \sqrt{L C}$ for L. For the minimum frequency $C=365 \mathrm{pF}+36 \mathrm{pF}=$ 401 pF and $f=0.54 \mathrm{MHz}$. Thus

$$
L=\frac{1}{(2 \pi)^{2} C f^{2}}=\frac{1}{(2 \pi)^{2}\left(401 \times 10^{-12} \mathrm{~F}\right)\left(0.54 \times 10^{6} \mathrm{~Hz}\right)^{2}}=2.2 \times 10^{-4} \mathrm{H}
$$

16. The linear relationship between θ (the knob angle in degrees) and frequency f is

$$
f=f_{0}\left(1+\frac{\theta}{180^{\circ}}\right) \Rightarrow \theta=180^{\circ}\left(\frac{f}{f_{0}}-1\right)
$$

where $f_{0}=2 \times 10^{5} \mathrm{~Hz}$. Since $f=\omega / 2 \pi=1 / 2 \pi \sqrt{L C}$, we are able to solve for C in terms of θ :

$$
C=\frac{1}{4 \pi^{2} L f_{0}^{2}\left(1+\frac{\theta}{180^{\circ}}\right)^{2}}=\frac{81}{400000 \pi^{2}\left(180^{\circ}+\theta\right)^{2}}
$$

with SI units understood. After multiplying by 10^{12} (to convert to picofarads), this is plotted, below.

17. (a) The total energy U is the sum of the energies in the inductor and capacitor:

$$
U=U_{E}+U_{B}=\frac{q^{2}}{2 C}+\frac{i^{2} L}{2}=\frac{\left(3.80 \times 10^{-6} \mathrm{C}\right)^{2}}{2\left(7.80 \times 10^{-6} \mathrm{~F}\right)}+\frac{\left(9.20 \times 10^{-3} \mathrm{~A}\right)^{2}\left(25.0 \times 10^{-3} \mathrm{H}\right)}{2}=1.98 \times 10^{-6} \mathrm{~J} .
$$

(b) We solve $U=Q^{2} / 2 C$ for the maximum charge:

$$
Q=\sqrt{2 C U}=\sqrt{2\left(7.80 \times 10^{-6} \mathrm{~F}\right)\left(1.98 \times 10^{-6} \mathrm{~J}\right)}=5.56 \times 10^{-6} \mathrm{C} .
$$

(c) From $U=I^{2} L / 2$, we find the maximum current:

$$
I=\sqrt{\frac{2 U}{L}}=\sqrt{\frac{2\left(1.98 \times 10^{-6} \mathrm{~J}\right)}{25.0 \times 10^{-3} \mathrm{H}}}=1.26 \times 10^{-2} \mathrm{~A} .
$$

(d) If q_{0} is the charge on the capacitor at time $t=0$, then $q_{0}=Q \cos \phi$ and

$$
\phi=\cos ^{-1}\left(\frac{q}{Q}\right)=\cos ^{-1}\left(\frac{3.80 \times 10^{-6} \mathrm{C}}{5.56 \times 10^{-6} \mathrm{C}}\right)= \pm 46.9^{\circ} .
$$

For $\phi=+46.9^{\circ}$ the charge on the capacitor is decreasing, for $\phi=-46.9^{\circ}$ it is increasing. To check this, we calculate the derivative of q with respect to time, evaluated for $t=0$. We obtain $-\omega Q \sin \phi$, which we wish to be positive. Since $\sin \left(+46.9^{\circ}\right)$ is positive and $\sin \left(-46.9^{\circ}\right)$ is negative, the correct value for increasing charge is $\phi=-46.9^{\circ}$.
(e) Now we want the derivative to be negative and $\sin \phi$ to be positive. Thus, we take $\phi=+46.9^{\circ}$.
18. (a) Since the percentage of energy stored in the electric field of the capacitor is $(1-75.0 \%)=25.0 \%$, then

$$
\frac{U_{E}}{U}=\frac{q^{2} / 2 C}{Q^{2} / 2 C}=25.0 \%
$$

which leads to $q / Q=\sqrt{0.250}=0.500$.
(b) From

$$
\frac{U_{B}}{U}=\frac{L i^{2} / 2}{L I^{2} / 2}=75.0 \%,
$$

we find $i / I=\sqrt{0.750}=0.866$.
19. (a) The charge (as a function of time) is given by $q=Q \sin \omega t$, where Q is the maximum charge on the capacitor and ω is the angular frequency of oscillation. A sine function was chosen so that $q=0$ at time $t=0$. The current (as a function of time) is

$$
i=\frac{d q}{d t}=\omega Q \cos \omega t
$$

and at $t=0$, it is $I=\omega Q$. Since $\omega=1 / \sqrt{L C,}$

$$
Q=I \sqrt{L C}=(2.00 \mathrm{~A}) \sqrt{\left(3.00 \times 10^{-3} \mathrm{H}\right)\left(2.70 \times 10^{-6} \mathrm{~F}\right)}=1.80 \times 10^{-4} \mathrm{C}
$$

(b) The energy stored in the capacitor is given by

$$
U_{E}=\frac{q^{2}}{2 C}=\frac{Q^{2} \sin ^{2} \omega t}{2 C}
$$

and its rate of change is

$$
\frac{d U_{E}}{d t}=\frac{Q^{2} \omega \sin \omega t \cos \omega t}{C}
$$

We use the trigonometric identity $\cos \omega t \sin \omega t=\frac{1}{2} \sin (2 \omega t)$ to write this as

$$
\frac{d U_{E}}{d t}=\frac{\omega Q^{2}}{2 C} \sin (2 \omega t) .
$$

The greatest rate of change occurs when $\sin (2 \omega t)=1$ or $2 \omega t=\pi / 2$ rad. This means

$$
t=\frac{\pi}{4 \omega}=\frac{\pi}{4} \sqrt{L C}=\frac{\pi}{4} \sqrt{\left(3.00 \times 10^{-3} \mathrm{H}\right)\left(2.70 \times 10^{-6} \mathrm{~F}\right)}=7.07 \times 10^{-5} \mathrm{~s}
$$

(c) Substituting $\omega=2 \pi / T$ and $\sin (2 \omega t)=1$ into $d U_{E} / d t=\left(\omega Q^{2} / 2 C\right) \sin (2 \omega t)$, we obtain

$$
\left(\frac{d U_{E}}{d t}\right)_{\max }=\frac{2 \pi Q^{2}}{2 T C}=\frac{\pi Q^{2}}{T C} .
$$

Now $T=2 \pi \sqrt{L C}=2 \pi \sqrt{\left(3.00 \times 10^{-3} \mathrm{H}\right)\left(2.70 \times 10^{-6} \mathrm{~F}\right)}=5.655 \times 10^{-4} \mathrm{~s}$, so

$$
\left(\frac{d U_{E}}{d t}\right)_{\max }=\frac{\pi\left(1.80 \times 10^{-4} \mathrm{C}\right)^{2}}{\left(5.655 \times 10^{-4} \mathrm{~s}\right)\left(2.70 \times 10^{-6} \mathrm{~F}\right)}=66.7 \mathrm{~W}
$$

We note that this is a positive result, indicating that the energy in the capacitor is indeed increasing at $t=T / 8$.
20. (a) We use $U=\frac{1}{2} L I^{2}=\frac{1}{2} Q^{2} / C$ to solve for L :

$$
L=\frac{1}{C}\left(\frac{Q}{I}\right)^{2}=\frac{1}{C}\left(\frac{C V_{\max }}{I}\right)^{2}=C\left(\frac{V_{\max }}{I}\right)^{2}=\left(4.00 \times 10^{-6} \mathrm{~F}\right)\left(\frac{1.50 \mathrm{~V}}{50.0 \times 10^{-3} \mathrm{~A}}\right)^{2}=3.60 \times 10^{-3} \mathrm{H} .
$$

(b) Since $f=\omega / 2 \pi$, the frequency is

$$
f=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(3.60 \times 10^{-3} \mathrm{H}\right)\left(4.00 \times 10^{-6} \mathrm{~F}\right)}}=1.33 \times 10^{3} \mathrm{~Hz}
$$

(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where the period is the reciprocal of the frequency). Consequently,

$$
t=\frac{1}{4} T=\frac{1}{4 f}=\frac{1}{4\left(1.33 \times 10^{3} \mathrm{~Hz}\right)}=1.88 \times 10^{-4} \mathrm{~s} .
$$

21. (a) We compare this expression for the current with $i=I \sin \left(\omega t+\phi_{0}\right)$. Setting $(\omega t+\phi)=$ $2500 t+0.680=\pi / 2$, we obtain $t=3.56 \times 10^{-4} \mathrm{~s}$.
(b) Since $\omega=2500 \mathrm{rad} / \mathrm{s}=(L C)^{-1 / 2}$,

$$
L=\frac{1}{\omega^{2} C}=\frac{1}{(2500 \mathrm{rad} / \mathrm{s})^{2}\left(64.0 \times 10^{-6} \mathrm{~F}\right)}=2.50 \times 10^{-3} \mathrm{H} .
$$

(c) The energy is

$$
U=\frac{1}{2} L I^{2}=\frac{1}{2}\left(2.50 \times 10^{-3} \mathrm{H}\right)(1.60 \mathrm{~A})^{2}=3.20 \times 10^{-3} \mathrm{~J}
$$

22. (a) From $V=I X_{C}$ we find $\omega=I / C V$. The period is then $T=2 \pi / \omega=2 \pi C V / I=46.1 \mu \mathrm{~s}$. (b) $\frac{1}{2} C V^{2}=6.88 \mathrm{~nJ}$.
(c) The answer is again 6.88 nJ (see Fig. 31-4).
(d) We apply Eq. $30-35$ as $V=L(d i / d t)_{\max }$. We can substitute $L=C V^{2} / I^{2}$ (combining what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for $(d i / d t)_{\max }$. Our result is $1.02 \times 10^{3} \mathrm{~A} / \mathrm{s}$.
(e) The derivative of $U=\frac{1}{2} L i^{2}$ leads to $d U / d t=L I^{2} \omega \sin (\omega t) \cos (\omega t)=\frac{1}{2} L I^{2} \omega \sin (2 \omega t)$. Therefore, $(d U / d t)_{\max }=\frac{1}{2} L I^{2} \omega=\frac{1}{2} I V=0.938 \mathrm{~mW}$.
23. The loop rule, for just two devices in the loop, reduces to the statement that the magnitude of the voltage across one of them must equal the magnitude of the voltage across the other. Consider that the capacitor has charge q and a voltage (which we'll consider positive in this discussion) $V=q / C$. Consider at this moment that the current in the inductor at this moment is directed in such a way that the capacitor charge is increasing (so $i=+d q / d t$). Eq. 30-35 then produces a positive result equal to the V across the capacitor: $V=-L(d i / d t)$, and we interpret the fact that $-d i / d t>0$ in this discussion to mean that $d(d q / d t) / d t=d^{2} q / d t^{2}<0$ represents a "deceleration" of the charge-buildup process on the capacitor (since it is approaching its maximum value of charge). In this way we can "check" the signs in Eq. 31-11 (which states $q / C=-L d^{2} q / d t^{2}$) to make sure we have implemented the loop rule correctly.
24. The charge q after N cycles is obtained by substituting $t=N T=2 \pi N / \omega^{\prime}$ into Eq. 31-25:

$$
\begin{aligned}
q & =Q e^{-R t / 2 L} \cos \left(\omega^{\prime} t+\phi\right)=Q e^{-R N T / 2 L} \cos \left[\omega^{\prime}\left(2 \pi N / \omega^{\prime}\right)+\phi\right] \\
& =Q e^{-R N(2 \pi \sqrt{L / C}) / 2 L} \cos (2 \pi N+\phi) \\
& =Q e^{-N \pi R \sqrt{C / L}} \cos \phi .
\end{aligned}
$$

We note that the initial charge (setting $N=0$ in the above expression) is $q_{0}=Q \cos \phi$, where $q_{0}=6.2 \mu \mathrm{C}$ is given (with 3 significant figures understood). Consequently, we write the above result as $q_{N}=q_{0} e^{-N \pi R \sqrt{C / L}}$.
(a) For $N=5$,

$$
q_{5}=(6.2 \mu \mathrm{C}) e^{-5 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}}}=5.85 \mu \mathrm{C} .
$$

(b) For $N=10$,

$$
q_{10}=(6.2 \mu \mathrm{C}) e^{-10 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}}}=5.52 \mu \mathrm{C} .
$$

(c) For $N=100$,

$$
q_{100}=(6.2 \mu \mathrm{C}) e^{-100 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}}}=1.93 \mu \mathrm{C} .
$$

25. Since $\omega \approx \omega^{\prime}$, we may write $T=2 \pi / \omega$ as the period and $\omega=1 / \sqrt{L C}$ as the angular frequency. The time required for 50 cycles (with 3 significant figures understood) is

$$
\begin{aligned}
t & =50 T=50\left(\frac{2 \pi}{\omega}\right)=50(2 \pi \sqrt{L C})=50\left(2 \pi \sqrt{\left(220 \times 10^{-3} \mathrm{H}\right)\left(12.0 \times 10^{-6} \mathrm{~F}\right)}\right) \\
& =0.5104 \mathrm{~s}
\end{aligned}
$$

The maximum charge on the capacitor decays according to $q_{\text {max }}=Q e^{-R t / 2 L}$ (this is called the exponentially decaying amplitude in §31-5), where Q is the charge at time $t=0$ (if we take $\phi=0$ in Eq. 31-25). Dividing by Q and taking the natural logarithm of both sides, we obtain

$$
\ln \left(\frac{q_{\max }}{Q}\right)=-\frac{R t}{2 L}
$$

which leads to

$$
R=-\frac{2 L}{t} \ln \left(\frac{q_{\max }}{Q}\right)=-\frac{2\left(220 \times 10^{-3} \mathrm{H}\right)}{0.5104 \mathrm{~s}} \ln (0.99)=8.66 \times 10^{-3} \Omega .
$$

26. The assumption stated at the end of the problem is equivalent to setting $\phi=0$ in Eq. 31-25. Since the maximum energy in the capacitor (each cycle) is given by $q_{\max }^{2} / 2 C$, where $q_{\text {max }}$ is the maximum charge (during a given cycle), then we seek the time for which

$$
\frac{q_{\max }^{2}}{2 C}=\frac{1}{2} \frac{Q^{2}}{2 C} \Rightarrow q_{\max }=\frac{Q}{\sqrt{2}} .
$$

Now $q_{\text {max }}$ (referred to as the exponentially decaying amplitude in $\S 31-5$) is related to Q (and the other parameters of the circuit) by

$$
q_{\max }=Q e^{-R t / 2 L} \Rightarrow \ln \left(\frac{q_{\max }}{Q}\right)=-\frac{R t}{2 L}
$$

Setting $q_{\max }=Q / \sqrt{2}$, we solve for t :

$$
t=-\frac{2 L}{R} \ln \left(\frac{q_{\max }}{Q}\right)=-\frac{2 L}{R} \ln \left(\frac{1}{\sqrt{2}}\right)=\frac{L}{R} \ln 2 .
$$

The identities $\ln (1 / \sqrt{2})=-\ln \sqrt{2}=-\frac{1}{2} \ln 2$ were used to obtain the final form of the result.
27. Let t be a time at which the capacitor is fully charged in some cycle and let $q_{\max 1}$ be the charge on the capacitor then. The energy in the capacitor at that time is

$$
U(t)=\frac{q_{\max 1}^{2}}{2 C}=\frac{Q^{2}}{2 C} e^{-R t / L}
$$

where

$$
q_{\max 1}=Q e^{-R t / 2 L}
$$

(see the discussion of the exponentially decaying amplitude in §31-5). One period later the charge on the fully charged capacitor is

$$
q_{\max 2}=Q e^{-R(t+T) 2 / L} \quad \text { where } T=\frac{2 \pi}{\omega^{\prime}},
$$

and the energy is

$$
U(t+T)=\frac{q_{\max 2}^{2}}{2 C}=\frac{Q^{2}}{2 C} e^{-R(t+T) / L}
$$

The fractional loss in energy is

$$
\frac{|\Delta U|}{U}=\frac{U(t)-U(t+T)}{U(t)}=\frac{e^{-R t / L}-e^{-R(t+T) / L}}{e^{-R t / L}}=1-e^{-R T / L} .
$$

Assuming that $R T / L$ is very small compared to 1 (which would be the case if the resistance is small), we expand the exponential (see Appendix E). The first few terms are:

$$
e^{-R T / L} \approx 1-\frac{R T}{L}+\frac{R^{2} T^{2}}{2 L^{2}}+\cdots
$$

If we approximate $\omega \approx \omega^{\prime}$, then we can write T as $2 \pi / \omega$. As a result, we obtain

$$
\frac{|\Delta U|}{U} \approx 1-\left(1-\frac{R T}{L}+\cdots\right) \approx \frac{R T}{L}=\frac{2 \pi R}{\omega L} .
$$

28. (a) We use $I=\varepsilon / X_{c}=\omega_{d} C \varepsilon$.

$$
I=\omega_{d} C \varepsilon_{m}=2 \pi f_{d} C \varepsilon_{m}=2 \pi\left(1.00 \times 10^{3} \mathrm{~Hz}\right)\left(1.50 \times 10^{-6} \mathrm{~F}\right)(30.0 \mathrm{~V})=0.283 \mathrm{~A}
$$

(b) $I=2 \pi\left(8.00 \times 10^{3} \mathrm{~Hz}\right)\left(1.50 \times 10^{-6} \mathrm{~F}\right)(30.0 \mathrm{~V})=2.26 \mathrm{~A}$.
29. (a) The current amplitude I is given by $I=V_{L} / X_{L}$, where $X_{L}=\omega_{d} L=2 \pi f_{d} L$. Since the circuit contains only the inductor and a sinusoidal generator, $V_{L}=\varepsilon_{m}$. Therefore,

$$
I=\frac{V_{L}}{X_{L}}=\frac{\varepsilon_{m}}{2 \pi f_{d} L}=\frac{30.0 \mathrm{~V}}{2 \pi\left(1.00 \times 10^{3} \mathrm{~Hz}\right)\left(50.0 \times 10^{-3} \mathrm{H}\right)}=0.0955 \mathrm{~A}=95.5 \mathrm{~mA} .
$$

(b) The frequency is now eight times larger than in part (a), so the inductive reactance X_{L} is eight times larger and the current is one-eighth as much. The current is now

$$
I=(0.0955 \mathrm{~A}) / 8=0.0119 \mathrm{~A}=11.9 \mathrm{~mA} .
$$

30. (a) The current through the resistor is

$$
I=\frac{\varepsilon_{m}}{R}=\frac{30.0 \mathrm{~V}}{50.0 \Omega}=0.600 \mathrm{~A} .
$$

(b) Regardless of the frequency of the generator, the current is the same, $I=0.600 \mathrm{~A}$.
31. (a) The inductive reactance for angular frequency ω_{d} is given by $X_{L}=\omega_{d} L$, and the capacitive reactance is given by $X_{C}=1 / \omega_{d} C$. The two reactances are equal if $\omega_{d} L=1 / \omega_{d} C$, or $\omega_{d}=1 / \sqrt{L C}$. The frequency is

$$
f_{d}=\frac{\omega_{d}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(6.0 \times 10^{-3} \mathrm{H}\right)\left(10 \times 10^{-6} \mathrm{~F}\right)}}=6.5 \times 10^{2} \mathrm{~Hz}
$$

(b) The inductive reactance is

$$
X_{L}=\omega_{d} L=2 \pi f_{d} L=2 \pi(650 \mathrm{~Hz})\left(6.0 \times 10^{-3} \mathrm{H}\right)=24 \Omega .
$$

The capacitive reactance has the same value at this frequency.
(c) The natural frequency for free $L C$ oscillations is $f=\omega / 2 \pi=1 / 2 \pi \sqrt{L C}$, the same as we found in part (a).
32. (a) The circuit consists of one generator across one inductor; therefore, $\varepsilon_{m}=V_{L}$. The current amplitude is

$$
I=\frac{\varepsilon_{m}}{X_{L}}=\frac{\varepsilon_{m}}{\omega_{d} L}=\frac{25.0 \mathrm{~V}}{(377 \mathrm{rad} / \mathrm{s})(12.7 \mathrm{H})}=5.22 \times 10^{-3} \mathrm{~A}
$$

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. $30-35$ gives $\varepsilon_{L}=0$ at that instant. Stated another way, since $\varepsilon(t)$ and $i(t)$ have a 90° phase difference, then $\varepsilon(t)$ must be zero when $i(t)=I$. The fact that $\phi=90^{\circ}=\pi / 2 \mathrm{rad}$ is used in part (c).
(c) Consider Eq. 32-28 with $\varepsilon=-\frac{1}{2} \varepsilon_{m}$. In order to satisfy this equation, we require $\sin \left(\omega_{d} t\right)=-1 / 2$. Now we note that the problem states that ε is increasing in magnitude, which (since it is already negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we must also require $\cos \left(\omega_{d} t\right)<0$. These conditions imply that ωt must equal $(2 n \pi-5 \pi / 6)$ [n $=$ integer]. Consequently, Eq. 31-29 yields (for all values of n)

$$
i=I \sin \left(2 n \pi-\frac{5 \pi}{6}-\frac{\pi}{2}\right)=\left(5.22 \times 10^{-3} \mathrm{~A}\right)\left(\frac{\sqrt{3}}{2}\right)=4.51 \times 10^{-3} \mathrm{~A}
$$

33. (a) The generator emf is a maximum when $\sin \left(\omega_{d} t-\pi / 4\right)=1$ or $\omega_{d} t-\pi / 4=(\pi / 2) \pm$ $2 n \pi$ [$n=$ integer]. The first time this occurs after $t=0$ is when $\omega_{d} t-\pi / 4=\pi / 2$ (that is, $n=$ $0)$. Therefore,

$$
t=\frac{3 \pi}{4 \omega_{d}}=\frac{3 \pi}{4(350 \mathrm{rad} / \mathrm{s})}=6.73 \times 10^{-3} \mathrm{~s}
$$

(b) The current is a maximum when $\sin \left(\omega_{d} t-3 \pi / 4\right)=1$, or $\omega_{d} t-3 \pi / 4=(\pi / 2) \pm 2 n \pi[n=$ integer]. The first time this occurs after $t=0$ is when $\omega_{d} t-3 \pi / 4=\pi / 2$ (as in part (a), $n=$ $0)$. Therefore,

$$
t=\frac{5 \pi}{4 \omega_{d}}=\frac{5 \pi}{4(350 \mathrm{rad} / \mathrm{s})}=1.12 \times 10^{-2} \mathrm{~s} .
$$

(c) The current lags the emf by $+\pi / 2 \mathrm{rad}$, so the circuit element must be an inductor.
(d) The current amplitude I is related to the voltage amplitude V_{L} by $V_{L}=I X_{L}$, where X_{L} is the inductive reactance, given by $X_{L}=\omega_{d} L$. Furthermore, since there is only one element in the circuit, the amplitude of the potential difference across the element must be the same as the amplitude of the generator emf: $V_{L}=\varepsilon_{m}$. Thus, $\varepsilon_{m}=I \omega_{d} L$ and

$$
L=\frac{\varepsilon_{m}}{I \omega_{d}}=\frac{30.0 \mathrm{~V}}{\left(620 \times 10^{-3} \mathrm{~A}\right)(350 \mathrm{rad} / \mathrm{s})}=0.138 \mathrm{H} .
$$

34. (a) The circuit consists of one generator across one capacitor; therefore, $\varepsilon_{m}=V_{C}$. Consequently, the current amplitude is

$$
I=\frac{\varepsilon_{m}}{X_{C}}=\omega C \varepsilon_{m}=(377 \mathrm{rad} / \mathrm{s})\left(4.15 \times 10^{-6} \mathrm{~F}\right)(25.0 \mathrm{~V})=3.91 \times 10^{-2} \mathrm{~A} .
$$

(b) When the current is at a maximum, the charge on the capacitor is changing at its largest rate. This happens not when it is fully charged ($\pm q_{\max }$), but rather as it passes through the (momentary) states of being uncharged ($q=0$). Since $q=C V$, then the voltage across the capacitor (and at the generator, by the loop rule) is zero when the current is at a maximum. Stated more precisely, the time-dependent emf $\varepsilon(t)$ and current $i(t)$ have a $\phi=-90^{\circ}$ phase relation, implying $\varepsilon(t)=0$ when $i(t)=I$. The fact that $\phi=-90^{\circ}$ $=-\pi / 2 \mathrm{rad}$ is used in part (c).
(c) Consider Eq. 32-28 with $\varepsilon=-\frac{1}{2} \varepsilon_{m}$. In order to satisfy this equation, we require $\sin \left(\omega_{d} t\right)=-1 / 2$. Now we note that the problem states that ε is increasing in magnitude, which (since it is already negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we must also require $\cos \left(\omega_{d} t\right)<0$. These conditions imply that ωt must equal $(2 n \pi-5 \pi / 6)$ [n $=$ integer]. Consequently, Eq. 31-29 yields (for all values of n)

$$
i=I \sin \left(2 n \pi-\frac{5 \pi}{6}+\frac{\pi}{2}\right)=\left(3.91 \times 10^{-3} \mathrm{~A}\right)\left(-\frac{\sqrt{3}}{2}\right)=-3.38 \times 10^{-2} \mathrm{~A} \text {, }
$$

or $\mid i=3.38 \times 10^{-2} \mathrm{~A}$.
35. (a) Now $X_{C}=0$, while $R=200 \Omega$ and $X_{L}=\omega L=2 \pi f_{d} L=86.7 \Omega$ remain unchanged. Therefore, the impedance is

$$
Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{(200 \Omega)^{2}+(86.7 \Omega)^{2}}=218 \Omega .
$$

(b) The phase angle is, from Eq. 31-65,

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{86.7 \Omega-0}{200 \Omega}\right)=23.4^{\circ} .
$$

(c) The current amplitude is now found to be

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{36.0 \mathrm{~V}}{218 \Omega}=0.165 \mathrm{~A} .
$$

(d) We first find the voltage amplitudes across the circuit elements:

$$
\begin{aligned}
& V_{R}=I R=(0.165 \mathrm{~A})(200 \Omega) \approx 33 \mathrm{~V} \\
& V_{L}=I X_{L}=(0.165 \mathrm{~A})(86.7 \Omega) \approx 14.3 \mathrm{~V}
\end{aligned}
$$

This is an inductive circuit, so ε_{m} leads I. The phasor diagram is drawn to scale below.

36. (a) The graph shows that the resonance angular frequency is $25000 \mathrm{rad} / \mathrm{s}$, which means (using Eq. 31-4)

$$
C=\left(\omega^{2} L\right)^{-1}=\left[(25000)^{2} \times 200 \times 10^{-6}\right]^{-1}=8.0 \mu \mathrm{~F} .
$$

(b) The graph also shows that the current amplitude at resonance is 4.0 A , but at resonance the impedance Z becomes purely resistive $(Z=R)$ so that we can divide the emf amplitude by the current amplitude at resonance to find $R: 8.0 / 4.0=2.0 \Omega$.
37. (a) Now $X_{L}=0$, while $R=200 \Omega$ and $X_{C}=1 / 2 \pi f_{d} C=177 \Omega$. Therefore, the impedance is

$$
Z=\sqrt{R^{2}+X_{C}^{2}}=\sqrt{(200 \Omega)^{2}+(177 \Omega)^{2}}=267 \Omega
$$

(b) The phase angle is

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{0-177 \Omega}{200 \Omega}\right)=-41.5^{\circ}
$$

(c) The current amplitude is

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{36.0 \mathrm{~V}}{267 \Omega}=0.135 \mathrm{~A} .
$$

(d) We first find the voltage amplitudes across the circuit elements:

$$
\begin{aligned}
& V_{R}=I R=(0.135 \mathrm{~A})(200 \Omega) \approx 27.0 \mathrm{~V} \\
& V_{C}=I X_{C}=(0.135 \mathrm{~A})(177 \Omega) \approx 23.9 \mathrm{~V}
\end{aligned}
$$

The circuit is capacitive, so I leads ε_{m}. The phasor diagram is drawn to scale next.

38. (a) The circuit has a resistor and a capacitor (but no inductor). Since the capacitive reactance decreases with frequency, then the asymptotic value of Z must be the resistance: $R=500 \Omega$.
(b) We describe three methods here (each using information from different points on the graph):
method 1: At $\omega_{d}=50 \mathrm{rad} / \mathrm{s}$, we have $Z \approx 700 \Omega$ which gives $C=\left(\omega_{d} \sqrt{Z^{2}-R^{2}}\right)^{-1}=41 \mu \mathrm{~F}$. method 2: At $\omega_{d}=50 \mathrm{rad} / \mathrm{s}$, we have $X_{C} \approx 500 \Omega$ which gives $C=\left(\omega_{d} X_{C}\right)^{-1}=40 \mu \mathrm{~F}$. method 3: At $\omega_{d}=250 \mathrm{rad} / \mathrm{s}$, we have $X_{C} \approx 100 \Omega$ which gives $C=\left(\omega_{d} X_{C}\right)^{-1}=40 \mu \mathrm{~F}$.
39. (a) The capacitive reactance is

$$
X_{C}=\frac{1}{\omega_{d} C}=\frac{1}{2 \pi f_{d} C}=\frac{1}{2 \pi(60.0 \mathrm{~Hz})\left(70.0 \times 10^{-6} \mathrm{~F}\right)}=37.9 \Omega .
$$

The inductive reactance 86.7Ω is unchanged. The new impedance is

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{(200 \Omega)^{2}+(37.9 \Omega-86.7 \Omega)^{2}}=206 \Omega .
$$

(b) The phase angle is

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{86.7 \Omega-37.9 \Omega}{200 \Omega}\right)=13.7^{\circ} .
$$

(c) The current amplitude is

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{36.0 \mathrm{~V}}{206 \Omega}=0.175 \mathrm{~A}
$$

(d) We first find the voltage amplitudes across the circuit elements:

$$
\begin{aligned}
& V_{R}=I R=(0.175 \mathrm{~A})(200 \Omega)=35.0 \mathrm{~V} \\
& V_{L}=I X_{L}=(0.175 \mathrm{~A})(86.7 \Omega)=15.2 \mathrm{~V} \\
& V_{C}=I X_{C}=(0.175 \mathrm{~A})(37.9 \Omega)=6.62 \mathrm{~V}
\end{aligned}
$$

Note that $X_{L}>X_{C}$, so that ε_{m} leads I. The phasor diagram is drawn to scale below.

40. (a) Since $Z=\sqrt{R^{2}+X_{L}^{2}}$ and $X_{L}=\omega_{d} L$, then as $\omega_{d} \rightarrow 0$ we find $Z \rightarrow R=40 \Omega$.
(b) $L=X_{L} / \omega_{d}=$ slope $=60 \mathrm{mH}$.
41. The resistance of the coil is related to the reactances and the phase constant by Eq. 31-65. Thus,

$$
\frac{X_{L}-X_{C}}{R}=\frac{\omega_{d} L-1 / \omega_{d} C}{R}=\tan \phi
$$

which we solve for R :

$$
\begin{aligned}
R & =\frac{1}{\tan \phi}\left(\omega_{d} L-\frac{1}{\omega_{d} C}\right)=\frac{1}{\tan 75^{\circ}}\left[(2 \pi)\left(930 \mathrm{~Hz}\left(8.8 \times 10^{-2} \mathrm{H}\right)-\frac{1}{(2 \pi)(930 \mathrm{~Hz})\left(0.94 \times 10^{-6} \mathrm{~F}\right.}\right]\right. \\
& =89 \Omega
\end{aligned}
$$

42. A phasor diagram very much like Fig. 31-11(c) leads to the condition:

$$
V_{L}-V_{C}=(6.00 \mathrm{~V}) \sin \left(30^{\circ}\right)=3.00 \mathrm{~V} .
$$

With the magnitude of the capacitor voltage at 5.00 V , this gives a inductor voltage magnitude equal to 8.00 V .
43. (a) Yes, the voltage amplitude across the inductor can be much larger than the amplitude of the generator emf.
(b) The amplitude of the voltage across the inductor in an $R L C$ series circuit is given by $V_{L}=I X_{L}=I \omega_{d} L$. At resonance, the driving angular frequency equals the natural angular frequency: $\omega_{d}=\omega=1 / \sqrt{L C}$. For the given circuit

$$
X_{L}=\frac{L}{\sqrt{L C}}=\frac{1.0 \mathrm{H}}{\sqrt{(1.0 \mathrm{H})\left(1.0 \times 10^{-6} \mathrm{~F}\right)}}=1000 \Omega .
$$

At resonance the capacitive reactance has this same value, and the impedance reduces simply: $Z=R$. Consequently,

$$
I=\left.\frac{\varepsilon_{m}}{Z}\right|_{\text {resonance }}=\frac{\varepsilon_{m}}{R}=\frac{10 \mathrm{~V}}{10 \Omega}=1.0 \mathrm{~A} .
$$

The voltage amplitude across the inductor is therefore

$$
V_{L}=I X_{L}=(1.0 \mathrm{~A})(1000 \Omega)=1.0 \times 10^{3} \mathrm{~V}
$$

which is much larger than the amplitude of the generator emf.
44. (a) With both switches closed (which effectively removes the resistor from the circuit), the impedance is just equal to the (net) reactance and is equal to (12 V)/(0.447 A) $=26.85 \Omega$. With switch 1 closed but switch 2 open, we have the same (net) reactance as just discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find

$$
R=X_{\text {net }} / \tan \phi=26.85 / \tan \left(15^{\circ}\right)=100 \Omega .
$$

(b) For the first situation described in the problem (both switches open) we can reverse our reasoning of part (a) and find $X_{\text {net first }}=R \tan \left(-30.9^{\circ}\right)=-59.96 \Omega$. We observe that the effect of switch 1 implies

$$
X_{C}=X_{\text {net }}-X_{\text {net firsst }}=26.85-(-59.96)=86.81 \Omega .
$$

Then Eq. 31-39 leads to $C=1 / \omega X_{C}=30.6 \mu \mathrm{~F}$.
(c) Since $X_{\text {net }}=X_{L}-X_{C}$, then we find $L=X_{L} / \omega=301 \mathrm{mH}$
45. (a) For a given amplitude ε_{m} of the generator emf, the current amplitude is given by

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{\varepsilon_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}} .
$$

We find the maximum by setting the derivative with respect to ω_{d} equal to zero:

$$
\frac{d I}{d \omega_{d}}=-(E)_{m}\left[R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}\right]^{-3 / 2}\left[\omega_{d} L-\frac{1}{\omega_{d} C}\right]\left[L+\frac{1}{\omega_{d}^{2} C}\right] .
$$

The only factor that can equal zero is $\omega_{d} L-\left(1 / \omega_{d} C\right)$; it does so for $\omega_{d}=1 / \sqrt{L C}=\omega$. For this

$$
\omega_{d}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)}}=224 \mathrm{rad} / \mathrm{s} .
$$

(b) When $\omega_{d}=\omega$, the impedance is $Z=R$, and the current amplitude is

$$
I=\frac{\varepsilon_{m}}{R}=\frac{30.0 \mathrm{~V}}{5.00 \Omega}=6.00 \mathrm{~A} .
$$

(c) We want to find the (positive) values of ω_{d} for which $I=\varepsilon_{m} / 2 R$:

$$
\frac{\varepsilon_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}}=\frac{\varepsilon_{m}}{2 R} .
$$

This may be rearranged to yield

$$
\left(\omega_{d} L-\frac{1}{\omega_{d} C}\right)^{2}=3 R^{2}
$$

Taking the square root of both sides (acknowledging the two \pm roots) and multiplying by $\omega_{d} C$, we obtain

$$
\omega_{d}^{2}(L C) \pm \omega_{d}(\sqrt{3} C R)-1=0
$$

Using the quadratic formula, we find the smallest positive solution

$$
\begin{aligned}
\omega_{2}= & \frac{-\sqrt{3} C R+\sqrt{3 C^{2} R^{2}+4 L C}}{2 L C}=\frac{-\sqrt{3}\left(20.0 \times 10^{-6} \mathrm{~F}\right)(5.00 \Omega)}{2(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)} \\
& +\frac{\sqrt{3\left(20.0 \times 10^{-6} \mathrm{~F}\right)^{2}(5.00 \Omega)^{2}+4(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)}}{2(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)} \\
= & 219 \mathrm{rad} / \mathrm{s},
\end{aligned}
$$

(d) and the largest positive solution

$$
\begin{aligned}
\omega_{1} & =\frac{+\sqrt{3} C R+\sqrt{3 C^{2} R^{2}+4 L C}}{2 L C}=\frac{+\sqrt{3}\left(20.0 \times 10^{-6} \mathrm{~F}\right)(5.00 \Omega)}{2(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)} \\
& +\frac{\sqrt{3\left(20.0 \times 10^{-6} \mathrm{~F}\right)^{2}(5.00 \Omega)^{2}+4(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)}}{2(1.00 \mathrm{H})\left(20.0 \times 10^{-6} \mathrm{~F}\right)} \\
= & 228 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

(e) The fractional width is

$$
\frac{\omega_{1}-\omega_{2}}{\omega_{0}}=\frac{228 \mathrm{rad} / \mathrm{s}-219 \mathrm{rad} / \mathrm{s}}{224 \mathrm{rad} / \mathrm{s}}=0.040 .
$$

46. (a) The capacitive reactance is

$$
X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(400 \mathrm{~Hz})\left(24.0 \times 10^{-6} \mathrm{~F}\right)}=16.6 \Omega .
$$

(b) The impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+\left(2 \pi f L-X_{C}\right)^{2}} \\
& =\sqrt{(220 \Omega)^{2}+\left[2 \pi(400 \mathrm{~Hz})\left(150 \times 10^{-3} \mathrm{H}\right)-16.6 \Omega\right]^{2}}=422 \Omega .
\end{aligned}
$$

(c) The current amplitude is

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{220 \mathrm{~V}}{422 \Omega}=0.521 \mathrm{~A}
$$

(d) Now $X_{C} \propto C_{\mathrm{eq}}^{-1}$. Thus, X_{C} increases as C_{eq} decreases.
(e) Now $C_{\text {eq }}=C / 2$, and the new impedance is

$$
Z=\sqrt{(220 \Omega)^{2}+\left[2 \pi(400 \mathrm{~Hz})\left(150 \times 10^{-3} \mathrm{H}\right)-2(16.6 \Omega)\right]^{2}}=408 \Omega<422 \Omega .
$$

Therefore, the impedance decreases.
(f) Since $I \propto Z^{-1}$, it increases.
47. We use the expressions found in Problem 45:

$$
\begin{aligned}
& \omega_{1}=\frac{+\sqrt{3} C R+\sqrt{3 C^{2} R^{2}+4 L C}}{2 L C} \\
& \omega_{2}=\frac{-\sqrt{3} C R+\sqrt{3 C^{2} R^{2}+4 L C}}{2 L C}
\end{aligned}
$$

We also use Eq. 31-4. Thus,

$$
\frac{\Delta \omega_{d}}{\omega}=\frac{\omega_{1}-\omega_{2}}{\omega}=\frac{2 \sqrt{3} C R \sqrt{L C}}{2 L C}=R \sqrt{\frac{3 C}{L}}
$$

For the data of Problem 45,

$$
\frac{\Delta \omega_{d}}{\omega}=(5.00 \Omega) \sqrt{\frac{3\left(20.0 \times 10^{-6} \mathrm{~F}\right)}{1.00 \mathrm{H}}}=3.87 \times 10^{-2}
$$

This is in agreement with the result of Problem 45. The method of Problem 45, however, gives only one significant figure since two numbers close in value are subtracted ($\omega_{1}-$ ω_{2}). Here the subtraction is done algebraically, and three significant figures are obtained.
48. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label " I_{L} " on the green arrow replaced with " V_{R}."
(b) We have $V_{R}=V_{L}$, which implies

$$
I R=I X_{L} \rightarrow R=\omega_{d} L
$$

which yields $f=\omega_{d} / 2 \pi=R / 2 \pi L=318 \mathrm{~Hz}$.
(c) $\phi=\tan ^{-1}\left(V_{L} / V_{R}\right)=+45^{\circ}$.
(d) $\omega_{d}=R / L=2.00 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(e) $I=(6 \mathrm{~V}) / \sqrt{R^{2}+X_{L}^{2}}=3 /(40 \sqrt{2}) \approx 53.0 \mathrm{~mA}$.
49. (a) Since $L_{\mathrm{eq}}=L_{1}+L_{2}$ and $C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}$ for the circuit, the resonant frequency is

$$
\begin{aligned}
\omega & =\frac{1}{2 \pi \sqrt{L_{\mathrm{eq}} C_{\mathrm{eq}}}}=\frac{1}{2 \pi \sqrt{\left(L_{1}+L_{2}\right)\left(C_{1}+C_{2}+C_{3}\right)}} \\
& =\frac{1}{2 \pi \sqrt{\left(1.70 \times 10^{-3} \mathrm{H}+2.30 \times 10^{-3} \mathrm{H}\right)\left(4.00 \times 10^{-6} \mathrm{~F}+2.50 \times 10^{-6} \mathrm{~F}+3.50 \times 10^{-6} \mathrm{~F}\right)}} \\
& =796 \mathrm{~Hz} .
\end{aligned}
$$

(b) The resonant frequency does not depend on R so it will not change as R increases.
(c) Since $\omega \propto\left(L_{1}+L_{2}\right)^{-1 / 2}$, it will decrease as L_{1} increases.
(d) Since $\omega \propto C_{\text {eq }}^{-1 / 2}$ and $C_{\text {eq }}$ decreases as C_{3} is removed, ω will increase.
50. Since the impedance of the voltmeter is large, it will not affect the impedance of the circuit when connected in parallel with the circuit. So the reading will be 100 V in all three cases.
51. The average power dissipated in resistance R when the current is alternating is given by $P_{\text {avg }}=I_{\mathrm{rms}}^{2} R$, where I_{rms} is the root-mean-square current. Since $I_{\mathrm{rms}}=I / \sqrt{2}$, where I is the current amplitude, this can be written $P_{\text {avg }}=I^{2} R / 2$. The power dissipated in the same resistor when the current i_{d} is direct is given by $P=i_{d}^{2} R$. Setting the two powers equal to each other and solving, we obtain

$$
i_{d}=\frac{I}{\sqrt{2}}=\frac{2.60 \mathrm{~A}}{\sqrt{2}}=1.84 \mathrm{~A} .
$$

52. The amplitude (peak) value is

$$
V_{\max }=\sqrt{2} V_{\mathrm{rms}}=\sqrt{2}(100 \mathrm{~V})=141 \mathrm{~V} .
$$

53. (a) Using Eq. 31-61, the impedance is

$$
Z=\sqrt{(12.0 \Omega)^{2}+(1.30 \Omega-0)^{2}}=12.1 \Omega
$$

(b) We use the result of problem 54:

$$
P_{\mathrm{avg}}=\frac{\varepsilon_{\mathrm{rms}}^{2} R}{Z^{2}}=\frac{(120 \mathrm{~V})^{2}(12.0 \Omega)}{(12.07 \Omega)^{2}}=1.186 \times 10^{3} \mathrm{~W} \approx 1.19 \times 10^{3} \mathrm{~W}
$$

54. This circuit contains no reactances, so $\varepsilon_{\mathrm{rms}}=I_{\mathrm{rms}} R_{\text {total }}$. Using Eq. 31-71, we find the average dissipated power in resistor R is

$$
P_{R}=I_{\mathrm{rms}}^{2} R=\left(\frac{\varepsilon_{m}}{r+R}\right)^{2} R .
$$

In order to maximize P_{R} we set the derivative equal to zero:

$$
\frac{d P_{R}}{d R}=\frac{\varepsilon_{m}^{2}\left[(r+R)^{2}-2(r+R) R\right]}{(r+R)^{4}}=\frac{\varepsilon_{\mathrm{m}}^{2}(r-R)}{(r+R)^{3}}=0 \Rightarrow R=r
$$

55. (a) The power factor is $\cos \phi$, where ϕ is the phase constant defined by the expression $i=I \sin (\omega t-\phi)$. Thus, $\phi=-42.0^{\circ}$ and $\cos \phi=\cos \left(-42.0^{\circ}\right)=0.743$.
(b) Since $\phi<0, \omega t-\phi>\omega t$. The current leads the emf.
(c) The phase constant is related to the reactance difference by $\tan \phi=\left(X_{L}-X_{C}\right) / R$. We have $\tan \phi=\tan \left(-42.0^{\circ}\right)=-0.900$, a negative number. Therefore, $X_{L}-X_{C}$ is negative, which leads to $X_{C}>X_{L}$. The circuit in the box is predominantly capacitive.
(d) If the circuit were in resonance X_{L} would be the same as X_{C}, $\tan \phi$ would be zero, and ϕ would be zero. Since ϕ is not zero, we conclude the circuit is not in resonance.
(e) Since $\tan \phi$ is negative and finite, neither the capacitive reactance nor the resistance are zero. This means the box must contain a capacitor and a resistor.
(f) The inductive reactance may be zero, so there need not be an inductor.
(g) Yes, there is a resistor.
(h) The average power is

$$
P_{\text {avg }}=\frac{1}{2} \varepsilon_{m} I \cos \phi=\frac{1}{2}(75.0 \mathrm{~V})(1.20 \mathrm{~A})(0.743)=33.4 \mathrm{~W} .
$$

(i) The answers above depend on the frequency only through the phase constant ϕ, which is given. If values were given for R, L and C then the value of the frequency would also be needed to compute the power factor.
56. (a) The power consumed by the light bulb is $P=I^{2} R / 2$. So we must let $P_{\max } / P_{\min }=$ $\left(I / I_{\text {min }}\right)^{2}=5$, or

$$
\left(\frac{I}{I_{\min }}\right)^{2}=\left(\frac{\varepsilon_{m} / Z_{\min }}{\varepsilon_{m} / Z_{\max }}\right)^{2}=\left(\frac{Z_{\max }}{Z_{\min }}\right)^{2}=\left(\frac{\sqrt{R^{2}+\left(\omega L_{\max }\right)^{2}}}{R}\right)^{2}=5 .
$$

We solve for $L_{\text {max }}$:

$$
L_{\max }=\frac{2 R}{\omega}=\frac{2(120 \mathrm{~V})^{2} / 1000 \mathrm{~W}}{2 \pi(60.0 \mathrm{~Hz})}=7.64 \times 10^{-2} \mathrm{H}
$$

(b) Yes, one could use a variable resistor.
(c) Now we must let

$$
\left(\frac{R_{\max }+R_{\mathrm{bulb}}}{R_{\mathrm{bulb}}}\right)^{2}=5,
$$

or

$$
R_{\max }=(\sqrt{5}-1) R_{\mathrm{bulb}}=(\sqrt{5}-1) \frac{(120 \mathrm{~V})^{2}}{1000 \mathrm{~W}}=17.8 \Omega
$$

(d) This is not done because the resistors would consume, rather than temporarily store, electromagnetic energy.
57. We shall use

$$
P_{\text {avg }}=\frac{\varepsilon_{m}^{2} R}{2 Z^{2}}=\frac{\varepsilon_{m}^{2} R}{2\left[R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}\right]} .
$$

where $Z=\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}$ is the impedance.
(a) Considered as a function of $C, P_{\text {avg }}$ has its largest value when the factor $R^{2}+\left(\omega_{d} L-\right.$ $\left.1 / \omega_{d} C\right)^{2}$ has the smallest possible value. This occurs for $\omega_{d} L=1 / \omega_{d} C$, or

$$
C=\frac{1}{\omega_{d}^{2} L}=\frac{1}{(2 \pi)^{2}(60.0 \mathrm{~Hz})^{2}\left(60.0 \times 10^{-3} \mathrm{H}\right)}=1.17 \times 10^{-4} \mathrm{~F}
$$

The circuit is then at resonance.
(b) In this case, we want Z^{2} to be as large as possible. The impedance becomes large without bound as C becomes very small. Thus, the smallest average power occurs for $C=$ 0 (which is not very different from a simple open switch).
(c) When $\omega_{d} L=1 / \omega_{d} C$, the expression for the average power becomes

$$
P_{\mathrm{avg}}=\frac{\varepsilon_{m}^{2}}{2 R}
$$

so the maximum average power is in the resonant case and is equal to

$$
P_{\text {avg }}=\frac{(30.0 \mathrm{~V})^{2}}{2(5.00 \Omega)}=90.0 \mathrm{~W} .
$$

(d) At maximum power, the reactances are equal: $X_{L}=X_{C}$. The phase angle ϕ in this case may be found from

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}=0
$$

which implies $\phi=0^{\circ}$.
(e) At maximum power, the power factor is $\cos \phi=\cos 0^{\circ}=1$,
(f) The minimum average power is $P_{\text {avg }}=0$ (as it would be for an open switch).
(g) On the other hand, at minimum power $X_{C} \propto 1 / C$ is infinite, which leads us to set $\tan \phi=-\infty$. In this case, we conclude that $\phi=-90^{\circ}$.
(h) At minimum power, the power factor is $\cos \phi=\cos \left(-90^{\circ}\right)=0$.
58. The current in the circuit satisfies $i(t)=I \sin \left(\omega_{d} t-\phi\right)$, where

$$
\begin{aligned}
I & =\frac{\varepsilon_{m}}{Z}=\frac{\varepsilon_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}} \\
& =\frac{45.0 \mathrm{~V}}{\sqrt{(16.0 \Omega)^{2}+\{(3000 \mathrm{rad} / \mathrm{s})(9.20 \mathrm{mH})-1 /[(3000 \mathrm{rad} / \mathrm{s})(31.2 \mu \mathrm{~F})]\}^{2}}} \\
& =1.93 \mathrm{~A}
\end{aligned}
$$

and

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{\omega_{d} L-1 / \omega_{d} C}{R}\right) \\
& =\tan ^{-1}\left[\frac{(3000 \mathrm{rad} / \mathrm{s})(9.20 \mathrm{mH})}{16.0 \Omega}-\frac{1}{(3000 \mathrm{rad} / \mathrm{s})(16.0 \Omega)(31.2 \mu \mathrm{~F})}\right] \\
& =46.5^{\circ} .
\end{aligned}
$$

(a) The power supplied by the generator is

$$
\begin{aligned}
P_{g} & =i(t) \varepsilon(t)=I \sin \left(\omega_{d} t-\phi\right) \varepsilon_{m} \sin \omega_{d} t \\
& =(1.93 \mathrm{~A})(45.0 \mathrm{~V}) \sin [(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})] \sin \left[(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-46.5^{\circ}\right] \\
& =41.4 \mathrm{~W} .
\end{aligned}
$$

(b) The rate at which the energy in the capacitor changes is

$$
\begin{aligned}
P_{c} & =-\frac{d}{d t}\left(\frac{q^{2}}{2 C}\right)=-i \frac{q}{C}=-i V_{c} \\
& =-I \sin \left(\omega_{d} t-\phi\right)\left(\frac{I}{\omega_{d} C}\right) \cos \left(\omega_{d} t-\phi\right)=-\frac{I^{2}}{2 \omega_{d} C} \sin \left[2\left(\omega_{d} t-\phi\right)\right] \\
& =-\frac{(1.93 \mathrm{~A})^{2}}{2(3000 \mathrm{rad} / \mathrm{s})\left(31.2 \times 10^{-6} \mathrm{~F}\right)} \sin \left[2(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-2\left(46.5^{\circ}\right)\right] \\
& =-17.0 \mathrm{~W}
\end{aligned}
$$

(c) The rate at which the energy in the inductor changes is

$$
\begin{aligned}
P_{L} & =\frac{d}{d t}\left(\frac{1}{2} L i^{2}\right)=L i \frac{d i}{d t}=L I \sin \left(\omega_{d} t-\phi\right) \frac{d}{d t}\left[I \sin \left(\omega_{d} t-\phi\right)\right]=\frac{1}{2} \omega_{d} L I^{2} \sin \left[2\left(\omega_{d} t-\phi\right)\right] \\
& =\frac{1}{2}(3000 \mathrm{rad} / \mathrm{s})(1.93 \mathrm{~A})^{2}(9.20 \mathrm{mH}) \sin \left[2(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-2\left(46.5^{\circ}\right)\right] \\
& =44.1 \mathrm{~W} .
\end{aligned}
$$

(d) The rate at which energy is being dissipated by the resistor is

$$
\begin{aligned}
P_{R} & =i^{2} R=I^{2} R \sin ^{2}\left(\omega_{d} t-\phi\right)=(1.93 \mathrm{~A})^{2}(16.0 \Omega) \sin ^{2}\left[(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-46.5^{\circ}\right] \\
& =14.4 \mathrm{~W} .
\end{aligned}
$$

(e) Equal. $P_{L}+P_{R}+P_{c}=44.1 \mathrm{~W}-17.0 \mathrm{~W}+14.4 \mathrm{~W}=41.5 \mathrm{~W}=P_{g}$.
59. (a) The rms current is

$$
\begin{aligned}
& I_{\mathrm{rms}}=\frac{\varepsilon_{\mathrm{rms}}}{Z}=\frac{\varepsilon_{\mathrm{rms}}}{\sqrt{R^{2}+(2 \pi f L-1 / 2 \pi f C)^{2}}} \\
& =\frac{75.0 \mathrm{~V}}{\sqrt{(15.0 \Omega)^{2}+\{2 \pi(550 \mathrm{~Hz})(25.0 \mathrm{mH})-1 /[2 \pi(550 \mathrm{~Hz})(4.70 \mu \mathrm{~F})]\}^{2}}} \\
& =2.59 \mathrm{~A} .
\end{aligned}
$$

(b) The rms voltage across R is

$$
V_{a b}=I_{\mathrm{rms}} R=(2.59 \mathrm{~A})(15.0 \Omega)=38.8 \mathrm{~V} .
$$

(c) The rms voltage across C is

$$
V_{b c}=I_{\mathrm{rms}} X_{C}=\frac{I_{\mathrm{rms}}}{2 \pi f C}=\frac{2.59 \mathrm{~A}}{2 \pi(550 \mathrm{~Hz})(4.70 \mu \mathrm{~F})}=159 \mathrm{~V} .
$$

(d) The rms voltage across L is

$$
V_{c d}=I_{\mathrm{rms}} X_{L}=2 \pi I_{\mathrm{rms}} f L=2 \pi(2.59 \mathrm{~A})(550 \mathrm{~Hz})(25.0 \mathrm{mH})=224 \mathrm{~V} .
$$

(e) The rms voltage across C and L together is

$$
V_{b d}=\left|V_{b c}-V_{c d}\right|=|159.5 \mathrm{~V}-223.7 \mathrm{~V}|=64.2 \mathrm{~V}
$$

(f) The rms voltage across R, C and L together is

$$
V_{a d}=\sqrt{V_{a b}^{2}+V_{b d}^{2}}=\sqrt{(38.8 \mathrm{~V})^{2}+(64.2 \mathrm{~V})^{2}}=75.0 \mathrm{~V}
$$

(g) For R,

$$
P_{R}=\frac{V_{a b}^{2}}{R}=\frac{(38.8 \mathrm{~V})^{2}}{15.0 \Omega}=100 \mathrm{~W} .
$$

(h) No energy dissipation in C.
(i) No energy dissipation in L.
60. We use Eq. 31-79 to find

$$
V_{s}=V_{p}\left(\frac{N_{s}}{N_{p}}\right)=(100 \mathrm{~V})\left(\frac{500}{50}\right)=1.00 \times 10^{3} \mathrm{~V}
$$

61. (a) The stepped-down voltage is

$$
V_{s}=V_{p}\left(\frac{N_{s}}{N_{p}}\right)=(120 \mathrm{~V})\left(\frac{10}{500}\right)=2.4 \mathrm{~V}
$$

(b) By Ohm's law, the current in the secondary is

$$
I_{s}=\frac{V_{s}}{R_{s}}=\frac{2.4 \mathrm{~V}}{15 \Omega}=0.16 \mathrm{~A} .
$$

We find the primary current from Eq. 31-80:

$$
I_{p}=I_{s}\left(\frac{N_{s}}{N_{p}}\right)=(0.16 \mathrm{~A})\left(\frac{10}{500}\right)=3.2 \times 10^{-3} \mathrm{~A} .
$$

(c) As shown above, the current in the secondary is $I_{s}=0.16 \mathrm{~A}$.
62. For step-up trasnformer:
(a) The smallest value of the ratio V_{s} / V_{p} is achieved by using $T_{2} T_{3}$ as primary and $T_{1} T_{3}$ as secondary coil: $V_{13} / V_{23}=(800+200) / 800=1.25$.
(b) The second smallest value of the ratio V_{s} / V_{p} is achieved by using $T_{1} T_{2}$ as primary and $T_{2} T_{3}$ as secondary coil: $V_{23} / V_{13}=800 / 200=4.00$.
(c) The largest value of the ratio V_{s} / V_{p} is achieved by using $T_{1} T_{2}$ as primary and $T_{1} T_{3}$ as secondary coil: $V_{13} / V_{12}=(800+200) / 200=5.00$.

For the step-down transformer, we simply exchange the primary and secondary coils in each of the three cases above.
(d) The smallest value of the ratio V_{s} / V_{p} is $1 / 5.00=0.200$.
(e) The second smallest value of the ratio V_{s} / V_{p} is $1 / 4.00=0.250$.
(f) The largest value of the ratio V_{s} / V_{p} is $1 / 1.25=0.800$.
63. (a) The rms current in the cable is $I_{\mathrm{rms}}=P / V_{t}=250 \times 10^{3} \mathrm{~W} /\left(80 \times 10^{3} \mathrm{~V}\right)=3.125 \mathrm{~A}$. The rms voltage drop is then $\Delta V=I_{\mathrm{rms}} R=(3.125 \mathrm{~A})(2)(0.30 \Omega)=1.9 \mathrm{~V}$.
(b) The rate of energy dissipation is $P_{d}=I_{\mathrm{rms}}^{2} R=(3.125 \mathrm{~A})(2)(0.60 \Omega)=5.9 \mathrm{~W}$.
(c) Now $I_{\mathrm{rms}}=250 \times 10^{3} \mathrm{~W} /\left(8.0 \times 10^{3} \mathrm{~V}\right)=31.25 \mathrm{~A}$, so $\Delta V=(31.25 \mathrm{~A})(0.60 \Omega)=19 \mathrm{~V}$.
(d) $P_{d}=(3.125 \mathrm{~A})^{2}(0.60 \Omega)=5.9 \times 10^{2} \mathrm{~W}$.
(e) $I_{\mathrm{rms}}=250 \times 10^{3} \mathrm{~W} /\left(0.80 \times 10^{3} \mathrm{~V}\right)=312.5 \mathrm{~A}$, so $\Delta V=(312.5 \mathrm{~A})(0.60 \Omega)=1.9 \times 10^{2} \mathrm{~V}$.
(f) $P_{d}=(312.5 \mathrm{~A})^{2}(0.60 \Omega)=5.9 \times 10^{4} \mathrm{~W}$.
64. (a) The amplifier is connected across the primary windings of a transformer and the resistor R is connected across the secondary windings.
(b) If I_{s} is the rms current in the secondary coil then the average power delivered to R is $P_{\text {avg }}=I_{s}^{2} R$. Using $I_{s}=\left(N_{p} / N_{s}\right) I_{p}$, we obtain

$$
P_{\text {avg }}=\left(\frac{I_{p} N_{p}}{N_{s}}\right)^{2} R .
$$

Next, we find the current in the primary circuit. This is effectively a circuit consisting of a generator and two resistors in series. One resistance is that of the amplifier (r), and the other is the equivalent resistance R_{eq} of the secondary circuit. Therefore,

$$
I_{p}=\frac{\varepsilon_{\mathrm{rms}}}{r+R_{\mathrm{eq}}}=\frac{\varepsilon_{\mathrm{rms}}}{r+\left(N_{p} / N_{s}\right)^{2} R}
$$

where Eq. 31-82 is used for $R_{\text {eq. }}$. Consequently,

$$
P_{\mathrm{avg}}=\frac{\varepsilon^{2}\left(N_{p} / N_{s}\right)^{2} R}{\left[r+\left(N_{p} / N_{s}\right)^{2} R\right]^{2}}
$$

Now, we wish to find the value of N_{p} / N_{s} such that $P_{\text {avg }}$ is a maximum. For brevity, let $x=$ $\left(N_{p} / N_{s}\right)^{2}$. Then

$$
P_{\mathrm{avg}}=\frac{\varepsilon^{2} R x}{(r+x R)^{2}}
$$

and the derivative with respect to x is

$$
\frac{d P_{\mathrm{avg}}}{d x}=\frac{\varepsilon^{2} R(r-x R)}{(r+x R)^{3}} .
$$

This is zero for $x=r / R=(1000 \Omega) /(10 \Omega)=100$. We note that for small $x, P_{\text {avg }}$ increases linearly with x, and for large x it decreases in proportion to $1 / x$. Thus $x=r / R$ is indeed a maximum, not a minimum. Recalling $x=\left(N_{p} / N_{s}\right)^{2}$, we conclude that the maximum power is achieved for

$$
N_{p} / N_{s}=\sqrt{x}=10 .
$$

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An actual transformer would have many more turns in both the primary and secondary coils.

65. (a) We consider the following combinations: $\Delta V_{12}=V_{1}-V_{2}, \Delta V_{13}=V_{1}-V_{3}$, and ΔV_{23} $=V_{2}-V_{3}$. For ΔV_{12},

$$
\Delta V_{12}=A \sin \left(\omega_{d} t\right)-A \sin \left(\omega_{d} t-120^{\circ}\right)=2 A \sin \left(\frac{120^{\circ}}{2}\right) \cos \left(\frac{2 \omega_{d} t-120^{\circ}}{2}\right)=\sqrt{3} A \cos \left(\omega_{d} t-60^{\circ}\right)
$$

where we use $\sin \alpha-\sin \beta=2 \sin [(\alpha-\beta) / 2] \cos [(\alpha+\beta) / 2]$ and $\sin 60^{\circ}=\sqrt{3} / 2$. Similarly,

$$
\begin{aligned}
\Delta V_{13} & =A \sin \left(\omega_{d} t\right)-A \sin \left(\omega_{d} t-240^{\circ}\right)=2 A \sin \left(\frac{240^{\circ}}{2}\right) \cos \left(\frac{2 \omega_{d} t-240^{\circ}}{2}\right) \\
& =\sqrt{3} A \cos \left(\omega_{d} t-120^{\circ}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta V_{23} & =A \sin \left(\omega_{d} t-120^{\circ}\right)-A \sin \left(\omega_{d} t-240^{\circ}\right)=2 A \sin \left(\frac{120^{\circ}}{2}\right) \cos \left(\frac{2 \omega_{d} t-360^{\circ}}{2}\right) \\
& =\sqrt{3} A \cos \left(\omega_{d} t-180^{\circ}\right)
\end{aligned}
$$

All three expressions are sinusoidal functions of t with angular frequency ω_{d}.
(b) We note that each of the above expressions has an amplitude of $\sqrt{3} A$.
66. We start with Eq. 31-76:

$$
P_{\mathrm{avg}}=\varepsilon_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi=\varepsilon_{\mathrm{rms}}\left(\frac{\varepsilon_{\mathrm{rms}}}{Z}\right)\left(\frac{R}{Z}\right)=\frac{\varepsilon_{\mathrm{rms}}^{2} R}{Z^{2} .}
$$

For a purely resistive circuit, $Z=R$, and this result reduces to Eq. 27-23 (with V replaced with $\left.\mathcal{E}_{\mathrm{rms}}\right)$. This is also the case for a series $R L C$ circuit at resonance. The average rate for dissipating energy is, of course, zero if $R=0$, as would be the case for a purely inductive circuit.
67. (a) The effective resistance $R_{\text {eff }}$ satisfies $I_{\text {rms }}^{2} R_{\text {eff }}=P_{\text {mechanical }}$, or

$$
R_{\mathrm{eff}}=\frac{P_{\text {mechanical }}}{I_{\mathrm{rms}}^{2}}=\frac{(0.100 \mathrm{hp})(746 \mathrm{~W} / \mathrm{hp})}{(0.650 \mathrm{~A})^{2}}=177 \Omega
$$

(b) This is not the same as the resistance R of its coils, but just the effective resistance for power transfer from electrical to mechanical form. In fact $I_{\mathrm{rms}}^{2} R$ would not give $P_{\text {mechanical }}$ but rather the rate of energy loss due to thermal dissipation.
69. The rms current in the motor is

$$
I_{\mathrm{rms}}=\frac{\varepsilon_{\mathrm{rms}}}{Z}=\frac{\varepsilon_{\mathrm{rms}}}{\sqrt{R^{2}+X_{L}^{2}}}=\frac{420 \mathrm{~V}}{\sqrt{(45.0 \Omega)^{2}+(32.0 \Omega)^{2}}}=7.61 \mathrm{~A} .
$$

70. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label " I_{C} " on the green arrow replaced with " V_{R}."
(b) We have $I R=I X_{\mathrm{C}}$, or

$$
I R=I X_{\mathrm{C}} \rightarrow R=\frac{1}{\omega_{d} C}
$$

which yields $f=\omega_{d} / 2 \pi=1 / 2 \pi R C=159 \mathrm{~Hz}$.
(c) $\phi=\tan ^{-1}\left(-V_{C} / V_{R}\right)=-45^{\circ}$.
(d) $\omega_{d}=1 / R C=1.00 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(e) $I=(12 \mathrm{~V}) / \sqrt{R^{2}+X_{C}^{2}}=6 /(25 \sqrt{2}) \approx 170 \mathrm{~mA}$.
71. (a) The energy stored in the capacitor is given by $U_{E}=q^{2} / 2 C$. Since q is a periodic function of t with period T, so must be U_{E}. Consequently, U_{E} will not be changed over one complete cycle. Actually, U_{E} has period $T / 2$, which does not alter our conclusion.
(b) Similarly, the energy stored in the inductor is $U_{B}=\frac{1}{2} i^{2} L$. Since i is a periodic function of t with period T, so must be U_{B}.
(c) The energy supplied by the generator is

$$
P_{\mathrm{avg}} T=\left(I_{\mathrm{rms}} \varepsilon_{\mathrm{rms}} \cos \phi\right) T=\left(\frac{1}{2} T\right) \varepsilon_{m} I \cos \phi
$$

where we substitute $I_{\mathrm{rms}}=I / \sqrt{2}$ and $\varepsilon_{\mathrm{rms}}=\varepsilon_{m} / \sqrt{2}$.
(d) The energy dissipated by the resistor is

$$
P_{\text {avg,resistor }} T=\left(I_{\mathrm{rms}} V_{R}\right) T=I_{\mathrm{rms}}\left(I_{\mathrm{rms}} R\right) T=\left(\frac{1}{2} T\right) I^{2} R .
$$

(e) Since $\varepsilon_{m} I \cos \phi=\varepsilon_{m} I\left(V_{R} / \varepsilon_{m}\right)=\varepsilon_{m} I\left(I R / \varepsilon_{m}\right)=I^{2} R$, the two quantities are indeed the same.
72. (a) Eq. 31-39 gives $f=\omega / 2 \pi=\left(2 \pi C X_{C}\right)^{-1}=8.84 \mathrm{kHz}$.
(b) Because of its inverse relationship with frequency, then the reactance will go down by a factor of 2 when f increases by a factor of 2 . The answer is $X_{C}=6.00 \Omega$.
73. (a) The impedance is $Z=\frac{\varepsilon_{m}}{I}=\frac{125 \mathrm{~V}}{3.20 \mathrm{~A}}=39.1 \Omega$.
(b) From $V_{R}=I R=\varepsilon_{m} \cos \phi$, we get

$$
R=\frac{\varepsilon_{m} \cos \phi}{I}=\frac{(125 \mathrm{~V}) \cos (0.982 \mathrm{rad})}{3.20 \mathrm{~A}}=21.7 \Omega .
$$

(c) Since $X_{L}-X_{C} \propto \sin \phi=\sin (-0.982 \mathrm{rad})$, we conclude that $X_{L}<X_{C}$. The circuit is predominantly capacitive.
74. (a) Eq. 31-4 directly gives $1 / \sqrt{L C} \approx 5.77 \times 10^{3} \mathrm{rad} / \mathrm{s}$.
(b) Eq. $16-5$ then yields $T=2 \pi / \omega=1.09 \mathrm{~ms}$.
(c) Although we do not show the graph here, we describe it: it is a cosine curve with amplitude $200 \mu \mathrm{C}$ and period given in part (b).
75. (a) The phase constant is given by

$$
\phi=\tan ^{-1}\left(\frac{V_{L}-V_{C}}{R}\right)=\tan ^{-1}\left(\frac{V_{L}-V_{L} / 2.00}{V_{L} / 2.00}\right)=\tan ^{-1}(1.00)=45.0^{\circ} .
$$

(b) We solve R from $\varepsilon_{m} \cos \phi=I R$:

$$
R=\frac{\varepsilon_{m} \cos \phi}{I}=\frac{(30.0 \mathrm{~V})\left(\cos 45^{\circ}\right)}{300 \times 10^{-3} \mathrm{~A}}=70.7 \Omega .
$$

76. From Eq. 31-4, we have $C=\left(\omega^{2} L\right)^{-1}=\left((2 \pi f)^{2} L\right)^{-1}=1.59 \mu \mathrm{~F}$.
77. (a) We solve L from Eq. 31-4, using the fact that $\omega=2 \pi f$:

$$
L=\frac{1}{4 \pi^{2} f^{2} C}=\frac{1}{4 \pi^{2}\left(10.4 \times 10^{3} \mathrm{~Hz}\right)^{2}\left(340 \times 10^{-6} \mathrm{~F}\right)}=6.89 \times 10^{-7} \mathrm{H}
$$

(b) The total energy may be figured from the inductor (when the current is at maximum):

$$
U=\frac{1}{2} L I^{2}=\frac{1}{2}\left(6.89 \times 10^{-7} \mathrm{H}\right)\left(7.20 \times 10^{-3} \mathrm{~A}\right)^{2}=1.79 \times 10^{-11} \mathrm{~J}
$$

(c) We solve for Q from $U=\frac{1}{2} Q^{2} / C$:

$$
Q=\sqrt{2 C U}=\sqrt{2\left(340 \times 10^{-6} \mathrm{~F}\right)\left(1.79 \times 10^{-11} \mathrm{~J}\right)}=1.10 \times 10^{-7} \mathrm{C}
$$

78. (a) With a phase constant of 45° the (net) reactance must equal the resistance in the circuit, which means the circuit impedance becomes $Z=R \sqrt{2} \Rightarrow R=\mathrm{Z} / \sqrt{2}=707 \Omega$.
(b) Since $f=8000 \mathrm{~Hz}$ then $\omega_{d}=2 \pi(8000) \mathrm{rad} / \mathrm{s}$. The net reactance (which, as observed, must equal the resistance) is therefore $X_{L}-X_{C}=\omega_{d} L-\left(\omega_{d} C\right)^{-1}=707 \Omega$. We are also told that the resonance frequency is 6000 Hz , which (by Eq. 31-4) means $C=\left(\omega^{2} L\right)^{-1}=$ $\left((2 \pi(6000))^{2} L\right)^{-1}$. Substituting this in for C in our previous expression (for the net reactance) we obtain an equation that can be solved for the self-inductance. Our result is $L=32.2 \mathrm{mH}$.
(c) $C=\left((2 \pi(6000))^{2} L\right)^{-1}=21.9 \mathrm{nF}$.
79. (a) Let $\omega t-\pi / 4=\pi / 2$ to obtain $t=3 \pi / 4 \omega=3 \pi /[4(350 \mathrm{rad} / \mathrm{s})]=6.73 \times 10^{-3} \mathrm{~s}$.
(b) Let $\omega t+\pi / 4=\pi / 2$ to obtain $t=\pi / 4 \omega=\pi /[4(350 \mathrm{rad} / \mathrm{s})]=2.24 \times 10^{-3} \mathrm{~s}$.
(c) Since i leads ε in phase by $\pi / 2$, the element must be a capacitor.
(d) We solve C from $X_{C}=(\omega C)^{-1}=\varepsilon_{m} / I$:

$$
C=\frac{I}{\varepsilon_{m} \omega}=\frac{6.20 \times 10^{-3} \mathrm{~A}}{(30.0 \mathrm{~V})(350 \mathrm{rad} / \mathrm{s})}=5.90 \times 10^{-5} \mathrm{~F} .
$$

80. Resonance occurs when the inductive reactance equals the capacitive reactance. Reactances of a certain type add (in series) just like resistances did in Chapter 28. Thus, since the resonance ω values are the same for both circuits, we have for each circuit:

$$
\omega L_{1}=\frac{1}{\omega C_{1}}, \quad \omega L_{2}=\frac{1}{\omega C_{2}}
$$

and adding these equations we find

$$
\begin{gathered}
\qquad \omega\left(L_{1}+L_{2}\right)=\frac{1}{\omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \\
\omega L_{\mathrm{eq}}=\frac{1}{\omega C_{\mathrm{eq}}} \Rightarrow \text { resonance in the combined circuit. }
\end{gathered}
$$

81. (a) From Eq. 31-4, we have $L=\left(\omega^{2} C\right)^{-1}=\left((2 \pi f)^{2} C\right)^{-1}=2.41 \mu \mathrm{H}$.
(b) The total energy is the maximum energy on either device (see Fig. 31-4). Thus, we have $U_{\text {max }}=\frac{1}{2} L I^{2}=21.4 \mathrm{pJ}$.
(c) Of several methods available to do this part, probably the one most "in the spirit" of this problem (considering the energy that was calculated in part (b)) is to appeal to $U_{\max }=$ $\frac{1}{2} Q^{2} / C$ (from Chapter 26) to find the maximum charge: $Q=\sqrt{2 C U_{\max }}=82.2 \mathrm{nC}$.
82. (a) From Eq. 31-65, we have

$$
\phi=\tan ^{-1}\left(\frac{V_{L}-V_{C}}{V_{R}}\right)=\tan ^{-1}\left(\frac{V_{L}-\left(V_{L} / 1.50\right)}{\left(V_{L} / 2.00\right)}\right)
$$

which becomes $\tan ^{-1} 2 / 3=33.7^{\circ}$ or 0.588 rad .
(b) Since $\phi>0$, it is inductive $\left(X_{L}>X_{C}\right)$.
(c) We have $V_{R}=I R=9.98 \mathrm{~V}$, so that $V_{L}=2.00 V_{R}=20.0 \mathrm{~V}$ and $V_{C}=V_{L} / 1.50=13.3 \mathrm{~V}$. Therefore, from Eq. 31-60.

$$
\varepsilon_{m}=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}
$$

we find $\varepsilon_{m}=12.0 \mathrm{~V}$.
83. When switch S_{1} is closed and the others are open, the inductor is essentially out of the circuit and what remains is an $R C$ circuit. The time constant is $\tau_{C}=R C$. When switch S_{2} is closed and the others are open, the capacitor is essentially out of the circuit. In this case, what we have is an $L R$ circuit with time constant $\tau_{L}=L / R$. Finally, when switch S_{3} is closed and the others are open, the resistor is essentially out of the circuit and what remains is an $L C$ circuit that oscillates with period $T=2 \pi \sqrt{L C}$. Substituting $L=R \tau_{L}$ and $C=\tau_{C} / R$, we obtain $T=2 \pi \sqrt{\tau_{C} \tau_{L}}$.
84. (a) The impedance is $Z=(80.0 \mathrm{~V}) /(1.25 \mathrm{~A})=64.0 \Omega$.
(b) We can write $\cos \phi=R / Z \Rightarrow R=(64.0 \Omega) \cos (0.650 \mathrm{rad})=50.9 \Omega$.
(c) Since the "current leads the emf" the circuit is capacitive.
85. (a) We find L from $X_{L}=\omega L=2 \pi f L$:

$$
f=\frac{X_{L}}{2 \pi L}=\frac{1.30 \times 10^{3} \Omega}{2 \pi\left(45.0 \times 10^{-3} \mathrm{H}\right)}=4.60 \times 10^{3} \mathrm{~Hz} .
$$

(b) The capacitance is found from $X_{C}=(\omega C)^{-1}=(2 \pi f C)^{-1}$:

$$
C=\frac{1}{2 \pi f X_{C}}=\frac{1}{2 \pi\left(4.60 \times 10^{3} \mathrm{~Hz}\right)\left(1.30 \times 10^{3} \Omega\right)}=2.66 \times 10^{-8} \mathrm{~F} .
$$

(c) Noting that $X_{L} \propto f$ and $X_{C} \propto f^{-1}$, we conclude that when f is doubled, X_{L} doubles and X_{C} reduces by half. Thus, $X_{L}=2\left(1.30 \times 10^{3} \Omega\right)=2.60 \times 10^{3} \Omega$.
(d) $X_{C}=1.30 \times 10^{3} \Omega / 2=6.50 \times 10^{2} \Omega$.
86. (a) Using $\omega=2 \pi f, X_{L}=\omega L, X_{C}=1 / \omega C$ and $\tan (\phi)=\left(X_{L}-X_{C}\right) / R$, we find

$$
\phi=\tan ^{-1}[(16.022-33.157) / 40.0]=-0.40473 \approx-0.405 \mathrm{rad} .
$$

(b) Eq. 31-63 gives $I=120 / \sqrt{40^{2}+(16-33)^{2}}=2.7576 \approx 2.76 \mathrm{~A}$.
(c) $X_{C}>X_{L} \Rightarrow$ capacitive.
87. When the switch is open, we have a series $L R C$ circuit involving just the one capacitor near the upper right corner. Eq. 31-65 leads to

$$
\frac{\omega_{d} L-\frac{1}{\omega_{d} C}}{R}=\tan \phi_{\mathrm{o}}=\tan \left(-20^{\circ}\right)=-\tan 20^{\circ} .
$$

Now, when the switch is in position 1, the equivalent capacitance in the circuit is $2 C$. In this case, we have

$$
\frac{\omega_{d} L-\frac{1}{2 \omega_{d} C}}{R}=\tan \phi_{1}=\tan 10.0^{\circ}
$$

Finally, with the switch in position 2 , the circuit is simply an $L C$ circuit with current amplitude

$$
I_{2}=\frac{\varepsilon_{m}}{Z_{L C}}=\frac{\varepsilon_{m}}{\sqrt{\left(\omega_{d} L-\frac{1}{\omega_{d} C}\right)^{2}}}=\frac{\varepsilon_{m}}{\frac{1}{\omega_{d} C}-\omega_{d} L}
$$

where we use the fact that $\left(\omega_{d} C\right)^{-1}>\omega_{d} L$ in simplifying the square root (this fact is evident from the description of the first situation, when the switch was open). We solve for L, R and C from the three equations above, and the results are
(a) $R=\frac{-\varepsilon_{m}}{I_{2} \tan \phi_{\mathrm{o}}}=\frac{120 \mathrm{~V}}{(2.00 \mathrm{~A}) \tan 20.0^{\circ}}=165 \Omega$.
(b) $L=\frac{\varepsilon_{m}}{\omega_{d} I_{2}}\left(1-2 \frac{\tan \phi_{1}}{\tan \phi_{\mathrm{o}}}\right)=\frac{120 \mathrm{~V}}{2 \pi(60.0 \mathrm{~Hz})(2.00 \mathrm{~A})}\left(1+2 \frac{\tan 10.0^{\circ}}{\tan 20.0^{\circ}}\right)=0.313 \mathrm{H}$.
(c) $C=\frac{I_{2}}{2 \omega_{d} \varepsilon_{m}\left(1-\frac{\tan \phi_{0}}{\tan \phi_{0}}\right)}=\frac{2.00 \mathrm{~A}}{2(2 \pi)(60.0 \mathrm{~Hz})(120 \mathrm{~V})\left(1+\frac{\tan 10.0^{\circ}}{\tan 20.0^{\circ}}\right)}=1.49 \times 10^{-5} \mathrm{~F}$
88. From $U_{\max }=\frac{1}{2} L I^{2}$ we get $I=0.115 \mathrm{~A}$.
89. (a) At any time, the total energy U in the circuit is the sum of the energy U_{E} in the capacitor and the energy U_{B} in the inductor. When $U_{E}=0.500 U_{B}$ (at time t), then $U_{B}=$ $2.00 U_{E}$ and $U=U_{E}+U_{B}=3.00 U_{E}$. Now, U_{E} is given by $q^{2} / 2 C$, where q is the charge on the capacitor at time t. The total energy U is given by $Q^{2} / 2 C$, where Q is the maximum charge on the capacitor. Thus, $Q^{2} / 2 C=3.00 q^{2} / 2 C$ or $q=Q / \sqrt{3.00}=$ $0.577 Q$.
(b) If the capacitor is fully charged at time $t=0$, then the time-dependent charge on the capacitor is given by $q=Q \cos \omega t$. This implies that the condition $q=0.577 Q$ is satisfied when $\cos \omega t=0.557$, or $\omega t=0.955 \mathrm{rad}$. Since $\omega=2 \pi / T$ (where T is the period of oscillation), $\quad t=0.955 T / 2 \pi=0.152 T$, or $t / T=0.152$.
90. (a) The computations are as follows:

$$
\begin{aligned}
X_{L} & =2 \pi f_{d} L=60.82 \Omega \\
X_{C} & =\left(2 \pi f_{d} C\right)^{-1}=32.88 \Omega \\
Z & =\sqrt{20^{2}+(61-33)^{2}}=34.36 \Omega \\
I=\varepsilon / Z & =2.62 \mathrm{~A} \quad \Rightarrow \quad I_{\mathrm{rms}}=I / \sqrt{2}=1.85 \mathrm{~A} .
\end{aligned}
$$

Therefore, $V_{R \mathrm{rms}}=I_{\mathrm{rms}} R=37.0 \mathrm{~V}$.
(b) $V_{C \mathrm{rms}}=I_{\mathrm{rms}} X_{C}=60.9 \mathrm{~V}$.
(c) $V_{L \mathrm{rms}}=I_{\mathrm{rms}} X_{L}=113 \mathrm{~V}$.
(d) $P_{\text {avg }}=\left(I_{\mathrm{rms}}\right)^{2} R=68.6 \mathrm{~W}$.
91. (a) Eqs. 31-4 and 31-14 lead to

$$
Q=\frac{1}{\omega}=I \sqrt{L C}=1.27 \times 10^{-6} \mathrm{C} .
$$

(b) We choose the phase constant in Eq. 31-12 to be $\phi=-\pi / 2$, so that $i_{0}=I$ in Eq. 31-15). Thus, the energy in the capacitor is

$$
U_{E}=\frac{q^{2}}{2 C}=\frac{Q^{2}}{2 C}(\sin \omega t)^{2} .
$$

Differentiating and using the fact that $2 \sin \theta \cos \theta=\sin 2 \theta$, we obtain

$$
\frac{d U_{E}}{d t}=\frac{Q^{2}}{2 C} \omega \sin 2 \omega t
$$

We find the maximum value occurs whenever $\sin 2 \omega t=1$, which leads (with $n=$ odd integer) to

$$
t=\frac{1}{2 \omega} \frac{n \pi}{2}=\frac{n \pi}{4 \omega}=\frac{n \pi}{4} \sqrt{L C}=8.31 \times 10^{-5} \mathrm{~s}, 2.49 \times 10^{-4} \mathrm{~s}, \ldots
$$

The earliest time is $t=8.31 \times 10^{-5} \mathrm{~s}$.
(c) Returning to the above expression for $d U_{E} / d t$ with the requirement that $\sin 2 \omega t=1$, we obtain

$$
\left(\frac{d U_{E}}{d t}\right)_{\max }=\frac{Q^{2}}{2 C} \omega=\frac{(I \sqrt{L C})^{2}}{2 C} \frac{I}{\sqrt{L C}}=\frac{I^{2}}{2} \sqrt{\frac{L}{C}}=5.44 \times 10^{-3} \mathrm{~J} / \mathrm{s} .
$$

92. (a) We observe that $\omega=6597 \mathrm{rad} / \mathrm{s}$, and, consequently, $X_{L}=594 \Omega$ and $X_{C}=303 \Omega$. Since $X_{L}>X_{C}$, the phase angle is positive: $\phi=+60.0^{\circ}$.

From Eq. 31-65, we obtain $R=\frac{X_{L}-X_{C}}{\tan \phi}=168 \Omega$.
(b) Since we are already on the "high side" of resonance, increasing f will only decrease the current further, but decreasing f brings us closer to resonance and, consequently, large values of I.
(c) Increasing L increases X_{L}, but we already have $X_{L}>X_{C}$. Thus, if we wish to move closer to resonance (where X_{L} must equal X_{C}), we need to decrease the value of L.
(d) To change the present condition of $X_{C}<X_{L}$ to something closer to $X_{C}=X_{L}$ (resonance, large current), we can increase X_{C}. Since X_{C} depends inversely on C, this means decreasing C.
93. (a) We observe that $\omega_{d}=12566 \mathrm{rad} / \mathrm{s}$. Consequently, $X_{L}=754 \Omega$ and $X_{C}=199 \Omega$. Hence, Eq. 31-65 gives

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=1.22 \mathrm{rad} .
$$

(b) We find the current amplitude from Eq. 31-60:

$$
I=\frac{\varepsilon_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=0.288 \mathrm{~A} .
$$

94. From Eq. 31-60, we have

$$
\left(\frac{220 \mathrm{~V}}{3.00 \mathrm{~A}}\right)^{2}=R^{2}+X_{L}^{2} \Rightarrow X_{L}=69.3 \Omega
$$

95. From Eq. 31-4, with $\omega=2 \pi f=4.49 \times 10^{3} \mathrm{rad} / \mathrm{s}$, we obtain

$$
L=\frac{1}{\omega^{2} C}=7.08 \times 10^{-3} \mathrm{H} .
$$

96. (a) From Eq. 31-4, with $\omega=2 \pi f, C=2.00 \mathrm{nF}$ and $L=2.00 \mathrm{mH}$, we have

$$
f=\frac{1}{2 \pi \sqrt{L C}}=7.96 \times 10^{4} \mathrm{~Hz}
$$

(b) The maximum current in the oscillator is

$$
i_{\max }=I_{C}=\frac{V_{C}}{X_{C}}=\omega C v_{\max }=4.00 \times 10^{-3} \mathrm{~A} .
$$

(c) Using Eq. 30-49, we find the maximum magnetic energy:

$$
U_{B, \max }=\frac{1}{2} L i_{\max }^{2}=1.60 \times 10^{-8} \mathrm{~J} .
$$

(d) Adapting Eq. 30-35 to the notation of this chapter,

$$
v_{\max }=L\left|\frac{d i}{d t}\right|_{\max }
$$

which yields a (maximum) time rate of change (for i) equal to $2.00 \times 10^{3} \mathrm{~A} / \mathrm{s}$.
97. Reading carefully, we note that the driving frequency of the source is permanently set at the resonance frequency of the initial circuit (with switches open); it is set at $\omega_{d}=$ $1 / \sqrt{L C}=1.58 \times 10^{4} \mathrm{rad} / \mathrm{s}$ and does not correspond to the resonance frequency once the switches are closed. In our table, below, C_{eq} is in $\mu \mathrm{F}, f$ is in kHz , and R_{eq} and Z are in Ω. Steady state conditions are assumed in calculating the current amplitude (which is in amperes); this I is the current through the source (or through the inductor), as opposed to the (generally smaller) current in one of the resistors. Resonant frequencies f are computed with $\omega=2 \pi f$. Reducing capacitor and resistor combinations is explained in chapters 26 and 28 , respectively.

switch	(a) $C_{\mathrm{eq}}(\mu \mathrm{F})$	(b) $f(\mathrm{kHz})$	(c) $R_{\mathrm{eq}}(\Omega)$	(d) $\mathrm{Z}(\Omega)$	(e) $\mathrm{I}(\mathrm{A})$
S_{1}	4.00	1.78	12.0	19.8	0.605
S_{2}	5.00	1.59	12.0	22.4	0.535
S_{3}	5.00	1.59	6.0	19.9	0.603
S_{4}	5.00	1.59	4.0	19.4	0.619

98. (a) We note that we obtain the maximum value in Eq. 31-28 when we set

$$
t=\frac{\pi}{2 \omega_{d}}=\frac{1}{4 f}=\frac{1}{4(60)}=0.00417 \mathrm{~s}
$$

or 4.17 ms . The result is $\varepsilon_{m} \sin (\pi / 2)=\varepsilon_{m} \sin \left(90^{\circ}\right)=36.0 \mathrm{~V}$.
(b) At $t=4.17 \mathrm{~ms}$, the current is

$$
i=I \sin \left(\omega_{d} t-\phi\right)=I \sin \left(90^{\circ}-\left(-24.3^{\circ}\right)\right)=(0.164 \mathrm{~A}) \cos \left(24.3^{\circ}\right)=0.1495 \mathrm{~A} \approx 0.150 \mathrm{~A} .
$$

using Eq. 31-29 and the results of the Sample Problem. Ohm's law directly gives

$$
v_{R}=i R=(0.1495 \mathrm{~A})(200 \Omega)=29.9 \mathrm{~V}
$$

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at $t=4.17 \mathrm{~ms}$, we obtain

$$
v_{C}=I \sin \left(90^{\circ}-\left(-24.3^{\circ}\right)-90^{\circ}\right) X_{C}=I X_{C} \sin \left(24.3^{\circ}\right)=(0.164 \mathrm{~A})(177 \Omega) \sin \left(24.3^{\circ}\right)=11.9 \mathrm{~V} .
$$

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at $t=$ 4.17 ms , we find

$$
\begin{aligned}
v_{L} & =I \sin \left(90^{\circ}-\left(-24.3^{\circ}\right)+90^{\circ}\right) X_{L}=-I X_{L} \sin \left(24.3^{\circ}\right)=-(0.164 \mathrm{~A})(86.7 \Omega) \sin \left(24.3^{\circ}\right) \\
& =-5.85 \mathrm{~V}
\end{aligned}
$$

(e) Our results for parts (b), (c) and (d) add to give 36.0 V , the same as the answer for part (a).
99. (a) Since $T=2 \pi / \omega=2 \pi \sqrt{L C}$, we may rewrite the power on the exponential factor as

$$
-\pi R \sqrt{\frac{C}{L}} \frac{t}{T}=-\pi R \sqrt{\frac{C}{L}} \frac{t}{2 \pi \sqrt{L C}}=-\frac{R t}{2 L}
$$

Thus $e^{-R t / 2 L}=e^{-\pi R \sqrt{C / L}(t / T)}$.
(b) Since $-\pi R \sqrt{C / L}(t / T)$ must be dimensionless (as is t / T), $R \sqrt{C / L}$ must also be dimensionless. Thus, the SI unit of $\sqrt{C / L}$ must be Ω^{-1}. In other words, the SI unit for $\sqrt{L / C}$ is Ω.
(c) Since the amplitude of oscillation reduces by a factor of $e^{-\pi R \sqrt{C / L}(T / T)}=e^{-\pi R \sqrt{C / L}}$ after each cycle, the condition is equivalent to $\pi R \sqrt{C / L} \ll 1$, or $R \ll \sqrt{L / C}$.
100. (a) The curves are shown in the graph below. We have also included here the impedance curve (which is asked for later in the problem statement). The curve sloping towards zero at high frequencies is X_{C}, and the linearly rising line is X_{L}. The vertical axis is in ohms. For simplicity of notation, we have omitted the " d " subscript from f.

(b) The reactance curves cross each other (to the extent that we can estimate from our graph) at a value near 60 Hz . A more careful calculation (setting the reactances equal to each other) leads to the resonance value: $f=61.26 \approx 61 \mathrm{~Hz}$.
(c) Z is at its lowest value at resonance: $Z_{\text {resonance }}=R=90 \Omega$.
(d) As noted in our solution of part (b), the resonance value is $f=61.26 \approx 61 \mathrm{~Hz}$.

1. (a) The flux through the top is $+(0.30 \mathrm{~T}) \pi r^{2}$ where $r=0.020 \mathrm{~m}$. The flux through the bottom is +0.70 mWb as given in the problem statement. Since the net flux must be zero then the flux through the sides must be negative and exactly cancel the total of the previously mentioned fluxes. Thus (in magnitude) the flux though the sides is 1.1 mWb .
(b) The fact that it is negative means it is inward.
2. We use $\sum_{n=1}^{6} \Phi_{B n}=0$ to obtain

$$
\Phi_{B 6}=-\sum_{n=1}^{5} \Phi_{B n}=-(-1 \mathrm{~Wb}+2 \mathrm{~Wb}-3 \mathrm{~Wb}+4 \mathrm{~Wb}-5 \mathrm{~Wb})=+3 \mathrm{~Wb} .
$$

3. (a) We use Gauss' law for magnetism: $\oint \vec{B} \cdot d \vec{A}=0$. Now, $\oint \vec{B} \cdot d \vec{A}=\Phi_{1}+\Phi_{2}+\Phi_{C}$, where Φ_{1} is the magnetic flux through the first end mentioned, Φ_{2} is the magnetic flux through the second end mentioned, and Φ_{C} is the magnetic flux through the curved surface. Over the first end the magnetic field is inward, so the flux is $\Phi_{1}=-25.0 \mu \mathrm{~Wb}$. Over the second end the magnetic field is uniform, normal to the surface, and outward, so the flux is $\Phi_{2}=A B=\pi r^{2} B$, where A is the area of the end and r is the radius of the cylinder. It value is

$$
\Phi_{2}=\pi(0.120 \mathrm{~m})^{2}\left(1.60 \times 10^{-3} \mathrm{~T}\right)=+7.24 \times 10^{-5} \mathrm{~Wb}=+72.4 \mu \mathrm{~Wb} .
$$

Since the three fluxes must sum to zero,

$$
\Phi_{C}=-\Phi_{1}-\Phi_{2}=25.0 \mu \mathrm{~Wb}-72.4 \mu \mathrm{~Wb}=-47.4 \mu \mathrm{~Wb}
$$

Thus, the magnitude is $\left|\Phi_{C}\right|=47.4 \mu \mathrm{~Wb}$.
(b) The minus sign in Φ_{c} indicates that the flux is inward through the curved surface.
4. From Gauss' law for magnetism, the flux through S_{1} is equal to that through S_{2}, the portion of the $x z$ plane that lies within the cylinder. Here the normal direction of S_{2} is $+y$. Therefore,

$$
\begin{aligned}
\Phi_{B}\left(S_{1}\right) & =\Phi_{B}\left(S_{2}\right)=\int_{-r}^{r} B(x) L d x=2 \int_{-r}^{r} B_{\mathrm{left}}(x) L d x=2 \int_{-r}^{r} \frac{\mu_{0} i}{2 \pi} \frac{1}{2 r-x} L d x \\
& =\frac{\mu_{0} i L}{\pi} \ln 3 .
\end{aligned}
$$

5. We use the result of part (b) in Sample Problem 32-1:

$$
B=\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r} \frac{d E}{d t} \quad(\text { for } r \geq R)
$$

to solve for $d E / d t$:

$$
\frac{d E}{d t}=\frac{2 B r}{\mu_{0} \varepsilon_{0} R^{2}}=\frac{2\left(2.0 \times 10^{-7} \mathrm{~T}\right)\left(6.0 \times 10^{-3} \mathrm{~m}\right)}{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(3.0 \times 10^{-3} \mathrm{~m}\right)^{2}}=2.4 \times 10^{13} \frac{\mathrm{~V}}{\mathrm{~m} \cdot \mathrm{~s}}
$$

6. From Sample Problem 32-1 we know that $B \propto r$ for $r \leq R$ and $B \propto r^{-1}$ for $r \geq R$. So the maximum value of B occurs at $r=R$, and there are two possible values of r at which the magnetic field is 75% of $B_{\max }$. We denote these two values as r_{1} and r_{2}, where $r_{1}<R$ and $r_{2}>R$.
(a) Inside the capacitor, $0.75 B_{\max } / B_{\max }=r_{1} / R$, or $r_{1}=0.75 R=0.75(40 \mathrm{~mm})=30 \mathrm{~mm}$.
(b) Outside the capacitor, $0.75 B_{\max } / B_{\max }=\left(r_{2} / R\right)^{-1}$, or $r_{2}=R / 0.75=4 R / 3=(4 / 3)(40 \mathrm{~mm})$ $=53 \mathrm{~mm}$..
(c) From Eqs. 32-15 and 32-17,

$$
B_{\max }=\frac{\mu_{0} i_{d}}{2 \pi R}=\frac{\mu_{0} i}{2 \pi R}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(6.0 \mathrm{~A})}{2 \pi(0.040 \mathrm{~m})}=3.0 \times 10^{-5} \mathrm{~T} .
$$

7. (a) Noting that the magnitude of the electric field (assumed uniform) is given by $E=$ V / d (where $d=5.0 \mathrm{~mm}$), we use the result of part (a) in Sample Problem 32-1

$$
B=\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{d E}{d t}=\frac{\mu_{0} \varepsilon_{0} r}{2 d} \frac{d V}{d t} \quad(\text { for } r \leq R)
$$

We also use the fact that the time derivative of $\sin (\omega t)$ (where $\omega=2 \pi f=2 \pi(60) \approx 377 / \mathrm{s}$ in this problem) is $\omega \cos (\omega t)$. Thus, we find the magnetic field as a function of r (for $r \leq$ R; note that this neglects "fringing" and related effects at the edges):

$$
B=\frac{\mu_{0} \varepsilon_{0} r}{2 d} V_{\max } \omega \cos (\omega t) \Rightarrow B_{\max }=\frac{\mu_{0} \varepsilon_{0} r V_{\max } \omega}{2 d}
$$

where $V_{\max }=150 \mathrm{~V}$. This grows with r until reaching its highest value at $r=R=30 \mathrm{~mm}$:

$$
\begin{aligned}
\left.B_{\max }\right|_{r=R} & =\frac{\mu_{0} \varepsilon_{0} R V_{\max } \omega}{2 d}=\frac{\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(30 \times 10^{-3} \mathrm{~m}\right)(150 \mathrm{~V})(377 / \mathrm{s})}{2\left(5.0 \times 10^{-3} \mathrm{~m}\right)} \\
& =1.9 \times 10^{-12} \mathrm{~T} .
\end{aligned}
$$

(b) For $r \leq 0.03 \mathrm{~m}$, we use the $B_{\text {max }}=\frac{\mu_{0} \varepsilon_{0} r V_{\max } \omega}{2 d}$ expression found in part (a) (note the $B \propto r$ dependence), and for $r \geq 0.03 \mathrm{~m}$ we perform a similar calculation starting with the result of part (b) in Sample Problem 32-1:

$$
\begin{aligned}
B_{\max } & =\left(\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r} \frac{d E}{d t}\right)_{\max }=\left(\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r d} \frac{d V}{d t}\right)_{\max }=\left(\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r d} V_{\max } \omega \cos (\omega t)\right)_{\max } \\
& =\frac{\mu_{0} \varepsilon_{0} R^{2} V_{\max } \omega}{2 r d} \quad(\text { for } r \geq R)
\end{aligned}
$$

(note the $B \propto r^{-1}$ dependence - See also Eqs. 32-16 and 32-17). The plot (with SI units understood) is shown below.

8. (a) Inside we have (by Eq. 32-16) $B=\mu_{0} i_{d} r_{1} / 2 \pi R^{2}$, where $r_{1}=0.0200, R=0.0300$, and the displacement current is given by Eq. 32-38: $i_{d}=\varepsilon_{0} d \Phi_{E} / d t=\varepsilon_{0}(0.00300)$, in SI units. Thus we find $B=1.18 \times 10^{-19} \mathrm{~T}$.
(b) Outside we have (by Eq. 32-17) $B=\mu_{\mathrm{o}} i_{d} / 2 \pi r_{2}$ where $r_{2}=0.0500$ in SI units. Here we obtain $B=1.06 \times 10^{-19} \mathrm{~T}$.
9. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the problem statement (and taking the derivative of the flux expression given in that sentence) leads to

$$
B(2 \pi r)=\varepsilon_{0} \mu_{0}(0.60 \mathrm{~V} \cdot \mathrm{~m} / \mathrm{s}) \frac{r}{R}
$$

Using $r=0.0200$ (which, in any case, cancels out) and $R=0.0500$ (SI units understood) leads to $B=3.54 \times 10^{-17} \mathrm{~T}$.
(b) For a value of r larger than R, we must note that the flux enclosed has already reached its full amount (when $r=R$ in the given flux expression). Referring to the equation we wrote in our solution of part (a), this means that the final fraction $\left(\frac{r}{R}\right)$ should be replaced with unity. On the left hand side of that equation, we set $r=0.0500 \mathrm{~m}$ and solve. We now find $B=2.13 \times 10^{-17} \mathrm{~T}$.
10. (a) Application of Eq. 32-7 with $A=\pi r^{2}$ (and taking the derivative of the field expression given in the problem) leads to

$$
B(2 \pi r)=\varepsilon_{0} \mu_{\mathrm{o}} \pi r^{2}(0.00450 \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s})
$$

With $r=0.0200 \mathrm{~m}$, this gives $B=5.01 \times 10^{-22} \mathrm{~T}$.
(b) With $r>R$, the expression above must replaced by

$$
B(2 \pi r)=\varepsilon_{0} \mu_{0} \pi R^{2}(0.00450 \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}) .
$$

Substituting $r=0.050 \mathrm{~m}$ and $R=0.030 \mathrm{~m}$, we obtain $B=4.51 \times 10^{-22} \mathrm{~T}$.
11. (a) Here, the enclosed electric flux is found by integrating

$$
\Phi_{E}=\int_{\mathrm{o}}^{r} E 2 \pi r \mathrm{dr}=t(0.500 \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s})(2 \pi) \int_{\mathrm{o}}^{r}\left(1-\frac{r}{R}\right) r d r=t \pi\left(\frac{1}{2} r^{2}-\frac{r^{3}}{3 R}\right)
$$

with SI units understood. Then (after taking the derivative with respect to time) Eq. 32-3 leads to

$$
B(2 \pi r)=\varepsilon_{0} \mu_{0} \pi\left(\frac{1}{2} r^{2}-\frac{r^{3}}{3 R}\right) .
$$

With $r=0.0200 \mathrm{~m}$ and $R=0.0300 \mathrm{~m}$, this gives $B=3.09 \times 10^{-20} \mathrm{~T}$.
(b) The integral shown above will no longer (since now $r>R$) have r as the upper limit; the upper limit is now R. Thus, $\Phi_{E}=t \pi\left(\frac{1}{2} R^{2}-\frac{R^{3}}{3 R}\right)=\frac{1}{6} t \pi R^{2}$. Consequently, Eq. 32-3 becomes

$$
B(2 \pi r)=\frac{1}{6} \varepsilon_{o} \mu_{o} \pi R^{2}
$$

which yields (for $r=0.0500 \mathrm{~m}$) $B=1.67 \times 10^{-20} \mathrm{~T}$.
12. Let the area plate be A and the plate separation be d. We use Eq. 32-10:

$$
i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} \frac{d}{d t}(A E)=\varepsilon_{0} A \frac{d}{d t}\left(\frac{V}{d}\right)=\frac{\varepsilon_{0} A}{d}\left(\frac{d V}{d t}\right)
$$

or

$$
\frac{d V}{d t}=\frac{i_{d} d}{\varepsilon_{0} A}=\frac{i_{d}}{C}=\frac{1.5 \mathrm{~A}}{2.0 \times 10^{-6} \mathrm{~F}}=7.5 \times 10^{5} \mathrm{~V} / \mathrm{s}
$$

Therefore, we need to change the voltage difference across the capacitor at the rate of $7.5 \times 10^{5} \mathrm{~V} / \mathrm{s}$.
13. The displacement current is given by $i_{d}=\varepsilon_{0} A(d E / d t)$, where A is the area of a plate and E is the magnitude of the electric field between the plates. The field between the plates is uniform, so $E=V / d$, where V is the potential difference across the plates and d is the plate separation. Thus

$$
i_{d}=\frac{\varepsilon_{0} A}{d} \frac{d V}{d t} .
$$

Now, $\varepsilon_{0} A / d$ is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), so

$$
i_{d}=C \frac{d V}{d t}
$$

14. We use Eq. 32-14: $i_{d}=\varepsilon_{0} A(d E / d t)$. Note that, in this situation, A is the area over which a changing electric field is present. In this case $r>R$, so $A=\pi R^{2}$. Thus,

$$
\frac{d E}{d t}=\frac{i_{d}}{\varepsilon_{0} A}=\frac{i_{d}}{\varepsilon_{0} \pi R^{2}}=\frac{2.0 \mathrm{~A}}{\pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.10 \mathrm{~m})^{2}}=7.2 \times 10^{12} \frac{\mathrm{~V}}{\mathrm{~m} \cdot \mathrm{~s}}
$$

15. Consider an area A, normal to a uniform electric field \vec{E}. The displacement current density is uniform and normal to the area. Its magnitude is given by $J_{d}=i_{d} / A$. For this situation, $i_{d}=\varepsilon_{0} A(d E / d t)$, so

$$
J_{d}=\frac{1}{A} \varepsilon_{0} A \frac{d E}{d t}=\varepsilon_{0} \frac{d E}{d t} .
$$

16. (a) From Eq. 32-10,

$$
\begin{aligned}
i_{d} & =\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} A \frac{d E}{d t} \varepsilon_{0} A \frac{d}{d t}\left[\left(4.0 \times 10^{5}\right)-\left(6.0 \times 10^{4} t\right)\right]=-\varepsilon_{0} A\left(6.0 \times 10^{4} \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}\right) \\
& =-\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(4.0 \times 10^{-2} \mathrm{~m}^{2}\right)\left(6.0 \times 10^{4} \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}\right) \\
& =-2.1 \times 10^{-8} \mathrm{~A} .
\end{aligned}
$$

Thus, the magnitude of the displacement current is $\left|i_{d}\right|=2.1 \times 10^{-8} \mathrm{~A}$.
(b) The negative sign in i_{d} implies that the direction is downward.
(c) If one draws a counterclockwise circular loop s around the plates, then according to Eq. 32-18

$$
\oint_{s} \vec{B} \cdot d \vec{s}=\mu_{0} i_{d}<0
$$

which means that $\vec{B} \cdot d \vec{s}<0$. Thus \vec{B} must be clockwise.
17. (a) We use $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}$ to find

$$
\begin{aligned}
B & =\frac{\mu_{0} I_{\text {enclosed }}}{2 \pi r}=\frac{\mu_{0}\left(J_{d} \pi r^{2}\right)}{2 \pi r}=\frac{1}{2} \mu_{0} J_{d} r=\frac{1}{2}\left(1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}\right)\left(20 \mathrm{~A} / \mathrm{m}^{2}\right)\left(50 \times 10^{-3} \mathrm{~m}\right) \\
& =6.3 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

(b) From $i_{d}=J_{d} \pi r^{2}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} \pi r^{2} \frac{d E}{d t}$, we get

$$
\frac{d E}{d t}=\frac{J_{d}}{\varepsilon_{0}}=\frac{20 \mathrm{~A} / \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}=2.3 \times 10^{12} \frac{\mathrm{~V}}{\mathrm{~m} \cdot \mathrm{~s}} .
$$

18. (a) Since $i=i_{d}$ (Eq. 32-15) then the portion of displacement current enclosed is

$$
i_{d, \mathrm{enc}}=i \frac{\pi\left(\frac{R}{3}\right)^{2}}{\pi R^{2}}=i \frac{1}{9}=1.33 \mathrm{~A}
$$

(b) We see from Sample Problems 32-1 and 32-2 that the maximum field is at $r=R$ and that (in the interior) the field is simply proportional to r. Therefore,

$$
\frac{B}{B_{\max }}=\frac{3.00 \mathrm{mT}}{12.0 \mathrm{mT}}=\frac{r}{R}
$$

which yields $r=R / 4=(1.20 \mathrm{~cm}) / 4=0.300 \mathrm{~cm}$.
(c) We now look for a solution in the exterior region, where the field is inversely proportional to r (by Eq. 32-17):

$$
\frac{B}{B_{\max }}=\frac{3.00 \mathrm{mT}}{12.0 \mathrm{mT}}=\frac{R}{r}
$$

which yields $r=4 R=4(1.20 \mathrm{~cm})=4.80 \mathrm{~cm}$.
19. (a) In region a of the graph,

$$
\begin{aligned}
\left|i_{d}\right| & =\varepsilon_{0}\left|\frac{d \Phi_{E}}{d t}\right|=\varepsilon_{0} A\left|\frac{d E}{d t}\right| \\
& =\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(1.6 \mathrm{~m}^{2}\right)\left|\frac{4.5 \times 10^{5} \mathrm{~N} / \mathrm{C}-6.0 \times 10^{5} \mathrm{~N} / \mathrm{C}}{4.0 \times 10^{-6} \mathrm{~s}}\right|=0.71 \mathrm{~A} .
\end{aligned}
$$

(b) $i_{d} \propto d E / d t=0$.
(c) In region c of the graph,

$$
\left|i_{d}\right|=\varepsilon_{0} A\left|\frac{d E}{d t}\right|=\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(1.6 \mathrm{~m}^{2}\right)\left|\frac{-4.0 \times 10^{5} \mathrm{~N} / \mathrm{C}}{2.0 \times 10^{-6} \mathrm{~s}}\right|=2.8 \mathrm{~A} .
$$

20. From Eq. 28-11, we have $i=(\varepsilon / R) e^{-t / \tau}$ since we are ignoring the self-inductance of the capacitor. Eq. 32-16 gives

$$
B=\frac{\mu_{o} i_{d} r}{2 \pi R^{2}}
$$

Furthermore, Eq. 25-9 yields the capacitance

$$
C=\frac{\varepsilon_{0} \pi(0.05 \mathrm{~m})^{2}}{0.003 \mathrm{~m}}=2.318 \times 10^{-11} \mathrm{~F}
$$

so that the capacitive time constant is $\tau=\left(20.0 \times 10^{6} \Omega\right)\left(2.318 \times 10^{-11} \mathrm{~F}\right)=4.636 \times 10^{-4} \mathrm{~s}$. At $t=250 \times 10^{-6} \mathrm{~s}$, the current is

$$
i=\frac{12.0 \mathrm{~V}}{20.0 \times 10^{6} \Omega} e^{-t / \tau}=3.50 \times 10^{-7} \mathrm{~A}
$$

Since $i=i_{d}$ (see Eq. 32-15) and $r=0.0300 \mathrm{~m}$, then (with plate radius $R=0.0500 \mathrm{~m}$) we find

$$
B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=\frac{\mu_{0}\left(3.50 \times 10^{-7}\right)(0.03)}{2 \pi(0.05)^{2}}=8.40 \times 10^{-13} \mathrm{~T}
$$

21. (a) At any instant the displacement current i_{d} in the gap between the plates equals the conduction current i in the wires. Thus $i_{d}=i=2.0 \mathrm{~A}$.
(b) The rate of change of the electric field is

$$
\frac{d E}{d t}=\frac{1}{\varepsilon_{0} A}\left(\varepsilon_{0} \frac{d \Phi_{E}}{d t}\right)=\frac{i_{d}}{\varepsilon_{0} A}=\frac{2.0 \mathrm{~A}}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)(1.0 \mathrm{~m})^{2}}=2.3 \times 10^{11} \frac{\mathrm{~V}}{\mathrm{~m} \cdot \mathrm{~s}}
$$

(c) The displacement current through the indicated path is

$$
i_{d}^{\prime}=i_{d} \times\left(\frac{d^{2}}{L^{2}}\right)=(2.0 \mathrm{~A})\left(\frac{0.50 \mathrm{~m}}{1.0 \mathrm{~m}}\right)^{2}=0.50 \mathrm{~A} .
$$

(d) The integral of the field around the indicated path is

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{d}^{\prime}=\left(1.26 \times 10^{-16} \mathrm{H} / \mathrm{m}\right)(0.50 \mathrm{~A})=6.3 \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} .
$$

22. (a) Fig. 32-34 indicates that $i=4.0$ A when $t=20 \mathrm{~ms}$. Thus, $B_{i}=\mu_{\mathrm{o}} i / 2 \pi r=0.89 \mathrm{mT}$.
(b) Fig. 32-34 indicates that $i=8.0$ A when $t=40 \mathrm{~ms}$. Thus, $B_{i} \approx 0.18 \mathrm{mT}$.
(c) Fig. 32-34 indicates that $i=10$ A when $t>50 \mathrm{~ms}$. Thus, $B_{i} \approx 0.220 \mathrm{mT}$.
(d) Eq. 32-4 gives the displacement current in terms of the time-derivative of the electric field: $i_{d}=\varepsilon_{0} A(d E / d t)$, but using Eq. 26-5 and Eq. 26-10 we have $E=\rho i / A$ (in terms of the real current); therefore, $i_{d}=\varepsilon_{o} \rho(d i / d t)$. For $0<t<50 \mathrm{~ms}$, Fig. 32-34 indicates that $d i / d t=$ $200 \mathrm{~A} / \mathrm{s}$. Thus, $B_{i d}=\mu_{0} i_{d} / 2 \pi r=6.4 \times 10^{-22} \mathrm{~T}$.
(e) As in (d), $B_{i d}=\mu_{\mathrm{o}} i_{d} / 2 \pi r=6.4 \times 10^{-22} \mathrm{~T}$.
(f) Here $d i / d t=0$, so (by the reasoning in the previous step) $B=0$.
(g) By the right-hand rule, the direction of \vec{B}_{i} at $t=20 \mathrm{~s}$ is out of page.
(h) By the right-hand rule, the direction of $\vec{B}_{i d}$ at $t=20 \mathrm{~s}$ is out of page.
23. (a) Eq. 32-16 (with Eq. 26-5) gives

$$
B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=\frac{\mu_{\mathrm{o}} J_{d} A r}{2 \pi R^{2}}=75.4 \mathrm{nT}
$$

where we set $A=\pi R^{2}$ (which led to several cancellations).
(b) Similarly, Eq. 32-17 gives $B=\frac{\mu_{0} i_{d}}{2 \pi r}=\frac{\mu_{0} J_{d} \pi R^{2}}{2 \pi r}=67.9 \mathrm{nT}$.
24. (a) Eq. 32-16 gives $B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=2.22 \mu \mathrm{~T}$.
(b) Eq. 32-17 gives $B=\frac{\mu_{0} i_{d}}{2 \pi r}=2.00 \mu \mathrm{~T}$.
25. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with $i_{d, \text { enc }}$. It is the enclosed portion of the displacement current, and if we related this to the displacement current density J_{d}, then

$$
i_{d, \mathrm{enc}}=\int_{\mathrm{o}}^{r} J_{d} 2 \pi r \mathrm{dr}=(4.00 \mathrm{~A} / \mathrm{m} \cdot \mathrm{~s})(2 \pi) \int_{\mathrm{o}}^{r}\left(1-\frac{r}{R}\right) r d r=8 \pi\left(\frac{1}{2} r^{2}-\frac{r^{3}}{3 R}\right)
$$

with SI units understood. Now, we apply Eq. 32-17 (with i_{d} replaced with $i_{d, \text { enc }}$) or start from scratch with Eq. 32-11, to get $B=\frac{\mu_{\mathrm{o}} i_{d \mathrm{enc}}}{2 \pi r}=27.9 \mathrm{nT}$.
(b) The integral shown above will no longer (since now $r>R$) have r as the upper limit; the upper limit is now R. Thus,

$$
i_{d, \mathrm{enc}}=i_{d}=8 \pi\left(\frac{1}{2} R^{2}-\frac{R^{3}}{3 R}\right)=\frac{4}{3} \pi R^{2}
$$

Now Eq. 32-17 gives $B=\frac{\mu_{0} i_{d}}{2 \pi r}=15.1 \mathrm{nT}$.
26. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with $i_{d, \text { enc }}$. It is the enclosed portion of the displacement current. Thus Eq. 32-17 (which derives from Eq. 32-11) becomes, with i_{d} replaced with $i_{d, \text { enc }}$,

$$
B=\frac{\mu_{\mathrm{o}} i_{d \mathrm{enc}}}{2 \pi r}=\frac{\mu_{\mathrm{o}}(3.00 \mathrm{~A}) r}{2 \pi r R}
$$

which yields (after canceling r, and setting $R=0.0300 \mathrm{~m}) B=20.0 \mu \mathrm{~T}$.
(b) Here $i_{d}=3.00 \mathrm{~A}$, and we get $B=\frac{\mu_{0} i_{d}}{2 \pi r}=12.0 \mu \mathrm{~T}$.
27. The horizontal component of the Earth's magnetic field is given by $B_{h}=B \cos \phi_{i}$, where B is the magnitude of the field and ϕ_{i} is the inclination angle. Thus

$$
B=\frac{B_{h}}{\cos \phi_{i}}=\frac{16 \mu \mathrm{~T}}{\cos 73^{\circ}}=55 \mu \mathrm{~T} .
$$

28. (a) The flux through Arizona is

$$
\Phi=-B_{r} A=-\left(43 \times 10^{-6} \mathrm{~T}\right)\left(295,000 \mathrm{~km}^{2}\right)\left(10^{3} \mathrm{~m} / \mathrm{km}\right)^{2}=-1.3 \times 10^{7} \mathrm{~Wb}
$$

inward. By Gauss' law this is equal to the negative value of the flux Φ^{\prime} through the rest of the surface of the Earth. So $\Phi^{\prime}=1.3 \times 10^{7} \mathrm{~Wb}$.
(b) The direction is outward.
29. We use Eq. 32-31: $\mu_{\mathrm{orb}, z}=-m_{\ell} \mu_{B}$.
(a) For $m_{\ell}=1, \mu_{\mathrm{orb}, z}=-(1)\left(9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)=-9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}$.
(b) For $m_{\ell}=-2, \mu_{\mathrm{orb}, z}=-(-2)\left(9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)=1.9 \times 10^{-23} \mathrm{~J} / \mathrm{T}$.
30. We use Eq. 32-27 to obtain $\Delta U=-\Delta\left(\mu_{s, z} B\right)=-B \Delta \mu_{s, z}$, where $\mu_{s, z}= \pm e h / 4 \pi m_{e}= \pm \mu_{B}$ (see Eqs. 32-24 and 32-25). Thus,

$$
\Delta U=-B\left[\mu_{B}-\left(-\mu_{B}\right)\right]=2 \mu_{B} B=2\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.25 \mathrm{~T})=4.6 \times 10^{-24} \mathrm{~J}
$$

31. (a) Since $m_{\ell}=0, L_{\mathrm{orb}, z}=m_{\ell} h / 2 \pi=0$.
(b) Since $m_{\ell}=0, \mu_{\mathrm{orb}, z}=-m_{\ell} \mu_{B}=0$.
(c) Since $m_{\ell}=0$, then from Eq. $32-32, U=-\mu_{\mathrm{orb}, z} B_{\mathrm{ext}}=-m_{\ell} \mu_{B} B_{\mathrm{ext}}=0$.
(d) Regardless of the value of m_{ℓ}, we find for the spin part

$$
U=-\mu_{s, z} B= \pm \mu_{B} B= \pm\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(35 \mathrm{mT})= \pm 3.2 \times 10^{-25} \mathrm{~J}
$$

(e) Now $m_{\ell}=-3$, so

$$
L_{\text {orb }, z}=\frac{m_{\ell} h}{2 \pi}=\frac{(-3)\left(6.63 \times 10^{-27} \mathrm{~J} \cdot \mathrm{~s}\right)}{2 \pi}=-3.16 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \approx-3.2 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

(f) and

$$
\mu_{\text {orb }, z}=-m_{\ell} \mu_{B}=-(-3)\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)=2.78 \times 10^{-23} \mathrm{~J} / \mathrm{T} \approx 2.8 \times 10^{-23} \mathrm{~J} / \mathrm{T} .
$$

(g) The potential energy associated with the electron's orbital magnetic moment is now

$$
U=-\mu_{\mathrm{orb}, z} B_{\mathrm{ext}}=-\left(2.78 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)\left(35 \times 10^{-3} \mathrm{~T}\right)=-9.7 \times 10^{-25} \mathrm{~J} .
$$

(h) On the other hand, the potential energy associated with the electron spin, being independent of m_{ℓ}, remains the same: $\pm 3.2 \times 10^{-25} \mathrm{~J}$.
32. Combining Eq. 32-27 with Eqs. 32-22 and 32-23, we see that the energy difference is

$$
\Delta U=2 \mu_{\mathrm{B}} B
$$

where μ_{B} is the Bohr magneton (given in Eq. 32-25). With $\Delta U=6.00 \times 10^{-25} \mathrm{~J}$, we obtain $B=32.3 \mathrm{mT}$.
33. (a) The potential energy of the atom in association with the presence of an external magnetic field $\vec{B}_{\text {ext }}$ is given by Eqs. 32-31 and 32-32:

$$
U=-\mu_{\mathrm{orb}} \cdot \vec{B}_{\mathrm{ext}}=-\mu_{\mathrm{orb}, z} B_{\mathrm{ext}}=-m_{\ell} \mu_{B} B_{\mathrm{ext}} .
$$

For level E_{1} there is no change in energy as a result of the introduction of $\vec{B}_{\text {ext }}$, so $U \propto m_{\ell}$ $=0$, meaning that $m_{\ell}=0$ for this level.
(b) For level E_{2} the single level splits into a triplet (i.e., three separate ones) in the presence of $\vec{B}_{\text {ext }}$, meaning that there are three different values of m_{ℓ}. The middle one in the triplet is unshifted from the original value of E_{2} so its m_{ℓ} must be equal to 0 . The other two in the triplet then correspond to $m_{\ell}=-1$ and $m_{\ell}=+1$, respectively.
(c) For any pair of adjacent levels in the triplet $\left|\Delta m_{\ell}\right|=1$. Thus, the spacing is given by

$$
\Delta U=\left|\Delta\left(-m_{\ell} \mu_{B} B\right)\right|=\left|\Delta m_{\ell}\right| \mu_{B} B=\mu_{B} B=\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.50 \mathrm{~T})=4.64 \times 10^{-24} \mathrm{~J}
$$

34. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of the loop is shown below:

(b) The primary conclusion of $\S 32-9$ is two-fold: \vec{u} is opposite to \vec{B}, and the effect of \vec{F} is to move the material towards regions of smaller $|\vec{B}|$ values. The direction of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the $+x$ direction.
(c) The direction of the current is clockwise (from the perspective of the bar magnet.)
(d) Since the size of $|\vec{B}|$ relates to the "crowdedness" of the field lines, we see that \vec{F} is towards the right in our sketch, or in the $+x$ direction.
35. An electric field with circular field lines is induced as the magnetic field is turned on. Suppose the magnetic field increases linearly from zero to B in time t. According to Eq. 31-27, the magnitude of the electric field at the orbit is given by

$$
E=\left(\frac{r}{2}\right) \frac{d B}{d t}=\left(\frac{r}{2}\right) \frac{B}{t},
$$

where r is the radius of the orbit. The induced electric field is tangent to the orbit and changes the speed of the electron, the change in speed being given by

$$
\Delta v=a t=\frac{e E}{m_{e}} t=\left(\frac{e}{m_{e}}\right)\left(\frac{r}{2}\right)\left(\frac{B}{t}\right) t=\frac{e r B}{2 m_{e}} .
$$

The average current associated with the circulating electron is $i=e v / 2 \pi r$ and the dipole moment is

$$
\mu=A i=\left(\pi r^{2}\right)\left(\frac{e v}{2 \pi r}\right)=\frac{1}{2} e v r .
$$

The change in the dipole moment is

$$
\Delta \mu=\frac{1}{2} e r \Delta v=\frac{1}{2} e r\left(\frac{e r B}{2 m_{e}}\right)=\frac{e^{2} r^{2} B}{4 m_{e}} .
$$

36. Reviewing Sample Problem 32-3 before doing this exercise is helpful. Let

$$
K=\frac{3}{2} k T=|\vec{\mu} \cdot \vec{B}-(-\vec{\mu} \cdot \vec{B})|=2 \mu B
$$

which leads to

$$
T=\frac{4 \mu B}{3 k}=\frac{4\left(1.0 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)(0.50 \mathrm{~T})}{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)}=0.48 \mathrm{~K} .
$$

37. The magnetization is the dipole moment per unit volume, so the dipole moment is given by $\mu=M$, where M is the magnetization and is the volume of the cylinder ($=\pi r^{2} L$, where r is the radius of the cylinder and L is its length). Thus,

$$
\mu=M \pi r^{2} L=\left(5.30 \times 10^{3} \mathrm{~A} / \mathrm{m}\right) \pi\left(0.500 \times 10^{-2} \mathrm{~m}\right)^{2}\left(5.00 \times 10^{-2} \mathrm{~m}\right)=2.08 \times 10^{-2} \mathrm{~J} / \mathrm{T}
$$

38. (a) From Fig. 32-14 we estimate a slope of $B / T=0.50 \mathrm{~T} / \mathrm{K}$ when $M / M_{\max }=50 \%$. So

$$
B=0.50 \mathrm{~T}=(0.50 \mathrm{~T} / \mathrm{K})(300 \mathrm{~K})=1.5 \times 10^{2} \mathrm{~T}
$$

(b) Similarly, now $B / T \approx 2$ so $B=(2)(300)=6.0 \times 10^{2} \mathrm{~T}$.
(c) Except for very short times and in very small volumes, these values are not attainable in the lab.
39. For the measurements carried out, the largest ratio of the magnetic field to the temperature is $(0.50 \mathrm{~T}) /(10 \mathrm{~K})=0.050 \mathrm{~T} / \mathrm{K}$. Look at Fig. 32-14 to see if this is in the region where the magnetization is a linear function of the ratio. It is quite close to the origin, so we conclude that the magnetization obeys Curie's law.
40. Section 32-10 explains the terms used in this problem and the connection between M and μ. The graph in Fig. 32-37 gives a slope of

$$
\frac{M / M_{\max }}{B_{\mathrm{ext}} / T}=\frac{0.15}{0.20}=3 / 4
$$

in Kelvins per Tesla. Thus we can write

$$
\frac{\mu}{\mu_{\max }}=3 / 4(0.800 \mathrm{~T}) /(2.00 \mathrm{~K})=0.30 .
$$

41. (a) A charge e traveling with uniform speed v around a circular path of radius r takes time $T=2 \pi r / v$ to complete one orbit, so the average current is

$$
i=\frac{e}{T}=\frac{e v}{2 \pi r} .
$$

The magnitude of the dipole moment is this multiplied by the area of the orbit:

$$
\mu=\frac{e v}{2 \pi r} \pi r^{2}=\frac{e v r}{2}
$$

Since the magnetic force with magnitude $e v B$ is centripetal, Newton's law yields $e v B=$ $m_{e} v^{2} / r$, so $r=m_{e} v / e B$. Thus,

$$
\mu=\frac{1}{2}(e v)\left(\frac{m_{e} v}{e B}\right)=\left(\frac{1}{B}\right)\left(\frac{1}{2} m_{e} v^{2}\right)=\frac{K_{e}}{B} .
$$

The magnetic force $-e \vec{v} \times \vec{B}$ must point toward the center of the circular path. If the magnetic field is directed out of the page (defined to be +z direction), the electron will travel counterclockwise around the circle. Since the electron is negative, the current is in the opposite direction, clockwise and, by the right-hand rule for dipole moments, the dipole moment is into the page, or in the $-z$ direction. That is, the dipole moment is directed opposite to the magnetic field vector.
(b) We note that the charge canceled in the derivation of $\mu=K_{e} / B$. Thus, the relation $\mu=$ K_{i} / B holds for a positive ion.
(c) The direction of the dipole moment is $-z$, opposite to the magnetic field.
(d) The magnetization is given by $M=\mu_{e} n_{e}+\mu_{i} n_{i}$, where μ_{e} is the dipole moment of an electron, n_{e} is the electron concentration, μ_{i} is the dipole moment of an ion, and n_{i} is the ion concentration. Since $n_{e}=n_{i}$, we may write n for both concentrations. We substitute μ_{e} $=K_{e} / B$ and $\mu_{i}=K_{i} / B$ to obtain

$$
M=\frac{n}{B}\left(K_{e}+K_{i}\right)=\frac{5.3 \times 10^{21} \mathrm{~m}^{-3}}{1.2 \mathrm{~T}}\left(6.2 \times 10^{-20} \mathrm{~J}+7.6 \times 10^{-21} \mathrm{~J}\right)=3.1 \times 10^{2} \mathrm{~A} / \mathrm{m}
$$

42. The Curie temperature for iron is $770^{\circ} \mathrm{C}$. If x is the depth at which the temperature has this value, then $10^{\circ} \mathrm{C}+\left(30^{\circ} \mathrm{C} / \mathrm{km}\right) x=770^{\circ} \mathrm{C}$. Therefore,

$$
x=\frac{770^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}}{30^{\circ} \mathrm{C} / \mathrm{km}}=25 \mathrm{~km} .
$$

43. (a) The field of a dipole along its axis is given by Eq. 30-29:

$$
B=\frac{\mu_{0}}{2 \pi} \frac{\mu}{z^{3}}
$$

where μ is the dipole moment and z is the distance from the dipole. Thus,

$$
B=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / A\right)\left(1.5 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)}{2 \pi\left(10 \times 10^{-9} \mathrm{~m}\right)}=3.0 \times 10^{-6} \mathrm{~T}
$$

(b) The energy of a magnetic dipole $\vec{\mu}$ in a magnetic field \vec{B} is given by $U=-\vec{\mu} \cdot \vec{B}=-\mu B \cos \phi$, where ϕ is the angle between the dipole moment and the field. The energy required to turn it end-for-end (from $\phi=0^{\circ}$ to $\phi=180^{\circ}$) is

$$
\Delta U=2 \mu B=2\left(1.5 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)\left(3.0 \times 10^{-6} \mathrm{~T}\right)=9.0 \times 10^{-29} \mathrm{~J}=5.6 \times 10^{-10} \mathrm{eV}
$$

The mean kinetic energy of translation at room temperature is about 0.04 eV . Thus, if dipole-dipole interactions were responsible for aligning dipoles, collisions would easily randomize the directions of the moments and they would not remain aligned.
44. (a) The number of iron atoms in the iron bar is

$$
N=\frac{\left(7.9 \mathrm{~g} / \mathrm{cm}^{3}\right)(5.0 \mathrm{~cm})\left(1.0 \mathrm{~cm}^{2}\right)}{(55.847 \mathrm{~g} / \mathrm{mol}) /\left(6.022 \times 10^{23} / \mathrm{mol}\right)}=4.3 \times 10^{23}
$$

Thus the dipole moment of the iron bar is

$$
\mu=\left(2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)\left(4.3 \times 10^{23}\right)=8.9 \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

(b) $\tau=\mu B \sin 90^{\circ}=\left(8.9 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)(1.57 \mathrm{~T})=13 \mathrm{~N} \cdot \mathrm{~m}$.
45. The saturation magnetization corresponds to complete alignment of all atomic dipoles and is given by $M_{\text {sat }}=\mu n$, where n is the number of atoms per unit volume and μ is the magnetic dipole moment of an atom. The number of nickel atoms per unit volume is $n=$ ρ / m, where ρ is the density of nickel. The mass of a single nickel atom is calculated using $m=M / N_{A}$, where M is the atomic mass of nickel and N_{A} is Avogadro's constant. Thus,

$$
\begin{aligned}
n & =\frac{\rho N_{A}}{M}=\frac{\left(8.90 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(6.02 \times 10^{23} \text { atoms } / \mathrm{mol}\right)}{58.71 \mathrm{~g} / \mathrm{mol}}=9.126 \times 10^{22} \text { atoms } / \mathrm{cm}^{3} \\
& =9.126 \times 10^{28} \text { atoms } / \mathrm{m}^{3}
\end{aligned}
$$

The dipole moment of a single atom of nickel is

$$
\mu=\frac{M_{\text {sat }}}{n}=\frac{4.70 \times 10^{5} \mathrm{~A} / \mathrm{m}}{9.126 \times 10^{28} \mathrm{~m}^{3}}=5.15 \times 10^{-24} \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

46. (a) Eq. 29-36 gives

$$
\tau=\mu_{\mathrm{rod}} B \sin \theta=(2700 \mathrm{~A} / \mathrm{m})(0.06 \mathrm{~m}) \pi(0.003 \mathrm{~m})^{2}(0.035 \mathrm{~T}) \sin \left(68^{\circ}\right)=1.49 \times 10^{-4} \mathrm{Nm} .
$$

We have used the fact that the volume of a cylinder is its length times its (circular) cross sectional area.
(b) Using Eq. 29-38, we have

$$
\begin{aligned}
\Delta U & =-\mu_{\mathrm{rod}} B\left(\cos \theta_{f}-\cos \theta_{i}\right) \\
& =-(2700 \mathrm{~A} / \mathrm{m})(0.06 \mathrm{~m}) \pi(0.003 \mathrm{~m})^{2}(0.035 \mathrm{~T})\left[\cos \left(34^{\circ}\right)-\cos \left(68^{\circ}\right)\right] \\
& =-72.9 \mu \mathrm{~J} .
\end{aligned}
$$

47. (a) The magnitude of the toroidal field is given by $B_{0}=\mu_{0} n i_{p}$, where n is the number of turns per unit length of toroid and i_{p} is the current required to produce the field (in the absence of the ferromagnetic material). We use the average radius ($r_{\text {avg }}=5.5 \mathrm{~cm}$) to calculate n :

$$
n=\frac{N}{2 \pi r_{\text {avg }}}=\frac{400 \text { turns }}{2 \pi\left(5.5 \times 10^{-2} \mathrm{~m}\right)}=1.16 \times 10^{3} \text { turns } / \mathrm{m}
$$

Thus,

$$
i_{p}=\frac{B_{0}}{\mu_{0} n}=\frac{0.20 \times 10^{-3} \mathrm{~T}}{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.16 \times 10^{3} / \mathrm{m}\right)}=0.14 \mathrm{~A} .
$$

(b) If Φ is the magnetic flux through the secondary coil, then the magnitude of the emf induced in that coil is $\varepsilon=N(d \Phi / d t)$ and the current in the secondary is $i_{s}=\varepsilon / R$, where R is the resistance of the coil. Thus,

$$
i_{s}=\left(\frac{N}{R}\right) \frac{d \Phi}{d t} .
$$

The charge that passes through the secondary when the primary current is turned on is

$$
q=\int i_{s} d t=\frac{N}{R} \int \frac{d \Phi}{d t} d t=\frac{N}{R} \int_{0}^{\Phi} d \Phi=\frac{N \Phi}{R} .
$$

The magnetic field through the secondary coil has magnitude $B=B_{0}+B_{M}=801 B_{0}$, where B_{M} is the field of the magnetic dipoles in the magnetic material. The total field is perpendicular to the plane of the secondary coil, so the magnetic flux is $\Phi=A B$, where A is the area of the Rowland ring (the field is inside the ring, not in the region between the ring and coil). If r is the radius of the ring's cross section, then $A=\pi r^{2}$. Thus,

$$
\Phi=801 \pi r^{2} B_{0} .
$$

The radius r is $(6.0 \mathrm{~cm}-5.0 \mathrm{~cm}) / 2=0.50 \mathrm{~cm}$ and

$$
\Phi=801 \pi\left(0.50 \times 10^{-2} \mathrm{~m}\right)^{2}\left(0.20 \times 10^{-3} \mathrm{~T}\right)=1.26 \times 10^{-5} \mathrm{~Wb}
$$

Consequently,

$$
q=\frac{50\left(1.26 \times 10^{-5} \mathrm{~Wb}\right)}{8.0 \Omega}=7.9 \times 10^{-5} \mathrm{C} .
$$

48. From Eq. 29-37 (see also Eq. 29-36) we write the torque as $\tau=-\mu B_{h} \sin \theta$ where the minus indicates that the torque opposes the angular displacement θ (which we will assume is small and in radians). The small angle approximation leads to $\tau \approx-\mu B_{h} \theta$, which is an indicator for simple harmonic motion (see section 16-5, especially Eq. 16-22). Comparing with Eq. 16-23, we then find the period of oscillation is

$$
T=2 \pi \sqrt{\frac{I}{\mu B_{h}}}
$$

where I is the rotational inertial that we asked to solve for. Since the frequency is given as 0.312 Hz , then the period is $T=1 / f=1 / 0.312$ in SI units. Similarly, $B_{h}=18.0 \times 10^{-6}$ and $\mu=6.80 \times 10^{-4}$. The above relation then yields $I=3.19 \times 10^{-9} \mathrm{~kg} \mathrm{~m}^{2}$.
49. (a) If the magnetization of the sphere is saturated, the total dipole moment is $\mu_{\text {total }}=$ $N \mu$, where N is the number of iron atoms in the sphere and μ is the dipole moment of an iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of such a sphere is $N m$, where m is the mass of an iron atom. It is also given by $4 \pi \rho R^{3} / 3$, where ρ is the density of iron and R is the radius of the sphere. Thus $N m=4 \pi \rho R^{3} / 3$ and

$$
N=\frac{4 \pi \rho R^{3}}{3 m} .
$$

We substitute this into $\mu_{\text {total }}=N \mu$ to obtain

$$
\mu_{\text {total }}=\frac{4 \pi \rho R^{3} \mu}{3 m} .
$$

We solve for R and obtain

$$
R=\left(\frac{3 m \mu_{\text {total }}}{4 \pi \rho \mu}\right)^{1 / 3}
$$

The mass of an iron atom is $m=56 \mathrm{u}=(56 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=9.30 \times 10^{-26} \mathrm{~kg}$. Therefore,

$$
R=\left[\frac{3\left(9.30 \times 10^{-26} \mathrm{~kg}\right)\left(8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}\right)}{4 \pi\left(14 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right)}\right]^{1 / 3}=1.8 \times 10^{5} \mathrm{~m}
$$

(b) The volume of the sphere is $V_{s}=\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3}\left(1.82 \times 10^{5} \mathrm{~m}\right)^{3}=2.53 \times 10^{16} \mathrm{~m}^{3}$ and the volume of the Earth is

$$
V_{e}=\frac{4 \pi}{3}\left(6.37 \times 10^{6} \mathrm{~m}\right)^{3}=1.08 \times 10^{21} \mathrm{~m}^{3},
$$

so the fraction of the Earth's volume that is occupied by the sphere is

$$
\frac{2.53 \times 10^{16} \mathrm{~m}^{3}}{1.08 \times 10^{21} \mathrm{~m}^{3}}=2.3 \times 10^{-5}
$$

50. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal to

$$
\mu_{0} i_{d}(\text { enclosed area }) /(\text { total area })=\mu_{0}(0.75 \mathrm{~A})(4 \mathrm{~cm} \times 2 \mathrm{~cm}) /(12 \mathrm{~cm})^{2}=52 \mathrm{nT} \cdot \mathrm{~m} .
$$

51. (a) Inside the gap of the capacitor, $B_{1}=\mu_{0} i_{d} r_{1} / 2 \pi R^{2}$ (Eq. 32-16); outside the gap the magnetic field is $B_{2}=\mu_{0} i_{d} / 2 \pi r_{2}$ (Eq. 32-17). Consequently, $B_{2}=B_{1} R^{2} / r_{1} r_{2}=16.7 \mathrm{nT}$.
(b) The displacement current is $i_{d}=2 \pi B_{1} R^{2} / \mu_{0} r_{1}=5.00 \mathrm{~mA}$.
52. (a) The period of rotation is $T=2 \pi / \omega$ and in this time all the charge passes any fixed point near the ring. The average current is $i=q / T=q \omega / 2 \pi$ and the magnitude of the magnetic dipole moment is

$$
\mu=i A=\frac{q \omega}{2 \pi} \pi r^{2}=\frac{1}{2} q \omega r^{2} .
$$

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is positive, the thumb points in the direction of the dipole moment. It is the same as the direction of the angular momentum vector of the ring.
53. (a) We use the result of part (a) in Sample Problem 32-1:

$$
B=\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{d E}{d t} \quad(\text { for } r \leq R)
$$

where $r=0.80 R$ and

$$
\frac{d E}{d t}=\frac{d}{d t}\left(\frac{V}{d}\right)=\frac{1}{d} \frac{d}{d t}\left(V_{0} e^{-t / \tau}\right)=-\frac{V_{0}}{\tau d} e^{-t / \tau}
$$

Here $V_{0}=100 \mathrm{~V}$. Thus

$$
\begin{aligned}
B(t) & =\left(\frac{\mu_{0} \varepsilon_{0} r}{2}\right)\left(-\frac{V_{0}}{\tau d} e^{-t / \tau}\right)=-\frac{\mu_{0} \varepsilon_{0} V_{0} r}{2 \tau d} e^{-t / \tau} \\
& =-\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.85 \times 10^{-12} \frac{\mathrm{c}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(100 \mathrm{~V})(0.80)(16 \mathrm{~mm})}{2\left(12 \times 10^{-3} \mathrm{~s}\right)(5.0 \mathrm{~mm})} e^{-t / 12 \mathrm{~ms}} \\
& =-\left(1.2 \times 10^{-13} \mathrm{~T}\right) e^{-t / 12 \mathrm{~ms}}
\end{aligned}
$$

The magnitude is $|B(t)|=\left(1.2 \times 10^{-13} \mathrm{~T}\right) e^{-t / 12 \mathrm{~ms}}$.
(b) At time $t=3 \tau, B(t)=-\left(1.2 \times 10^{-13} \mathrm{~T}\right) e^{-3 \tau \tau}=-5.9 \times 10^{-15} \mathrm{~T}$, with a magnitude $|B(t)|=$ $5.9 \times 10^{-15} \mathrm{~T}$.
54. (a) Eq. 30-22 gives $B=\frac{\mu_{0} i r}{2 \pi R^{2}}=222 \mu \mathrm{~T}$.
(b) Eq. 30-19 (or Eq. 30-6) gives $B=\frac{\mu_{0} i}{2 \pi r}=167 \mu \mathrm{~T}$.
(c) As in part (b), we obtain a field of $\frac{\mu_{0} i}{2 \pi r}=22.7 \mu \mathrm{~T}$.
(d) Eq. 32-16 (with Eq. 32-15) gives $B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=1.25 \mu \mathrm{~T}$.
(e) As in part (d), we get $\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=3.75 \mu \mathrm{~T}$.
(f) Eq. 32-17 yields $B=22.7 \mu \mathrm{~T}$.
(g) Because the displacement current in the gap is spread over a larger cross-sectional area, values of B within that area are relatively small. Outside that cross-sectional area, the two values of B are identical. See Fig. 32-23b.
55. (a) Again from Fig. 32-14, for $M / M_{\max }=50 \%$ we have $B / T=0.50$. So $T=B / 0.50=$ $2 / 0.50=4 \mathrm{~K}$.
(b) Now $B / T=2.0$, so $T=2 / 2.0=1 \mathrm{~K}$.
56. (a) The complete set of values are $\{-4,-3,-2,-1,0,+1,+2,+3,+4\} \Rightarrow$ nine values in all.
(b) The maximum value is $4 \mu_{B}=3.71 \times 10^{-23} \mathrm{~J} / \mathrm{T}$.
(c) Multiplying our result for part (b) by 0.250 T gives $U=+9.27 \times 10^{-24} \mathrm{~J}$.
(d) Similarly, for the lower limit, $U=-9.27 \times 10^{-24} \mathrm{~J}$.
57. (a) Using Eq. 27-10, we find $E=\rho J=\frac{\rho i}{A}=\frac{\left(1.62 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(100 \mathrm{~A})}{5.00 \times 10^{-6} \mathrm{~m}^{2}}=0.324 \mathrm{~V} / \mathrm{m}$.
(b) The displacement current is

$$
\begin{aligned}
i_{d} & =\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} A \frac{d E}{d t}=\varepsilon_{0} A \frac{d}{d t}\left(\frac{\rho i}{A}\right)=\varepsilon_{0} \rho \frac{d i}{d t}=\left(8.85 \times 10^{-12} \mathrm{~F}\right)\left(1.62 \times 10^{-8} \Omega\right)(2000 \mathrm{~A} / \mathrm{s}) \\
& =2.87 \times 10^{-16} \mathrm{~A}
\end{aligned}
$$

(c) The ratio of fields is $\frac{B\left(\text { due to } i_{d}\right)}{B(\text { due to } i)}=\frac{\mu_{0} i_{d} / 2 \pi r}{\mu_{0} i / 2 \pi r}=\frac{i_{d}}{i}=\frac{2.87 \times 10^{-16} \mathrm{~A}}{100 \mathrm{~A}}=2.87 \times 10^{-18}$.
58. (a) Using Eq. 32-31, we find

$$
\mu_{\mathrm{orb}, z}=-3 \mu_{B}=-2.78 \times 10^{-23} \mathrm{~J} / \mathrm{T}
$$

(That these are acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 3227; they are equivalent to $\mathrm{A} \cdot \mathrm{m}^{2}$).
(b) Similarly, for $m_{\ell}=-4$ we obtain $\mu_{\mathrm{orb}, z}=3.71 \times 10^{-23} \mathrm{~J} / \mathrm{T}$.
59. Let the area of each circular plate be A and that of the central circular section be a, then

$$
\frac{A}{a}=\frac{\pi R^{2}}{\pi(R / 2)^{2}}=4
$$

Thus, from Eqs. 32-14 and 32-15 the total discharge current is given by $i=i_{d}=4(2.0 \mathrm{~A})$ $=8.0 \mathrm{~A}$.
60. The interacting potential energy between the magnetic dipole of the compass and the Earth's magnetic field is $U=-\vec{\mu} \cdot \vec{B}_{e}=-\mu B_{e} \cos \theta$, where θ is the angle between $\vec{\mu}$ and \vec{B}_{e}. For small angle θ

$$
U(\theta)=-\mu B_{e} \cos \theta \approx-\mu B_{e}\left(1-\frac{\theta^{2}}{2}\right)=\frac{1}{2} \kappa \theta^{2}-\mu B_{e}
$$

where $\kappa=\mu B_{e}$. Conservation of energy for the compass then gives

$$
\frac{1}{2} I\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2} \kappa \theta^{2}=\text { const. }
$$

This is to be compared with the following expression for the mechanical energy of a spring-mass system:

$$
\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+\frac{1}{2} k x^{2}=\text { const. }
$$

which yields $\omega=\sqrt{k / m}$. So by analogy, in our case

$$
\omega=\sqrt{\frac{\kappa}{I}}=\sqrt{\frac{\mu B_{e}}{I}}=\sqrt{\frac{\mu B_{e}}{m l^{2} / 12}},
$$

which leads to

$$
\mu=\frac{m l^{2} \omega^{2}}{12 B_{e}}=\frac{(0.050 \mathrm{~kg})\left(4.0 \times 10^{-2} \mathrm{~m}\right)^{2}(45 \mathrm{rad} / \mathrm{s})^{2}}{12\left(16 \times 10^{-6} \mathrm{~T}\right)}=8.4 \times 10^{2} \mathrm{~J} / \mathrm{T}
$$

61. (a) At any instant the displacement current i_{d} in the gap between the plates equals the conduction current i in the wires. Thus $i_{\max }=i_{d \max }=7.60 \mu \mathrm{~A}$.
(b) Since $i_{d}=\varepsilon_{0}\left(d \Phi_{E} / d t\right)$,

$$
\left(\frac{d \Phi_{E}}{d t}\right)_{\max }=\frac{i_{d \max }}{\varepsilon_{0}}=\frac{7.60 \times 10^{-6} \mathrm{~A}}{8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}=8.59 \times 10^{5} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{s}
$$

(c) According to problem 13,

$$
i_{d}=C \frac{d V}{d t}=\frac{\varepsilon_{0} A}{d} \frac{d V}{d t}
$$

Now the potential difference across the capacitor is the same in magnitude as the emf of the generator, so $V=\varepsilon_{\mathrm{m}} \sin \omega t$ and $d V / d t=\omega \varepsilon_{\mathrm{m}} \cos \omega t$. Thus, $i_{d}=\left(\varepsilon_{0} A \omega \varepsilon_{\mathrm{m}} / d\right) \cos \omega t$ and $i_{d \text { max }}=\varepsilon_{0} A \omega \varepsilon_{\mathrm{m}} / d$. This means

$$
d=\frac{\varepsilon_{0} A \omega \varepsilon_{\mathrm{m}}}{i_{d \max }}=\frac{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right) \pi(0.180 \mathrm{~m})^{2}(130 \mathrm{rad} / \mathrm{s})(220 \mathrm{~V})}{7.60 \times 10^{-6} \mathrm{~A}}=3.39 \times 10^{-3} \mathrm{~m}
$$

where $A=\pi R^{2}$ was used.
(d) We use the Ampere-Maxwell law in the form $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{d}$, where the path of integration is a circle of radius r between the plates and parallel to them. I_{d} is the displacement current through the area bounded by the path of integration. Since the displacement current density is uniform between the plates, $I_{d}=\left(r^{2} / R^{2}\right) i_{d}$, where i_{d} is the total displacement current between the plates and R is the plate radius. The field lines are circles centered on the axis of the plates, so \vec{B} is parallel to $d \vec{s}$. The field has constant magnitude around the circular path, so $\oint \vec{B} \cdot d \vec{s}=2 \pi r B$. Thus,

$$
2 \pi r B=\mu_{0}\left(\frac{r^{2}}{R^{2}}\right) i_{d} \Rightarrow B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}} .
$$

The maximum magnetic field is given by

$$
B_{\max }=\frac{\mu_{0} i_{d \max } r}{2 \pi R^{2}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(7.6 \times 10^{-6} \mathrm{~A}\right)(0.110 \mathrm{~m})}{2 \pi(0.180 \mathrm{~m})^{2}}=5.16 \times 10^{-12} \mathrm{~T}
$$

62. The definition of displacement current is Eq. 32-10, and the formula of greatest convenience here is Eq. 32-17:

$$
i_{d}=\frac{2 \pi r B}{\mu_{0}}=\frac{2 \pi(0.0300 \mathrm{~m})\left(2.00 \times 10^{-6} \mathrm{~T}\right)}{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}}=0.300 \mathrm{~A} .
$$

63. (a) For a given value of ℓ, m_{ℓ} varies from $-\ell$ to $+\ell$. Thus, in our case $\ell=3$, and the number of different m_{ℓ} 's is $2 \ell+1=2(3)+1=7$. Thus, since $L_{\mathrm{orb}, z} \propto m_{\ell}$, there are a total of seven different values of $L_{\mathrm{orb}, z}$.
(b) Similarly, since $\mu_{\mathrm{orb}, z} \propto m_{\ell}$, there are also a total of seven different values of $\mu_{\mathrm{orb}, z}$.
(c) Since $L_{\text {orb }, z}=m_{\ell} h / 2 \pi$, the greatest allowed value of $L_{\mathrm{orb}, z}$ is given by $\left|m_{\ell}\right|_{\max } h / 2 \pi=$ $3 h / 2 \pi$.
(d) Similar to part (c), since $\mu_{\mathrm{orb}, z}=-m_{\ell} \mu_{B}$, the greatest allowed value of $\mu_{\mathrm{orb}, z}$ is given by $\left|m_{\ell}\right|_{\max } \mu_{B}=3 e h / 4 \pi m_{e}$.
(e) From Eqs. 32-23 and 32-29 the z component of the net angular momentum of the electron is given by

$$
L_{\mathrm{net}, z}=L_{\mathrm{orb}, z}+L_{s, z}=\frac{m_{\ell} h}{2 \pi}+\frac{m_{s} h}{2 \pi} .
$$

For the maximum value of $L_{\text {net }, z}$ let $m_{\ell}=\left[m_{\ell}\right]_{\max }=3$ and $m_{s}=\frac{1}{2}$. Thus

$$
\left[L_{\mathrm{net}, z}\right]_{\max }=\left(3+\frac{1}{2}\right) \frac{h}{2 \pi}=\frac{3.5 h}{2 \pi} .
$$

(f) Since the maximum value of $L_{\text {net, } z}$ is given by $\left[m_{J}\right]_{\max } h / 2 \pi$ with $\left[m_{J}\right]_{\max }=3.5$ (see the last part above), the number of allowed values for the z component of $L_{\text {net }, z}$ is given by $2\left[m_{J}\right]_{\max }+1=2(3.5)+1=8$.
64. Ignoring points where the determination of the slope is problematic, we find the interval of largest $\Delta|\vec{E}| / \Delta t$ is $6 \mu \mathrm{~s}<t<7 \mu \mathrm{~s}$. During that time, we have, from Eq. 32-14,

$$
i_{d}=\varepsilon_{0} A \frac{\Delta|\vec{E}|}{\Delta t}=\varepsilon_{0}\left(2.0 \mathrm{~m}^{2}\right)\left(2.0 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)
$$

which yields $i_{d}=3.5 \times 10^{-5} \mathrm{~A}$.
65. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of the loop is shown below:

(b) For paramagnetic materials, the dipole moment $\vec{\mu}$ is in the same direction as \vec{B}. From the above figure, $\vec{\mu}$ points in the $-x$ direction.
(c) Form the right-hand rule, since $\vec{\mu}$ points in the $-x$ direction, the current flows counterclockwise, from the perspective of the bar magnet.
(d) The effect of \vec{F} is to move the material towards regions of larger $|\vec{B}|$ values. Since the size of $|\vec{B}|$ relates to the "crowdedness" of the field lines, we see that \vec{F} is towards the left, or $-x$.
66. (a) From Eq. 21-3,

$$
E=\frac{e}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)}{\left(5.2 \times 10^{-11} \mathrm{~m}\right)^{2}}=5.3 \times 10^{11} \mathrm{~N} / \mathrm{C}
$$

(b) We use Eq. 29-28:

$$
B=\frac{\mu_{0}}{2 \pi} \frac{\mu_{p}}{r^{3}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.4 \times 10^{-26} \mathrm{~J} / \mathrm{T}\right)}{2 \pi\left(5.2 \times 10^{-11} \mathrm{~m}\right)^{3}}=2.0 \times 10^{-2} \mathrm{~T}
$$

(c) From Eq. 32-30,

$$
\frac{\mu_{\mathrm{orb}}}{\mu_{p}}=\frac{e h / 4 \pi m_{e}}{\mu_{p}}=\frac{\mu_{B}}{\mu_{p}}=\frac{9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}}{1.4 \times 10^{-26} \mathrm{~J} / \mathrm{T}}=6.6 \times 10^{2} .
$$

67. (a) From $\mu=i A=i \pi R_{e}^{2}$ we get

$$
i=\frac{\mu}{\pi R_{e}^{2}}=\frac{8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}}{\pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}=6.3 \times 10^{8} \mathrm{~A} .
$$

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current loop are dipole fields. If these two dipoles cancel each other out, then the net field will be zero.
(c) No, because the field of the current loop is not that of a magnetic dipole in the region close to the loop.
68. (a) Using Eq. 32-13 but noting that the capacitor is being discharged, we have

$$
\frac{d|\vec{E}|}{d t}=-\frac{i}{\varepsilon_{0} A}=-8.8 \times 10^{15}
$$

where $A=(0.0080)^{2}$ and SI units are understood.
(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with the fact that fringing is neglected in §32-4), we follow part (a) of Sample Problem 32-2 and relate the (absolute value of the) line integral to the portion of displacement current enclosed.

$$
|\oint \vec{B} \cdot d \vec{s}|=\mu_{0} i_{d, \mathrm{enc}}=\mu_{0}\left(\frac{W H}{L^{2}} i\right)=5.9 \times 10^{-7} \mathrm{~Wb} / \mathrm{m} .
$$

69. (a) We use the notation $P(\mu)$ for the probability of a dipole being parallel to \vec{B}, and $P(-\mu)$ for the probability of a dipole being antiparallel to the field. The magnetization may be thought of as a "weighted average" in terms of these probabilities:

$$
M=\frac{N \mu P(\mu)-N \mu P(-\mu)}{P(\mu)+P(-\mu)}=\frac{N \mu\left(e^{\mu B / K T}-e^{-\mu B / K T}\right)}{e^{\mu B / K T}+e^{-\mu B / K T}}=N \mu \tanh \left(\frac{\mu B}{k T}\right) .
$$

(b) For $\mu B \ll k T$ (that is, $\mu B / k T \ll 1$) we have $e^{ \pm \mu B / k T} \approx 1 \pm \mu B / k T$, so

$$
M=N \mu \tanh \left(\frac{\mu B}{k T}\right) \approx \frac{N \mu[(1+\mu B / k T)-(1-\mu B / k T)]}{(1+\mu B / k T)+(1-\mu B / k T)}=\frac{N \mu^{2} B}{k T} .
$$

(c) For $\mu B \gg k T$ we have $\tanh (\mu B / k T) \approx 1$, so $M=N \mu \tanh \left(\frac{\mu B}{k T}\right) \approx N \mu$.
(d) One can easily plot the tanh function using, for instance, a graphical calculator. One can then note the resemblance between such a plot and Fig. 32-14. By adjusting the parameters used in one's plot, the curve in Fig. 32-14 can reliably be fit with a tanh function.
70. (a) From Eq. 32-1, we have

$$
\left(\Phi_{B}\right)_{\mathrm{in}}=\left(\Phi_{B}\right)_{\mathrm{out}}=0.0070 \mathrm{~Wb}+(0.40 \mathrm{~T})\left(\pi r^{2}\right)=9.2 \times 10^{-3} \mathrm{~Wb} .
$$

Thus, the magnetic of the magnetic flux is 9.2 mWb .
(b) The flux is inward.
71. (a) The Pythagorean theorem leads to

$$
\begin{aligned}
B & =\sqrt{B_{h}^{2}+B_{v}^{2}}=\sqrt{\left(\frac{\mu_{0} \mu}{4 \pi r^{3}} \cos \lambda_{m}\right)^{2}+\left(\frac{\mu_{0} \mu}{2 \pi r^{3}} \sin \lambda_{m}\right)^{2}}=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{\cos ^{2} \lambda_{m}+4 \sin ^{2} \lambda_{m}} \\
& =\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}
\end{aligned}
$$

where $\cos ^{2} \lambda_{m}+\sin ^{2} \lambda_{m}=1$ was used.
(b) We use Eq. 3-6:

$$
\tan \phi_{i}=\frac{B v}{B h}=\frac{\left(\mu_{0} \mu / 2 \pi r^{3}\right) \sin \lambda_{m}}{\left(\mu_{0} \mu / 4 \pi r^{3}\right) \cos \lambda_{m}}=2 \tan \lambda_{m} .
$$

72. (a) At the magnetic equator $\left(\lambda_{m}=0\right)$, the field is

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.00 \times 10^{22} \mathrm{~A} \cdot \mathrm{~m}^{2}\right)}{4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{3}}=3.10 \times 10^{-5} \mathrm{~T}
$$

(b) $\phi_{i}=\tan ^{-1}\left(2 \tan \lambda_{m}\right)=\tan ^{-1}(0)=0^{\circ}$.
(c) At $\lambda_{m}=60.0^{\circ}$, we find

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}=\left(3.10 \times 10^{-5}\right) \sqrt{1+3 \sin ^{2} 60.0^{\circ}}=5.59 \times 10^{-5} \mathrm{~T} .
$$

(d) $\phi_{i}=\tan ^{-1}\left(2 \tan 60.0^{\circ}\right)=73.9^{\circ}$.
(e) At the north magnetic pole $\left(\lambda_{m}=90.0^{\circ}\right)$, we obtain

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}=\left(3.10 \times 10^{-5}\right) \sqrt{1+3(1.00)^{2}}=6.20 \times 10^{-5} \mathrm{~T}
$$

(f) $\phi_{i}=\tan ^{-1}\left(2 \tan 90.0^{\circ}\right)=90.0^{\circ}$.
73. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is given by

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}
$$

where μ is the Earth's dipole moment and λ_{m} is the magnetic latitude. The ratio of the field magnitudes for two different distances at the same latitude is

$$
\frac{B_{2}}{B_{1}}=\frac{r_{1}^{3}}{r_{2}^{3}} .
$$

With B_{1} being the value at the surface and B_{2} being half of B_{1}, we set r_{1} equal to the radius R_{e} of the Earth and r_{2} equal to $R_{e}+h$, where h is altitude at which B is half its value at the surface. Thus,

$$
\frac{1}{2}=\frac{R_{e}^{3}}{\left(R_{e}+h\right)^{3}} .
$$

Taking the cube root of both sides and solving for h, we get

$$
h=\left(2^{1 / 3}-1\right) R_{e}=\left(2^{1 / 3}-1\right)(6370 \mathrm{~km})=1.66 \times 10^{3} \mathrm{~km} .
$$

(b) We use the expression for B obtained in problem 6, part (a). For maximum B, we set $\sin \lambda_{m}=1.00$. Also, $r=6370 \mathrm{~km}-2900 \mathrm{~km}=3470 \mathrm{~km}$. Thus,

$$
\begin{aligned}
B_{\max } & =\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.00 \times 10^{22} \mathrm{~A} \cdot \mathrm{~m}^{2}\right)}{4 \pi\left(3.47 \times 10^{6} \mathrm{~m}\right)^{3}} \sqrt{1+3(1.00)^{2}} \\
& =3.83 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so $\lambda_{m}=90.0^{\circ}-11.5^{\circ}=78.5^{\circ}$ at Earth's geographic north pole. Also $r=R_{e}=6370 \mathrm{~km}$. Thus,

$$
\begin{aligned}
B & =\frac{\mu_{0} \mu}{4 \pi R_{E}^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}\right) \sqrt{1+3 \sin ^{2} 78.5^{\circ}}}{4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{3}} \\
& =6.11 \times 10^{-5} \mathrm{~T} . \\
\text { (d) } \phi_{i}= & \tan ^{-1}\left(2 \tan 78.5^{\circ}\right)=84.2^{\circ} .
\end{aligned}
$$

(e) A plausible explanation to the discrepancy between the calculated and measured values of the Earth's magnetic field is that the formulas we obtained in problem 6 are based on dipole approximation, which does not accurately represent the Earth's actual magnetic field distribution on or near its surface. (Incidentally, the dipole approximation becomes more reliable when we calculate the Earth's magnetic field far from its center.)
74. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. For points with $r \leq R$, the magnitude of the magnetic field is given by

$$
B=\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{d E}{d t}
$$

and for $r \geq R$, it is

$$
B=\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r} \frac{d E}{d t}
$$

The maximum magnetic field occurs at points for which $r=R$, and its value is given by either of the formulas above:

$$
B_{\max }=\frac{\mu_{0} \varepsilon_{0} R}{2} \frac{d E}{d t} .
$$

There are two values of r for which $B=B_{\max } / 2$: one less than R and one greater.
(a) To find the one that is less than R, we solve

$$
\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{d E}{d t}=\frac{\mu_{0} \varepsilon_{0} R}{4} \frac{d E}{d t}
$$

for r. The result is $r=R / 2=(55.0 \mathrm{~mm}) / 2=27.5 \mathrm{~mm}$.
(b) To find the one that is greater than R, we solve

$$
\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r} \frac{d E}{d t}=\frac{\mu_{0} \varepsilon_{0} R}{4} \frac{d E}{d t}
$$

for r. The result is $r=2 R=2(55.0 \mathrm{~mm})=110 \mathrm{~mm}$.
75. (a) Since the field lines of a bar magnet point towards its South pole, then the \vec{B} arrows in one's sketch should point generally towards the left and also towards the central axis.
(b) The sign of $\vec{B} \cdot d \vec{A}$ for every $d \vec{A}$ on the side of the paper cylinder is negative.
(c) No, because Gauss' law for magnetism applies to an enclosed surface only. In fact, if we include the top and bottom of the cylinder to form an enclosed surface S then $\oint_{s} \vec{B} \cdot d \vec{A}=0$ will be valid, as the flux through the open end of the cylinder near the magnet is positive.

1. In air, light travels at roughly $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Therefore, for $t=1.0 \mathrm{~ns}$, we have a distance of

$$
d=c t=\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.0 \times 10^{-9} \mathrm{~s}\right)=0.30 \mathrm{~m} .
$$

2. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm , (b) and the larger wavelength to be approximately 610 nm .
(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm .
(d) Using the result in (c), we have

$$
f=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{555 \mathrm{~nm}}=5.41 \times 10^{14} \mathrm{~Hz} .
$$

(e) The period is $\left(5.41 \times 10^{14} \mathrm{~Hz}\right)^{-1}=1.85 \times 10^{-15} \mathrm{~s}$.
3. (a) The frequency of the radiation is

$$
f=\frac{c}{\lambda}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\left(1.0 \times 10^{5}\right)\left(6.4 \times 10^{6} \mathrm{~m}\right)}=4.7 \times 10^{-3} \mathrm{~Hz}
$$

(b) The period of the radiation is

$$
T=\frac{1}{f}=\frac{1}{4.7 \times 10^{-3} \mathrm{~Hz}}=212 \mathrm{~s}=3 \min 32 \mathrm{~s} .
$$

4. Since $\Delta \lambda \ll \lambda$, we find Δf is equal to

$$
\left|\Delta\left(\frac{c}{\lambda}\right)\right| \approx \frac{c \Delta \lambda}{\lambda^{2}}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(0.0100 \times 10^{-9} \mathrm{~m}\right)}{\left(632.8 \times 10^{-9} \mathrm{~m}\right)^{2}}=7.49 \times 10^{9} \mathrm{~Hz} .
$$

5. If f is the frequency and λ is the wavelength of an electromagnetic wave, then $f \lambda=c$. The frequency is the same as the frequency of oscillation of the current in the $L C$ circuit of the generator. That is, $f=1 / 2 \pi \sqrt{L C}$, where C is the capacitance and L is the inductance. Thus

$$
\frac{\lambda}{2 \pi \sqrt{L C}}=c .
$$

The solution for L is

$$
L=\frac{\lambda^{2}}{4 \pi^{2} C c^{2}}=\frac{\left(550 \times 10^{-9} \mathrm{~m}\right)^{2}}{4 \pi^{2}\left(17 \times 10^{-12} \mathrm{~F}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=5.00 \times 10^{-21} \mathrm{H} .
$$

This is exceedingly small.
6. The emitted wavelength is

$$
\lambda=\frac{c}{f}=2 \pi c \sqrt{L C}=2 \pi\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{\left(0.253 \times 10^{-6} \mathrm{H}\right)\left(25.0 \times 10^{-12} \mathrm{~F}\right)}=4.74 \mathrm{~m} .
$$

7. The amplitude of the magnetic field in the wave is

$$
B_{m}=\frac{E_{m}}{c}=\frac{3.20 \times 10^{-4} \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.07 \times 10^{-12} \mathrm{~T} .
$$

8. (a) The amplitude of the magnetic field is

$$
B_{m}=\frac{E_{m}}{c}=\frac{2.0 \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=6.67 \times 10^{-9} \mathrm{~T} \approx 6.7 \times 10^{-9} \mathrm{~T} .
$$

(b) Since the \vec{E}-wave oscillates in the z direction and travels in the x direction, we have B_{x} $=B_{z}=0$. So, the oscillation of the magnetic field is parallel to the y axis.
(c) The direction $(+x)$ of the electromagnetic wave propagation is determined by $\vec{E} \times \vec{B}$. If the electric field points in $+z$, then the magnetic field must point in the $-y$ direction.

With SI units understood, we may write

$$
\begin{aligned}
B_{y} & =B_{m} \cos \left[\pi \times 10^{15}\left(t-\frac{x}{c}\right)\right]=\frac{2.0 \cos \left[10^{15} \pi(t-x / c)\right]}{3.0 \times 10^{8}} \\
& =\left(6.7 \times 10^{-9}\right) \cos \left[10^{15} \pi\left(t-\frac{x}{c}\right)\right]
\end{aligned}
$$

9. If P is the power and Δt is the time interval of one pulse, then the energy in a pulse is

$$
E=P \Delta t=\left(100 \times 10^{12} \mathrm{~W}\right)\left(1.0 \times 10^{-9} \mathrm{~s}\right)=1.0 \times 10^{5} \mathrm{~J} .
$$

10. The intensity of the signal at Proxima Centauri is

$$
I=\frac{P}{4 \pi r^{2}}=\frac{1.0 \times 10^{6} \mathrm{~W}}{4 \pi\left[(4.3 \mathrm{ly})\left(9.46 \times 10^{15} \mathrm{~m} / \mathrm{ly}\right)\right]^{2}}=4.8 \times 10^{-29} \mathrm{~W} / \mathrm{m}^{2}
$$

11. The intensity is the average of the Poynting vector:

$$
I=S_{\text {avg }}=\frac{c B_{m}^{2}}{2 \mu_{0}}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.0 \times 10^{-4} \mathrm{~T}\right)^{2}}{2\left(1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}\right)^{2}}=1.2 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2} .
$$

12. (a) The amplitude of the magnetic field in the wave is

$$
B_{m}=\frac{E_{m}}{c}=\frac{5.00 \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.67 \times 10^{-8} \mathrm{~T}
$$

(b) The intensity is the average of the Poynting vector:

$$
I=S_{\mathrm{avg}}=\frac{E_{m}^{2}}{2 \mu_{0} c}=\frac{(5.00 \mathrm{~V} / \mathrm{m})^{2}}{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=3.31 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}
$$

13. (a) We use $I=E_{m}^{2} / 2 \mu_{0} c$ to calculate E_{m} :

$$
\begin{aligned}
E_{m} & =\sqrt{2 \mu_{0} I_{c}}=\sqrt{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.40 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& =1.03 \times 10^{3} \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

(b) The magnetic field amplitude is therefore

$$
B_{m}=\frac{E_{m}}{c}=\frac{1.03 \times 10^{4} \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.43 \times 10^{-6} \mathrm{~T}
$$

14. (a) The power received is

$$
P_{r}=\left(1.0 \times 10^{-12} \mathrm{~W}\right) \frac{\pi(300 \mathrm{~m})^{2} / 4}{4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}=1.4 \times 10^{-22} \mathrm{~W}
$$

(b) The power of the source would be

$$
P=4 \pi r^{2} I=4 \pi\left[\left(2.2 \times 10^{4} \mathrm{ly}\right)\left(9.46 \times 10^{15} \mathrm{~m} / \mathrm{ly}\right)\right]^{2}\left[\frac{1.0 \times 10^{-12} \mathrm{~W}}{4 \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}\right]=1.1 \times 10^{15} \mathrm{~W}
$$

15. (a) The magnetic field amplitude of the wave is

$$
B_{m}=\frac{E_{m}}{c}=\frac{2.0 \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=6.7 \times 10^{-9} \mathrm{~T} .
$$

(b) The intensity is

$$
I=\frac{E_{m}^{2}}{2 \mu_{0} c}=\frac{(2.0 \mathrm{~V} / \mathrm{m})^{2}}{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=5.3 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} .
$$

(c) The power of the source is

$$
P=4 \pi r^{2} I_{\text {avg }}=4 \pi(10 \mathrm{~m})^{2}\left(5.3 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}\right)=6.7 \mathrm{~W} .
$$

16. From the equation immediately preceding Eq. 33-12, we see that the maximum value of $\partial B / \partial t$ is ωB_{m}. We can relate B_{m} to the intensity: $B_{m}=E_{m} / c=\sqrt{2 c \mu_{0} I} / c$, and relate the intensity to the power P (and distance r) using Eq. 33-27. Finally, we relate ω to wavelength λ using $\omega=k c=2 \pi \mathrm{c} / \lambda$. Putting all this together, we obtain

$$
\left(\frac{\partial B}{\partial t}\right)_{\max }=\sqrt{\frac{2 \mu_{\mathrm{o}} P}{4 \pi c}} \frac{2 \pi c}{\lambda r}=3.44 \times 10^{6} \mathrm{~T} / \mathrm{s}
$$

17. (a) The average rate of energy flow per unit area, or intensity, is related to the electric field amplitude E_{m} by $I=E_{m}^{2} / 2 \mu_{0} c$, so

$$
\begin{aligned}
E_{m} & =\sqrt{2 \mu_{0} c I}=\sqrt{2\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(10 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right)} \\
& =8.7 \times 10^{-2} \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

(b) The amplitude of the magnetic field is given by

$$
B_{m}=\frac{E_{m}}{c}=\frac{8.7 \times 10^{-2} \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.9 \times 10^{-10} \mathrm{~T}
$$

(c) At a distance r from the transmitter, the intensity is $I=P / 2 \pi r^{2}$, where P is the power of the transmitter over the hemisphere having a surface area $2 \pi r^{2}$. Thus

$$
P=2 \pi r^{2} I=2 \pi\left(10 \times 10^{3} \mathrm{~m}\right)^{2}\left(10 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right)=6.3 \times 10^{3} \mathrm{~W}
$$

18. (a) The expression $E_{y}=E_{m} \sin (k x-\omega t)$ it fits the requirement "at point $P \ldots$ [it] is decreasing with time" if we imagine P is just to the right $(x>0)$ of the coordinate origin (but at a value of x less than $\pi / 2 k=\lambda / 4$ which is where there would be a maximum, at $t=$ 0). It is important to bear in mind, in this description, that the wave is moving to the right. Specifically, $x_{P}=\frac{1}{k} \sin ^{-1}(1 / 4)$ so that $E_{y}=(1 / 4) E_{m}$ at $t=0$, there. Also, $E_{y}=0$ with our choice of expression for E_{y}. Therefore, part (a) is answered simply by solving for x_{P}. Since $k=2 \pi f / c$ we find

$$
x_{P}=\frac{c}{2 \pi f} \sin ^{-1}(1 / 4)=30.1 \mathrm{~nm} .
$$

(b) If we proceed to the right on the x axis (still studying this "snapshot" of the wave at t $=0$) we find another point where $E_{y}=0$ at a distance of one-half wavelength from the previous point where $E_{y}=0$. Thus (since $\lambda=c / f$) the next point is at $x=\frac{1}{2} \lambda=\frac{1}{2} c / f$ and is consequently a distance $c / 2 f-x_{P}=345 \mathrm{~nm}$ to the right of P.
19. The plasma completely reflects all the energy incident on it, so the radiation pressure is given by $p_{r}=2 I / c$, where I is the intensity. The intensity is $I=P / A$, where P is the power and A is the area intercepted by the radiation. Thus

$$
p_{r}=\frac{2 P}{A c}=\frac{2\left(1.5 \times 10^{9} \mathrm{~W}\right)}{\left(1.00 \times 10^{-6} \mathrm{~m}^{2}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.0 \times 10^{7} \mathrm{~Pa} .
$$

20. The radiation pressure is

$$
p_{r}=\frac{I}{c}=\frac{10 \mathrm{~W} / \mathrm{m}^{2}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.3 \times 10^{-8} \mathrm{~Pa} .
$$

21. Since the surface is perfectly absorbing, the radiation pressure is given by $p_{r}=I / c$, where I is the intensity. Since the bulb radiates uniformly in all directions, the intensity a distance r from it is given by $I=P / 4 \pi r^{2}$, where P is the power of the bulb. Thus

$$
p_{r}=\frac{P}{4 \pi r^{2} c}=\frac{500 \mathrm{~W}}{4 \pi(1.5 \mathrm{~m})^{2}\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=5.9 \times 10^{-8} \mathrm{~Pa} .
$$

22. (a) The radiation pressure produces a force equal to

$$
F_{r}=p_{r}\left(\pi R_{e}^{2}\right)=\left(\frac{I}{c}\right)\left(\pi R_{e}^{2}\right)=\frac{\pi\left(1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=6.0 \times 10^{8} \mathrm{~N}
$$

(b) The gravitational pull of the Sun on Earth is

$$
\begin{aligned}
F_{\text {grav }} & =\frac{G M_{s} M_{e}}{d_{e s}^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(2.0 \times 10^{30} \mathrm{~kg}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(1.5 \times 10^{11} \mathrm{~m}\right)^{2}} \\
& =3.6 \times 10^{22} \mathrm{~N},
\end{aligned}
$$

which is much greater than F_{r}.
23. (a) Since $c=\lambda f$, where λ is the wavelength and f is the frequency of the wave,

$$
f=\frac{c}{\lambda}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3.0 \mathrm{~m}}=1.0 \times 10^{8} \mathrm{~Hz} .
$$

(b) The angular frequency is

$$
\omega=2 \pi f=2 \pi\left(1.0 \times 10^{8} \mathrm{~Hz}\right)=6.3 \times 10^{8} \mathrm{rad} / \mathrm{s} .
$$

(c) The angular wave number is

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{3.0 \mathrm{~m}}=2.1 \mathrm{rad} / \mathrm{m} .
$$

(d) The magnetic field amplitude is

$$
B_{m}=\frac{E_{m}}{c}=\frac{300 \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.0 \times 10^{-6} \mathrm{~T} .
$$

(e) \vec{B} must be in the positive z direction when \vec{E} is in the positive y direction in order for $\vec{E} \times \vec{B}$ to be in the positive x direction (the direction of propagation).
(f) The intensity of the wave is

$$
I=\frac{E_{m}^{2}}{2 \mu_{0} c}=\frac{(300 \mathrm{~V} / \mathrm{m})^{2}}{2\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=119 \mathrm{~W} / \mathrm{m}^{2} \approx 1.2 \times 10^{2} \mathrm{~W} / \mathrm{m}^{2}
$$

(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is delivered to it is I / c, so

$$
\frac{d p}{d t}=\frac{I A}{c}=\frac{\left(119 \mathrm{~W} / \mathrm{m}^{2}\right)\left(2.0 \mathrm{~m}^{2}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=8.0 \times 10^{-7} \mathrm{~N} .
$$

(h) The radiation pressure is

$$
p_{r}=\frac{d p / d t}{A}=\frac{8.0 \times 10^{-7} \mathrm{~N}}{2.0 \mathrm{~m}^{2}}=4.0 \times 10^{-7} \mathrm{~Pa} .
$$

24. (a) We note that the cross section area of the beam is $\pi d^{2} / 4$, where d is the diameter of the $\operatorname{spot}(d=2.00 \lambda)$. The beam intensity is

$$
I=\frac{P}{\pi d^{2} / 4}=\frac{5.00 \times 10^{-3} \mathrm{~W}}{\pi\left[(2.00)\left(633 \times 10^{-9} \mathrm{~m}\right)\right]^{2} / 4}=3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) The radiation pressure is

$$
p_{r}=\frac{I}{c}=\frac{3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=13.2 \mathrm{~Pa} .
$$

(c) In computing the corresponding force, we can use the power and intensity to eliminate the area (mentioned in part (a)). We obtain

$$
F_{r}=\left(\frac{\pi d^{2}}{4}\right) p_{r}=\left(\frac{P}{I}\right) p_{r}=\frac{\left(5.00 \times 10^{-3} \mathrm{~W}\right)(13.2 \mathrm{~Pa})}{3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}}=1.67 \times 10^{-11} \mathrm{~N}
$$

(d) The acceleration of the sphere is

$$
\begin{aligned}
a & =\frac{F_{r}}{m}=\frac{F_{r}}{\rho\left(\pi d^{3} / 6\right)}=\frac{6\left(1.67 \times 10^{-11} \mathrm{~N}\right)}{\pi\left(5.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(2.00)\left(633 \times 10^{-9} \mathrm{~m}\right)\right]^{3}} \\
& =3.14 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

25. Let f be the fraction of the incident beam intensity that is reflected. The fraction absorbed is $1-f$. The reflected portion exerts a radiation pressure of

$$
p_{r}=\frac{2 f I_{0}}{c}
$$

and the absorbed portion exerts a radiation pressure of

$$
p_{a}=\frac{(1-f) I_{0}}{c},
$$

where I_{0} is the incident intensity. The factor 2 enters the first expression because the momentum of the reflected portion is reversed. The total radiation pressure is the sum of the two contributions:

$$
p_{\text {total }}=p_{r}+p_{a}=\frac{2 f I_{0}+(1-f) I_{0}}{c}=\frac{(1+f) I_{0}}{c} .
$$

To relate the intensity and energy density, we consider a tube with length ℓ and crosssectional area A, lying with its axis along the propagation direction of an electromagnetic wave. The electromagnetic energy inside is $U=u A \ell$, where u is the energy density. All this energy passes through the end in time $t=\ell / c$, so the intensity is

$$
I=\frac{U}{A t}=\frac{u A \ell c}{A \ell}=u c .
$$

Thus $u=I / c$. The intensity and energy density are positive, regardless of the propagation direction. For the partially reflected and partially absorbed wave, the intensity just outside the surface is $I=I_{0}+f I_{0}=(1+f) I_{0}$, where the first term is associated with the incident beam and the second is associated with the reflected beam. Consequently, the energy density is

$$
u=\frac{I}{c}=\frac{(1+f) I_{0}}{c}
$$

the same as radiation pressure.
26. The mass of the cylinder is $m=\rho\left(\pi D^{2} / 4\right) H$, where D is the diameter of the cylinder. Since it is in equilibrium

$$
F_{\mathrm{net}}=m g-F_{r}=\frac{\pi H D^{2} g \rho}{4}-\left(\frac{\pi D^{2}}{4}\right)\left(\frac{2 I}{c}\right)=0 .
$$

We solve for H :

$$
\begin{aligned}
& H=\frac{2 I}{g c \rho}=\left(\frac{2 P}{\pi D^{2} / 4}\right) \frac{1}{g c \rho} \\
& =\frac{2(4.60 \mathrm{~W})}{\left[\pi\left(2.60 \times 10^{-3} \mathrm{~m}\right)^{2} / 4\right]\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.20 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =4.91 \times 10^{-7} \mathrm{~m} .
\end{aligned}
$$

27. If the beam carries energy U away from the spaceship, then it also carries momentum $p=U / c$ away. Since the total momentum of the spaceship and light is conserved, this is the magnitude of the momentum acquired by the spaceship. If P is the power of the laser, then the energy carried away in time t is $U=P t$. We note that there are 86400 seconds in a day. Thus, $p=P t / c$ and, if m is mass of the spaceship, its speed is

$$
v=\frac{p}{m}=\frac{P t}{m c}=\frac{\left(10 \times 10^{3} \mathrm{~W}\right)(86400 \mathrm{~s})}{\left(1.5 \times 10^{3} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.9 \times 10^{-3} \mathrm{~m} / \mathrm{s} .
$$

28. We require $F_{\text {grav }}=F_{r}$ or

$$
G \frac{m M_{s}}{d_{e s}^{2}}=\frac{2 I A}{c},
$$

and solve for the area A :

$$
\begin{aligned}
A & =\frac{c G m M_{s}}{2 I d_{e s}^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(1500 \mathrm{~kg})\left(1.99 \times 10^{30} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2\left(1.40 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.50 \times 10^{11} \mathrm{~m}\right)^{2}} \\
& =9.5 \times 10^{5} \mathrm{~m}^{2}=0.95 \mathrm{~km}^{2} .
\end{aligned}
$$

29. Eq. 33-27 suggests that the slope in an intensity versus inverse-square-distance graph (I plotted versus r^{-2}) is $P / 4 \pi$. We estimate the slope to be about 20 (in SI units) which means the power is $P=4 \pi(30) \approx 2.5 \times 10^{2} \mathrm{~W}$.
30. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be equal to the magnitude of the pull of gravity (mg). For a sphere, the "projected" area (which is a factor in Eq. 33-32) is that of a circle $A=\pi r^{2}$ (not the entire surface area of the sphere) and the volume (needed because the mass is given by the density multiplied by the volume: $m=\rho V$) is $V=\frac{4}{3} \pi r^{3}$. Finally, the intensity is related to the power P of the light source and another area factor $4 \pi R^{2}$, given by Eq. 33-27. In this way, with $\rho=$ 19000 in SI units, equating the forces leads to

$$
P=4 \pi R^{2} c \rho \frac{4}{3} \pi r^{3} g / \pi r^{2}=4.68 \times 10^{11} \mathrm{~W} .
$$

(b) Any chance disturbance could move the sphere from being directly above the source, and then the two force vectors would no longer be along the same axis.
31. The angle between the direction of polarization of the light incident on the first polarizing sheet and the polarizing direction of that sheet is $\theta_{1}=70^{\circ}$. If I_{0} is the intensity of the incident light, then the intensity of the light transmitted through the first sheet is

$$
I_{1}=I_{0} \cos ^{2} \theta_{1}=\left(43 \mathrm{~W} / \mathrm{m}^{2}\right) \cos ^{2} 70^{\circ}=5.03 \mathrm{~W} / \mathrm{m}^{2}
$$

The direction of polarization of the transmitted light makes an angle of 70° with the vertical and an angle of $\theta_{2}=20^{\circ}$ with the horizontal. θ_{2} is the angle it makes with the polarizing direction of the second polarizing sheet. Consequently, the transmitted intensity is

$$
I_{2}=I_{1} \cos ^{2} \theta_{2}=\left(5.03 \mathrm{~W} / \mathrm{m}^{2}\right) \cos ^{2} 20^{\circ}=4.4 \mathrm{~W} / \mathrm{m}^{2} .
$$

32. In this case, we replace $I_{0} \cos ^{2} 70^{\circ}$ by $\frac{1}{2} I_{0}$ as the intensity of the light after passing through the first polarizer. Therefore,

$$
I_{f}=\frac{1}{2} I_{0} \cos ^{2}\left(90^{\circ}-70^{\circ}\right)=\frac{1}{2}\left(43 \mathrm{~W} / \mathrm{m}^{2}\right)\left(\cos ^{2} 20^{\circ}\right)=19 \mathrm{~W} / \mathrm{m}^{2} .
$$

33. Let I_{0} be the intensity of the unpolarized light that is incident on the first polarizing sheet. The transmitted intensity is $I_{1}=\frac{1}{2} I_{0}$, and the direction of polarization of the transmitted light is $\theta_{1}=40^{\circ}$ counterclockwise from the y axis in the diagram. The polarizing direction of the second sheet is $\theta_{2}=20^{\circ}$ clockwise from the y axis, so the angle between the direction of polarization that is incident on that sheet and the polarizing direction of the sheet is $40^{\circ}+20^{\circ}=60^{\circ}$. The transmitted intensity is

$$
I_{2}=I_{1} \cos ^{2} 60^{\circ}=\frac{1}{2} I_{0} \cos ^{2} 60^{\circ},
$$

and the direction of polarization of the transmitted light is 20° clockwise from the y axis. The polarizing direction of the third sheet is $\theta_{3}=40^{\circ}$ counterclockwise from the y axis. Consequently, the angle between the direction of polarization of the light incident on that sheet and the polarizing direction of the sheet is $20^{\circ}+40^{\circ}=60^{\circ}$. The transmitted intensity is

$$
I_{3}=I_{2} \cos ^{2} 60^{\circ}=\frac{1}{2} I_{0} \cos ^{4} 60^{\circ}=3.1 \times 10^{-2}
$$

Thus, 3.1% of the light's initial intensity is transmitted.
34. After passing through the first polarizer the initial intensity I_{0} reduces by a factor of $1 / 2$. After passing through the second one it is further reduced by a factor of $\cos ^{2}(\pi-$ $\left.\theta_{1}-\theta_{2}\right)=\cos ^{2}\left(\theta_{1}+\theta_{2}\right)$. Finally, after passing through the third one it is again reduced by a factor of $\cos ^{2}\left(\pi-\theta_{2}-\theta_{3}\right)=\cos ^{2}\left(\theta_{2}+\theta_{3}\right)$. Therefore,

$$
\begin{aligned}
\frac{I_{f}}{I_{0}} & =\frac{1}{2} \cos ^{2}\left(\theta_{1}+\theta_{2}\right) \cos ^{2}\left(\theta_{2}+\theta_{3}\right)=\frac{1}{2} \cos ^{2}\left(50^{\circ}+50^{\circ}\right) \cos ^{2}\left(50^{\circ}+50^{\circ}\right) \\
& =4.5 \times 10^{-4} .
\end{aligned}
$$

Thus, 0.045% of the light's initial intensity is transmitted.
35. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is absorbed. Thus the transmitted intensity is $I=5.0 \mathrm{~mW} / \mathrm{m}^{2}$. The intensity and the electric field amplitude are related by $I=E_{m}^{2} / 2 \mu_{0} c$, so

$$
\begin{aligned}
E_{m} & =\sqrt{2 \mu_{0} c I}=\sqrt{2\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(5.0 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}\right)} \\
& =1.9 \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

(b) The radiation pressure is $p_{r}=I_{a} / c$, where I_{a} is the absorbed intensity. Thus

$$
p_{r}=\frac{5.0 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.7 \times 10^{-11} \mathrm{~Pa} .
$$

36. We examine the point where the graph reaches zero: $\theta_{2}=160^{\circ}$. Since the polarizers must be "crossed" for the intensity to vanish, then $\theta_{1}=160^{\circ}-90^{\circ}=70^{\circ}$. Now we consider the case $\theta_{2}=90^{\circ}$ (which is hard to judge from the graph). Since θ_{1} is still equal to 70°, then the angle between the polarizers is now $\Delta \theta=20^{\circ}$. Accounting for the "automatic" reduction (by a factor of one-half) whenever unpolarized light passes through any polarizing sheet, then our result is $\frac{1}{2} \cos ^{2}(\Delta \theta)=0.442 \approx 44 \%$.
37. As the polarized beam of intensity I_{0} passes the first polarizer, its intensity is reduced to $I_{0} \cos ^{2} \theta$. After passing through the second polarizer which makes a 90° angle with the first filter, the intensity is $I=\left(I_{0} \cos ^{2} \theta\right) \sin ^{2} \theta=I_{0} / 10$ which implies $\sin ^{2} \theta \cos ^{2} \theta=1 / 10$, or $\sin \theta \cos \theta=\sin 2 \theta / 2=1 / \sqrt{10}$. This leads to $\theta=70^{\circ}$ or 20°.
38. We note the points at which the curve is zero ($\theta_{2}=0^{\circ}$ and 90°) in Fig. 33-44(b). We infer that sheet 2 is perpendicular to one of the other sheets at $\theta_{2}=0^{\circ}$, and that it is perpendicular to the other of the other sheets when $\theta_{2}=90^{\circ}$. Without loss of generality, we choose $\theta_{1}=0^{\circ}, \theta_{3}=90^{\circ}$. Now, when $\theta_{2}=30^{\circ}$, it will be $\Delta \theta=30^{\circ}$ relative to sheet 1 and $\Delta \theta^{\prime}=60^{\circ}$ relative to sheet 3 . Therefore,

$$
\frac{I_{f}}{I_{i}}=\frac{1}{2} \cos ^{2}(\Delta \theta) \cos ^{2}\left(\Delta \theta^{\prime}\right)=9.4 \%
$$

39. Let I_{0} be the intensity of the incident beam and f be the fraction that is polarized. Thus, the intensity of the polarized portion is $f I_{0}$. After transmission, this portion contributes $f I_{0} \cos ^{2} \theta$ to the intensity of the transmitted beam. Here θ is the angle between the direction of polarization of the radiation and the polarizing direction of the filter. The intensity of the unpolarized portion of the incident beam is $(1-f) I_{0}$ and after transmission, this portion contributes $(1-f) I_{0} / 2$ to the transmitted intensity. Consequently, the transmitted intensity is

$$
I=f I_{0} \cos ^{2} \theta+\frac{1}{2}(1-f) I_{0}
$$

As the filter is rotated, $\cos ^{2} \theta$ varies from a minimum of 0 to a maximum of 1 , so the transmitted intensity varies from a minimum of

$$
I_{\min }=\frac{1}{2}(1-f) I_{0}
$$

to a maximum of

$$
I_{\max }=f I_{0}+\frac{1}{2}(1-f) I_{0}=\frac{1}{2}(1+f) I_{0} .
$$

The ratio of $I_{\text {max }}$ to $I_{\text {min }}$ is

$$
\frac{I_{\max }}{I_{\min }}=\frac{1+f}{1-f} .
$$

Setting the ratio equal to 5.0 and solving for f, we get $f=0.67$.
40. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

$$
I=\frac{1}{2} I_{0} \cos ^{2} \theta_{2} \cos ^{2}\left(90^{\circ}-\theta_{2}\right)
$$

Using trig identities, we rewrite this as

$$
\frac{I}{I_{0}}=\frac{1}{8} \sin ^{2}\left(2 \theta_{2}\right)
$$

(a) Therefore we find $\theta_{2}=\frac{1}{2} \sin ^{-1} \sqrt{0.40}=19.6^{\circ}$.
(b) Since the first expression we wrote is symmetric under the exchange: $\theta_{2} \leftrightarrow 90^{\circ}-\theta_{2}$, then we see that the angle's complement, 70.4°, is also a solution.
41. (a) The fraction of light which is transmitted by the glasses is

$$
\frac{I_{f}}{I_{0}}=\frac{E_{f}^{2}}{E_{0}^{2}}=\frac{E_{v}^{2}}{E_{v}^{2}+E_{h}^{2}}=\frac{E_{v}^{2}}{E_{v}^{2}+\left(2.3 E_{v}\right)^{2}}=0.16 .
$$

(b) Since now the horizontal component of \vec{E} will pass through the glasses,

$$
\frac{I_{f}}{I_{0}}=\frac{E_{h}^{2}}{E_{v}^{2}+E_{h}^{2}}=\frac{\left(2.3 E_{v}\right)^{2}}{E_{v}^{2}+\left(2.3 E_{v}\right)^{2}}=0.84
$$

42. We note the points at which the curve is zero ($\theta_{2}=60^{\circ}$ and 140°) in Fig. 33-44(b). We infer that sheet 2 is perpendicular to one of the other sheets at $\theta_{2}=60^{\circ}$, and that it is perpendicular to the other of the other sheets when $\theta_{2}=140^{\circ}$. Without loss of generality, we choose $\theta_{1}=150^{\circ}, \theta_{3}=50^{\circ}$. Now, when $\theta_{2}=90^{\circ}$, it will be $|\Delta \theta|=60^{\circ}$ relative to sheet 1 and $\left|\Delta \theta^{\prime}\right|=40^{\circ}$ relative to sheet 3 . Therefore,

$$
\frac{I_{f}}{I_{i}}=\frac{1}{2}(\cos (\Delta \theta))^{2}\left(\cos \left(\Delta \theta^{\prime}\right)\right)^{2}=7.3 \%
$$

43. (a) The rotation cannot be done with a single sheet. If a sheet is placed with its polarizing direction at an angle of 90° to the direction of polarization of the incident radiation, no radiation is transmitted. It can be done with two sheets. We place the first sheet with its polarizing direction at some angle θ, between 0 and 90°, to the direction of polarization of the incident radiation. Place the second sheet with its polarizing direction at 90° to the polarization direction of the incident radiation. The transmitted radiation is then polarized at 90° to the incident polarization direction. The intensity is $I_{0} \cos ^{2} \theta \cos ^{2}$ $\left(90^{\circ}-\theta\right)=I_{0} \cos ^{2} \theta \sin ^{2} \theta$, where I_{0} is the incident radiation. If θ is not 0 or 90°, the transmitted intensity is not zero.
(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of θ $=90^{\circ} / n$ relative to the direction of polarization of the incident radiation. The polarizing direction of each successive sheet is rotated $90^{\circ} / n$ in the same sense from the polarizing direction of the previous sheet. The transmitted radiation is polarized, with its direction of polarization making an angle of 90° with the direction of polarization of the incident radiation. The intensity is

$$
I=I_{0} \cos ^{2 n}\left(90^{\circ} / n\right) .
$$

We want the smallest integer value of n for which this is greater than $0.60 I_{0}$. We start with $n=2$ and calculate $\cos ^{2 n}\left(90^{\circ} / n\right)$. If the result is greater than 0.60 , we have obtained the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing n by 1 each time, until we have a value for which $\cos ^{2 n}\left(90^{\circ} / n\right)$ is greater than 0.60 . The first one will be $n=5$.
44. The angle of incidence for the light ray on mirror B is $90^{\circ}-\theta$. So the outgoing ray r^{\prime} makes an angle $90^{\circ}-\left(90^{\circ}-\theta\right)=\theta$ with the vertical direction, and is antiparallel to the incoming one. The angle between i and r^{\prime} is therefore 180°.
45. The law of refraction states

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} .
$$

We take medium 1 to be the vacuum, with $n_{1}=1$ and $\theta_{1}=32.0^{\circ}$. Medium 2 is the glass, with $\theta_{2}=21.0^{\circ}$. We solve for n_{2} :

$$
n_{2}=n_{1} \frac{\sin \theta_{1}}{\sin \theta_{2}}=(1.00)\left(\frac{\sin 32.0^{\circ}}{\sin 21.0^{\circ}}\right)=1.48 .
$$

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) would consist of a " $y=x$ " line at 45° in the plot. Instead, the curve for material 1 falls under such a " $y=x$ " line, which tells us that all refraction angles are less than incident ones. With $\theta_{2}<\theta_{1}$ Snell's law implies $n_{2}>n_{1}$.
(b) Using the same argument as in (a), the value of n_{2} for material 2 is also greater than that of water $\left(n_{1}\right)$.
(c) It's easiest to examine the right end-point of each curve. With $\theta_{1}=90^{\circ}$ and $\theta_{2}=$ $3 / 4\left(90^{\circ}\right)$, and with $n_{1}=1.33$ (Table 33-1) we find, from Snell's law, $n_{2}=1.4$ for material 1.
(d) Similarly, with $\theta_{1}=90^{\circ}$ and $\theta_{2}=1 / 2\left(90^{\circ}\right)$, we obtain $n_{2}=1.9$.
47. Note that the normal to the refracting surface is vertical in the diagram. The angle of refraction is $\theta_{2}=90^{\circ}$ and the angle of incidence is given by $\tan \theta_{1}=L / D$, where D is the height of the tank and L is its width. Thus

$$
\theta_{1}=\tan ^{-1}\left(\frac{L}{D}\right)=\tan ^{-1}\left(\frac{1.10 \mathrm{~m}}{0.850 \mathrm{~m}}\right)=52.31^{\circ} .
$$

The law of refraction yields

$$
n_{1}=n_{2} \frac{\sin \theta_{2}}{\sin \theta_{1}}=(1.00)\left(\frac{\sin 90^{\circ}}{\sin 52.31^{\circ}}\right)=1.26
$$

where the index of refraction of air was taken to be unity.
48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) would consist of a " $y=x$ " line at 45° in the plot. Instead, the curve for material 1 falls under such a " $y=x$ " line, which tells us that all refraction angles are less than incident ones. With $\theta_{2}<\theta_{1}$ Snell's law implies $n_{2}>n_{1}$.
(b) Using the same argument as in (a), the value of n_{2} for material 2 is also greater than that of water $\left(n_{1}\right)$.
(c) It's easiest to examine the topmost point of each curve. With $\theta_{2}=90^{\circ}$ and $\theta_{1}=1 / 2\left(90^{\circ}\right)$, and with $n_{2}=1.33$ (Table 33-1) we find $n_{1}=1.9$ from Snell's law.
(d) Similarly, with $\theta_{2}=90^{\circ}$ and $\theta_{1}=3 / 4\left(90^{\circ}\right)$, we obtain $n_{1}=1.4$.
49. Consider a ray that grazes the top of the pole, as shown in the diagram that follows.

Here $\theta_{1}=90^{\circ}-\theta=35^{\circ}, \ell_{1}=0.50 \mathrm{~m}$, and $\ell_{2}=1.50 \mathrm{~m}$. The length of the shadow is $x+L$. x is given by

$$
x=\ell_{1} \tan \theta_{1}=(0.50 \mathrm{~m}) \tan 35^{\circ}=0.35 \mathrm{~m} .
$$

According to the law of refraction, $n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}$. We take $n_{1}=1$ and $n_{2}=1.33$ (from Table 33-1). Then,

$$
\theta_{2}=\sin ^{-1}\left(\frac{\sin \theta_{1}}{n_{2}}\right)=\sin ^{-1}\left(\frac{\sin 35.0^{\circ}}{1.33}\right)=25.55^{\circ} .
$$

L is given by

$$
L=\ell_{2} \tan \theta_{2}=(1.50 \mathrm{~m}) \tan 25.55^{\circ}=0.72 \mathrm{~m} .
$$

The length of the shadow is $0.35 \mathrm{~m}+0.72 \mathrm{~m}=1.07 \mathrm{~m}$.
50. (a) A simple implication of Snell's law is that $\theta_{2}=\theta_{1}$ when $n_{1}=n_{2}$. Since the angle of incidence is shown in Fig. 33-52(a) to be 30 ${ }^{\circ}$, then we look for a point in Fig. 33-52(b) where $\theta_{2}=30^{\circ}$. This seems to occur when $n_{2}=1.7$. By inference, then, $n_{1}=1.7$.
(b) From $1.7 \sin \left(60^{\circ}\right)=2.4 \sin \left(\theta_{2}\right)$ we get $\theta_{2}=38^{\circ}$.
51. (a) Approximating $n=1$ for air, we have

$$
n_{1} \sin \theta_{1}=(1) \sin \theta_{5} \Rightarrow 56.9^{\circ}=\theta_{5}
$$

and with the more accurate value for $n_{\text {air }}$ in Table 33-1, we obtain 56.8°.
(b) Eq. 33-44 leads to

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}=n_{4} \sin \theta_{4}
$$

so that

$$
\theta_{4}=\sin ^{-1}\left(\frac{n_{1}}{n_{4}} \sin \theta_{1}\right)=35.3^{\circ}
$$

52. (a) We use subscripts b and r for the blue and red light rays. Snell's law gives

$$
\begin{aligned}
& \theta_{2 b}=\sin ^{-1}\left(\frac{1}{1.343} \sin \left(70^{\circ}\right)\right)=44.403^{\circ} \\
& \theta_{2 r}=\sin ^{-1}\left(\frac{1}{1.331} \sin \left(70^{\circ}\right)\right)=44.911^{\circ}
\end{aligned}
$$

for the refraction angles at the first surface (where the normal axis is vertical). These rays strike the second surface (where A is) at complementary angles to those just calculated (since the normal axis is horizontal for the second surface). Taking this into consideration, we again use Snell's law to calculate the second refractions (with which the light re-enters the air):

$$
\begin{aligned}
\theta_{3 b} & =\sin ^{-1}\left[1.343 \sin \left(90^{\circ}-\theta_{2 b}\right)\right]=73.636^{\circ} \\
\theta_{3 r} & =\sin ^{-1}\left[1.331 \sin \left(90^{\circ}-\theta_{2 r}\right)\right]=70.497^{\circ}
\end{aligned}
$$

which differ by 3.1° (thus giving a rainbow of angular width 3.1°).
(b) Both of the refracted rays emerges from the bottom side with the same angle $\left(70^{\circ}\right)$ with which they were incident on the topside (the occurrence of an intermediate reflection [from side 2] does not alter this overall fact: light comes into the block at the same angle that it emerges with from the opposite parallel side). There is thus no difference (the difference is 0°) and thus there is no rainbow in this case.
53. We label the light ray's point of entry A, the vertex of the prism B, and the light ray's exit point C. Also, the point in Fig. 33-55 where ψ is defined (at the point of intersection of the extrapolations of the incident and emergent rays) is denoted D. The angle indicated by $A D C$ is the supplement of ψ, so we denote it $\psi_{\mathrm{s}}=180^{\circ}-\psi$. The angle of refraction in the glass is $\theta_{2}=\frac{1}{n} \sin \theta$. The angles between the interior ray and the nearby surfaces is the complement of θ_{2}, so we denote it $\theta_{2 \mathrm{c}}=90^{\circ}-\theta_{2}$. Now, the angles in the triangle $A B C$ must add to 180° :

$$
180^{\circ}=2 \theta_{2 c}+\phi \Rightarrow \theta_{2}=\frac{\phi}{2} .
$$

Also, the angles in the triangle $A D C$ must add to 180° :

$$
180^{\circ}=2\left(\theta-\theta_{2}\right)+\psi_{\mathrm{s}} \Rightarrow \theta=90^{\circ}+\theta_{2}-\frac{1}{2} \psi_{\mathrm{s}}
$$

which simplifies to $\theta=\theta_{2}+\frac{1}{2} \psi$. Combining this with our previous result, we find $\theta=\frac{1}{2}(\phi+\psi)$. Thus, the law of refraction yields

$$
n=\frac{\sin (\theta)}{\sin \left(\theta_{2}\right)}=\frac{\sin \left(\frac{1}{2}(\phi+\psi)\right)}{\sin \left(\frac{1}{2} \phi\right)}
$$

54. The critical angle is $\theta_{c}=\sin ^{-1}\left(\frac{1}{n}\right)=\sin ^{-1}\left(\frac{1}{1.8}\right)=34^{\circ}$.
55. Reference to Fig. 33-24 may help in the visualization of why there appears to be a "circle of light" (consider revolving that picture about a vertical axis). The depth and the radius of that circle (which is from point a to point f in that figure) is related to the tangent of the angle of incidence. Thus, the diameter D of the circle in question is

$$
D=2 h \tan \theta_{c}=2 h \tan \left[\sin ^{-1}\left(\frac{1}{n_{w}}\right)\right]=2(80.0 \mathrm{~cm}) \tan \left[\sin ^{-1}\left(\frac{1}{1.33}\right)\right]=182 \mathrm{~cm} .
$$

56. (a) We note that the complement of the angle of refraction (in material 2) is the critical angle. Thus,

$$
n_{1} \sin \theta=n_{2} \cos \theta_{c}=n_{2} \sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}=\sqrt{\left(n_{2}\right)^{2}-\left(n_{3}\right)^{2}}
$$

leads to $\theta=26.8^{\circ}$.
(b) Increasing θ leads to a decrease of the angle with which the light strikes the interface between materials 2 and 3 , so it becomes greater than the critical angle; therefore, there will be some transmission of light into material 3 .
57. (a) In the notation of this problem, Eq. 33-47 becomes

$$
\theta_{c}=\sin ^{-1} \frac{n_{3}}{n_{2}}
$$

which yields $n_{3}=1.39$ for $\theta_{c}=\phi=60^{\circ}$.
(b) Applying Eq. 33-44 law to the interface between material 1 and material 2, we have

$$
n_{2} \sin 30^{\circ}=n_{1} \sin \theta
$$

which yields $\theta=28.1^{\circ}$.
(c) Decreasing θ will increase ϕ and thus cause the ray to strike the interface (between materials 2 and 3) at an angle larger than θ_{c}. Therefore, no transmission of light into material 3 can occur.
58. (a) The angle of incidence $\theta_{B, 1}$ at B is the complement of the critical angle at A; its sine is

$$
\sin \theta_{B, 1}=\cos \theta_{c}=\sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}
$$

so that the angle of refraction $\theta_{B, 2}$ at B becomes

$$
\theta_{B, 2}=\sin ^{-1}\left(\frac{n_{2}}{n_{3}} \sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}\right)=\sin ^{-1} \sqrt{\left(\frac{n_{2}}{n_{3}}\right)^{2}-1}=35.1^{\circ} .
$$

(b) From $n_{1} \sin \theta=n_{2} \sin \theta_{c}=n_{2}\left(n_{3} / n_{2}\right)$, we find

$$
\theta=\sin ^{-1} \frac{n_{3}}{n_{1}}=49.9^{\circ}
$$

(c) The angle of incidence $\theta_{A, 1}$ at A is the complement of the critical angle at B; its sine is

$$
\sin \theta_{A, 1}=\cos \theta_{c}=\sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}
$$

so that the angle of refraction $\theta_{A, 2}$ at A becomes

$$
\theta_{A, 2}=\sin ^{-1}\left(\frac{n_{2}}{n_{3}} \sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}\right)=\sin ^{-1} \sqrt{\left(\frac{n_{2}}{n_{3}}\right)^{2}-1}=35.1^{\circ} .
$$

(d) From

$$
n_{1} \sin \theta=n_{2} \sin \theta_{A, 1}=n_{2} \sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}=\sqrt{\left(n_{2}\right)^{2}-\left(n_{3}\right)^{2}}
$$

we find

$$
\theta=\sin ^{-1} \frac{\sqrt{\left(n_{2}\right)^{2}-\left(n_{3}\right)^{2}}}{n_{1}}=26.1^{\circ} .
$$

(e) The angle of incidence $\theta_{B, 1}$ at B is the complement of the Brewster angle at A; its sine is

$$
\sin \theta_{B, 1}=\frac{n_{2}}{\sqrt{\left(n_{2}\right)^{2}+\left(n_{3}\right)^{2}}}
$$

so that the angle of refraction $\theta_{B, 2}$ at B becomes

$$
\theta_{B, 2}=\sin ^{-1}\left(\frac{\left(n_{2}\right)^{2}}{n_{3} \sqrt{\left(n_{2}\right)^{2}+\left(n_{3}\right)^{2}}}\right)=60.7^{\circ} .
$$

(f) From

$$
n_{1} \sin \theta=n_{2} \sin \theta_{\text {Brewster }}=n_{2} \frac{n_{3}}{\sqrt{\left(n_{2}\right)^{2}+\left(n_{3}\right)^{2}}}
$$

we find

$$
\theta=\sin ^{-1} \frac{n_{2} n_{3}}{n_{1} \sqrt{\left(n_{2}\right)^{2}+\left(n_{3}\right)^{2}}}=35.3^{\circ} .
$$

59. When examining Fig. 33-59, it is important to note that the angle (measured from the central axis) for the light ray in air, θ, is not the angle for the ray in the glass core, which we denote θ^{\prime}. The law of refraction leads to

$$
\sin \theta^{\prime}=\frac{1}{n_{1}} \sin \theta
$$

assuming $n_{\text {air }}=1$. The angle of incidence for the light ray striking the coating is the complement of θ^{\prime}, which we denote as $\theta_{\text {comp }}^{\prime}$ and recall that

$$
\sin \theta_{\text {comp }}^{\prime}=\cos \theta^{\prime}=\sqrt{1-\sin ^{2} \theta^{\prime}}
$$

In the critical case, $\theta_{\text {comp }}^{\prime}$ must equal θ_{c} specified by Eq. 33-47. Therefore,

$$
\frac{n_{2}}{n_{1}}=\sin \theta_{\mathrm{comp}}^{\prime}=\sqrt{1-\sin ^{2} \theta^{\prime}}=\sqrt{1-\left(\frac{1}{n_{1}} \sin \theta\right)^{2}}
$$

which leads to the result: $\sin \theta=\sqrt{n_{1}^{2}-n_{2}^{2}}$. With $n_{1}=1.58$ and $n_{2}=1.53$, we obtain

$$
\theta=\sin ^{-1}\left(1.58^{2}-1.53^{2}\right)=23.2^{\circ} .
$$

60. (a) We note that the upper-right corner is at an angle (measured from the point where the light enters, and measured relative to a normal axis established at that point [the normal at that point would be horizontal in Fig. 33-60) is at $\tan ^{-1}(2 / 3)=33.7^{\circ}$. The angle of refraction is given by

$$
n_{\text {air }} \sin 40^{\circ}=1.56 \sin \theta_{2}
$$

which yields $\theta_{2}=24.33^{\circ}$ if we use the common approximation $n_{\text {air }}=1.0$, and yields $\theta_{2}=$ 24.34° if we use the more accurate value for $n_{\text {air }}$ found in Table $33-1$. The value is less than 33.7° which means that the light goes to side 3 .
(b) The ray strikes a point on side 3 which is 0.643 cm below that upper-right corner, and then (using the fact that the angle is symmetrical upon reflection) strikes the top surface (side 2) at a point 1.42 cm to the left of that corner. Since 1.42 cm is certainly less than 3 cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as its second reflection (if we had gotten 3.42 cm instead of 1.42 cm , then the situation would be quite different).
(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the plastic) at side 3 is the same as the angle of refraction was at side 1 . Thus,

$$
1.56 \sin 24.3^{\circ}=n_{\text {air }} \sin \theta_{\text {air }} \quad \Rightarrow \quad \theta_{\text {air }}=40^{\circ} .
$$

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there, which in this case would be a vertical axis) of $90^{\circ}-\theta_{2}=66^{\circ}$ which is much greater than the critical angle for total internal reflection $\left(\sin ^{-1}\left(n_{\text {air }} / 1.56\right)=39.9^{\circ}\right)$. Therefore, no refraction occurs when the light strikes side 2 .
(e) In this case, we have $n_{\text {air }} \sin 70^{\circ}=1.56 \sin \theta_{2}$ which yields $\theta_{2}=37.04^{\circ}$ if we use the common approximation $n_{\text {air }}=1.0$, and yields $\theta_{2}=37.05^{\circ}$ if we use the more accurate value for $n_{\text {air }}$ found in Table 33-1. This is greater than the 33.7° mentioned above (regarding the upper-right corner), so the ray strikes side 2 instead of side 3 .
(f) After bouncing from side 2 (at a point fairly close to that corner) to goes to side 3.
(g) When it bounced from side 2, its angle of incidence (because the normal axis for side 2 is orthogonal to that for side 1) is $90^{\circ}-\theta_{2}=53^{\circ}$ which is much greater than the critical angle for total internal reflection (which, again, is $\left.\sin ^{-1}\left(n_{\text {air }} / 1.56\right)=39.9^{\circ}\right)$. Therefore, no refraction occurs when the light strikes side 2 .
(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges from side 3 with the same angle $\left(70^{\circ}\right)$ that it entered side 1 at (we see that the occurrence of an intermediate reflection [from side 2] does not alter this overall fact: light comes into the block at the same angle that it emerges with from the opposite parallel side.
61. (a) No refraction occurs at the surface $a b$, so the angle of incidence at surface $a c$ is $90^{\circ}-\phi$. For total internal reflection at the second surface, $n_{g} \sin \left(90^{\circ}-\phi\right)$ must be greater than n_{a}. Here n_{g} is the index of refraction for the glass and n_{a} is the index of refraction for air. Since $\sin \left(90^{\circ}-\phi\right)=\cos \phi$, we want the largest value of ϕ for which $n_{g} \cos \phi \geq n_{a}$. Recall that $\cos \phi$ decreases as ϕ increases from zero. When ϕ has the largest value for which total internal reflection occurs, then $n_{g} \cos \phi=n_{a}$, or

$$
\phi=\cos ^{-1}\left(\frac{n_{a}}{n_{g}}\right)=\cos ^{-1}\left(\frac{1}{1.52}\right)=48.9^{\circ} .
$$

The index of refraction for air is taken to be unity.
(b) We now replace the air with water. If $n_{w}=1.33$ is the index of refraction for water, then the largest value of ϕ for which total internal reflection occurs is

$$
\phi=\cos ^{-1}\left(\frac{n_{w}}{n_{g}}\right)=\cos ^{-1}\left(\frac{1.33}{1.52}\right)=29.0^{\circ} .
$$

62. (a) We refer to the entry point for the original incident ray as point A (which we take to be on the left side of the prism, as in Fig. 33-55), the prism vertex as point B, and the point where the interior ray strikes the right surface of the prism as point C. The angle between line $A B$ and the interior ray is β (the complement of the angle of refraction at the first surface), and the angle between the line $B C$ and the interior ray is α (the complement of its angle of incidence when it strikes the second surface). When the incident ray is at the minimum angle for which light is able to exit the prism, the light exits along the second face. That is, the angle of refraction at the second face is 90°, and the angle of incidence there for the interior ray is the critical angle for total internal reflection. Let θ_{1} be the angle of incidence for the original incident ray and θ_{2} be the angle of refraction at the first face, and let θ_{3} be the angle of incidence at the second face. The law of refraction, applied to point C, yields $n \sin \theta_{3}=1$, so

$$
\sin \theta_{3}=1 / n=1 / 1.60=0.625 \Rightarrow \theta_{3}=38.68^{\circ} .
$$

The interior angles of the triangle $A B C$ must sum to 180°, so $\alpha+\beta=120^{\circ}$. Now, $\alpha=$ $90^{\circ}-\theta_{3}=51.32^{\circ}$, so $\beta=120^{\circ}-51.32^{\circ}=69.68^{\circ}$. Thus, $\theta_{2}=90^{\circ}-\beta=21.32^{\circ}$. The law of refraction, applied to point A, yields

$$
\sin \theta_{1}=n \sin \theta_{2}=1.60 \sin 21.32^{\circ}=0.5817
$$

Thus $\theta_{1}=35.6^{\circ}$.
(b) We apply the law of refraction to point C. Since the angle of refraction there is the same as the angle of incidence at $A, n \sin \theta_{3}=\sin \theta_{1}$. Now, $\alpha+\beta=120^{\circ}, \alpha=90^{\circ}-\theta_{3}$, and $\beta=90^{\circ}-\theta_{2}$, as before. This means $\theta_{2}+\theta_{3}=60^{\circ}$. Thus, the law of refraction leads to

$$
\sin \theta_{1}=n \sin \left(60^{\circ}-\theta_{2}\right) \Rightarrow \sin \theta_{1}=n \sin 60^{\circ} \cos \theta_{2}-n \cos 60^{\circ} \sin \theta_{2}
$$

where the trigonometric identity $\sin (A-B)=\sin A \cos B-\cos A \sin B$ is used. Next, we apply the law of refraction to point A :

$$
\sin \theta_{1}=n \sin \theta_{2} \Rightarrow \sin \theta_{2}=(1 / n) \sin \theta_{1}
$$

which yields $\cos \theta_{2}=\sqrt{1-\sin ^{2} \theta_{2}}=\sqrt{1-\left(1 / n^{2}\right) \sin ^{2} \theta_{1}}$. Thus,

$$
\sin \theta_{1}=n \sin 60^{\circ} \sqrt{1-(1 / n)^{2} \sin ^{2} \theta_{1}}-\cos 60^{\circ} \sin \theta_{1}
$$

or

$$
\left(1+\cos 60^{\circ}\right) \sin \theta_{1}=\sin 60^{\circ} \sqrt{n^{2}-\sin ^{2} \theta_{1}} .
$$

Squaring both sides and solving for $\sin \theta_{1}$, we obtain

$$
\sin \theta_{1}=\frac{n \sin 60^{\circ}}{\sqrt{\left(1+\cos 60^{\circ}\right)^{2}+\sin ^{2} 60^{\circ}}}=\frac{1.60 \sin 60^{\circ}}{\sqrt{\left(1+\cos 60^{\circ}\right)^{2}+\sin ^{2} 60^{\circ}}}=0.80
$$

and $\theta_{1}=53.1^{\circ}$.
63. (a) A ray diagram is shown below.

Let θ_{1} be the angle of incidence and θ_{2} be the angle of refraction at the first surface. Let θ_{3} be the angle of incidence at the second surface. The angle of refraction there is $\theta_{4}=$ 90°. The law of refraction, applied to the second surface, yields $n \sin \theta_{3}=\sin \theta_{4}=1$. As shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each other. The interior angles of the triangle formed by the ray and the two normals must sum to 180°, so $\theta_{3}=90^{\circ}-\theta_{2}$ and

$$
\sin \theta_{3}=\sin \left(90^{\circ}-\theta_{2}\right)=\cos \theta_{2}=\sqrt{1-\sin ^{2} \theta_{2}} .
$$

According to the law of refraction, applied at $Q, n \sqrt{1-\sin ^{2} \theta_{2}}=1$. The law of refraction, applied to point P, yields $\sin \theta_{1}=n \sin \theta_{2}$, so $\sin \theta_{2}=\left(\sin \theta_{1}\right) / n$ and

$$
n \sqrt{1-\frac{\sin ^{2} \theta_{1}}{n^{2}}}=1
$$

Squaring both sides and solving for n, we get

$$
n=\sqrt{1+\sin ^{2} \theta_{1}} .
$$

(b) The greatest possible value of $\sin ^{2} \theta_{1}$ is 1 , so the greatest possible value of n is $n_{\text {max }}=\sqrt{2}=1.41$.
(c) For a given value of n, if the angle of incidence at the first surface is greater than θ_{1}, the angle of refraction there is greater than θ_{2} and the angle of incidence at the second face is less than $\theta_{3}\left(=90^{\circ}-\theta_{2}\right)$. That is, it is less than the critical angle for total internal reflection, so light leaves the second surface and emerges into the air.
(d) If the angle of incidence at the first surface is less than θ_{1}, the angle of refraction there is less than θ_{2} and the angle of incidence at the second surface is greater than θ_{3}. This is greater than the critical angle for total internal reflection, so all the light is reflected at Q.
64. (a) We use Eq. 33-49: $\theta_{B}=\tan ^{-1} n_{w}=\tan ^{-1}(1.33)=53.1^{\circ}$.
(b) Yes, since n_{w} depends on the wavelength of the light.
65. The angle of incidence θ_{B} for which reflected light is fully polarized is given by Eq. $33-48$ of the text. If n_{1} is the index of refraction for the medium of incidence and n_{2} is the index of refraction for the second medium, then

$$
\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)=\tan ^{-1}(1.53 / 1.33)=49.0^{\circ} .
$$

66. Since the layers are parallel, the angle of refraction regarding the first surface is the same as the angle of incidence regarding the second surface (as is suggested by the notation in Fig. 33-63). We recall that as part of the derivation of Eq. 33-49 (Brewster's angle), the refracted angle is the complement of the incident angle:

$$
\theta_{2}=\left(\theta_{1}\right)_{c}=90^{\circ}-\theta_{1} .
$$

We apply Eq. 33-49 to both refractions, setting up a product:

$$
\left(\frac{n_{2}}{n_{1}}\right)\left(\frac{n_{3}}{n_{2}}\right)=\left(\tan \theta_{\mathrm{B} 1 \rightarrow 2}\right)\left(\tan \theta_{\mathrm{B} 2 \rightarrow 3}\right) \Rightarrow \frac{n_{3}}{n_{1}}=\left(\tan \theta_{1}\right)\left(\tan \theta_{2}\right) .
$$

Now, since θ_{2} is the complement of θ_{1} we have

$$
\tan \theta_{2}=\tan \left(\theta_{1}\right)_{c}=\frac{1}{\tan \theta_{1}}
$$

Therefore, the product of tangents cancel and we obtain $n_{3} / n_{1}=1$. Consequently, the third medium is air: $n_{3}=1.0$.
67. Since some of the angles in Fig. 33-64 are measured from vertical axes and some are measured from horizontal axes, we must be very careful in taking differences. For instance, the angle difference between the first polarizer struck by the light and the second is 110° (or 70° depending on how we measure it; it does not matter in the final result whether we put $\Delta \theta_{1}=70^{\circ}$ or put $\Delta \theta_{1}=110^{\circ}$). Similarly, the angle difference between the second and the third is $\Delta \theta_{2}=40^{\circ}$, and between the third and the fourth is $\Delta \theta_{3}$ $=40^{\circ}$, also. Accounting for the "automatic" reduction (by a factor of one-half) whenever unpolarized light passes through any polarizing sheet, then our result is the incident intensity multiplied by

$$
\frac{1}{2} \cos ^{2}\left(\Delta \theta_{1}\right) \cos ^{2}\left(\Delta \theta_{2}\right) \cos ^{2}\left(\Delta \theta_{3}\right)
$$

Thus, the light that emerges from the system has intensity equal to $0.50 \mathrm{~W} / \mathrm{m}^{2}$.
68. (a) Suppose there are a total of N transparent layers ($N=5$ in our case). We label these layers from left to right with indices $1,2, \ldots, N$. Let the index of refraction of the air be n_{0}. We denote the initial angle of incidence of the light ray upon the air-layer boundary as θ_{i} and the angle of the emerging light ray as θ_{f}. We note that, since all the boundaries are parallel to each other, the angle of incidence θ_{j} at the boundary between the j-th and the $(j+1)$-th layers is the same as the angle between the transmitted light ray and the normal in the j-th layer. Thus, for the first boundary (the one between the air and the first layer)

$$
\frac{n_{1}}{n_{0}}=\frac{\sin \theta_{i}}{\sin \theta_{1}},
$$

for the second boundary

$$
\frac{n_{2}}{n_{1}}=\frac{\sin \theta_{1}}{\sin \theta_{2}},
$$

and so on. Finally, for the last boundary

$$
\frac{n_{0}}{n_{N}}=\frac{\sin \theta_{N}}{\sin \theta_{f}},
$$

Multiplying these equations, we obtain

$$
\left(\frac{n_{1}}{n_{0}}\right)\left(\frac{n_{2}}{n_{1}}\right)\left(\frac{n_{3}}{n_{2}}\right) \cdots\left(\frac{n_{0}}{n_{N}}\right)=\left(\frac{\sin \theta_{i}}{\sin \theta_{1}}\right)\left(\frac{\sin \theta_{1}}{\sin \theta_{2}}\right)\left(\frac{\sin \theta_{2}}{\sin \theta_{3}}\right) \cdots\left(\frac{\sin \theta_{N}}{\sin \theta_{f}}\right) .
$$

We see that the L.H.S. of the equation above can be reduced to n_{0} / n_{0} while the R.H.S. is equal to $\sin \theta_{i} / \sin \theta_{f}$. Equating these two expressions, we find

$$
\sin \theta_{f}=\left(\frac{n_{0}}{n_{0}}\right) \sin \theta_{i}=\sin \theta_{i},
$$

which gives $\theta_{i}=\theta_{f}$. So for the two light rays in the problem statement, the angle of the emerging light rays are both the same as their respective incident angles. Thus, $\theta_{f}=0$ for ray a,
(b) and $\theta_{f}=20^{\circ}$ for ray b.
(c) In this case, all we need to do is to change the value of n_{0} from 1.0 (for air) to 1.5 (for glass). This does not change the result above. That is, we still have $\theta_{f}=0$ for ray a,
(d) and $\theta_{f}=20^{\circ}$ for ray b.

Note that the result of this problem is fairly general. It is independent of the number of layers and the thickness and index of refraction of each layer.
69. (a) The Sun is far enough away that we approximate its rays as "parallel" in this Figure. That is, if the sunray makes angle θ from horizontal when the bird is in one position, then it makes the same angle θ when the bird is any other position. Therefore, its shadow on the ground moves as the bird moves: at $15 \mathrm{~m} / \mathrm{s}$.
(b) If the bird is in a position, a distance $x>0$ from the wall, such that its shadow is on the wall at a distance $0 \geq y \geq h$ from the top of the wall, then it is clear from the Figure that $\tan \theta=y / x$. Thus,

$$
\frac{d y}{d t}=\frac{d x}{d t} \tan \theta=(-15 \mathrm{~m} / \mathrm{s}) \tan 30^{\circ}=-8.7 \mathrm{~m} / \mathrm{s},
$$

which means that the distance y (which was measured as a positive number downward from the top of the wall) is shrinking at the rate of $8.7 \mathrm{~m} / \mathrm{s}$.
(c) Since $\tan \theta$ grows as $0 \leq \theta<90^{\circ}$ increases, then a larger value of $|d y / d t|$ implies a larger value of θ. The Sun is higher in the sky when the hawk glides by.
(d) With $|d y / d t|=45 \mathrm{~m} / \mathrm{s}$, we find

$$
v_{\text {hawk }}=\left|\frac{d x}{d t}\right|=\frac{\left|\frac{d y}{d t}\right|}{\tan \theta}
$$

so that we obtain $\theta=72^{\circ}$ if we assume $v_{\text {hawk }}=15 \mathrm{~m} / \mathrm{s}$.
70. (a) From $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ and $n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}$, we find $n_{1} \sin \theta_{1}=n_{3} \sin \theta_{3}$. This has a simple implication: that $\theta_{1}=\theta_{3}$ when $n_{1}=n_{3}$. Since we are given $\theta_{1}=40^{\circ}$ in Fig. 3367(a) then we look for a point in Fig. 33-67(b) where $\theta_{3}=40^{\circ}$. This seems to occur at n_{3} $=1.6$, so we infer that $n_{1}=1.6$.
(b) Our first step in our solution to part (a) shows that information concerning n_{2} disappears (cancels) in the manipulation. Thus, we cannot tell; we need more information.
(c) From $1.6 \sin 70^{\circ}=2.4 \sin \theta_{3}$ we obtain $\theta_{3}=39^{\circ}$.
71. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a "circle of light" (consider revolving that picture about a vertical axis). The depth and the radius of that circle (which is from point a to point f in that figure) is related to the tangent of the angle of incidence. The diameter of the circle in question is given by $d=$ $2 h \tan \theta_{c}$. For water $n=1.33$, so Eq. 33-47 gives $\sin \theta_{c}=1 / 1.33$, or $\theta_{c}=48.75^{\circ}$. Thus,

$$
d=2 h \tan \theta_{c}=2(2.00 \mathrm{~m})\left(\tan 48.75^{\circ}\right)=4.56 \mathrm{~m} .
$$

(b) The diameter d of the circle will increase if the fish descends (increasing h).
72. (a) Snell's law gives $n_{\text {air }} \sin \left(50^{\circ}\right)=n_{2 b} \sin \theta_{2 b}$ and $n_{\text {air }} \sin \left(50^{\circ}\right)=n_{2 r} \sin \theta_{2 r}$ where we use subscripts b and r for the blue and red light rays. Using the common approximation for air's index $\left(n_{\text {air }}=1.0\right)$ we find the two angles of refraction to be 30.176° and 30.507°. Therefore, $\Delta \theta=0.33^{\circ}$.
(b) Both of the refracted rays emerges from the other side with the same angle $\left(50^{\circ}\right)$ with which they were incident on the first side (generally speaking, light comes into a block at the same angle that it emerges with from the opposite parallel side). There is thus no difference (the difference is 0°) and thus there is no dispersion in this case.
73. (a) The wave is traveling in the $-y$ direction (see $\S 16-5$ for the significance of the relative sign between the spatial and temporal arguments of the wave function).
(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y axis) is perpendicular to \vec{B} (presumably along the x axis, since the problem gives B_{x} and no other component) and both are perpendicular to \vec{E} (which determines the axis of polarization). Thus, the wave is z-polarized.
(c) Since the magnetic field amplitude is $B_{m}=4.00 \mu \mathrm{~T}$, then (by Eq. 33-5) $E_{m}=1199$ $\mathrm{V} / \mathrm{m} \approx 1.20 \times 10^{3} \mathrm{~V} / \mathrm{m}$. Dividing by $\sqrt{2}$ yields $E_{\mathrm{rms}}=848 \mathrm{~V} / \mathrm{m}$. Then, Eq. $33-26$ gives

$$
I=\frac{I}{c \mu_{0}} E_{\mathrm{rms}}^{2}=1.91 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}
$$

(d) Since $k c=\omega$ (equivalent to $c=f \lambda$), we have

$$
k=\frac{2.00 \times 10^{15}}{c}=6.67 \times 10^{6} \mathrm{~m}^{-1}
$$

Summarizing the information gathered so far, we have (with SI units understood)

$$
E_{z}=\left(1.2 \times 10^{3}\right) \sin \left(\left(6.67 \times 10^{6}\right) y+\left(2.00 \times 10^{15}\right) t\right)
$$

(e) $\lambda=2 \pi / k=942 \mathrm{~nm}$.
(f) This is an infrared light.
74. (a) The condition (in Eq. 33-44) required in the critical angle calculation is $\theta_{3}=90^{\circ}$. Thus (with $\theta_{2}=\theta_{c}$, which we don't compute here),

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}
$$

leads to $\theta_{1}=\theta=\sin ^{-1} n_{3} / n_{1}=54.3^{\circ}$.
(b) Yes. Reducing θ leads to a reduction of θ_{2} so that it becomes less than the critical angle; therefore, there will be some transmission of light into material 3 .
(c) We note that the complement of the angle of refraction (in material 2) is the critical angle. Thus,

$$
n_{1} \sin \theta=n_{2} \cos \theta_{c}=n_{2} \sqrt{1-\left(\frac{n_{3}}{n_{2}}\right)^{2}}=\sqrt{n_{2}^{2}-n_{3}^{2}}
$$

leads to $\theta=51.1^{\circ}$.
(d) No. Reducing θ leads to an increase of the angle with which the light strikes the interface between materials 2 and 3 , so it becomes greater than the critical angle. Therefore, there will be no transmission of light into material 3.
75. Let $\theta_{1}=45^{\circ}$ be the angle of incidence at the first surface and θ_{2} be the angle of refraction there. Let θ_{3} be the angle of incidence at the second surface. The condition for total internal reflection at the second surface is $n \sin \theta_{3} \geq 1$. We want to find the smallest value of the index of refraction n for which this inequality holds. The law of refraction, applied to the first surface, yields $n \sin \theta_{2}=\sin \theta_{1}$. Consideration of the triangle formed by the surface of the slab and the ray in the slab tells us that $\theta_{3}=90^{\circ}-\theta_{2}$. Thus, the condition for total internal reflection becomes $1 \leq n \sin \left(90^{\circ}-\theta_{2}\right)=n \cos \theta_{2}$. Squaring this equation and using $\sin ^{2} \theta_{2}+\cos ^{2} \theta_{2}=1$, we obtain $1 \leq n^{2}\left(1-\sin ^{2} \theta_{2}\right)$. Substituting $\sin \theta_{2}=(1 / n) \sin \theta_{1}$ now leads to

$$
1 \leq n^{2}\left(1-\frac{\sin ^{2} \theta_{1}}{n^{2}}\right)=n^{2}-\sin ^{2} \theta_{1}
$$

The largest value of n for which this equation is true is given by $1=n^{2}-\sin ^{2} \theta_{1}$. We solve for n :

$$
n=\sqrt{1+\sin ^{2} \theta_{1}}=\sqrt{1+\sin ^{2} 45^{\circ}}=1.22 .
$$

76. We write $m=\rho \varsigma$ where $\varsigma=4 \pi R^{3} / 3$ is the volume. Plugging this into $F=m a$ and then into Eq. 33-32 (with $A=\pi R^{2}$, assuming the light is in the form of plane waves), we find

$$
\rho \frac{4 \pi R^{3}}{3} a=\frac{I \pi R^{2}}{c} .
$$

This simplifies to

$$
a=\frac{3 I}{4 \rho c R}
$$

which yields $a=1.5 \times 10^{-9} \mathrm{~m} / \mathrm{s}^{2}$.
77. (a) The first contribution to the overall deviation is at the first refraction: $\delta \theta_{1}=\theta_{i}-\theta_{r}$. The next contribution to the overall deviation is the reflection. Noting that the angle between the ray right before reflection and the axis normal to the back surface of the sphere is equal to θ_{r}, and recalling the law of reflection, we conclude that the angle by which the ray turns (comparing the direction of propagation before and after the reflection) is $\delta \theta_{2}=180^{\circ}-2 \theta_{r}$. The final contribution is the refraction suffered by the ray upon leaving the sphere: $\delta \theta_{3}=\theta_{i}-\theta_{r}$ again. Therefore,

$$
\theta_{\mathrm{dev}}=\delta \theta_{1}+\delta \theta_{2}+\delta \theta_{3}=180^{\circ}+2 \theta_{i}-4 \theta_{r} .
$$

(b) We substitute $\theta_{r}=\sin ^{-1}\left(\frac{1}{n} \sin \theta_{i}\right)$ into the expression derived in part (a), using the two given values for n. The higher curve is for the blue light.

(c) We can expand the graph and try to estimate the minimum, or search for it with a more sophisticated numerical procedure. We find that the $\theta_{\text {dev }}$ minimum for red light is $137.63^{\circ} \approx 137.6^{\circ}$, and this occurs at $\theta_{i}=59.52^{\circ}$.
(d) For blue light, we find that the $\theta_{\text {dev }}$ minimum is $139.35^{\circ} \approx 139.4^{\circ}$, and this occurs at θ_{i} $=59.52^{\circ}$.
(e) The difference in $\theta_{\text {dev }}$ in the previous two parts is 1.72°.
78. (a) The first contribution to the overall deviation is at the first refraction: $\delta \theta_{1}=\theta_{i}-\theta_{r}$. The next contribution(s) to the overall deviation is (are) the reflection(s). Noting that the angle between the ray right before reflection and the axis normal to the back surface of the sphere is equal to θ_{r}, and recalling the law of reflection, we conclude that the angle by which the ray turns (comparing the direction of propagation before and after [each] reflection) is $\delta \theta_{r}=180^{\circ}-2 \theta_{r}$. Thus, for k reflections, we have $\delta \theta_{2}=k \theta_{r}$ to account for these contributions. The final contribution is the refraction suffered by the ray upon leaving the sphere: $\delta \theta_{3}=\theta_{i}-\theta_{r}$ again. Therefore,

$$
\theta_{\mathrm{dev}}=\delta \theta_{1}+\delta \theta_{2}+\delta \theta_{3}=2\left(\theta_{i}-\theta_{r}\right)+k\left(180^{\circ}-2 \theta_{r}\right)=k\left(180^{\circ}\right)+2 \theta_{i}-2(k+1) \theta_{r} .
$$

(b) For $k=2$ and $n=1.331$ (given in problem 67), we search for the second-order rainbow angle numerically. We find that the $\theta_{\text {dev }}$ minimum for red light is 230.37° $\approx 230.4^{\circ}$, and this occurs at $\theta_{i}=71.90^{\circ}$.
(c) Similarly, we find that the second-order $\theta_{\text {dev }}$ minimum for blue light (for which $n=$ 1.343) is $233.48^{\circ} \approx 233.5^{\circ}$, and this occurs at $\theta_{i}=71.52^{\circ}$.
(d) The difference in $\theta_{\text {dev }}$ in the previous two parts is approximately 3.1°.
(e) Setting $k=3$, we search for the third-order rainbow angle numerically. We find that the $\theta_{\text {dev }}$ minimum for red light is 317.5°, and this occurs at $\theta_{i}=76.88^{\circ}$.
(f) Similarly, we find that the third-order $\theta_{\text {dev }}$ minimum for blue light is 321.9°, and this occurs at $\theta_{i}=76.62^{\circ}$.
(g) The difference in $\theta_{\text {dev }}$ in the previous two parts is 4.4°.
79. (a) and (b) At the Brewster angle, $\theta_{\text {incident }}+\theta_{\text {refracted }}=\theta_{\mathrm{B}}+32.0^{\circ}=90.0^{\circ}$, so $\theta_{\mathrm{B}}=$ 58.0° and $n_{\text {glass }}=\tan \theta_{\mathrm{B}}=\tan 58.0^{\circ}=1.60$.
80. We take the derivative with respect to x of both sides of Eq. 33-11:

$$
\frac{\partial}{\partial x}\left(\frac{\partial E}{\partial x}\right)=\frac{\partial^{2} E}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\frac{\partial B}{\partial t}\right)=-\frac{\partial^{2} B}{\partial x \partial t} .
$$

Now we differentiate both sides of Eq. 33-18 with respect to t :

$$
\frac{\partial}{\partial t}\left(-\frac{\partial B}{\partial x}\right)=-\frac{\partial^{2} B}{\partial x \partial t}=\frac{\partial}{\partial t}\left(\varepsilon_{0} \mu_{0} \frac{\partial E}{\partial t}\right)=\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}} .
$$

Substituting $\partial^{2} E / \partial x^{2}=-\partial^{2} B / \partial x \partial t$ from the first equation above into the second one, we get

$$
\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}}=\frac{\partial^{2} E}{\partial x^{2}} \quad \Rightarrow \quad \frac{\partial^{2} E}{\partial t^{2}}=\frac{1}{\varepsilon_{0} \mu_{0}} \frac{\partial^{2} E}{\partial x^{2}}=c^{2} \frac{\partial^{2} E}{\partial x^{2}} .
$$

Similarly, we differentiate both sides of Eq. 33-11 with respect to t

$$
\frac{\partial^{2} E}{\partial x \partial t}=-\frac{\partial^{2} B}{\partial t^{2}}
$$

and differentiate both sides of Eq. 33-18 with respect to x

$$
-\frac{\partial^{2} B}{\partial x^{2}}=\varepsilon_{0} \mu_{0}-\frac{\partial^{2} E}{\partial x \partial t} .
$$

Combining these two equations, we get

$$
\frac{\partial^{2} B}{\partial t^{2}}=\frac{1}{\varepsilon_{0} \mu_{0}} \frac{\partial^{2} B}{\partial x^{2}}=c^{2} \frac{\partial^{2} B}{\partial x^{2}} .
$$

81. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

$$
I=\frac{1}{2} I_{0} \cos ^{2} \theta_{1}^{\prime} \cos ^{2} \theta_{2}^{\prime}
$$

where $\theta_{1}^{\prime}=90^{\circ}-\theta_{1}=60^{\circ}$ and $\theta_{2}^{\prime}=90^{\circ}-\theta_{2}=60^{\circ}$. This yields $I / I_{0}=0.031$.
82. (a) An incident ray which is normal to the water surface is not refracted, so the angle at which it strikes the first mirror is $\theta_{1}=45^{\circ}$. According to the law of reflection, the angle of reflection is also 45°. This means the ray is horizontal as it leaves the first mirror, and the angle of incidence at the second mirror is $\theta_{2}=45^{\circ}$. Since the angle of reflection at the second mirror is also 45° the ray leaves that mirror normal again to the water surface. There is no refraction at the water surface, and the emerging ray is parallel to the incident ray.
(b) We imagine that the incident ray makes an angle θ_{1} with the normal to the water surface. The angle of refraction θ_{2} is found from $\sin \theta_{1}=n \sin \theta_{2}$, where n is the index of refraction of the water. The normal to the water surface and the normal to the first mirror make an angle of 45°. If the normal to the water surface is continued downward until it meets the normal to the first mirror, the triangle formed has an interior angle of $180^{\circ}-$ $45^{\circ}=135^{\circ}$ at the vertex formed by the normal. Since the interior angles of a triangle must sum to 180°, the angle of incidence at the first mirror satisfies $\theta_{3}+\theta_{2}+135^{\circ}=180^{\circ}$, so $\theta_{3}=45^{\circ}-\theta_{2}$. Using the law of reflection, the angle of reflection at the first mirror is also $45^{\circ}-\theta_{2}$. We note that the triangle formed by the ray and the normals to the two mirrors is a right triangle. Consequently,

$$
\theta_{3}+\theta_{4}+90^{\circ}=180^{\circ} \Rightarrow \theta_{4}=90^{\circ}-\theta_{3}=90^{\circ}-45^{\circ}+\theta_{2}=45^{\circ}+\theta_{2} .
$$

The angle of reflection at the second mirror is also $45^{\circ}+\theta_{2}$. Now, we continue the normal to the water surface downward from the exit point of the ray to the second mirror. It makes an angle of 45° with the mirror. Consider the triangle formed by the second mirror, the ray, and the normal to the water surface. The angle at the intersection of the normal and the mirror is $180^{\circ}-45^{\circ}=135^{\circ}$. The angle at the intersection of the ray and the mirror is

$$
90^{\circ}-\theta_{4}=90^{\circ}-\left(45^{\circ}+\theta_{2}\right)=45^{\circ}-\theta_{2} .
$$

The angle at the intersection of the ray and the water surface is θ_{5}. These three angles must sum to 180°, so $135^{\circ}+45^{\circ}-\theta_{2}+\theta_{5}=180^{\circ}$. This means $\theta_{5}=\theta_{2}$. Finally, we use the law of refraction to find θ_{6} :

$$
\sin \theta_{6}=n \sin \theta_{5} \Rightarrow \sin \theta_{6}=n \sin \theta_{2},
$$

since $\theta_{5}=\theta_{2}$. Finally, since $\sin \theta_{1}=n \sin \theta_{2}$, we conclude that $\sin \theta_{6}=\sin \theta_{1}$ and $\theta_{6}=\theta_{1}$. The exiting ray is parallel to the incident ray.
83. We use the result of problem 33-53 to solve for ψ. Note that $\phi=60.0^{\circ}$ in our case. Thus, from

$$
n=\frac{\sin \frac{1}{2}(\psi+\phi)}{\sin \frac{1}{2} \phi}
$$

we get

$$
\sin \frac{1}{2}(\psi+\phi)=n \sin \frac{1}{2} \phi=(1.31) \sin \left(\frac{60.0^{\circ}}{2}\right)=0.655
$$

which gives $\frac{1}{2}(\psi+\phi)=\sin ^{-1}(0.655)=40.9^{\circ}$. Thus,

$$
\psi=2\left(40.9^{\circ}\right)-\phi 2\left(40.9^{\circ}\right)-60.0^{\circ}=21.8^{\circ} .
$$

84. The law of refraction requires that $\sin \theta_{1} / \sin \theta_{2}=n_{\text {water }}=$ const. We can check that this is indeed valid for any given pair of θ_{1} and θ_{2}. For example $\sin 10^{\circ} / \sin 8^{\circ}=1.3$, and $\sin 20^{\circ} / \sin 15^{\circ} 30^{\prime}=1.3$, etc. Therefore, the index of refraction of water is $n_{\text {water }}=1.3$.
85. Let θ be the angle of incidence and θ_{2} be the angle of refraction at the left face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction yields $\sin \theta$ $=n \sin \theta_{2}$. The angle of incidence at the right face is also θ_{2}. If θ_{3} is the angle of emergence there, then $n \sin \theta_{2}=\sin \theta_{3}$. Thus $\sin \theta_{3}=\sin \theta$ and $\theta_{3}=\theta$.

The emerging ray is parallel to the incident ray. We wish to derive an expression for x in terms of θ. If D is the length of the ray in the glass, then $D \cos \theta_{2}=t$ and $D=t / \cos \theta_{2}$. The angle α in the diagram equals $\theta-\theta_{2}$ and $x=D \sin \alpha=D \sin \left(\theta-\theta_{2}\right)$. Thus

$$
x=\frac{t \sin \left(\theta-\theta_{2}\right)}{\cos \theta_{2}} .
$$

If all the angles $\theta, \theta_{2}, \theta_{3}$, and $\theta-\theta_{2}$ are small and measured in radians, then $\sin \theta \approx \theta$, \sin $\theta_{2} \approx \theta_{2}, \sin \left(\theta-\theta_{2}\right) \approx \theta-\theta_{2}$, and $\cos \theta_{2} \approx 1$. Thus $x \approx t\left(\theta-\theta_{2}\right)$. The law of refraction applied to the point of incidence at the left face of the plate is now $\theta \approx n \theta_{2}$, so $\theta_{2} \approx \theta / n$ and

$$
x \approx t\left(\theta-\frac{\theta}{n}\right)=\frac{(n-1) t \theta}{n}
$$

86. (a) Setting $\mathrm{v}=c$ in the wave relation $k \mathrm{v}=\omega=2 \pi f$, we find $f=1.91 \times 10^{8} \mathrm{~Hz}$.
(b) $E_{\text {rms }}=E_{m} / \sqrt{2}=B_{m} / c \sqrt{2}=18.2 \mathrm{~V} / \mathrm{m}$.
(c) $I=\left(E_{\mathrm{rms}}\right)^{2} / c \mu_{\mathrm{o}}=0.878 \mathrm{~W} / \mathrm{m}^{2}$.
87. From Fig. 33-19 we find $n_{\max }=1.470$ for $\lambda=400 \mathrm{~nm}$ and $n_{\min }=1.456$ for $\lambda=700 \mathrm{~nm}$. (a) The corresponding Brewster's angles are

$$
\theta_{\mathrm{B}, \max }=\tan ^{-1} n_{\max }=\tan ^{-1}(1.470)=55.8^{\circ},
$$

(b) and $\theta_{\mathrm{B}, \min }=\tan ^{-1}(1.456)=55.5^{\circ}$.
88. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

$$
I=\frac{1}{2} I_{0} \cos ^{2} \theta_{1}^{\prime} \cos ^{2} \theta_{2}^{\prime}
$$

where $\theta_{1}^{\prime}=\left(90^{\circ}-\theta_{1}\right)+\theta_{2}=110^{\circ}$ is the relative angle between the first and the second polarizing sheets, and $\theta_{2}^{\prime}=90^{\circ}-\theta_{2}=50^{\circ}$ is the relative angle between the second and the third polarizing sheets. Thus, we have $I / I_{0}=0.024$.
89. The time for light to travel a distance d in free space is $t=d / c$, where c is the speed of light ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$).
(a) We take d to be $150 \mathrm{~km}=150 \times 10^{3} \mathrm{~m}$. Then,

$$
t=\frac{d}{c}=\frac{150 \times 10^{3} \mathrm{~m}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=5.00 \times 10^{-4} \mathrm{~s} .
$$

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance traveled by the light is

$$
d=\left(1.5 \times 10^{8} \mathrm{~km}\right)+2\left(3.8 \times 10^{5} \mathrm{~km}\right)=1.51 \times 10^{8} \mathrm{~km}=1.51 \times 10^{11} \mathrm{~m} .
$$

The time taken by light to travel this distance is

$$
t=\frac{d}{c}=\frac{1.51 \times 10^{11} \mathrm{~m}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=500 \mathrm{~s}=8.4 \mathrm{~min} .
$$

(c) We take d to be $2\left(1.3 \times 10^{9} \mathrm{~km}\right)=2.6 \times 10^{12} \mathrm{~m}$. Then,

$$
t=\frac{d}{c}=\frac{2.6 \times 10^{12} \mathrm{~m}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=8.7 \times 10^{3} \mathrm{~s}=2.4 \mathrm{~h} .
$$

(d) We take d to be 6500 ly and the speed of light to be $1.00 \mathrm{ly} / \mathrm{y}$. Then,

$$
t=\frac{d}{c}=\frac{6500 \mathrm{ly}}{1.00 \mathrm{ly} / \mathrm{y}}=6500 \mathrm{y} .
$$

The explosion took place in the year $1054-6500=-5446$ or 5446 b.c.
90. (a) At $r=40 \mathrm{~m}$, the intensity is

$$
I=\frac{P}{\pi d^{2} / 4}=\frac{P}{\pi(\theta r)^{2} / 4}=\frac{4\left(3.0 \times 10^{-3} \mathrm{~W}\right)}{\pi\left[\left(0.17 \times 10^{-3} \mathrm{rad}\right)(40 \mathrm{~m})\right]^{2}}=83 \mathrm{~W} / \mathrm{m}^{2} .
$$

(b) $P^{\prime}=4 \pi r^{2} I=4 \pi(40 \mathrm{~m})^{2}\left(83 \mathrm{~W} / \mathrm{m}^{2}\right)=1.7 \times 10^{6} \mathrm{~W}$.
91. Since intensity is power divided by area (and the area is spherical in the isotropic case), then the intensity at a distance of $r=20 \mathrm{~m}$ from the source is

$$
I=\frac{P}{4 \pi r^{2}}=0.040 \mathrm{~W} / \mathrm{m}^{2} .
$$

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A, we note that the exposed area of the small sphere is that on a flat circle $A=\pi(0.020 \mathrm{~m})^{2}=$ $0.0013 \mathrm{~m}^{2}$. Therefore,

$$
F=\frac{I A}{c}=\frac{(0.040)(0.0013)}{3 \times 10^{8}}=1.7 \times 10^{-13} \mathrm{~N} .
$$

92. (a) Assuming complete absorption, the radiation pressure is

$$
p_{r}=\frac{I}{c}=\frac{1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}}{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}=4.7 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}
$$

(b) We compare values by setting up a ratio:

$$
\frac{p_{r}}{p_{0}}=\frac{4.7 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}}{1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}=4.7 \times 10^{-11}
$$

93. (a) From $k c=\omega$ where $k=1.00 \times 10^{6} \mathrm{~m}^{-1}$, we obtain $\omega=3.00 \times 10^{14} \mathrm{rad} / \mathrm{s}$. The magnetic field amplitude is, from Eq. 33-5, $B=(5.00 \mathrm{~V} / \mathrm{m}) / c=1.67 \times 10^{-8} \mathrm{~T}$. From the fact that $-\hat{\mathrm{k}}$ (the direction of propagation), $\vec{E}=E_{y} \hat{\mathrm{j}}$, and \vec{B} are mutually perpendicular, we conclude that the only non-zero component of \vec{B} is B_{x}, so that we have (in SI units)

$$
B_{x}=1.67 \times 10^{-8} \sin \left(\left(1.00 \times 10^{6}\right) z+\left(3.00 \times 10^{14}\right) t\right)
$$

(b) The wavelength is $\lambda=2 \pi / k=6.28 \times 10^{-6} \mathrm{~m}$.
(c) The period is $T=2 \pi / \omega=2.09 \times 10^{-14} \mathrm{~s}$.
(d) The intensity is

$$
I=\frac{1}{c \mu_{0}}\left(\frac{5.00 \mathrm{~V} / \mathrm{m}}{\sqrt{2}}\right)^{2}=0.0332 \mathrm{~W} / \mathrm{m}^{2} .
$$

(e) As noted in part (a), the only nonzero component of \vec{B} is B_{x}. The magnetic field oscillates along the x axis.
(f) The wavelength found in part (b) places this in the infrared portion of the spectrum.
94. It's useful to look back at the beginning of section 20-4 (particularly the steps leading up to Eq. 20-18) when considering "pressure due to collisions" (although using that term with light-interactions might be considered a little misleading). The v_{x} that occurs in that discussion in section 19-4 would correspond to the component $v \cos \theta$ in this problem because the angle is here being measured from the "normal axis" (instead of from the surface). Since it is the square of v_{x} that occurs in the section 20-4 discussion, we see therefore how the $\cos ^{2} \theta$ factor comes about in this final result: $p_{r}(\theta)=p_{r \perp} \cos ^{2} \theta$.
95. (a) The area of a hemisphere is $A=2 \pi r^{2}$, and we get $I=P / A=3.5 \mu \mathrm{~W} / \mathrm{m}^{2}$.
(b) Our part (a) result multiplied by $0.22 \mathrm{~m}^{2}$ gives $0.78 \mu \mathrm{~W}$.
(c) The part (b) answer divided by the A of part (a) leads to $1.5 \times 10^{-17} \mathrm{~W} / \mathrm{m}^{2}$.
(d) Then Eq. 33-26 gives $E_{\mathrm{rms}}=76 \mathrm{nV} / \mathrm{m} \Rightarrow E_{\max }=\sqrt{2} E_{\mathrm{rms}}=1.1 \times 10^{-7} \mathrm{nV} / \mathrm{m}$.
(e) $B_{\mathrm{rms}}=E_{\mathrm{rms}} / c=2.5 \times 10^{-16} \mathrm{~T}=0.25 \mathrm{fT}$.
96. (a) The electric field amplitude is $E_{m}=\sqrt{2} E_{\mathrm{rms}}=70.7 \mathrm{~V} / \mathrm{m}$, so that the magnetic field amplitude is $B_{m}=2.36 \times 10^{-7} \mathrm{~T}$ by Eq. 33-5. Since the direction of propagation, \vec{E}, and \vec{B} are mutually perpendicular, we infer that the only non-zero component of \vec{B} is B_{x}, and note that the direction of propagation being along the $-z$ axis means the spatial and temporal parts of the wave function argument are of like sign (see §16-5). Also, from $\lambda=$ 250 nm , we find that $f=c / \lambda=1.20 \times 10^{15} \mathrm{~Hz}$, which leads to $\omega=2 \pi f=$ $7.53 \times 10^{15} \mathrm{rad} / \mathrm{s}$. Also, we note that $k=2 \pi / \lambda=2.51 \times 10^{7} \mathrm{~m}^{-1}$. Thus, assuming some "initial condition" (that, say the field is zero, with its derivative positive, at $z=0$ when $t=$ 0), we have

$$
B_{x}=2.36 \times 10^{-7} \sin \left[\left(2.51 \times 10^{7}\right) z+\left(7.53 \times 10^{15}\right) t\right]
$$

in SI units.
(b) The exposed area of the triangular chip is $A=\sqrt{3} \ell^{2} / 8$, where $\ell=2.00 \times 10^{-6} \mathrm{~m}$. The intensity of the wave is

$$
I=\frac{1}{c \mu_{0}} E_{\mathrm{rms}}^{2}=6.64 \mathrm{~W} / \mathrm{m}^{2}
$$

Thus, Eq. 33-33 leads to

$$
F=\frac{2 I A}{c}=3.83 \times 10^{-20} \mathrm{~N}
$$

97. Accounting for the "automatic" reduction (by a factor of one-half) whenever unpolarized light passes through any polarizing sheet, then our result is $\frac{1}{2}\left(\cos ^{2}\left(30^{\circ}\right)\right)^{3}=$ 0.21 .
98. The result is

$$
B_{z}=\left(2.50 \times 10^{-14} \mathrm{~T}\right) \sin \left[\left(1.40 \times 10^{7} \mathrm{~m}^{-1}\right) y+\left(4.19 \times 10^{15} \mathrm{~s}^{-1}\right) t\right],
$$

and we briefly indicate our reasoning as follows: the amplitude B_{m} is equal to $E_{m} / c=\sqrt{2}$ E_{rms} / c. The wavenumber k is $2 \pi / \lambda=2 \pi\left(450 \times 10^{-9} \mathrm{~m}\right)^{-1}$. The fact that it travels in the negative x direction accounts for the + sign between terms in the sine argument. Finally, $\omega=k c$ gives the angular frequency.
99. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

$$
I=\frac{1}{2} I_{0} \cos ^{2} \theta^{\prime} \cos ^{2} \theta^{\prime \prime}
$$

With $\theta^{\prime}=\theta_{2}-\theta_{1}=60^{\circ}-20^{\circ}=40^{\circ}$ and $\theta^{\prime \prime}=\theta_{3}+\left(\pi / 2-\theta_{2}\right)=40^{\circ}+30^{\circ}=70^{\circ}$, this yields $I / I_{0}=0.034$.
100. We remind ourselves that when the unpolarized light passes through the first sheet, its intensity is reduced by a factor of 2 . Thus, to end up with an overall reduction of onethird, the second sheet must cause a further decrease by a factor of two-thirds (since $(1 / 2)(2 / 3)=1 / 3)$. Thus, $\cos ^{2} \theta=2 / 3 \Rightarrow \theta=35^{\circ}$.
101. (a) The magnitude of the magnetic field is

$$
B=\frac{E}{c}=\frac{100 \mathrm{~V} / \mathrm{m}}{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.3 \times 10^{-7} \mathrm{~T} .
$$

(b) With $\vec{E} \times \vec{B}=\mu_{0} \vec{S}$, where $\vec{E}=E \hat{\mathrm{k}}$ and $\vec{S}=S(-\hat{\mathrm{j}})$, one can verify easily that since $\hat{\mathrm{k}} \times(-\hat{\mathrm{i}})=-\hat{\mathrm{j}}, \vec{B}$ has to be in the negative x direction.
102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface ($4.0 \mathrm{~m}^{2}$). The intensity is gotten from Eq. 33-27 where $P=P_{S}$ is in Appendix C (see also Sample Problem 33-2) and $r=3.0 \times 10^{11} \mathrm{~m}$ (given in the problem statement). Our result for the force is $9.2 \mu \mathrm{~N}$.
103. From Eq. 33-26, we have $E_{\mathrm{rms}}=\sqrt{\mu_{0} c I}=1941 \mathrm{~V} / \mathrm{m}$, which implies (using Eq. 33-5) that $B_{\mathrm{rms}}=1941 / c=6.47 \times 10^{-6} \mathrm{~T}$. Multiplying by $\sqrt{2}$ yields the magnetic field amplitude $B_{m}=9.16 \times 10^{-6} \mathrm{~T}$.
104. Eq. 33-5 gives $B=E / c$, which relates the field values at any instant - and so relates rms values to rms values, and amplitude values to amplitude values, as the case may be. Thus, the rms value of the magnetic field is $0.2 / 3 \times 10^{8}=6.67 \times 10^{-10} \mathrm{~T}$, which (upon multiplication by $\sqrt{2}$) yields an amplitude value of magnetic field equal to $9.43 \times 10^{-10} \mathrm{~T}$.
105. (a) From Eq. 33-1,

$$
\frac{\partial^{2} E}{\partial t^{2}}=\frac{\partial^{2}}{\partial t^{2}}\left[E_{m} \sin (k x-\omega t)\right]=-\omega^{2} E_{m} \sin (k x-\omega t),
$$

and

$$
c^{2} \frac{\partial^{2} E}{\partial x^{2}}=c^{2} \frac{\partial^{2}}{\partial x^{2}}\left[E_{m} \sin (k x-\omega t)\right]=-k^{2} c^{2} \sin (k x-\omega t)=-\omega^{2} E_{m} \sin (k x-\omega t)
$$

Consequently,

$$
\frac{\partial^{2} E}{\partial t^{2}}=c^{2} \frac{\partial^{2} E}{\partial x^{2}}
$$

is satisfied. Analogously, one can show that Eq. 33-2 satisfies

$$
\frac{\partial^{2} B}{\partial t^{2}}=c^{2} \frac{\partial^{2} B}{\partial x^{2}} .
$$

(b) From $E=E_{m} f(k x \pm \omega t)$,

$$
\frac{\partial^{2} E}{\partial t^{2}}=E_{m} \frac{\partial^{2} f(k x \pm \omega t)}{\partial t^{2}}=\left.\omega^{2} E_{m} \frac{d^{2} f}{d u^{2}}\right|_{u=k x \pm \omega t}
$$

and

$$
c^{2} \frac{\partial^{2} E}{\partial x^{2}}=c^{2} E_{m} \frac{\partial^{2} f(k x \pm \omega t)}{\partial t^{2}}=\left.c^{2} E_{m} k^{2} \frac{d^{2} f}{d u^{2}}\right|_{u=k x \pm \omega t}
$$

Since $\omega=c k$ the right-hand sides of these two equations are equal. Therefore,

$$
\frac{\partial^{2} E}{\partial t^{2}}=c^{2} \frac{\partial^{2} E}{\partial x^{2}}
$$

Changing E to B and repeating the derivation above shows that $B=B_{m} f(k x \pm \omega t)$ satisfies

$$
\frac{\partial^{2} B}{\partial t^{2}}=c^{2} \frac{\partial^{2} B}{\partial x^{2}}
$$

106. (a) Let r be the radius and ρ be the density of the particle. Since its volume is $(4 \pi / 3) r^{3}$, its mass is $m=(4 \pi / 3) \rho r^{3}$. Let R be the distance from the Sun to the particle and let M be the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle has magnitude

$$
F_{g}=\frac{G M m}{R^{2}}=\frac{4 \pi G M \rho r^{3}}{3 R^{2}}
$$

If P is the power output of the Sun, then at the position of the particle, the radiation intensity is $I=P / 4 \pi R^{2}$, and since the particle is perfectly absorbing, the radiation pressure on it is

$$
p_{r}=\frac{I}{c}=\frac{P}{4 \pi R^{2} c} .
$$

All of the radiation that passes through a circle of radius r and area $A=\pi r^{2}$, perpendicular to the direction of propagation, is absorbed by the particle, so the force of the radiation on the particle has magnitude

$$
F_{r}=p_{r} A=\frac{\pi P r^{2}}{4 \pi R^{2} c}=\frac{P r^{2}}{4 R^{2} c} .
$$

The force is radially outward from the Sun. Notice that both the force of gravity and the force of the radiation are inversely proportional to R^{2}. If one of these forces is larger than the other at some distance from the Sun, then that force is larger at all distances. The two forces depend on the particle radius r differently: F_{g} is proportional to r^{3} and F_{r} is proportional to r^{2}. We expect a small radius particle to be blown away by the radiation pressure and a large radius particle with the same density to be pulled inward toward the Sun. The critical value for the radius is the value for which the two forces are equal. Equating the expressions for F_{g} and F_{r}, we solve for r :

$$
r=\frac{3 P}{16 \pi G M \rho c} .
$$

(b) According to Appendix C, $M=1.99 \times 10^{30} \mathrm{~kg}$ and $P=3.90 \times 10^{26} \mathrm{~W}$. Thus,

$$
\begin{aligned}
r & =\frac{3\left(3.90 \times 10^{26} \mathrm{~W}\right)}{16 \pi\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& =5.8 \times 10^{-7} \mathrm{~m} .
\end{aligned}
$$

107. (a) The polarization direction is defined by the electric field (which is perpendicular to the magnetic field in the wave, and also perpendicular to the direction of wave travel). The given function indicates the magnetic field is along the x axis (by the subscript on B) and the wave motion is along $-y$ axis (see the argument of the sine function). Thus, the electric field direction must be parallel to the z axis.
(b) Since k is given as $1.57 \times 10^{7} / \mathrm{m}$, then $\lambda=2 \pi / \mathrm{k}=4.0 \times 10^{-7} \mathrm{~m}$, which means $f=c / \lambda=$ $7.5 \times 10^{14} \mathrm{~Hz}$.
(c) The magnetic field amplitude is given as $B_{m}=4.0 \times 10^{-6} \mathrm{~T}$. The electric field amplitude E_{m} is equal to B_{m} divided by the speed of light c. The rms value of the electric field is then E_{m} divided by $\sqrt{2}$. Eq. 33-26 then gives $I=1.9 \mathrm{~kW} / \mathrm{m}^{2}$.
108. Using Eqs. 33-40 and 33-42, we obtain

$$
\frac{I_{\text {final }}}{I_{0}}=\frac{\left(\frac{1}{2} I_{0}\right)\left(\cos ^{2} 45^{\circ}\right)\left(\cos ^{2} 45^{\circ}\right)}{I_{0}}=\frac{1}{8}=0.125 .
$$

109. With the index of refraction $n=1.456$ at the red end, $\operatorname{since} \sin \theta_{c}=1 / n$, the critical angle is $\theta_{c}=43.38^{\circ}$ for red.
(a) At an angle of incidence of $\theta_{1}=42.00^{\circ}<\theta_{c}$, the refracted light is white.
(b) At an angle of incidence of $\theta_{1}=43.10^{\circ}$ which is slightly less than θ_{c}, the refracted light is white but dominated by red end.
(c) At an angle of incidence of $\theta_{1}=44.00^{\circ}>\theta_{c}$, there is no refracted light.
110. (a) The diagram below shows a cross section, through the center of the cube and parallel to a face. L is the length of a cube edge and S labels the spot. A portion of a ray from the source to a cube face is also shown.

Light leaving the source at a small angle θ is refracted at the face and leaves the cube; light leaving at a sufficiently large angle is totally reflected. The light that passes through the cube face forms a circle, the radius r being associated with the critical angle for total internal reflection. If θ_{c} is that angle, then

$$
\sin \theta_{c}=\frac{1}{n}
$$

where n is the index of refraction for the glass. As the diagram shows, the radius of the circle is given by $r=(L / 2) \tan \theta_{c}$. Now,

$$
\tan \theta_{c}=\frac{\sin \theta_{c}}{\cos \theta_{c}}=\frac{\sin \theta_{c}}{\sqrt{1-\sin ^{2} \theta_{c}}}=\frac{1 / n}{\sqrt{1-(1 / n)^{2}}}=\frac{1}{\sqrt{n^{2}-1}}
$$

and the radius of the circle is

$$
r=\frac{L}{2 \sqrt{n^{2}-1}}=\frac{10 \mathrm{~mm}}{2 \sqrt{(1.5)^{2}-1}}=4.47 \mathrm{~mm} .
$$

If an opaque circular disk with this radius is pasted at the center of each cube face, the spot will not be seen (provided internally reflected light can be ignored).
(b) There must be six opaque disks, one for each face. The total area covered by disks is $6 \pi r^{2}$ and the total surface area of the cube is $6 L^{2}$. The fraction of the surface area that must be covered by disks is

$$
f=\frac{6 \pi r^{2}}{6 L^{2}}=\frac{\pi r^{2}}{L^{2}}=\frac{\pi(4.47 \mathrm{~mm})^{2}}{(10 \mathrm{~mm})^{2}}=0.63 .
$$

111. (a) Suppose that at time t_{1}, the moon is starting a revolution (on the verge of going behind Jupiter, say) and that at this instant, the distance between Jupiter and Earth is ℓ_{1}. The time of the start of the revolution as seen on Earth is $t_{1}^{*}=t_{1}+\ell_{1} / c$. Suppose the moon starts the next revolution at time t_{2} and at that instant, the Earth-Jupiter distance is ℓ_{2}. The start of the revolution as seen on Earth is $t_{2}^{*}=t_{2}+\ell_{2} / c$. Now, the actual period of the moon is given by $T=t_{2}-t_{1}$ and the period as measured on Earth is

$$
T^{*}=t_{2}^{*}-t_{1}^{*}=t_{2}-t_{1}+\frac{\ell_{2}}{c}-\frac{\ell_{1}}{c}=T+\frac{\ell_{2}-\ell_{1}}{c} .
$$

The period as measured on Earth is longer than the actual period. This is due to the fact that Earth moves during a revolution, and light takes a finite time to travel from Jupiter to Earth. For the situation depicted in Fig. 33-80, light emitted at the end of a revolution travels a longer distance to get to Earth than light emitted at the beginning. Suppose the position of Earth is given by the angle θ, measured from x. Let R be the radius of Earth's orbit and d be the distance from the Sun to Jupiter. The law of cosines, applied to the triangle with the Sun, Earth, and Jupiter at the vertices, yields $\ell^{2}=d^{2}+R^{2}-2 d R \cos \theta$. This expression can be used to calculate ℓ_{1} and ℓ_{2}. Since Earth does not move very far during one revolution of the moon, we may approximate $\ell_{2}-\ell_{1}$ by $(d \ell / d t) T$ and T^{*} by $T+(d \ell / d t)(T / c)$. Now

$$
\frac{d \ell}{d t}=\frac{2 R d \sin \theta}{\sqrt{d^{2}+R^{2}-2 d R \cos \theta}} \frac{d \theta}{d t}=\frac{2 v d \sin \theta}{\sqrt{d^{2}+R^{2}-2 d R \cos \theta}}
$$

where $v=R(d \theta / d t)$ is the speed of Earth in its orbit. For $\theta=0,(d \ell / d t)=0$ and $T^{*}=T$. Since Earth is then moving perpendicularly to the line from the Sun to Jupiter, its distance from the planet does not change appreciably during one revolution of the moon.
On the other hand, when $\theta=90^{\circ}, d \ell / d t=v d / \sqrt{d^{2}+R^{2}}$ and

$$
T^{*}=T\left(1+\frac{v d}{c \sqrt{d^{2}+R^{2}}}\right)
$$

The Earth is now moving parallel to the line from the Sun to Jupiter, and its distance from the planet changes during a revolution of the moon.
(b) Our notation is as follows: t is the actual time for the moon to make N revolutions, and t^{*} is the time for N revolutions to be observed on Earth. Then,

$$
t^{*}=t+\frac{\ell_{2}-\ell_{1}}{c},
$$

where ℓ_{1} is the Earth-Jupiter distance at the beginning of the interval and ℓ_{2} is the EarthJupiter distance at the end. Suppose Earth is at position x at the beginning of the interval, and at y at the end. Then, $\ell_{1}=d-R$ and $\ell_{2}=\sqrt{d^{2}+R^{2}}$. Thus,

$$
t^{*}=t+\frac{\sqrt{d^{2}+R^{2}}-(d-R)}{c}
$$

A value can be found for t by measuring the observed period of revolution when Earth is at x and multiplying by N. We note that the observed period is the true period when Earth is at x. The time interval as Earth moves from x to y is t^{*}. The difference is

$$
t^{*}-t=\frac{\sqrt{d^{2}+R^{2}}-(d-R)}{c}
$$

If the radii of the orbits of Jupiter and Earth are known, the value for $t^{*}-t$ can be used to compute c. Since Jupiter is much further from the Sun than Earth, $\sqrt{d^{2}+R^{2}}$ may be approximated by d and $t^{*}-t$ may be approximated by R / c. In this approximation, only the radius of Earth's orbit need be known.

1. The image is 10 cm behind the mirror and you are 30 cm in front of the mirror. You must focus your eyes for a distance of $10 \mathrm{~cm}+30 \mathrm{~cm}=40 \mathrm{~cm}$.
2. The bird is a distance d_{2} in front of the mirror; the plane of its image is that same distance d_{2} behind the mirror. The lateral distance between you and the bird is $d_{3}=5.00$ m . We denote the distance from the camera to the mirror as d_{1}, and we construct a right triangle out of d_{3} and the distance between the camera and the image plane $\left(d_{1}+d_{2}\right)$. Thus, the focus distance is

$$
d=\sqrt{\left(d_{1}+d_{2}\right)^{2}+d_{3}^{2}}=\sqrt{(4.30 \mathrm{~m}+3.30 \mathrm{~m})^{2}+(5.00 \mathrm{~m})^{2}}=9.10 \mathrm{~m} .
$$

3. The intensity of light from a point source varies as the inverse of the square of the distance from the source. Before the mirror is in place, the intensity at the center of the screen is given by $I_{P}=A / d^{2}$, where A is a constant of proportionality. After the mirror is in place, the light that goes directly to the screen contributes intensity I_{P}, as before. Reflected light also reaches the screen. This light appears to come from the image of the source, a distance d behind the mirror and a distance $3 d$ from the screen. Its contribution to the intensity at the center of the screen is

$$
I_{r}=\frac{A}{(3 d)^{2}}=\frac{A}{9 d^{2}}=\frac{I_{P}}{9} .
$$

The total intensity at the center of the screen is

$$
I=I_{P}+I_{r}=I_{P}+\frac{I_{P}}{9}=\frac{10}{9} I_{P} .
$$

The ratio of the new intensity to the original intensity is $I / I_{P}=10 / 9=1.11$.
4. When S is barely able to see B the light rays from B must reflect to S off the edge of the mirror. The angle of reflection in this case is 45°, since a line drawn from S to the mirror's edge makes a 45° angle relative to the wall. By the law of reflection, we find

$$
\frac{x}{d / 2}=\tan 45^{\circ} \Rightarrow x=\frac{d}{2}=\frac{3.0 \mathrm{~m}}{2}=1.5 \mathrm{~m} .
$$

5. We apply the law of refraction, assuming all angles are in radians:

$$
\frac{\sin \theta}{\sin \theta^{\prime}}=\frac{n_{w}}{n_{\text {air }}}
$$

which in our case reduces to $\theta^{\prime} \approx \theta / n_{w}$ (since both θ and θ^{\prime} are small, and $n_{\text {air }} \approx 1$). We refer to our figure below.

The object O is a vertical distance d_{1} above the water, and the water surface is a vertical distance d_{2} above the mirror. We are looking for a distance d (treated as a positive number) below the mirror where the image I of the object is formed. In the triangle $O A B$

$$
|A B|=d_{1} \tan \theta \approx d_{1} \theta,
$$

and in the triangle $C B D$

$$
|B C|=2 d_{2} \tan \theta^{\prime} \approx 2 d_{2} \theta^{\prime} \approx \frac{2 d_{2} \theta}{n_{w}}
$$

Finally, in the triangle $A C I$, we have $|A I|=d+d_{2}$. Therefore,

$$
\begin{aligned}
d & =|A I|-d_{2}=\frac{|A C|}{\tan \theta}-d_{2} \approx \frac{|A B|+|B C|}{\theta}-d_{2}=\left(\frac{d_{1}}{\theta}+\frac{2 d_{2} \theta}{n_{w}}\right) \frac{1}{\theta}-d_{2}=d_{1}+\frac{2 d_{2}}{n_{w}}-d_{2} \\
& =250 \mathrm{~cm}+\frac{2(200 \mathrm{~cm})}{1.33}-200 \mathrm{~cm}=351 \mathrm{~cm} .
\end{aligned}
$$

6. We note from Fig. 34-32 that $m=\frac{1}{2}$ when $p=5 \mathrm{~cm}$. Thus Eq. 34-7 (the magnification equation) gives us $i=-10 \mathrm{~cm}$ in that case. Then, by Eq. 34-9 (which applies to mirrors and thin-lenses) we find the focal length of the mirror is $f=10 \mathrm{~cm}$. Next, the problem asks us to consider $p=14 \mathrm{~cm}$. With the focal length value already determined, then Eq. $34-9$ yields $i=35 \mathrm{~cm}$ for this new value of object distance. Then, using Eq. 34-7 again, we find $m=i / p=-2.5$.
7. We use Eqs. 34-3 and 34-4, and note that $m=-i / p$. Thus,

$$
\frac{1}{p}-\frac{1}{p m}=\frac{1}{f}=\frac{2}{r}
$$

We solve for p :

$$
p=\frac{r}{2}\left(1-\frac{1}{m}\right)=\frac{35.0 \mathrm{~cm}}{2}\left(1-\frac{1}{2.50}\right)=10.5 \mathrm{~cm} .
$$

8. The graph in Fig. 34-33 implies that $f=20 \mathrm{~cm}$, which we can plug into Eq. 34-9 (with $p=70 \mathrm{~cm}$) to obtain $i=+28 \mathrm{~cm}$.
9. We recall that a concave mirror has a positive value of focal length.
(a) Then (with $f=+12 \mathrm{~cm}$ and $p=+18 \mathrm{~cm}$), the radius of curvature is $r=2 f=+24 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=+36 \mathrm{~cm}$.
(c)Then, by Eq. 34-7, the lateral magnification is $m=-i / p=-2.0$.
(d) Since the image distance computation produced a positive value, the image is real (R).
(e) The magnification computation produced a negative value, so it is inverted (I).
(f) For a mirror, the side where a real image forms is the same as the side where the object is.
10. A concave mirror has a positive value of focal length.
(a) Then (with $f=+10 \mathrm{~cm}$ and $p=+15 \mathrm{~cm}$), the radius of curvature is $r=2 f=+20 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=+30 \mathrm{~cm}$.
(c)Then, by Eq. 34-7, $m=-i / p=-2.0$.
(d) Since the image distance computation produced a positive value, the image is real (R).
(e) The magnification computation produced a negative value, so it is inverted (I).
(f) For a mirror, the side where a real image forms is the same as the side where the object is.
11. A concave mirror has a positive value of focal length.
(a) Then (with $f=+18 \mathrm{~cm}$ and $p=+12 \mathrm{~cm}$), the radius of curvature is $r=2 f=+36 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-36 \mathrm{~cm}$.
(c) Then, by Eq. 34-7, $m=-i / p=+3.0$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
12. A concave mirror has a positive value of focal length.
(a) Then (with $f=+36 \mathrm{~cm}$ and $p=+24 \mathrm{~cm}$), the radius of curvature is $r=2 f=+72 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-72 \mathrm{~cm}$.
(c) Then, by Eq. 34-7, $m=-i / p=+3.0$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
13. A convex mirror has a negative value of focal length.
(a) Then (with $f=-10 \mathrm{~cm}$ and $p=+8 \mathrm{~cm}$), the radius of curvature is $r=2 f=-20 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-4.4 \mathrm{~cm}$.
(c) Then, by Eq. 34-7, $m=-i / p=+0.56$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
14. A convex mirror has a negative value of focal length.
(a) Then (with $f=-35 \mathrm{~cm}$ and $p=+22 \mathrm{~cm}$), the radius of curvature is $r=2 f=-70 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-14 \mathrm{~cm}$.
(c) Then, by Eq. 34-7, $m=-i / p=+0.61$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
15. A convex mirror has a negative value of focal length.
(a) Then (with $f=-8 \mathrm{~cm}$ and $p=+10 \mathrm{~cm}$), the radius of curvature is $r=2 f=-16 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-4.4 \mathrm{~cm}$.
(c) Then, by Eq. $34-7, m=-i / p=+0.44$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
16. A convex mirror has a negative value of focal length.
(a) Then (with $f=-14 \mathrm{~cm}$ and $p=+17 \mathrm{~cm}$), the radius of curvature is $r=2 f=-28 \mathrm{~cm}$.
(b) Eq. 34-9 yields $i=p f /(p-f)=-7.7 \mathrm{~cm}$.
(c) Then, by Eq. 34-7, $m=-i / p=+0.45$.
(d) Since the image distance is negative, the image is virtual (V).
(e) The magnification computation produced a positive value, so it is upright [not inverted] (NI).
(f) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
17. (a) From Eqs. 34-3 and 34-4, we obtain

$$
i=p f /(p-f)=p r /(2 p-r) .
$$

Differentiating both sides with respect to time and using $v_{O}=-d p / d t$, we find

$$
v_{I}=\frac{d i}{d t}=\frac{d}{d t}\left(\frac{p r}{2 p-r}\right)=\frac{-r v_{O}(2 p-r)+2 v_{O} p r}{(2 p-r)^{2}}=\left(\frac{r}{2 p-r}\right)^{2} v_{O} .
$$

(b) If $p=30 \mathrm{~cm}$, we obtain

$$
v_{I}=\left[\frac{15 \mathrm{~cm}}{2(30 \mathrm{~cm})-15 \mathrm{~cm}}\right]^{2}(5.0 \mathrm{~cm} / \mathrm{s})=0.56 \mathrm{~cm} / \mathrm{s}
$$

(c) If $p=8.0 \mathrm{~cm}$, we obtain

$$
v_{I}=\left[\frac{15 \mathrm{~cm}}{2(8.0 \mathrm{~cm})-15 \mathrm{~cm}}\right]^{2}(5.0 \mathrm{~cm} / \mathrm{s})=1.1 \times 10^{3} \mathrm{~cm} / \mathrm{s} .
$$

(d) If $p=1.0 \mathrm{~cm}$, we obtain

$$
v_{I}=\left[\frac{15 \mathrm{~cm}}{2(1.0 \mathrm{~cm})-15 \mathrm{~cm}}\right]^{2}(5.0 \mathrm{~cm} / \mathrm{s})=6.7 \mathrm{~cm} / \mathrm{s} .
$$

18. We note that there is "singularity" in this graph (Fig. 34-34) like there was in Fig. 3433), which tells us that there is no point where $p=f$ (which causes Eq. 34-9 to "blow up"). Since $p>0$, as usual, then this means that the focal length is not positive. We know it is not a flat mirror since the curve shown does decrease with p, so we conclude it is a convex mirror. We examine the point where $m=0.50$ and $p=10 \mathrm{~cm}$. Combining Eq. 34-7 and Eq. 34-9 we obtain $m=-i / p=-f /(p-f)$. This yields $f=-10 \mathrm{~cm}$ (verifying our expectation that the mirror is convex). Now, for $p=21 \mathrm{~cm}$, we find $m=-f /(p-f)$ $=+0.32$.
19. (a) The mirror is concave.
(b) $f=+20 \mathrm{~cm}$ (positive, because the mirror is concave).
(c) $r=2 f=2(+20 \mathrm{~cm})=+40 \mathrm{~cm}$.
(d) The object distance $p=+10 \mathrm{~cm}$, as given in the Table.
(e) The image distance is $i=(1 / f-1 / p)^{-1}=(1 / 20 \mathrm{~cm}-1 / 10 \mathrm{~cm})^{-1}=-20 \mathrm{~cm}$.
(f) $m=-i / p=-(-20 \mathrm{~cm} / 10 \mathrm{~cm})=+2.0$.
(g) The image is virtual (V).
(h) The image is upright or not inverted (NI).
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
20. (a) The fact that the magnification is 1 means that the mirror is flat (plane).
(b) Flat mirrors (and flat "lenses" such as a window pane) have $f=\infty$ (or $f=-\infty$ since the sign does not matter in this extreme case).
(c) The radius of curvature is $r=2 f=\infty$ (or $r=-\infty$) by Eq. 34-3.
(d) $p=+10 \mathrm{~cm}$, as given in the Table.
(e) Eq. 34-4 readily yields $i=p f /(p-f)=-10 \mathrm{~cm}$.
(f) The magnification is $m=-i / p=+1.0$.
(g) The image is virtual since $i<0$.
(h) The image is upright, or not inverted (NI).
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
21. (a) Since $f>0$, the mirror is concave.
(b) $f=+20 \mathrm{~cm}$, as given in the Table.
(c) Using Eq. 34-3, we obtain $r=2 f=+40 \mathrm{~cm}$.
(d) $p=+10 \mathrm{~cm}$, as given in the Table.
(e) Eq. 34-4 readily yields $i=p f /(p-f)=+60 \mathrm{~cm}$.
(f) Eq. 34-6 gives $m=-i / p=-2.0$.
(g) Since $i>0$, the image is real (R).
(h) Since $m<0$, the image is inverted (I).
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
22. (a) Since $m=-1 / 2<0$, the image is inverted. With that in mind, we examine the various possibilities in Figs. 34-7, 34-9 and 34-10, and note that an inverted image (for reflections from a single mirror) can only occur if the mirror is concave (and if $p>f$).
(b) Next, we find i from Eq. 34-6 (which yields $i=m p=30 \mathrm{~cm}$) and then use this value (and Eq. 34-4) to compute the focal length; we obtain $f=+20 \mathrm{~cm}$.
(c) Then, Eq. 34-3 gives $r=2 f=+40 \mathrm{~cm}$.
(d) $p=60 \mathrm{~cm}$, as given in the Table.
(e) As already noted, $i=+30 \mathrm{~cm}$.
(f) $m=-1 / 2$, as given.
(g) Since $i>0$, the image is real (R).
(h) As already noted, the image is inverted (I).
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
23. (a) Since $r<0$ then (by Eq. 34-3) $f<0$, which means the mirror is convex.
(b) The focal length is $f=r / 2=-20 \mathrm{~cm}$.
(c) $r=-40 \mathrm{~cm}$, as given in the Table.
(d) Eq. 34-4 leads to $p=+20 \mathrm{~cm}$.
(e) $i=-10 \mathrm{~cm}$, as given in the Table.
(f) Eq. 34-6 gives $m=+0.50$.
(g) The image is virtual (V).
(h) The image is upright, or not inverted (NI).
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
24. (a) Since $0<m<1$, the image is upright but smaller than the object. With that in mind, we examine the various possibilities in Figs. 34-7, 34-9 and 34-10, and note that such an image (for reflections from a single mirror) can only occur if the mirror is convex.
(b) Thus, we must put a minus sign in front of the " 20 " value given for f, i.e., $f=-20 \mathrm{~cm}$.
(c) Eq. 34-3 then gives $r=2 f=-40 \mathrm{~cm}$.
(d) To solve for i and p we must set up Eq. 34-4 and Eq. 34-6 as a simultaneous set and solve for the two unknowns. The results are $p=+180 \mathrm{~cm}=+1.8 \mathrm{~m}$, and
(e) $i=-18 \mathrm{~cm}$.
(f) $m=0.10$, as given in the Table.
(g) The image is virtual (V) since $i<0$.
(h) The image is upright, or not inverted (NI), as already noted.
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
25. (a) The mirror is convex, as given.
(b) Knowing the mirror is convex means we must put a minus sign in front of the " 40 " value given for r. Then, Eq. 34-3 yields $f=r / 2=-20 \mathrm{~cm}$.
(c) $r=-40 \mathrm{~cm}$.
(d) The fact that the mirror is convex also means that we need to insert a minus sign in front of the " 4.0 " value given for i, since the image in this case must be virtual (see Figs. $34-7,34-9$ and 34-10). Eq. $34-4$ leads to $p=+5.0 \mathrm{~cm}$.
(e) As noted above, $i=-4.0$.
(f) Eq. 34-6 gives $m=+0.8$.
(g) The image is virtual (V) since $i<0$.
(h) The image is upright, or not inverted (NI).
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
26. (a) Since the image is inverted, we can scan Figs. $34-7,34-9$ and $34-10$ in the textbook and find that the mirror must be concave.
(b) This also implies that we must put a minus sign in front of the " 0.50 " value given for m. To solve for f, we first find $i=-p m=+12 \mathrm{~cm}$ from Eq. 34-6 and plug into Eq. 34-4; the result is $f=+8 \mathrm{~cm}$.
(c) Thus, $r=2 f=+16 \mathrm{~cm}$.
(d) $p=+24 \mathrm{~cm}$, as given in the Table.
(e) As shown above, $i=-p m=+12 \mathrm{~cm}$.
(f) $m=-0.50$, with a minus sign.
(g) The image is real (R) since $i>0$.
(h) The image is inverted (I), as noted above.
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
27. (a) The fact that the focal length is given as a negative value means the mirror is convex.
(b) $f=-30 \mathrm{~cm}$, as given in the Table.
(c) The radius of curvature is $r=2 f=-60 \mathrm{~cm}$.
(d) Eq. 34-9 gives $p=i f /(i-f)=+30 \mathrm{~cm}$.
(e) $i=-15$, as given in the Table.
(f) From Eq. 34-7, we get $m=+1 / 2=0.50$.
(g) The image distance is given as a negative value (as it would have to be, since the mirror is convex), which means the image is virtual (V).
(h) Since $m>0$, the image is upright (not inverted: NI).
(i) The image is on the side of the mirror opposite to the object.
28. (a) We are told that the image is on the same side as the object; this means the image is real (R) and further implies that the mirror is concave.
(b) The focal distance is $f=+20 \mathrm{~cm}$.
(c) The radius of curvature is $r=2 f=+40 \mathrm{~cm}$.
(d) $p=+60 \mathrm{~cm}$, as given in the Table.
(e) Eq. 34-9 gives $i=p f /(p-f)=+30 \mathrm{~cm}$.
(f) Eq. 34-7 gives $m=-i / p=-0.50$.
(g) As noted above, the image is real (R).
(h) The image is inverted (I) since $m<0$.
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
29. (a) As stated in the problem, the image is inverted (I) which implies that it is real (R). It also (more directly) tells us that the magnification is equal to a negative value: $m=$ -0.40 . By Eq. 34-7, the image distance is consequently found to be $i=+12 \mathrm{~cm}$. Real images don't arise (under normal circumstances) from convex mirrors, so we conclude that this mirror is concave.
(b) The focal length is $f=+8.6 \mathrm{~cm}$, using Eq. $34-9 f=+8.6 \mathrm{~cm}$.
(c) The radius of curvature is $r=2 f=+17.2 \mathrm{~cm} \approx 17 \mathrm{~cm}$.
(d) $p=+30 \mathrm{~cm}$, as given in the Table.
(e) As noted above, $i=+12 \mathrm{~cm}$.
(f) Similarly, $m=-0.40$, with a minus sign.
(g) The image is real (R).
(h) The image is inverted (I).
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
30. (a) From Eq. 34-7, we get $i=-m p=+28 \mathrm{~cm}$, which implies the image is real (R) and on the same side as the object. Since $m<0$, we know it was inverted (I). From Eq. 34-9, we obtain $f=i p /(i+p)=+16 \mathrm{~cm}$, which tells us (among other things) that the mirror is concave.
(b) $f=i p /(i+p)=+16 \mathrm{~cm}$.
(c) $r=2 f=+32 \mathrm{~cm}$.
(d) $p=+40 \mathrm{~cm}$, as given in the Table.
(e) $i=-m p=+28 \mathrm{~cm}$.
(f) $m=-0.70$, as given in the Table.
(g) The image is real (R).
(h) The image is inverted (I).
(i) For a mirror, the side where a real image forms is the same as the side where the object is.
31. (a) The fact that the magnification is equal to a positive value means that the image is upright (not inverted: NI), and further implies (by Eq. 34-7) that the image distance (i) is equal to a negative value \Rightarrow the image is virtual (V). Looking at the discussion of mirrors in sections 34-3 and 34-4, we see that a positive magnification of magnitude less than unity is only possible for convex mirrors.
(b) For $0<m<1$ this will only give a positive value for $p=f /(1-1 / m)$ if $f<0$. Thus, with a minus sign, we have $f=-30 \mathrm{~cm}$.
(c) $r=2 f=-60 \mathrm{~cm}$.
(d) $p=f /(1-1 / m)=+120 \mathrm{~cm}=1.2 \mathrm{~m}$.
(e) $i=-m p=-24 \mathrm{~cm}$.
(f) $m=+0.20$, as given in the Table.
(g) The image is virtual (V).
(h) The image is upright, or not inverted (NI).
(i) For a mirror, the side where a virtual image forms is opposite from the side where the object is.
32. (a) We use Eq. 34-8 and note that $n_{1}=n_{\text {air }}=1.00, n_{2}=n, p=\infty$, and $i=2 r$:

$$
\frac{1.00}{\infty}+\frac{n}{2 r}=\frac{n-1}{r} .
$$

We solve for the unknown index: $n=2.00$.
(b) Now $i=r$ so Eq. $34-8$ becomes

$$
\frac{n}{r}=\frac{n-1}{r},
$$

which is not valid unless $n \rightarrow \infty$ or $r \rightarrow \infty$. It is impossible to focus at the center of the sphere.
33. We use Eq. 34-8 (and Fig. 34-10(d) is useful), with $n_{1}=1.6$ and $n_{2}=1$ (using the rounded-off value for air).

$$
\frac{1.6}{p}+\frac{1}{i}=\frac{1-1.6}{r}
$$

Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that $r=-5.0 \mathrm{~cm}$), we obtain $i=-2.4 \mathrm{~cm}$ for objects at $p=3.0 \mathrm{~cm}$. Returning to Fig. 34-36 (and noting the location of the observer), we conclude that the tabletop seems 7.4 cm away.
34. In addition to $n_{1}=1.0$, we are given (a) $n_{2}=1.5$, (b) $p=+10$ and (c) $r=+30$.
(d) Eq. 34-8 yields

$$
i=n_{2}\left(\frac{n_{2}-n_{1}}{r}-\frac{n_{1}}{p}\right)^{-1}=1.5\left(\frac{1.5-1.0}{30 \mathrm{~cm}}-\frac{1.0}{10 \mathrm{~cm}}\right)=-18 \mathrm{~cm} .
$$

(e) The image is virtual (V) and upright since $i<0$.
(f) The object and its image are in the same side. The ray diagram would be similar to Fig. 34-11(c) in the textbook.
35. In addition to $n_{1}=1.0$, we are given (a) $n_{2}=1.5$, (b) $p=+10$ and (d) $i=-13$.
(c) Eq. 34-8 yields

$$
r=\left(n_{2}-n_{1}\right)\left(\frac{n_{1}}{p}+\frac{n_{2}}{i}\right)^{-1}=(1.5-1.0)\left(\frac{1.0}{10}+\frac{1.5}{-13}\right)^{-1}=-32.5 \mathrm{~cm} \approx-33 \mathrm{~cm} .
$$

(e) The image is virtual (V) and upright.
(f) The object and its image are in the same side. The ray diagram would be similar to Fig. 34-11(e).
36. In addition to $n_{1}=1.0$, we are given (a) $n_{2}=1.5$, (c) $r=+30$ and (d) $i=+600$.
(b) Eq. 34-8 gives

$$
p=\frac{n_{1}}{\frac{n_{2}-n_{1}}{r}-\frac{n_{2}}{i}}=\frac{1.0}{\frac{1.5-1.0}{30}-\frac{1.5}{600}}=71 \mathrm{~cm} .
$$

(d) With $i>0$, the image is real (R) and inverted.
(e) The object and its image are in the opposite side. The ray diagram would be similar to Fig. 34-11(a) in the textbook.
37. In addition to $n_{1}=1.5$, we are given (a) $n_{2}=1.0$, (b) $p=+10$ and (d) $i=-6.0$.
(c) We manipulate Eq. 34-8 to find r :

$$
r=\left(n_{2}-n_{1}\right)\left(\frac{n_{1}}{p}+\frac{n_{2}}{i}\right)^{-1}=(1.0-1.5)\left(\frac{1.5}{10}+\frac{1.0}{-6.0}\right)^{-1}=30 \mathrm{~cm} .
$$

(e) The image is virtual (V) and upright.
(f) The object and its image are in the same side. The ray diagram would be similar to Fig. 34-11(f) in the textbook, but with the object and the image located closer to the surface.
38. In addition to $n_{1}=1.5$, we are given (a) $n_{2}=1.0$, (c) $r=-30$ and (d) $i=-7.5$.
(b)We manipulate Eq. 34-8 to find p :

$$
p=\frac{n_{1}}{\frac{n_{2}-n_{1}}{r}-\frac{n_{2}}{i}}=\frac{1.5}{\frac{1.0-1.5}{-30}-\frac{1.0}{-7.5}}=10 \mathrm{~cm} .
$$

(e) The image is virtual (V) and upright.
(f) The object and its image are in the same side. The ray diagram would be similar to Fig. 34-11(d) in the textbook.
39. In addition to $n_{1}=1.5$, we are given (a) $n_{2}=1.0$, (b) $p=+70$ and (c) $r=+30$.
(d) We manipulate Eq. 34-8 to find the image distance:

$$
i=n_{2}\left(\frac{n_{2}-n_{1}}{r}-\frac{n_{1}}{p}\right)^{-1}=1.0\left(\frac{1.0-1.5}{30 \mathrm{~cm}}-\frac{1.5}{70 \mathrm{~cm}}\right)^{-1}=-26 \mathrm{~cm} .
$$

(e) The image is virtual (V) and upright.
(f) The object and its image are in the same side. The ray diagram would be similar to Fig. 34-11(f) in the textbook.
40. In addition to $n_{1}=1.5$, we are given (b) $p=+100$, (c) $r=-30$ and (d) $i=+600$.
(a) We manipulate Eq. 34-8 to separate the indices:

$$
n_{2}\left(\frac{1}{r}-\frac{1}{i}\right)=\left(\frac{n_{1}}{p}+\frac{n_{1}}{r}\right) \Rightarrow n_{2}\left(\frac{1}{-30}-\frac{1}{600}\right)=\left(\frac{1.5}{100}+\frac{1.5}{-30}\right) \Rightarrow n_{2}(-0.035)=-0.035
$$

which implies $n_{2}=1.0$.
(e) The image is real (R) and inverted.
(f) The object and its image are in the opposite side. The ray diagram would be similar to Fig. 34-11(b) in the textbook.
41. Let the diameter of the Sun be d_{s} and that of the image be d_{i}. Then, Eq. 34-5 leads to

$$
\begin{aligned}
d_{i} & =|m| d_{s}=\left(\frac{i}{p}\right) d_{s} \approx\left(\frac{f}{p}\right) d_{s}=\frac{\left(20.0 \times 10^{-2} \mathrm{~m}\right)(2)\left(6.96 \times 10^{8} \mathrm{~m}\right)}{1.50 \times 10^{11} \mathrm{~m}}=1.86 \times 10^{-3} \mathrm{~m} \\
& =1.86 \mathrm{~mm}
\end{aligned}
$$

42. The singularity the graph (where the curve goes to $\pm \infty$) is at $p=30 \mathrm{~cm}$, which implies (by Eq. 34-9) that $f=30 \mathrm{~cm}>0$ (converging type lens). For $p=100 \mathrm{~cm}$, Eq. 34-9 leads to $i=+43 \mathrm{~cm}$.
43. We use the lens maker's equation, Eq. 34-10:

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

where f is the focal length, n is the index of refraction, r_{1} is the radius of curvature of the first surface encountered by the light and r_{2} is the radius of curvature of the second surface. Since one surface has twice the radius of the other and since one surface is convex to the incoming light while the other is concave, set $r_{2}=-2 r_{1}$ to obtain

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}+\frac{1}{2 r_{1}}\right)=\frac{3(n-1)}{2 r_{1}}
$$

(a) We solve for the smaller radius r_{1} :

$$
r_{1}=\frac{3(n-1) f}{2}=\frac{3(1.5-1)(60 \mathrm{~mm})}{2}=45 \mathrm{~mm} .
$$

(b) The magnitude of the larger radius is $\left|r_{2}\right|=2 r_{1}=90 \mathrm{~mm}$.
44. Since the focal length is a constant for the whole graph, then $1 / p+1 / i=$ constant. Consider the value of the graph at $p=20 \mathrm{~cm}$; we estimate its value there to be -10 cm . Therefore, $1 / 20+1 /(-10)=1 / 70+1 / i_{\text {new }}$. Thus, $i_{\text {new }}=-16 \mathrm{~cm}$.
45. (a) We use Eq. 34-10:

$$
f=\left[(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)\right]^{-1}=\left[(1.5-1)\left(\frac{1}{\infty}-\frac{1}{-20 \mathrm{~cm}}\right)\right]^{-1}=+40 \mathrm{~cm} .
$$

(b) From Eq. 34-9,

$$
i=\left(\frac{1}{f}-\frac{1}{p}\right)^{-1}=\left(\frac{1}{40 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}\right)^{-1}=\infty .
$$

46. Combining Eq. 34-7 and Eq. 34-9, we have $m(p-f)=-f$. The graph in Fig. 34-39 indicates that $m=2$ where $p=5 \mathrm{~cm}$, so our expression yields $f=10 \mathrm{~cm}$. Plugging this back into our expression and evaluating at $p=14 \mathrm{~cm}$ yields $m=-2.5$.
47. We solve Eq. 34-9 for the image distance:

$$
i=\left(\frac{1}{f}-\frac{1}{p}\right)^{-1}=\frac{f p}{p-f}
$$

The height of the image is thus

$$
h_{i}=m h_{p}=\left(\frac{i}{p}\right) h_{p}=\frac{f h_{p}}{p-f}=\frac{(75 \mathrm{~mm})(1.80 \mathrm{~m})}{27 \mathrm{~m}-0.075 \mathrm{~m}}=5.0 \mathrm{~mm} .
$$

48. Combining Eq. 34-7 and Eq. 34-9, we have $m(p-f)=-f$. The graph in Fig. 34-40 indicates that $m=0.5$ where $p=15 \mathrm{~cm}$, so our expression yields $f=-15 \mathrm{~cm}$. Plugging this back into our expression and evaluating at $p=35 \mathrm{~cm}$ yields $m=+0.30$.
49. Using Eq. 34-9 and noting that $p+i=d=44 \mathrm{~cm}$, we obtain $p^{2}-d p+d f=0$. Therefore,

$$
p=\frac{1}{2}\left(d \pm \sqrt{\left.d^{2}-4 d f\right)}=22 \mathrm{~cm} \pm \frac{1}{2} \sqrt{(44 \mathrm{~cm})^{2}-4(44 \mathrm{~cm})(11 \mathrm{~cm})}=22 \mathrm{~cm} .\right.
$$

50. We recall that for a converging (C) lens, the focal length value should be positive ($f=$ +4 cm).
(a) Eq. 34-9 gives $i=p f /(p-f)=+5.3 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=-0.33$.
(c) The fact that the image distance i is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image is on the side opposite from the object (see Fig. 34-14).
51. We recall that for a converging (C) lens, the focal length value should be positive ($f=$ +16 cm).
(a) Eq. 34-9 gives $i=p f /(p-f)=-48 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+4.0$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
52. We recall that for a diverging (D) lens, the focal length value should be negative (f $=-6 \mathrm{~cm}$).
(a) Eq. 34-9 gives $i=p f /(p-f)=-3.8 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.38$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
53. We recall that for a diverging (D) lens, the focal length value should be negative (f $=-12 \mathrm{~cm}$).
(a) Eq. 34-9 gives $i=p f /(p-f)=-4.8 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.60$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
54. We recall that for a converging (C) lens, the focal length value should be positive ($f=$ +35 cm).
(a) Eq. 34-9 gives $i=p f /(p-f)=-88 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+3.5$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
55. We recall that for a diverging (D) lens, the focal length value should be negative (f $=-14 \mathrm{~cm}$).
(a) Eq. 34-9 gives $i=p f /(p-f)=-8.6 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.39$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
56. We recall that for a diverging (D) lens, the focal length value should be negative (f $=-31 \mathrm{~cm}$).
(a) Eq. 34-9 gives $i=p f /(p-f)=-8.7 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.72$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image is on the same side as the object (see Fig. 34-14).
57. We recall that for a converging (C) lens, the focal length value should be positive ($f=$ +20 cm).
(a) Eq. 34-9 gives $i=p f /(p-f)=+36 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=-0.80$.
(c) The fact that the image distance is a positive value means the image is real (R).
(d) A negative value of magnification means the image is inverted (I).
(e) The image is on the opposite side of the object (see Fig. 34-14).
58. (a) A convex (converging) lens, since a real image is formed.
(b) Since $i=d-p$ and $i / p=1 / 2$,

$$
p=\frac{2 d}{3}=\frac{2(40.0 \mathrm{~cm})}{3}=26.7 \mathrm{~cm} .
$$

(c) The focal length is

$$
f=\left(\frac{1}{i}+\frac{1}{p}\right)^{-1}=\left(\frac{1}{d / 3}+\frac{1}{2 d / 3}\right)^{-1}=\frac{2 d}{9}=\frac{2(40.0 \mathrm{~cm})}{9}=8.89 \mathrm{~cm} .
$$

59. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=+84 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=-1.4$.
(c) The fact that the image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image is on the side opposite from the object (see Fig. 34-14).
60. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=-26 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+4.3$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image it is on the same side as the object (see Fig. 34-14).
61. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=-18 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.76$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image it is on the same side as the object (see Fig. 34-14).
62. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=-9.7 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.54$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image it is on the same side as the object (see Fig. 34-14).
63. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=-30 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+0.86$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image it is on the same side as the object (see Fig. 34-14).
64. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=-63 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=+2.2$.
(c) The fact that the image distance is a negative value means the image is virtual (V).
(d) A positive value of magnification means the image is not inverted (NI).
(e) The image it is on the same side as the object (see Fig. 34-14).
65. (a) Combining Eq. 34-9 and Eq. 34-10 gives $i=+55 \mathrm{~cm}$.
(b) Eq. 34-7 give $m=-i / p=-0.74$.
(c) The fact that the image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image is on the side opposite from the object (see Fig. 34-14).
66. (a) Eq. 34-10 yields $f=\frac{1}{n-1}\left(1 / r_{1}-1 / r_{2}\right)^{-1}=+30 \mathrm{~cm}$. Since $f>0$, this must be a converging ("C") lens. From Eq. 34-9, we obtain

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{30}-\frac{1}{10}}=-15 \mathrm{~cm} .
$$

(b) Eq. 34-6 yields $m=-i / p=-(-15) / 10=+1.5$.
(c) Since $i<0$, the image is virtual (V).
(d) Since $m>0$, the image is upright, or not inverted (NI).
(e) The image it is on the same side as the object. The ray diagram would be similar to Fig. 34-15(b) in the textbook.
67. (a) Eq. 34-10 yields $f=\frac{1}{n-1}\left(1 / r_{1}-1 / r_{2}\right)^{-1}=-30 \mathrm{~cm}$. Since $f<0$, this must be a diverging ("D") lens. From Eq. 34-9, we obtain

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{-30}-\frac{1}{10}}=-7.5 \mathrm{~cm} .
$$

(b) Eq. 34-6 yields $m=-i / p=-(-7.5) / 10=+0.75$.
(c) Since $i<0$, the image is virtual (V).
(d) Since $m>0$, the image is upright, or not inverted (NI).
(e) The image it is on the same side as the object. The ray diagram would be similar to Fig. 34-15(c) in the textbook.
68. (a) Eq. 34-10 yields $f=\frac{1}{n-1}\left(1 / r_{1}-1 / r_{2}\right)^{-1}=-120 \mathrm{~cm}$. Since $f<0$, this must be a diverging ("D") lens. From Eq. 34-9, we obtain

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{-120}-\frac{1}{10}}=-9.2 \mathrm{~cm} .
$$

(b) Eq. 34-6 yields $m=-i / p=-(-9.2) / 10=+0.92$.
(c) Since $i<0$, the image is virtual (V).
(d) Since $m>0$, the image is upright, or not inverted (NI).
(e) The image it is on the same side as the object. The ray diagram would be similar to Fig. 34-15(c) in the textbook.
69. (a) The fact that $m>1$ means the lens is of the converging type (C) (it may help to look at Fig. 34-14 to illustrate this).
(b) A converging lens implies $f=+20 \mathrm{~cm}$, with a plus sign.
(d) Eq. 34-9 then gives $i=-13 \mathrm{~cm}$.
(e) Eq. 34-7 gives $m=-i / p=+1.7$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
(h) The image it is on the same side as the object (see Fig. 34-14).
70. (a) The fact that $m<1$ and that the image is upright (not inverted: NI) means the lens is of the diverging type (D) (it may help to look at Fig. 34-14 to illustrate this).
(b) A diverging lens implies that $f=-20 \mathrm{~cm}$, with a minus sign.
(d) Eq. 34-9 gives $i=-5.7 \mathrm{~cm}$.
(e) Eq. 34-7 gives $m=-i / p=+0.71$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(h) The image it is on the same side as the object (see Fig. 34-14).
71. (a) Eq. $34-7$ yields $i=-m p=-(0.25)(16)=-4.0 \mathrm{~cm}$. Eq. $34-9$ gives $f=-5.3 \mathrm{~cm}$, which implies the lens is of the diverging type (D).
(b) From (a), we have $f=-5.3 \mathrm{~cm}$.
(d) Similarly, $i=-4.0 \mathrm{~cm}$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
(h) The image it is on the same side as the object (see Fig. 34-14).
72. (a) Eq. $34-7$ readily yields $i=+4.0 \mathrm{~cm}$. Then Eq. $34-9$ gives $f=+3.2 \mathrm{~cm}$, which implies the lens is of the converging type (C).
(b) From (a), we have $f=+3.2 \mathrm{~cm}$.
(d) Similarly, $i=+4.0 \mathrm{~cm}$.
(f) The fact that the image distance is a positive value means the image is real (R).
(g) The fact that the magnification is a negative value means the image is inverted (I).
(h) The image is on the side opposite from the object.
73. (a) Eq. 34-7 readily yields $i=-20 \mathrm{~cm}$. Then Eq. $34-9$ gives $f=+80 \mathrm{~cm}$, which implies the lens is of the converging type (C).
(b) From (a), we have $f=+80 \mathrm{~cm}$.
(d) Similarly, $i=-20 \mathrm{~cm}$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
(h) The image it is on the same side as the object (see Fig. 34-14).
74. (b) Since this is a converging lens ("C") then $f>0$, so we should put a plus sign in front of the " 10 " value given for the focal length.
(d) Eq. 34-9 gives

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{10}-\frac{1}{20}}=+20 \mathrm{~cm} .
$$

(e) From Eq. 34-6, $m=-20 / 20=-1.0$.
(f) The fact that the image distance is a positive value means the image is real (R).
(g) The fact that the magnification is a negative value means the image is inverted (I).
(h) The image is on the side opposite from the object.
75. (a) Since $f>0$, this is a converging lens (" C ").
(d) Eq. 34-9 gives

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{10}-\frac{1}{5}}=-10 \mathrm{~cm} .
$$

(e) From Eq. $34-6, m=-(-10) / 5=+2.0$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
(h) The image it is on the same side as the object (see Fig. 34-14).
76. (a) We are told the magnification is positive and greater than 1 . Scanning the single-lens-image figures in the textbook (Figs. 34-14, 34-15 and 34-17), we see that such a magnification (which implies an upright image larger than the object) is only possible if the lens is of the converging ("C") type (and if $p<f$).
(b) We should put a plus sign in front of the " 10 " value given for the focal length.
(d) Eq. 34-9 gives

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{10}-\frac{1}{5}}=-10 \mathrm{~cm} .
$$

(e) $m=-i / p=+2.0$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
(h) The image it is on the same side as the object (see Fig. 34-14).
77. (a) We are told the magnification is less than 1 , and we note that $p<|f|)$. Scanning Figs. 34-14, 34-15 and 34-17, we see that such a magnification (which implies an image smaller than the object) and object position (being fairly close to the lens) are simultaneously possible only if the lens is of the diverging ("D") type.
(b) Thus, we should put a minus sign in front of the " 10 " value given for the focal length.
(d) Eq. 34-9 gives

$$
i=\frac{1}{\frac{1}{f}-\frac{1}{p}}=\frac{1}{\frac{1}{-10}-\frac{1}{5}}=-3.3 \mathrm{~cm} .
$$

(e) $m=-i / p=+0.67$.
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(g) A positive value of magnification means the image is not inverted (NI).
78. (a) We are told the absolute value of the magnification is 0.5 and that the image was upright (NI). Thus, $m=+0.5$. Using Eq. 34-6 and the given value of p, we find $i=-5.0$ cm ; it is a virtual image. Eq. 34-9 then yields the focal length: $f=-10 \mathrm{~cm}$. Therefore, the lens is of the diverging ("D") type.
(b) From (a), we have $f=-10 \mathrm{~cm}$.
(d) Similarly, $i=-5.0 \mathrm{~cm}$.
(e) $m=+0.5$, with a plus sign
(f) The fact that the image distance i is a negative value means the image is virtual (V).
(h) The image it is on the same side as the object (see Fig. 34-14).
79. (a) Using Eq. 34-6 (which implies the image is inverted) and the given value of p, we find $i=-m p=+5.0 \mathrm{~cm}$; it is a real image. Eq. 34-9 then yields the focal length: $f=+3.3$ cm . Therefore, the lens is of the converging ("C") type.
(b) From (a), we have $f=+3.3 \mathrm{~cm}$.
(d) Similarly, $i=-m p=+5.0 \mathrm{~cm}$.
(f) The fact that the image distance is a positive value means the image is real (R).
(g) The fact that the magnification is a negative value means the image is inverted (I).
(h) The image is on the side opposite from the object. The ray diagram would be similar to Fig. 34-15(a) in the textbook.
80. (a) The image from lens 1 (which has $f_{1}=+15 \mathrm{~cm}$) is at $i_{1}=-30 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=+8 \mathrm{~cm}$) with $p_{2}=d-i_{1}=40 \mathrm{~cm}$. Then Eq. 34-9 (applied to lens 2) yields $i_{2}=+10 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=m_{1} m_{2}=\left(-i_{1} / p_{1}\right)\left(-i_{2} / p_{2}\right)=i_{1} i_{2} / p_{1} p_{2}=-0.75$.
(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image it is on the side opposite from the object (relative to lens 2).
81. (a) The image from lens 1 (which has $f_{1}=+8 \mathrm{~cm}$) is at $i_{1}=24 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=+6 \mathrm{~cm}$) with $p_{2}=d-i_{1}=8 \mathrm{~cm}$. Then Eq. $34-9$ (applied to lens 2) yields $i_{2}=+24 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=m_{1} m_{2}=\left(-i_{1} / p_{1}\right)\left(-i_{2} / p_{2}\right)=i_{1} i_{2} / p_{1} p_{2}=+6.0$.
(c)The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is positive means the image is not inverted (NI).
(e) The image it is on the side opposite from the object (relative to lens 2).
82. (a) The image from lens 1 (which has $f_{1}=+12 \mathrm{~cm}$) is at $i_{1}=+60 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=+10 \mathrm{~cm}$) with $p_{2}=d-i_{1}=7 \mathrm{~cm}$. Then Eq. 34-9 (applied to lens 2) yields $i_{2}=-23 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=m_{1} m_{2}=\left(-i_{1} / p_{1}\right)\left(-i_{2} / p_{2}\right)=i_{1} i_{2} / p_{1} p_{2}=-13$.
(c) The fact that the (final) image distance is negative means the image is virtual (V).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image it is on the same side as the object (relative to lens 2).
83. (a) The image from lens 1 (which has $f_{1}=+9 \mathrm{~cm}$) is at $i_{1}=16.4 \mathrm{~cm}$ (by Eq. $34-9$). This serves as an "object" for lens 2 (which has $f_{2}=+5 \mathrm{~cm}$) with $p_{2}=d-i_{1}=-8.4 \mathrm{~cm}$. Then Eq. 34-9 (applied to lens 2) yields $i_{2}=+3.1 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=m_{1} m_{2}=\left(-i_{1} / p_{1}\right)\left(-i_{2} / p_{2}\right)=i_{1} i_{2} / p_{1} p_{2}=-0.31$.
(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image it is on the side opposite from the object (relative to lens 2). Since this result involves a negative value for p_{2} (and perhaps other "non-intuitive" features), we offer a few words of explanation: lens 1 is converging the rays towards an image (that never gets a chance to form due to the intervening presence of lens 2) that would be real and inverted (and 8.4 cm beyond lens 2's location). Lens 2, in a sense, just causes these rays to converge a little more rapidly, and causes the image to form a little closer (to the lens system) than if lens 2 were not present.
84. (a) The image from lens 1 (which has $f_{1}=-6 \mathrm{~cm}$) is at $i_{1}=-3.4 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=+6 \mathrm{~cm}$) with $p_{2}=d-i_{1}=15.4 \mathrm{~cm}$. Then Eq. 34-9 (applied to lens 2) yields $i_{2}=+9.8 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=-0.27$.
(c) The fact that the (final) image distance is a positive value means the image is real (R).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image it is on the side opposite from the object (relative to lens 2).
85. (a) The image from lens 1 (which has $f_{1}=+6 \mathrm{~cm}$) is at $i_{1}=-12 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=-6 \mathrm{~cm}$) with $p_{2}=d-i_{1}=20 \mathrm{~cm}$. Then Eq. $34-9$ (applied to lens 2) yields $i_{2}=-4.6 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=+0.69$.
(c) The fact that the (final) image distance is negative means the image is virtual (V).
(d) The fact that the magnification is positive means the image is not inverted (NI).
(e) The image it is on the same side as the object (relative to lens 2).
86. (a) The image from lens 1 (which has $f_{1}=+8 \mathrm{~cm}$) is at $i_{1}=+24 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=-8 \mathrm{~cm}$) with $p_{2}=d-i_{1}=6 \mathrm{~cm}$. Then Eq. $34-9$ (applied to lens 2) yields $i_{2}=-3.4 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=-1.1$.
(c) The fact that the (final) image distance is negative means the image is virtual (V).
(d) The fact that the magnification is a negative value means the image is inverted (I).
(e) The image it is on the same side as the object (relative to lens 2).
87. (a) The image from lens 1 (which has $f_{1}=-12 \mathrm{~cm}$) is at $i_{1}=-7.5 \mathrm{~cm}$ (by Eq. 34-9). This serves as an "object" for lens 2 (which has $f_{2}=-8 \mathrm{~cm}$) with $p_{2}=d-i_{1}=17.5 \mathrm{~cm}$. Then Eq. 34-9 (applied to lens 2) yields $i_{2}=-5.5 \mathrm{~cm}$.
(b) Eq. 34-11 yields $M=+0.12$.
(c) The fact that the (final) image distance is negative means the image is virtual (V).
(d) The fact that the magnification is positive means the image is not inverted (NI).
(e) The image it is on the same side as the object (relative to lens 2).
88. The minimum diameter of the eyepiece is given by

$$
d_{\mathrm{ey}}=\frac{d_{\mathrm{ob}}}{m_{\theta}}=\frac{75 \mathrm{~mm}}{36}=2.1 \mathrm{~mm} .
$$

89. (a) If L is the distance between the lenses, then according to Fig. 34-18, the tube length is

$$
s=L-f_{\mathrm{ob}}-f_{\mathrm{ey}}=25.0 \mathrm{~cm}-4.00 \mathrm{~cm}-8.00 \mathrm{~cm}=13.0 \mathrm{~cm} .
$$

(b) We solve $(1 / p)+(1 / i)=\left(1 / f_{\mathrm{ob}}\right)$ for p. The image distance is

$$
i=f_{\mathrm{ob}}+s=4.00 \mathrm{~cm}+13.0 \mathrm{~cm}=17.0 \mathrm{~cm}
$$

so

$$
p=\frac{i f_{\mathrm{ob}}}{i-f_{\mathrm{ob}}}=\frac{(17.0 \mathrm{~cm})(4.00 \mathrm{~cm})}{17.0 \mathrm{~cm}-4.00 \mathrm{~cm}}=5.23 \mathrm{~cm} .
$$

(c) The magnification of the objective is

$$
m=-\frac{i}{p}=-\frac{17.0 \mathrm{~cm}}{5.23 \mathrm{~cm}}=-3.25 .
$$

(d) The angular magnification of the eyepiece is

$$
m_{\theta}=\frac{25 \mathrm{~cm}}{f_{\mathrm{ey}}}=\frac{25 \mathrm{~cm}}{8.00 \mathrm{~cm}}=3.13 .
$$

(e) The overall magnification of the microscope is

$$
M=m m_{\theta}=(-3.25)(3.13)=-10.2 .
$$

90. (a) Without the magnifier, $\theta=h / P_{n}$ (see Fig. 34-17). With the magnifier, letting $i=-$ $|i|=-P_{n}$, we obtain

$$
\frac{1}{p}=\frac{1}{f}-\frac{1}{i}=\frac{1}{f}+\frac{1}{|i|}=\frac{1}{f}+\frac{1}{P_{n}} .
$$

Consequently,

$$
m_{\theta}=\frac{\theta^{\prime}}{\theta}=\frac{h / p}{h / P_{n}}=\frac{1 / f+1 / P_{n}}{1 / P_{n}}=1+\frac{P_{n}}{f}=1+\frac{25 \mathrm{~cm}}{f} .
$$

With $f=10 \mathrm{~cm}, m_{\theta}=1+\frac{25 \mathrm{~cm}}{10 \mathrm{~cm}}=3.5$.
(b) In the case where the image appears at infinity, let $i=-|i| \rightarrow-\infty$, so that $1 / p+1 / i=1 / p=1 / f$, we have

$$
m_{\theta}=\frac{\theta^{\prime}}{\theta}=\frac{h / p}{h / P_{n}}=\frac{1 / f}{1 / P_{n}}=\frac{P_{n}}{f}=\frac{25 \mathrm{~cm}}{f} .
$$

With $f=10 \mathrm{~cm}$,

$$
m_{\theta}=\frac{25 \mathrm{~cm}}{10 \mathrm{~cm}}=2.5 .
$$

91. (a) When the eye is relaxed, its lens focuses far-away objects on the retina, a distance i behind the lens. We set $p=\infty$ in the thin lens equation to obtain $1 / i=1 / f$, where f is the focal length of the relaxed effective lens. Thus, $i=f=2.50 \mathrm{~cm}$. When the eye focuses on closer objects, the image distance i remains the same but the object distance and focal length change. If p is the new object distance and f^{\prime} is the new focal length, then

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f^{\prime}}
$$

We substitute $i=f$ and solve for f^{\prime} :

$$
f^{\prime}=\frac{p f}{f+p}=\frac{(40.0 \mathrm{~cm})(2.50 \mathrm{~cm})}{40.0 \mathrm{~cm}+2.50 \mathrm{~cm}}=2.35 \mathrm{~cm} .
$$

(b) Consider the lens maker's equation

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

where r_{1} and r_{2} are the radii of curvature of the two surfaces of the lens and n is the index of refraction of the lens material. For the lens pictured in Fig. 34-43, r_{1} and r_{2} have about the same magnitude, r_{1} is positive, and r_{2} is negative. Since the focal length decreases, the combination $\left(1 / r_{1}\right)-\left(1 / r_{2}\right)$ must increase. This can be accomplished by decreasing the magnitudes of both radii.
92. We refer to Fig. 34-18. For the intermediate image $p=10 \mathrm{~mm}$ and

$$
i=\left(f_{\mathrm{ob}}+s+f_{\mathrm{ey}}\right)-f_{\mathrm{ey}}=300 \mathrm{~m}-50 \mathrm{~mm}=250 \mathrm{~mm},
$$

so

$$
\frac{1}{f_{\mathrm{ob}}}=\frac{1}{i}+\frac{1}{p}=\frac{1}{250 \mathrm{~mm}}+\frac{1}{10 \mathrm{~mm}} \Rightarrow f_{\mathrm{ob}}=9.62 \mathrm{~mm}
$$

and

$$
s=\left(f_{\mathrm{ob}}+s+f_{\mathrm{ey}}\right)-f_{\mathrm{ob}}-f_{\mathrm{ey}}=300 \mathrm{~mm}-9.62 \mathrm{~mm}-50 \mathrm{~mm}=240 \mathrm{~mm} .
$$

Then from Eq. 34-14,

$$
M=-\frac{s}{f_{\mathrm{ob}}} \frac{25 \mathrm{~cm}}{f_{\mathrm{ey}}}=-\left(\frac{240 \mathrm{~mm}}{9.62 \mathrm{~mm}}\right)\left(\frac{150 \mathrm{~mm}}{50 \mathrm{~mm}}\right)=-125 .
$$

93. (a) Now, the lens-film distance is

$$
i=\left(\frac{1}{f}-\frac{1}{p}\right)^{-1}=\left(\frac{1}{5.0 \mathrm{~cm}}-\frac{1}{100 \mathrm{~cm}}\right)^{-1}=5.3 \mathrm{~cm} .
$$

(b) The change in the lens-film distance is $5.3 \mathrm{~cm}-5.0 \mathrm{~cm}=0.30 \mathrm{~cm}$.
94. (a) In the closest mirror M_{1}, the "first" image I_{1} is 10 cm behind M_{1} and therefore 20 cm from the object O. This is the smallest distance between the object and an image of the object.
(b) There are images from both O and I_{1} in the more distant mirror, M_{2} : an image I_{2} located at 30 cm behind M_{2}. Since O is 30 cm in front of it, I_{2} is 60 cm from O. This is the second smallest distance between the object and an image of the object.
(c) There is also an image I_{3} which is 50 cm behind M_{2} (since I_{1} is 50 cm in front of it). Thus, I_{3} is 80 cm from O. In addition, we have another image I_{4} which is 70 cm behind M_{1} (since I_{2} is 70 cm in front of it). The distance from I_{4} to O for is 80 cm .
(d) Returning to the closer mirror M_{1}, there is an image I_{5} which is 90 cm behind the mirror (since I_{3} is 90 cm in front of it). The distances (measured from O) for I_{5} is 100 cm $=1.0 \mathrm{~m}$.
95. (a) Parallel rays are bent by positive-f lenses to their focal points F_{1}, and rays that come from the focal point positions F_{2} in front of positive- f lenses are made to emerge parallel. The key, then, to this type of beam expander is to have the rear focal point F_{1} of the first lens coincide with the front focal point F_{2} of the second lens. Since the triangles that meet at the coincident focal point are similar (they share the same angle; they are vertex angles), then $W_{f} f f_{2}=W_{i} / f_{1}$ follows immediately. Substituting the values given, we have

$$
W_{f}=\frac{f_{2}}{f_{1}} W_{i}=\frac{30.0 \mathrm{~cm}}{12.5 \mathrm{~cm}}(2.5 \mathrm{~mm})=6.0 \mathrm{~mm} .
$$

(b) The area is proportional to W^{2}. Since intensity is defined as power P divided by area, we have

$$
\frac{I_{f}}{I_{i}}=\frac{P / W_{f}^{2}}{P / W_{i}^{2}}=\frac{W_{i}^{2}}{W_{f}^{2}}=\frac{f_{1}^{2}}{f_{2}^{2}} \Rightarrow I_{f}=\left(\frac{f_{1}}{f_{2}}\right)^{2} I_{i}=1.6 \mathrm{~kW} / \mathrm{m}^{2}
$$

(c) The previous argument can be adapted to the first lens in the expanding pair being of the diverging type, by ensuring that the front focal point of the first lens coincides with the front focal point of the second lens. The distance between the lenses in this case is

$$
f_{2}-\left|f_{1}\right|=30.0 \mathrm{~cm}-26.0 \mathrm{~cm}=4.0 \mathrm{~cm}
$$

96. By Eq. $34-9,1 / i+1 / p$ is equal to constant $(1 / f)$. Thus,

$$
1 /(-10)+1 /(15)=1 / i_{\text {new }}+1 /(70) .
$$

This leads to $i_{\text {new }}=-21 \mathrm{~cm}$.
97. (a) The "object" for the mirror which results in that box-image is equally in front of the mirror $(4 \mathrm{~cm})$. This object is actually the first image formed by the system (produced by the first transmission through the lens); in those terms, it corresponds to $i_{1}=10-4=$ 6 cm . Thus, with $f_{1}=2 \mathrm{~cm}$, Eq. $34-9$ leads to

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}} \Rightarrow p_{1}=3.00 \mathrm{~cm} .
$$

(b) The previously mentioned box-image (4 cm behind the mirror) serves as an "object" (at $p_{3}=14 \mathrm{~cm}$) for the return trip of light through the lens $\left(f_{3}=f_{1}=2 \mathrm{~cm}\right)$. This time, Eq. 34-9 leads to

$$
\frac{1}{p_{3}}+\frac{1}{i_{3}}=\frac{1}{f_{3}} \Rightarrow i_{3}=2.33 \mathrm{~cm} .
$$

98. (a) First, the lens forms a real image of the object located at a distance

$$
i_{1}=\left(\frac{1}{f_{1}}-\frac{1}{p_{1}}\right)^{-1}=\left(\frac{1}{f_{1}}-\frac{1}{2 f_{1}}\right)^{-1}=2 f_{1}
$$

to the right of the lens, or at

$$
p_{2}=2\left(f_{1}+f_{2}\right)-2 f_{1}=2 f_{2}
$$

in front of the mirror. The subsequent image formed by the mirror is located at a distance

$$
i_{2}=\left(\frac{1}{f_{2}}-\frac{1}{p_{2}}\right)^{-1}=\left(\frac{1}{f_{2}}-\frac{1}{2 f_{2}}\right)^{-1}=2 f_{2}
$$

to the left of the mirror, or at

$$
p_{1}^{\prime}=2\left(f_{1}+f_{2}\right)-2 f_{2}=2 f_{1}
$$

to the right of the lens. The final image formed by the lens is at a distance i_{1}^{\prime} to the left of the lens, where

$$
i_{1}^{\prime}=\left(\frac{1}{f_{1}}-\frac{1}{p_{1}^{\prime}}\right)^{-1}=\left(\frac{1}{f_{1}}-\frac{1}{2 f_{1}}\right)^{-1}=2 f_{1}
$$

This turns out to be the same as the location of the original object.
(b) The lateral magnification is

$$
m=\left(-\frac{i_{1}}{p_{1}}\right)\left(-\frac{i_{2}}{p_{2}}\right)\left(-\frac{i_{1}^{\prime}}{p_{1}^{\prime}}\right)=\left(-\frac{2 f_{1}}{2 f_{1}}\right)\left(-\frac{2 f_{2}}{2 f_{2}}\right)\left(-\frac{2 f_{1}}{2 f_{1}}\right)=-1.0 .
$$

(c) The final image is real (R).
(d) It is at a distance i_{1}^{\prime} to the left of the lens,
(e) and inverted (I), as shown in the figure below.

99. We refer to Fig. 34-2 in the textbook. Consider the two light rays, r and r^{\prime}, which are closest to and on either side of the normal ray (the ray that reverses when it reflects). Each of these rays has an angle of incidence equal to θ when they reach the mirror. Consider that these two rays reach the top and bottom edges of the pupil after they have reflected. If ray r strikes the mirror at point A and ray r^{\prime} strikes the mirror at B, the distance between A and B (call it x) is

$$
x=2 d_{o} \tan \theta
$$

where d_{o} is the distance from the mirror to the object. We can construct a right triangle starting with the image point of the object (a distance d_{o} behind the mirror; see I in Fig. 34-2). One side of the triangle follows the extended normal axis (which would reach from I to the middle of the pupil), and the hypotenuse is along the extension of ray r (after reflection). The distance from the pupil to I is $d_{\mathrm{ey}}+d_{o}$, and the small angle in this triangle is again θ. Thus,

$$
\tan \theta=\frac{R}{d_{\mathrm{ey}}+d_{o}}
$$

where R is the pupil radius (2.5 mm). Combining these relations, we find

$$
x=2 d_{o} \frac{R}{d_{\mathrm{ey}}+d_{o}}=2(100 \mathrm{~mm}) \frac{2.5 \mathrm{~mm}}{300 \mathrm{~mm}+100 \mathrm{~mm}}
$$

which yields $x=1.67 \mathrm{~mm}$. Now, x serves as the diameter of a circular area A on the mirror, in which all rays that reflect will reach the eye. Therefore,

$$
A=\frac{1}{4} \pi x^{2}=\frac{\pi}{4}(1.67 \mathrm{~mm})^{2}=2.2 \mathrm{~mm}^{2} .
$$

100. We use Eq. 34-10, with the conventions for signs discussed in §34-6 and §34-7.
(a) For lens 1, the bi-convex (or double convex) case, we have

$$
f=\left[(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)\right]^{-1}=\left[(1.5-1)\left(\frac{1}{40 \mathrm{~cm}}-\frac{1}{-40 \mathrm{~cm}}\right)\right]^{-1}=40 \mathrm{~cm} .
$$

(b) Since $f>0$ the lens forms a real image of the Sun.
(c) For lens 2, of the planar convex type, we find

$$
f=\left[(1.5-1)\left(\frac{1}{\infty}-\frac{1}{-40 \mathrm{~cm}}\right)\right]^{-1}=80 \mathrm{~cm} .
$$

(d) The image formed is real (since $f>0$).
(e) Now for lens 3, of the meniscus convex type, we have

$$
f=\left[(1.5-1)\left(\frac{1}{40 \mathrm{~cm}}-\frac{1}{60 \mathrm{~cm}}\right)\right]^{-1}=240 \mathrm{~cm}=2.4 \mathrm{~m}
$$

(f) The image formed is real (since $f>0$).
(g) For lens 4, of the bi-concave type, the focal length is

$$
f=\left[(1.5-1)\left(\frac{1}{-40 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}\right)\right]^{-1}=-40 \mathrm{~cm} .
$$

(h) The image formed is virtual (since $f<0$).
(i) For lens 5 (plane-concave), we have

$$
f=\left[(1.5-1)\left(\frac{1}{\infty}-\frac{1}{40 \mathrm{~cm}}\right)\right]^{-1}=-80 \mathrm{~cm}
$$

(j) The image formed is virtual (since $f<0$).
(k) For lens 6 (meniscus concave),

$$
f=\left[(1.5-1)\left(\frac{1}{60 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}\right)\right]^{-1}=-240 \mathrm{~cm}=-2.4 \mathrm{~m} .
$$

(1) The image formed is virtual (since $f<0$).
101. (a) The first image is figured using Eq. $34-8$, with $n_{1}=1$ (using the rounded-off value for air) and $n_{2}=8 / 5$.

$$
\frac{1}{p}+\frac{8}{5 i}=\frac{1.6-1}{r}
$$

For a "flat lens" $r=\infty$, so we obtain

$$
i=-8 p / 5=-64 / 5
$$

(with the unit cm understood) for that object at $p=10 \mathrm{~cm}$. Relative to the second surface, this image is at a distance of $3+64 / 5=79 / 5$. This serves as an object in order to find the final image, using Eq. 34-8 again (and $r=\infty$) but with $n_{1}=8 / 5$ and $n_{2}=4 / 3$.

$$
\frac{8}{5 p^{\prime}}+\frac{4}{3 i^{\prime}}=0
$$

which produces (for $p^{\prime}=79 / 5$)

$$
i^{\prime}=-5 p / 6=-79 / 6 \approx-13.2 .
$$

This means the observer appears $13.2+6.8=20 \mathrm{~cm}$ from the fish.
(b) It is straightforward to "reverse" the above reasoning, the result being that the final fish-image is 7.0 cm to the right of the air-wall interface, and thus 15 cm from the observer.
102. (a) There are three images. Two are formed by single reflections from each of the mirrors and the third is formed by successive reflections from both mirrors. The positions of the images are shown on the two diagrams that follow.

The diagram on the left shows the image I_{1}, formed by reflections from the left-hand mirror. It is the same distance behind the mirror as the object O is in front, and lies on the line perpendicular to the mirror and through the object. Image I_{2} is formed by light that is reflected from both mirrors. We may consider I_{2} to be the image of I_{1} formed by the right-hand mirror, extended. I_{2} is the same distance behind the line of the right-hand mirror as I_{1} is in front and it is on the line that is perpendicular to the line of the mirror. The diagram on the right shows image I_{3}, formed by reflections from the right-hand mirror. It is the same distance behind the mirror as the object is in front, and lies on the line perpendicular to the mirror and through the object. As the diagram shows, light that is first reflected from the right-hand mirror and then from the left-hand mirror forms an image at I_{2}.
(b) For $\theta=45^{\circ}$, we have two images in the second mirror caused by the object and its "first" image, and from these one can construct two new images I and I ' behind the first mirror plane. Extending the second mirror plane, we can find two further images of I and I^{\prime} which are on equal sides of the extension of the first mirror plane. This circumstance implies there are no further images, since these final images are each other's "twins." We show this construction in the figure below. Summarizing, we find $1+2+2+2=7$ images in this case.

(c) For $\theta=60^{\circ}$, we have two images in the second mirror caused by the object and its "first" image, and from these one can construct two new images I and I ' behind the first mirror plane. The images I and I ' are each other's "twins" in the sense that they are each other's reflections about the extension of the second mirror plane; there are no further images. Summarizing, we find $1+2+2=5$ images in this case.

For $\theta=120^{\circ}$, we have two images I_{1}^{\prime} and I_{2} behind the extension of the second mirror plane, caused by the object and its "first" image (which we refer to here as I_{1}). No further images can be constructed from I_{1}^{\prime} and I_{2}, since the method indicated above would place any further possibilities in front of the mirrors. This construction has the disadvantage of deemphasizing the actual ray-tracing, and thus any dependence on where the observer of these images is actually placing his or her eyes. It turns out in this case that the number of images that can be seen ranges from 1 to 3 , depending on the locations of both the object and the observer.
(d) Thus, the smallest number of images that can be seen is 1 . For example, if the observer's eye is collinear with I_{1} and I_{1}^{\prime}, then the observer can only see one image (I_{1} and not the one behind it). Note that an observer who stands close to the second mirror would probably be able to see two images, I_{1} and I_{2}.
(e) Similarly, the largest number would be 3 . This happens if the observer moves further back from the vertex of the two mirrors. He or she should also be able to see the third image, I_{1}^{\prime}, which is essentially the "twin" image formed from I_{1} relative to the extension of the second mirror plane.
103. For a thin lens, $(1 / p)+(1 / i)=(1 / f)$, where p is the object distance, i is the image distance, and f is the focal length. We solve for i :

$$
i=\frac{f p}{p-f} .
$$

Let $p=f+x$, where x is positive if the object is outside the focal point and negative if it is inside. Then,

$$
i=\frac{f(f+x)}{x} .
$$

Now let $i=f+x^{\prime}$, where x^{\prime} is positive if the image is outside the focal point and negative if it is inside. Then,

$$
x^{\prime}=i-f=\frac{f(f+x)}{x}-f=\frac{f^{2}}{x}
$$

and $x x^{\prime}=f^{2}$.
104. For an object in front of a thin lens, the object distance p and the image distance i are related by $(1 / p)+(1 / i)=(1 / f)$, where f is the focal length of the lens. For the situation described by the problem, all quantities are positive, so the distance x between the object and image is $x=p+i$. We substitute $i=x-p$ into the thin lens equation and solve for x :

$$
x=\frac{p^{2}}{p-f}
$$

To find the minimum value of x, we set $d x / d p=0$ and solve for p. Since

$$
\frac{d x}{d p}=\frac{p(p-2 f)}{(p-f)^{2}}
$$

the result is $p=2 f$. The minimum distance is

$$
x_{\min }=\frac{p^{2}}{p-f}=\frac{(2 f)^{2}}{2 f-f}=4 f .
$$

This is a minimum, rather than a maximum, since the image distance i becomes large without bound as the object approaches the focal point.
105. We place an object far away from the composite lens and find the image distance i. Since the image is at a focal point, $i=f$, where f equals the effective focal length of the composite. The final image is produced by two lenses, with the image of the first lens being the object for the second. For the first lens, $\left(1 / p_{1}\right)+\left(1 / i_{1}\right)=\left(1 / f_{1}\right)$, where f_{1} is the focal length of this lens and i_{1} is the image distance for the image it forms. Since $p_{1}=\infty$, $i_{1}=f_{1}$. The thin lens equation, applied to the second lens, is $\left(1 / p_{2}\right)+\left(1 / i_{2}\right)=\left(1 / f_{2}\right)$, where p_{2} is the object distance, i_{2} is the image distance, and f_{2} is the focal length. If the thicknesses of the lenses can be ignored, the object distance for the second lens is $p_{2}=-i_{1}$. The negative sign must be used since the image formed by the first lens is beyond the second lens if i_{1} is positive. This means the object for the second lens is virtual and the object distance is negative. If i_{1} is negative, the image formed by the first lens is in front of the second lens and p_{2} is positive. In the thin lens equation, we replace p_{2} with $-f_{1}$ and i_{2} with f to obtain

$$
-\frac{1}{f_{1}}+\frac{1}{f}=\frac{1}{f_{2}}
$$

or

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{f_{1}+f_{2}}{f_{1} f_{2}}
$$

Thus,

$$
f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}
$$

106. (a) If the object distance is x, then the image distance is $D-x$ and the thin lens equation becomes

$$
\frac{1}{x}+\frac{1}{D-x}=\frac{1}{f}
$$

We multiply each term in the equation by $f x(D-x)$ and obtain $x^{2}-D x+D f=0$. Solving for x, we find that the two object distances for which images are formed on the screen are

$$
x_{1}=\frac{D-\sqrt{D(D-4 f)}}{2} \quad \text { and } \quad x_{2}=\frac{D+\sqrt{D(D-4 f)}}{2}
$$

The distance between the two object positions is

$$
d=x_{2}-x_{1}=\sqrt{D(D-4 f)}
$$

(b) The ratio of the image sizes is the same as the ratio of the lateral magnifications. If the object is at $p=x_{1}$, the magnitude of the lateral magnification is

$$
\left|m_{1}\right|=\frac{i_{1}}{p_{1}}=\frac{D-x_{1}}{x_{1}} .
$$

Now $x_{1}=\frac{1}{2}(D-d)$, where $d=\sqrt{D(D-f)}$, so

$$
\left|m_{1}\right|=\frac{D-(D-d) / 2}{(D-d) / 2}=\frac{D+d}{D-d} .
$$

Similarly, when the object is at x_{2}, the magnitude of the lateral magnification is

$$
\left|m_{2}\right|=\frac{I_{2}}{p_{2}}=\frac{D-x_{2}}{x_{2}}=\frac{D-(D+d) / 2}{(D+d) / 2}=\frac{D-d}{D+d} .
$$

The ratio of the magnifications is

$$
\frac{m_{2}}{m_{1}}=\frac{(D-d) /(D+d)}{(D+d) /(D-d)}=\left(\frac{D-d}{D+d}\right)^{2} .
$$

107. The sphere (of radius 0.35 m) is a convex mirror with focal length $f=-0.175 \mathrm{~m}$. We adopt the approximation that the rays are close enough to the central axis for Eq. 34-4 to be applicable.
(a) With $p=1.0 \mathrm{~m}$, the equation $1 / p+1 / i=1 / f$ yields $i=-0.15 \mathrm{~m}$, which means the image is 0.15 m from the front surface, appearing to be inside the sphere.
(b) The lateral magnification is $m=-i / p$ which yields $m=0.15$. Therefore, the image distance is $(0.15)(2.0 \mathrm{~m})=0.30 \mathrm{~m}$.
(c) Since $m>0$, the image is upright, or not inverted (NI).
108. (a) We use Eq. 34-8 (and Fig. 34-11(b) is useful), with $n_{1}=1$ (using the rounded-off value for air) and $n_{2}=1.5$.

$$
\frac{1}{p}+\frac{1.5}{i}=\frac{1.5-1}{r}
$$

Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that $r=$ +6.0 cm), we obtain $i=-90 \mathrm{~cm}$ for objects at $p=10 \mathrm{~cm}$. Thus, the object and image are 80 cm apart.
(b) The image distance i is negative with increasing magnitude as p increases from very small values to some value p_{0} at which point $i \rightarrow-\infty$. Since $1 /(-\infty)=0$, the above equation yields

$$
\frac{1}{p_{0}}=\frac{1.5-1}{r} \Rightarrow p_{0}=2 r .
$$

Thus, the range for producing virtual images is $0<p \leq 12 \mathrm{~cm}$.
109. (a) In this case $i<0$ so $i=-|i|$, and Eq. 34-9 becomes $1 / f=1 / p-1 /|i|$.

We differentiate this with respect to time (t) to obtain

$$
\frac{d|i|}{d t}=\left(\frac{|i|}{p}\right)^{2} \frac{d p}{d t}
$$

As the object is moved toward the lens, p is decreasing, so $d p / d t<0$. Consequently, the above expression shows that $d i \mid / d t<0$; that is, the image moves in from infinity. The angular magnification $m_{\theta}=\theta^{\prime} / \theta$ also increases as the following graph shows ("read" the graph from left to right since we are considering decreasing p from near the focal length to near 0). To obtain this graph of m_{θ}, we chose $f=30 \mathrm{~cm}$ and $h=2 \mathrm{~cm}$.

(b) When the image appears to be at the near point (that is, $|i|=P_{n}$), m_{θ} is at its maximum usable value. The textbook states in section 34-8 that it generally takes P_{n} to be equal to 25 cm (this value, too, was used in making the above graph).
(c) In this case,

$$
p=i f /(i-f)=|i| f /(|i|+f)=P_{n} f /\left(P_{n}+f\right) .
$$

If we use the small angle approximation, we have $\theta^{\prime} \approx h^{\prime}| | i \mid$ and $\theta \approx h / P_{n}$ (note: this approximation was not used in obtaining the graph, above). We therefore find $m_{\theta} \approx$ $\left(h^{\prime} /|i|\right) /\left(h / P_{n}\right)$ which (using Eq. 34-7 relating the ratio of heights to the ratio of distances) becomes

$$
m_{\theta} \approx\left(h^{\prime} / h\right)\left(P_{n} /|i|\right)=(|i| / p)\left(P_{n} /|i|\right)=\left(P_{n} / p\right)=\left[P_{n} /\left(P_{n} f /\left(P_{n}+f\right)\right)\right]=\frac{P_{n}+f}{f}
$$

which readily simplifies to the desired result.
(d) The linear magnification (Eq. 34-7) is given by $\left(h^{\prime} / h\right) \approx m_{\theta}\left(|i| / P_{n}\right)$ (see the first in the chain of equalities, above). Once we set $|i|=P_{n}$ (see part (b)) then this shows the equality in the magnifications.
110. (a) Suppose one end of the object is a distance p from the mirror and the other end is a distance $p+L$. The position i_{1} of the image of the first end is given by

$$
\frac{1}{p}+\frac{1}{i_{1}}=\frac{1}{f}
$$

where f is the focal length of the mirror. Thus,

$$
i_{1}=\frac{f_{p}}{p-f} .
$$

The image of the other end is located at

$$
i_{2}=\frac{f(p+L)}{p+L-f}
$$

so the length of the image is

$$
L^{\prime}=i_{1}-i_{2}=\frac{f p}{p-f}-\frac{f(p+L)}{p+L-f}=\frac{f^{2} L}{(p-f)(p+L-f)} .
$$

Since the object is short compared to $p-f$, we may neglect the L in the denominator and write

$$
L^{\prime}=L\left(\frac{f}{p-f}\right)^{2}
$$

(b) The lateral magnification is $m=-i / p$ and since $i=f p /(p-f)$, this can be written m $=-f /(p-f)$. The longitudinal magnification is

$$
m^{\prime}=\frac{L^{\prime}}{L}=\left(\frac{f}{p-f}\right)^{2}=m^{2}
$$

111. (a) In this case $m>+1$ and we know that lens 1 is converging (producing a virtual image), so that our result for focal length should be positive. Since $\left|P+i_{1}\right|=20 \mathrm{~cm}$ and $i_{1}=-2 p_{1}$, we find $p_{1}=20 \mathrm{~cm}$ and $i_{1}=-40 \mathrm{~cm}$. Substituting these into Eq. 34-9,

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}}
$$

leads to $f_{1}=+40 \mathrm{~cm}$, which is positive as we expected.
(b) The object distance is $p_{1}=20 \mathrm{~cm}$, as shown in part (a).
(c) In this case $0<m<1$ and we know that lens 2 is diverging (producing a virtual image), so that our result for focal length should be negative. Since $\left|p+i_{2}\right|=20 \mathrm{~cm}$ and $i_{2}=-p_{2} / 2$, we find $p_{2}=40 \mathrm{~cm}$ and $i_{2}=-20 \mathrm{~cm}$. Substituting these into Eq. 34-9 leads to $f_{2}=-40 \mathrm{~cm}$, which is negative as we expected.
(d) $p_{2}=40 \mathrm{~cm}$, as shown in part (c).
112. The water is medium 1 , so $n_{1}=n_{w}$ which we simply write as n. The air is medium 2 , for which $n_{2} \approx 1$. We refer to points where the light rays strike the water surface as A (on the left side of Fig. 34-52) and B (on the right side of the picture). The point midway between A and B (the center point in the picture) is C. The penny P is directly below C, and the location of the "apparent" or Virtual penny is V. We note that the angle $\angle C V B$ (the same as $\angle C V A$) is equal to θ_{2}, and the angle $\angle C P B$ (the same as $\angle C P A$) is equal to θ_{1}. The triangles $C V B$ and $C P B$ share a common side, the horizontal distance from C to B (which we refer to as x). Therefore,

$$
\tan \theta_{2}=\frac{x}{d_{\mathrm{a}}} \quad \text { and } \quad \tan \theta_{1}=\frac{x}{d}
$$

Using the small angle approximation (so a ratio of tangents is nearly equal to a ratio of sines) and the law of refraction, we obtain

$$
\frac{\tan \theta_{2}}{\tan \theta_{1}} \approx \frac{\sin \theta_{2}}{\sin \theta_{1}} \Rightarrow \frac{\frac{x}{d_{a}}}{\frac{x}{d}} \approx \frac{n_{1}}{n_{2}} \Rightarrow \frac{d}{d_{\mathrm{a}}} \approx n
$$

which yields the desired relation: $d_{\mathrm{a}}=d / n$.
113. A converging lens has a positive-valued focal length, so $f_{1}=+6 \mathrm{~cm}, f_{2}=+3 \mathrm{~cm}$, and $f_{3}=+3 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification ($m_{1} \mathrm{etc}$), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are $i_{1}=9 \mathrm{~cm}$ and $i_{2}=6 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=+7.5 \mathrm{~cm}$.
(b) $m=-0.75$.
(c) The image is real (R).
(d) The image is inverted (I).
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final image).
114. A converging lens has a positive-valued focal length, so $f_{1}=+6 \mathrm{~cm}, f_{2}=+6 \mathrm{~cm}$, and $f_{3}=+5 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification (m_{1} etc), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are $i_{1}=-3 \mathrm{~cm}$ and $i_{2}=9 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=+10 \mathrm{~cm}$.
(b) $m=+0.75$.
(c) The image is real (R).
(d) The image is not inverted (NI).
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final image).
115. A converging lens has a positive-valued focal length, so $f_{1}=+8 \mathrm{~cm}, f_{2}=+6 \mathrm{~cm}$, and $f_{3}=+6 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification ($m_{1} \mathrm{etc}$), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are $i_{1}=24 \mathrm{~cm}$ and $i_{2}=-12 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=+8.6 \mathrm{~cm}$.
(b) $m=+2.6$.
(c) The image is real (R).
(d) The image is not inverted (NI)
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final image).
116. A converging lens has a positive-valued focal length, and a diverging lens has a negative-valued focal length. Therefore, $f_{1}=-6 \mathrm{~cm}, f_{2}=+6 \mathrm{~cm}$, and $f_{3}=+4 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification (m_{1} etc), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are i_{1} $=-2.4 \mathrm{~cm}$ and $i_{2}=12 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=-4.0 \mathrm{~cm}$.
(b) $m=-1.2$.
(c) The image is virtual (V).
(d) The image is inverted (I).
(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image.
117. A converging lens has a positive-valued focal length, and a diverging lens has a negative-valued focal length. Therefore, $f_{1}=-8.0 \mathrm{~cm}, f_{2}=-16 \mathrm{~cm}$, and $f_{3}=+8.0 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification (m_{1} etc), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are i_{1} $=-4.0 \mathrm{~cm}$ and $i_{2}=-6.86 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=+24.2 \mathrm{~cm}$.
(b) $m=-0.58$.
(c) The image is real (R).
(d) The image is inverted (I).
(e) It is on the opposite side of lens 3 from the object (as expected for a real image).
118. A converging lens has a positive-valued focal length, and a diverging lens has a negative-valued focal length. Therefore, $f_{1}=+6 \mathrm{~cm}, f_{2}=-4 \mathrm{~cm}$, and $f_{3}=-12 \mathrm{~cm}$. We use Eq. 34-9 for each lens separately, "bridging the gap" between the results of one calculation and the next with $p_{2}=d_{12}-i_{1}$ and $p_{3}=d_{23}-i_{2}$. We also use Eq. 34-7 for each magnification (m_{1} etc), and $m=m_{1} m_{2} m_{3}$ (a generalized version of Eq. 34-11) for the net magnification of the system. Our intermediate results for image distances are i_{1} $=-12 \mathrm{~cm}$ and $i_{2}=-3.33 \mathrm{~cm}$. Our final results are as follows:
(a) $i_{3}=-5.15 \mathrm{~cm} \approx-5.2 \mathrm{~cm}$.
(b) $m=+0.285 \approx+0.29$.
(c) The image is virtual (V).
(d) The image is not inverted (NI).
(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image.
119. (a) The discussion in the textbook of the refracting telescope (a subsection of §34-8) applies to the Newtonian arrangement if we replace the objective lens of Fig. 34-19 with an objective mirror (with the light incident on it from the right). This might suggest that the incident light would be blocked by the person's head in Fig. 34-19, which is why Newton added the mirror M^{\prime} in his design (to move the head and eyepiece out of the way of the incoming light). The beauty of the idea of characterizing both lenses and mirrors by focal lengths is that it is easy, in a case like this, to simply carry over the results of the objective-lens telescope to the objective-mirror telescope, so long as we replace a positive f device with another positive f device. Thus, the converging lens serving as the objective of Fig. 34-19 must be replaced (as Newton has done in Fig. 34-54) with a concave mirror. With this change of language, the discussion in the textbook leading up to Eq. 34-15 applies equally as well to the Newtonian telescope: $m_{\theta}=-f_{\mathrm{ob}} / f_{\text {ey }}$.
(b) A meter stick (held perpendicular to the line of sight) at a distance of 2000 m subtends an angle of

$$
\theta_{\text {stick }} \approx \frac{1 \mathrm{~m}}{2000 \mathrm{~m}}=0.0005 \mathrm{rad} .
$$

multiplying this by the mirror focal length gives $(16.8 \mathrm{~m})(0.0005)=8.4 \mathrm{~mm}$ for the size of the image.
(c) With $r=10 \mathrm{~m}$, Eq. $34-3$ gives $f_{\mathrm{ob}}=5 \mathrm{~m}$. Plugging this into (the absolute value of) Eq. $34-15$ leads to $f_{\text {ey }}=5 / 200=2.5 \mathrm{~cm}$.
120. Consider a single ray from the source to the mirror and let θ be the angle of incidence. The angle of reflection is also θ and the reflected ray makes an angle of 2θ with the incident ray.

Now we rotate the mirror through the angle α so that the angle of incidence increases to θ $+\alpha$. The reflected ray now makes an angle of $2(\theta+\alpha)$ with the incident ray. The reflected ray has been rotated through an angle of 2α. If the mirror is rotated so the angle of incidence is decreased by α, then the reflected ray makes an angle of $2(\theta-\alpha)$ with the incident ray. Again it has been rotated through 2α. The diagrams below show the situation for $\alpha=45^{\circ}$. The ray from the object to the mirror is the same in both cases and the reflected rays are 90° apart.
121. (a) If we let $p \rightarrow \infty$ in Eq. 34-8, we get $i=n_{2} r /\left(n_{2}-n_{1}\right)$. If we set $n_{1}=1$ (for air) and restrict n_{2} so that $1<n_{2}<2$, then this suggests that $i>2 r$ (so this image does form before the rays strike the opposite side of the sphere). We can still consider this as a sort of "virtual" object for the second imaging event, where this "virtual" object distance is $2 r-i=(n-2) r /(n-1)$, where we have simplified the notation by writing $n_{2}=n$. Putting this in for p in Eq. 34-8 and being careful with the sign convention for r in that equation, we arrive at the final image location: $i^{\prime}=(0.5)(2-n) r /(n-1)$.
(b) The image is to the right of the right side of the sphere.
122. Setting $n_{\text {air }}=1, n_{\text {water }}=n$, and $p=r / 2$ in Eq. 34-8 (and being careful with the sign convention for r in that equation), we obtain $i=-r /(1+n)$, or $|i|=r /(1+n)$. Then we use similar triangles (where h is the size of the fish and h^{\prime} is that of the "virtual fish") to set up the ratio

$$
\frac{h^{\prime}}{r-|i|}=\frac{h}{r / 2} .
$$

Using our previous result for $|i|$, this gives $h^{\prime} / h=2(1-1 /(1+n))=1.14$.
123. (a) Our first step is to form the image from the first lens. With $p_{1}=10 \mathrm{~cm}$ and $f_{1}=-15 \mathrm{~cm}$, Eq. 34-9 leads to

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}} \Rightarrow i_{1}=-6.0 \mathrm{~cm} .
$$

The corresponding magnification is $m_{1}=-i_{1} / p_{1}=0.60$. This image serves the role of "object" for the second lens, with $p_{2}=12+6.0=18 \mathrm{~cm}$, and $f_{2}=12 \mathrm{~cm}$. Now, Eq. 34-9 leads to

$$
\frac{1}{p_{2}}+\frac{1}{i_{2}}=\frac{1}{f_{2}} \Rightarrow i_{2}=36 \mathrm{~cm} .
$$

(b) The corresponding magnification is $m_{2}=-i_{2} / p_{2}=-2.0$, which results in a net magnification of $m=m_{1} m_{2}=-1.2$. The height of the final image is (in absolute value) $(1.2)(1.0 \mathrm{~cm})=1.2 \mathrm{~cm}$.
(c) The fact that i_{2} is positive means that the final image is real.
(d) The fact that m is negative means that the orientation of the final image is inverted with respect to the (original) object.
124. (a) Without the diverging lens (lens 2), the real image formed by the converging lens (lens 1) is located at a distance

$$
i_{1}=\left(\frac{1}{f_{1}}-\frac{1}{p_{1}}\right)^{-1}=\left(\frac{1}{20 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}\right)^{-1}=40 \mathrm{~cm}
$$

to the right of lens 1 . This image now serves as an object for lens 2 , with $p_{2}=-(40 \mathrm{~cm}-$ 10 cm) $=-30 \mathrm{~cm}$. So

$$
i_{2}=\left(\frac{1}{f_{2}}-\frac{1}{p_{2}}\right)^{-1}=\left(\frac{1}{-15 \mathrm{~cm}}-\frac{1}{-30 \mathrm{~cm}}\right)^{-1}=-30 \mathrm{~cm}
$$

Thus, the image formed by lens 2 is located 30 cm to the left of lens 2 .
(b) The magnification is $m=\left(-i_{1} / p_{1}\right) \times\left(-i_{2} / p_{2}\right)=+1.0>0$, so the image is not inverted.
(c) The image is virtual since $i_{2}<0$.
(d) The magnification is $m=\left(-i_{1} / p_{1}\right) \times\left(-i_{2} / p_{2}\right)=+1.0$, so the image has the same size as the object.
125. (a) For the image formed by the first lens

$$
i_{1}=\left(\frac{1}{f_{1}}-\frac{1}{p_{1}}\right)^{-1}=\left(\frac{1}{10 \mathrm{~cm}}-\frac{1}{20 \mathrm{~cm}}\right)^{-1}=20 \mathrm{~cm}
$$

For the subsequent image formed by the second lens $p_{2}=30 \mathrm{~cm}-20 \mathrm{~cm}=10 \mathrm{~cm}$, so

$$
i_{2}=\left(\frac{1}{f_{2}}-\frac{1}{p_{2}}\right)^{-1}=\left(\frac{1}{12.5 \mathrm{~cm}}-\frac{1}{10 \mathrm{~cm}}\right)^{-1}=-50 \mathrm{~cm}
$$

Thus, the final image is 50 cm to the left of the second lens, which means that it coincides with the object.
(b) The magnification is

$$
m=\left(\frac{i_{1}}{p_{1}}\right)\left(\frac{i_{2}}{p_{2}}\right)=\left(\frac{20 \mathrm{~cm}}{20 \mathrm{~cm}}\right)\left(\frac{-50 \mathrm{~cm}}{10 \mathrm{~cm}}\right)=-5.0,
$$

which means that the final image is five times larger than the original object.
(c) The image is virtual since $i_{2}<0$.
(d) The image is inverted since $m<0$.
126. (a) We solve Eq. 34-9 for the image distance $i: i=p f /(p-f)$. The lens is diverging, so its focal length is $f=-30 \mathrm{~cm}$. The object distance is $p=20 \mathrm{~cm}$. Thus,

$$
i=\frac{(20 \mathrm{~cm})(-30 \mathrm{~cm})}{(20 \mathrm{~cm})-(-30 \mathrm{~cm})}=-12 \mathrm{~cm} .
$$

The negative sign indicates that the image is virtual and is on the same side of the lens as the object.
(b) The ray diagram, drawn to scale, is shown below.

lens
127. We set up an $x y z$ coordinate system where the individual planes $(x y, y z, x z)$ serve as the mirror surfaces. Suppose an incident ray of light A first strikes the mirror in the $x y$ plane. If the unit vector denoting the direction of A is given by

$$
\cos (\alpha) \hat{i}+\cos (\beta) \hat{j}+\cos (\gamma) \hat{k}
$$

where α, β, γ are the angles A makes with the axes, then after reflection off the $x y$ plane the unit vector becomes $\cos (\alpha) \hat{i}+\cos (\beta) \hat{j}-\cos (\gamma) \hat{\mathrm{k}}$ (one way to rationalize this is to think of the reflection as causing the angle γ to become $\pi-\gamma$). Next suppose it strikes the mirror in the $x z$ plane. The unit vector of the reflected ray is now $\cos (\alpha) \hat{i}-\cos (\beta) \hat{\mathrm{j}}-$ $\cos (\gamma) \hat{\mathrm{k}}$. Finally as it reflects off the mirror in the $y z$ plane α becomes $\pi-\alpha$, so the unit vector in the direction of the reflected ray is given by $-\cos (\alpha) \hat{i}-\cos (\beta) \hat{j}-\cos (\gamma) \hat{k}$, exactly reversed from A 's original direction. A further observation may be made: this argument would fail if the ray could strike any given surface twice and some consideration (perhaps an illustration) should convince the student that such an occurrence is not possible.
128. The fact that it is inverted implies $m<0$. Therefore, with $m=-1 / 2$, we have $i=p / 2$, which we substitute into Eq. 34-4:

$$
\begin{gathered}
\frac{1}{p}+\frac{1}{i}=\frac{1}{f} \\
\frac{1}{p}+\frac{2}{p}=\frac{1}{f} \\
\frac{3}{30.0}=\frac{1}{f}
\end{gathered}
$$

with the unit cm understood. Consequently, we find $f=30 / 3=10.0 \mathrm{~cm}$. The fact that $f>$ 0 implies the mirror is concave.
129. Since $m=-2$ and $p=4.00 \mathrm{~cm}$, then $i=8.00 \mathrm{~cm}$ (and is real). Eq. $34-9$ is

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

and leads to $f=2.67 \mathrm{~cm}$ (which is positive, as it must be for a converging lens).
130. (a) The mirror has focal length $f=12.0 \mathrm{~cm}$. With $m=+3$, we have $i=-3 p$. We substitute this into Eq. 34-4:

$$
\begin{aligned}
\frac{1}{p}+\frac{1}{i} & =\frac{1}{f} \\
\frac{1}{p}+\frac{1}{-3 p} & =\frac{1}{12} \\
\frac{2}{3 p} & =\frac{1}{12}
\end{aligned}
$$

with the unit cm understood. Consequently, we find $p=2(12) / 3=8.0 \mathrm{~cm}$.
(b) With $m=-3$, we have $i=+3 p$, which we substitute into Eq. 34-4:

$$
\begin{aligned}
\frac{1}{p}+\frac{1}{i} & =\frac{1}{f} \\
\frac{1}{p}+\frac{1}{3 p} & =\frac{1}{12} \\
\frac{4}{3 p} & =\frac{1}{12}
\end{aligned}
$$

with the unit cm understood. Consequently, we find $p=4(12) / 3=16 \mathrm{~cm}$.
(c) With $m=-1 / 3$, we have $i=p / 3$. Thus, Eq. 34-4 leads to

$$
\begin{aligned}
\frac{1}{p}+\frac{1}{i} & =\frac{1}{f} \\
\frac{1}{p}+\frac{3}{p} & =\frac{1}{12} \\
\frac{4}{p} & =\frac{1}{12}
\end{aligned}
$$

with the unit cm understood. Consequently, we find $p=4(12)=48 \mathrm{~cm}$.
131. (a) Since $m=+0.200$, we have $i=-0.2 p$ which indicates that the image is virtual (as well as being diminished in size). We conclude from this that the mirror is convex (and that $f=-40.0 \mathrm{~cm}$).
(b) Substituting $i=-p / 5$ into Eq. 34-4 produces

$$
\frac{1}{p}-\frac{5}{p}=-\frac{4}{p}=\frac{1}{f}
$$

Therefore, we find $p=160 \mathrm{~cm}$.
132. Since $0<m<1$, we conclude the lens is of the diverging type (so $f=-40 \mathrm{~cm}$). Thus, substituting $i=-3 p / 10$ into Eq. 34-9 produces

$$
\frac{1}{p}-\frac{10}{3 p}=-\frac{7}{3 p}=\frac{1}{f}
$$

Therefore, we find $p=93.3 \mathrm{~cm}$ and $i=-28.0 \mathrm{~cm}$, or $|i|=28.0 \mathrm{~cm}$.
133. (a) Our first step is to form the image from the first lens. With $p_{1}=3.00 \mathrm{~cm}$ and $f_{1}=$ +4.00 cm , Eq. 34-9 leads to

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}} \Rightarrow i_{1}=-12.0 \mathrm{~cm}
$$

The corresponding magnification is $m_{1}=-i_{1} / p_{1}=4$. This image serves the role of "object" for the second lens, with $p_{2}=8.00+12.0=20.0 \mathrm{~cm}$, and $f_{2}=-4.00 \mathrm{~cm}$. Now, Eq. 34-9 leads to

$$
\frac{1}{p_{2}}+\frac{1}{i_{2}}=\frac{1}{f_{2}} \Rightarrow i_{2}=-3.33 \mathrm{~cm}
$$

(b) The fact that i_{2} is negative means that the final image is virtual (and therefore to the left of the second lens).
(c) The image is virtual.
(d) With $m_{2}=-i_{2} / p_{2}=1 / 6$, the net magnification is $m=m_{1} m_{2}=2 / 3>0$. The fact that m is positive means that the orientation of the final image is the same as the (original) object. Therefore, the image is not inverted.
134. (a) Our first step is to form the image from the first lens. With $p_{1}=4.00 \mathrm{~cm}$ and f_{1} $=-4.00 \mathrm{~cm}$, Eq. $34-9$ leads to

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}} \Rightarrow i_{1}=-2.00 \mathrm{~cm}
$$

The corresponding magnification is $m_{1}=-i_{1} / p_{1}=1 / 2$. This image serves the role of "object" for the second lens, with $p_{2}=10.0+2.00=12.0 \mathrm{~cm}$, and $f_{2}=-4.00 \mathrm{~cm}$. Now, Eq. 34-9 leads to

$$
\frac{1}{p_{2}}+\frac{1}{i_{2}}=\frac{1}{f_{2}} \Rightarrow i_{2}=-3.00 \mathrm{~cm}
$$

or $\left|i_{2}\right|=3.00 \mathrm{~cm}$.
(b) The fact that i_{2} is negative means that the final image is virtual (and therefore to the left of the second lens).
(c) The image is virtual.
(d) With $m_{2}=-i_{2} / p_{2}=1 / 4$, the net magnification is $m=m_{1} m_{2}=1 / 8>0$. The fact that m is positive means that the orientation of the final image is the same as the (original) object. Therefore, the image is not inverted.
135. Of course, the shortest possible path between A and B is the straight line path which does not go to the mirror at all. In this problem, we are concerned with only those paths which do strike the mirror. The problem statement suggests that we turn our attention to the mirror-image point of A (call it A^{\prime}) and requests that we construct a proof without calculus. We can see that the length of any line segment $A P$ drawn from A to the mirror (at point P on the mirror surface) is the same as the length of its "mirror segment" $A^{\prime} P$ drawn from A^{\prime} to that point P. Thus, the total length of the light path from A to P to B is the same as the total length of segments drawn from A^{\prime} to P to B. Now, we dismissed (in the first sentence of this solution) the possibility of a straight line path directly from A to B because it does not strike the mirror. However, we can construct a straight line path from A^{\prime} to B which does intersect the mirror surface! Any other pair of segments ($A^{\prime} P$ and $P B$) would give greater total length than the straight path (with $A^{\prime} P$ and $P B$ collinear), so if the straight path $A^{\prime} B$ obeys the law of reflection, then we have our proof. Now, since $A^{\prime} P$ is the mirror-twin of $A P$, then they both approach the mirror surface with the same angle α (one from the front side and the other from the back side). And since $A^{\prime} P$ is collinear with $P B$, then $P B$ also makes the same angle α with respect to the mirror surface (by vertex angles). If $A P$ and $P B$ are each α degrees away from the front of the mirror, then they are each θ degrees (where θ is the complement of α) measured from the normal axis. Thus, the law of reflection is consistent with the concept of the shortest light path.
136. (a) Since a beam of parallel light will be focused at a distance f from the (converging) lens, then the shorter the focal length f the greater the ability for the lens to bend the light. A window pane is an example of a "lens" with $f=\infty$, yet it has essentially zero bending ability. Therefore, $P=1 / f$ is a reasonable definition.
(b) First we must consider the two-lens situation in the limit that d (their separation) becomes vanishingly small. We place an object far away from the composite lens and find the image distance i. Since the image is at a focal point $i=f$, the effective focal length of the composite can be determined in this way. The final image is produced by two lenses, with the image of the first lens being the object for the second. For the first lens we have $1 / p_{1}+1 / i_{1}=1 / f_{1}$, where f_{1} is the focal length of the first lens. Since $p_{1}=$ ∞, we find $i_{1}=f_{1}$. The thin lens equation, applied to the second lens, gives

$$
i_{2}=i=p_{2} f_{2} /\left(p_{2}-f_{2}\right),
$$

where $p_{2}=d-i_{1}=-f_{1}$ in this situation. Therefore, i (thought of as f for the equivalent single lens [equivalent to the 2 lens system] as explained above) is equal to

$$
-f_{1} f_{2} /\left(-f_{1}-f_{2}\right) \text { or } \frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} .
$$

Next, using the definition for P, we readily get the desired result.
137. (a) Suppose that the lens is placed to the left of the mirror. The image formed by the converging lens is located at a distance

$$
i=\left(\frac{1}{f}-\frac{1}{p}\right)^{-1}=\left(\frac{1}{0.50 \mathrm{~m}}-\frac{1}{1.0 \mathrm{~m}}\right)^{-1}=1.0 \mathrm{~m}
$$

to the right of the lens, or $2.0 \mathrm{~m}-1.0 \mathrm{~m}=1.0 \mathrm{~m}$ in front of the mirror. The image formed by the mirror for this real image is then at 1.0 m to the right of the the mirror, or $2.0 \mathrm{~m}+$ $1.0 \mathrm{~m}=3.0 \mathrm{~m}$ to the right of the lens. This image then results in another image formed by the lens, located at a distance

$$
i^{\prime}=\left(\frac{1}{f}-\frac{1}{p^{\prime}}\right)^{-1}=\left(\frac{1}{0.50 \mathrm{~m}}-\frac{1}{3.0 \mathrm{~m}}\right)^{-1}=0.60 \mathrm{~m}
$$

to the left of the lens (that is, 2.6 cm from the mirror).
(b) The lateral magnification is

$$
m=\left(-\frac{i}{p}\right)\left(-\frac{i^{\prime}}{p^{\prime}}\right)=\left(-\frac{1.0 \mathrm{~m}}{1.0 \mathrm{~m}}\right)\left(-\frac{0.60 \mathrm{~m}}{3.0 \mathrm{~m}}\right)=+0.20 .
$$

(c) The final image is real since $i^{\prime}>0$.
(d) The image is to the left of the lens.
(e) It also has the same orientation as the object since $m>0$. Therefore, the image is not inverted.
138. (a) Since $m=+0.250$, we have $i=-0.25 p$ which indicates that the image is virtual (as well as being diminished in size). We conclude from this that the mirror is convex and that $f<0$; in fact, $f=-2.00 \mathrm{~cm}$. Substituting $i=-p / 4$ into Eq. $34-4$ produces

$$
\frac{1}{p}-\frac{4}{p}=-\frac{3}{p}=\frac{1}{f}
$$

Therefore, we find $p=6.00 \mathrm{~cm}$ and $i=-1.50 \mathrm{~cm}$, or $|i|=1.50 \mathrm{~cm}$.
(b) The focal length is negative.
(c) As shown in (a), the image is virtual.
139. First, we note that - relative to the water - the index of refraction of the carbon tetrachloride should be thought of as $n=1.46 / 1.33=1.1$ (this notation is chosen to be consistent with problem 15). Now, if the observer were in the water, directly above the 40 mm deep carbon tetrachloride layer, then the apparent depth of the penny as measured below the surface of the carbon tetrachloride is $d_{\mathrm{a}}=40 \mathrm{~mm} / 1.1=36.4 \mathrm{~mm}$. This "apparent penny" serves as an "object" for the rays propagating upward through the 20 mm layer of water, where this "object" should be thought of as being $20 \mathrm{~mm}+36.4 \mathrm{~mm}$ $=56.4 \mathrm{~mm}$ from the top surface. Using the result of problem 15 again, we find the perceived location of the penny, for a person at the normal viewing position above the water, to be $56.4 \mathrm{~mm} / 1.33=42 \mathrm{~mm}$ below the water surface.
140. (a) We show the $\alpha=0.500 \mathrm{rad}, r=12 \mathrm{~cm}, p=20 \mathrm{~cm}$ calculation in detail. The understood length unit is the centimeter:

The distance from the object to point $x: \quad d=p-r+x=8+x$

$$
y=d \tan \alpha=4.3704+0.54630 x
$$

From the solution of $x^{2}+y^{2}=r^{2}$ we get $x=8.1398$.

$$
\begin{gathered}
\beta=\tan ^{-1}(y / x)=0.8253 \mathrm{rad} \\
\gamma=2 \beta-\alpha=1.151 \mathrm{rad}
\end{gathered}
$$

From the solution of $\tan (\gamma)=y /(x+i-r)$ we get $i=7.799$. The other results are shown without the intermediate steps:

For $\alpha=0.100 \mathrm{rad}$, we get $i=8.544 \mathrm{~cm}$; for $\alpha=0.0100 \mathrm{rad}$, we get $i=8.571 \mathrm{~cm}$. Eq. 343 and Eq. 34-4 (the mirror equation) yield $i=8.571 \mathrm{~cm}$.
(b) Here the results are: $(\alpha=0.500 \mathrm{rad}, i=-13.56 \mathrm{~cm}),(\alpha=0.100 \mathrm{rad}, i=-12.05 \mathrm{~cm})$, ($\alpha=0.0100 \mathrm{rad}, i=-12.00 \mathrm{~cm}$). The mirror equation gives $i=-12.00 \mathrm{~cm}$.

1. Comparing the light speeds in sapphire and diamond, we obtain

$$
\begin{aligned}
\Delta v & =v_{s}-v_{d}=c\left(\frac{1}{n_{s}}-\frac{1}{n_{d}}\right) \\
& =\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(\frac{1}{1.77}-\frac{1}{2.42}\right)=4.55 \times 10^{7} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

2. (a) The frequency of yellow sodium light is

$$
f=\frac{c}{\lambda}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{589 \times 10^{-9} \mathrm{~m}}=5.09 \times 10^{14} \mathrm{~Hz}
$$

(b) When traveling through the glass, its wavelength is

$$
\lambda_{n}=\frac{\lambda}{n}=\frac{589 \mathrm{~nm}}{1.52}=388 \mathrm{~nm} .
$$

(c) The light speed when traveling through the glass is

$$
v=f \lambda_{n}=\left(5.09 \times 10^{14} \mathrm{~Hz}\right)\left(388 \times 10^{-9} \mathrm{~m}\right)=1.97 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

3. The index of refraction is found from Eq. 35-3:

$$
n=\frac{c}{v}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.92 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.56 .
$$

4. Note that Snell's Law (the law of refraction) leads to $\theta_{1}=\theta_{2}$ when $n_{1}=n_{2}$. The graph indicates that $\theta_{2}=30^{\circ}$ (which is what the problem gives as the value of θ_{1}) occurs at $n_{2}=$ 1.5. Thus, $n_{1}=1.5$, and the speed with which light propagates in that medium is

$$
v=\frac{c}{1.5}=2.0 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

5. The fact that wave W_{2} reflects two additional times has no substantive effect on the calculations, since two reflections amount to a $2(\lambda / 2)=\lambda$ phase difference, which is effectively not a phase difference at all. The substantive difference between W_{2} and W_{1} is the extra distance $2 L$ traveled by W_{2}.
(a) For wave W_{2} to be a half-wavelength "behind" wave W_{1}, we require $2 L=\lambda / 2$, or $L=$ $\lambda / 4=155 \mathrm{~nm}$ using the wavelength value given in the problem.
(b) Destructive interference will again appear if W_{2} is $\frac{3}{2} \lambda$ "behind" the other wave. In this case, $2 L^{\prime}=3 \lambda / 2$, and the difference is

$$
L^{\prime}-L=\frac{3 \lambda}{4}-\frac{\lambda}{4}=\frac{\lambda}{2}=310 \mathrm{~nm} .
$$

6. In contrast to the initial conditions of problem 30, we now consider waves W_{2} and W_{1} with an initial effective phase difference (in wavelengths) equal to $\frac{1}{2}$, and seek positions of the sliver which cause the wave to constructively interfere (which corresponds to an integer-valued phase difference in wavelengths). Thus, the extra distance $2 L$ traveled by W_{2} must amount to $\frac{1}{2} \lambda, \frac{3}{2} \lambda$, and so on. We may write this requirement succinctly as

$$
L=\frac{2 m+1}{4} \lambda \quad \text { where } m=0,1,2, \ldots
$$

(a) Thus, the smallest value of L / λ that results in the final waves being exactly in phase is when $m=0$, which gives $L / \lambda=1 / 4=0.25$.
(b) The second smallest value of L / λ that results in the final waves being exactly in phase is when $m=1$, which gives $L / \lambda=3 / 4=0.75$.
(c) The third smallest value of L / λ that results in the final waves being exactly in phase is when $m=2$, which gives $L / \lambda=5 / 4=1.25$.
7. (a) We take the phases of both waves to be zero at the front surfaces of the layers. The phase of the first wave at the back surface of the glass is given by $\phi_{1}=k_{1} L-\omega t$, where k_{1} $\left(=2 \pi / \lambda_{1}\right)$ is the angular wave number and λ_{1} is the wavelength in glass. Similarly, the phase of the second wave at the back surface of the plastic is given by $\phi_{2}=k_{2} L-\omega t$, where $k_{2}\left(=2 \pi / \lambda_{2}\right)$ is the angular wave number and λ_{2} is the wavelength in plastic. The angular frequencies are the same since the waves have the same wavelength in air and the frequency of a wave does not change when the wave enters another medium. The phase difference is

$$
\phi_{1}-\phi_{2}=\left(k_{1}-k_{2}\right) L=2 \pi\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) L .
$$

Now, $\lambda_{1}=\lambda_{\text {air }} / n_{1}$, where $\lambda_{\text {air }}$ is the wavelength in air and n_{1} is the index of refraction of the glass. Similarly, $\lambda_{2}=\lambda_{\text {air }} / n_{2}$, where n_{2} is the index of refraction of the plastic. This means that the phase difference is

$$
\phi_{1}-\phi_{2}=\left(2 \pi / \lambda_{\text {air }}\right)\left(n_{1}-n_{2}\right) L .
$$

The value of L that makes this 5.65 rad is

$$
L=\frac{\left(\phi_{1}-\phi_{2}\right) \lambda_{\text {air }}}{2 \pi\left(n_{1}-n_{2}\right)}=\frac{5.65\left(400 \times 10^{-9} \mathrm{~m}\right)}{2 \pi(1.60-1.50)}=3.60 \times 10^{-6} \mathrm{~m} .
$$

(b) 5.65 rad is less than $2 \pi \mathrm{rad}=6.28 \mathrm{rad}$, the phase difference for completely constructive interference, and greater than $\pi \mathrm{rad}(=3.14 \mathrm{rad})$, the phase difference for completely destructive interference. The interference is, therefore, intermediate, neither completely constructive nor completely destructive. It is, however, closer to completely constructive than to completely destructive.
8. (a) The time t_{2} it takes for pulse 2 to travel through the plastic is

$$
t_{2}=\frac{L}{c / 1.55}+\frac{L}{c / 1.70}+\frac{L}{c / 1.60}+\frac{L}{c / 1.45}=\frac{6.30 L}{c} .
$$

Similarly for pulse 1 :

$$
t_{1}=\frac{2 L}{c / 1.59}+\frac{L}{c / 1.65}+\frac{L}{c / 1.50}=\frac{6.33 L}{c} .
$$

Thus, pulse 2 travels through the plastic in less time.
(b) The time difference (as a multiple of L / c) is

$$
\Delta t=t_{2}-t_{1}=\frac{6.33 L}{c}-\frac{6.30 L}{c}=\frac{0.03 L}{c} .
$$

Thus, the multiple is 0.03 .
9. (a) We wish to set Eq. 35-11 equal to 1/2, since a half-wavelength phase difference is equivalent to a π radians difference. Thus,

$$
L_{\min }=\frac{\lambda}{2\left(n_{2}-n_{1}\right)}=\frac{620 \mathrm{~nm}}{2(1.65-1.45)}=1550 \mathrm{~nm}=1.55 \mu \mathrm{~m} .
$$

(b) Since a phase difference of $\frac{3}{2}$ (wavelengths) is effectively the same as what we required in part (a), then

$$
L=\frac{3 \lambda}{2\left(n_{2}-n_{1}\right)}=3 L_{\min }=3(1.55 \mu \mathrm{~m})=4.65 \mu \mathrm{~m} .
$$

10. (a) The exiting angle is 50°, the same as the incident angle, due to what one might call the "transitive" nature of Snell's law: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}=\ldots$
(b) Due to the fact that the speed (in a certain medium) is c / n (where n is that medium's index of refraction) and that speed is distance divided by time (while it's constant), we find

$$
t=n L / c=(1.45)\left(25 \times 10^{-19} \mathrm{~m}\right) /\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=1.4 \times 10^{-13} \mathrm{~s}=0.14 \mathrm{ps} .
$$

11. (a) Eq. 35-11 (in absolute value) yields

$$
\frac{L}{\lambda}\left|n_{2}-n_{1}\right|=\frac{\left(8.50 \times 10^{-6} \mathrm{~m}\right)}{500 \times 10^{-9} \mathrm{~m}}(1.60-1.50)=1.70
$$

(b) Similarly,

$$
\frac{L}{\lambda}\left|n_{2}-n_{1}\right|=\frac{\left(8.50 \times 10^{-6} \mathrm{~m}\right)}{500 \times 10^{-9} \mathrm{~m}}(1.72-1.62)=1.70
$$

(c) In this case, we obtain

$$
\frac{L}{\lambda}\left|n_{2}-n_{1}\right|=\frac{\left(3.25 \times 10^{-6} \mathrm{~m}\right)}{500 \times 10^{-9} \mathrm{~m}}(1.79-1.59)=1.30
$$

(d) Since their phase differences were identical, the brightness should be the same for (a) and (b). Now, the phase difference in (c) differs from an integer by 0.30 , which is also true for (a) and (b). Thus, their effective phase differences are equal, and the brightness in case (c) should be the same as that in (a) and (b).
12. (a) We note that ray 1 travels an extra distance $4 L$ more than ray 2 . To get the least possible L which will result in destructive interference, we set this extra distance equal to half of a wavelength:

$$
4 L=\frac{1}{2} \lambda \quad \Rightarrow \quad L=\frac{\lambda}{8}=52.50 \mathrm{~nm}
$$

(b) The next case occurs when that extra distance is set equal to $\frac{3}{2} \lambda$. The result is

$$
L=\frac{3 \lambda}{8}=157.5 \mathrm{~nm}
$$

13. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. Between $x=0$ and $x=L_{2}$ the phase difference is that given by Eq. 35-11 (with L in that equation replaced with L_{2}). Between $x=L_{2}$ and $x=L_{1}$ the phase difference is given by an expression similar to Eq. 35-11 but with L replaced with $L_{1}-L_{2}$ and n_{2} replaced with 1 (since the top ray in Fig. 35-36 is now traveling through air, which has index of refraction approximately equal to 1). Thus, combining these phase differences and letting all lengths be in $\mu \mathrm{m}$ (so $\lambda=0.600$), we have

$$
\frac{L_{2}}{\lambda}\left(n_{2}-n_{1}\right)+\frac{L_{1}-L_{2}}{\lambda}\left(1-n_{1}\right)=\frac{3.50}{0.600}(1.60-1.40)+\frac{4.00-3.50}{0.600}(1-1.40)=0.833 .
$$

(b) Since the answer in part (a) is closer to an integer than to a half-integer, the interference is more nearly constructive than destructive.
14. (a) For the maximum adjacent to the central one, we set $m=1$ in Eq. 35-14 and obtain

$$
\theta_{1}=\left.\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right|_{m=1}=\sin ^{-1}\left[\frac{(1)(\lambda)}{100 \lambda}\right]=0.010 \mathrm{rad} .
$$

(b) Since $y_{1}=D \tan \theta_{1}$ (see Fig. 35-10(a)), we obtain

$$
y_{1}=(500 \mathrm{~mm}) \tan (0.010 \mathrm{rad})=5.0 \mathrm{~mm} .
$$

The separation is $\Delta y=y_{1}-y_{0}=y_{1}-0=5.0 \mathrm{~mm}$.
15. The angular positions of the maxima of a two-slit interference pattern are given by $d \sin \theta=m \lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. If θ is small, $\sin \theta$ may be approximated by θ in radians. Then, $\theta=m \lambda / d$ to good approximation. The angular separation of two adjacent maxima is $\Delta \theta=\lambda / d$. Let λ^{\prime} be the wavelength for which the angular separation is greater by 10.0%. Then, $1.10 \lambda / d=\lambda^{\prime} / d$. or

$$
\lambda^{\prime}=1.10 \lambda=1.10(589 \mathrm{~nm})=648 \mathrm{~nm} .
$$

16. (a) We use Eq. 35-14 with $m=3$:

$$
\theta=\sin ^{-1}\left(\frac{m \lambda}{d}\right)=\sin ^{-1}\left[\frac{2\left(550 \times 10^{-9} \mathrm{~m}\right)}{7.70 \times 10^{-6} \mathrm{~m}}\right]=0.216 \mathrm{rad}
$$

(b) $\theta=(0.216)\left(180^{\circ} / \pi\right)=12.4^{\circ}$.
17. Interference maxima occur at angles θ such that $d \sin \theta=m \lambda$, where m is an integer. Since $d=2.0 \mathrm{~m}$ and $\lambda=0.50 \mathrm{~m}$, this means that $\sin \theta=0.25 \mathrm{~m}$. We want all values of m (positive and negative) for which $|0.25 m| \leq 1$. These are $-4,-3,-2,-1,0,+1,+2,+3$, and +4 . For each of these except -4 and +4 , there are two different values for θ. A single value of $\theta\left(-90^{\circ}\right)$ is associated with $m=-4$ and a single value $\left(+90^{\circ}\right)$ is associated with m $=+4$. There are sixteen different angles in all and, therefore, sixteen maxima.
18. (a) The phase difference (in wavelengths) is

$$
\phi=d \sin \theta / \lambda=(4.24 \mu \mathrm{~m}) \sin \left(20^{\circ}\right) /(0.500 \mu \mathrm{~m})=2.90 .
$$

(b) Multiplying this by 2π gives $\phi=18.2 \mathrm{rad}$.
(c) The result from part (a) is greater than $\frac{5}{2}$ (which would indicate the third minimum) and is less than 3 (which would correspond to the third side maximum).
19. The condition for a maximum in the two-slit interference pattern is $d \sin \theta=m \lambda$, where d is the slit separation, λ is the wavelength, m is an integer, and θ is the angle made by the interfering rays with the forward direction. If θ is small, $\sin \theta$ may be approximated by θ in radians. Then, $\theta=m \lambda / d$, and the angular separation of adjacent maxima, one associated with the integer m and the other associated with the integer $m+1$, is given by $\Delta \theta=\lambda / d$. The separation on a screen a distance D away is given by $\Delta y=$ $D \Delta \theta=\lambda D / d$. Thus,

$$
\Delta y=\frac{\left(500 \times 10^{-9} \mathrm{~m}\right)(5.40 \mathrm{~m})}{1.20 \times 10^{-3} \mathrm{~m}}=2.25 \times 10^{-3} \mathrm{~m}=2.25 \mathrm{~mm} .
$$

20. In Sample Problem 35-2, an experimentally useful relation is derived: $\Delta y=\lambda D / d$. Dividing both sides by D, this becomes $\Delta \theta=\lambda / d$ with θ in radians. In the steps that follow, however, we will end up with an expression where degrees may be directly used. Thus, in the present case,

$$
\Delta \theta_{n}=\frac{\lambda_{n}}{d}=\frac{\lambda}{n d}=\frac{\Delta \theta}{n}=\frac{0.20^{\circ}}{1.33}=0.15^{\circ} .
$$

21. The maxima of a two-slit interference pattern are at angles θ given by $d \sin \theta=m \lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. If θ is small, $\sin \theta$ may be replaced by θ in radians. Then, $d \theta=m \lambda$. The angular separation of two maxima associated with different wavelengths but the same value of m is $\Delta \theta=(m / d)\left(\lambda_{2}-\lambda_{1}\right)$, and their separation on a screen a distance D away is

$$
\begin{aligned}
\Delta y & =D \tan \Delta \theta \approx D \Delta \theta=\left[\frac{m D}{d}\right]\left(\lambda_{2}-\lambda_{1}\right) \\
& =\left[\frac{3(1.0 \mathrm{~m})}{5.0 \times 10^{-3} \mathrm{~m}}\right]\left(600 \times 10^{-9} \mathrm{~m}-480 \times 10^{-9} \mathrm{~m}\right)=7.2 \times 10^{-5} \mathrm{~m} .
\end{aligned}
$$

The small angle approximation $\tan \Delta \theta \approx \Delta \theta$ (in radians) is made.
22. (a) We use Eq. 35-14 to find d :

$$
d \sin \theta=m \lambda \quad \Rightarrow \quad d=(4)(450 \mathrm{~nm}) / \sin \left(90^{\circ}\right)=1800 \mathrm{~nm}
$$

For the third order spectrum, the wavelength that corresponds to $\theta=90^{\circ}$ is

$$
\lambda=d \sin \left(90^{\circ}\right) / 3=600 \mathrm{~nm} .
$$

Any wavelength greater than this will not be seen. Thus, $600 \mathrm{~nm}<\theta \leq 700 \mathrm{~nm}$ are absent.
(b) The slit separation d needs to be decreased.
(c) In this case, the 400 nm wavelength in the $m=4$ diffraction is to occur at 90°. Thus

$$
d_{\text {new }} \sin \theta=m \lambda \quad \Rightarrow \quad d_{\text {new }}=(4)(400 \mathrm{~nm}) / \sin \left(90^{\circ}\right)=1600 \mathrm{~nm} .
$$

This represents a change of $|\Delta d|=d-d_{\text {new }}=200 \mathrm{~nm}=0.20 \mu \mathrm{~m}$.
23. Initially, source A leads source B by 90°, which is equivalent to $1 / 4$ wavelength. However, source A also lags behind source B since r_{A} is longer than r_{B} by 100 m , which is $100 \mathrm{~m} / 400 \mathrm{~m}=1 / 4$ wavelength. So the net phase difference between A and B at the detector is zero.
24. Imagine a y axis midway between the two sources in the figure. Thirty points of destructive interference (to be considered in the $x y$ plane of the figure) implies there are $7+1+7=15$ on each side of the y axis. There is no point of destructive interference on the y axis itself since the sources are in phase and any point on the y axis must therefore correspond to a zero phase difference (and corresponds to $\theta=0$ in Eq. 35-14). In other words, there are 7 "dark" points in the first quadrant, one along the $+x$ axis, and 7 in the fourth quadrant, constituting the 15 dark points on the right-hand side of the y axis. Since the y axis corresponds to a minimum phase difference, we can count (say, in the first quadrant) the m values for the destructive interference (in the sense of Eq. 35-16) beginning with the one closest to the y axis and going clockwise until we reach the x axis (at any point beyond S_{2}). This leads us to assign $m=7$ (in the sense of Eq. 35-16) to the point on the x axis itself (where the path difference for waves coming from the sources is simply equal to the separation of the sources, d); this would correspond to $\theta=90^{\circ}$ in Eq. 35-16. Thus,

$$
d=\left(7+\frac{1}{2}\right) \lambda=7.5 \lambda \Rightarrow \frac{d}{\lambda}=7.5 .
$$

25. Let the distance in question be x. The path difference (between rays originating from S_{1} and S_{2} and arriving at points on the $x>0$ axis) is

$$
\sqrt{d^{2}+x^{2}}-x=\left(m+\frac{1}{2}\right) \lambda,
$$

where we are requiring destructive interference (half-integer wavelength phase differences) and $m=0,1,2, \cdots$. After some algebraic steps, we solve for the distance in terms of m :

$$
x=\frac{d^{2}}{(2 m+1) \lambda}-\frac{(2 m+1) \lambda}{4}
$$

To obtain the largest value of x, we set $m=0$:

$$
\begin{aligned}
x_{0} & =\frac{d^{2}}{\lambda}-\frac{\lambda}{4}=\frac{(3.00 \lambda)^{2}}{\lambda}-\frac{\lambda}{4}=8.75 \lambda=8.75(900 \mathrm{~nm})=7.88 \times 10^{3} \mathrm{~nm} \\
& =7.88 \mu \mathrm{~m} .
\end{aligned}
$$

26. (a) We note that, just as in the usual discussion of the double slit pattern, the $x=0$ point on the screen (where that vertical line of length D in the picture intersects the screen) is a bright spot with phase difference equal to zero (it would be the middle fringe in the usual double slit pattern). We are not considering $x<0$ values here, so that negative phase differences are not relevant (and if we did wish to consider $x<0$ values, we could limit our discussion to absolute values of the phase difference, so that - again - negative phase differences do not enter it). Thus, the $x=0$ point is the one with the minimum phase difference.
(b) As noted in part (a), the phase difference $\phi=0$ at $x=0$.
(c) The path length difference is greatest at the rightmost "edge" of the screen (which is assumed to go on forever), so ϕ is maximum at $x=\infty$.
(d) In considering $x=\infty$, we can treat the rays from the sources as if they are essentially horizontal. In this way, we see that the difference between the path lengths is simply the distance ($2 d$) between the sources. The problem specifies $2 d=6.00 \lambda$, or $2 d / \lambda=6.00$.
(e) Using the Pythagorean theorem, we have

$$
\phi=\frac{\sqrt{D^{2}+(x+d)^{2}}}{\lambda}-\frac{\sqrt{D^{2}+(x-d)^{2}}}{\lambda}=1.71
$$

where we have plugged in $D=20 \lambda, d=3 \lambda$ and $x=6 \lambda$. Thus, the phase difference at that point is 1.71 wavelengths.
(f) We note that the answer to part (e) is closer to $\frac{3}{2}$ (destructive interference) than to 2 (constructive interference), so that the point is "intermediate" but closer to a minimum than to a maximum.
27. Consider the two waves, one from each slit, that produce the seventh bright fringe in the absence of the mica. They are in phase at the slits and travel different distances to the seventh bright fringe, where they have a phase difference of $2 \pi m=14 \pi$. Now a piece of mica with thickness x is placed in front of one of the slits, and an additional phase difference between the waves develops. Specifically, their phases at the slits differ by

$$
\frac{2 \pi x}{\lambda_{m}}-\frac{2 \pi x}{\lambda}=\frac{2 \pi x}{\lambda}(n-1)
$$

where λ_{m} is the wavelength in the mica and n is the index of refraction of the mica. The relationship $\lambda_{m}=\lambda / n$ is used to substitute for λ_{m}. Since the waves are now in phase at the screen,

$$
\frac{2 \pi x}{\lambda}(n-1)=14 \pi
$$

or

$$
x=\frac{7 \lambda}{n-1}=\frac{7\left(550 \times 10^{-9} \mathrm{~m}\right)}{1.58-1}=6.64 \times 10^{-6} \mathrm{~m} .
$$

28. The problem asks for "the greatest value of $x \ldots$ exactly out of phase" which is to be interpreted as the value of x where the curve shown in the figure passes through a phase value of π radians. This happens as some point P on the x axis, which is, of course, a distance x from the top source and (using Pythagoras' theorem) a distance $\sqrt{d^{2}+x^{2}}$ from the bottom source. The difference (in normal length units) is therefore $\sqrt{d^{2}+x^{2}}-x$, or (expressed in radians) is $\frac{2 \pi}{\lambda}\left(\sqrt{d^{2}+x^{2}}-x\right)$. We note (looking at the leftmost point in the graph) that at $x=0$, this latter quantity equals 6π, which means $d=3 \lambda$. Using this value for d, we now must solve the condition

$$
\frac{2 \pi}{\lambda}\left(\sqrt{d^{2}+x^{2}}-x\right)=\pi .
$$

Straightforward algebra then lead to $x=(35 / 4) \lambda$, and using $\lambda=400 \mathrm{~nm}$ we find $x=3500$ nm , or $3.5 \mu \mathrm{~m}$.
29. The phasor diagram is shown below.

Here $E_{1}=1.00, E_{2}=2.00$, and $\phi=60^{\circ}$. The resultant amplitude E_{m} is given by the trigonometric law of cosines:

$$
E_{m}^{2}=E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2} \cos \left(180^{\circ}-\phi\right) .
$$

Thus,

$$
E_{m}=\sqrt{(1.00)^{2}+(2.00)^{2}-2(1.00)(2.00) \cos 120^{\circ}}=2.65 .
$$

30. In adding these with the phasor method (as opposed to, say, trig identities), we may set $t=0$ (see Sample Problem 35-4) and add them as vectors:

$$
\begin{aligned}
& y_{h}=10 \cos 0^{\circ}+8.0 \cos 30^{\circ}=16.9 \\
& y_{v}=10 \sin 0^{\circ}+8.0 \sin 30^{\circ}=4.0
\end{aligned}
$$

so that

$$
\begin{aligned}
y_{R} & =\sqrt{y_{h}^{2}+y_{v}^{2}}=17.4 \\
\beta & =\tan ^{-1}\left(\frac{y_{v}}{y_{h}}\right)=13.3^{\circ} .
\end{aligned}
$$

Thus, $y=y_{1}+y_{2}=y_{R} \sin (\omega t+\beta)=17.4 \sin \left(\omega t+13.3^{\circ}\right)$. Quoting the answer to two significant figures, we have $y \approx 17 \sin \left(\omega t+13^{\circ}\right)$.
31. In adding these with the phasor method (as opposed to, say, trig identities), we may set $t=0$ (see Sample Problem 35-4) and add them as vectors:

$$
\begin{aligned}
& y_{h}=10 \cos 0^{\circ}+15 \cos 30^{\circ}+5.0 \cos \left(-45^{\circ}\right)=26.5 \\
& y_{v}=10 \sin 0^{\circ}+15 \sin 30^{\circ}+5.0 \sin \left(-45^{\circ}\right)=4.0
\end{aligned}
$$

so that

$$
\begin{aligned}
y_{R} & =\sqrt{y_{h}^{2}+y_{v}^{2}}=26.8 \approx 27 \\
\beta & =\tan ^{-1}\left(\frac{y_{v}}{y_{h}}\right)=8.5^{\circ} .
\end{aligned}
$$

Thus, $y=y_{1}+y_{2}+y_{3}=y_{R} \sin (\omega t+\beta)=27 \sin \left(\omega t+8.5^{\circ}\right)$.
32. (a) Referring to Figure 35-10(a) makes clear that

$$
\theta=\tan ^{-1}(y / D)=\tan ^{-1}(0.205 / 4)=2.93^{\circ} .
$$

Thus, the phase difference at point P is $\phi=d \sin \theta / \lambda=0.397$ wavelengths, which means it is between the central maximum (zero wavelength difference) and the first minimum ($\frac{1}{2}$ wavelength difference). Note that the above computation could have been simplified somewhat by avoiding the explicit use of the tangent and sine functions and making use of the small-angle approximation $(\tan \theta \approx \sin \theta)$.
(b) From Eq. 35-22, we get (with $\phi=(0.397)(2 \pi)=2.495 \mathrm{rad})$

$$
I=4 I_{0}(\cos (\phi / 2))^{2}=0.404 I_{0}
$$

at point P and

$$
I_{\mathrm{cen}}=4 I_{\mathrm{o}}(\cos (0))^{2}=4 I_{\mathrm{o}}
$$

at the center. Thus, $\frac{I}{I_{\text {cen }}}=\frac{0.404}{4}=0.101$.
33. With phasor techniques, this amounts to a vector addition problem $\vec{R}=\vec{A}+\vec{B}+\vec{C}$ where (in magnitude-angle notation) $\vec{A}=\left(10 \angle 0^{\circ}\right), \vec{B}=\left(5 \angle 45^{\circ}\right)$, and $\vec{C}=\left(5 \angle-45^{\circ}\right)$, where the magnitudes are understood to be in $\mu \mathrm{V} / \mathrm{m}$. We obtain the resultant (especially efficient on a vector-capable calculator in polar mode):

$$
\vec{R}=\left(10 \angle 0^{\circ}\right)+\left(5 \angle 45^{\circ}\right)+\left(5 \angle-45^{\circ}\right)=\left(17.1 \angle 0^{\circ}\right)
$$

which leads to

$$
E_{R}=(17.1 \mu \mathrm{~V} / \mathrm{m}) \sin (\omega t)
$$

where $\omega=2.0 \times 10^{14} \mathrm{rad} / \mathrm{s}$.
34. (a) We can use phasor techniques or use trig identities. Here we show the latter approach. Since $\sin a+\sin (a+b)=2 \cos (b / 2) \sin (a+b / 2)$, we find

$$
E_{1}+E_{2}=2 E_{0} \cos \left(\frac{\phi}{2}\right) \sin \left(\omega \mathrm{t}+\frac{\phi}{2}\right)
$$

where $E_{\mathrm{o}}=2.00 \mu \mathrm{~V} / \mathrm{m}, \omega=1.26 \times 10^{15} \mathrm{rad} / \mathrm{s}$, and $\phi=39.6 \mathrm{rad}$. This shows that the electric field amplitude of the resultant wave is

$$
E=2 E_{\mathrm{o}} \cos (\phi / 2)=2.33 \mu \mathrm{~V} / \mathrm{m}
$$

(b) Eq. 35-22 leads to

$$
I=4 I_{0}(\cos (\phi / 2))^{2}=1.35 I_{0}
$$

at point P, and

$$
I_{\mathrm{cen}}=4 I_{\mathrm{o}}(\cos (0))^{2}=4 I_{\mathrm{o}}
$$

at the center. Thus, $\frac{I}{I_{\text {cen }}}=\frac{1.35}{4}=0.338$.
(c) The phase difference ϕ (in wavelengths) is gotten from ϕ in radians by dividing by 2π. Thus, $\phi=39.6 / 2 \pi=6.3$ wavelengths. Thus, point P is between the sixth side maximum (at which $\phi=6$ wavelengths) and the seventh minimum (at which $\phi=6 \frac{1}{2}$ wavelengths).
(d) The rate is given by $\omega=1.26 \times 10^{15} \mathrm{rad} / \mathrm{s}$.
(e) The angle between the phasors is $\phi=39.6 \mathrm{rad}=2270^{\circ}$ (which would look like about 110° when drawn in the usual way).
35. For constructive interference, we use Eq. 35-36: $2 n_{2} L=(m+1 / 2) \lambda$. For the smallest value of L, let $m=0$:

$$
L_{0}=\frac{\lambda / 2}{2 n_{2}}=\frac{624 \mathrm{~nm}}{4(1.33)}=117 \mathrm{~nm}=0.117 \mu \mathrm{~m}
$$

(b) For the second smallest value, we set $m=1$ and obtain

$$
L_{1}=\frac{(1+1 / 2) \lambda}{2 n_{2}}=\frac{3 \lambda}{2 n_{2}}=3 L_{0}=3(0.1173 \mu \mathrm{~m})=0.352 \mu \mathrm{~m} .
$$

36. (a) On both sides of the soap is a medium with lower index (air) and we are examining the reflected light, so the condition for strong reflection is Eq. 35-36. With lengths in nm,

$$
\lambda=\frac{2 n_{2} L}{m+\frac{1}{2}}= \begin{cases}3360 & \text { for } m=0 \\ 1120 & \text { for } m=1 \\ 672 & \text { for } m=2 \\ 480 & \text { for } m=3 \\ 373 & \text { for } m=4 \\ 305 & \text { for } m=5\end{cases}
$$

from which we see the latter four values are in the given range.
(b) We now turn to Eq. 35-37 and obtain

$$
\lambda=\frac{2 n_{2} L}{m}= \begin{cases}1680 & \text { for } m=1 \\ 840 & \text { for } m=2 \\ 560 & \text { for } m=3 \\ 420 & \text { for } m=4 \\ 336 & \text { for } m=5\end{cases}
$$

from which we see the latter three values are in the given range.
37. Light reflected from the front surface of the coating suffers a phase change of π rad while light reflected from the back surface does not change phase. If L is the thickness of the coating, light reflected from the back surface travels a distance $2 L$ farther than light reflected from the front surface. The difference in phase of the two waves is $2 L\left(2 \pi / \lambda_{c}\right)-$ π, where λ_{c} is the wavelength in the coating. If λ is the wavelength in vacuum, then $\lambda_{c}=$ λ / n, where n is the index of refraction of the coating. Thus, the phase difference is $2 n L(2 \pi / \lambda)-\pi$. For fully constructive interference, this should be a multiple of 2π. We solve

$$
2 n L\left(\frac{2 \pi}{\lambda}\right)-\pi=2 m \pi
$$

for L. Here m is an integer. The solution is

$$
L=\frac{(2 m+1) \lambda}{4 n} .
$$

To find the smallest coating thickness, we take $m=0$. Then,

$$
L=\frac{\lambda}{4 n}=\frac{560 \times 10^{-9} \mathrm{~m}}{4(2.00)}=7.00 \times 10^{-8} \mathrm{~m} .
$$

38. (a) We are dealing with a thin film (material 2) in a situation where $n_{1}>n_{2}>n_{3}$, looking for strong reflections; the appropriate condition is the one expressed by Eq. 3537. Therefore, with lengths in nm and $L=500$ and $n_{2}=1.7$, we have

$$
\lambda=\frac{2 n_{2} L}{m}= \begin{cases}1700 & \text { for } m=1 \\ 850 & \text { for } m=2 \\ 567 & \text { for } m=3 \\ 425 & \text { for } m=4\end{cases}
$$

from which we see the latter two values are in the given range. The longer wavelength ($m=3$) is $\lambda=567 \mathrm{~nm}$.
(b) The shorter wavelength $(m=4)$ is $\lambda=425 \mathrm{~nm}$.
(c) We assume the temperature dependence of the refraction index is negligible. From the proportionality evident in the part (a) equation, longer L means longer λ.
39. For complete destructive interference, we want the waves reflected from the front and back of the coating to differ in phase by an odd multiple of π rad. Each wave is incident on a medium of higher index of refraction from a medium of lower index, so both suffer phase changes of $\pi \mathrm{rad}$ on reflection. If L is the thickness of the coating, the wave reflected from the back surface travels a distance $2 L$ farther than the wave reflected from the front. The phase difference is $2 L\left(2 \pi / \lambda_{c}\right)$, where λ_{c} is the wavelength in the coating. If n is the index of refraction of the coating, $\lambda_{c}=\lambda / n$, where λ is the wavelength in vacuum, and the phase difference is $2 n L(2 \pi / \lambda)$. We solve

$$
2 n L\left(\frac{2 \pi}{\lambda}\right)=(2 m+1) \pi
$$

for L. Here m is an integer. The result is

$$
L=\frac{(2 m+1) \lambda}{4 n} .
$$

To find the least thickness for which destructive interference occurs, we take $m=0$. Then,

$$
L=\frac{\lambda}{4 n}=\frac{600 \times 10^{-9} \mathrm{~m}}{4(1.25)}=1.20 \times 10^{-7} \mathrm{~m} .
$$

40. The situation is analogous to that treated in Sample Problem 35-6, in the sense that the incident light is in a low index medium, the thin film of acetone has somewhat higher $n=n_{2}$, and the last layer (the glass plate) has the highest refractive index. To see very little or no reflection, according to the Sample Problem, the condition

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \quad \text { where } \quad m=0,1,2, \ldots
$$

must hold. This is the same as Eq. 35-36 which was developed for the opposite situation (constructive interference) regarding a thin film surrounded on both sides by air (a very different context than the one in this problem). By analogy, we expect Eq. 35-37 to apply in this problem to reflection maxima. A more careful analysis such as that given in §35-7 bears this out. Thus, using Eq. 35-37 with $n_{2}=1.25$ and $\lambda=700 \mathrm{~nm}$ yields

$$
L=0,280 \mathrm{~nm}, 560 \mathrm{~nm}, 840 \mathrm{~nm}, 1120 \mathrm{~nm}, \ldots
$$

for the first several m values. And the equation shown above (equivalent to Eq. 35-36) gives, with $\lambda=600 \mathrm{~nm}$,

$$
L=120 \mathrm{~nm}, 360 \mathrm{~nm}, 600 \mathrm{~nm}, 840 \mathrm{~nm}, 1080 \mathrm{~nm}, \ldots
$$

for the first several m values. The lowest number these lists have in common is $L=840 \mathrm{~nm}$.
41. When a thin film of thickness L and index of refraction n_{2} is placed between materials 1 and 3 such that $n_{1}>n_{2}$ and $n_{3}>n_{2}$ where n_{1} and n_{3} are the indexes of refraction of the materials, the general condition for destructive interference for a thin film is

$$
2 L=m \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{2 L n_{2}}{m}, \quad m=0,1,2, \ldots
$$

where λ is the wavelength of light as measured in air. Thus, we have, for $m=1$

$$
\lambda=2 L n_{2}=2(200 \mathrm{~nm})(1.40)=560 \mathrm{~nm} .
$$

42. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(285 \mathrm{~nm})(1.60)=1824 \mathrm{~nm} \quad(m=0) \\
4 \operatorname{Ln}_{2} / 3=4(285 \mathrm{~nm})(1.60) / 3=608 \mathrm{~nm} \quad(m=1)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=1$ with $\lambda=608 \mathrm{~nm}$.
43. In this setup, we have $n_{2}>n_{1}$ and $n_{2}<n_{3}$, and the condition for destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(210 \mathrm{~nm})(1.46)=1226 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(210 \mathrm{~nm})(1.46) / 3=409 \mathrm{~nm}(m=1)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=1$ with $\lambda=409 \mathrm{~nm}$.
44. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(325 \mathrm{~nm})(1.75)=2275 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(325 \mathrm{~nm})(1.75) / 3=758 \mathrm{~nm}(m=1) . \\
4 L n_{2} / 5=4(325 \mathrm{~nm})(1.75) / 5=455 \mathrm{~nm}(m=2)
\end{array}\right.
$$

For the wavelength to be in the visible range, we choose $m=2$ with $\lambda=455 \mathrm{~nm}$.
45. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for destructive interference is

$$
2 L=m \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{2 L n_{2}}{m}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
2 L n_{2}=2(380 \mathrm{~nm})(1.34)=1018 \mathrm{~nm}(m=1) \\
L n_{2}=(380 \mathrm{~nm})(1.34)=509 \mathrm{~nm}(m=2)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=2$ with $\lambda=509 \mathrm{~nm}$.
46. In this setup, we have $n_{2}<n_{1}$ and $n_{2}>n_{3}$, and the condition for destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(415 \mathrm{~nm})(1.59)=2639 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(415 \mathrm{~nm})(1.59) / 3=880 \mathrm{~nm}(m=1) . \\
4 L n_{2} / 5=4(415 \mathrm{~nm})(1.59) / 5=528 \mathrm{~nm}(m=2)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=3$ with $\lambda=528 \mathrm{~nm}$.
47. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The third least thickness is ($m=2$)

$$
L=\left(2+\frac{1}{2}\right) \frac{612 \mathrm{~nm}}{2(1.60)}=478 \mathrm{~nm} .
$$

48. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{632 \mathrm{~nm}}{2(1.40)}=339 \mathrm{~nm} .
$$

49. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The third least thickness is $(m=2)$

$$
L=\left(2+\frac{1}{2}\right) \frac{382 \mathrm{~nm}}{2(1.75)}=273 \mathrm{~nm} .
$$

50. In this setup, we have $n_{2}>n_{1}$ and $n_{2}<n_{3}$, and the condition for destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{482 \mathrm{~nm}}{2(1.46)}=248 \mathrm{~nm} .
$$

51. In this setup, we have $n_{2}<n_{1}$ and $n_{2}>n_{3}$, and the condition for destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{342 \mathrm{~nm}}{2(1.59)}=161 \mathrm{~nm} .
$$

52. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{587 \mathrm{~nm}}{2(1.34)}=329 \mathrm{~nm} .
$$

53. We solve Eq. $35-36$ with $n_{2}=1.33$ and $\lambda=600 \mathrm{~nm}$ for $m=1,2,3, \ldots$:

$$
L=113 \mathrm{~nm}, 338 \mathrm{~nm}, 564 \mathrm{~nm}, 789 \mathrm{~nm}, \ldots
$$

And, we similarly solve Eq. $35-37$ with the same n_{2} and $\lambda=450 \mathrm{~nm}$:

$$
L=0,169 \mathrm{~nm}, 338 \mathrm{~nm}, 508 \mathrm{~nm}, 677 \mathrm{~nm}, \ldots
$$

The lowest number these lists have in common is $L=338 \mathrm{~nm}$.
54. The situation is analogous to that treated in Sample Problem 35-6, in the sense that the incident light is in a low index medium, the thin film of oil has somewhat higher $n=$ n_{2}, and the last layer (the glass plate) has the highest refractive index. To see very little or no reflection, according to the Sample Problem, the condition

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \text { where } m=0,1,2, \ldots
$$

must hold. With $\lambda=500 \mathrm{~nm}$ and $n_{2}=1.30$, the possible answers for L are

$$
L=96 \mathrm{~nm}, 288 \mathrm{~nm}, 481 \mathrm{~nm}, 673 \mathrm{~nm}, 865 \mathrm{~nm}, \ldots
$$

And, with $\lambda=700 \mathrm{~nm}$ and the same value of n_{2}, the possible answers for L are

$$
L=135 \mathrm{~nm}, 404 \mathrm{~nm}, 673 \mathrm{~nm}, 942 \mathrm{~nm}, \ldots
$$

The lowest number these lists have in common is $L=673 \mathrm{~nm}$.
55. The situation is analogous to that treated in Sample Problem 35-6, in the sense that the incident light is in a low index medium, the thin film has somewhat higher $n=n_{2}$, and the last layer has the highest refractive index. To see very little or no reflection, according to the Sample Problem, the condition

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \quad \text { where } \quad m=0,1,2, \ldots
$$

must hold. The value of L which corresponds to no reflection corresponds, reasonably enough, to the value which gives maximum transmission of light (into the highest index medium - which in this problem is the water).
(a) If $2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}}$ (Eq. 35-36) gives zero reflection in this type of system, then we might reasonably expect that its counterpart, Eq. 35-37, gives maximum reflection here. A more careful analysis such as that given in §35-7 bears this out. We disregard the $m=0$ value (corresponding to $L=0$) since there is some oil on the water. Thus, for $m=1,2, \ldots$, maximum reflection occurs for wavelengths

$$
\lambda=\frac{2 n_{2} L}{m}=\frac{2(1.20)(460 \mathrm{~nm})}{m}=1104 \mathrm{~nm}, 552 \mathrm{~nm}, 368 \mathrm{~nm} \ldots
$$

We note that only the 552 nm wavelength falls within the visible light range.
(b) As remarked above, maximum transmission into the water occurs for wavelengths given by

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 n_{2} L}{2 m+1}
$$

which yields $\lambda=2208 \mathrm{~nm}, 736 \mathrm{~nm}, 442 \mathrm{~nm} \ldots$ for the different values of m. We note that only the 442 nm wavelength (blue) is in the visible range, though we might expect some red contribution since the 736 nm is very close to the visible range.
56. For constructive interference (which is obtained for $\lambda=600 \mathrm{~nm}$) in this circumstance, we require

$$
2 L=\frac{k}{2} \lambda_{n}=\frac{k \lambda}{2 n}
$$

where $k=$ some positive odd integer and n is the index of refraction of the thin film. Rearranging and plugging in $L=272.7 \mathrm{~nm}$ and the wavelength value, this gives

$$
\frac{k}{1.818}=n .
$$

Since we expect $n>1$, then $k=1$ is ruled out. However, $k=3$ seems reasonable, since it leads to $n=1.65$, which is close to the "typical" values found in Table 34-1. Taking this to be the correct index of refraction for the thin film, we now consider the destructive interference part of the question. Now we have $2 L=($ integer $) \lambda_{\text {dest }} / n$. Thus, $\lambda_{\text {dest }}=(900$ $\mathrm{nm}) /($ integer $)$. We note that setting the integer equal to 1 yields a $\lambda_{\text {dest }}$ value outside the range of the visible spectrum. A similar remark holds for setting the integer equal to 3 . Thus, we set it equal to 2 and obtain $\lambda_{\text {dest }}=450 \mathrm{~nm}$.
57. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(285 \mathrm{~nm})(1.60)=1824 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(415 \mathrm{~nm})(1.59) / 3=608 \mathrm{~nm}(m=1)
\end{array}\right.
$$

For the wavelength to be in the visible range, we choose $m=1$ with $\lambda=608 \mathrm{~nm}$.
58. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=m \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{2 L n_{2}}{m}, \quad m=0,1,2, \ldots
$$

Thus, we have (with $m=1$),

$$
\lambda=2 L n_{2}=2(200 \mathrm{~nm})(1.40)=560 \mathrm{~nm} .
$$

59. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(325 \mathrm{~nm})(1.75)=2275 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(415 \mathrm{~nm})(1.59) / 3=758 \mathrm{~nm}(m=1) . \\
4 L n_{2} / 5=4(415 \mathrm{~nm})(1.59) / 5=455 \mathrm{~nm}(m=2)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=2$ with $\lambda=455 \mathrm{~nm}$.
60. In this setup, we have $n_{2}>n_{1}$ and $n_{2}<n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(210 \mathrm{~nm})(1.46)=1226 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(210 \mathrm{~nm})(1.46) / 3=409 \mathrm{~nm}(m=1)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=1$ with $\lambda=409 \mathrm{~nm}$.
61. In this setup, we have $n_{2}<n_{1}$ and $n_{2}>n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{4 L n_{2}}{2 m+1}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
4 L n_{2}=4(415 \mathrm{~nm})(1.59)=2639 \mathrm{~nm}(m=0) \\
4 L n_{2} / 3=4(415 \mathrm{~nm})(1.59) / 3=880 \mathrm{~nm}(m=1) . \\
4 L n_{2} / 5=4(415 \mathrm{~nm})(1.59) / 5=528 \mathrm{~nm}(m=2)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=3$ with $\lambda=528 \mathrm{~nm}$.
62. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=m \frac{\lambda}{n_{2}} \Rightarrow \lambda=\frac{2 L n_{2}}{m}, \quad m=0,1,2, \ldots
$$

Thus, we have,

$$
\lambda=\left\{\begin{array}{l}
2 L n_{2}=2(380 \mathrm{~nm})(1.34)=1018 \mathrm{~nm}(m=1) \\
L n_{2}=(380 \mathrm{~nm})(1.34)=509 \mathrm{~nm}(m=2)
\end{array} .\right.
$$

For the wavelength to be in the visible range, we choose $m=2$ with $\lambda=509 \mathrm{~nm}$.
63. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{632 \mathrm{~nm}}{2(1.40)}=339 \mathrm{~nm} .
$$

64. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The third least thickness is $(m=2)$

$$
L=\left(2+\frac{1}{2}\right) \frac{612 \mathrm{~nm}}{2(1.60)}=478 \mathrm{~nm} .
$$

65. In this setup, we have $n_{2}>n_{1}$ and $n_{2}<n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{482 \mathrm{~nm}}{2(1.46)}=248 \mathrm{~nm} .
$$

66. In this setup, we have $n_{2}>n_{1}$ and $n_{2}>n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The third least thickness is $(m=2)$

$$
L=\left(2+\frac{1}{2}\right) \frac{382 \mathrm{~nm}}{2(1.75)}=273 \mathrm{~nm} .
$$

67. In this setup, we have $n_{2}<n_{1}$ and $n_{2}<n_{3}$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{587 \mathrm{~nm}}{2(1.34)}=329 \mathrm{~nm} .
$$

68. In this setup, we have $n_{2}<n_{1}$ and $n_{2}>n_{3}$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$
2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \Rightarrow L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad m=0,1,2, \ldots
$$

The second least thickness is ($m=1$)

$$
L=\left(1+\frac{1}{2}\right) \frac{342 \mathrm{~nm}}{2(1.59)}=161 \mathrm{~nm} .
$$

69. Consider the interference of waves reflected from the top and bottom surfaces of the air film. The wave reflected from the upper surface does not change phase on reflection but the wave reflected from the bottom surface changes phase by π rad. At a place where the thickness of the air film is L, the condition for fully constructive interference is $2 L=\left(m+\frac{1}{2}\right) \lambda$ where $\lambda(=683 \mathrm{~nm})$ is the wavelength and m is an integer. This is satisfied for $m=140$:

$$
L=\frac{\left(m+\frac{1}{2}\right) \lambda}{2}=\frac{(140.5)\left(683 \times 10^{-9} \mathrm{~m}\right)}{2}=4.80 \times 10^{-5} \mathrm{~m}=0.048 \mathrm{~mm} .
$$

At the thin end of the air film, there is a bright fringe. It is associated with $m=0$. There are, therefore, 140 bright fringes in all.
70. By the condition $m \lambda=2 y$ where y is the thickness of the air-film between the plates directly underneath the middle of a dark band), the edge of the plates (the edge where they are not touching) are $y=8 \lambda / 2=2400 \mathrm{~nm}$ apart (where we have assumed that the middle of the ninth dark band is at the edge). Increasing that to $y^{\prime}=3000 \mathrm{~nm}$ would correspond to $m^{\prime}=2 y^{\prime} / \lambda=10$ (counted as the eleventh dark band, since the first one corresponds to $m=0$). There are thus 11 dark fringes along the top plate.
71. Assume the wedge-shaped film is in air, so the wave reflected from one surface undergoes a phase change of π rad while the wave reflected from the other surface does not. At a place where the film thickness is L, the condition for fully constructive interference is $2 n L=\left(m+\frac{1}{2}\right) \lambda$, where n is the index of refraction of the film, λ is the wavelength in vacuum, and m is an integer. The ends of the film are bright. Suppose the end where the film is narrow has thickness L_{1} and the bright fringe there corresponds to m $=m_{1}$. Suppose the end where the film is thick has thickness L_{2} and the bright fringe there corresponds to $m=m_{2}$. Since there are ten bright fringes, $m_{2}=m_{1}+9$. Subtract $2 n L_{1}=\left(m_{1}+\frac{1}{2}\right) \lambda$ from $2 n L_{2}=\left(m_{1}+9+\frac{1}{2}\right) \lambda$ to obtain $2 n \Delta L=9 \lambda$, where $\Delta L=L_{2}-L_{1}$ is the change in the film thickness over its length. Thus,

$$
\Delta L=\frac{9 \lambda}{2 n}=\frac{9\left(630 \times 10^{-9} \mathrm{~m}\right)}{2(1.50)}=1.89 \times 10^{-6} \mathrm{~m} .
$$

72. We apply Eq. 35-27 to both scenarios: $m=4001$ and $n_{2}=n_{\text {air }}$, and $m=4000$ and $n_{2}=$ $n_{\text {vacuum }}=1.00000$:

$$
2 L=(4001) \frac{\lambda}{n_{\text {air }}} \text { and } 2 L=(4000) \frac{\lambda}{1.00000}
$$

Since the $2 L$ factor is the same in both cases, we set the right hand sides of these expressions equal to each other and cancel the wavelength. Finally, we obtain

$$
n_{\text {air }}=(1.00000) \frac{4001}{4000}=1.00025 .
$$

We remark that this same result can be obtained starting with Eq. 35-43 (which is developed in the textbook for a somewhat different situation) and using Eq. 35-42 to eliminate the $2 L / \lambda$ term.
73. Using the relations of $\S 35-7$, we find that the (vertical) change between the center of one dark band and the next is

$$
\Delta y=\lambda 2=2.5 \times 10^{-4} \mathrm{~mm}
$$

Thus, with the (horizontal) separation of dark bands given by $\Delta x=1.2 \mathrm{~mm}$, we have

$$
\theta \approx \tan \theta=\frac{\Delta y}{\Delta x}=2.08 \times 10^{-4} \mathrm{rad} .
$$

Converting this angle into degrees, we arrive at $\theta=0.012^{\circ}$.
74. (a) The third sentence of the problem implies $m_{0}=9.5$ in $2 d_{0}=m_{0} \lambda$ initially. Then, $\Delta t=15 \mathrm{~s}$ later, we have $m^{\prime}=9.0$ in $2 d^{\prime}=m^{\prime} \lambda$. This means

$$
|\Delta d|=d_{0}-d^{\prime}=\frac{1}{2}\left(m_{0} \lambda-m^{\prime} \lambda\right)=155 \mathrm{~nm} .
$$

Thus, $|\Delta d|$ divided by Δt gives $10.3 \mathrm{~nm} / \mathrm{s}$.
(b) In this case, $m_{f}=6$ so that $d_{0}-d_{f}=\frac{1}{2}\left(m_{0} \lambda-m_{f} \lambda\right)=\frac{7}{4} \lambda=1085 \mathrm{~nm}=1.09 \mu \mathrm{~m}$.
75. Consider the interference pattern formed by waves reflected from the upper and lower surfaces of the air wedge. The wave reflected from the lower surface undergoes a π rad phase change while the wave reflected from the upper surface does not. At a place where the thickness of the wedge is d, the condition for a maximum in intensity is $2 d=\left(m+\frac{1}{2}\right) \lambda$, where λ is the wavelength in air and m is an integer. Thus, $d=(2 m+$ 1) $\lambda / 4$. As the geometry of Fig. 35-46 shows, $d=R-\sqrt{R^{2}-r^{2}}$, where R is the radius of curvature of the lens and r is the radius of a Newton's ring. Thus, $(2 m+1) \lambda / 4=R-\sqrt{R^{2}-r^{2}}$. First, we rearrange the terms so the equation becomes

$$
\sqrt{R^{2}-r^{2}}=R-\frac{(2 m+1) \lambda}{4}
$$

Next, we square both sides, rearrange to solve for r^{2}, then take the square root. We get

$$
r=\sqrt{\frac{(2 m+1) R \lambda}{2}-\frac{(2 m+1)^{2} \lambda^{2}}{16}}
$$

If R is much larger than a wavelength, the first term dominates the second and

$$
r=\sqrt{\frac{(2 m+1) R \lambda}{2}}
$$

76. (a) We find m from the last formula obtained in problem 75:

$$
m=\frac{r^{2}}{R \lambda}-\frac{1}{2}=\frac{\left(10 \times 10^{-3} \mathrm{~m}\right)^{2}}{(5.0 \mathrm{~m})\left(589 \times 10^{-9} \mathrm{~m}\right)}-\frac{1}{2}
$$

which (rounding down) yields $m=33$. Since the first bright fringe corresponds to $m=0$, $m=33$ corresponds to the thirty-fourth bright fringe.
(b) We now replace λ by $\lambda_{n}=\lambda / n_{w}$. Thus,

$$
m_{n}=\frac{r^{2}}{R \lambda_{n}}-\frac{1}{2}=\frac{n_{w} r^{2}}{R \lambda}-\frac{1}{2}=\frac{(1.33)\left(10 \times 10^{-3} \mathrm{~m}\right)^{2}}{(5.0 \mathrm{~m})\left(589 \times 10^{-9} \mathrm{~m}\right)}-\frac{1}{2}=45 .
$$

This corresponds to the forty-sixth bright fringe (see remark at the end of our solution in part (a)).
77. We solve for m using the formula $r=\sqrt{(2 m+1) R \lambda / 2}$ obtained in problem 49 and find $m=r^{2} / R \lambda-1 / 2$. Now, when m is changed to $m+20, r$ becomes r^{\prime}, so

$$
m+20=r^{\prime 2} / R \lambda-1 / 2
$$

Taking the difference between the two equations above, we eliminate m and find

$$
R=\frac{r^{\prime 2}-r^{2}}{20 \lambda}=\frac{(0.368 \mathrm{~cm})^{2}-(0.162 \mathrm{~cm})^{2}}{20\left(546 \times 10^{-7} \mathrm{~cm}\right)}=100 \mathrm{~cm}
$$

78. The time to change from one minimum to the next is $\Delta t=12 \mathrm{~s}$. This involves a change in thickness $\Delta L=\lambda / 2 \mathrm{n}_{2}$ (see Eq. 35-37), and thus a change of volume

$$
\Delta V=\pi r^{2} \Delta L=\frac{\pi r^{2} \lambda}{2 \mathrm{n}_{2}} \quad \Rightarrow \quad \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{\pi r^{2} \lambda}{2 \mathrm{n}_{2} \Delta t}=\frac{\pi(0.0180)^{2}\left(550 \times 10^{-9}\right)}{2(1.40)(12)}
$$

using SI units. Thus, the rate of change of volume is $1.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}$.
79. A shift of one fringe corresponds to a change in the optical path length of one wavelength. When the mirror moves a distance d the path length changes by $2 d$ since the light traverses the mirror arm twice. Let N be the number of fringes shifted. Then, $2 d=$ $N \lambda$ and

$$
\lambda=\frac{2 d}{N}=\frac{2\left(0.233 \times 10^{-3} \mathrm{~m}\right)}{792}=5.88 \times 10^{-7} \mathrm{~m}=588 \mathrm{~nm}
$$

80. According to Eq. 35-43, the number of fringes shifted (ΔN) due to the insertion of the film of thickness L is $\Delta N=(2 L / \lambda)(n-1)$. Therefore,

$$
L=\frac{\lambda \Delta N}{2(n-1)}=\frac{(589 \mathrm{~nm})(7.0)}{2(1.40-1)}=5.2 \mu \mathrm{~m} .
$$

81. Let ϕ_{1} be the phase difference of the waves in the two arms when the tube has air in it, and let ϕ_{2} be the phase difference when the tube is evacuated. These are different because the wavelength in air is different from the wavelength in vacuum. If λ is the wavelength in vacuum, then the wavelength in air is λ / n, where n is the index of refraction of air. This means

$$
\phi_{1}-\phi_{2}=2 L\left[\frac{2 \pi n}{\lambda}-\frac{2 \pi}{\lambda}\right]=\frac{4 \pi(n-1) L}{\lambda}
$$

where L is the length of the tube. The factor 2 arises because the light traverses the tube twice, once on the way to a mirror and once after reflection from the mirror. Each shift by one fringe corresponds to a change in phase of $2 \pi \mathrm{rad}$, so if the interference pattern shifts by N fringes as the tube is evacuated,

$$
\frac{4 \pi(n-1) L}{\lambda}=2 N \pi
$$

and

$$
n=1+\frac{N \lambda}{2 L}=1+\frac{60\left(500 \times 10^{-9} \mathrm{~m}\right)}{2\left(5.0 \times 10^{-2} \mathrm{~m}\right)}=1.00030
$$

82. We denote the two wavelengths as λ and λ^{\prime}, respectively. We apply Eq. $35-42$ to both wavelengths and take the difference:

$$
N^{\prime}-N=\frac{2 L}{\lambda^{\prime}}-\frac{2 L}{\lambda}=2 L\left(\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}\right)
$$

We now require $N^{\prime}-N=1$ and solve for L :

$$
L=\frac{1}{2}\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right)^{-1}=\frac{1}{2}\left(\frac{1}{589.10 \mathrm{~nm}}-\frac{1}{589.59 \mathrm{~nm}}\right)^{-1}=3.54 \times 10^{5} \mathrm{~nm}=354 \mu \mathrm{~m}
$$

83. (a) The path length difference between Rays 1 and 2 is $7 d-2 d=5 d$. For this to correspond to a half-wavelength requires $5 d=\lambda / 2$, so that $d=50.0 \mathrm{~nm}$.
(b) The above requirement becomes $5 d=\lambda / 2 n$ in the presence of the solution, with $n=$ 1.38. Therefore, $d=36.2 \mathrm{~nm}$.
84. (a) Since P_{1} is equidistant from S_{1} and S_{2} we conclude the sources are not in phase with each other. Their phase difference is $\Delta \phi_{\text {source }}=0.60 \pi \mathrm{rad}$, which may be expressed in terms of "wavelengths" (thinking of the $\lambda \Leftrightarrow 2 \pi$ correspondence in discussing a full cycle) as $\Delta \phi_{\text {source }}=(0.60 \pi / 2 \pi) \lambda=0.3 \lambda$ (with S_{2} "leading" as the problem states). Now S_{1} is closer to P_{2} than S_{2} is. Source S_{1} is $80 \mathrm{~nm}(\Leftrightarrow 80 / 400 \lambda=0.2 \lambda)$ from P_{2} while source S_{2} is $1360 \mathrm{~nm}(\Leftrightarrow 1360 / 400 \lambda=3.4 \lambda)$ from P_{2}. Here we find a difference of $\Delta \phi_{\text {path }}=3.2 \lambda$ (with S_{1} "leading" since it is closer). Thus, the net difference is

$$
\Delta \phi_{\text {net }}=\Delta \phi_{\text {path }}-\Delta \phi_{\text {source }}=2.90 \lambda,
$$

or 2.90 wavelengths.
(b) A whole number (like 3 wavelengths) would mean fully constructive, so our result is of the following nature: intermediate, but close to fully constructive.
85. (a) Applying the law of refraction, we obtain $\sin \theta_{2} / \sin \theta_{1}=\sin \theta_{2} / \sin 30^{\circ}=v_{s} / v_{d}$. Consequently,

$$
\theta_{2}=\sin ^{-1}\left(\frac{v_{s} \sin 30^{\circ}}{v_{d}}\right)=\sin ^{-1}\left[\frac{(3.0 \mathrm{~m} / \mathrm{s}) \sin 30^{\circ}}{4.0 \mathrm{~m} / \mathrm{s}}\right]=22^{\circ} .
$$

(b) The angle of incidence is gradually reduced due to refraction, such as shown in the calculation above (from 30° to 22°). Eventually after many refractions, θ_{2} will be virtually zero. This is why most waves come in normal to a shore.
86. When the depth of the liquid $\left(L_{\mathrm{iqq}}\right)$ is zero, the phase difference ϕ is 60 wavelengths; this must equal the difference between the number of wavelengths in length $L=40 \mu \mathrm{~m}$ (since the liquid initially fills the hole) of the plastic (for ray r_{1}) and the number in that same length of the air (for ray r_{2}). That is,

$$
\frac{L \mathrm{n}_{\text {plastic }}}{\lambda}-\frac{L \mathrm{n}_{\text {air }}}{\lambda}=60 .
$$

(a) Since $\lambda=400 \times 10^{-9} \mathrm{~m}$ and $\mathrm{n}_{\text {air }}=1$ (to good approximation), we find $\mathrm{n}_{\text {plastic }}=1.6$.
(b) The slope of the graph can be used to determine $n_{\text {liq }}$, but we show an approach more closely based on the above equation:

$$
\frac{L \mathrm{n}_{\text {plastic }}}{\lambda}-\frac{L \mathrm{n}_{\text {liq }}}{\lambda}=20
$$

which makes use of the leftmost point of the graph. This readily yields $\mathrm{n}_{\mathrm{liq}}=1.4$.
87. Let the $m=10$ bright fringe on the screen be a distance y from the central maximum. Then from Fig. 35-10(a)

$$
r_{1}-r_{2}=\sqrt{(y+d / 2)^{2}+D^{2}}-\sqrt{(y-d / 2)^{2}+D^{2}}=10 \lambda
$$

from which we may solve for y. To the order of $(d / D)^{2}$ we find

$$
y=y_{0}+\frac{y\left(y^{2}+d^{2} / 4\right)}{2 D^{2}}
$$

where $y_{0}=10 D \lambda / d$. Thus, we find the percent error as follows:

$$
\frac{y_{0}\left(y_{0}^{2}+d^{2} / 4\right)}{2 y_{0} D^{2}}=\frac{1}{2}\left(\frac{10 \lambda}{D}\right)^{2}+\frac{1}{8}\left(\frac{d}{D}\right)^{2}=\frac{1}{2}\left(\frac{5.89 \mu \mathrm{~m}}{2000 \mu \mathrm{~m}}\right)^{2}+\frac{1}{8}\left(\frac{2.0 \mathrm{~mm}}{40 \mathrm{~mm}}\right)^{2}
$$

which yields 0.032%.
88. (a) The minimum path length difference occurs when both rays are nearly vertical. This would correspond to a point as far up in the picture as possible. Treating the screen as if it extended forever, then the point is at $y=\infty$.
(b) When both rays are nearly vertical, there is no path length difference between them. Thus at $y=\infty$, the phase difference is $\phi=0$.
(c) At $y=0$ (where the screen crosses the x axis) both rays are horizontal, with the ray from S_{1} being longer than the one from S_{2} by distance d.
(d) Since the problem specifies $d=6.00 \lambda$, then the phase difference here is $\phi=6.00$ wavelengths and is at its maximum value.
(e) With $D=20 \lambda$, use of the Pythagorean theorem leads to

$$
\phi=\frac{L_{1}-L_{2}}{\lambda}=\frac{\sqrt{d^{2}+(d+D)^{2}}-\sqrt{d^{2}+D^{2}}}{\lambda}=5.80
$$

which means the rays reaching the point $y=d$ have a phase difference of roughly 5.8 wavelengths.
(f) The result of the previous part is "intermediate" - closer to 6 (constructive interference) than to $5 \frac{1}{2}$ (destructive interference).
89. (a) In our solution here, we assume the reader has looked at our solution for problem 98. A light ray traveling directly along the central axis reaches the end in time

$$
t_{\text {direct }}=\frac{L}{v_{1}}=\frac{n_{1} L}{c} .
$$

For the ray taking the critical zig-zag path, only its velocity component along the core axis direction contributes to reaching the other end of the fiber. That component is $v_{1} \cos \theta^{\prime}$, so the time of travel for this ray is

$$
t_{\text {zig zag }}=\frac{L}{v_{1} \cos \theta^{\prime}}=\frac{n_{1} L}{c \sqrt{1-\left(\frac{1}{n_{1}} \sin \theta\right)^{2}}}
$$

using results from the previous solution. Plugging in $\sin \theta=\sqrt{n_{1}^{2}-n_{2}^{2}}$ and simplifying, we obtain

$$
t_{\mathrm{zig} \mathrm{zag}}=\frac{n_{1} L}{c\left(n_{2} / n_{1}\right)}=\frac{n_{1}^{2} L}{n_{2} c} .
$$

The difference $t_{\text {zig zag }}-t_{\text {direct }}$ readily yields the result shown in the problem statement.
(b) With $n_{1}=1.58, n_{2}=1.53$ and $L=300 \mathrm{~m}$, we obtain $\Delta t=51.6 \mathrm{~ns}$.
90. (a) The graph shows part of a periodic pattern of half-cycle "length" $\Delta n=0.4$. Thus if we set $n=1.0+2 \Delta n=1.8$ then the maximum at $n=1.0$ should repeat itself there.
(b) Continuing the reasoning of part (a), adding another half-cycle "length" we get $1.8+\Delta n=2.2$ for the answer.
(c) Since $\Delta n=0.4$ represents a half-cycle, then $\Delta n / 2$ represents a quarter-cycle. To accumulate a total change of $2.0-1.0=1.0$ (see problem statement), then we need $2 \Delta n+$ $\Delta n / 2=5 / 4^{\text {th }}$ of a cycle, which corresponds to 1.25 wavelengths.
91. The wave that goes directly to the receiver travels a distance L_{1} and the reflected wave travels a distance L_{2}. Since the index of refraction of water is greater than that of air this last wave suffers a phase change on reflection of half a wavelength. To obtain constructive interference at the receiver, the difference $L_{2}-L_{1}$ must be an odd multiple of a half wavelength. Consider the diagram below. The right triangle on the left, formed by the vertical line from the water to the transmitter T , the ray incident on the water, and the water line, gives $D_{a}=a / \tan \theta$. The right triangle on the right, formed by the vertical line from the water to the receiver R, the reflected ray, and the water line leads to $D_{b}=x / \tan \theta$. Since $D_{a}+D_{b}=D$,

$$
\tan \theta=\frac{a+x}{D} .
$$

We use the identity $\sin ^{2} \theta=\tan ^{2} \theta /\left(1+\tan ^{2} \theta\right)$ to show that

$$
\sin \theta=(a+x) / \sqrt{D^{2}+(a+x)^{2}} .
$$

This means

$$
L_{2 a}=\frac{a}{\sin \theta}=\frac{a \sqrt{D^{2}+(a+x)^{2}}}{a+x}
$$

and

$$
L_{2 b}=\frac{x}{\sin \theta}=\frac{x \sqrt{D^{2}+(a+x)^{2}}}{a+x} .
$$

Therefore,

$$
L_{2}=L_{2 a}+L_{2 b}=\frac{(a+x) \sqrt{D^{2}+(a+x)^{2}}}{a+x}=\sqrt{D^{2}+(a+x)^{2}} .
$$

Using the binomial theorem, with D^{2} large and $a^{2}+x^{2}$ small, we approximate this expression: $L_{2} \approx D+(a+x)^{2} / 2 D$. The distance traveled by the direct wave is $L_{1}=\sqrt{D^{2}+(a-x)^{2}}$. Using the binomial theorem, we approximate this expression: $L_{1} \approx$ $D+(a-x)^{2} / 2 D$. Thus,

$$
L_{2}-L_{1} \approx D+\frac{a^{2}+2 a x+x^{2}}{2 D}-D-\frac{a^{2}-2 a x+x^{2}}{2 D}=\frac{2 a x}{D} .
$$

Setting this equal to $\left(m+\frac{1}{2}\right) \lambda$, where m is zero or a positive integer, we find $x=\left(m+\frac{1}{2}\right)(D / 2 a) \lambda$.
92. (a) Looking at the figure (where a portion of a periodic pattern is shown) we see that half of the periodic pattern is of length $\Delta L=750 \mathrm{~nm}$ (judging from the maximum at $x=0$ to the minimum at $x=750 \mathrm{~nm}$); this suggests that the wavelength (the full length of the periodic pattern) is $\lambda=2 \Delta L=1500 \mathrm{~nm}$. A maximum should be reached again at $x=$ 1500 nm (and at $x=3000 \mathrm{~nm}, x=4500 \mathrm{~nm}, \ldots$).
(b) From our discussion in part (b), we expect a minimum to be reached at each value $x=$ $750 \mathrm{~nm}+n(1500 \mathrm{~nm})$, where $n=1,2,3 \ldots$. For instance, for $n=1$ we would find the minimum at $x=2250 \mathrm{~nm}$.
(c) With $\lambda=1500 \mathrm{~nm}$ (found in part (a)), we can express $x=1200 \mathrm{~nm}$ as $x=1200 / 1500=$ 0.80 wavelength.
93. $v_{\min }=c / n=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / 1.54=1.95 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
94. We note that $\Delta \phi=60^{\circ}=\frac{\pi}{3}$ rad. The phasors rotate with constant angular velocity

$$
\omega=\frac{\Delta \phi}{\Delta t}=\frac{\pi / 3}{2.5 \times 10^{-16}}=4.19 \times 10^{15} \mathrm{rad} / \mathrm{s} .
$$

Since we are working with light waves traveling in a medium (presumably air) where the wave speed is approximately c, then $k c=\omega$ (where $k=2 \pi / \lambda$), which leads to

$$
\lambda=\frac{2 \pi c}{\omega}=450 \mathrm{~nm}
$$

95. We infer from Sample Problem 35-2, that (with angle in radians)

$$
\Delta \theta=\frac{\lambda}{d}
$$

for adjacent fringes. With the wavelength change ($\lambda^{\prime}=\lambda / n$ by Eq. 35-8), this equation becomes

$$
\Delta \theta^{\prime}=\frac{\lambda^{\prime}}{d}
$$

Dividing one equation by the other, the requirement of radians can now be relaxed and we obtain

$$
\frac{\Delta \theta^{\prime}}{\Delta \theta}=\frac{\lambda^{\prime}}{\lambda}=\frac{1}{n} .
$$

Therefore, with $n=1.33$ and $\Delta \theta=0.30^{\circ}$, we find $\Delta \theta^{\prime}=0.23^{\circ}$.
96. We note that ray 1 travels an extra distance $4 L$ more than ray 2. For constructive interference (which is obtained for $\lambda=620 \mathrm{~nm}$) we require

$$
4 L=m \lambda \quad \text { where } m=\text { some positive integer } .
$$

For destructive interference (which is obtained for $\lambda^{\prime}=496 \mathrm{~nm}$) we require

$$
4 L=\frac{k}{2} \lambda^{\prime} \quad \text { where } k=\text { some positive odd integer } .
$$

Equating these two equations (since their left-hand sides are equal) and rearranging, we obtain

$$
k=2 m \frac{\lambda}{\lambda^{\prime}}=2 m \frac{620}{496}=2.5 \mathrm{~m} .
$$

We note that this condition is satisfied for $k=5$ and $m=2$. It is satisfied for some larger values, too, but - recalling that we want the least possible value for L - we choose the solution set $(k, m)=(5,2)$. Plugging back into either of the equations above, we obtain the distance L :

$$
4 L=2 \lambda \quad \Rightarrow \quad L=\frac{\lambda}{2}=310.0 \mathrm{~nm} .
$$

97. (a) The path length difference is $0.5 \mu \mathrm{~m}=500 \mathrm{~nm}$, which is represents $500 / 400=$ 1.25 wavelengths - that is, a meaningful difference of 0.25 wavelengths. In angular measure, this corresponds to a phase difference of $(0.25) 2 \pi=\pi / 2$ radians $\approx 1.6 \mathrm{rad}$.
(b) When a difference of index of refraction is involved, the approach used in Eq. 35-9 is quite useful. In this approach, we count the wavelengths between S_{1} and the origin

$$
N_{1}=\frac{L n}{\lambda}+\frac{L^{\prime} n^{\prime}}{\lambda}
$$

where $n=1$ (rounding off the index of air), $L=5.0 \mu \mathrm{~m}, n^{\prime}=1.5$ and $L^{\prime}=1.5 \mu \mathrm{~m}$. This yields $N_{1}=18.125$ wavelengths. The number of wavelengths between S_{2} and the origin is (with $L_{2}=6.0 \mu \mathrm{~m}$) given by

$$
N_{2}=\frac{L_{2} n}{\lambda}=15.000 .
$$

Thus, $N_{1}-N_{2}=3.125$ wavelengths, which gives us a meaningful difference of 0.125 wavelength and which "converts" to a phase of $\pi / 4$ radian $\approx 0.79 \mathrm{rad}$.
98. (a) The difference in wavelengths, with and without the $n=1.4$ material, is found using Eq. 35-9:

$$
\Delta N=\frac{L(n-1)}{\lambda}=1.143 .
$$

The result is equal to a phase shift of $(1.143)\left(360^{\circ}\right)=411.4^{\circ}$, or
(b) more meaningfully - a shift of $411.4^{\circ}-360^{\circ}=51.4^{\circ}$.
99. Using Eq. 35-16 with the small-angle approximation (illustrated in Sample Problem 35-2), we arrive at

$$
y=\frac{\left(m+\frac{1}{2}\right) \lambda D}{d}
$$

for the position of the $(m+1)^{\text {th }}$ dark band (a simple way to get this is by averaging the expressions in Eq. 35-17 and Eq. 35-18). Thus, with $m=1, y=0.012 \mathrm{~m}$ and $d=800 \lambda$, we find $D=6.4 \mathrm{~m}$.
100. (a) We are dealing with a symmetric situation (with the film index $n_{2}=1.5$ being less than that of the materials bounding it), and with reflected light, so Eqs. 35-36 and -37 apply with their stated applicability. Both can be written in the form

$$
\frac{2 n_{2} L}{\lambda}=\left\{\begin{array}{l}
\text { half-integer for bright } \\
\text { integer for dark }
\end{array}\right.
$$

Thus, we find $2 n_{2} L / \lambda=3$, so that we find the middle of a dark band at the left edge of the figure. Since there is nothing beyond this "middle" then a more appropriate phrasing is that there is half of a dark band next to the left edge, being darkest precisely at the edge.
(b) The right edge, where they touch, satisfies the dark reflection condition for $L=0$ (where $m=0$), so there is (essentially half of) a dark band at the right end.
(c) Counting half-bands and whole bands alike, we find four dark bands: $(m=0,1,2,3)$.
101. (a) In this case, the film has a smaller index material on one side (air) and a larger index material on the other (glass), and we are dealing (in part (a)) with strongly transmitted light, so the condition is given by Eq. 35-37 (which would give dark reflection in this scenario)

$$
L=\frac{\lambda}{2 n_{2}}\left(m+\frac{1}{2}\right)=110 \mathrm{~nm}
$$

for $n_{2}=1.25$ and $m=0$.
(b) Now, we are dealing with strongly reflected light, so the condition is given by Eq. 3536 (which would give no transmission in this scenario)

$$
L=\frac{m \lambda}{2 n_{2}}=220 \mathrm{~nm}
$$

for $n_{2}=1.25$ and $m=1$ (the $m=0$ option is excluded in the problem statement).
102. We adapt the result of problem 21. Now, the phase difference in radians is

$$
\frac{2 \pi t}{\lambda}\left(n_{2}-n_{1}\right)=2 m \pi
$$

The problem implies $m=5$, so the thickness is

$$
t=\frac{m \lambda}{n_{2}-n_{1}}=\frac{5(480 \mathrm{~nm})}{1.7-1.4}=8.0 \times 10^{3} \mathrm{~nm}=8.0 \mu \mathrm{~m} .
$$

103. (a) Since $n_{2}>n_{3}$, this case has no π-phase shift, and the condition for constructive interference is $m \lambda=2 L n_{2}$. We solve for L :

$$
L=\frac{m \lambda}{2 n_{2}}=\frac{m(525 \mathrm{~nm})}{2(1.55)}=(169 \mathrm{~nm}) m .
$$

For the minimum value of L, let $m=1$ to obtain $L_{\min }=169 \mathrm{~nm}$.
(b) The light of wavelength λ (other than 525 nm) that would also be preferentially transmitted satisfies $m \lambda=2 n_{2} L$, or

$$
\lambda=\frac{2 n_{2} L}{m^{\prime}}=\frac{2(1.55)(169 \mathrm{~nm})}{m^{\prime}}=\frac{525 \mathrm{~nm}}{m^{\prime}} .
$$

Here $m^{\prime}=2,3,4, \ldots$ (note that $m^{\prime}=1$ corresponds to the $\lambda=525 \mathrm{~nm}$ light, so it should not be included here). Since the minimum value of m^{\prime} is 2 , one can easily verify that no m^{\prime} will give a value of λ which falls into the visible light range. So no other parts of the visible spectrum will be preferentially transmitted. They are, in fact, reflected.
(c) For a sharp reduction of transmission let

$$
\lambda=\frac{2 n_{2} L}{m^{\prime}+1 / 2}=\frac{525 \mathrm{~nm}}{m^{\prime}+1 / 2},
$$

where $m^{\prime}=0,1,2,3, \ldots$. In the visible light range $m^{\prime}=1$ and $\lambda=350 \mathrm{~nm}$. This corresponds to the blue-violet light.
104. (a) Straightforward application of Eq. 35-3 and $v=\Delta x / \Delta t$ yields the result: film 1.
(b) The traversal time is equal to $4.0 \times 10^{-15} \mathrm{~s}$.
(c) Use of Eq. 35-9 leads to the number of wavelengths:

$$
N=\frac{L_{1} n_{1}+L_{2} n_{2}+L_{3} n_{3}}{\lambda}=7.5 .
$$

105. (a) Following Sample Problem 35-1, we have

$$
N_{2}-N_{1}=\frac{L}{\lambda}\left(n_{2}-n_{1}\right)=1.87
$$

which represents a meaningful difference of 0.87 wavelength.
(b) The result in part (a) is closer to 1 wavelength (constructive interference) than it is to $1 / 2$ wavelength (destructive interference) so the latter choice applies.
(c) This would insert a $\pm 1 / 2$ wavelength into the previous result - resulting in a meaningful difference (between the two rays) equal to $0.87-0.50=0.37$ wavelength.
(d) The result in part (c) is closer to the destructive interference condition. Thus, there is intermediate illumination but closer to darkness.
106. (a) With $\lambda=0.5 \mu \mathrm{~m}$, Eq. $35-14$ leads to

$$
\theta=\sin ^{-1} \frac{(3)(0.5 \mu \mathrm{~m})}{2.00 \mu \mathrm{~m}}=48.6^{\circ}
$$

(b) Decreasing the frequency means increasing the wavelength - which implies y increases, and the third side bright fringe moves away from the center of the pattern. Qualitatively, this is easily seen with Eq. 35-17. One should exercise caution in appealing to Eq. $35-17$ here, due to the fact the small angle approximation is not justified in this problem.
(c) The new wavelength is $0.5 / 0.9=0.556 \mu \mathrm{~m}$, which produces a new angle of

$$
\theta=\sin ^{-1} \frac{(3)(0.556 \mu \mathrm{~m})}{2.00 \mu \mathrm{~m}}=56.4^{\circ}
$$

Using $y=D \tan \theta$ for the old and new angles, and subtracting, we find

$$
\Delta y=D\left(\tan 56.4^{\circ}-\tan 48.6^{\circ}\right)=1.49 \mathrm{~m}
$$

107. (a) A path length difference of $\lambda / 2$ produces the first dark band, of $3 \lambda / 2$ produces the second dark band, and so on. Therefore, the fourth dark band corresponds to a path length difference of $7 \lambda / 2=1750 \mathrm{~nm}=1.75 \mu \mathrm{~m}$.
(b) In the small angle approximation (which we assume holds here), the fringes are equally spaced, so that if Δy denotes the distance from one maximum to the next, then the distance from the middle of the pattern to the fourth dark band must be $16.8 \mathrm{~mm}=$ $3.5 \Delta y$. Therefore, we obtain $\Delta y=16.8 / 3.5=4.8 \mathrm{~mm}$.
108. In the case of a distant screen the angle θ is close to zero so $\sin \theta \approx \theta$. Thus from Eq. 35-14,

$$
\Delta \theta \approx \Delta \sin \theta=\Delta\left(\frac{m \lambda}{d}\right)=\frac{\lambda}{d} \Delta m=\frac{\lambda}{d},
$$

or $d \approx \lambda / \Delta \theta=589 \times 10^{-9} \mathrm{~m} / 0.018 \mathrm{rad}=3.3 \times 10^{-5} \mathrm{~m}=33 \mu \mathrm{~m}$.
109. (a) Straightforward application of Eq. 35-3 $n=c / v$ and $v=\Delta x / \Delta t$ yields the result: pistol 1 with a time equal to $\Delta t=n \Delta x / c=42.0 \times 10^{-12} \mathrm{~s}$.
(b) For pistol 2, the travel time is equal to $42.3 \times 10^{-12} \mathrm{~s}$.
(c) For pistol 3, the travel time is equal to $43.2 \times 10^{-12} \mathrm{~s}$.
(d) For pistol 4 the travel time is equal to $41.8 \times 10^{-12} \mathrm{~s}$.
(e) We see that the blast from pistol 4 arrives first.
110. We use Eq. 35-36 for constructive interference: $2 n_{2} L=(m+1 / 2) \lambda$, or

$$
\lambda=\frac{2 n_{2} L}{m+1 / 2}=\frac{2(1.50)(410 \mathrm{~nm})}{m+1 / 2}=\frac{1230 \mathrm{~nm}}{m+1 / 2},
$$

where $m=0,1,2, \ldots$ The only value of m which, when substituted into the equation above, would yield a wavelength which falls within the visible light range is $m=1$. Therefore,

$$
\lambda=\frac{1230 \mathrm{~nm}}{1+1 / 2}=492 \mathrm{~nm}
$$

111. For the first maximum $m=0$ and for the tenth one $m=9$. The separation is Δy $=(D \lambda / d) \Delta m=9 D \lambda / d$. We solve for the wavelength:

$$
\lambda=\frac{d \Delta y}{9 D}=\frac{\left(0.15 \times 10^{-3} \mathrm{~m}\right)\left(18 \times 10^{-3} \mathrm{~m}\right)}{9\left(50 \times 10^{-2} \mathrm{~m}\right)}=6.0 \times 10^{-7} \mathrm{~m}=600 \mathrm{~nm} .
$$

112. Light reflected from the upper oil surface (in contact with air) changes phase by π rad. Light reflected from the lower surface (in contact with glass) changes phase by π rad if the index of refraction of the oil is less than that of the glass and does not change phase if the index of refraction of the oil is greater than that of the glass.

- First, suppose the index of refraction of the oil is greater than the index of refraction of the glass. The condition for fully destructive interference is $2 n_{o} d=m \lambda$, where d is the thickness of the oil film, n_{o} is the index of refraction of the oil, λ is the wavelength in vacuum, and m is an integer. For the shorter wavelength, $2 n_{o} d=m_{1} \lambda_{1}$ and for the longer, $2 n_{o} d=m_{2} \lambda_{2}$. Since λ_{1} is less than λ_{2}, m_{1} is greater than m_{2}, and since fully destructive interference does not occur for any wavelengths between, $m_{1}=m_{2}+1$. Solving ($m_{2}+$ 1) $\lambda_{1}=m_{2} \lambda_{2}$ for m_{2}, we obtain

$$
m_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}=\frac{500 \mathrm{~nm}}{700 \mathrm{~nm}-500 \mathrm{~nm}}=2.50 .
$$

Since m_{2} must be an integer, the oil cannot have an index of refraction that is greater than that of the glass.

- Now suppose the index of refraction of the oil is less than that of the glass. The condition for fully destructive interference is then $2 n_{o} d=(2 m+1) \lambda$. For the shorter wavelength, $2 m_{o} d=\left(2 m_{1}+1\right) \lambda_{1}$, and for the longer, $2 n_{o} d=\left(2 m_{2}+1\right) \lambda_{2}$. Again, $m_{1}=m_{2}$ +1 , so $\left(2 m_{2}+3\right) \lambda_{1}=\left(2 m_{2}+1\right) \lambda_{2}$. This means the value of m_{2} is

$$
m_{2}=\frac{3 \lambda_{1}-\lambda_{2}}{2\left(\lambda_{2}-\lambda_{1}\right)}=\frac{3(500 \mathrm{~nm})-700 \mathrm{~nm}}{2(700 \mathrm{~nm}-500 \mathrm{~nm})}=2.00
$$

This is an integer. Thus, the index of refraction of the oil is less than that of the glass.
113. We use the formula obtained in Sample Problem 35-6:

$$
L_{\min }=\frac{\lambda}{4 n_{2}}=\frac{\lambda}{4(1.25)}=0.200 \lambda \Rightarrow \frac{L_{\min }}{\lambda}=0.200 .
$$

114. We use Eq. 35-36:

$$
\begin{aligned}
L_{16} & =\left(16+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}} \\
L_{6} & =\left(6+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}
\end{aligned}
$$

The difference between these, using the fact that $n_{2}=n_{\text {air }}=1.0$, is

$$
L_{16}-L_{6}=(10) \frac{480 \mathrm{~nm}}{2(1.0)}=2400 \mathrm{~nm}=2.4 \mu \mathrm{~m} .
$$

115. Let the position of the mirror measured from the point at which $d_{1}=d_{2}$ be x. We assume the beam-splitting mechanism is such that the two waves interfere constructively for $x=0$ (with some beam-splitters, this would not be the case). We can adapt Eq. 35-23 to this situation by incorporating a factor of 2 (since the interferometer utilizes directly reflected light in contrast to the double-slit experiment) and eliminating the $\sin \theta$ factor. Thus, the phase difference between the two light paths is $\Delta \phi=2(2 \pi x / \lambda)=4 \pi x / \lambda$. Then from Eq. 35-22 (writing $4 I_{0}$ as I_{m}) we find

$$
I=I_{m} \cos ^{2}\left(\frac{\Delta \phi}{2}\right)=I_{m} \cos ^{2}\left(\frac{2 \pi x}{\lambda}\right) .
$$

116. The index of refraction of fused quartz at $\lambda=550 \mathrm{~nm}$ is about 1.459 , obtained from Fig. 34-19. Thus, from Eq. 35-3, we find

$$
v=\frac{c}{n}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.459}=2.06 \times 10^{8} \mathrm{~m} / \mathrm{s} \approx 2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

117. (a) We use $\Delta y=D \lambda / d$ (see Sample Problem 35-2). Because of the placement of the mirror in the problem $D=2(20.0 \mathrm{~m})=40.0 \mathrm{~m}$, which we express in millimeters in the calculation below:

$$
d=\frac{D \lambda}{\Delta y}=\frac{\left(4.00 \times 10^{4} \mathrm{~mm}\right)\left(632.8 \times 10^{-6} \mathrm{~mm}\right)}{100 \mathrm{~mm}}=0.253 \mathrm{~mm}
$$

(b) In this case the interference pattern will be shifted. At the location of the original central maximum, the effective phase difference is now $\frac{1}{2}$ wavelength, so there is now a minimum instead of a maximum.
118. (a) Dividing Eq. 35-12 by the wavelength, we obtain

$$
N=\frac{\Delta L}{\lambda}=\frac{d}{\lambda} \sin \theta=39.6
$$

wavelengths.
(b) This is close to a half-integer value (destructive interference), so that the correct response is "intermediate illumination but closer to darkness."
119. We adapt Eq. 35-21 to the non-reflective coating on a glass lens: $I=I_{\max } \cos ^{2}(\phi / 2)$, where $\phi=(2 \pi / \lambda)\left(2 n_{2} L\right)+\pi$.
(a) At $\lambda=450 \mathrm{~nm}$

$$
\frac{I}{I_{\max }}=\cos ^{2}\left(\frac{\phi}{2}\right)=\cos ^{2}\left(\frac{2 \pi n_{2} L}{\lambda}+\frac{\pi}{2}\right)=\cos ^{2}\left[\frac{2 \pi(1.38)(99.6 \mathrm{~nm})}{450 \mathrm{~nm}}+\frac{\pi}{2}\right]=0.883 \approx 88 \% .
$$

(b) At $\lambda=650 \mathrm{~nm}$

$$
\frac{I}{I_{\max }}=\cos ^{2}\left[\frac{2 \pi(1.38)(99.6 \mathrm{~nm})}{650 \mathrm{~nm}}+\frac{\pi}{2}\right]=0.942 \approx 94 \% .
$$

120. (a) Every time one more destructive (constructive) fringe appears the increase in thickness of the air gap is $\lambda / 2$. Now that there are 6 more destructive fringes in addition to the one at point A, the thickness at B is $t_{B}=6(\lambda / 2)=3(600 \mathrm{~nm})=1.80 \mu \mathrm{~m}$.
(b) We must now replace λ by $\lambda^{\prime}=\lambda / n_{w}$. Since t_{B} is unchanged $t_{B}=N\left(\lambda^{\prime} / 2\right)=N\left(\lambda / 2 n_{w}\right)$, or

$$
N=\frac{2 t_{B} n_{w}}{\lambda}=\frac{2(3 \lambda) n_{w}}{\lambda}=6 n_{w}=6(1.33)=8 .
$$

Counting the one at point A, a total of nine dark fringes will be observed.
121. We take the electric field of one wave, at the screen, to be

$$
E_{1}=E_{0} \sin (\omega t)
$$

and the electric field of the other to be

$$
E_{2}=2 E_{0} \sin (\omega t+\phi),
$$

where the phase difference is given by

$$
\phi=\left(\frac{2 \pi d}{\lambda}\right) \sin \theta
$$

Here d is the center-to-center slit separation and λ is the wavelength. The resultant wave can be written $E=E_{1}+E_{2}=E \sin (\omega t+\alpha)$, where α is a phase constant. The phasor diagram is shown above. The resultant amplitude E is given by the trigonometric law of cosines:

$$
E^{2}=E_{0}^{2}+\left(2 E_{0}\right)^{2}-4 E_{0}^{2} \cos \left(180^{\circ}-\phi\right)=E_{0}^{2}(5+4 \cos \phi) .
$$

The intensity is given by $I=I_{0}(5+4 \cos \phi)$, where I_{0} is the intensity that would be produced by the first wave if the second were not present. Since $\cos \phi=2 \cos ^{2}(\phi / 2)-1$, this may also be written $I=I_{0}\left[1+8 \cos ^{2}(\phi / 2)\right]$.
122. (a) To get to the detector, the wave from S_{1} travels a distance x and the wave from S_{2} travels a distance $\sqrt{d^{2}+x^{2}}$. The phase difference (in terms of wavelengths) between the two waves is

$$
\sqrt{d^{2}+x^{2}}-x=m \lambda \quad m=0,1,2, \ldots
$$

where we are requiring constructive interference. The solution is

$$
x=\frac{d^{2}-m^{2} \lambda^{2}}{2 m \lambda} .
$$

We see that setting $m=0$ in this expression produces $x=\infty$; hence, the phase difference between the waves when P is very far away is 0 .
(b) The result of part (a) implies that the waves constructively interfere at P.
(c) As is particularly evident from our results in part (d), the phase difference increases as x decreases.

The condition for constructive interference is $\phi=2 \pi m$ or $\Delta L=m \lambda$ in, and the condition for destructive interference is $\phi=2 \pi(m+1 / 2)$ or $\Delta L=(m+1 / 2) \lambda$, with $m=0,1,2, \ldots$

For parts (d) - (o), we can use our formula from part (a) for the $0.5 \lambda, 1.50 \lambda$, etc. differences by allowing m in our formula to take on half-integer values. The half-integer values, though, correspond to destructive interference.
(d) When the phase difference is $\phi=0$, the interference is fully constructive,
(e) and the interference occurs at $x=\infty$.
(f) When $\Delta L=0.500 \lambda(m=1 / 2)$, the interference is fully destructive.
(g) Using the values $\lambda=0.500 \mu \mathrm{~m}$ and $d=2.00 \mu \mathrm{~m}$, we find $x=7.88 \mu \mathrm{~m}$ for $m=1 / 2$.
(h) When $\Delta L=1.00 \lambda(m=1)$, the interference is fully constructive.
(i) Using the formula obtained in part (a), we have $x=3.75 \mu \mathrm{~m}$ for $m=1$.
(j) When $\Delta L=1.500 \lambda$ ($m=3 / 2$), the interference is fully destructive.
(k) Using the formula obtained in part (a), we have $x=2.29 \mu \mathrm{~m}$ for $m=3 / 2$.
(1) When $\Delta L=2.00 \lambda(m=2)$, the interference is fully constructive.
(m) Using the formula obtained in part (a), we have $x=1.50 \mu \mathrm{~m}$ for $m=2$.
(n) When $\Delta L=2.500 \lambda(m=5 / 2)$, the interference is fully destructive.
(o) Using the formula obtained in part (a), we have $x=0.975 \mu \mathrm{~m}$ for $m=5 / 2$.
123. (a) The binomial theorem (Appendix E) allows us to write

$$
\sqrt{k(1+x)}=\sqrt{k}\left(1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{3 x^{3}}{48}+\cdots\right) \approx \sqrt{k}+\frac{x}{2} \sqrt{k}
$$

for $x \ll 1$. Thus, the end result from the solution of problem 49 yields

$$
r_{m}=\sqrt{R \lambda m\left(1+\frac{1}{2 m}\right)} \approx \sqrt{R \lambda m}+\frac{1}{4 m} \sqrt{R \lambda m}
$$

and

$$
r_{m+1}=\sqrt{R \lambda m\left(1+\frac{3}{2 m}\right)} \approx \sqrt{R \lambda m}+\frac{3}{4 m} \sqrt{R \lambda m}
$$

for very large values of m. Subtracting these, we obtain

$$
\Delta r=\frac{3}{4 m} \sqrt{R \lambda m}-\frac{1}{4 m} \sqrt{R \lambda m}=\frac{1}{2} \sqrt{\frac{R \lambda}{m}} .
$$

(b) We take the differential of the area: $d A=d\left(\pi r^{2}\right)=2 \pi r d r$, and replace $d r$ with Δr in anticipation of using the result from part (a). Thus, the area between adjacent rings for large values of m is

$$
2 \pi r_{m}(\Delta r) \approx 2 \pi\left(\sqrt{R \lambda m}+\frac{1}{4 m} \sqrt{R \lambda m}\right)\left(\frac{1}{2} \sqrt{\frac{R \lambda}{m}}\right) \approx 2 \pi(\sqrt{R \lambda m})\left(\frac{1}{2} \sqrt{\frac{R \lambda}{m}}\right)
$$

which simplifies to the desired result $(\pi \lambda R)$.
124. The Hint essentially answers the question, but we put in some algebraic details and arrive at the familiar analytic-geometry expression for a hyperbola. The distance $d / 2$ is denoted a and the constant value for the path length difference is denoted $\phi=r_{1}-r_{2}$, or

$$
\sqrt{(a+x)^{2}+y^{2}}-\sqrt{(a-x)^{2}+y^{2}}=\phi
$$

Rearranging and squaring, we have

$$
\begin{aligned}
\left(\sqrt{(a+x)^{2}+y^{2}}\right)^{2} & =\left(\sqrt{(a-x)^{2}+y^{2}}+\phi\right)^{2} \\
a^{2}+2 a x+x^{2}+y^{2} & =a^{2}-2 a x+x^{2}+y^{2}+\phi^{2}+2 \phi \sqrt{(a-x)^{2}+y^{2}}
\end{aligned}
$$

Many terms on both sides are identical and may be eliminated. This leaves us with

$$
-2 \phi \sqrt{(a-x)^{2}+y^{2}}=\phi^{2}-4 a x
$$

at which point we square both sides again:

$$
4 \phi^{2} a^{2}-8 \phi^{2} a x+4 \phi^{2} x^{2}+4 \phi^{2} y^{2}=\phi^{4}-8 \phi^{2} a x+16 a^{2} x^{2}
$$

We eliminate the $-8 \phi^{2} a x$ term from both sides and plug in $a=2 d$ to get back to the original notation used in the problem statement:

$$
\phi^{2} d^{2}+4 \phi^{2} x^{2}+4 \phi^{2} y^{2}=\phi^{4}+4 d^{2} x^{2}
$$

Then a simple rearrangement puts it in the familiar analytic geometry format:

$$
\phi^{2} d^{2}-\phi^{4}=4\left(d^{2}-\phi^{2}\right) x^{2}-4 \phi^{2} y^{2}
$$

which can be further simplified by dividing through by $\phi^{2} d^{2}-\phi^{4}$.

1. The condition for a minimum of a single-slit diffraction pattern is

$$
a \sin \theta=m \lambda
$$

where a is the slit width, λ is the wavelength, and m is an integer. The angle θ is measured from the forward direction, so for the situation described in the problem, it is 0.60° for $m=1$. Thus

$$
a=\frac{m \lambda}{\sin \theta}=\frac{633 \times 10^{-9} \mathrm{~m}}{\sin 0.60^{\circ}}=6.04 \times 10^{-5} \mathrm{~m} .
$$

2. (a) $\theta=\sin ^{-1}(1.50 \mathrm{~cm} / 2.00 \mathrm{~m})=0.430^{\circ}$.
(b) For the m th diffraction minimum $a \sin \theta=m \lambda$. We solve for the slit width:

$$
a=\frac{m \lambda}{\sin \theta}=\frac{2(441 \mathrm{~nm})}{\sin 0.430^{\circ}}=0.118 \mathrm{~mm}
$$

3. (a) The condition for a minimum in a single-slit diffraction pattern is given by $a \sin \theta=$ $m \lambda$, where a is the slit width, λ is the wavelength, and m is an integer. For $\lambda=\lambda_{a}$ and $m=$ 1 , the angle θ is the same as for $\lambda=\lambda_{b}$ and $m=2$. Thus $\lambda_{a}=2 \lambda_{b}=2(350 \mathrm{~nm})=700 \mathrm{~nm}$.
(b) Let m_{a} be the integer associated with a minimum in the pattern produced by light with wavelength λ_{a}, and let m_{b} be the integer associated with a minimum in the pattern produced by light with wavelength λ_{b}. A minimum in one pattern coincides with a minimum in the other if they occur at the same angle. This means $m_{a} \lambda_{a}=m_{b} \lambda_{b}$. Since λ_{a} $=2 \lambda_{b}$, the minima coincide if $2 m_{a}=m_{b}$. Consequently, every other minimum of the λ_{b} pattern coincides with a minimum of the λ_{a} pattern. With $m_{a}=2$, we have $m_{b}=4$.
(c) With $m_{a}=3$, we have $m_{b}=6$.
4. (a) Eq. 36-3 and Eq. 36-12 imply smaller angles for diffraction for smaller wavelengths. This suggests that diffraction effects in general would decrease.
(b) Using Eq. 36-3 with $m=1$ and solving for 2θ (the angular width of the central diffraction maximum), we find

$$
2 \theta=2 \sin ^{-1}\left(\frac{\lambda}{a}\right)=2 \sin ^{-1}\left(\frac{0.50 \mathrm{~m}}{5.0 \mathrm{~m}}\right)=11^{\circ} .
$$

(c) A similar calculation yields 0.23° for $\lambda=0.010 \mathrm{~m}$.
5. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of the lens, a distance of 70 cm from the lens.
(b) Waves leaving the lens at an angle θ to the forward direction interfere to produce an intensity minimum if $a \sin \theta=m \lambda$, where a is the slit width, λ is the wavelength, and m is an integer. The distance on the screen from the center of the pattern to the minimum is given by $y=D \tan \theta$, where D is the distance from the lens to the screen. For the conditions of this problem,

$$
\sin \theta=\frac{m \lambda}{a}=\frac{(1)\left(590 \times 10^{-9} \mathrm{~m}\right)}{0.40 \times 10^{-3} \mathrm{~m}}=1.475 \times 10^{-3} .
$$

This means $\theta=1.475 \times 10^{-3} \mathrm{rad}$ and

$$
y=\left(70 \times 10^{-2} \mathrm{~m}\right) \tan \left(1.475 \times 10^{-3} \mathrm{rad}\right)=1.0 \times 10^{-3} \mathrm{~m} .
$$

6. (a) We use Eq. 36-3 to calculate the separation between the first ($m_{1}=1$) and fifth ($m_{2}=5$) minima:

$$
\Delta y=D \Delta \sin \theta=D \Delta\left(\frac{m \lambda}{a}\right)=\frac{D \lambda}{a} \Delta m=\frac{D \lambda}{a}\left(m_{2}-m_{1}\right) .
$$

Solving for the slit width, we obtain

$$
a=\frac{D \lambda\left(m_{2}-m_{1}\right)}{\Delta y}=\frac{(400 \mathrm{~mm})\left(550 \times 10^{-6} \mathrm{~mm}\right)(5-1)}{0.35 \mathrm{~mm}}=2.5 \mathrm{~mm} .
$$

(b) For $m=1$,

$$
\sin \theta=\frac{m \lambda}{a}=\frac{(1)\left(550 \times 10^{-6} \mathrm{~mm}\right)}{2.5 \mathrm{~mm}}=2.2 \times 10^{-4}
$$

The angle is $\theta=\sin ^{-1}\left(2.2 \times 10^{-4}\right)=2.2 \times 10^{-4} \mathrm{rad}$.
7. The condition for a minimum of intensity in a single-slit diffraction pattern is $a \sin \theta=$ $m \lambda$, where a is the slit width, λ is the wavelength, and m is an integer. To find the angular position of the first minimum to one side of the central maximum, we set $m=1$:

$$
\theta_{1}=\sin ^{-1}\left(\frac{\lambda}{a}\right)=\sin ^{-1}\left(\frac{589 \times 10^{-9} \mathrm{~m}}{1.00 \times 10^{-3} \mathrm{~m}}\right)=5.89 \times 10^{-4} \mathrm{rad}
$$

If D is the distance from the slit to the screen, the distance on the screen from the center of the pattern to the minimum is

$$
y_{1}=D \tan \theta_{1}=(3.00 \mathrm{~m}) \tan \left(5.89 \times 10^{-4} \mathrm{rad}\right)=1.767 \times 10^{-3} \mathrm{~m} .
$$

To find the second minimum, we set $m=2$:

$$
\theta_{2}=\sin ^{-1}\left(\frac{2\left(589 \times 10^{-9} \mathrm{~m}\right)}{1.00 \times 10^{-3} \mathrm{~m}}\right)=1.178 \times 10^{-3} \mathrm{rad}
$$

The distance from the center of the pattern to this second minimum is

$$
y_{2}=D \tan \theta_{2}=(3.00 \mathrm{~m}) \tan \left(1.178 \times 10^{-3} \mathrm{rad}\right)=3.534 \times 10^{-3} \mathrm{~m} .
$$

The separation of the two minima is

$$
\Delta y=y_{2}-y_{1}=3.534 \mathrm{~mm}-1.767 \mathrm{~mm}=1.77 \mathrm{~mm}
$$

8. From $y=m \lambda L / a$ we get

$$
\Delta y=\Delta\left(\frac{m \lambda L}{a}\right)=\frac{\lambda L}{a} \Delta m=\frac{(632.8 \mathrm{~nm})(2.60)}{1.37 \mathrm{~mm}}[10-(-10)]=24.0 \mathrm{~mm}
$$

9. We note that $\mathrm{nm}=10^{-9} \mathrm{~m}=10^{-6} \mathrm{~mm}$. From Eq. 36-4,

$$
\Delta \phi=\left(\frac{2 \pi}{\lambda}\right)(\Delta x \sin \theta)=\left(\frac{2 \pi}{589 \times 10^{-6} \mathrm{~mm}}\right)\left(\frac{0.10 \mathrm{~mm}}{2}\right) \sin 30^{\circ}=266.7 \mathrm{rad}
$$

This is equivalent to $266.7-84 \pi=2.8 \mathrm{rad}=160^{\circ}$.
10. (a) The slope of the plotted line is 12 , and we see from Eq. 36-6 that this slope should correspond to

$$
\frac{\pi a}{\lambda}=12 \Rightarrow a=2330 \mathrm{~nm}=2.33 \mu \mathrm{~m}
$$

(b) Consider Eq. 36-3 with "continuously variable" m (of course, m should be an integer for diffraction minima, but for the moment we will solve for it as if it could be any real number):

$$
m_{\max }=\frac{a}{\lambda}(\sin \theta)_{\max } \approx 3.8
$$

which suggests that, on each side of the central maximum $\left(\theta_{\text {centr }}=0\right)$, there are three minima; considering both sides then implies there are six minima in the pattern.
(c) Setting $m=1$ in Eq. 36-3 and solving for θ yields 15.2°.
(d) Setting $m=3$ in Eq. 36-3 and solving for θ yields 51.8°.
11. (a) $\theta=\sin ^{-1}(0.011 \mathrm{~cm} / 3.5 \mathrm{~m})=0.18^{\circ}$.
(b) We use Eq. 36-6:

$$
\alpha=\left(\frac{\pi a}{\lambda}\right) \sin \theta=\frac{\pi(0.025 \mathrm{~mm}) \sin 0.18^{\circ}}{538 \times 10^{-6} \mathrm{~mm}}=0.46 \mathrm{rad}
$$

(c) Making sure our calculator is in radian mode, Eq. 36-5 yields

$$
\frac{I(\theta)}{I_{m}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}=0.93
$$

12. We will make use of arctangents and sines in our solution, even though they can be "shortcut" somewhat since the angles are small enough to justify the use of the small angle approximation.
(a) Given $y / D=15 / 300$ (both expressed here in centimeters), then $\theta=\tan ^{-1}(y / D)=2.86^{\circ}$. Use of Eq. 36-6 (with $a=6000 \mathrm{~nm}$ and $\lambda=500 \mathrm{~nm}$) leads to

$$
\alpha=\frac{\pi a}{\lambda} \sin \theta=1.883 \mathrm{rad}
$$

Thus,

$$
\frac{I_{P}}{I_{m}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}=0.256
$$

(b) Consider Eq. 36-3 with "continuously variable" m (of course, m should be an integer for diffraction minima, but for the moment we will solve for it as if it could be any real number):

$$
m=\frac{a}{\lambda} \sin \theta \approx 0.6
$$

which suggests that the angle takes us to a point between the central maximum ($\theta_{\text {centr }}=0$) and the first minimum (which corresponds to $m=1$ in Eq. 36-3).
13. (a) The intensity for a single-slit diffraction pattern is given by

$$
I=I_{m} \frac{\sin ^{2} \alpha}{\alpha^{2}}
$$

where $\alpha=(\pi a / \lambda) \sin \theta, a$ is the slit width and λ is the wavelength. The angle θ is measured from the forward direction. We require $I=I_{m} / 2$, so

$$
\sin ^{2} \alpha=\frac{1}{2} \alpha^{2}
$$

(b) We evaluate $\sin ^{2} \alpha$ and $\alpha^{2} / 2$ for $\alpha=1.39 \mathrm{rad}$ and compare the results. To be sure that 1.39 rad is closer to the correct value for α than any other value with three significant digits, we could also try 1.385 rad and 1.395 rad .
(c) Since $\alpha=(\pi a / \lambda) \sin \theta$,

$$
\theta=\sin ^{-1}\left(\frac{\alpha \lambda}{\pi a}\right)
$$

Now $\alpha / \pi=1.39 / \pi=0.442$, so

$$
\theta=\sin ^{-1}\left(\frac{0.442 \lambda}{a}\right)
$$

The angular separation of the two points of half intensity, one on either side of the center of the diffraction pattern, is

$$
\Delta \theta=2 \theta=2 \sin ^{-1}\left(\frac{0.442 \lambda}{a}\right)
$$

(d) For $a / \lambda=1.0$,

$$
\Delta \theta=2 \sin ^{-1}(0.442 / 1.0)=0.916 \mathrm{rad}=52.5^{\circ} .
$$

(e) For $a / \lambda=5.0$,

$$
\Delta \theta=2 \sin ^{-1}(0.442 / 5.0)=0.177 \mathrm{rad}=10.1^{\circ} .
$$

(f) For $a / \lambda=10, \Delta \theta=2 \sin ^{-1}(0.442 / 10)=0.0884 \mathrm{rad}=5.06^{\circ}$.
14. Consider Huygens' explanation of diffraction phenomena. When A is in place only the Huygens' wavelets that pass through the hole get to point P. Suppose they produce a resultant electric field E_{A}. When B is in place, the light that was blocked by A gets to P and the light that passed through the hole in A is blocked. Suppose the electric field at P is now \vec{E}_{B}. The sum $\vec{E}_{A}+\vec{E}_{B}$ is the resultant of all waves that get to P when neither A nor B are present. Since P is in the geometric shadow, this is zero. Thus $\vec{E}_{A}=-\vec{E}_{B}$, and since the intensity is proportional to the square of the electric field, the intensity at P is the same when A is present as when B is present.
15. (a) The intensity for a single-slit diffraction pattern is given by

$$
I=I_{m} \frac{\sin ^{2} \alpha}{\alpha^{2}}
$$

where α is described in the text (see Eq. 36-6). To locate the extrema, we set the derivative of I with respect to α equal to zero and solve for α. The derivative is

$$
\frac{d I}{d \alpha}=2 I_{m} \frac{\sin \alpha}{\alpha^{3}}(\alpha \cos \alpha-\sin \alpha) .
$$

The derivative vanishes if $\alpha \neq 0$ but $\sin \alpha=0$. This yields $\alpha=m \pi$, where m is a nonzero integer. These are the intensity minima: $I=0$ for $\alpha=m \pi$. The derivative also vanishes for $\alpha \cos \alpha-\sin \alpha=0$. This condition can be written $\tan \alpha=\alpha$. These implicitly locate the maxima.
(b) The values of α that satisfy $\tan \alpha=\alpha$ can be found by trial and error on a pocket calculator or computer. Each of them is slightly less than one of the values $\left(m+\frac{1}{2}\right) \pi \mathrm{rad}$, so we start with these values. They can also be found graphically. As in the diagram that follows, we plot $y=\tan \alpha$ and $y=\alpha$ on the same graph. The intersections of the line with the $\tan \alpha$ curves are the solutions.

The smallest α is $\alpha=0$.
(c) We write $\alpha=\left(m+\frac{1}{2}\right) \pi$ for the maxima. For the central maximum, $\alpha=0$ and $m=-1 / 2=-0.500$.
(d) The next one can be found to be $\alpha=4.493 \mathrm{rad}$.
(e) For $\alpha=4.4934, m=0.930$.
(f) The next one can be found to be $\alpha=7.725 \mathrm{rad}$.
(g) For $\alpha=7.7252, m=1.96$.
16. We use Eq. $36-12$ with $\theta=2.5^{\circ} / 2=1.25^{\circ}$. Thus,

$$
d=\frac{1.22 \lambda}{\sin \theta}=\frac{1.22(550 \mathrm{~nm})}{\sin 1.25^{\circ}}=31 \mu \mathrm{~m} .
$$

17. (a) We use the Rayleigh criteria. Thus, the angular separation (in radians) of the sources must be at least $\theta_{\mathrm{R}}=1.22 \lambda / d$, where λ is the wavelength and d is the diameter of the aperture. For the headlights of this problem,

$$
\theta_{\mathrm{R}}=\frac{1.22\left(550 \times 10^{-9} \mathrm{~m}\right)}{5.0 \times 10^{-3} \mathrm{~m}}=1.34 \times 10^{-4} \mathrm{rad}
$$

or $1.3 \times 10^{-4} \mathrm{rad}$, in two significant figures.
(b) If L is the distance from the headlights to the eye when the headlights are just resolvable and D is the separation of the headlights, then $D=L \theta_{R}$, where the small angle approximation is made. This is valid for θ_{R} in radians. Thus,

$$
L=\frac{D}{\theta_{\mathrm{R}}}=\frac{1.4 \mathrm{~m}}{1.34 \times 10^{-4} \mathrm{rad}}=1.0 \times 10^{4} \mathrm{~m}=10 \mathrm{~km} .
$$

18. (a) Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the minimum separation is

$$
D=L \theta_{\mathrm{R}}=L\left(\frac{1.22 \lambda}{d}\right)=\frac{\left(400 \times 10^{3} \mathrm{~m}\right)(1.22)\left(550 \times 10^{-9} \mathrm{~m}\right)}{(0.005 \mathrm{~m})} \approx 50 \mathrm{~m}
$$

(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great Wall (see the result of part (a)).
(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half of the planet. However, while passing over the half of the planet on the opposite side from the Sun, the astronaut would be able to notice the effects of artificial lighting.
19. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the minimum separation is

$$
\begin{aligned}
D & =L \theta_{\mathrm{R}}=L\left(1.22 \frac{\lambda}{d}\right)=\left(3.82 \times 10^{8} \mathrm{~m}\right) \frac{(1.22)\left(550 \times 10^{-9} \mathrm{~m}\right)}{5.1 \mathrm{~m}} \\
& =50 \mathrm{~m}
\end{aligned}
$$

20. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the maximum distance is

$$
L=\frac{D}{\theta_{\mathrm{R}}}=\frac{D}{1.22 \lambda / d}=\frac{\left(5.0 \times 10^{-3} \mathrm{~m}\right)\left(4.0 \times 10^{-3} \mathrm{~m}\right)}{1.22\left(550 \times 10^{-9} \mathrm{~m}\right)}=30 \mathrm{~m} .
$$

21. (a) We use the Rayleigh criteria. If L is the distance from the observer to the objects, then the smallest separation D they can have and still be resolvable is $D=L \theta_{\mathrm{R}}$, where θ_{R} is measured in radians. The small angle approximation is made. Thus,

$$
D=\frac{1.22 L \lambda}{d}=\frac{1.22\left(8.0 \times 10^{10} \mathrm{~m}\right)\left(550 \times 10^{-9} \mathrm{~m}\right)}{5.0 \times 10^{-3} \mathrm{~m}}=1.1 \times 10^{7} \mathrm{~m}=1.1 \times 10^{4} \mathrm{~km}
$$

This distance is greater than the diameter of Mars; therefore, one part of the planet's surface cannot be resolved from another part.
(b) Now $d=5.1 \mathrm{~m}$ and

$$
D=\frac{1.22\left(8.0 \times 10^{10} \mathrm{~m}\right)\left(550 \times 10^{-9} \mathrm{~m}\right)}{5.1 \mathrm{~m}}=1.1 \times 10^{4} \mathrm{~m}=11 \mathrm{~km}
$$

22. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the minimum separation is

$$
D=L \theta_{\mathrm{R}}=L\left(\frac{1.22 \lambda}{d}\right)=\frac{\left(6.2 \times 10^{3} \mathrm{~m}\right)(1.22)\left(1.6 \times 10^{-2} \mathrm{~m}\right)}{2.3 \mathrm{~m}}=53 \mathrm{~m} .
$$

23. (a) Using the notation of Sample Problem 36-3,

$$
L=\frac{D}{1.22 \lambda / d}=\frac{2\left(50 \times 10^{-6} \mathrm{~m}\right)\left(1.5 \times 10^{-3} \mathrm{~m}\right)}{1.22\left(650 \times 10^{-9} \mathrm{~m}\right)}=0.19 \mathrm{~m}
$$

(b) The wavelength of the blue light is shorter so $L_{\max } \propto \lambda^{-1}$ will be larger.
24. Eq. 36-14 gives the Rayleigh angle (in radians):

$$
\theta_{\mathrm{R}}=\frac{1.22 \lambda}{d}=\frac{D}{L}
$$

where the rationale behind the second equality is given in Sample Problem 36-3.
(a) We are asked to solve for D and are given $\lambda=1.40 \times 10^{-9} \mathrm{~m}, d=0.200 \times 10^{-3} \mathrm{~m}$, and $L=2000 \times 10^{3} \mathrm{~m}$. Consequently, we obtain $D=17.1 \mathrm{~m}$.
(b) Intensity is power over area (with the area assumed spherical in this case, which means it is proportional to radius-squared), so the ratio of intensities is given by the square of a ratio of distances: $(d / D)^{2}=1.37 \times 10^{-10}$.
25. (a) The first minimum in the diffraction pattern is at an angular position θ, measured from the center of the pattern, such that $\sin \theta=1.22 \lambda / d$, where λ is the wavelength and d is the diameter of the antenna. If f is the frequency, then the wavelength is

$$
\lambda=\frac{c}{f}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{220 \times 10^{9} \mathrm{~Hz}}=1.36 \times 10^{-3} \mathrm{~m} .
$$

Thus

$$
\theta=\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right)=\sin ^{-1}\left(\frac{1.22\left(1.36 \times 10^{-3} \mathrm{~m}\right)}{55.0 \times 10^{-2} \mathrm{~m}}\right)=3.02 \times 10^{-3} \mathrm{rad}
$$

The angular width of the central maximum is twice this, or $6.04 \times 10^{-3} \mathrm{rad}\left(0.346^{\circ}\right)$.
(b) Now $\lambda=1.6 \mathrm{~cm}$ and $d=2.3 \mathrm{~m}$, so

$$
\theta=\sin ^{-1}\left(\frac{1.22\left(1.6 \times 10^{-2} \mathrm{~m}\right)}{2.3 \mathrm{~m}}\right)=8.5 \times 10^{-3} \mathrm{rad}
$$

The angular width of the central maximum is $1.7 \times 10^{-2} \mathrm{rad}\left(0.97^{\circ}\right)$.
26. Eq. 36-14 gives $\theta_{R}=1.22 \lambda / d$, where in our case $\theta_{R} \approx D / L$, with $D=60 \mu \mathrm{~m}$ being the size of the object your eyes must resolve, and L being the maximum viewing distance in question. If $d=3.00 \mathrm{~mm}=3000 \mu \mathrm{~m}$ is the diameter of your pupil, then

$$
L=\frac{D d}{1.22 \lambda}=\frac{(60 \mu \mathrm{~m})(3000 \mu \mathrm{~m})}{1.22(0.55 \mu \mathrm{~m})}=2.7 \times 10^{5} \mu \mathrm{~m}=27 \mathrm{~cm}
$$

27. (a) Using Eq. 36-14, the angular separation is

$$
\theta_{\mathrm{R}}=\frac{1.22 \lambda}{d}=\frac{(1.22)\left(550 \times 10^{-9} \mathrm{~m}\right)}{0.76 \mathrm{~m}}=8.8 \times 10^{-7} \mathrm{rad}
$$

(b) Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the distance between the stars is

$$
D=L \theta_{\mathrm{R}}=\frac{(101 \mathrm{y})\left(9.46 \times 10^{12} \mathrm{~km} / \mathrm{ly}\right)(0.18) \pi}{(3600)(180)}=8.4 \times 10^{7} \mathrm{~km}
$$

(c) The diameter of the first dark ring is

$$
d=2 \theta_{\mathrm{R}} L=\frac{2(0.18)(\pi)(14 \mathrm{~m})}{(3600)(180)}=2.5 \times 10^{-5} \mathrm{~m}=0.025 \mathrm{~mm}
$$

28. (a) Since $\theta=1.22 \lambda / d$, the larger the wavelength the larger the radius of the first minimum (and second maximum, etc). Therefore, the white pattern is outlined by red lights (with longer wavelength than blue lights).
(b) The diameter of a water drop is

$$
d=\frac{1.22 \lambda}{\theta} \approx \frac{1.22\left(7 \times 10^{-7} \mathrm{~m}\right)}{1.5\left(0.50^{\circ}\right)\left(\pi / 180^{\circ}\right) / 2}=1.3 \times 10^{-4} \mathrm{~m}
$$

29. Bright interference fringes occur at angles θ given by $d \sin \theta=m \lambda$, where m is an integer. For the slits of this problem, $d=11 a / 2$, so $a \sin \theta=2 m \lambda / 11$ (see Sample Problem 36-5). The first minimum of the diffraction pattern occurs at the angle θ_{1} given by a sin $\theta_{1}=\lambda$, and the second occurs at the angle θ_{2} given by $a \sin \theta_{2}=2 \lambda$, where a is the slit width. We should count the values of m for which $\theta_{1}<\theta<\theta_{2}$, or, equivalently, the values of m for which $\sin \theta_{1}<\sin \theta<\sin \theta_{2}$. This means $1<(2 m / 11)<2$. The values are $m=6$, $7,8,9$, and 10 . There are five bright fringes in all.
30. In a manner similar to that discussed in Sample Problem 36-5, we find the number is $2(d / a)-1=2(2 a / a)-1=3$.
31. (a) In a manner similar to that discussed in Sample Problem 36-5, we find the ratio should be $d / a=4$. Our reasoning is, briefly, as follows: we let the location of the fourth bright fringe coincide with the first minimum of diffraction pattern, and then set $\sin \theta=$ $4 \lambda / d=\lambda / a$ (so $d=4 a)$.
(b) Any bright fringe which happens to be at the same location with a diffraction minimum will vanish. Thus, if we let

$$
\sin \theta=m_{1} \lambda / d=m_{2} \lambda / a=m_{1} \lambda / 4 a,
$$

or $m_{1}=4 m_{2}$ where $m_{2}=1,2,3, \cdots$. The fringes missing are the 4 th, 8 th, 12 th, and so on. Hence, every fourth fringe is missing.
32. The angular location of the m th bright fringe is given by $d \sin \theta=m \lambda$, so the linear separation between two adjacent fringes is

$$
\Delta y=\Delta(D \sin \theta)=\Delta\left(\frac{D_{m} \lambda}{d}\right)=\frac{D \lambda}{d} \Delta m=\frac{D \lambda}{d} .
$$

33. (a) The angular positions θ of the bright interference fringes are given by $d \sin \theta=m \lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. The first diffraction minimum occurs at the angle θ_{1} given by $a \sin \theta_{1}=\lambda$, where a is the slit width. The diffraction peak extends from $-\theta_{1}$ to $+\theta_{1}$, so we should count the number of values of m for which $-\theta_{1}<\theta<+\theta_{1}$, or, equivalently, the number of values of m for which $-\sin \theta_{1}$ $<\sin \theta<+\sin \theta_{1}$. This means $-1 / a<m / d<1 / a$ or $-d / a<m<+d / a$. Now

$$
d / a=\left(0.150 \times 10^{-3} \mathrm{~m}\right) /\left(30.0 \times 10^{-6} \mathrm{~m}\right)=5.00
$$

so the values of m are $m=-4,-3,-2,-1,0,+1,+2,+3$, and +4 . There are nine fringes.
(b) The intensity at the screen is given by

$$
I=I_{m}\left(\cos ^{2} \beta\right)\left(\frac{\sin \alpha}{\alpha}\right)^{2}
$$

where $\alpha=(\pi a / \lambda) \sin \theta, \beta=(\pi d / \lambda) \sin \theta$, and I_{m} is the intensity at the center of the pattern. For the third bright interference fringe, $d \sin \theta=3 \lambda$, so $\beta=3 \pi \mathrm{rad}$ and $\cos ^{2} \beta=1$. Similarly, $\alpha=3 \pi a / d=3 \pi / 5.00=0.600 \pi \mathrm{rad}$ and

$$
\left(\frac{\sin \alpha}{\alpha}\right)^{2}=\left(\frac{\sin 0.600 \pi}{0.600 \pi}\right)^{2}=0.255
$$

The intensity ratio is $I / I_{m}=0.255$.
34. (a) We note that the slope of the graph is 80, and that Eq. $36-20$ implies that the slope should correspond to

$$
\frac{\pi d}{\lambda}=80 \Rightarrow d=11077 \mathrm{~nm}=11.1 \mu \mathrm{~m}
$$

(b) Consider Eq. 36-25 with "continuously variable" m (of course, m should be an integer for interference maxima, but for the moment we will solve for it as if it could be any real number):

$$
m_{\max }=\frac{d}{\lambda}(\sin \theta)_{\max } \approx 25.5
$$

which indicates (on one side of the interference pattern) there are 25 bright fringes. Thus on the other side there are also 25 bright fringes. Including the one in the middle, then, means there are a total of 51 maxima in the interference pattern (assuming, as the problem remarks, that none of the interference maxima have been eliminated by diffraction minima).
(c) Clearly, the maximum closest to the axis is the middle fringe at $\theta=0^{\circ}$.
(d) If we set $m=25$ in Eq. 36-25, we find

$$
m \lambda=d \sin \theta \quad \Rightarrow \quad \theta=79.0^{\circ}
$$

35. (a) The first minimum of the diffraction pattern is at 5.00°, so

$$
a=\frac{\lambda}{\sin \theta}=\frac{0.440 \mu \mathrm{~m}}{\sin 5.00^{\circ}}=5.05 \mu \mathrm{~m}
$$

(b) Since the fourth bright fringe is missing, $d=4 a=4(5.05 \mu \mathrm{~m})=20.2 \mu \mathrm{~m}$.
(c) For the $m=1$ bright fringe,

$$
\alpha=\frac{\pi a \sin \theta}{\lambda}=\frac{\pi(5.05 \mu \mathrm{~m}) \sin 1.25^{\circ}}{0.440 \mu \mathrm{~m}}=0.787 \mathrm{rad}
$$

Consequently, the intensity of the $m=1$ fringe is

$$
I=I_{m}\left(\frac{\sin \alpha}{\alpha}\right)^{2}=\left(7.0 \mathrm{~mW} / \mathrm{cm}^{2}\right)\left(\frac{\sin 0.787 \mathrm{rad}}{0.787}\right)^{2}=5.7 \mathrm{~mW} / \mathrm{cm}^{2}
$$

which agrees with Fig. 36-43. Similarly for $m=2$, the intensity is $I=2.9 \mathrm{~mW} / \mathrm{cm}^{2}$, also in agreement with Fig. 36-43.
36. We will make use of arctangents and sines in our solution, even though they can be "shortcut" somewhat since the angles are [almost] small enough to justify the use of the small angle approximation.
(a) Given $y / D=70 / 400$ (both expressed here in centimeters), then

$$
\theta=\tan ^{-1}(y / D)=0.173 \mathrm{rad}
$$

With d and λ in micrometers, Eq. 36-20 then gives

$$
\beta=\frac{\pi d}{\lambda} \sin \theta=\frac{\pi(24)}{0.60} \sin (0.173 \mathrm{rad})=21.66 \mathrm{rad} .
$$

Thus, use of Eq. 36-21 (with $a=12 \mu \mathrm{~m}$ and $\lambda=0.60 \mu \mathrm{~m}$) leads to

$$
\alpha=\frac{\pi a}{\lambda} \sin \theta=10.83 \mathrm{rad}
$$

Thus,

$$
\frac{I_{P}}{I_{m}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}(\cos \beta)^{2}=0.00743
$$

(b) Consider Eq. 36-25 with "continuously variable" m (of course, m should be an integer for interference maxima, but for the moment we will solve for it as if it could be any real number):

$$
m=\frac{d}{\lambda} \sin \theta \approx 6.9
$$

which suggests that the angle takes us to a point between the sixth minimum (which would have $m=6.5$) and the seventh maximum (which corresponds to $m=7$).
(c) Similarly, consider Eq. 36-3 with "continuously variable" m (of course, m should be an integer for diffraction minima, but for the moment we will solve for it as if it could be any real number):

$$
m=\frac{a}{\lambda} \sin \theta \approx 3.4
$$

which suggests that the angle takes us to a point between the third diffraction minimum $(m=3)$ and the fourth one $(m=4)$. The maxima (in the smaller peaks of the diffraction pattern) are not exactly midway between the minima; their location would make use of mathematics not covered in the prerequisites of the usual sophomore-level physics course.
37. The distance between adjacent rulings is

$$
d=20.0 \mathrm{~mm} / 6000=0.00333 \mathrm{~mm}=3.33 \mu \mathrm{~m} .
$$

(a) Let $d \sin \theta=m \lambda(m=0, \pm 1, \pm 2, \ldots)$. Since $|m| \lambda / d>1$ for $|m| \geq 6$, the largest value of θ corresponds to $|m|=5$, which yields

$$
\theta=\sin ^{-1}(|m| \lambda / d)=\sin ^{-1}\left(\frac{5(0.589 \mu \mathrm{~m})}{3.33 \mu \mathrm{~m}}\right)=62.1^{\circ}
$$

(b) The second largest value of θ corresponds to $|m|=4$, which yields

$$
\theta=\sin ^{-1}(|m| \lambda / d)=\sin ^{-1}\left(\frac{4(0.589 \mu \mathrm{~m})}{3.33 \mu \mathrm{~m}}\right)=45.0^{\circ}
$$

(c) The third largest value of θ corresponds to $|m|=3$, which yields

$$
\theta=\sin ^{-1}(|m| \lambda / d)=\sin ^{-1}\left(\frac{3(0.589 \mu \mathrm{~m})}{3.33 \mu \mathrm{~m}}\right)=32.0^{\circ}
$$

38. The angular location of the m th order diffraction maximum is given by $m \lambda=d \sin \theta$. To be able to observe the fifth-order maximum, we must let $\sin \theta_{m=5}=5 \lambda / d<1$, or

$$
\lambda<\frac{d}{5}=\frac{1.00 \mathrm{~nm} / 315}{5}=635 \mathrm{~nm} .
$$

Therefore, the longest wavelength that can be used is $\lambda=635 \mathrm{~nm}$.
39. The ruling separation is $d=1 /\left(400 \mathrm{~mm}^{-1}\right)=2.5 \times 10^{-3} \mathrm{~mm}$. Diffraction lines occur at angles θ such that $d \sin \theta=m \lambda$, where λ is the wavelength and m is an integer. Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength. We take λ to be the longest wavelength in the visible spectrum (700 nm) and find the greatest integer value of m such that θ is less than 90°. That is, find the greatest integer value of m for which $m \lambda<d$. Since

$$
d / \lambda=\left(2.5 \times 10^{-6} \mathrm{~m}\right) /\left(700 \times 10^{-9} \mathrm{~m}\right)=3.57
$$

that value is $m=3$. There are three complete orders on each side of the $m=0$ order. The second and third orders overlap.
40. We use Eq. 36-25 for diffraction maxima: $d \sin \theta=m \lambda$. In our case, since the angle between the $m=1$ and $m=-1$ maxima is 26°, the angle θ corresponding to $m=1$ is $\theta=$ $26^{\circ} / 2=13^{\circ}$. We solve for the grating spacing:

$$
d=\frac{m \lambda}{\sin \theta}=\frac{(1)(550 \mathrm{~nm})}{\sin 13^{\circ}}=2.4 \mu \mathrm{~m} \approx 2 \mu \mathrm{~m} .
$$

41. (a) Maxima of a diffraction grating pattern occur at angles θ given by $d \sin \theta=m \lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. The two lines are adjacent, so their order numbers differ by unity. Let m be the order number for the line with $\sin \theta=0.2$ and $m+1$ be the order number for the line with $\sin \theta=0.3$. Then, $0.2 d=$ $m \lambda$ and $0.3 d=(m+1) \lambda$. We subtract the first equation from the second to obtain $0.1 d=\lambda$, or

$$
d=\lambda / 0.1=\left(600 \times 10^{-9} \mathrm{~m}\right) / 0.1=6.0 \times 10^{-6} \mathrm{~m} .
$$

(b) Minima of the single-slit diffraction pattern occur at angles θ given by $a \sin \theta=m \lambda$, where a is the slit width. Since the fourth-order interference maximum is missing, it must fall at one of these angles. If a is the smallest slit width for which this order is missing, the angle must be given by $a \sin \theta=\lambda$. It is also given by $d \sin \theta=4 \lambda$, so

$$
a=d / 4=\left(6.0 \times 10^{-6} \mathrm{~m}\right) / 4=1.5 \times 10^{-6} \mathrm{~m} .
$$

(c) First, we set $\theta=90^{\circ}$ and find the largest value of m for which $m \lambda<d \sin \theta$. This is the highest order that is diffracted toward the screen. The condition is the same as $m<d / \lambda$ and since

$$
d / \lambda=\left(6.0 \times 10^{-6} \mathrm{~m}\right) /\left(600 \times 10^{-9} \mathrm{~m}\right)=10.0
$$

the highest order seen is the $m=9$ order. The fourth and eighth orders are missing, so the observable orders are $m=0,1,2,3,5,6,7$, and 9 . Thus, the largest value of the order number is $m=9$.
(d) Using the result obtained in (c), the second largest value of the order number is $m=7$.
(e) Similarly, the third largest value of the order number is $m=6$.
42. (a) For the maximum with the greatest value of $m(=M)$ we have $M \lambda=a \sin \theta<d$, so $M<d / \lambda=900 \mathrm{~nm} / 600 \mathrm{~nm}=1.5$, or $M=1$. Thus three maxima can be seen, with $m=0$, ± 1.
(b) From Eq. 36-28

$$
\begin{aligned}
\Delta \theta_{\mathrm{hw}} & =\frac{\lambda}{N d \cos \theta}=\frac{d \sin \theta}{N d \cos \theta}=\frac{\tan \theta}{N}=\frac{1}{N} \tan \left[\sin ^{-1}\left(\frac{\lambda}{d}\right)\right] \\
& =\frac{1}{1000} \tan \left[\sin ^{-1}\left(\frac{600 \mathrm{~nm}}{900 \mathrm{~nm}}\right)\right]=0.051^{\circ} .
\end{aligned}
$$

43. The angular positions of the first-order diffraction lines are given by $d \sin \theta=\lambda$. Let λ_{1} be the shorter wavelength (430 nm) and θ be the angular position of the line associated with it. Let λ_{2} be the longer wavelength (680 nm), and let $\theta+\Delta \theta$ be the angular position of the line associated with it. Here $\Delta \theta=20^{\circ}$. Then, $d \sin \theta=\lambda_{1}$ and $d \sin (\theta+\Delta \theta)=\lambda_{2}$. We write

$$
\sin (\theta+\Delta \theta) \text { as } \sin \theta \cos \Delta \theta+\cos \theta \sin \Delta \theta
$$

then use the equation for the first line to replace $\sin \theta$ with λ_{1} / d, and $\cos \theta$ with $\sqrt{1-\lambda_{1}^{2} / d^{2}}$. After multiplying by d, we obtain

$$
\lambda_{1} \cos \Delta \theta+\sqrt{d^{2}-\lambda_{1}^{2}} \sin \Delta \theta=\lambda_{2}
$$

Solving for d, we find

$$
\begin{aligned}
d & =\sqrt{\frac{\left(\lambda_{2}-\lambda_{1} \cos \Delta \theta\right)^{2}+\left(\lambda_{1} \sin \Delta \theta\right)^{2}}{\sin ^{2} \Delta \theta}} \\
& =\sqrt{\frac{\left[(680 \mathrm{~nm})-(430 \mathrm{~nm}) \cos 20^{\circ}\right]^{2}+\left[(430 \mathrm{~nm}) \sin 20^{\circ}\right]^{2}}{\sin ^{2} 20^{\circ}}} \\
& =914 \mathrm{~nm}=9.14 \times 10^{-4} \mathrm{~mm} .
\end{aligned}
$$

There are $1 / d=1 /\left(9.14 \times 10^{-4} \mathrm{~mm}\right)=1.09 \times 10^{3}$ rulings per mm .
44. We use Eq. 36-25. For $m= \pm 1$

$$
\lambda=\frac{d \sin \theta}{m}=\frac{(1.73 \mu \mathrm{~m}) \sin \left(\pm 17.6^{\circ}\right)}{ \pm 1}=523 \mathrm{~nm}
$$

and for $m= \pm 2$

$$
\lambda=\frac{(1.73 \mu \mathrm{~m}) \sin \left(\pm 37.3^{\circ}\right)}{ \pm 2}=524 \mathrm{~nm} .
$$

Similarly, we may compute the values of λ corresponding to the angles for $m= \pm 3$. The average value of these λ 's is 523 nm .
45. At the point on the screen where we find the inner edge of the hole, we have $\tan \theta=$ $5.0 \mathrm{~cm} / 30 \mathrm{~cm}$, which gives $\theta=9.46^{\circ}$. We note that d for the grating is equal to $1.0 \mathrm{~mm} / 350=1.0 \times 10^{6} \mathrm{~nm} / 350$.
(a) From $m \lambda=d \sin \theta$, we find

$$
m=\frac{d \sin \theta}{\lambda}=\frac{\left(\frac{1.0 \times 10^{6} \mathrm{~nm}}{350}\right)(0.1644)}{\lambda}=\frac{470 \mathrm{~nm}}{\lambda} .
$$

Since for white light $\lambda>400 \mathrm{~nm}$, the only integer m allowed here is $m=1$. Thus, at one edge of the hole, $\lambda=470 \mathrm{~nm}$. This is the shortest wavelength of the light that passes through the hole.
(b) At the other edge, we have $\tan \theta^{\prime}=6.0 \mathrm{~cm} / 30 \mathrm{~cm}$, which gives $\theta^{\prime}=11.31^{\circ}$. This leads to

$$
\lambda^{\prime}=d \sin \theta^{\prime}=\left(\frac{1.0 \times 10^{6} \mathrm{~nm}}{350}\right) \sin 11.31^{\circ}=560 \mathrm{~nm} .
$$

This corresponds to the longest wavelength of the light that passes through the hole.
46. We are given the "number of lines per millimeter" (which is a common way to express $1 / d$ for diffraction gratings); thus,

$$
\frac{1}{d}=160 \text { lines } / \mathrm{mm} \Rightarrow d=6.25 \times 10^{-6} \mathrm{~m}
$$

(a) We solve Eq. 36-25 for θ with various values of m and λ. We show here the $m=2$ and $\lambda=460 \mathrm{~nm}$ calculation:

$$
\theta=\sin ^{-1}\left(\frac{m \lambda}{d}\right)=\sin ^{-1}\left(\frac{2\left(460 \times 10^{-9} \mathrm{~m}\right)}{6.25 \times 10^{-6} \mathrm{~m}}\right)=8.46^{\circ}
$$

Similarly, we get 11.81° for $m=2$ and $\lambda=640 \mathrm{~nm}, 12.75^{\circ}$ for $m=3$ and $\lambda=460 \mathrm{~nm}$, and 17.89° for $m=3$ and $\lambda=640 \mathrm{~nm}$. The first indication of overlap occurs when we compute the angle for $m=4$ and $\lambda=460 \mathrm{~nm}$; the result is 17.12° which clearly shows overlap with the large-wavelength portion of the $m=3$ spectrum.
(b) We solve Eq. 36-25 for m with $\theta=90^{\circ}$ and $\lambda=640 \mathrm{~nm}$. In this case, we obtain $m=$ 9.8 which means the largest order in which the full range (which must include that largest wavelength) is seen is ninth order.
(c) Now with $m=9$, Eq. 36-25 gives $\theta=41.5^{\circ}$ for $\lambda=460 \mathrm{~nm}$.
(d) It similarly gives $\theta=67.2^{\circ}$ for $\lambda=640 \mathrm{~nm}$.
(e) We solve Eq. 36-25 for m with $\theta=90^{\circ}$ and $\lambda=460 \mathrm{~nm}$. In this case, we obtain $m=$ 13.6 which means the largest order in which that wavelength is seen is thirteenth order. Now with $m=13$, Eq. 36-25 gives $\theta=73.1^{\circ}$ for $\lambda=460 \mathrm{~nm}$.
47. Since the slit width is much less than the wavelength of the light, the central peak of the single-slit diffraction pattern is spread across the screen and the diffraction envelope can be ignored. Consider three waves, one from each slit. Since the slits are evenly spaced, the phase difference for waves from the first and second slits is the same as the phase difference for waves from the second and third slits. The electric fields of the waves at the screen can be written as

$$
\begin{aligned}
& E_{1}=E_{0} \sin (\omega t), \\
& E_{2}=E_{0} \sin (\omega t+\phi), \\
& E_{3}=E_{0} \sin (\omega t+2 \phi),
\end{aligned}
$$

where $\phi=(2 \pi d / \lambda) \sin \theta$. Here d is the separation of adjacent slits and λ is the wavelength. The phasor diagram is shown below.

It yields

$$
E=E_{0} \cos \phi+E_{0} \cos \phi=E_{0}(1+2 \cos \phi) .
$$

for the amplitude of the resultant wave. Since the intensity of a wave is proportional to the square of the electric field, we may write $I=A E_{0}^{2}(1+2 \cos \phi)^{2}$, where A is a constant of proportionality. If I_{m} is the intensity at the center of the pattern, for which $\phi=0$, then $I_{m}=9 A E_{0}^{2}$. We take A to be $I_{m} / 9 E_{0}^{2}$ and obtain

$$
I=\frac{I_{m}}{9}(1+2 \cos \phi)^{2}=\frac{I_{m}}{9}\left(1+4 \cos \phi+4 \cos ^{2} \phi\right) .
$$

48. (a) From $R=\lambda / \Delta \lambda=N m$ we find

$$
N=\frac{\lambda}{m \Delta \lambda}=\frac{(415.496 \mathrm{~nm}+415.487 \mathrm{~nm}) / 2}{2(415.96 \mathrm{~nm}-415.487 \mathrm{~nm})}=23100 .
$$

(b) We note that $d=\left(4.0 \times 10^{7} \mathrm{~nm}\right) / 23100=1732 \mathrm{~nm}$. The maxima are found at

$$
\theta=\sin ^{-1}\left(\frac{m \lambda}{d}\right)=\sin ^{-1}\left[\frac{(2)(415.5 \mathrm{~nm})}{1732 \mathrm{~nm}}\right]=28.7^{\circ} .
$$

49. (a) We note that $d=\left(76 \times 10^{6} \mathrm{~nm}\right) / 40000=1900 \mathrm{~nm}$. For the first order maxima $\lambda=$ $d \sin \theta$, which leads to

$$
\theta=\sin ^{-1}\left(\frac{\lambda}{d}\right)=\sin ^{-1}\left(\frac{589 \mathrm{~nm}}{1900 \mathrm{~nm}}\right)=18^{\circ} .
$$

Now, substituting $m=d \sin \theta / \lambda$ into Eq. 36-30 leads to

$$
D=\tan \theta / \lambda=\tan 18^{\circ} / 589 \mathrm{~nm}=5.5 \times 10^{-4} \mathrm{rad} / \mathrm{nm}=0.032^{\circ} / \mathrm{nm} .
$$

(b) For $m=1$, the resolving power is $R=N m=40000 m=40000=4.0 \times 10^{4}$.
(c) For $m=2$ we have $\theta=38^{\circ}$, and the corresponding value of dispersion is $0.076^{\circ} / \mathrm{nm}$.
(d) For $m=2$, the resolving power is $R=N m=40000 m=(40000) 2=8.0 \times 10^{4}$.
(e) Similarly for $m=3$, we have $\theta=68^{\circ}$, and the corresponding value of dispersion is $0.24^{\circ} / \mathrm{nm}$.
(f) For $m=3$, the resolving power is $R=N m=40000 m=(40000) 3=1.2 \times 10^{5}$.
50. Letting $R=\lambda / \Delta \lambda=N m$, we solve for N :

$$
N=\frac{\lambda}{m \Delta \lambda}=\frac{(589.6 \mathrm{~nm}+589.0 \mathrm{~nm}) / 2}{2(589.6 \mathrm{~nm}-589.0 \mathrm{~nm})}=491 .
$$

51. If a grating just resolves two wavelengths whose average is $\lambda_{\text {avg }}$ and whose separation is $\Delta \lambda$, then its resolving power is defined by $R=\lambda_{\text {avg }} / \Delta \lambda$. The text shows this is $N m$, where N is the number of rulings in the grating and m is the order of the lines. Thus $\lambda_{\text {avg }} / \Delta \lambda=N m$ and

$$
N=\frac{\lambda_{\text {avg }}}{m \Delta \lambda}=\frac{656.3 \mathrm{~nm}}{(1)(0.18 \mathrm{~nm})}=3.65 \times 10^{3} \text { rulings. }
$$

52. (a) We find $\Delta \lambda$ from $R=\lambda / \Delta \lambda=N m$:

$$
\Delta \lambda=\frac{\lambda}{N m}=\frac{500 \mathrm{~nm}}{(600 / \mathrm{mm})(5.0 \mathrm{~mm})(3)}=0.056 \mathrm{~nm}=56 \mathrm{pm} .
$$

(b) Since $\sin \theta=m_{\max } \lambda / d<1$,

$$
m_{\max }<\frac{d}{\lambda}=\frac{1}{(600 / \mathrm{mm})\left(500 \times 10^{-6} \mathrm{~mm}\right)}=3.3 .
$$

Therefore, $m_{\max }=3$. No higher orders of maxima can be seen.
53. (a) From $d \sin \theta=m \lambda$ we find

$$
d=\frac{m \lambda_{\text {avg }}}{\sin \theta}=\frac{3(589.3 \mathrm{~nm})}{\sin 10^{\circ}}=1.0 \times 10^{4} \mathrm{~nm}=10 \mu \mathrm{~m}
$$

(b) The total width of the ruling is

$$
L=N d=\left(\frac{R}{m}\right) d=\frac{\lambda_{\text {avg }} d}{m \Delta \lambda}=\frac{(589.3 \mathrm{~nm})(10 \mu \mathrm{~m})}{3(589.59 \mathrm{~nm}-589.00 \mathrm{~nm})}=3.3 \times 10^{3} \mu \mathrm{~m}=3.3 \mathrm{~mm} .
$$

54. (a) From the expression for the half-width $\Delta \theta_{\text {hw }}$ (given by Eq. 36-28) and that for the resolving power R (given by Eq. 36-32), we find the product of $\Delta \theta_{\mathrm{hw}}$ and R to be

$$
\Delta \theta_{\mathrm{hw}} R=\left(\frac{\lambda}{N d \cos \theta}\right) N m=\frac{m \lambda}{d \cos \theta}=\frac{d \sin \theta}{d \cos \theta}=\tan \theta
$$

where we used $m \lambda=d \sin \theta$ (see Eq. 36-25).
(b) For first order $m=1$, so the corresponding angle θ_{1} satisfies $d \sin \theta_{1}=m \lambda=\lambda$. Thus the product in question is given by

$$
\begin{aligned}
\tan \theta_{1} & =\frac{\sin \theta_{1}}{\cos \theta_{1}}=\frac{\sin \theta_{1}}{\sqrt{1-\sin ^{2} \theta_{1}}}=\frac{1}{\sqrt{\left(1 / \sin \theta_{1}\right)^{2}-1}}=\frac{1}{\sqrt{(d / \lambda)^{2}-1}} \\
& =\frac{1}{\sqrt{(900 \mathrm{~nm} / 600 \mathrm{~nm})^{2}-1}}=0.89 .
\end{aligned}
$$

55. Bragg's law gives the condition for a diffraction maximum:

$$
2 d \sin \theta=m \lambda
$$

where d is the spacing of the crystal planes and λ is the wavelength. The angle θ is measured from the surfaces of the planes. For a second-order reflection $m=2$, so

$$
d=\frac{m \lambda}{2 \sin \theta}=\frac{2\left(0.12 \times 10^{-9} \mathrm{~m}\right)}{2 \sin 28^{\circ}}=2.56 \times 10^{-10} \mathrm{~m} \approx 0.26 \mathrm{~nm} .
$$

56. For x-ray ("Bragg") scattering, we have $2 d \sin \theta_{\mathrm{m}}=m \lambda$. This leads to

$$
\frac{2 d \sin \theta_{2}}{2 d \sin \theta_{1}}=\frac{2 \lambda}{1 \lambda} \quad \Rightarrow \quad \sin \theta_{2}=2 \sin \theta_{1}
$$

Thus, with $\theta_{1}=3.4^{\circ}$, this yields $\theta_{2}=6.8^{\circ}$. The fact that θ_{2} is very nearly twice the value of θ_{1} is due to the small angles involved (when angles are small, $\sin \theta_{2} / \sin \theta_{1}=\theta_{2} / \theta_{1}$).
57. We use Eq. 36-34.
(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-44), we have

$$
\lambda_{1}=2 d \sin \theta_{1}=2(0.94 \mathrm{~nm}) \sin \left(0.75^{\circ}\right)=0.025 \mathrm{~nm}=25 \mathrm{pm}
$$

This is the shorter wavelength of the beam. Notice that the estimation should be viewed as reliable to within $\pm 2 \mathrm{pm}$.
(b) We now consider the next peak:

$$
\lambda_{2}=2 d \sin \theta_{2}=2(0.94 \mathrm{~nm}) \sin 1.15^{\circ}=0.038 \mathrm{~nm}=38 \mathrm{pm}
$$

This is the longer wavelength of the beam. One can check that the third peak from the left is the second-order one for λ_{1}.
58. The x-ray wavelength is $\lambda=2 d \sin \theta=2(39.8 \mathrm{pm}) \sin 30.0^{\circ}=39.8 \mathrm{pm}$.
59. (a) For the first beam $2 d \sin \theta_{1}=\lambda_{A}$ and for the second one $2 d \sin \theta_{2}=3 \lambda_{B}$. The values of d and λ_{A} can then be determined:

$$
d=\frac{3 \lambda_{B}}{2 \sin \theta_{2}}=\frac{3(97 \mathrm{pm})}{2 \sin 60^{\circ}}=1.7 \times 10^{2} \mathrm{pm} .
$$

(b) $\lambda_{A}=2 d \sin \theta_{1}=2\left(1.7 \times 10^{2} \mathrm{pm}\right)\left(\sin 23^{\circ}\right)=1.3 \times 10^{2} \mathrm{pm}$.
60. The angle of incidence on the reflection planes is $\theta=63.8^{\circ}-45.0^{\circ}=18.8^{\circ}$, and the plane-plane separation is $\quad d=a_{0} / \sqrt{2}$. Thus, using $2 d \sin \theta=\lambda$, we get

$$
a_{0}=\sqrt{2 d}=\frac{\sqrt{2 \lambda}}{2 \sin \theta}=\frac{0.260 \mathrm{~nm}}{\sqrt{2} \sin 18.8^{\circ}}=0.570 \mathrm{~nm} .
$$

61. The sets of planes with the next five smaller interplanar spacings (after a_{0}) are shown in the diagram that follows.

(a) In terms of a_{0}, the second largest interplanar spacing is $a_{0} / \sqrt{2}=0.7071 a_{0}$.
(b) The third largest interplanar spacing is $a_{0} / \sqrt{5}=0.4472 a_{0}$.
(c) The fourth largest interplanar spacing is $a_{0} / \sqrt{10}=0.3162 a_{0}$.
(d) The fifth largest interplanar spacing is $a_{0} / \sqrt{13}=0.2774 a_{0}$.
(e) The sixth largest interplanar spacing is $a_{0} / \sqrt{17}=0.2425 a_{0}$.
(f) Since a crystal plane passes through lattice points, its slope can be written as the ratio of two integers. Consider a set of planes with slope m / n, as shown in the diagram that follows. The first and last planes shown pass through adjacent lattice points along a horizontal line and there are $m-1$ planes between. If h is the separation of the first and last planes, then the interplanar spacing is $d=h / m$. If the planes make the angle θ with the horizontal, then the normal to the planes (shown dashed) makes the angle $\phi=90^{\circ}-\theta$. The distance h is given by $h=a_{0} \cos \phi$ and the interplanar spacing is $d=h / m=\left(a_{0} / m\right)$ $\cos \phi$. Since $\tan \theta=m / n, \tan \phi=n / m$ and

$$
\cos \phi=1 / \sqrt{1+\tan ^{2} \phi}=m / \sqrt{n^{2}+m^{2}} .
$$

Thus,

62. The wavelengths satisfy

$$
m \lambda=2 d \sin \theta=2(275 \mathrm{pm})\left(\sin 45^{\circ}\right)=389 \mathrm{pm}
$$

In the range of wavelengths given, the allowed values of m are $m=3,4$.
(a) The longest wavelength is $389 \mathrm{pm} / 3=130 \mathrm{pm}$.
(b) The associated order number is $m=3$.
(c) The shortest wavelength is $389 \mathrm{pm} / 4=97.2 \mathrm{pm}$.
(d) The associated order number is $m=4$.
63. We want the reflections to obey the Bragg condition $2 d \sin \theta=m \lambda$, where θ is the angle between the incoming rays and the reflecting planes, λ is the wavelength, and m is an integer. We solve for θ :

$$
\theta=\sin ^{-1}\left(\frac{m \lambda}{2 d}\right)=\sin ^{-1}\left(\frac{\left(0.125 \times 10^{-9} \mathrm{~m}\right) m}{2\left(0.252 \times 10^{-9} \mathrm{~m}\right)}\right)=0.2480 m
$$

(a) For $m=2$ the above equation gives $\theta=29.7^{\circ}$. The crystal should be turned $\phi=45^{\circ}-$ $29.7^{\circ}=15.3^{\circ}$ clockwise.
(b) For $m=1$ the above equation gives $\theta=14.4^{\circ}$. The crystal should be turned $\phi=45^{\circ}-$ $14.4^{\circ}=30.6^{\circ}$ clockwise.
(c) For $m=3$ the above equation gives $\theta=48.1^{\circ}$. The crystal should be turned $\phi=48.1^{\circ}$ $-45^{\circ}=3.1^{\circ}$ counterclockwise.
(d) For $m=4$ the above equation gives $\theta=82.8^{\circ}$. The crystal should be turned $\phi=82.8^{\circ}$ $-45^{\circ}=37.8^{\circ}$ counterclockwise.

Note that there are no intensity maxima for $m>4$ as one can verify by noting that $m \lambda / 2 d$ is greater than 1 for m greater than 4 .
64. Following the method of Sample Problem 36-5, we find

$$
\frac{d}{a}=\frac{0.30 \times 10^{-3} \mathrm{~m}}{46 \times 10^{-6} \mathrm{~m}}=6.52
$$

which we interpret to mean that the first diffraction minimum occurs slightly farther "out" than the $m=6$ interference maximum. This implies that the central diffraction envelope includes the central ($m=0$) interference maximum as well as six interference maxima on each side of it. Therefore, there are $6+1+6=13$ bright fringes (interference maxima) in the central diffraction envelope.
65. Let the first minimum be a distance y from the central axis which is perpendicular to the speaker. Then

$$
\sin \theta=y /\left(D^{2}+y^{2}\right)^{1 / 2}=m \lambda / a=\lambda / a(\text { for } m=1)
$$

Therefore,

$$
y=\frac{D}{\sqrt{(a / \lambda)^{2}-1}}=\frac{D}{\sqrt{\left(a f / v_{s}\right)^{2}-1}}=\frac{100 \mathrm{~m}}{\sqrt{[(0.300 \mathrm{~m})(3000 \mathrm{~Hz}) /(343 \mathrm{~m} / \mathrm{s})]^{2}-1}}=41.2 \mathrm{~m}
$$

66. (a) We use Eq. 36-14:

$$
\theta_{\mathrm{R}}=1.22 \frac{\lambda}{d}=\frac{(1.22)\left(540 \times 10^{-6} \mathrm{~mm}\right)}{5.0 \mathrm{~mm}}=1.3 \times 10^{-4} \mathrm{rad}
$$

(b) The linear separation is $D=L \theta_{\mathrm{R}}=\left(160 \times 10^{3} \mathrm{~m}\right)\left(1.3 \times 10^{-4} \mathrm{rad}\right)=21 \mathrm{~m}$.
67. Since we are considering the diameter of the central diffraction maximum, then we are working with twice the Rayleigh angle. Using notation similar to that in Sample Problem 36-3 (which is in the textbook supplement), we have $2(1.22 \lambda / d)=D / L$. Therefore,

$$
d=2 \frac{1.22 \lambda L}{D}=2 \frac{(1.22)\left(500 \times 10^{-9} \mathrm{~m}\right)\left(3.54 \times 10^{5} \mathrm{~m}\right)}{9.1 \mathrm{~m}}=0.047 \mathrm{~m}
$$

68. We denote the Earth-Moon separation as L. The energy of the beam of light which is projected onto the moon is concentrated in a circular spot of diameter d_{1}, where $d_{1} / L=$ $2 \theta_{\mathrm{R}}=2\left(1.22 \lambda / d_{0}\right)$, with d_{0} the diameter of the mirror on Earth. The fraction of energy picked up by the reflector of diameter d_{2} on the Moon is then $\eta^{\prime}=\left(d_{2} / d_{1}\right)^{2}$. This reflected light, upon reaching the Earth, has a circular cross section of diameter d_{3} satisfying

$$
d_{3} / L=2 \theta_{\mathrm{R}}=2\left(1.22 \lambda / d_{2}\right)
$$

The fraction of the reflected energy that is picked up by the telescope is then $\eta^{\prime \prime}=\left(d_{0} / d_{3}\right)^{2}$. Consequently, the fraction of the original energy picked up by the detector is

$$
\begin{aligned}
\eta & =\eta^{\prime} \eta^{\prime \prime}=\left(\frac{d_{0}}{d_{3}}\right)^{2}\left(\frac{d_{2}}{d_{1}}\right)^{2}=\left[\frac{d_{0} d_{2}}{\left(2.44 \lambda d_{e m} / d_{0}\right)\left(2.44 \lambda d_{e m} / d_{2}\right)}\right]^{2}=\left(\frac{d_{0} d_{2}}{2.44 \lambda d_{e m}}\right)^{4} \\
& =\left[\frac{(2.6 \mathrm{~m})(0.10 \mathrm{~m})}{2.44\left(0.69 \times 10^{-6} \mathrm{~m}\right)\left(3.82 \times 10^{8} \mathrm{~m}\right)}\right]^{4} \approx 4 \times 10^{-13} .
\end{aligned}
$$

69. Consider two of the rays shown in Fig. 36-48, one just above the other. The extra distance traveled by the lower one may be found by drawing perpendiculars from where the top ray changes direction (point P) to the incident and diffracted paths of the lower one. Where these perpendiculars intersect the lower ray's paths are here referred to as points A and C. Where the bottom ray changes direction is point B. We note that angle $\angle A P B$ is the same as ψ, and angle $B P C$ is the same as θ (see Fig. 36-48). The difference in path lengths between the two adjacent light rays is $\Delta x=|A B|+|B C|=d \sin \psi+d \sin \theta$. The condition for bright fringes to occur is therefore

$$
\Delta x=d(\sin \psi+\sin \theta)=m \lambda
$$

where $m=0,1,2, \ldots$ If we set $\psi=0$ then this reduces to Eq. 36-25.
70. Following Sample Problem 36-3, we use Eq. 36-17:

$$
L=\frac{D d}{1.22 \lambda}=164 \mathrm{~m}
$$

71. (a) Employing Eq. $36-3$ with the small angle approximation ($\sin \theta \approx \tan \theta=y / D$ where y locates the minimum relative to the middle of the pattern), we find (with $m=1$ and all lengths in mm)

$$
D=\frac{y a}{m \lambda}=\frac{(0.9)(0.4)}{4.5 \times 10^{-4}}=800
$$

which places the screen 80 cm away from the slit.
(b) The above equation gives for the value of y (for $m=3$)

$$
y=\frac{(3) \lambda D}{a}=2.7 \mathrm{~mm}
$$

Subtracting this from the first minimum position $y=0.9 \mathrm{~mm}$, we find the result $\Delta y=1.8 \mathrm{~mm}$.
72. (a) We require that $\sin \theta=m \lambda_{1,2} / d \leq \sin 30^{\circ}$, where $m=1,2$ and $\lambda_{1}=500 \mathrm{~nm}$. This gives

$$
d \geq \frac{2 \lambda_{s}}{\sin 30^{\circ}}=\frac{2(600 \mathrm{~nm})}{\sin 30^{\circ}}=2400 \mathrm{~nm}=2.4 \mu \mathrm{~m}
$$

For a grating of given total width L we have $N=L / d \propto d^{-1}$, so we need to minimize d to maximize $R=m N \propto d^{-1}$. Thus we choose $d=2400 \mathrm{~nm}=2.4 \mu \mathrm{~m}$.
(b) Let the third-order maximum for $\lambda_{2}=600 \mathrm{~nm}$ be the first minimum for the single-slit diffraction profile. This requires that $d \sin \theta=3 \lambda_{2}=a \sin \theta$, or

$$
a=d / 3=2400 \mathrm{~nm} / 3=800 \mathrm{~nm}=0.80 \mu \mathrm{~m}
$$

(c) Letting $\sin \theta=m_{\max } \lambda_{2} / d \leq 1$, we obtain

$$
m_{\max } \leq \frac{d}{\lambda_{2}}=\frac{2400 \mathrm{~nm}}{800 \mathrm{~nm}}=3
$$

Since the third order is missing the only maxima present are the ones with $m=0,1$ and 2 .
Thus, the largest order of maxima produced by the grating is $m=2$.
73. Letting $d \sin \theta=m \lambda$, we solve for λ :

$$
\lambda=\frac{d \sin \theta}{m}=\frac{(1.0 \mathrm{~mm} / 200)\left(\sin 30^{\circ}\right)}{m}=\frac{2500 \mathrm{~nm}}{m}
$$

where $m=1,2,3 \ldots$. In the visible light range m can assume the following values: $m_{1}=4$, $m_{2}=5$ and $m_{3}=6$.
(a) The longest wavelength corresponds to $m_{1}=4$ with $\lambda_{1}=2500 \mathrm{~nm} / 4=625 \mathrm{~nm}$.
(b) The second longest wavelength corresponds to $m_{2}=5$ with $\lambda_{2}=2500 \mathrm{~nm} / 5=500 \mathrm{~nm}$.
(c) The third longest wavelength corresponds to $m_{3}=6$ with $\lambda_{3}=2500 \mathrm{~nm} / 6=416 \mathrm{~nm}$.
74. Using the notation of Sample Problem 36-3,

$$
L=\frac{D}{\theta_{\mathrm{R}}}=\frac{D}{1.22 \lambda / d}=\frac{\left(5.0 \times 10^{-2} \mathrm{~m}\right)\left(4.0 \times 10^{-3} \mathrm{~m}\right)}{1.22\left(0.10 \times 10^{-9} \mathrm{~m}\right)}=1.6 \times 10^{6} \mathrm{~m}=1.6 \times 10^{3} \mathrm{~km}
$$

75. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 36-3, which we solve for the wavelength:

$$
\lambda=\frac{a \sin \theta}{m}=\frac{(0.022 \mathrm{~mm}) \sin 1.8^{\circ}}{1}=6.91 \times 10^{-4} \mathrm{~mm}=691 \mathrm{~nm} .
$$

76. (a) We express all lengths in mm , and since $1 / d=180$, we write Eq. $36-25$ as

$$
\theta=\sin ^{-1}\left(\frac{1}{d} m \lambda\right)=\sin ^{-1}(180)(2) \lambda
$$

where $\lambda_{1}=4 \times 10^{-4}$ and $\lambda_{2}=5 \times 10^{-4}$ (in mm). Thus, $\Delta \theta=\theta_{2}-\theta_{1}=2.1^{\circ}$.
(b) Use of Eq. 36-25 for each wavelength leads to the condition

$$
m_{1} \lambda_{1}=m_{2} \lambda_{2}
$$

for which the smallest possible choices are $m_{1}=5$ and $m_{2}=4$. Returning to Eq. 36-25, then, we find

$$
\theta=\sin ^{-1}\left(\frac{1}{d} m_{1} \lambda_{1}\right)=21^{\circ} .
$$

(c) There are no refraction angles greater than 90°, so we can solve for " $m_{\max }$ " (realizing it might not be an integer):

$$
m_{\max }=\frac{d \sin 90^{\circ}}{\lambda_{2}}=11
$$

where we have rounded down. There are no values of m (for light of wavelength λ_{2}) greater than $m=11$.
77. For $\lambda=0.10 \mathrm{~nm}$, we have scattering for order m, and for $\lambda^{\prime}=0.075 \mathrm{~nm}$, we have scattering for order m^{\prime}. From Eq. 36-34, we see that we must require

$$
m \lambda=m^{\prime} \lambda^{\prime}
$$

which suggests (looking for the smallest integer solutions) that $m=3$ and $m^{\prime}=4$. Returning with this result and with $d=0.25 \mathrm{~nm}$ to Eq. 36-34, we obtain

$$
\theta=\sin ^{-1} \frac{m \lambda}{2 d}=37^{\circ} .
$$

Studying Figure 36-28, we conclude that the angle between incident and scattered beams is $180^{\circ}-2 \theta=106^{\circ}$.
78. Letting $d \sin \theta=(L / N) \sin \theta=m \lambda$, we get

$$
\lambda=\frac{(L / N) \sin \theta}{m}=\frac{\left(1.0 \times 10^{7} \mathrm{~nm}\right)\left(\sin 30^{\circ}\right)}{(1)(10000)}=500 \mathrm{~nm} .
$$

79. As a slit is narrowed, the pattern spreads outward, so the question about "minimum width" suggests that we are looking at the lowest possible values of m (the label for the minimum produced by light $\lambda=600 \mathrm{~nm}$) and m^{\prime} (the label for the minimum produced by light $\lambda^{\prime}=500 \mathrm{~nm}$). Since the angles are the same, then Eq. 36-3 leads to

$$
m \lambda=m^{\prime} \lambda^{\prime}
$$

which leads to the choices $m=5$ and $m^{\prime}=6$. We find the slit width from Eq. 36-3:

$$
a=\frac{m \lambda}{\sin \theta} \approx \frac{m \lambda}{\theta}
$$

which yields $a=3.0 \mathrm{~mm}$.
80. The central diffraction envelope spans the range $-\theta_{1}<\theta<+\theta_{1}$ where

$$
\theta_{1}=\sin ^{-1} \frac{\lambda}{a} .
$$

The maxima in the double-slit pattern are at

$$
\theta_{m}=\sin ^{-1} \frac{m \lambda}{d}
$$

so that our range specification becomes

$$
-\sin ^{-1} \frac{\lambda}{a}<\sin ^{-1} \frac{m \lambda}{d}<+\sin ^{-1} \frac{\lambda}{a},
$$

which we change (since sine is a monotonically increasing function in the fourth and first quadrants, where all these angles lie) to

$$
-\frac{\lambda}{a}<\frac{m \lambda}{d}<+\frac{\lambda}{a} .
$$

Rewriting this as $-d / a<m<+d / a$ we arrive at the result $m_{\max }<d / a \leq m_{\max }+1$. Due to the symmetry of the pattern, the multiplicity of the m values is $2 m_{\max }+1=17$ so that $m_{\text {max }}=8$, and the result becomes

$$
8<\frac{d}{a} \leq 9
$$

where these numbers are as accurate as the experiment allows (that is, " 9 " means " 9.000 " if our measurements are that good).
81. (a) Use of Eq. 36-25 for the limit-wavelengths $\left(\lambda_{1}=700 \mathrm{~nm}\right.$ and $\left.\lambda_{2}=550 \mathrm{~nm}\right)$ leads to the condition

$$
m_{1} \lambda_{1} \geq m_{2} \lambda_{2}
$$

for $m_{1}+1=m_{2}$ (the low end of a high-order spectrum is what is overlapping with the high end of the next-lower-order spectrum). Assuming equality in the above equation, we can solve for " m_{1} " (realizing it might not be an integer) and obtain $m_{1} \approx 4$ where we have rounded $u p$. It is the fourth order spectrum that is the lowest-order spectrum to overlap with the next higher spectrum.
(b) The problem specifies $d=1 / 200$ using the mm unit, and we note there are no refraction angles greater than 90°. We concentrate on the largest wavelength $\lambda=700 \mathrm{~nm}$ $=7 \times 10^{-4} \mathrm{~mm}$ and solve Eq. 36-25 for " $m_{\max }$ " (realizing it might not be an integer):

$$
m_{\max }=\frac{d \sin 90^{\circ}}{\lambda}=\frac{1}{(200)\left(7 \times 10^{-4}\right)} \approx 7
$$

where we have rounded down. There are no values of m (for the appearance of the full spectrum) greater than $m=7$.
82. From Eq. 36-3,

$$
\frac{a}{\lambda}=\frac{m}{\sin \theta}=\frac{1}{\sin 45.0^{\circ}}=1.41 .
$$

83. (a) We use Eq. 36-12:

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right)=\sin ^{-1}\left[\frac{1.22\left(v_{s} / f\right)}{d}\right] \\
& =\sin ^{-1}\left[\frac{(1.22)(1450 \mathrm{~m} / \mathrm{s})}{\left(25 \times 10^{3} \mathrm{~Hz}\right)(0.60 \mathrm{~m})}\right]=6.8^{\circ}
\end{aligned}
$$

(b) $\operatorname{Now} f=1.0 \times 10^{3} \mathrm{~Hz}$ so

$$
\frac{1.22 \lambda}{d}=\frac{(1.22)(1450 \mathrm{~m} / \mathrm{s})}{\left(1.0 \times 10^{3} \mathrm{~Hz}\right)(0.60 \mathrm{~m})}=2.9>1
$$

Since $\sin \theta$ cannot exceed 1 there is no minimum.
84. We use Eq. 36-34. For smallest value of θ, we let $m=1$. Thus,

$$
\theta_{\min }=\sin ^{-1}\left(\frac{m \lambda}{2 d}\right)=\sin ^{-1}\left[\frac{(1)(30 \mathrm{pm})}{2\left(0.30 \times 10^{3} \mathrm{pm}\right)}\right]=2.9^{\circ} .
$$

85. Employing Eq. 36-3, we find (with $m=3$ and all lengths in $\mu \mathrm{m}$)

$$
\theta=\sin ^{-1} \frac{m \lambda}{a}=\sin ^{-1} \frac{(3)(0.5)}{2}
$$

which yields $\theta=48.6^{\circ}$. Now, we use the experimental geometry $(\tan \theta=y / D$ where y locates the minimum relative to the middle of the pattern) to find

$$
y=D \tan \theta=2.27 \mathrm{~m} .
$$

86. The central diffraction envelope spans the range $-\theta_{1}<\theta<+\theta_{1}$ where

$$
\theta_{1}=\sin ^{-1} \frac{\lambda}{a} .
$$

The maxima in the double-slit pattern are located at

$$
\theta_{m}=\sin ^{-1} \frac{m \lambda}{d}
$$

so that our range specification becomes

$$
-\sin ^{-1} \frac{\lambda}{a}<\sin ^{-1} \frac{m \lambda}{d}<+\sin ^{-1} \frac{\lambda}{a},
$$

which we change (since sine is a monotonically increasing function in the fourth and first quadrants, where all these angles lie) to

$$
-\frac{\lambda}{a}<\frac{m \lambda}{d}<+\frac{\lambda}{a}
$$

Rewriting this as $-d / a<m<+d / a$, we find $-6<m<+6$, or, since m is an integer, $-5 \leq m$ $\leq+5$. Thus, we find eleven values of m that satisfy this requirement.
87. Assuming all $N=2000$ lines are uniformly illuminated, we have

$$
\frac{\lambda_{\mathrm{av}}}{\Delta \lambda}=N m
$$

from Eq. 36-31 and Eq. 36-32. With $\lambda_{\mathrm{av}}=600 \mathrm{~nm}$ and $m=2$, we find $\Delta \lambda=0.15 \mathrm{~nm}$.
88. Using the same notation found in Sample Problem 36-3,

$$
\frac{D}{L}=\theta_{\mathrm{R}}=1.22 \frac{\lambda}{d}
$$

where we will assume a "typical" wavelength for visible light: $\lambda \approx 550 \times 10^{-9} \mathrm{~m}$.
(a) With $L=400 \times 10^{3} \mathrm{~m}$ and $D=0.85 \mathrm{~m}$, the above relation leads to $d=0.32 \mathrm{~m}$.
(b) Now with $D=0.10 \mathrm{~m}$, the above relation leads to $d=2.7 \mathrm{~m}$.
(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of very sophisticated optical filtering and digital signal processing techniques go into the final product, for which there is not space for us to describe here.
89. Although the angles in this problem are not particularly big (so that the small angle approximation could be used with little error), we show the solution appropriate for large as well as small angles (that is, we do not use the small angle approximation here). Eq. 36-3 gives

$$
m \lambda=a \sin \theta \Rightarrow \theta=\sin ^{-1}(m \lambda / a)=\sin ^{-1}[2(0.42 \mu \mathrm{~m}) /(5.1 \mu \mathrm{~m})]=9.48^{\circ} .
$$

The geometry of Figure 35-8(a) is a useful reference (even though it shows a double slit instead of the single slit that we are concerned with here). We see in that figure the relation between y, D and θ :

$$
y=D \tan \theta=(3.2 \mathrm{~m}) \tan \left(9.48^{\circ}\right)=0.534 \mathrm{~m} .
$$

90. The problem specifies $d=12 / 8900$ using the mm unit, and we note there are no refraction angles greater than 90°. We convert $\lambda=500 \mathrm{~nm}$ to $5 \times 10^{-4} \mathrm{~mm}$ and solve Eq. $36-25$ for " $m_{\text {max }}$ " (realizing it might not be an integer):

$$
m_{\max }=\frac{d \sin 90^{\circ}}{\lambda}=\frac{12}{(8900)\left(5 \times 10^{-4}\right)} \approx 2
$$

where we have rounded down. There are no values of m (for light of wavelength λ) greater than $m=2$.
91. (a) The central diffraction envelope spans the range $-\theta_{1}<\theta<+\theta_{1}$ where

$$
\theta_{1}=\sin ^{-1} \frac{\lambda}{a}
$$

which could be further simplified if the small-angle approximation were justified (which it is not, since a is so small). The maxima in the double-slit pattern are at

$$
\theta_{m}=\sin ^{-1} \frac{m \lambda}{d}
$$

so that our range specification becomes

$$
-\sin ^{-1} \frac{\lambda}{a}<\sin ^{-1} \frac{m \lambda}{d}<+\sin ^{-1} \frac{\lambda}{a}
$$

which we change (since sine is a monotonically increasing function in the fourth and first quadrants, where all these angles lie) to

$$
-\frac{\lambda}{a}<\frac{m \lambda}{d}<+\frac{\lambda}{a} .
$$

Rewriting this as $-d / a<m<+d / a$ we arrive at the result $m_{\max }<d / a \leq m_{\max }+1$. Due to the symmetry of the pattern, the multiplicity of the m values is $2 m_{\max }+1=17$ so that $m_{\text {max }}=8$, and the result becomes

$$
8<\frac{d}{a} \leq 9
$$

where these numbers are as accurate as the experiment allows (that is, "9" means " 9.000 " if our measurements are that good).
92. We see that the total number of lines on the grating is $(1.8 \mathrm{~cm})(1400 / \mathrm{cm})=2520=N$. Combining Eq. 36-31 and Eq. 36-32, we find

$$
\Delta \lambda=\frac{\lambda_{\mathrm{avg}}}{N m}=\frac{450 \mathrm{~nm}}{(2520)(3)}=0.0595 \mathrm{~nm}=59.5 \mathrm{pm} .
$$

93. (a) The central diffraction envelope spans the range $-\theta_{1}<\theta<+\theta_{1}$ where

$$
\theta_{1}=\sin ^{-1} \frac{\lambda}{a}
$$

which could be further simplified if the small-angle approximation were justified (which it is not, since a is so small). The maxima in the double-slit pattern are at

$$
\theta_{m}=\sin ^{-1} \frac{m \lambda}{d}
$$

so that our range specification becomes

$$
-\sin ^{-1} \frac{\lambda}{a}<\sin ^{-1} \frac{m \lambda}{d}<+\sin ^{-1} \frac{\lambda}{a}
$$

which we change (since sine is a monotonically increasing function in the fourth and first quadrants, where all these angles lie) to

$$
-\frac{\lambda}{a}<\frac{m \lambda}{d}<+\frac{\lambda}{a} .
$$

Rewriting this as $-d / a<m<+d / a$ we arrive at the result $-7<m<+7$ which implies (since m must be an integer) $-6 \leq m \leq+6$ which amounts to 13 distinct values for m. Thus, thirteen maxima are within the central envelope.
(b) The range (within one of the first-order envelopes) is now

$$
-\sin ^{-1} \frac{\lambda}{a}<\sin ^{-1} \frac{m \lambda}{d}<+\sin ^{-1} \frac{2 \lambda}{a}
$$

which leads to $d / a<m<2 d / a$ or $7<m<14$. Since m is an integer, this means $8 \leq m \leq$ 13 which includes \wedge distinct values for m in that one envelope. If we were to include the total from both first-order envelopes, the result would be twelve, but the wording of the problem implies six should be the answer (just one envelope).
94. Use of Eq. 36-21 leads to:

$$
D=\frac{1.22 \lambda L}{d}=6.1 \mathrm{~mm}
$$

95. We refer (somewhat sloppily) to the 400 nm wavelength as "blue" and the 700 nm wavelength as "red." Consider Eq. $36-25(m \lambda=d \sin \theta)$, for the $3{ }^{\text {rd }}$ order blue, and also for the $2^{\text {nd }}$ order red:

$$
\begin{aligned}
& \text { (3) } \lambda_{\text {blue }}=1200 \mathrm{~nm}=d \sin \left(\theta_{\text {blue }}\right) \\
& \text { (2) } \lambda_{\text {red }}=1400 \mathrm{~nm}=d \sin \left(\theta_{\text {red }}\right) .
\end{aligned}
$$

Since sine is an increasing function of angle (in the first quadrant) then the above set of values make clear that $\theta_{\text {red (second order) }}>\theta_{\text {blue (third order) }}$ which shows that the spectrums overlap (regardless of the value of d).
96. We note that the central diffraction envelope contains the central bright interference fringe (corresponding to $m=0$ in Eq. 36-25) plus ten on either side of it. Since the eleventh order bright interference fringe is not seen in the central envelope, then we conclude the first diffraction minimum (satisfying $\sin \theta=\lambda / a$) coincides with the $m=11$ instantiation of Eq. 36-25:

$$
d=\frac{m \lambda}{\sin \theta}=\frac{11 \lambda}{\lambda / a}=11 a .
$$

Thus, the ratio d / a is equal to 11 .
97. Following the method of Sample Problem 36-3, we have

$$
\frac{1.22 \lambda}{d}=\frac{D}{L}
$$

where $\lambda=550 \times 10^{-9} \mathrm{~m}, D=0.60 \mathrm{~m}$, and $d=0.0055 \mathrm{~m}$. Thus we get $L=4.9 \times 10^{3} \mathrm{~m}$.
98. We use Eq. 36-3 for $m=2$:

$$
m \lambda=a \sin \theta \Rightarrow \frac{a}{\lambda}=\frac{m}{\sin \theta}=\frac{2}{\sin 37^{\circ}}=3.3 .
$$

99. We solve Eq. 36-25 for d :

$$
d=\frac{m \lambda}{\sin \theta}=\frac{2\left(600 \times 10^{-9} \mathrm{~m}\right)}{\sin \left(33^{\circ}\right)}=2.203 \times 10^{-6} \mathrm{~m}=2.203 \times 10^{-4} \mathrm{~cm}
$$

which is typically expressed in reciprocal form as the "number of lines per centimeter" (or per millimeter, or per inch):

$$
\frac{1}{d}=4539 \text { lines } / \mathrm{cm} .
$$

The full width is 3.00 cm , so the number of lines is $(4539 / \mathrm{cm})(3.00 \mathrm{~cm})=1.36 \times 10^{4}$.
100. We combine Eq. 36-31 $\left(R=\lambda_{\text {avg }} / \Delta \lambda\right)$ with Eq. 36-32 $(R=N m)$ and solve for N :

$$
N=\frac{\lambda_{\mathrm{avg}}}{m \Delta \lambda}=\frac{590.2 \mathrm{~nm}}{2(0.061 \mathrm{~nm})}=4.84 \times 10^{3} .
$$

101. Eq. 36-14 gives the Rayleigh angle (in radians):

$$
\theta_{\mathrm{R}}=\frac{1.22 \lambda}{d}=\frac{D}{L}
$$

where the rationale behind the second equality is given in Sample Problem 36-3. We are asked to solve for d and are given $\lambda=550 \times 10^{-9} \mathrm{~m}, D=30 \times 10^{-2} \mathrm{~m}$, and $L=160 \times 10^{3} \mathrm{~m}$. Consequently, we obtain $d=0.358 \mathrm{~m} \approx 36 \mathrm{~cm}$.
102. Eq. 36-14 gives the Rayleigh angle (in radians):

$$
\theta_{\mathrm{R}}=\frac{1.22 \lambda}{d}=\frac{D}{L}
$$

where the rationale behind the second equality is given in Sample Problem 36-3. We are asked to solve for D and are given $\lambda=500 \times 10^{-9} \mathrm{~m}, d=5.00 \times 10^{-3} \mathrm{~m}$, and $L=0.250 \mathrm{~m}$. Consequently, we obtain $D=3.05 \times 10^{-5} \mathrm{~m}$.
103. The dispersion of a grating is given by $D=d \theta / d \lambda$, where θ is the angular position of a line associated with wavelength λ. The angular position and wavelength are related by $\mathbf{d} \sin \theta=m \lambda$, where \mathbf{d} is the slit separation (which we made boldfaced in order not to confuse it with the d used in the derivative, below) and m is an integer. We differentiate this expression with respect to θ to obtain

$$
\frac{d \theta}{d \lambda} \mathbf{d} \cos \theta=m,
$$

or

$$
D=\frac{d \theta}{d \lambda}=\frac{m}{\mathbf{d} \cos \theta} .
$$

Now $m=(\mathbf{d} / \lambda) \sin \theta$, so

$$
D=\frac{\mathbf{d} \sin \theta}{\mathbf{d} \lambda \cos \theta}=\frac{\tan \theta}{\lambda}
$$

104. One strategy is to divide Eq. $36-25$ by Eq. $36-3$, assuming the same angle (a point we'll come back to, later) and the same light wavelength for both:

$$
\frac{m}{m^{\prime}}=\frac{m \lambda}{m^{\prime} \lambda}=\frac{d \sin \theta}{a \sin \theta}=\frac{d}{a} .
$$

We recall that d is measured from middle of transparent strip to the middle of the next transparent strip, which in this particular setup means $d=2 a$. Thus, $m / m^{\prime}=2$, or $m=$ $2 m^{\prime}$.

Now we interpret our result. First, the division of the equations is not valid when $m=0$ (which corresponds to $\theta=0$), so our remarks do not apply to the $m=0$ maximum. Second, Eq. 36-25 gives the "bright" interference results, and Eq. 36-3 gives the "dark" diffraction results (where the latter overrules the former in places where they coincide see Figure 36-16 in the textbook). For $m^{\prime}=$ any nonzero integer, the relation $m=2 m^{\prime}$ implies that $m=$ any nonzero even integer. As mentioned above, these are occurring at the same angle, so the even integer interference maxima are eliminated by the diffraction minima.
105. We imagine dividing the original slit into N strips and represent the light from each strip, when it reaches the screen, by a phasor. Then, at the central maximum in the diffraction pattern, we would add the N phasors, all in the same direction and each with the same amplitude. We would find that the intensity there is proportional to N^{2}. If we double the slit width, we need $2 N$ phasors if they are each to have the amplitude of the phasors we used for the narrow slit. The intensity at the central maximum is proportional to $(2 N)^{2}$ and is, therefore, four times the intensity for the narrow slit. The energy reaching the screen per unit time, however, is only twice the energy reaching it per unit time when the narrow slit is in place. The energy is simply redistributed. For example, the central peak is now half as wide and the integral of the intensity over the peak is only twice the analogous integral for the narrow slit.
106. The problem specifies $d=1 / 500$ using the mm unit, and we note there are no refraction angles greater than 90°. We concentrate on the largest wavelength $\lambda=700 \mathrm{~nm}$ $=7 \times 10^{-4} \mathrm{~mm}$ and solve Eq. 36-25 for " $m_{\max }$ " (realizing it might not be an integer):

$$
m_{\max }=\frac{d \sin 90^{\circ}}{\lambda}=\frac{1}{(500)\left(7 \times 10^{-4}\right)} \approx 2
$$

where we have rounded down. There are no values of m (for appearance of the full spectrum) greater than $m=2$.
107. The derivation is similar to that used to obtain Eq. 36-27. At the first minimum beyond the m th principal maximum, two waves from adjacent slits have a phase difference of $\Delta \phi=2 \pi m+(2 \pi / N)$, where N is the number of slits. This implies a difference in path length of

$$
\Delta L=(\Delta \phi / 2 \pi) \lambda=m \lambda+(\lambda / N) .
$$

If θ_{m} is the angular position of the m th maximum, then the difference in path length is also given by $\Delta L=d \sin \left(\theta_{m}+\Delta \theta\right)$. Thus

$$
d \sin \left(\theta_{m}+\Delta \theta\right)=m \lambda+(\lambda / N)
$$

We use the trigonometric identity

$$
\sin \left(\theta_{m}+\Delta \theta\right)=\sin \theta_{m} \cos \Delta \theta+\cos \theta_{m} \sin \Delta \theta
$$

Since $\Delta \theta$ is small, we may approximate $\sin \Delta \theta$ by $\Delta \theta$ in radians and $\cos \Delta \theta$ by unity. Thus,

$$
d \sin \theta_{m}+d \Delta \theta \cos \theta_{m}=m \lambda+(\lambda / N)
$$

We use the condition $d \sin \theta_{m}=m \lambda$ to obtain $d \Delta \theta \cos \theta_{m}=\lambda / N$ and

$$
\Delta \theta=\frac{\lambda}{N d \cos \theta_{m}}
$$

108. Referring to problem 69, we note that the angular deviation of a diffracted ray (the angle between the forward extrapolation of the incident ray and its diffracted ray) is $\psi^{\prime}=\psi+\theta$. For $m=1$, this becomes

$$
\psi^{\prime}=\psi+\theta=\psi+\sin ^{-1}\left(\frac{\lambda}{d}-\sin \psi\right)
$$

where the ratio $\lambda / d=0.40$ using the values given in the problem statement. The graph of this is shown below (with radians used along both axes).

109. (a) Since the resolving power of a grating is given by $R=\lambda / \Delta \lambda$ and by $N m$, the range of wavelengths that can just be resolved in order m is $\Delta \lambda=\lambda / N m$. Here N is the number of rulings in the grating and λ is the average wavelength. The frequency f is related to the wavelength by $f \lambda=c$, where c is the speed of light. This means $f \Delta \lambda+\lambda \Delta f$ $=0$, so

$$
\Delta \lambda=-\frac{\lambda}{f} \Delta f=-\frac{\lambda^{2}}{c} \Delta f
$$

where $f=c / \lambda$ is used. The negative sign means that an increase in frequency corresponds to a decrease in wavelength. We may interpret Δf as the range of frequencies that can be resolved and take it to be positive. Then,

$$
\frac{\lambda^{2}}{c} \Delta f=\frac{\lambda}{N m}
$$

and

$$
\Delta f=\frac{c}{N m \lambda} .
$$

(b) The difference in travel time for waves traveling along the two extreme rays is $\Delta t=$ $\Delta L / c$, where ΔL is the difference in path length. The waves originate at slits that are separated by $(N-1) d$, where d is the slit separation and N is the number of slits, so the path difference is $\Delta L=(N-1) d \sin \theta$ and the time difference is

$$
\Delta t=\frac{(N-1) d \sin \theta}{c}
$$

If N is large, this may be approximated by $\Delta t=(N d / c) \sin \theta$. The lens does not affect the travel time.
(c) Substituting the expressions we derived for Δt and Δf, we obtain

$$
\Delta f \Delta t=\left(\frac{c}{N m \lambda}\right)\left(\frac{N d \sin \theta}{c}\right)=\frac{d \sin \theta}{m \lambda}=1 .
$$

The condition $d \sin \theta=m \lambda$ for a diffraction line is used to obtain the last result.
110. There are two unknowns, the x-ray wavelength λ and the plane separation d, so data for scattering at two angles from the same planes should suffice. The observations obey Bragg's law, so

$$
2 d \sin \theta_{1}=m_{1} \lambda
$$

and

$$
2 d \sin \theta_{2}=m_{2} \lambda .
$$

However, these cannot be solved for the unknowns. For example, we can use the first equation to eliminate λ from the second. We obtain

$$
m_{2} \sin \theta_{1}=m_{1} \sin \theta_{2},
$$

an equation that does not contain either of the unknowns.
111. The key trigonometric identity used in this proof is $\sin (2 \theta)=2 \sin \theta \cos \theta$. Now, we wish to show that Eq. 36-19 becomes (when $d=a$) the pattern for a single slit of width $2 a$ (see Eq. 36-5 and Eq. 36-6):

$$
I(\theta)=I_{m}\left(\frac{\sin (2 \pi a \sin \theta / \lambda)}{2 \pi a \sin \theta / \lambda}\right)^{2} .
$$

We note from Eq. 36-20 and Eq. 36-21, that the parameters β and α are identical in this case (when $d=a$), so that Eq. 36-19 becomes

$$
I(\theta)=I_{m}\left(\frac{\cos (\pi a \sin \theta / \lambda) \sin (\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda}\right)^{2} .
$$

Multiplying numerator and denominator by 2 and using the trig identity mentioned above, we obtain

$$
I(\theta)=I_{m}\left(\frac{2 \cos (\pi a \sin \theta / \lambda) \sin (\pi a \sin \theta / \lambda)}{2 \pi a \sin \theta / \lambda}\right)^{2}=I_{m}\left(\frac{\sin (2 \pi a \sin \theta / \lambda)}{2 \pi a \sin \theta / \lambda}\right)^{2}
$$

which is what we set out to show.
112. When the speaker phase difference is $\pi \operatorname{rad}\left(180^{\circ}\right)$, we expect to see the "reverse" of Fig. 36-14 [translated into the acoustic context, so that "bright" becomes "loud" and "dark" becomes "quiet"]. That is, with 180° phase difference, all the peaks in Fig. 36-14 become valleys and all the valleys become peaks. As the phase changes from zero to 180° (and similarly for the change from 180° back to $360^{\circ}=$ original pattern), the peaks should shift (and change height) in a continuous fashion - with the most dramatic feature being a large "dip" in the center diffraction envelope which deepens until it seems to split the central maximum into smaller diffraction maxima which (once the phase difference reaches $\pi \mathrm{rad}$) will be located at angles given by $a \sin \theta= \pm \lambda$. How many interference fringes would actually "be inside" each of these smaller diffraction maxima would, of course, depend on the particular values of a, λ and d.
113. We equate Eq. 36-29 $(D=\Delta \theta / \Delta \lambda)$ and Eq. 36-30 $(D=m / d \cos \theta)$, and use the fact that $\sin ^{2} \theta+\cos ^{2} \theta=1$, to obtain

$$
\frac{\Delta \theta}{\Delta \lambda}=\frac{m}{d \sqrt{1-\sin ^{2} \theta}}=\frac{m}{\sqrt{d^{2}-d^{2} \sin ^{2} \theta}}=\frac{m}{\sqrt{d^{2}-m^{2} \lambda^{2}}}
$$

where we use Eq. 36-25 in that last step. Multiplying through by $\Delta \lambda$ and "simplifying" the right-hand side readily yields the final formula shown in the problem statement.
114. Among the many computer-based approaches that could be shown here, we chose a simple MAPLE program, where the details of searching for the maximum near 0.35 rad are given in the last step:

```
> restart:
> Digits:=20;
> lambda:=500; a:=5000; #nanometers
> N:=200; Delta[x]:=a/(N-1); phi:=2*Pi/lambda*Delta[x]*sin(theta);
> E[h]:=Sum(cos(i*phi),i= 1 .. N); E[v]:=Sum(sin(i*phi),i= 1 .. N);
> plot((E[h]^2 + E[v]^^2)/N^2,theta= 0 .. .4);
> for inc to 9 do [theta = . 35 + inc/1000,evalf(subs(theta = . 35 + inc/1000,E[h]^2 +
    E[v]^2)/N^2)] od;
```

This seemed to give the maximum at $\theta=0.353 \mathrm{rad}$ with an intensity ratio of $I / I_{m}=$ 0.00835 . A more exact treatment would give $\theta=0.354 \mathrm{rad}$ and of $I / I_{m}=0.00834$. Other maxima found in the computer-search manner indicated above were: $I / I_{m}=0.0472$ at $\theta=$ 0.143 rad , and $I / I_{m}=0.0165$ at $\theta=0.247 \mathrm{rad}$.

1. From the time dilation equation $\Delta t=\gamma \Delta t_{0}$ (where Δt_{0} is the proper time interval, $\gamma=1 / \sqrt{1-\beta^{2}}$, and $\beta=v / c$), we obtain

$$
\beta=\sqrt{1-\left(\frac{\Delta t_{0}}{\Delta t}\right)^{2}}
$$

The proper time interval is measured by a clock at rest relative to the muon. Specifically, $\Delta t_{0}=2.2000 \mu \mathrm{~s}$. We are also told that Earth observers (measuring the decays of moving muons) find $\Delta t=16.000 \mu \mathrm{~s}$. Therefore,

$$
\beta=\sqrt{1-\left(\frac{2.2000 \mu \mathrm{~s}}{16.000 \mu \mathrm{~s}}\right)^{2}}=0.99050
$$

2. (a) We find β from $\gamma=1 / \sqrt{1-\beta^{2}}$:

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}=\sqrt{1-\frac{1}{(1.0100000)^{2}}}=0.14037076
$$

(b) Similarly, $\beta=\sqrt{1-(10.000000)^{-2}}=0.99498744$.
(c) In this case, $\beta=\sqrt{1-(100.00000)^{-2}}=0.99995000$.
(d) The result is $\beta=\sqrt{1-(1000.0000)^{-2}}=0.99999950$.
3. We solve the time dilation equation for the time elapsed (as measured by Earth observers):

$$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-(0.9990)^{2}}}
$$

where $\Delta t_{0}=120 \mathrm{y}$. This yields $\Delta t=2684 \mathrm{y} \approx 2.68 \times 10^{3} \mathrm{y}$.
4. Due to the time-dilation effect, the time between initial and final ages for the daughter is longer than the four years experienced by her father:

$$
t_{f \text { daughter }}-t_{i \text { daughter }}=\gamma(4.000 \mathrm{y})
$$

where γ is Lorentz factor (Eq. 37-8). Letting T denote the age of the father, then the conditions of the problem require

$$
T_{i}=t_{i \text { daughter }}+20.00 \mathrm{y} \text { and } T_{f}=t_{f \text { daughter }}-20.00 \mathrm{y}
$$

Since $T_{f}-T_{i}=4.000 \mathrm{y}$, then these three equations combine to give a single condition from which γ can be determined (and consequently v):

$$
44=\gamma 4 \Rightarrow \gamma=11 \Rightarrow \beta=\frac{2 \sqrt{30}}{11}=0.9959
$$

5. In the laboratory, it travels a distance $d=0.00105 \mathrm{~m}=v t$, where $v=0.992 c$ and t is the time measured on the laboratory clocks. We can use Eq. 37-7 to relate t to the proper lifetime of the particle t_{0} :

$$
t=\frac{t_{0}}{\sqrt{1-(v / c)^{2}}} \Rightarrow t_{0}=t \sqrt{1-\left(\frac{v}{c}\right)^{2}}=\frac{d}{0.992 c} \sqrt{1-0.992^{2}}
$$

which yields $t_{0}=4.46 \times 10^{-13} \mathrm{~s}=0.446 \mathrm{ps}$.
6. From the value of Δt in the graph when $\beta=0$, we infer than Δt_{o} in Eq. 37-9 is 8.0 s . Thus, that equation (which describes the curve in Fig. 37-23) becomes

$$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-(v / c)^{2}}}=\frac{8.0 \mathrm{~s}}{\sqrt{1-\beta^{2}}}
$$

If we set $\beta=0.98$ in this expression, we obtain approximately 40 s for Δt.
7. (a) The round-trip (discounting the time needed to "turn around") should be one year according to the clock you are carrying (this is your proper time interval Δt_{0}) and 1000 years according to the clocks on Earth which measure Δt. We solve Eq. 37-7 for β :

$$
\beta=\sqrt{1-\left(\frac{\Delta t_{0}}{\Delta t}\right)^{2}}=\sqrt{1-\left(\frac{1 \mathrm{y}}{1000 \mathrm{y}}\right)^{2}}=0.99999950
$$

(b) The equations do not show a dependence on acceleration (or on the direction of the velocity vector), which suggests that a circular journey (with its constant magnitude centripetal acceleration) would give the same result (if the speed is the same) as the one described in the problem. A more careful argument can be given to support this, but it should be admitted that this is a fairly subtle question which has occasionally precipitated debates among professional physicists.
8. The contracted length of the tube would be

$$
L=L_{0} \sqrt{1-\beta^{2}}=(3.00 \mathrm{~m}) \sqrt{1-0.999987^{2}}=0.0153 \mathrm{~m} .
$$

9. (a) The rest length $L_{0}=130 \mathrm{~m}$ of the spaceship and its length L as measured by the timing station are related by Eq. 37-13. Therefore, $L=(130 \mathrm{~m}) \sqrt{1-(0.740)^{2}}=87.4 \mathrm{~m}$.
(b) The time interval for the passage of the spaceship is

$$
\Delta t=\frac{L}{v}=\frac{87.4 \mathrm{~m}}{(0.740)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=3.94 \times 10^{-7} \mathrm{~s} .
$$

10. Only the "component" of the length in the x direction contracts, so its y component stays

$$
\ell_{y}^{\prime}=\ell_{y}=\ell \sin 30^{\circ}=0.5000 \mathrm{~m}
$$

while its x component becomes

$$
\ell_{x}^{\prime}=\ell_{x} \sqrt{1-\beta^{2}}=\ell \cos 30^{\circ} \sqrt{1-0.90^{2}}=0.3775 \mathrm{~m} .
$$

Therefore, using the Pythagorean theorem, the length measured from S^{\prime} is

$$
\ell^{\prime}=\sqrt{\left(\ell_{x}^{\prime}\right)^{2}+\left(\ell_{y}^{\prime}\right)^{2}}=0.63 \mathrm{~m} .
$$

11. The length L of the rod, as measured in a frame in which it is moving with speed v parallel to its length, is related to its rest length L_{0} by $L=L_{0} / \gamma$, where $\gamma=1 / \sqrt{1-\beta^{2}}$ and $\beta=v / c$. Since γ must be greater than $1, L$ is less than L_{0}. For this problem, $L_{0}=1.70 \mathrm{~m}$ and $\beta=0.630$, so $L=(1.70 \mathrm{~m}) \sqrt{1-(0.630)^{2}}=1.32 \mathrm{~m}$.
12. (a) We solve Eq. 37-13 for v and then plug in:

$$
\beta=\sqrt{1-\left(\frac{L}{L_{0}}\right)^{2}}=\sqrt{1-\left(\frac{1}{2}\right)^{2}}=0.866 .
$$

(b) The Lorentz factor in this case is $\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}=2.00$.
13. (a) The speed of the traveler is $v=0.99 c$, which may be equivalently expressed as $0.99 \mathrm{ly} / \mathrm{y}$. Let d be the distance traveled. Then, the time for the trip as measured in the frame of Earth is

$$
\Delta t=d / v=(26 \mathrm{ly}) /(0.99 \mathrm{ly} / \mathrm{y})=26.3 \mathrm{y} \approx 26 \mathrm{y} .
$$

(b) The signal, presumed to be a radio wave, travels with speed c and so takes 26.0 y to reach Earth. The total time elapsed, in the frame of Earth, is

$$
26.3 \mathrm{y}+26.0 \mathrm{y}=52.3 \mathrm{y} \approx 52 \mathrm{y} .
$$

(c) The proper time interval is measured by a clock in the spaceship, so $\Delta t_{0}=\Delta t / \gamma$. Now

$$
\gamma=1 / \sqrt{1-\beta^{2}}=1 / \sqrt{1-(0.99)^{2}}=7.09 .
$$

Thus, $\Delta t_{0}=(26.3 \mathrm{y}) /(7.09)=3.7 \mathrm{y}$.
14. From the value of L in the graph when $\beta=0$, we infer than L_{o} in Eq. $37-13$ is 0.80 m . Thus, that equation (which describes the curve in Fig. 37-24) with SI units understood becomes

$$
L=L_{\mathrm{o}} \sqrt{1-(v / c)^{2}}=0.80 \sqrt{1-\beta^{2}} .
$$

If we set $\beta=0.95$ in this expression, we obtain approximately 0.25 m for L.
15. (a) Let $d=23000 \mathrm{ly}=23000 c \mathrm{y}$, which would give the distance in meters if we included a conversion factor for years \rightarrow seconds. With $\Delta t_{0}=30 \mathrm{y}$ and $\Delta t=d / v$ (see Eq. 37-10), we wish to solve for v from Eq. 37-7. Our first step is as follows:

$$
\Delta t=\frac{d}{v}=\frac{\Delta t_{0}}{\sqrt{1-\beta^{2}}} \Rightarrow \frac{23000 \mathrm{y}}{\beta}=\frac{30 \mathrm{y}}{\sqrt{1-\beta^{2}}}
$$

at which point we can cancel the unit year and manipulate the equation to solve for the speed parameter β. This yields

$$
\beta=\frac{1}{\sqrt{1+(30 / 23000)^{2}}}=0.99999915 .
$$

(b) The Lorentz factor is $\gamma=1 / \sqrt{1-\beta^{2}}=766.6680752$. Thus, the length of the galaxy measured in the traveler's frame is

$$
L=\frac{L_{0}}{\gamma}=\frac{23000 \mathrm{ly}}{766.6680752}=29.99999 \mathrm{ly} \approx 30 \mathrm{ly} .
$$

16. The "coincidence" of $x=x^{\prime}=0$ at $t=t^{\prime}=0$ is important for Eq. 37-21 to apply without additional terms. In part (a), we apply these equations directly with $v=+0.400 c=$ $1.199 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and in part (c) we simply change $v \rightarrow-v$ and recalculate the primed values.
(a) The position coordinate measured in the S^{\prime} frame is

$$
\begin{aligned}
x^{\prime} & =\gamma(x-v t)=\frac{x-v t}{\sqrt{1-\beta^{2}}}=\frac{3.00 \times 10^{8} \mathrm{~m}-\left(1.199 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(2.50 \mathrm{~s})}{\sqrt{1-(0.400)^{2}}} \\
& =2.7 \times 10^{5} \mathrm{~m} / \mathrm{s} \approx 0,
\end{aligned}
$$

where we conclude that the numerical result $\left(2.7 \times 10^{5}\right.$ or 2.3×10^{5} depending on how precise a value of v is used) is not meaningful (in the significant figures sense) and should be set equal to zero (that is, it is "consistent with zero" in view of the statistical uncertainties involved).
(b) The time coordinate measured in the S^{\prime} frame is

$$
t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)=\frac{t-\beta x / c}{\sqrt{1-\beta^{2}}}=\frac{2.50 \mathrm{~s}-(0.400)\left(3.00 \times 10^{8} \mathrm{~m}\right) / 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\sqrt{1-(0.400)^{2}}}=2.29 \mathrm{~s}
$$

(c) Now, we obtain

$$
x^{\prime}=\frac{x+v t}{\sqrt{1-\beta^{2}}}=\frac{3.00 \times 10^{8} \mathrm{~m}+\left(1.199 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(2.50 \mathrm{~s})}{\sqrt{1-(0.400)^{2}}}=6.54 \times 10^{8} \mathrm{~m}
$$

(d) Similarly,

$$
t^{\prime}=\gamma\left(t+\frac{v x}{c^{2}}\right)=\frac{2.50 \mathrm{~s}+(0.400)\left(3.00 \times 10^{8} \mathrm{~m}\right) / 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\sqrt{1-(0.400)^{2}}}=3.16 \mathrm{~s}
$$

17. The proper time is not measured by clocks in either frame S or frame S^{\prime} since a single clock at rest in either frame cannot be present at the origin and at the event. The full Lorentz transformation must be used:

$$
x^{\prime}=\gamma(x-v t) \quad \text { and } \quad t^{\prime}=\gamma(t-\beta x / c)
$$

where $\beta=v / c=0.950$ and $\gamma=1 \sqrt{1-\beta^{2}}=1 / \sqrt{1-(0.950)^{2}}=3.20256$. Thus,

$$
\begin{aligned}
x^{\prime} & =(3.20256)\left(100 \times 10^{3} \mathrm{~m}-(0.950)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(200 \times 10^{-6} \mathrm{~s}\right)\right) \\
& =1.38 \times 10^{5} \mathrm{~m}=138 \mathrm{~km} .
\end{aligned}
$$

(b) The temporal coordinate in S^{\prime} is

$$
t^{\prime}=(3.20256)\left[200 \times 10^{-6} \mathrm{~s}-\frac{(0.950)\left(100 \times 10^{3} \mathrm{~m}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}\right]=-3.74 \times 10^{-4} \mathrm{~s}=-374 \mu \mathrm{~s}
$$

18. The "coincidence" of $x=x^{\prime}=0$ at $t=t^{\prime}=0$ is important for Eq. 37-21 to apply without additional terms. We label the event coordinates with subscripts: $\left(x_{1}, t_{1}\right)=(0,0)$ and $\left(x_{2}, t_{2}\right)=\left(3000,4.0 \times 10^{-6}\right)$ with SI units understood.
(a) We expect $\left(x^{\prime}, t_{1}^{\prime}\right)=(0,0)$, and this may be verified using Eq. 37-21.
(b) We now compute ($x_{2}^{\prime}, t_{2}^{\prime}$), assuming $v=+0.60 c=+1.799 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (the sign of v is not made clear in the problem statement, but the Figure referred to, Fig. 37-9, shows the motion in the positive x direction).

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{x-v t}{\sqrt{1-\beta^{2}}}=\frac{3000-\left(1.799 \times 10^{8}\right)\left(4.0 \times 10^{-6}\right)}{\sqrt{1-(0.60)^{2}}}=2.85 \times 10^{3} \\
& t_{2}^{\prime}=\frac{t-\beta x / c}{\sqrt{1-\beta^{2}}}=\frac{4.0 \times 10^{-6}-(0.60)(3000) /\left(2.998 \times 10^{8}\right)}{\sqrt{1-(0.60)^{2}}}=-2.5 \times 10^{-6}
\end{aligned}
$$

(c) The two events in frame S occur in the order: first 1 , then 2 . However, in frame S^{\prime} where $t_{2}^{\prime}<0$, they occur in the reverse order: first 2 , then 1 . So the two observers see the two events in the reverse sequence.

We note that the distances $x_{2}-x_{1}$ and $x_{2}^{\prime}-x_{1}^{\prime}$ are larger than how far light can travel during the respective times $\left(c\left(t_{2}-t_{1}\right)=1.2 \mathrm{~km}\right.$ and $\left.c\left|t_{2}^{\prime}-t_{1}^{\prime}\right| \approx 750 \mathrm{~m}\right)$, so that no inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could arrive at event 2 or vice versa).
19. (a) We take the flashbulbs to be at rest in frame S, and let frame S^{\prime} be the rest frame of the second observer. Clocks in neither frame measure the proper time interval between the flashes, so the full Lorentz transformation (Eq. 37-21) must be used. Let t_{s} be the time and x_{s} be the coordinate of the small flash, as measured in frame S. Then, the time of the small flash, as measured in frame S^{\prime}, is

$$
t_{s}^{\prime}=\gamma\left(t_{s}-\frac{\beta x_{s}}{c}\right)
$$

where $\beta=v / c=0.250$ and

$$
\gamma=1 / \sqrt{1-\beta^{2}}=1 / \sqrt{1-(0.250)^{2}}=1.0328 .
$$

Similarly, let t_{b} be the time and x_{b} be the coordinate of the big flash, as measured in frame S. Then, the time of the big flash, as measured in frame S^{\prime}, is

$$
t_{b}^{\prime}=\gamma\left(t_{b}-\frac{\beta x_{b}}{c}\right)
$$

Subtracting the second Lorentz transformation equation from the first and recognizing that $t_{s}=t_{b}$ (since the flashes are simultaneous in S), we find

$$
\Delta t^{\prime}=\frac{\gamma \beta\left(x_{s}-x_{b}\right)}{c}=\frac{(1.0328)(0.250)\left(30 \times 10^{3} \mathrm{~m}\right)}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.58 \times 10^{-5} \mathrm{~s}
$$

where $\Delta t^{\prime}=t_{b}^{\prime}-t_{s}^{\prime}$.
(b) Since Δt^{\prime} is negative, t_{b}^{\prime} is greater than t_{s}^{\prime}. The small flash occurs first in S^{\prime}.
20. We refer to the solution of problem 18 . We wish to adjust Δt so that

$$
\Delta x^{\prime}=0=\gamma(-720 \mathrm{~m}-v \Delta t)
$$

in the limiting case of $|v| \rightarrow c$. Thus,

$$
\Delta t=\frac{720 \mathrm{~m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.40 \times 10^{-6} \mathrm{~s} .
$$

21. (a) The Lorentz factor is

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-(0.600)^{2}}}=1.25 .
$$

(b) In the unprimed frame, the time for the clock to travel from the origin to $x=180 \mathrm{~m}$ is

$$
t=\frac{x}{v}=\frac{180 \mathrm{~m}}{(0.600)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.00 \times 10^{-6} \mathrm{~s} .
$$

The proper time interval between the two events (at the origin and at $x=180 \mathrm{~m}$) is measured by the clock itself. The reading on the clock at the beginning of the interval is zero, so the reading at the end is

$$
t^{\prime}=\frac{t}{\gamma}=\frac{1.00 \times 10^{-6} \mathrm{~s}}{1.25}=8.00 \times 10^{-7} \mathrm{~s} .
$$

22. The time-dilation information in the problem (particularly, the 15 s on "his wristwatch... which takes 30.0 s according to you") reveals Lorentz factor is $\gamma=2.00$ (see Eq. 37-9), which implies his speed is $v=0.866 c$.
(a) With $\gamma=2.00$, Eq. 37-13 implies the contracted length is 0.500 m .
(b) There is no contraction along direction perpendicular to the direction of motion (or "boost" direction), so meter stick 2 still measures 1.00 m long.
(c) As in part (b), the answer is 1.00 m .
(d) Eq. 1' in Table 37-2 gives

$$
x_{2}^{\prime}-x_{1}^{\prime}=\gamma\left(\Delta x^{\prime}-\mathrm{v} \Delta t^{\prime}\right)=(2.00)\left[20.0-(0.866)\left(2.998 \times 10^{8}\right)\left(40.0 \times 10^{-9}\right)\right]=19.2 \mathrm{~m}
$$

(e) Eq. 2^{\prime} in Table 37-2 gives

$$
t_{2}^{\prime}-t_{1}^{\prime}=\gamma\left(\Delta t^{\prime}-\mathrm{v} \Delta x^{\prime} / c^{2}\right)=(2.00)\left[40.0 \times 10^{-9}-(0.866)(20.0) /\left(2.998 \times 10^{8}\right)^{2}\right]
$$

which yields -35.5 ns . In absolute value, the two events are separated by 35.5 ns .
(f) The negative sign obtained in part (e) implies event 2 occurred before event 1.
23. (a) In frame S, our coordinates are such that $x_{1}=+1200 \mathrm{~m}$ for the big flash, and $x_{2}=$ $1200-720=480 \mathrm{~m}$ for the small flash (which occurred later). Thus,

$$
\Delta x=x_{2}-x_{1}=-720 \mathrm{~m} .
$$

If we set $\Delta x^{\prime}=0$ in Eq. 37-25, we find

$$
0=\gamma(\Delta x-v \Delta t)=\gamma\left(-720 \mathrm{~m}-v\left(5.00 \times 10^{-6} \mathrm{~s}\right)\right)
$$

which yields $v=-1.44 \times 10^{8} \mathrm{~m} / \mathrm{s}$, or $\beta=v / c=0.480$.
(b) The negative sign in part (a) implies that frame S^{\prime} must be moving in the $-x$ direction.
(c) Eq. 37-28 leads to

$$
\Delta t^{\prime}=\gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right)=\gamma\left(5.00 \times 10^{-6} \mathrm{~s}-\frac{\left(-1.44 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(-720 \mathrm{~m})}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}\right)
$$

which turns out to be positive (regardless of the specific value of γ). Thus, the order of the flashes is the same in the S^{\prime} frame as it is in the S frame (where Δt is also positive). Thus, the big flash occurs first, and the small flash occurs later.
(d) Finishing the computation begun in part (c), we obtain

$$
\Delta t^{\prime}=\frac{5.00 \times 10^{-6} \mathrm{~s}-\left(-1.44 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(-720 \mathrm{~m}) /\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{\sqrt{1-0.480^{2}}}=4.39 \times 10^{-6} \mathrm{~s}
$$

24. From Eq. 2 in Table 37-2, we have $\Delta t=v \gamma \Delta x^{\prime} / c^{2}+\gamma \Delta t^{\prime}$. The coefficient of Δx^{\prime} is the slope ($4.0 \mu \mathrm{~s} / 400 \mathrm{~m}$) of the graph, and the last term involving Δt is the "y-intercept" of the graph. From the first observation, we can solve for $\beta=v / c=0.949$ and consequently $\gamma=3.16$. Then, from the second observation, we find

$$
\Delta t^{\prime}=(2.0 \mu \mathrm{~s}) / \gamma=0.63 \mu \mathrm{~s} .
$$

25. (a) Eq. 2^{\prime} of Table 37-2, with time in microseconds, becomes

$$
\Delta t^{\prime}=\gamma(\Delta t-\beta \Delta x / c)=\gamma[1.00-\beta(400 / 299.8)]
$$

where the Lorentz factor is itself a function of β (see Eq. 37-8).
(b) A plot of Δt^{\prime} as a function of β in the range $0<\beta<0.01$ is shown below:

Note the limits of the vertical axis are $+2 \mu \mathrm{~s}$ and $-2 \mu \mathrm{~s}$. We note how "flat" the curve is in this graph; the reason is that for low values of β, Bullwinkle's measure of the temporal separation between the two events is approximately our measure, namely $+1.0 \mu \mathrm{~s}$. There are no non-intuitive relativistic effects in this case.
(c) A plot of Δt^{\prime} as a function of β in the range $0.1<\beta<1$ is shown below:

(d) Setting

$$
\Delta t^{\prime}=\gamma(\Delta t-\beta \Delta x / c)=\gamma[1.00-\beta(400 / 299.8)]=0,
$$

leads to $\beta=299.8 / 400 \approx 0.750$.
(e) For the graph shown in part (c), that as we increase the speed, the temporal separation according to Bullwinkle is positive for the lower values and then goes to zero and finally (as the speed approaches that of light) becomes progressively more negative. For the lower speeds with $\Delta t^{\prime}>0 \Rightarrow t_{A}{ }^{\prime}<t_{B}{ }^{\prime}$, or $0<\beta<0.750$, according to Bullwinkle event A occurs before event B just as we observe.
(f) For the higher speeds with $\Delta t^{\prime}<0 \Rightarrow t_{A}{ }^{\prime}>t_{B}{ }^{\prime}$, or $0.750<\beta<1$, according to Bullwinkle event B occurs before event A (the opposite of what we observe).
(g) No, event A cannot cause event B or vice versa. We note that

$$
\Delta x / \Delta t=(400 \mathrm{~m}) /(1.00 \mu \mathrm{~s})=4.00 \times 10^{8} \mathrm{~m} / \mathrm{s}>c .
$$

A signal cannot travel from event A to event B without exceeding c, so causal influences cannot originate at A and thus affect what happens at B, or vice versa.
26. (a) From Table 37-2, we find

$$
\Delta \mathrm{x}^{\prime}=\gamma(\Delta x-\beta c \Delta t)=\gamma[400 \mathrm{~m}-\beta c(1.00 \mu \mathrm{~s})]=\frac{400 \mathrm{~m}-(299.8 \mathrm{~m}) \beta}{\sqrt{1-\beta^{2}}}
$$

(b) A plot of Δx^{\prime} as a function of β with $0<\beta<0.01$ is shown below:

(c) A plot of Δx^{\prime} as a function of β with $0.1<\beta<1$ is shown below:

(d) To find the minimum, we can take a derivative of $\Delta \mathrm{x}^{\prime}$ with respect to β, simplify, and then set equal to zero:

$$
\frac{\mathrm{d} \Delta x^{\prime}}{\mathrm{d} \beta}=\gamma^{3}(\beta \Delta x-c \Delta t)=0 \Rightarrow \beta=\frac{c \Delta t}{\Delta x}=0.7495 \approx 0.750 .
$$

(e) Substituting this value of β into the part (a) expression yields $\Delta x^{\prime}=264.8 \mathrm{~m}$ $\approx 265 \mathrm{~m}$ for its minimum value.
27. We assume S^{\prime} is moving in the $+x$ direction. With $u^{\prime}=+0.40 c$ and $v=+0.60 c$, Eq. 3729 yields

$$
u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}=\frac{0.40 c+0.60 c}{1+(0.40 c)(+0.60 c) / c^{2}}=0.81 c
$$

28. Using the notation of Eq. 37-29 and taking "away" (from us) as the positive direction, the problem indicates $v=+0.4 c$ and $u=+0.8 c$ (with 3 significant figures understood). We solve for the velocity of Q_{2} relative to Q_{1} (in multiple of c):

$$
\frac{u^{\prime}}{c}=\frac{u / c-v / c}{1-u v / c^{2}}=\frac{0.8-0.4}{1-(0.8)(0.4)}=0.588
$$

in a direction away from Earth.
29. (a) One thing Einstein's relativity has in common with the more familiar (Galilean) relativity is the reciprocity of relative velocity. If Joe sees Fred moving at $20 \mathrm{~m} / \mathrm{s}$ eastward away from him (Joe), then Fred should see Joe moving at $20 \mathrm{~m} / \mathrm{s}$ westward away from him (Fred). Similarly, if we see Galaxy A moving away from us at $0.35 c$ then an observer in Galaxy A should see our galaxy move away from him at $0.35 c$, or 0.35 in multiple of c.
(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us. Using the notation of Eq. 37-29, the problem indicates $v=+0.35 c$ (velocity of Galaxy A relative to Earth) and $u=-0.35 c$ (velocity of Galaxy B relative to Earth). We solve for the velocity of B relative to A:

$$
\frac{u^{\prime}}{c}=\frac{u / c-v / c}{1-u v / c^{2}}=\frac{(-0.35)-0.35}{1-(-0.35)(0.35)}=-0.62,
$$

or $\left|u^{\prime} / c\right|=0.62$.
30. (a) We use Eq. 37-29:

$$
v=\frac{v^{\prime}+u}{1+u v^{\prime} / c^{2}}=\frac{0.47 c+0.62 c}{1+(0.47)(0.62)}=0.84 c
$$

in the direction of increasing x (since $v>0$). In unit-vector notation, we have $\vec{v}=(0.84 c) \hat{\mathrm{i}}$.
(b) The classical theory predicts that $v=0.47 c+0.62 c=1.1 c$, or $\vec{v}=(1.1 c) \hat{\mathrm{i}}$
(c) Now $v^{\prime}=-0.47 c \hat{\mathrm{i}}$ so

$$
v=\frac{v^{\prime}+u}{1+u v^{\prime} / c^{2}}=\frac{-0.47 c+0.62 c}{1+(-0.47)(0.62)}=0.21 c,
$$

or $\vec{v}=(0.21 c) \hat{\mathrm{i}}$
(d) By contrast, the classical prediction is $v=0.62 c-0.47 c=0.15 c$, or $\vec{v}=(0.15 c) \hat{\mathrm{i}}$
31. Using the notation of Eq. 37-29 and taking the micrometeorite motion as the positive direction, the problem indicates $v=-0.82 c$ (spaceship velocity) and $u=+0.82 c$ (micrometeorite velocity). We solve for the velocity of the micrometeorite relative to the spaceship:

$$
u^{\prime}=\frac{u-v}{1-u v / c^{2}}=\frac{0.82 c-(-0.82 c)}{1-(0.82)(-0.82)}=0.98 c
$$

or $2.94 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Using Eq. 37-10, we conclude that observers on the ship measure a transit time for the micrometeorite (as it passes along the length of the ship) equal to

$$
\Delta t=\frac{d}{u^{\prime}}=\frac{350 \mathrm{~m}}{2.94 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.2 \times 10^{-6} \mathrm{~s} .
$$

32. The Figure shows that $u^{\prime}=0.80 c$ when $v=0$. We therefore infer (using the notation of Eq. 37-29) that $u=0.80 c$. Now, u is a fixed value and v is variable, so u^{\prime} as a function of v is given by

$$
u^{\prime}=\frac{0.80 c-v}{1-0.80 v / c}
$$

which is Eq. 37-29 rearranged so that u^{\prime} is isolated on the left-hand side. We use this expression to answer parts (a) and (b).
(a) Substituting $v=0.90 c$ in the expression above leads to $u^{\prime}=-0.357 c \approx-0.36 c$.
(b) Substituting $v=c$ in the expression above leads to $u^{\prime}=-c$ (regardless of the value of u).
33. (a) In the messenger's rest system (called S_{m}), the velocity of the armada is

$$
v^{\prime}=\frac{v-v_{m}}{1-v v_{m} / c^{2}}=\frac{0.80 c-0.95 c}{1-(0.80 c)(0.95 c) / c^{2}}=-0.625 c
$$

The length of the armada as measured in S_{m} is

$$
L_{1}=\frac{L_{0}}{\gamma_{v^{\prime}}}=(1.01 \mathrm{y}) \sqrt{1-(-0.625)^{2}}=0.781 \mathrm{ly}
$$

Thus, the length of the trip is

$$
t^{\prime}=\frac{L^{\prime}}{\left|v^{\prime}\right|}=\frac{0.7811 \mathrm{y}}{0.625 \mathrm{c}}=1.25 \mathrm{y} .
$$

(b) In the armada's rest frame (called S_{a}), the velocity of the messenger is

$$
v^{\prime}=\frac{v-v_{a}}{1-v v_{a} / c^{2}}=\frac{0.95 c-0.80 c}{1-(0.95 c)(0.80 c) / c^{2}}=0.625 c
$$

Now, the length of the trip is

$$
t^{\prime}=\frac{L_{0}}{v^{\prime}}=\frac{1.01 \mathrm{y}}{0.625 c}=1.60 \mathrm{y}
$$

(c) Measured in system S, the length of the armada is

$$
L=\frac{L_{0}}{\gamma}=1.0 \mathrm{ly} \sqrt{1-(0.80)^{2}}=0.60 \mathrm{ly}
$$

so the length of the trip is

$$
t=\frac{L}{v_{m}-v_{a}}=\frac{0.60 \mathrm{ly}}{0.95 c-0.80 c}=4.00 \mathrm{y}
$$

34. (a) Eq. 37-34 leads to

$$
v=\frac{\Delta \lambda}{\lambda} c=\frac{12.00 \mathrm{~nm}}{513.0 \mathrm{~nm}}\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=7.000 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) The line is shifted to a larger wavelength, which means shorter frequency. Recalling Eq. 37-31 and the discussion that follows it, this means galaxy NGC is moving away from Earth.
35. The spaceship is moving away from Earth, so the frequency received is given directly by Eq. 37-31. Thus,

$$
f=f_{0} \sqrt{\frac{1-\beta}{1+\beta}}=(100 \mathrm{MHz}) \sqrt{\frac{1-0.9000}{1+0.9000}}=22.9 \mathrm{MHz}
$$

36. (a) Eq. 37-34 leads to a speed of

$$
v=\frac{\Delta \lambda}{\lambda} c=(0.004)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=1.2 \times 10^{6} \mathrm{~m} / \mathrm{s} \approx 1 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) The galaxy is receding.
37. We obtain

$$
v=\frac{\Delta \lambda}{\lambda} c=\left(\frac{620-540}{620}\right) c=0.13 c
$$

38. We use the transverse Doppler shift formula, Eq. 37-37: $f=f_{0} \sqrt{1-\beta^{2}}$, or

$$
\frac{1}{\lambda}=\frac{1}{\lambda_{0}} \sqrt{1-\beta^{2}} .
$$

We solve for $\lambda-\lambda_{0}$:

$$
\lambda-\lambda_{0}=\lambda_{0}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)=(589.00 \mathrm{~mm})\left[\frac{1}{\sqrt{1-(0.100)^{2}}}-1\right]=+2.97 \mathrm{~nm} .
$$

39. (a) The frequency received is given by

$$
f=f_{0} \sqrt{\frac{1-\beta}{1+\beta}} \Rightarrow \frac{c}{\lambda}=\frac{c}{\lambda_{0}} \sqrt{\frac{1-0.20}{1+0.20}}
$$

which implies

$$
\lambda=(450 \mathrm{~nm}) \sqrt{\frac{1+0.20}{1-0.20}}=550 \mathrm{~nm} .
$$

(b) This is in the yellow portion of the visible spectrum.
40. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W $=\Delta K=m_{e} c^{2}(\gamma-1)\left(\right.$ Eq. 37-52) and $m_{e} c^{2}=511 \mathrm{keV}=0.511 \mathrm{MeV}$ (Table 37-3), and obtain

$$
W=m_{e} c^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)=(511 \mathrm{keV})\left[\frac{1}{\sqrt{1-(0.500)^{2}}}-1\right]=79.1 \mathrm{keV} .
$$

(b) $W=(0.511 \mathrm{MeV})\left(\frac{1}{\sqrt{1-(0.990)^{2}}}-1\right)=3.11 \mathrm{MeV}$.
(c) $W=(0.511 \mathrm{MeV})\left(\frac{1}{\sqrt{1-(0.990)^{2}}}-1\right)=10.9 \mathrm{MeV}$.
41. (a) From Eq. 37-52, $\gamma=\left(K / m c^{2}\right)+1$, and from Eq. 37-8, the speed parameter is $\beta=\sqrt{1-(1 / \gamma)^{2}}$. Table $37-3$ gives $m_{e} c^{2}=511 \mathrm{keV}=0.511 \mathrm{MeV}$, so the Lorentz factor is

$$
\gamma=\frac{100 \mathrm{MeV}}{0.511 \mathrm{MeV}}+1=196.695
$$

(b) The speed parameter is

$$
\beta=\sqrt{1-\frac{1}{(196.695)^{2}}}=0.999987
$$

Thus, the speed of the electron is $0.999987 c$, or 99.9987% of the speed of light.
42. The mass change is

$$
\Delta M=(4.002603 \mathrm{u}+15.994915 \mathrm{u})-(1.007825 \mathrm{u}+18.998405 \mathrm{u})=-0.008712 \mathrm{u}
$$

Using Eq. 37-50 and Eq. 37-46, this leads to

$$
Q=-\Delta M c^{2}=-(-0.008712 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=8.12 \mathrm{MeV}
$$

43. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W $=\Delta K$ where $K=m_{e} c^{2}(\gamma-1)$ (Eq. 37-52), and $m_{e} c^{2}=511 \mathrm{keV}=0.511 \mathrm{MeV}$ (Table 37-3). Noting that $\Delta K=m_{e} c^{2}\left(\gamma_{f}-\gamma_{i}\right)$, we obtain

$$
W=m_{e} c^{2}\left(\frac{1}{\sqrt{1-\beta_{f}^{2}}}-\frac{1}{\sqrt{1-\beta_{i}^{2}}}\right)=(511 \mathrm{keV})\left(\frac{1}{\sqrt{1-(0.19)^{2}}}-\frac{1}{\sqrt{1-(0.18)^{2}}}\right)
$$

$$
=0.996 \mathrm{keV} \approx 1.0 \mathrm{keV}
$$

(b) Similarly,

$$
W=(511 \mathrm{keV})\left(\frac{1}{\sqrt{1-(0.99)^{2}}}-\frac{1}{\sqrt{1-(0.98)^{2}}}\right)=1055 \mathrm{keV} \approx 1.1 \mathrm{MeV}
$$

We see the dramatic increase in difficulty in trying to accelerate a particle when its initial speed is very close to the speed of light.
44. From Eq. 28-37, we have

$$
\begin{aligned}
Q & =-\Delta M c^{2}=-(3(4.00151 \mathrm{u})-11.99671 \mathrm{u}) c^{2}=-(0.00782 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =-7.28 \mathrm{Mev}
\end{aligned}
$$

Thus, it takes a minimum of 7.28 MeV supplied to the system to cause this reaction. We note that the masses given in this problem are strictly for the nuclei involved; they are not the "atomic" masses which are quoted in several of the other problems in this chapter.
45. (a) The strategy is to find the γ factor from $E=14.24 \times 10^{-9} \mathrm{~J}$ and $m_{p} c^{2}=1.5033 \times$ $10^{-10} \mathrm{~J}$ and from that find the contracted length. From the energy relation (Eq. 37-48), we obtain

$$
\gamma=\frac{E}{m c^{2}}=94.73
$$

Consequently, Eq. 37-13 yields

$$
L=\frac{L_{0}}{\gamma}=0.222 \mathrm{~cm}=2.22 \times 10^{-3} \mathrm{~m} .
$$

(b) The time dilation formula (Eq. 37-7) leads to

$$
\Delta t=\gamma \Delta t_{0}=7.01 \times 10^{-10} \mathrm{~s}
$$

which can be checked using $\Delta t=L_{0} / v$ in our frame of reference.
(c) From the γ factor, we find the speed:

$$
v=c \sqrt{1-\left(\frac{1}{\gamma}\right)^{2}}=0.99994 c
$$

Therefore, the trip (according to the proton) took

$$
\Delta t_{0}=2.22 \times 10^{-3} / 0.99994 c=7.40 \times 10^{-12} \mathrm{~s} .
$$

46. (a) From the information in the problem, we see that each kilogram of TNT releases $\left(3.40 \times 10^{6} \mathrm{~J} / \mathrm{mol}\right) /(0.227 \mathrm{~kg} / \mathrm{mol})=1.50 \times 10^{7} \mathrm{~J}$. Thus,

$$
\left(1.80 \times 10^{14} \mathrm{~J}\right) /\left(1.50 \times 10^{7} \mathrm{~J} / \mathrm{kg}\right)=1.20 \times 10^{7} \mathrm{~kg}
$$

of TNT are needed. This is equivalent to a weight of $\approx 1.2 \times 10^{8} \mathrm{~N}$.
(b) This is certainly more than can be carried in a backpack. Presumably, a train would be required.
(c) We have $0.00080 m c^{2}=1.80 \times 10^{14} \mathrm{~J}$, and find $m=2.50 \mathrm{~kg}$ of fissionable material is needed. This is equivalent to a weight of about 25 N , or 5.5 pounds.
(d) This can be carried in a backpack.
47. We set Eq. $37-55$ equal to $\left(3.00 m c^{2}\right)^{2}$, as required by the problem, and solve for the speed. Thus,

$$
(p c)^{2}+\left(m c^{2}\right)^{2}=9.00\left(m c^{2}\right)^{2}
$$

leads to $p=m c \sqrt{8} \approx 2.83 m c$.
48. (a) Using $K=m_{e} c^{2}(\gamma-1)$ (Eq. 37-52) and

$$
m_{e} c^{2}=510.9989 \mathrm{keV}=0.5109989 \mathrm{MeV}
$$

we obtain

$$
\gamma=\frac{K}{m_{e} c^{2}}+1=\frac{1.0000000 \mathrm{keV}}{510.9989 \mathrm{keV}}+1=1.00195695 \approx 1.0019570 .
$$

(b) Therefore, the speed parameter is

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}=\sqrt{1-\frac{1}{(1.0019570)^{2}}}=0.062469542
$$

(c) For $K=1.0000000 \mathrm{MeV}$, we have

$$
\gamma=\frac{K}{m_{e} c^{2}}+1=\frac{1.0000000 \mathrm{MeV}}{0.5109989 \mathrm{MeV}}+1=2.956951375 \approx 2.9569514 .
$$

(d) The corresponding speed parameter is

$$
\beta=\sqrt{1-\gamma^{-2}}=0.941079236 \approx 0.94107924 .
$$

(e) For $K=1.0000000 \mathrm{GeV}$, we have

$$
\gamma=\frac{K}{m_{e} c^{2}}+1=\frac{1000.0000 \mathrm{MeV}}{0.5109989 \mathrm{MeV}}+1=1957.951375 \approx 1957.9514 .
$$

(f) The corresponding speed parameter is

$$
\beta=\sqrt{1-\gamma^{-2}}=0.99999987
$$

49. Since the rest energy E_{0} and the mass m of the quasar are related by $E_{0}=m c^{2}$, the rate P of energy radiation and the rate of mass loss are related by $P=d E_{0} / d t=(d m / d t) c^{2}$. Thus,

$$
\frac{d m}{d t}=\frac{P}{c^{2}}=\frac{1 \times 10^{41} \mathrm{~W}}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=1.11 \times 10^{24} \mathrm{~kg} / \mathrm{s}
$$

Since a solar mass is $2.0 \times 10^{30} \mathrm{~kg}$ and a year is $3.156 \times 10^{7} \mathrm{~s}$,

$$
\frac{d m}{d t}=\left(1.11 \times 10^{24} \mathrm{~kg} / \mathrm{s}\right)\left(\frac{3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}}{2.0 \times 10^{30} \mathrm{~kg} / \mathrm{smu}}\right) \approx 18 \mathrm{smu} / \mathrm{y} .
$$

50. From Eq. 37-52, $\gamma=\left(K / m c^{2}\right)+1$, and from Eq. $37-8$, the speed parameter is $\beta=\sqrt{1-(1 / \gamma)^{2}}$.
(a) Table 37-3 gives $m_{e} c^{2}=511 \mathrm{keV}=0.511 \mathrm{MeV}$, so the Lorentz factor is

$$
\gamma=\frac{10.00 \mathrm{MeV}}{0.5110 \mathrm{MeV}}+1=20.57
$$

(b) and the speed parameter is

$$
\beta=\sqrt{1-\frac{1}{(20.57)^{2}}}=0.9988
$$

(c) Using $m_{p} c^{2}=938.272 \mathrm{MeV}$, the Lorentz factor is

$$
\gamma=1+10.00 \mathrm{MeV} / 938.272 \mathrm{MeV}=1.01065 \approx 1.011
$$

(d) The speed parameter is

$$
\beta=\sqrt{1-\gamma^{-2}}=0.144844 \approx 0.1448
$$

(e) With $m_{o} c^{2}=3727.40 \mathrm{MeV}$, we obtain $\gamma=10.00 / 3727.4+1=1.00268 \approx 1.003$.
(f) The speed parameter is

$$
\beta=\sqrt{1-\gamma^{-2}}=0.0731037 \approx 0.07310
$$

51. (a) We set Eq. 37-41 equal to $m c$, as required by the problem, and solve for the speed. Thus,

$$
\frac{m v}{\sqrt{1-v^{2} / c^{2}}}=m c
$$

leads to $\beta=1 / \sqrt{2}=0.707$.
(b) Substituting $\beta=1 / \sqrt{2}$ into the definition of γ, we obtain

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-(1 / 2)}}=\sqrt{2} \approx 1.41 .
$$

(c) The kinetic energy is

$$
K=(\gamma-1) m c^{2}=(\sqrt{2}-1) m c^{2}=0.414 m c^{2}=0.414 E_{0} .
$$

which implies $K / E_{0}=0.414$.
52. (a) We set Eq. $37-52$ equal to $2 m c^{2}$, as required by the problem, and solve for the speed. Thus,

$$
m c^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)=2 m c^{2}
$$

leads to $\beta=2 \sqrt{2} / 3 \approx 0.943$.
(b) We now set Eq. 37-48 equal to $2 m c^{2}$ and solve for the speed. In this case,

$$
\frac{m c^{2}}{\sqrt{1-\beta^{2}}}=2 m c^{2}
$$

leads to $\beta=\sqrt{3} / 2 \approx 0.866$.
53. The energy equivalent of one tablet is

$$
m c^{2}=\left(320 \times 10^{-6} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=2.88 \times 10^{13} \mathrm{~J}
$$

This provides the same energy as

$$
\left(2.88 \times 10^{13} \mathrm{~J}\right) /\left(3.65 \times 10^{7} \mathrm{~J} / \mathrm{L}\right)=7.89 \times 10^{5} \mathrm{~L}
$$

of gasoline. The distance the car can go is

$$
d=\left(7.89 \times 10^{5} \mathrm{~L}\right)(12.75 \mathrm{~km} / \mathrm{L})=1.01 \times 10^{7} \mathrm{~km} .
$$

This is roughly 250 times larger than the circumference of Earth (see Appendix C).
54. (a) Squaring Eq. 37-47 gives

$$
E^{2}=\left(m c^{2}\right)^{2}+2 m c^{2} K+K^{2}
$$

which we set equal to Eq. 37-55. Thus,

$$
\left(m c^{2}\right)^{2}+2 m c^{2} K+K^{2}=(p c)^{2}+\left(m c^{2}\right)^{2} \Rightarrow m=\frac{(p c)^{2}-K^{2}}{2 K c^{2}}
$$

(b) At low speeds, the pre-Einsteinian expressions $p=m v$ and $K=\frac{1}{2} m v^{2}$ apply. We note that $p c \gg K$ at low speeds since $c \gg v$ in this regime. Thus,

$$
m \rightarrow \frac{(m v c)^{2}-\left(\frac{1}{2} m v^{2}\right)^{2}}{2\left(\frac{1}{2} m v^{2}\right) c^{2}} \approx \frac{(m v c)^{2}}{2\left(\frac{1}{2} m v^{2}\right) c^{2}}=m
$$

(c) Here, $p c=121 \mathrm{MeV}$, so

$$
m=\frac{121^{2}-55^{2}}{2(55) c^{2}}=105.6 \mathrm{MeV} / \mathrm{c}^{2}
$$

Now, the mass of the electron (see Table $37-3$) is $m_{e}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$, so our result is roughly 207 times bigger than an electron mass, i.e., $m / m_{e} \approx 207$. The particle is a muon.
55. The distance traveled by the pion in the frame of Earth is (using Eq. 37-12) $d=v \Delta t$. The proper lifetime Δt_{0} is related to Δt by the time-dilation formula: $\Delta t=\gamma \Delta t_{0}$. To use this equation, we must first find the Lorentz factor γ (using Eq. 37-48). Since the total energy of the pion is given by $E=1.35 \times 10^{5} \mathrm{MeV}$ and its $m c^{2}$ value is 139.6 MeV , then

$$
\gamma=\frac{E}{m c^{2}}=\frac{1.35 \times 10^{5} \mathrm{MeV}}{139.6 \mathrm{MeV}}=967.05
$$

Therefore, the lifetime of the moving pion as measured by Earth observers is

$$
\Delta t=\gamma \Delta t_{0}=(967.1)\left(35.0 \times 10^{-9} \mathrm{~s}\right)=3.385 \times 10^{-5} \mathrm{~s}
$$

and the distance it travels is

$$
d \approx c \Delta t=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(3.385 \times 10^{-5} \mathrm{~s}\right)=1.015 \times 10^{4} \mathrm{~m}=10.15 \mathrm{~km}
$$

where we have approximated its speed as c (note: its speed can be found by solving Eq. 37-8, which gives $v=0.9999995 c$; this more precise value for v would not significantly alter our final result). Thus, the altitude at which the pion decays is $120 \mathrm{~km}-10.15 \mathrm{~km}=$ 110 km .
56. (a) The binomial theorem tells us that, for x small,

$$
(1+x)^{v} \approx 1+v x+1 / 2 v(v-1) x^{2}
$$

if we ignore terms involving x^{3} and higher powers (this is reasonable since if x is small, say $x=0.1$, then x^{3} is much smaller: $x^{3}=0.001$). The relativistic kinetic energy formula, when the speed v is much smaller than c, has a term that we can apply the binomial theorem to; identifying $-\beta^{2}$ as x and $-1 / 2$ as v, we have

$$
\gamma=\left(1-\beta^{2}\right)^{-1 / 2} \approx 1+(-1 / 2)\left(-\beta^{2}\right)+1 / 2(-1 / 2)((-1 / 2)-1)\left(-\beta^{2}\right)^{2} .
$$

Substituting this into Eq. 37-52 leads to

$$
K=m c^{2}(\gamma-1) \approx m c^{2}\left((-1 / 2)\left(-\beta^{2}\right)+1 / 2(-1 / 2)((-1 / 2)-1)\left(-\beta^{2}\right)^{2}\right)
$$

which simplifies to

$$
K \approx \frac{1}{2} m c^{2} \beta^{2}+\frac{3}{8} m c^{2} \beta^{4}=\frac{1}{2} m v^{2}+\frac{3}{8} m v^{4} / c^{2} .
$$

(b) If we use the $m c^{2}$ value for the electron found in Table 37-3, then for $\beta=1 / 20$, the classical expression for kinetic energy gives

$$
K_{\text {classical }}=\frac{1}{2} m \mathrm{v}^{2}=\frac{1}{2} m c^{2} \beta^{2}=\frac{1}{2}\left(8.19 \times 10^{-14} \mathrm{~J}\right)(1 / 20)^{2}=1.0 \times 10^{-16} \mathrm{~J} .
$$

(c) The first-order correction becomes

$$
K_{\text {first-order }}=\frac{3}{8} m \mathrm{v}^{4} / c^{2}=\frac{3}{8} m c^{2} \beta^{4}=\frac{3}{8}\left(8.19 \times 10^{-14} \mathrm{~J}\right)(1 / 20)^{4}=1.9 \times 10^{-19} \mathrm{~J}
$$

which we note is much smaller than the classical result.
(d) In this case, $\beta=0.80=4 / 5$, and the classical expression yields

$$
K_{\text {classical }}=\frac{1}{2} m \mathrm{v}^{2}=\frac{1}{2} m c^{2} \beta^{2}=\frac{1}{2}\left(8.19 \times 10^{-14} \mathrm{~J}\right)(4 / 5)^{2}=2.6 \times 10^{-14} \mathrm{~J} .
$$

(e) And the first-order correction is

$$
K_{\text {first-order }}=\frac{3}{8} m \mathrm{v}^{4} / c^{2}=\frac{3}{8} m c^{2} \beta^{4}=\frac{3}{8}\left(8.19 \times 10^{-14} \mathrm{~J}\right)(4 / 5)^{4}=1.3 \times 10^{-14} \mathrm{~J}
$$

which is comparable to the classical result. This is a signal that ignoring the higher order terms in the binomial expansion becomes less reliable the closer the speed gets to c.
(f) We set the first-order term equal to one-tenth of the classical term and solve for β :

$$
\frac{3}{8} m c^{2} \beta^{4}=\frac{1}{10}\left(\frac{1}{2} m c^{2} \beta^{2}\right)
$$

and obtain $\beta=\sqrt{2 / 15} \approx 0.37$.
57. Using the classical orbital radius formula $r_{0}=m v /|q| B$, the period is $T_{0}=2 \pi r_{0} / v=2 \pi m /|q| B$. In the relativistic limit, we must use

$$
r=\frac{p}{|q| B}=\frac{\gamma m v}{|q| B}=\gamma r_{0}
$$

which yields

$$
T=\frac{2 \pi r}{v}=\gamma \frac{2 \pi m}{|q| B}=\gamma T_{0}
$$

(b) The period T is not independent of v.
(c) We interpret the given 10.0 MeV to be the kinetic energy of the electron. In order to make use of the $m c^{2}$ value for the electron given in Table 37-3 $(511 \mathrm{keV}=0.511 \mathrm{MeV})$ we write the classical kinetic energy formula as

$$
K_{\text {classical }}=\frac{1}{2} m v^{2}=\frac{1}{2}\left(m c^{2}\right)\left(\frac{v^{2}}{c^{2}}\right)=\frac{1}{2}\left(m c^{2}\right) \beta^{2} .
$$

If $K_{\text {classical }}=10.0 \mathrm{MeV}$, then

$$
\beta=\sqrt{\frac{2 K_{\text {classical }}}{m c^{2}}}=\sqrt{\frac{2(10.0 \mathrm{MeV})}{0.511 \mathrm{MeV}}}=6.256
$$

which, of course, is impossible (see the Ultimate Speed subsection of §37-2). If we use this value anyway, then the classical orbital radius formula yields

$$
r=\frac{m v}{|q| B}=\frac{m \beta c}{e B}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(6.256)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.6 \times 10^{-19} \mathrm{C}\right)(2.20 \mathrm{~T})}=4.85 \times 10^{-3} \mathrm{~m}
$$

(d) Before using the relativistically correct orbital radius formula, we must compute β in a relativistically correct way:

$$
K=m c^{2}(\gamma-1) \Rightarrow \gamma=\frac{10.0 \mathrm{MeV}}{0.511 \mathrm{MeV}}+1=20.57
$$

which implies (from Eq. 37-8)

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}=0.99882
$$

Therefore,

$$
\begin{aligned}
r & =\frac{\gamma m v}{|q| B}=\frac{\gamma m \beta c}{e B}=\frac{(20.57)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(0.99882)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.6 \times 10^{-19} \mathrm{C}\right)(2.20 \mathrm{~T})} \\
& =1.59 \times 10^{-2} \mathrm{~m} .
\end{aligned}
$$

(e) The classical period is

$$
T=\frac{2 \pi r}{\beta c}=\frac{2 \pi\left(4.85 \times 10^{-3} \mathrm{~m}\right)}{(6.256)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.63 \times 10^{-11} \mathrm{~s} .
$$

(f) The period obtained with relativistic correction is

$$
T=\frac{2 \pi r}{\beta_{c}}=\frac{2 \pi(0.0159 \mathrm{~m})}{(0.99882)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=3.34 \times 10^{-10} \mathrm{~s} .
$$

58. (a) The proper lifetime Δt_{0} is $2.20 \mu \mathrm{~s}$, and the lifetime measured by clocks in the laboratory (through which the muon is moving at high speed) is $\Delta t=6.90 \mu \mathrm{~s}$. We use Eq. $37-7$ to solve for the speed parameter:

$$
\beta=\sqrt{1-\left(\frac{\Delta t_{0}}{\Delta t}\right)^{2}}=0.948
$$

(b) From the answer to part (a), we find $\gamma=3.136$. Thus, with (see Table 37-3)

$$
m_{\mu} c^{2}=207 m_{e} c^{2}=105.8 \mathrm{MeV}
$$

Eq. 37-52 yields

$$
K=m_{\mu} c^{2}(\gamma-1)=226 \mathrm{MeV}
$$

(c) We write $m_{\mu} c=105.8 \mathrm{MeV} / c$ and apply Eq. $37-41$:

$$
p=\gamma m_{\mu} v=\gamma m_{\mu} c \beta=(3.136)(105.8 \mathrm{MeV} / c)(0.9478)=314 \mathrm{MeV} / c
$$

which can also be expressed in SI units ($p=1.7 \times 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$).
59. (a) Before looking at our solution to part (a) (which uses momentum conservation), it might be advisable to look at our solution (and accompanying remarks) for part (b) (where a very different approach is used). Since momentum is a vector, its conservation involves two equations (along the original direction of alpha particle motion, the x direction, as well as along the final proton direction of motion, the y direction). The problem states that all speeds are much less than the speed of light, which allows us to use the classical formulas for kinetic energy and momentum ($K=\frac{1}{2} m v^{2}$ and $\vec{p}=m \vec{v}$, respectively). Along the x and y axes, momentum conservation gives (for the components of $\vec{v}_{\text {oxy }}$):

$$
\begin{aligned}
m_{\alpha} v_{\alpha} & =m_{\text {oxy }} v_{\text {oxy }, x} \Rightarrow v_{\text {oxy }, x}=\frac{m_{\alpha}}{m_{\text {oxy }}} v_{\alpha} \approx \frac{4}{17} v_{\alpha} \\
0 & =m_{\text {oxy }} v_{\text {oxy }, y}+m_{p} v_{p} \Rightarrow v_{\text {oxy }, y}=-\frac{m_{p}}{m_{\text {oxy }}} v_{p} \approx-\frac{1}{17} v_{p} .
\end{aligned}
$$

To complete these determinations, we need values (inferred from the kinetic energies given in the problem) for the initial speed of the alpha particle $\left(v_{\alpha}\right)$ and the final speed of the proton $\left(v_{p}\right)$. One way to do this is to rewrite the classical kinetic energy expression as $K=\frac{1}{2}\left(m c^{2}\right) \beta^{2}$ and solve for β (using Table 37-3 and/or Eq. 37-46). Thus, for the proton, we obtain

$$
\beta_{p}=\sqrt{\frac{2 K_{p}}{m_{p} c^{2}}}=\sqrt{\frac{2(4.44 \mathrm{MeV})}{938 \mathrm{MeV}}}=0.0973
$$

This is almost 10% the speed of light, so one might worry that the relativistic expression (Eq. 37-52) should be used. If one does so, one finds $\beta_{p}=0.969$, which is reasonably close to our previous result based on the classical formula. For the alpha particle, we write

$$
m_{o} c^{2}=(4.0026 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=3728 \mathrm{MeV}
$$

(which is actually an overestimate due to the use of the "atomic mass" value in our calculation, but this does not cause significant error in our result), and obtain

$$
\beta_{\alpha}=\sqrt{\frac{2 K_{\alpha}}{m_{\alpha} c^{2}}}=\sqrt{\frac{2(7.70 \mathrm{MeV})}{3728 \mathrm{MeV}}}=0.064
$$

Returning to our oxygen nucleus velocity components, we are now able to conclude:

$$
\begin{aligned}
& v_{\mathrm{ox},, x} \approx \frac{4}{17} v_{\alpha} \Rightarrow \beta_{\mathrm{oxy}, x} \approx \frac{4}{17} \beta_{\alpha}=\frac{4}{17}(0.064)=0.015 \\
& \left|v_{\mathrm{oxy}, y}\right| \approx \frac{1}{17} v_{p} \Rightarrow \beta_{\mathrm{ox} y, y} \approx \frac{1}{17} \beta_{p}=\frac{1}{17}(0.097)=0.0057
\end{aligned}
$$

Consequently, with $m_{\text {oxy }} c^{2} \approx(17 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=1.58 \times 10^{4} \mathrm{MeV}$, we obtain

$$
K_{\text {oxy }}=\frac{1}{2}\left(m_{\text {oxy }} c^{2}\right)\left(\beta_{\text {oxy }, x}^{2}+\beta_{\text {oxy }, y}^{2}\right)=\frac{1}{2}\left(1.58 \times 10^{4} \mathrm{MeV}\right)\left(0.015^{2}+0.0057^{2}\right) \approx 2.08 \mathrm{MeV} .
$$

(b) Using Eq. 37-50 and Eq. 37-46,

$$
\begin{aligned}
Q & =-(1.007825 \mathrm{u}+16.99914 \mathrm{u}-4.00260 \mathrm{u}-14.00307 \mathrm{u}) c^{2} \\
& =-(0.001295 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})
\end{aligned}
$$

which yields $Q=-1.206 \mathrm{MeV} \approx-1.21 \mathrm{MeV}$. Incidentally, this provides an alternate way to obtain the answer (and a more accurate one at that!) to part (a). Eq. 37-49 leads to

$$
\begin{aligned}
K_{\text {oxy }} & =K_{\alpha}+Q-K_{p}=7.70 \mathrm{MeV}-1206 \mathrm{MeV}-4.44 \mathrm{MeV} \\
& =2.05 \mathrm{MeV}
\end{aligned}
$$

This approach to finding $K_{\text {oxy }}$ avoids the many computational steps and approximations made in part (a).
60. (a) Eq. 2^{\prime} of Table 37-2, becomes

$$
\begin{aligned}
\Delta t^{\prime}=\gamma(\Delta t-\beta \Delta x / c) & =\gamma\left[1.00 \mu \mathrm{~s}-\beta(240 \mathrm{~m}) /\left(2.998 \times 10^{2} \mathrm{~m} / \mu \mathrm{s}\right)\right] \\
& =\gamma(1.00-0.800 \beta) \mu \mathrm{s}
\end{aligned}
$$

where the Lorentz factor is itself a function of β (see Eq. 37-8).
(b) A plot of Δt^{\prime} is shown for the range $0<\beta<0.01$:

(c) A plot of Δt^{\prime} is shown for the range $0.1<\beta<1$:

(d) The minimum for the Δt^{\prime} curve can be found from by taking the derivative and simplifying and then setting equal to zero:

$$
\frac{\mathrm{d} \Delta t^{\prime}}{\mathrm{d} \beta}=\gamma^{3}(\beta \Delta t-\Delta x / c)=0 .
$$

Thus, the value of β for which the curve is minimum is $\beta=\Delta x / c \Delta t=240 / 299.8$, or $\beta=0.801$.
(e) Substituting the value of β from part (d) into the part (a) expression yields the minimum value $\Delta t^{\prime}=0.599 \mu \mathrm{~s}$.
(f) Yes. We note that $\Delta x / \Delta t=2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}<c$. A signal can indeed travel from event A to event B without exceeding c, so causal influences can originate at A and thus affect what happens at B. Such events are often described as being "time-like separated" - and we see in this problem that it is (always) possible in such a situation for us to find a frame of reference (here with $\beta \approx 0.801$) where the two events will seem to be at the same location (though at different times).
61. (a) Eq. 1^{\prime} of Table 37-2 becomes $\Delta x^{\prime}=\gamma(\Delta x-\beta c \Delta t)=\gamma[(240 \mathrm{~m})-\beta(299.8 \mathrm{~m})]$.
(b) A plot of Δx^{\prime} for $0<\beta<0.01$ is shown below:

(c) A plot of Δx^{\prime} for $0.1<\beta<1$ is shown below:

We see that Δx^{\prime} decreases from its $\beta=0$ value (where it is equal to $\Delta x=240 \mathrm{~m}$) to its zero value (at $\beta \approx 0.8$), and continues (without bound) downward in the graph (where it is negative - implying event B has a smaller value of x^{\prime} than event A !).
(d) The zero value for Δx^{\prime} is easily seen (from the expression in part (b)) to come from the condition $\Delta x-\beta c \Delta t=0$. Thus $\beta=0.801$ provides the zero value of Δx^{\prime}.
62. The line in the graph is described by Eq. 1 in Table 37-2:

$$
\Delta x=v \gamma \Delta t^{\prime}+\gamma \Delta x^{\prime}=(" \text { slope" }) \Delta t^{\prime}+" y \text {-intercept" }
$$

where the "slope" is $7.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Setting this value equal to $v \gamma$ leads to $v=2.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\gamma=2.54$. Since the " y-intercept" is 2.0 m , we see that dividing this by γ leads to Δx^{\prime} $=0.79 \mathrm{~m}$.
63. (a) The spatial separation between the two bursts is $v t$. We project this length onto the direction perpendicular to the light rays headed to Earth and obtain $D_{\text {app }}=v t \sin \theta$.
(b) Burst 1 is emitted a time t ahead of burst 2. Also, burst 1 has to travel an extra distance L more than burst 2 before reaching the Earth, where $L=v t \cos \theta$ (see Fig. 3730); this requires an additional time $t^{\prime}=L / c$. Thus, the apparent time is given by

$$
T_{\text {app }}=t-t^{\prime}=t-\frac{v t \cos \theta}{c}=t\left[1-\left(\frac{v}{c}\right) \cos \theta\right] .
$$

(c) We obtain

$$
V_{\text {app }}=\frac{D_{\text {app }}}{T_{\text {app }}}=\left[\frac{(v / c) \sin \theta}{1-(v / c) \cos \theta}\right] c=\left[\frac{(0.980) \sin 30.0^{\circ}}{1-(0.980) \cos 30.0^{\circ}}\right] c=3.24 c \text {. }
$$

64. By examining the value of u^{\prime} when $v=0$ on the graph, we infer $u=-0.20 c$. Solving Eq. 37-29 for u^{\prime} and inserting this value for u, we obtain

$$
u^{\prime}=\frac{u-v}{1-u v / c^{2}}=\frac{-0.20 c-v}{1+0.20 v / c}
$$

for the equation of the curve shown in the figure.
(a) With $v=0.80 c$, the above expression yields $u^{\prime}=-0.86 c$.
(b) As expected, setting $v=c$ in this expression leads to $u^{\prime}=-c$.
65. (a) From the length contraction equation, the length L_{c}^{\prime} of the car according to Garageman is

$$
L_{c}^{\prime}=\frac{L_{c}}{\gamma}=L_{c} \sqrt{1-\beta^{2}}=(30.5 \mathrm{~m}) \sqrt{1-(0.9980)^{2}}=1.93 \mathrm{~m} .
$$

(b) Since the x_{g} axis is fixed to the garage $x_{g 2}=L_{g}=6.00 \mathrm{~m}$.
(c) As for $t_{g 2}$, note from Fig. 37-32 (b) that, at $t_{g}=t_{g 1}=0$ the coordinate of the front bumper of the limo in the x_{g} frame is L_{c}^{\prime}, meaning that the front of the limo is still a distance $L_{g}-L_{c}^{\prime}$ from the back door of the garage. Since the limo travels at a speed v, the time it takes for the front of the limo to reach the back door of the garage is given by

$$
\Delta t_{g}=t_{g 2}-t_{g 1}=\frac{L_{g}-L_{c}^{\prime}}{v}=\frac{6.00 \mathrm{~m}-1.93 \mathrm{~m}}{0.9980\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.36 \times 10^{-8} \mathrm{~s}
$$

Thus $t_{g 2}=t_{g 1}+\Delta t_{g}=0+1.36 \times 10^{-8} \mathrm{~s}=1.36 \times 10^{-8} \mathrm{~s}$.
(d) The limo is inside the garage between times $t_{g 1}$ and $t_{g 2}$, so the time duration is $t_{g 2}-t_{g 1}$ $=1.36 \times 10^{-8} \mathrm{~s}$.
(e) Again from Eq. 37-13, the length L_{g}^{\prime} of the garage according to Carman is

$$
L_{g}^{\prime}=\frac{L_{g}}{\gamma}=L_{g} \sqrt{1-\beta^{2}}=(6.00 \mathrm{~m}) \sqrt{1-(0.9980)^{2}}=0.379 \mathrm{~m} .
$$

(f) Again, since the x_{c} axis is fixed to the limo $x_{c 2}=L_{c}=30.5 \mathrm{~m}$.
(g) Now, from the two diagrams described in part (h) below, we know that at $t_{c}=t_{c 2}$ (when event 2 takes place), the distance between the rear bumper of the limo and the back door of the garage is given by $L_{c}-L_{g}^{\prime}$. Since the garage travels at a speed ν, the front door of the garage will reach the rear bumper of the limo a time Δt_{c} later, where Δt_{c} satisfies

$$
\Delta t_{c}=t_{c 1}-t_{c 2}=\frac{L_{c}-L_{g}^{\prime}}{v}=\frac{30.5 \mathrm{~m}-0.379 \mathrm{~m}}{0.9980\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.01 \times 10^{-7} \mathrm{~s}
$$

Thus $t_{c 2}=t_{c 1}-\Delta t_{c}=0-1.01 \times 10^{-7} \mathrm{~s}=-1.01 \times 10^{-7} \mathrm{~s}$.
(h) From Carman's point of view, the answer is clearly no.
(i) Event 2 occurs first according to Carman, since $t_{c 2}<t_{c 1}$.
(j) We describe the essential features of the two pictures. For event 2, the front of the limo coincides with the back door, and the garage itself seems very short (perhaps failing to reach as far as the front window of the limo). For event 1 , the rear of the car coincides with the front door and the front of the limo has traveled a significant distance beyond the back door. In this picture, as in the other, the garage seems very short compared to the limo.
(k) No, the limo cannot be in the garage with both doors shut.
(1) Both Carman and Garageman are correct in their respective reference frames. But, in a sense, Carman should lose the bet since he dropped his physics course before reaching the Theory of Special Relativity!
66. (a) According to ship observers, the duration of proton flight is $\Delta t^{\prime}=(760 \mathrm{~m}) / 0.980 c$ $=2.59 \mu$ (assuming it travels the entire length of the ship).
(b) To transform to our point of view, we use Eq. 2 in Table 37-2. Thus, with $\Delta x^{\prime}=$ -750 m , we have

$$
\Delta t=\gamma\left(\Delta t^{\prime}+(0.950 c) \Delta x^{\prime} / c^{2}\right)=0.572 \mu \mathrm{~s}
$$

(c) For the ship observers, firing the proton from back to front makes no difference, and $\Delta t^{\prime}=2.59 \mu \mathrm{~s}$ as before.
(d) For us, the fact that now $\Delta x^{\prime}=+750 \mathrm{~m}$ is a significant change.

$$
\Delta t=\gamma\left(\Delta t^{\prime}+(0.950 c) \Delta x^{\prime} / c^{2}\right)=16.0 \mu \mathrm{~s} .
$$

67. Interpreting $V_{A B}$ as the x-component of the velocity of A relative to B, and defining the corresponding speed parameter $\beta_{A B}=V_{A B} / c$, then the result of part (a) is a straightforward rewriting of Eq. 37-29 (after dividing both sides by c). To make the correspondence with Fig. 37-11 clear, the particle in that picture can be labeled A, frame S^{\prime} (or an observer at rest in that frame) can be labeled B, and frame S (or an observer at rest in it) can be labeled C. The result of part (b) is less obvious, and we show here some of the algebra steps:

$$
\begin{gathered}
M_{A C}=M_{A B} M_{B C} \\
\frac{1-\beta_{A C}}{1+\beta_{A C}}=\frac{1-\beta_{A B}}{1+\beta_{A B}} \frac{1-\beta_{B C}}{1+\beta_{B C}}
\end{gathered}
$$

We multiply both sides by factors to get rid of the denominators

$$
\left(1-\beta_{A C}\right)\left(1+\beta_{A B}\right)\left(1+\beta_{B C}\right)=\left(1-\beta_{A B}\right)\left(1-\beta_{B C}\right)\left(1+\beta_{A C}\right)
$$

and expand:

$$
\begin{array}{r}
1-\beta_{A C}+\beta_{A B}+\beta_{B C}-\beta_{A C} \beta_{A B}-\beta_{A C} \beta_{B C}+\beta_{A B} \beta_{B C}-\beta_{A B} \beta_{B C} \beta_{A C}= \\
1+\beta_{A C}-\beta_{A B}-\beta_{B C}-\beta_{A C} \beta_{A B}-\beta_{A C} \beta_{B C}+\beta_{A B} \beta_{B C}+\beta_{A B} \beta_{B C} \beta_{A C}
\end{array}
$$

We note that several terms are identical on both sides of the equals sign, and thus cancel, which leaves us with

$$
-\beta_{A C}+\beta_{A B}+\beta_{B C}-\beta_{A B} \beta_{B C} \beta_{A C}=\beta_{A C}-\beta_{A B}-\beta_{B C}+\beta_{A B} \beta_{B C} \beta_{A C}
$$

which can be rearranged to produce

$$
2 \beta_{A B}+2 \beta_{B C}=2 \beta_{A C}+2 \beta_{A B} \beta_{B C} \beta_{A C}
$$

The left-hand side can be written as $2 \beta_{A C}\left(1+\beta_{A B} \beta_{B C}\right)$ in which case it becomes clear how to obtain the result from part (a) [just divide both sides by $2\left(1+\beta_{A B} \beta_{B C}\right)$].
68. We note, because it is a pretty symmetry and because it makes the part (b) computation move along more quickly, that

$$
M=\frac{1-\beta}{1+\beta} \Rightarrow \beta=\frac{1-M}{1+M}
$$

Here, with $\beta_{A B}$ given as $1 / 2$ (see problem statement), then $M_{A B}$ is seen to be $1 / 3$ (which is $(1-1 / 2)$ divided by $(1+1 / 2)$). Similarly for $\beta_{B C}$.
(a) Thus,

$$
M_{A C}=M_{A B} M_{B C}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9} .
$$

(b) Consequently,

$$
\beta_{A C}=\frac{1-M_{A C}}{1+M_{A C}}=\frac{1-1 / 9}{1+1 / 9}=\frac{8}{10}=\frac{4}{5}=0.80 .
$$

(c) By the definition of the speed parameter, we finally obtain $v_{A C}=0.80 c$.
69. We note, for use later in the problem, that

$$
M=\frac{1-\beta}{1+\beta} \Rightarrow \beta=\frac{1-M}{1+M}
$$

Now, with $\beta_{A B}$ given as $1 / 5$ (see problem statement), then $M_{A B}$ is seen to be $2 / 3$ (which is $(1-1 / 5)$ divided by $(1+1 / 5)$). With $\beta_{B C}=-2 / 5$ we similarly find $M_{B C}=7 / 3$, and for $\beta_{C D}=3 / 5$ we get $M_{C D}=1 / 4$. Thus,

$$
M_{A D}=M_{A B} M_{B C} M_{C D}=\frac{2}{3} \cdot \frac{7}{3} \cdot \frac{1}{4}=\frac{7}{18} .
$$

Consequently,

$$
\beta_{A D}=\frac{1-M_{A D}}{1+M_{A D}}=\frac{1-7 / 18}{1+7 / 18}=\frac{11}{25}=0.44 .
$$

By the definition of the speed parameter, we obtain $v_{A D}=0.44 c$.
70. We are asked to solve Eq. 37-48 for the speed v. Algebraically, we find

$$
\beta=\sqrt{1-\left(\frac{m c^{2}}{E}\right)^{2}} .
$$

Using $E=10.611 \times 10^{-9} \mathrm{~J}$ and the very accurate values for c and m (in SI units) found in Appendix B, we obtain $\beta=0.99990$.
71. Using Appendix C, we find that the contraction is

$$
\begin{aligned}
|\Delta L| & =L_{0}-L=L_{0}\left(1-\frac{1}{\gamma}\right)=L_{0}\left(1-\sqrt{1-\beta^{2}}\right) \\
& =2\left(6.370 \times 10^{6} \mathrm{~m}\right)\left(1-\sqrt{1-\left(\frac{3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}\right)^{2}}\right) \\
& =0.064 \mathrm{~m} .
\end{aligned}
$$

72. The speed of the spaceship after the first increment is $v_{1}=0.5 c$. After the second one, it becomes

$$
v_{2}=\frac{v^{\prime}+v_{1}}{1+v^{\prime} v_{1} / c^{2}}=\frac{0.50 c+0.50 c}{1+(0.50 c)^{2} / c^{2}}=0.80 c
$$

and after the third one, the speed is

$$
v_{3}=\frac{v^{\prime}+v_{2}}{1+v^{\prime} v_{2} / c^{2}}=\frac{0.50 c+0.50 c}{1+(0.50 c)(0.80 c) / c^{2}}=0.929 c
$$

Continuing with this process, we get $v_{4}=0.976 c, v_{5}=0.992 c, v_{6}=0.997 c$ and $v_{7}=0.999 c$. Thus, seven increments are needed.
73. The mean lifetime of a pion measured by observers on the Earth is $\Delta t=\gamma \Delta t_{0}$, so the distance it can travel (using Eq. 37-12) is

$$
d=v \Delta t=\gamma v \Delta t_{0}=\frac{(0.99)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(26 \times 10^{-9} \mathrm{~s}\right)}{\sqrt{1-(0.99)^{2}}}=55 \mathrm{~m} .
$$

74. (a) For a proton (using Table 37-3), we have

$$
E=\gamma m_{p} c^{2}=\frac{938 \mathrm{MeV}}{\sqrt{1-(0.990)^{2}}}=6.65 \mathrm{GeV}
$$

which gives

$$
K=E-m_{p} c^{2}=6.65 \mathrm{GeV}-938 \mathrm{MeV}=5.71 \mathrm{GeV}
$$

(b) From part (a), $E=6.65 \mathrm{GeV}$.
(c) Similarly, we have $p=\gamma m_{p} v=\gamma\left(m_{p} c^{2}\right) \beta / c=\frac{(938 \mathrm{MeV})(0.990) / c}{\sqrt{1-(0.990)^{2}}}=6.58 \mathrm{GeV} / c$
(d) For an electron, we have

$$
E=\gamma m_{e} c^{2}=\frac{0.511 \mathrm{MeV}}{\sqrt{1-(0.990)^{2}}}=3.62 \mathrm{MeV}
$$

which yields

$$
K=E-m_{e} c^{2}=3.625 \mathrm{MeV}-0.511 \mathrm{MeV}=3.11 \mathrm{MeV}
$$

(e) From part (d), $E=3.62 \mathrm{MeV}$.
(f) $p=\gamma m_{e} v=\gamma\left(m_{e} c^{2}\right) \beta / c=\frac{(0.511 \mathrm{MeV})(0.990) / c}{\sqrt{1-(0.990)^{2}}}=3.59 \mathrm{MeV} / c$.
75. The strategy is to find the speed from $E=1533 \mathrm{MeV}$ and $m c^{2}=0.511 \mathrm{MeV}$ (see Table 37-3) and from that find the time. From the energy relation (Eq. 37-48), we obtain

$$
v=c \sqrt{1-\left(\frac{m c^{2}}{E}\right)^{2}}=0.99999994 c \approx c
$$

so that we conclude it took the electron 26 y to reach us. In order to transform to its own "clock" it's useful to compute γ directly from Eq. 37-48:

$$
\gamma=\frac{E}{m c^{2}}=3000
$$

though if one is careful one can also get this result from $\gamma=1 / \sqrt{1-(v / c)^{2}}$. Then, Eq. 37-7 leads to

$$
\Delta t_{0}=\frac{26 \mathrm{y}}{\gamma}=0.0087 \mathrm{y}
$$

so that the electron "concludes" the distance he traveled is 0.0087 light-years (stated differently, the Earth, which is rushing towards him at very nearly the speed of light, seemed to start its journey from a distance of 0.0087 light-years away).
76. (a) Using Eq. 37-7, we expect the dilated time intervals to be

$$
\tau=\gamma \tau_{0}=\frac{\tau_{0}}{\sqrt{1-(v / c)^{2}}} .
$$

(b) We rewrite Eq. 37-31 using the fact that period is the reciprocal of frequency ($f_{R}=\tau_{R}^{-1}$ and $f_{0}=\tau_{0}^{-1}$):

$$
\tau_{R}=\frac{1}{f_{R}}=\left(f_{0} \sqrt{\frac{1-\beta}{1+\beta}}\right)^{-1}=\tau_{0} \sqrt{\frac{1+\beta}{1-\beta}}=\tau_{0} \sqrt{\frac{c+v}{c-v}}
$$

(c) The Doppler shift combines two physical effects: the time dilation of the moving source and the travel-time differences involved in periodic emission (like a sine wave or a series of pulses) from a traveling source to a "stationary" receiver). To isolate the purely time-dilation effect, it's useful to consider "local" measurements (say, comparing the readings on a moving clock to those of two of your clocks, spaced some distance apart, such that the moving clock and each of your clocks can make a close-comparison of readings at the moment of passage).
77. We use the relative velocity formula (Eq. 37-29) with the primed measurements being those of the scout ship. We note that $v=-0.900 c$ since the velocity of the scout ship relative to the cruiser is opposite to that of the cruiser relative to the scout ship.

$$
u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}=\frac{0.980 c-0.900 c}{1-(0.980)(0.900)}=0.678 c .
$$

78. (a) The relative contraction is

$$
\begin{aligned}
\frac{|\Delta L|}{L_{0}} & =\frac{L_{0}\left(1-\gamma^{-1}\right)}{L_{0}}=1-\sqrt{1-\beta^{2}} \approx 1-\left(1-\frac{1}{2} \beta^{2}\right)=\frac{1}{2} \beta^{2}=\frac{1}{2}\left(\frac{630 \mathrm{~m} / \mathrm{s}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}\right)^{2} \\
& =2.21 \times 10^{-12} .
\end{aligned}
$$

(b) Letting $\left|\Delta t-\Delta t_{0}\right|=\Delta t_{0}(\gamma-1)=\tau=1.00 \mu \mathrm{~s}$, we solve for Δt_{0} :

$$
\begin{aligned}
\Delta t_{0} & =\frac{\tau}{\gamma-1}=\frac{\tau}{\left(1-\beta^{2}\right)^{-1 / 2}-1} \approx \frac{\tau}{1+\frac{1}{2} \beta^{2}-1}=\frac{2 \tau}{\beta^{2}} \\
& =\frac{2\left(1.00 \times 10^{-6} \mathrm{~s}\right)(1 \mathrm{~d} / 86400 \mathrm{~s})}{\left[(630 \mathrm{~m} / \mathrm{s}) /\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\right]^{2}} \\
& =5.25 \mathrm{~d}
\end{aligned}
$$

79. Let the reference frame be S in which the particle (approaching the South Pole) is at rest, and let the frame that is fixed on Earth be S^{\prime}. Then $v=0.60 c$ and $u^{\prime}=0.80 c$ (calling "downwards" [in the sense of Fig. 37-35] positive). The relative speed is now the speed of the other particle as measured in S :

$$
u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}=\frac{0.80 c+0.60 c}{1+(0.80 c)(0.60 c) / c^{2}}=0.95 c
$$

80. We refer to the particle in the first sentence of the problem statement as particle 2 . Since the total momentum of the two particles is zero in S^{\prime}, it must be that the velocities of these two particles are equal in magnitude and opposite in direction in S^{\prime}. Letting the velocity of the S^{\prime} frame be v relative to S, then the particle which is at rest in S must have a velocity of $u_{1}^{\prime}=-v$ as measured in S^{\prime}, while the velocity of the other particle is given by solving Eq. 37-29 for u^{\prime} :

$$
u_{2}^{\prime}=\frac{u_{2}-v}{1-u_{2} v / c^{2}}=\frac{(c / 2)-v}{1-(c / 2)\left(v / c^{2}\right)} .
$$

Letting $u_{2}^{\prime}=-u_{1}^{\prime}=v$, we obtain

$$
\frac{(c / 2)-v}{1-(c / 2)\left(v / c^{2}\right)}=v \Rightarrow v=c(2 \pm \sqrt{3}) \approx 0.27 c
$$

where the quadratic formula has been used (with the smaller of the two roots chosen so that $v \leq c$).
81. We use Eq. $37-54$ with $m c^{2}=0.511 \mathrm{MeV}$ (see Table 37-3):

$$
p c=\sqrt{K^{2}+2 K m c^{2}}=\sqrt{(2.00)^{2}+2(2.00)(0.511)}
$$

This readily yields $p=2.46 \mathrm{MeV} / c$.
82. (a) Our lab-based measurement of its lifetime is figured simply from

$$
t=L / v=7.99 \times 10^{-13} \mathrm{~s}
$$

Use of the time-dilation relation (Eq. 37-7) leads to

$$
\Delta t_{0}=\left(7.99 \times 10^{-13} \mathrm{~s}\right) \sqrt{1-(0.960)^{2}}=2.24 \times 10^{-13} \mathrm{~s}
$$

(b) The length contraction formula can be used, or we can use the simple speed-distance relation (from the point of view of the particle, who watches the lab and all its meter sticks rushing past him at 0.960 c until he expires): $L=v \Delta t_{0}=6.44 \times 10^{-5} \mathrm{~m}$.
83. When $\beta=0.9860$, we have $\gamma=5.9972$, and when $\beta=0.9850$, we have $\gamma=5.7953$. Thus, $\Delta \gamma=0.202$ and the change in kinetic energy (equal to the work) becomes (using Eq. 37-52)

$$
W=\Delta K=m c^{2} \Delta \gamma=189 \mathrm{MeV}
$$

where $m c^{2}=938 \mathrm{MeV}$ has been used (see Table 37-3).
84. (a) Eq. 37-37 yields

$$
\frac{\lambda_{0}}{\lambda}=\sqrt{\frac{1-\beta}{1+\beta}} \Rightarrow \beta=\frac{1-\left(\lambda_{0} / \lambda\right)^{2}}{1+\left(\lambda_{0} / \lambda\right)^{2}}
$$

With $\lambda_{0} / \lambda=434 / 462$, we obtain $\beta=0.062439$, or $v=1.87 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
(b) Since it is shifted "towards the red" (towards longer wavelengths) then the galaxy is moving away from us (receding).
85. (a) $\Delta E=\Delta m c^{2}=(3.0 \mathrm{~kg})(0.0010)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=2.7 \times 10^{14} \mathrm{~J}$.
(b) The mass of TNT is

$$
m_{\mathrm{TNT}}=\frac{\left(2.7 \times 10^{14} \mathrm{~J}\right)(0.227 \mathrm{~kg} / \mathrm{mol})}{3.4 \times 10^{6} \mathrm{~J}}=1.8 \times 10^{7} \mathrm{~kg} .
$$

(c) The fraction of mass converted in the TNT case is

$$
\frac{\Delta m_{\mathrm{TNT}}}{m_{\mathrm{TNT}}}=\frac{(3.0 \mathrm{~kg})(0.0010)}{1.8 \times 10^{7} \mathrm{~kg}}=1.6 \times 10^{-9},
$$

Therefore, the fraction is $0.0010 / 1.6 \times 10^{-9}=6.0 \times 10^{6}$.
86. (a) We assume the electron starts from rest. The classical formula for kinetic energy is Eq. 37-51, so if $v=c$ then this (for an electron) would be $\frac{1}{2} m c^{2}=\frac{1}{2}(511 \mathrm{keV})=$ 255.5 ke V (using Table 37-3). Setting this equal to the potential energy loss (which is responsible for its acceleration), we find (using Eq. 25-7)

$$
V=\frac{255.5 \mathrm{keV}}{|q|}=\frac{255 \mathrm{keV}}{e}=255.5 \mathrm{kV} \approx 256 \mathrm{keV}
$$

(b) Setting this amount of potential energy loss $(|\Delta U|=255.5 \mathrm{keV})$ equal to the correct relativistic kinetic energy, we obtain (using Eq. 37-52)

$$
m c^{2}\left(\frac{1}{\sqrt{1-(v / c)^{2}}}-1\right)=|\Delta U| \Rightarrow v=c \sqrt{1+\left(\frac{1}{1-\Delta U / m c^{2}}\right)^{2}}
$$

which yields $v=0.745 c=2.23 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
87. (a) $v_{r}=2 v=2(27000 \mathrm{~km} / \mathrm{h})=5.4 \times 10^{4} \mathrm{~km} / \mathrm{h}$.
(b) We can express c in these units by multiplying by 3.6: $c=1.08 \times 10^{9} \mathrm{~km} / \mathrm{h}$. The correct formula for v_{r} is $v_{r}=2 v /\left(1+v^{2} / c^{2}\right)$, so the fractional error is

$$
1-\frac{1}{1+v^{2} / c^{2}}=1-\frac{1}{1+\left[(27000 \mathrm{~km} / \mathrm{h}) /\left(1.08 \times 10^{9} \mathrm{~km} / \mathrm{h}\right)\right]^{2}}=6.3 \times 10^{-10}
$$

88. Using Eq. 37-10,

$$
\beta=\frac{v}{c}=\frac{d / c}{t}=\frac{6.0 \mathrm{y}}{2.0 \mathrm{y}+6.0 \mathrm{y}}=0.75 .
$$

1. (a) Let $E=1240 \mathrm{eV} \cdot \mathrm{nm} / \lambda_{\text {min }}=0.6 \mathrm{eV}$ to get $\lambda=2.1 \times 10^{3} \mathrm{~nm}=2.1 \mu \mathrm{~m}$.
(b) It is in the infrared region.
2. The energy of a photon is given by $E=h f$, where h is the Planck constant and f is the frequency. The wavelength λ is related to the frequency by $\lambda f=c$, so $E=h c / \lambda$. Since $h=$ $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$,

$$
h c=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)\left(10^{-9} \mathrm{~m} / \mathrm{nm}\right)}=1240 \mathrm{eV} \cdot \mathrm{~nm} .
$$

Thus,

$$
E=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{\lambda}
$$

With $\lambda=589 \mathrm{~nm}$, we obtain

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{589 \mathrm{~nm}}=2.11 \mathrm{eV} .
$$

3. Let R be the rate of photon emission (number of photons emitted per unit time) of the Sun and let E be the energy of a single photon. Then the power output of the Sun is given by $P=R E$. Now $E=h f=h c / \lambda$, where h is the Planck constant, f is the frequency of the light emitted, and λ is the wavelength. Thus $P=R h c / \lambda$ and

$$
R=\frac{\lambda P}{h c}=\frac{(550 \mathrm{~nm})\left(3.9 \times 10^{26} \mathrm{~W}\right)}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.0 \times 10^{45} \text { photons } / \mathrm{s} .
$$

4. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is $A=\pi d^{2} / 4$. From the formula obtained in problem 3, the rate is given by

$$
\begin{aligned}
\frac{R}{A} & =\frac{\lambda P}{h c\left(\pi d^{2} / 4\right)}=\frac{4(633 \mathrm{~nm})\left(5.0 \times 10^{-3} \mathrm{~W}\right)}{\pi\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(3.5 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =1.7 \times 10^{21} \frac{\text { photons }}{\mathrm{m}^{2} \cdot \mathrm{~s}} .
\end{aligned}
$$

5. Since

$$
\lambda=(1,650,763.73)^{-1} \mathrm{~m}=6.0578021 \times 10^{-7} \mathrm{~m}=605.78021 \mathrm{~nm},
$$

the energy is (using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$),

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{605.78021 \mathrm{~nm}}=2.047 \mathrm{eV}
$$

6. Let

$$
\frac{1}{2} m_{e} v^{2}=E_{\text {photon }}=\frac{h c}{\lambda}
$$

and solve for v :

$$
\begin{aligned}
v & =\sqrt{\frac{2 h c}{\lambda m_{e}}}=\sqrt{\frac{2 h c}{\lambda m_{e} c^{2}} c^{2}}=c \sqrt{\frac{2 h c}{\lambda\left(m_{e} c^{2}\right)}} \\
& =\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{\frac{2(1240 \mathrm{eV} \cdot \mathrm{~nm})}{(590 \mathrm{~nm})\left(511 \times 10^{3} \mathrm{eV}\right)}}=8.6 \times 10^{5} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Since $v \ll c$, the non-relativistic formula $K=\frac{1}{2} m v^{2}$ may be used. The $m_{e} c^{2}$ value of Table $38-3$ and $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$ are used in our calculation.
7. The total energy emitted by the bulb is $E=0.93 P t$, where $P=60 \mathrm{~W}$ and

$$
t=730 \mathrm{~h}=(730 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})=2.628 \times 10^{6} \mathrm{~s} .
$$

The energy of each photon emitted is $E_{\mathrm{ph}}=h c / \lambda$. Therefore, the number of photons emitted is

$$
N=\frac{E}{E_{\mathrm{ph}}}=\frac{0.93 \mathrm{Pt}}{h c / \lambda}=\frac{(0.93)(60 \mathrm{~W})\left(2.628 \times 10^{6} \mathrm{~s}\right)}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(630 \times 10^{-9} \mathrm{~m}\right)}=4.7 \times 10^{26} .
$$

8. Following Sample Problem 38-1, we have

$$
P=\frac{R h c}{\lambda}=\frac{(100 / \mathrm{s})\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{550 \times 10^{-9} \mathrm{~m}}=3.6 \times 10^{-17} \mathrm{~W}
$$

9. (a) Let R be the rate of photon emission (number of photons emitted per unit time) and let E be the energy of a single photon. Then, the power output of a lamp is given by $P=$ $R E$ if all the power goes into photon production. Now, $E=h f=h c / \lambda$, where h is the Planck constant, f is the frequency of the light emitted, and λ is the wavelength. Thus $P=$ $R h c / \lambda$ and $R=\lambda P / h c$. The lamp emitting light with the longer wavelength (the 700 nm lamp) emits more photons per unit time. The energy of each photon is less, so it must emit photons at a greater rate.
(b) Let R be the rate of photon production for the 700 nm lamp. Then,

$$
R=\frac{\lambda P}{h c}=\frac{(700 \mathrm{~nm})(400 \mathrm{~J} / \mathrm{s})}{\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)(1240 \mathrm{eV} \cdot \mathrm{~nm})}=1.41 \times 10^{21} \text { photon } / \mathrm{s}
$$

10. (a) The rate at which solar energy strikes the panel is

$$
P=\left(1.39 \mathrm{~kW} / \mathrm{m}^{2}\right)\left(2.60 \mathrm{~m}^{2}\right)=3.61 \mathrm{~kW} .
$$

(b) The rate at which solar photons are absorbed by the panel is

$$
R=\frac{P}{E_{\mathrm{ph}}}=\frac{3.61 \times 10^{3} \mathrm{~W}}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(550 \times 10^{-9} \mathrm{~m}\right)}=1.00 \times 10^{22} / \mathrm{s} .
$$

(c) The time in question is given by

$$
t=\frac{N_{A}}{R}=\frac{6.02 \times 10^{23}}{1.00 \times 10^{22} / \mathrm{s}}=60.2 \mathrm{~s} .
$$

11. (a) We assume all the power results in photon production at the wavelength $\lambda=589 \mathrm{~nm}$. Let R be the rate of photon production and E be the energy of a single photon. Then, $P=R E=R h c / \lambda$, where $E=h f$ and $f=c / \lambda$ are used. Here h is the Planck constant, f is the frequency of the emitted light, and λ is its wavelength. Thus,

$$
R=\frac{\lambda P}{h c}=\frac{\left(589 \times 10^{-9} \mathrm{~m}\right)(100 \mathrm{~W})}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=2.96 \times 10^{20} \text { photon } / \mathrm{s}
$$

(b) Let I be the photon flux a distance r from the source. Since photons are emitted uniformly in all directions, $R=4 \pi r^{2} I$ and

$$
r=\sqrt{\frac{R}{4 \pi I}}=\sqrt{\frac{2.96 \times 10^{20} \text { photon } / \mathrm{s}}{4 \pi\left(1.00 \times 10^{4} \text { photon } / \mathrm{m}^{2} \cdot \mathrm{~s}\right)}}=4.86 \times 10^{7} \mathrm{~m} .
$$

(c) The photon flux is

$$
I=\frac{R}{4 \pi r^{2}}=\frac{2.96 \times 10^{20} \text { photon } / \mathrm{s}}{4 \pi(2.00 \mathrm{~m})^{2}}=5.89 \times 10^{18} \frac{\text { photon }}{\mathrm{m}^{2} \cdot \mathrm{~s}} .
$$

12. The rate at which photons are emitted from the argon laser source is given by $R=$ P / E_{ph}, where $P=1.5 \mathrm{~W}$ is the power of the laser beam and $E_{\mathrm{ph}}=h c / \lambda$ is the energy of each photon of wavelength λ. Since $\alpha=84 \%$ of the energy of the laser beam falls within the central disk, the rate of photon absorption of the central disk is

$$
\begin{aligned}
R^{\prime} & =\alpha R=\frac{\alpha P}{h c / \lambda}=\frac{(0.84)(1.5 \mathrm{~W})}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(515 \times 10^{-9} \mathrm{~m}\right)} \\
& =3.3 \times 10^{18} \text { photons } / \mathrm{s} .
\end{aligned}
$$

13. The energy of an incident photon is $E=h f=h c / \lambda$, where h is the Planck constant, f is the frequency of the electromagnetic radiation, and λ is its wavelength. The kinetic energy of the most energetic electron emitted is

$$
K_{m}=E-\Phi=(h c / \lambda)-\Phi,
$$

where Φ is the work function for sodium. The stopping potential V_{0} is related to the maximum kinetic energy by $e V_{0}=K_{m}$, so $e V_{0}=(h c / \lambda)-\Phi$ and

$$
\lambda=\frac{h c}{e V_{0}+\Phi}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{5.0 \mathrm{eV}+2.2 \mathrm{eV}}=170 \mathrm{~nm}
$$

Here $e V_{0}=5.0 \mathrm{eV}$ and $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$ are used.
14. The energy of the most energetic photon in the visible light range (with wavelength of about 400 nm) is about $E=(1240 \mathrm{eV} \cdot \mathrm{nm} / 400 \mathrm{~nm})=3.1 \mathrm{eV}$ (using the fact that $h c=1240$ $\mathrm{eV} \cdot \mathrm{nm}$). Consequently, barium and lithium can be used, since their work functions are both lower than 3.1 eV .
15. The speed v of the electron satisfies

$$
K_{\max }=\frac{1}{2} m_{e} v^{2}=\frac{1}{2}\left(m_{e} c^{2}\right)(v / c)^{2}=E_{\text {photon }}-\Phi .
$$

Using Table 38-3, we find

$$
v=c \sqrt{\frac{2\left(E_{\text {photon }}-\Phi\right)}{m_{e} c^{2}}}=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{\frac{2(5.80 \mathrm{eV}-4.50 \mathrm{eV})}{511 \times 10^{3} \mathrm{eV}}}=6.76 \times 10^{5} \mathrm{~m} / \mathrm{s} .
$$

16. We use Eq. 38-5 to find the maximum kinetic energy of the ejected electrons:

$$
K_{\max }=h f-\Phi=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{15} \mathrm{~Hz}\right)-2.3 \mathrm{eV}=10 \mathrm{eV}
$$

17. (a) We use Eq. 38-6:

$$
V_{\text {stop }}=\frac{h f-\Phi}{e}=\frac{h c / \lambda-\Phi}{e}=\frac{(1240 \mathrm{eV} \cdot \mathrm{~nm} / 400 \mathrm{~nm})-1.8 \mathrm{eV}}{e}=1.3 \mathrm{~V} .
$$

(b) We use the formula obtained in the solution of problem 15:

$$
\begin{aligned}
v & =\sqrt{\frac{2\left(E_{\text {photon }}-\Phi\right)}{m_{e}}}=\sqrt{\frac{2 e V_{\text {stop }}}{m_{e}}}=c \sqrt{\frac{2 e V_{\text {stop }}}{m_{e} c^{2}}}=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{\frac{2 e(1.3 \mathrm{~V})}{511 \times 10^{3} \mathrm{eV}}} \\
& =6.8 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

18. To find the longest possible wavelength $\lambda_{\max }$ (corresponding to the lowest possible energy) of a photon which can produce a photoelectric effect in platinum, we set $K_{\max }=0$ in Eq. 38-5 and use $h f=h c / \lambda$. Thus $h c / \lambda_{\max }=\Phi$. We solve for $\lambda_{\max }$:

$$
\lambda_{\max }=\frac{h c}{\Phi}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{5.32 \mathrm{~nm}}=233 \mathrm{~nm} .
$$

19. (a) The kinetic energy K_{m} of the fastest electron emitted is given by

$$
K_{m}=h f-\Phi=(h c / \lambda)-\Phi,
$$

where Φ is the work function of aluminum, f is the frequency of the incident radiation, and λ is its wavelength. The relationship $f=c / \lambda$ was used to obtain the second form. Thus,

$$
K_{m}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{200 \mathrm{~nm}}-4.20 \mathrm{eV}=2.00 \mathrm{eV}
$$

Where we have used $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$.
(b) The slowest electron just breaks free of the surface and so has zero kinetic energy.
(c) The stopping potential V_{0} is given by $K_{m}=e V_{0}$, so $V_{0}=K_{m} / e=(2.00 \mathrm{eV}) / e=2.00 \mathrm{~V}$.
(d) The value of the cutoff wavelength is such that $K_{m}=0$. Thus $h c / \lambda=\Phi$ or

$$
\lambda=h c / \Phi=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /(4.2 \mathrm{eV})=295 \mathrm{~nm} .
$$

If the wavelength is longer, the photon energy is less and a photon does not have sufficient energy to knock even the most energetic electron out of the aluminum sample.
20. We use Eq. 38-6 and the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$:

$$
K_{\max }=E_{\text {photon }}-\Phi=\frac{h c}{\lambda}-\frac{h c}{\lambda_{\max }}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{254 \mathrm{~nm}}-\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{325 \mathrm{~nm}}=1.07 \mathrm{eV}
$$

21. (a) We use the photoelectric effect equation (Eq. 38-5) in the form $h c / \lambda=\Phi+K_{m}$. The work function depends only on the material and the condition of the surface, and not on the wavelength of the incident light. Let λ_{1} be the first wavelength described and λ_{2} be the second. Let $K_{m 1}=0.710 \mathrm{eV}$ be the maximum kinetic energy of electrons ejected by light with the first wavelength, and $K_{m 2}=1.43 \mathrm{eV}$ be the maximum kinetic energy of electrons ejected by light with the second wavelength. Then,

$$
\frac{h c}{\lambda_{1}}=\Phi+K_{m 1} \quad \text { and } \quad \frac{h c}{\lambda_{2}}=\Phi+K_{m 2} .
$$

The first equation yields $\Phi=\left(h c / \lambda_{1}\right)-K_{m 1}$. When this is used to substitute for Φ in the second equation, the result is

$$
\left(h c / \lambda_{2}\right)=\left(h c / \lambda_{1}\right)-K_{m 1}+K_{m 2} .
$$

The solution for λ_{2} is

$$
\begin{aligned}
\lambda_{2} & =\frac{h c \lambda_{1}}{h c+\lambda_{1}\left(K_{m 2}-K_{m 1}\right)}=\frac{(1240 \mathrm{~V} \cdot \mathrm{~nm})(491 \mathrm{~nm})}{1240 \mathrm{eV} \cdot \mathrm{~nm}+(491 \mathrm{~nm})(1.43 \mathrm{eV}-0.710 \mathrm{eV})} \\
& =382 \mathrm{~nm} .
\end{aligned}
$$

Here $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$ has been used.
(b) The first equation displayed above yields

$$
\Phi=\frac{h c}{\lambda_{1}}-K_{m 1}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{491 \mathrm{~nm}}-0.710 \mathrm{eV}=1.82 \mathrm{eV}
$$

22. (a) For the first and second case (labeled 1 and 2) we have $e V_{01}=h c / \lambda_{1}-\Phi$ and $e V_{02}$ $=h c / \lambda_{2}-\Phi$, from which h and Φ can be determined. Thus,

$$
h=\frac{e\left(V_{1}-V_{2}\right)}{c\left(\lambda_{1}^{-1}-\lambda_{2}^{-1}\right)}=\frac{1.85 \mathrm{eV}-0.820 \mathrm{eV}}{\left(3.00 \times 10^{17} \mathrm{~nm} / \mathrm{s}\right)\left[(300 \mathrm{~nm})^{-1}-(400 \mathrm{~nm})^{-1}\right]}=4.12 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}
$$

(b) The work function is

$$
\Phi=\frac{3\left(V_{2} \lambda_{2}-V_{1} \lambda_{1}\right)}{\lambda_{1}-\lambda_{2}}=\frac{(0.820 \mathrm{eV})(400 \mathrm{~nm})-(1.85 \mathrm{eV})(300 \mathrm{~nm})}{300 \mathrm{~nm}-400 \mathrm{~nm}}=2.27 \mathrm{eV}
$$

(c) Let $\Phi=h c / \lambda_{\text {max }}$ to obtain

$$
\lambda_{\max }=\frac{h c}{\Phi}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{2.27 \mathrm{eV}}=545 \mathrm{~nm}
$$

23. (a) Find the speed v of the electron from $r=m_{e} v / e B: v=r B e / m_{e}$. Thus

$$
\begin{aligned}
K_{\max } & =\frac{1}{2} m_{e} v^{2}=\frac{1}{2} m_{e}\left(\frac{r B e}{m_{e}}\right)^{2}=\frac{(r B)^{2} e^{2}}{2 m_{e}}=\frac{\left(1.88 \times 10^{-4} \mathrm{~T} \cdot \mathrm{~m}\right)^{2}\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{2\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)} \\
& =3.1 \mathrm{keV}
\end{aligned}
$$

(b) Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, the work done is

$$
W=E_{\text {photon }}-K_{\max }=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{71 \times 10^{-3} \mathrm{~nm}}-3.10 \mathrm{keV}=14 \mathrm{keV}
$$

24. Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, the number of photons emitted from the laser per unit time is

$$
R=\frac{P}{E_{\mathrm{ph}}}=\frac{2.00 \times 10^{-3} \mathrm{~W}}{(1240 \mathrm{eV} \cdot \mathrm{~nm} / 600 \mathrm{~nm})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=6.05 \times 10^{15} / \mathrm{s},
$$

of which $\left(1.0 \times 10^{-16}\right)\left(6.05 \times 10^{15} / \mathrm{s}\right)=0.605 / \mathrm{s}$ actually cause photoelectric emissions. Thus the current is

$$
i=(0.605 / \mathrm{s})\left(1.60 \times 10^{-19} \mathrm{C}\right)=9.68 \times 10^{-20} \mathrm{~A} .
$$

25. (a) When a photon scatters from an electron initially at rest, the change in wavelength is given by $\Delta \lambda=(h / m c)(1-\cos \phi)$, where m is the mass of an electron and ϕ is the scattering angle. Now, $h / m c=2.43 \times 10^{-12} \mathrm{~m}=2.43 \mathrm{pm}$, so

$$
\Delta \lambda=(2.43 \mathrm{pm})\left(1-\cos 30^{\circ}\right)=0.326 \mathrm{pm} .
$$

The final wavelength is

$$
\lambda^{\prime}=\lambda+\Delta \lambda=2.4 \mathrm{pm}+0.326 \mathrm{pm}=2.73 \mathrm{pm} .
$$

(b) Now, $\Delta \lambda=(2.43 \mathrm{pm})\left(1-\cos 120^{\circ}\right)=3.645 \mathrm{pm}$ and

$$
\lambda^{\prime}=2.4 \mathrm{pm}+3.645 \mathrm{pm}=6.05 \mathrm{pm}
$$

26. (a) The rest energy of an electron is given by $E=m_{e} c^{2}$. Thus the momentum of the photon in question is given by

$$
\begin{aligned}
p & =\frac{E}{c}=\frac{m_{e} c^{2}}{c}=m_{e} c=\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=2.73 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& =0.511 \mathrm{MeV} / c .
\end{aligned}
$$

(b) From Eq. 38-7,

$$
\lambda=\frac{h}{p}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{2.73 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}=2.43 \times 10^{-12} \mathrm{~m}=2.43 \mathrm{pm} .
$$

(c) Using Eq. 38-1,

$$
f=\frac{c}{\lambda}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{2.43 \times 10^{-12} \mathrm{~m}}=1.24 \times 10^{20} \mathrm{~Hz}
$$

27. (a) The x-ray frequency is

$$
f=\frac{c}{\lambda}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{35.0 \times 10^{-12} \mathrm{~m}}=8.57 \times 10^{18} \mathrm{~Hz}
$$

(b) The x-ray photon energy is

$$
E=h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(8.57 \times 10^{18} \mathrm{~Hz}\right)=3.55 \times 10^{4} \mathrm{eV}
$$

(c) From Eq. 38-7,

$$
p=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{35.0 \times 10^{-12} \mathrm{~m}}=1.89 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=35.4 \mathrm{keV} / \mathrm{c} .
$$

28. (a) Eq. 38-11 yields

$$
\Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi)=(2.43 \mathrm{pm})\left(1-\cos 180^{\circ}\right)=+4.86 \mathrm{pm} .
$$

(b) Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, the change in photon energy is

$$
\Delta E=\frac{h c}{\lambda^{\prime}}-\frac{h c}{\lambda}=(1240 \mathrm{eV} \cdot \mathrm{~nm})\left(\frac{1}{0.01 \mathrm{~nm}+4.86 \mathrm{pm}}-\frac{1}{0.01 \mathrm{~nm}}\right)=-40.6 \mathrm{keV}
$$

(c) From conservation of energy, $\Delta K=-\Delta E=40.6 \mathrm{keV}$.
(d) The electron will move straight ahead after the collision, since it has acquired some of the forward linear momentum from the photon. Thus, the angle between $+x$ and the direction of the electron's motion is zero.
29. (a) Since the mass of an electron is $m=9.109 \times 10^{-31} \mathrm{~kg}$, its Compton wavelength is

$$
\lambda_{C}=\frac{h}{m c}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=2.426 \times 10^{-12} \mathrm{~m}=2.43 \mathrm{pm}
$$

(b) Since the mass of a proton is $m=1.673 \times 10^{-27} \mathrm{~kg}$, its Compton wavelength is

$$
\lambda_{C}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(1.673 \times 10^{-27} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.321 \times 10^{-15} \mathrm{~m}=1.32 \mathrm{fm} .
$$

(c) We use the formula $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, which gives $E=(1240 \mathrm{eV} \cdot \mathrm{nm}) / \lambda$, where E is the energy and λ is the wavelength. Thus for the electron,

$$
E=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(2.426 \times 10^{-3} \mathrm{~nm}\right)=5.11 \times 10^{5} \mathrm{eV}=0.511 \mathrm{MeV}
$$

(d) For the proton,

$$
E=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(1.321 \times 10^{-6} \mathrm{~nm}\right)=9.39 \times 10^{8} \mathrm{eV}=939 \mathrm{MeV}
$$

30. (a) Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, we find

$$
\lambda=\frac{h c}{E}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{0.511 \mathrm{MeV}}=2.43 \times 10^{-3} \mathrm{~nm}=2.43 \mathrm{pm} .
$$

(b) Now, Eq. 38-11 leads to

$$
\begin{aligned}
\lambda^{\prime} & =\lambda+\Delta \lambda=\lambda+\frac{h}{m_{e} c}(1-\cos \phi)=2.43 \mathrm{pm}+(2.43 \mathrm{pm})\left(1-\cos 90.0^{\circ}\right) \\
& =4.86 \mathrm{pm} .
\end{aligned}
$$

(c) The scattered photons have energy equal to

$$
E^{\prime}=E\left(\frac{\lambda}{\lambda^{\prime}}\right)=(0.511 \mathrm{MeV})\left(\frac{2.43 \mathrm{pm}}{4.86 \mathrm{pm}}\right)=0.255 \mathrm{MeV}
$$

31. (a) The fractional change is

$$
\begin{aligned}
\frac{\Delta E}{E} & =\frac{\Delta(h c / \lambda)}{h c / \lambda}=\lambda \Delta\left(\frac{1}{\lambda}\right)=\lambda\left(\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}\right)=\frac{\lambda}{\lambda^{\prime}}-1=\frac{\lambda}{\lambda+\Delta \lambda}-1 \\
& =-\frac{1}{\lambda / \Delta \lambda+1}=-\frac{1}{\left(\lambda / \lambda_{c}\right)(1-\cos \phi)^{-1}+1} .
\end{aligned}
$$

If $\lambda=3.0 \mathrm{~cm}=3.0 \times 10^{10} \mathrm{pm}$ and $\phi=90^{\circ}$, the result is

$$
\frac{\Delta E}{E}=-\frac{1}{\left(3.0 \times 10^{10} \mathrm{pm} / 2.43 \mathrm{pm}\right)\left(1-\cos 90^{\circ}\right)^{-1}+1}=-8.1 \times 10^{-11}=-8.1 \times 10^{-9} \% .
$$

(b) Now $\lambda=500 \mathrm{~nm}=5.00 \times 10^{5} \mathrm{pm}$ and $\phi=90^{\circ}$, so

$$
\frac{\Delta E}{E}=-\frac{1}{\left(5.00 \times 10^{5} \mathrm{pm} / 2.43 \mathrm{pm}\right)\left(1-\cos 90^{\circ}\right)^{-1}+1}=-4.9 \times 10^{-6}=-4.9 \times 10^{-4} \% .
$$

(c) With $\lambda=25 \mathrm{pm}$ and $\phi=90^{\circ}$, we find

$$
\frac{\Delta E}{E}=-\frac{1}{(25 \mathrm{pm} / 2.43 \mathrm{pm})\left(1-\cos 90^{\circ}\right)^{-1}+1}=-8.9 \times 10^{-2}=-8.9 \% .
$$

(d) In this case, $\lambda=h c / E=1240 \mathrm{~nm} \cdot \mathrm{eV} / 1.0 \mathrm{MeV}=1.24 \times 10^{-3} \mathrm{~nm}=1.24 \mathrm{pm}$, so

$$
\frac{\Delta E}{E}=-\frac{1}{(1.24 \mathrm{pm} / 2.43 \mathrm{pm})\left(1-\cos 90^{\circ}\right)^{-1}+1}=-0.66=-66 \% .
$$

(e) From the calculation above, we see that the shorter the wavelength the greater the fractional energy change for the photon as a result of the Compton scattering. Since $\Delta E / E$ is virtually zero for microwave and visible light, the Compton effect is significant only in the x -ray to gamma ray range of the electromagnetic spectrum.
32. The $(1-\cos \phi)$ factor in Eq. 38-11 is largest when $\phi=180^{\circ}$. Thus, using Table 38-3, we obtain

$$
\Delta \lambda_{\max }=\frac{h c}{m_{p} c^{2}}\left(1-\cos 180^{\circ}\right)=\frac{1240 \mathrm{MeV} \cdot \mathrm{fm}}{938 \mathrm{MeV}}(1-(-1))=2.64 \mathrm{fm}
$$

where we have used that fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{MeV} \cdot \mathrm{fm}$.
33. If E is the original energy of the photon and E^{\prime} is the energy after scattering, then the fractional energy loss is

$$
\frac{\Delta E}{E}=\frac{E-E^{\prime}}{E}=\frac{\Delta \lambda}{\lambda+\Delta \lambda}
$$

using the result from Sample Problem 38-4. Thus

$$
\frac{\Delta \lambda}{\lambda}=\frac{\Delta E / E}{1-\Delta E / E}=\frac{0.75}{1-0.75}=3=300 \% .
$$

A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon.
34. The initial wavelength of the photon is (using $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$)

$$
\lambda=\frac{h c}{E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{17500 \mathrm{eV}}=0.07086 \mathrm{~nm}
$$

or 70.86 pm . The maximum Compton shift occurs for $\phi=180^{\circ}$, in which case Eq. 38-11 (applied to an electron) yields

$$
\Delta \lambda=\left(\frac{h c}{m_{e} c^{2}}\right)\left(1-\cos 180^{\circ}\right)=\left(\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{511 \times 10^{3} \mathrm{eV}}\right)(1-(-1))=0.00485 \mathrm{~nm}
$$

where Table 38-3 is used. Therefore, the new photon wavelength is

$$
\lambda^{\prime}=0.07086 \mathrm{~nm}+0.00485 \mathrm{~nm}=0.0757 \mathrm{~nm} .
$$

Consequently, the new photon energy is

$$
E^{\prime}=\frac{h c}{\lambda^{\prime}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.0757 \mathrm{~nm}}=1.64 \times 10^{4} \mathrm{eV}=16.4 \mathrm{keV}
$$

By energy conservation, then, the kinetic energy of the electron must equal

$$
E^{\prime}-E=17.5 \mathrm{keV}-16.4 \mathrm{keV}=1.1 \mathrm{keV}
$$

35. (a) From Eq. 38-11

$$
\Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi)=(2.43 \mathrm{pm})\left(1-\cos 90^{\circ}\right)=2.43 \mathrm{pm} .
$$

(b) The fractional shift should be interpreted as $\Delta \lambda$ divided by the original wavelength:

$$
\frac{\Delta \lambda}{\lambda}=\frac{2.425 \mathrm{pm}}{590 \mathrm{~nm}}=4.11 \times 10^{-6}
$$

(c) The change in energy for a photon with $\lambda=590 \mathrm{~nm}$ is given by

$$
\begin{aligned}
\Delta E_{\mathrm{ph}} & =\Delta\left(\frac{h c}{\lambda}\right) \approx-\frac{h c \Delta \lambda}{\lambda^{2}} \\
& =-\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(2.43 \mathrm{pm})}{(590 \mathrm{~nm})^{2}} \\
& =-8.67 \times 10^{-6} \mathrm{eV}
\end{aligned}
$$

(d) For an x-ray photon of energy $E_{\mathrm{ph}}=50 \mathrm{keV}, \Delta \lambda$ remains the same (2.43 pm), since it is independent of E_{ph}.
(e) The fractional change in wavelength is now

$$
\frac{\Delta \lambda}{\lambda}=\frac{\Delta \lambda}{h c / E_{\mathrm{ph}}}=\frac{\left(50 \times 10^{3} \mathrm{eV}\right)(2.43 \mathrm{pm})}{\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=9.78 \times 10^{-2}
$$

(f) The change in photon energy is now

$$
\Delta E_{\mathrm{ph}}=h c\left(\frac{1}{\lambda+\Delta \lambda}-\frac{1}{\lambda}\right)=-\left(\frac{h c}{\lambda}\right) \frac{\Delta \lambda}{\lambda+\Delta \lambda}=-E_{\mathrm{ph}}\left(\frac{\alpha}{1+\alpha}\right)
$$

where $\alpha=\Delta \lambda / \lambda$. With $E_{\mathrm{ph}}=50 \mathrm{keV}$ and $\alpha=9.78 \times 10^{-2}$, we obtain $\Delta E_{\mathrm{ph}}=-4.45 \mathrm{keV}$. (Note that in this case $\alpha \approx 0.1$ is not close enough to zero so the approximation $\Delta E_{\mathrm{ph}} \approx$ $h c \Delta \lambda / \lambda^{2}$ is not as accurate as in the first case, in which $\alpha=4.12 \times 10^{-6}$. In fact if one were to use this approximation here, one would get $\Delta E_{\mathrm{ph}} \approx-4.89 \mathrm{keV}$, which does not amount to a satisfactory approximation.)
36. Referring to Sample Problem 38-4, we see that the fractional change in photon energy is

$$
\frac{E-E_{\mathrm{n}}}{E}=\frac{\Delta \lambda}{\lambda+\Delta \lambda}=\frac{(h / m c)(1-\cos \phi)}{(h c / E)+(h / m c)(1-\cos \phi)} .
$$

Energy conservation demands that $E-E^{\prime}=K$, the kinetic energy of the electron. In the maximal case, $\phi=180^{\circ}$, and we find

$$
\frac{K}{E}=\frac{(h / m c)\left(1-\cos 180^{\circ}\right)}{(h c / E)+(h / m c)\left(1-\cos 180^{\circ}\right)}=\frac{2 h / m c}{(h c / E)+(2 h / m c)} .
$$

Multiplying both sides by E and simplifying the fraction on the right-hand side leads to

$$
K=E\left(\frac{2 / m c}{c / E+2 / m c}\right)=\frac{E^{2}}{m c^{2} / 2+E} .
$$

37. (a) From Eq. $38-11, \Delta \lambda=\left(h / m_{e} c\right)(1-\cos \phi)$. In this case $\phi=180^{\circ}($ so $\cos \phi=-1)$, and the change in wavelength for the photon is given by $\Delta \lambda=2 h / m_{e} c$. The energy E^{\prime} of the scattered photon (whose initial energy is $E=h c / \lambda$) is then

$$
\begin{aligned}
E^{\prime} & =\frac{h c}{\lambda+\Delta \lambda}=\frac{E}{1+\Delta \lambda / \lambda}=\frac{E}{1+\left(2 h / m_{e} c\right)(E / h c)}=\frac{E}{1+2 E / m_{e} c^{2}} \\
& =\frac{50.0 \mathrm{keV}}{1+2(50.0 \mathrm{keV}) / 0.511 \mathrm{MeV}}=41.8 \mathrm{keV} .
\end{aligned}
$$

(b) From conservation of energy the kinetic energy K of the electron is given by

$$
K=E-E^{\prime}=50.0 \mathrm{keV}-41.8 \mathrm{keV}=8.2 \mathrm{keV}
$$

38. The magnitude of the fractional energy change for the photon is given by

$$
\left|\frac{\Delta E_{\mathrm{ph}}}{E_{\mathrm{ph}}}\right|=\left|\frac{\Delta(h c / \lambda)}{h c / \lambda}\right|=\left|\lambda \Delta\left(\frac{1}{\lambda}\right)\right|=\lambda\left(\frac{1}{\lambda}-\frac{1}{\lambda+\Delta \lambda}\right)=\frac{\Delta \lambda}{\lambda+\Delta \lambda}=\beta
$$

where $\beta=0.10$. Thus $\Delta \lambda=\lambda \beta /(1-\beta)$. We substitute this expression for $\Delta \lambda$ in Eq. 38-11 and solve for $\cos \phi$:

$$
\begin{aligned}
\cos \phi & =1-\frac{m c}{h} \Delta \lambda=1-\frac{m c \lambda \beta}{h(1-\beta)}=1-\frac{\beta\left(m c^{2}\right)}{(1-\beta) E_{\mathrm{ph}}} \\
& =1-\frac{(0.10)(511 \mathrm{keV})}{(1-0.10)(200 \mathrm{keV})}=0.716 .
\end{aligned}
$$

This leads to an angle of $\phi=44^{\circ}$.
39. We start with the result of Exercise 49: $\lambda=h / \sqrt{2 m K}$. Replacing K with $\mathrm{e} V$, where V is the accelerating potential and e is the fundamental charge, we obtain

$$
\begin{aligned}
\lambda & =\frac{h}{\sqrt{2 m e V}}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)\left(25.0 \times 10^{3} \mathrm{~V}\right)}} \\
& =7.75 \times 10^{-12} \mathrm{~m}=7.75 \mathrm{pm} .
\end{aligned}
$$

40. (a) Using Table 38-3 and the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, we obtain

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m_{e} K}}=\frac{h c}{\sqrt{2 m_{e} c^{2} K}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{\sqrt{2(511000 \mathrm{eV})(1000 \mathrm{eV})}}=0.0388 \mathrm{~nm} .
$$

(b) A photon's de Broglie wavelength is equal to its familiar wave-relationship value. Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$,

$$
\lambda=\frac{h c}{E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \mathrm{keV}}=1.24 \mathrm{~nm} .
$$

(c) The neutron mass may be found in Appendix B. Using the conversion from electronvolts to Joules, we obtain

$$
\lambda=\frac{h}{\sqrt{2 m_{n} K}}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(1.675 \times 10^{-27} \mathrm{~kg}\right)\left(1.6 \times 10^{-16} \mathrm{~J}\right)}}=9.06 \times 10^{-13} \mathrm{~m} .
$$

41. If K is given in electron volts, then

$$
\lambda=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) K}}=\frac{1.226 \times 10^{-9} \mathrm{~m} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}}=\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}}
$$

where K is the kinetic energy. Thus

$$
K=\left(\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{\lambda}\right)^{2}=\left(\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{590 \mathrm{~nm}}\right)^{2}=4.32 \times 10^{-6} \mathrm{eV}
$$

42. (a) We solve v from $\lambda=h / p=h /\left(m_{p} v\right)$:

$$
v=\frac{h}{m_{p} \lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(1.675 \times 10^{-27} \mathrm{~kg}\right)\left(0.100 \times 10^{-12} \mathrm{~m}\right)}=3.96 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(b) We set $\mathrm{eV}=K=\frac{1}{2} m_{p} v^{2}$ and solve for the voltage:

$$
V=\frac{m_{p} v^{2}}{2 e}=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3.96 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(1.60 \times 10^{-19} \mathrm{C}\right)}=8.18 \times 10^{4} \mathrm{~V}=81.8 \mathrm{kV}
$$

43. (a) The momentum of the photon is given by $p=E / c$, where E is its energy. Its wavelength is

$$
\lambda=\frac{h}{p}=\frac{h c}{E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \mathrm{eV}}=1240 \mathrm{~nm} .
$$

(b) The momentum of the electron is given by $p=\sqrt{2 m K}$, where K is its kinetic energy and m is its mass. Its wavelength is

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K}} .
$$

If K is given in electron volts, then

$$
\lambda=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) K}}=\frac{1.226 \times 10^{-9} \mathrm{~m} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}}=\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}}
$$

For $K=1.00 \mathrm{eV}$, we have

$$
\lambda=\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{1.00 \mathrm{eV}}}=1.23 \mathrm{~nm}
$$

(c) For the photon,

$$
\lambda=\frac{h c}{E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \times 10^{9} \mathrm{eV}}=1.24 \times 10^{-6} \mathrm{~nm}=1.24 \mathrm{fm} .
$$

(d) Relativity theory must be used to calculate the wavelength for the electron. According to Eq. 38-51, the momentum p and kinetic energy K are related by $(p c)^{2}=K^{2}+2 K m c^{2}$. Thus,

$$
\begin{aligned}
p c & =\sqrt{K^{2}+2 K m c^{2}}=\sqrt{\left(1.00 \times 10^{9} \mathrm{eV}\right)^{2}+2\left(1.00 \times 10^{9} \mathrm{eV}\right)\left(0.511 \times 10^{6} \mathrm{eV}\right)} \\
& =1.00 \times 10^{9} \mathrm{eV} .
\end{aligned}
$$

The wavelength is

$$
\lambda=\frac{h}{p}=\frac{h c}{p c}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \times 10^{9} \mathrm{eV}}=1.24 \times 10^{-6} \mathrm{~nm}=1.24 \mathrm{fm} .
$$

44. (a) The momentum of the electron is

$$
p=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{0.20 \times 10^{-9} \mathrm{~m}}=3.3 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(b) The momentum of the photon is the same as that of the electron: $p=3.3 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
(c) The kinetic energy of the electron is

$$
K_{e}=\frac{p^{2}}{2 m_{e}}=\frac{\left(3.3 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}=6.0 \times 10^{-18} \mathrm{~J}=38 \mathrm{eV} .
$$

(d) The kinetic energy of the photon is

$$
K_{\mathrm{ph}}=p c=\left(3.3 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=9.9 \times 10^{-16} \mathrm{~J}=6.2 \mathrm{keV} .
$$

45. (a) The kinetic energy acquired is $K=q V$, where q is the charge on an ion and V is the accelerating potential. Thus

$$
K=\left(1.60 \times 10^{-19} \mathrm{C}\right)(300 \mathrm{~V})=4.80 \times 10^{-17} \mathrm{~J}
$$

The mass of a single sodium atom is, from Appendix F,

$$
m=(22.9898 \mathrm{~g} / \mathrm{mol}) /\left(6.02 \times 10^{23} \text { atom } / \mathrm{mol}\right)=3.819 \times 10^{-23} \mathrm{~g}=3.819 \times 10^{-26} \mathrm{~kg} .
$$

Thus, the momentum of an ion is

$$
p=\sqrt{2 m K}=\sqrt{2\left(3.819 \times 10^{-26} \mathrm{~kg}\right)\left(4.80 \times 10^{-17} \mathrm{~J}\right)}=1.91 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

(b) The de Broglie wavelength is

$$
\lambda=\frac{h}{p}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{1.91 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}=3.46 \times 10^{-13} \mathrm{~m} .
$$

46. (a) We use the fact that $h c=1240 \mathrm{~nm} \cdot \mathrm{eV}$:

$$
E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{1.00 \mathrm{~nm}}=1.24 \mathrm{keV} .
$$

(b) For the electron, we have

$$
K=\frac{p^{2}}{2 m_{e}}=\frac{(h / \lambda)^{2}}{2 m_{e}}=\frac{(h c / \lambda)^{2}}{2 m_{e} c^{2}}=\frac{1}{2(0.511 \mathrm{MeV})}\left(\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \mathrm{~nm}}\right)^{2}=1.50 \mathrm{eV}
$$

(c) In this case, we find

$$
E_{\text {photon }}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{1.00 \times 10^{-6} \mathrm{~nm}}=1.24 \times 10^{9} \mathrm{eV}=1.24 \mathrm{GeV}
$$

(d) For the electron (recognizing that $1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{MeV} \cdot \mathrm{fm}$)

$$
\begin{aligned}
K & =\sqrt{p^{2} c^{2}+\left(m_{e} c^{2}\right)^{2}}-m_{e} c^{2}=\sqrt{(h c / \lambda)^{2}+\left(m_{e} c^{2}\right)^{2}}-m_{e} c^{2} \\
& =\sqrt{\left(\frac{1240 \mathrm{MeV} \cdot \mathrm{fm}}{1.00 \mathrm{fm}}\right)^{2}+(0.511 \mathrm{MeV})^{2}}-0.511 \mathrm{MeV} \\
& =1.24 \times 10^{3} \mathrm{MeV}=1.24 \mathrm{GeV} .
\end{aligned}
$$

We note that at short λ (large K) the kinetic energy of the electron, calculated with the relativistic formula, is about the same as that of the photon. This is expected since now K $\approx E \approx p c$ for the electron, which is the same as $E=p c$ for the photon.
47. (a) We need to use the relativistic formula $p=\sqrt{(E / c)^{2}-m_{e}^{2} c^{2}} \approx E / c \approx K / c$ (since $E \gg m_{e} c^{2}$). So

$$
\lambda=\frac{h}{p} \approx \frac{h c}{K}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{50 \times 10^{9} \mathrm{eV}}=2.5 \times 10^{-8} \mathrm{~nm}=0.025 \mathrm{fm} .
$$

(b) With $R=5.0 \mathrm{fm}$, we obtain $R / \lambda=2.0 \times 10^{2}$.
48. (a) Since $K=7.5 \mathrm{MeV} \ll m_{\alpha} c^{2}=4(932 \mathrm{MeV})$, we may use the non-relativistic formula $p=\sqrt{2 m_{\alpha} K}$. Using Eq. 38-43 (and noting that $1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{MeV} \cdot \mathrm{fm}$), we obtain

$$
\lambda=\frac{h}{p}=\frac{h c}{\sqrt{2 m_{\alpha} c^{2} K}}=\frac{1240 \mathrm{MeV} \cdot \mathrm{fm}}{\sqrt{2(4 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})(7.5 \mathrm{MeV})}}=5.2 \mathrm{fm} .
$$

(b) Since $\lambda=5.2 \mathrm{fm} \ll 30 \mathrm{fm}$, to a fairly good approximation, the wave nature of the α particle does not need to be taken into consideration.
49. The wavelength associated with the unknown particle is $\lambda_{p}=h / p_{p}=h /\left(m_{p} v_{p}\right)$, where p_{p} is its momentum, m_{p} is its mass, and v_{p} is its speed. The classical relationship $p_{p}=$ $m_{p} v_{p}$ was used. Similarly, the wavelength associated with the electron is $\lambda_{e}=h /\left(m_{e} v_{e}\right)$, where m_{e} is its mass and v_{e} is its speed. The ratio of the wavelengths is $\lambda_{p} / \lambda_{e}=$ $\left(m_{e} v_{e}\right) /\left(m_{p} v_{p}\right)$, so

$$
m_{p}=\frac{v_{e} \lambda_{e}}{v_{p} \lambda_{p}} m_{e}=\frac{9.109 \times 10^{-31} \mathrm{~kg}}{3\left(1.813 \times 10^{-4}\right)}=1.675 \times 10^{-27} \mathrm{~kg} .
$$

According to Appendix B, this is the mass of a neutron.
50. (a) Setting $\lambda=h / p=h / \sqrt{(E / c)^{2}-m_{e}^{2} c^{2}}$, we solve for $K=E-m_{e} c^{2}$:

$$
\begin{aligned}
K & =\sqrt{\left(\frac{h c}{\lambda}\right)^{2}+m_{e}^{2} c^{4}}-m_{e} c^{2}=\sqrt{\left(\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{10 \times 10^{-3} \mathrm{~nm}}\right)^{2}+(0.511 \mathrm{MeV})^{2}}-0.511 \mathrm{MeV} \\
& =0.015 \mathrm{MeV}=15 \mathrm{keV}
\end{aligned}
$$

(b) Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{10 \times 10^{-3} \mathrm{~nm}}=1.2 \times 10^{5} \mathrm{eV}=120 \mathrm{keV}
$$

(c) The electron microscope is more suitable, as the required energy of the electrons is much less than that of the photons.
51. The same resolution requires the same wavelength, and since the wavelength and particle momentum are related by $p=h / \lambda$, we see that the same particle momentum is required. The momentum of a 100 keV photon is

$$
p=E / c=\left(100 \times 10^{3} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=5.33 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

This is also the magnitude of the momentum of the electron. The kinetic energy of the electron is

$$
K=\frac{p^{2}}{2 m}=\frac{\left(5.33 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}=1.56 \times 10^{-15} \mathrm{~J}
$$

The accelerating potential is

$$
V=\frac{K}{e}=\frac{1.56 \times 10^{-15} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{C}}=9.76 \times 10^{3} \mathrm{~V}
$$

52. (a)

$$
\begin{aligned}
n n^{*} & =(a+i b)(a+i b)^{*}=(a+i b)\left(a^{*}+i^{*} b^{*}\right)=(a+i b)(a-i b) \\
& =a^{2}+i b a-i a b+(i b)(-i b)=a^{2}+b^{2},
\end{aligned}
$$

which is always real since both a and b are real.
(b)

$$
\begin{aligned}
& |n m|=|(a+i b)(c+i d)|=\left|a c+i a d+i b c+(-i)^{2} b d\right|=|(a c-b d)+i(a d+b c)| \\
& =\sqrt{(a c-b d)^{2}+(a d+b c)^{2}}=\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}
\end{aligned}
$$

However, since

$$
\begin{aligned}
|n \| m| & =|a+i b||c+i d|=\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}} \\
& =\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}},
\end{aligned}
$$

we conclude that $|n m|=|n||m|$.
53. We plug Eq. 38-17 into Eq. 38-16, and note that

$$
\frac{d \psi}{d x}=\frac{d}{d x}\left(A e^{i k x}+B e^{-i k x}\right)=i k A e^{i k x}-i k B e^{-i k x} .
$$

Also,

$$
\frac{d^{2} \psi}{d x^{2}}=\frac{d}{d x}\left(i k A e^{i k x}-i k B e^{-i k x}\right)=-k^{2} A e^{i k x}-k^{2} B e^{i k x}
$$

Thus,

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=-k^{2} A e^{i k x}-k^{2} B e^{i k x}+k^{2}\left(A e^{i k x}+B e^{-i k x}\right)=0 .
$$

54. (a) We use Euler's formula $e^{i \phi}=\cos \phi+i \sin \phi$ to re-write $\psi(x)$ as

$$
\psi(x)=\psi_{0} e^{i k x}=\psi_{0}(\cos k x+i \sin k x)=\left(\psi_{0} \cos k x\right)+i\left(\psi_{0} \sin k x\right)=a+i b,
$$

where $a=\psi_{0} \cos k x$ and $b=\psi_{0} \sin k x$ are both real quantities.
(b)

$$
\begin{aligned}
\psi(x, t) & =\psi(x) e^{-i \omega t}=\psi_{0} e^{i k x} e^{-i \omega t}=\psi_{0} e^{i(k x-\omega t)} \\
& =\left[\psi_{0} \cos (k x-\omega t)\right]+i\left[\psi_{0} \sin (k x-\omega t)\right] .
\end{aligned}
$$

55. The angular wave number k is related to the wavelength λ by $k=2 \pi / \lambda$ and the wavelength is related to the particle momentum p by $\lambda=h / p$, so $k=2 \pi p / h$. Now, the kinetic energy K and the momentum are related by $K=p^{2} / 2 m$, where m is the mass of the particle. Thus $p=\sqrt{2 m K}$ and

$$
k=\frac{2 \pi \sqrt{2 m K}}{h} .
$$

56. The wave function is now given by

$$
\Psi(x, t)=\psi_{0} e^{-i(k x+\omega t)}
$$

This function describes a plane matter wave traveling in the negative x direction. An example of the actual particles that fit this description is a free electron with linear momentum $\vec{p}=-(h k / 2 \pi) \hat{i}$ and kinetic energy $K=p^{2} / 2 m_{e}=h^{2} k^{2} / 8 \pi^{2} m_{e}$.
57. For $U=U_{0}$, Schrödinger's equation becomes

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=0 .
$$

We substitute $\psi=\psi_{0} e^{i k x}$. The second derivative is $d^{2} \psi / d x^{2}=-k^{2} \psi_{0} e^{i k x}=-k^{2} \psi$. The result is

$$
-k^{2} \psi+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=0
$$

Solving for k, we obtain

$$
k=\sqrt{\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right]}=\frac{2 \pi}{h} \sqrt{2 m\left[E-U_{0}\right]} .
$$

58. (a) The wave function is now given by

$$
\Psi(x, t)=\psi_{0}\left[e^{i(k x-\omega t)}+e^{-i(k x+\omega t)}\right]=\psi_{0} e^{-i \omega t}\left(e^{i k x}+e^{-i k x}\right)
$$

Thus,

$$
\begin{aligned}
|\Psi(x, t)|^{2} & =\left|\psi_{0} e^{-i \omega t}\left(e^{i k x}+e^{-i k x}\right)\right|^{2}=\left|\psi_{0} e^{-i \omega t}\right|^{2}\left|e^{i k x}+e^{-i k x}\right|^{2}=\psi_{0}^{2}\left|e^{i k x}+e^{-i k x}\right|^{2} \\
& =\psi_{0}^{2}|(\cos k x+i \sin k x)+(\cos k x-i \sin k x)|^{2}=4 \psi_{0}^{2}(\cos k x)^{2} \\
& =2 \psi_{0}^{2}(1+\cos 2 k x) .
\end{aligned}
$$

(b) Consider two plane matter waves, each with the same amplitude $\psi_{0} / \sqrt{2}$ and traveling in opposite directions along the x axis. The combined wave Ψ is a standing wave:

$$
\Psi(x, t)=\psi_{0} e^{i(k x-\omega t)}+\psi_{0} e^{-i(k x+\omega t)}=\psi_{0}\left(e^{i k x}+e^{-i k x}\right) e^{-i \omega t}=\left(2 \psi_{0} \cos k x\right) e^{-i \omega t}
$$

Thus, the squared amplitude of the matter wave is

$$
|\Psi(x, t)|^{2}=\left(2 \psi_{0} \cos k x\right)^{2}\left|e^{-i \omega t}\right|^{2}=2 \psi_{0}^{2}(1+\cos 2 k x)
$$

which is shown below.

(c) We set $|\Psi(x, t)|^{2}=2 \psi_{0}^{2}(1+\cos 2 k x)=0$ to obtain $\cos (2 k x)=-1$. This gives

$$
2 k x=2\left(\frac{2 \pi}{\lambda}\right)=(2 n+1) \pi, \quad(n=0,1,2,3, \ldots)
$$

We solve for x :

$$
x=\frac{1}{4}(2 n+1) \lambda .
$$

(d) The most probable positions for finding the particle are where $|\Psi(x, t)| \propto(1+\cos 2 k x)$ reaches its maximum. Thus $\cos 2 k x=1$, or

$$
2 k x=2\left(\frac{2 \pi}{\lambda}\right)=2 n \pi, \quad(n=0,1,2,3, \ldots)
$$

We solve for x :

$$
x=\frac{1}{2} n \lambda .
$$

59. If the momentum is measured at the same time as the position, then

$$
\Delta p \approx \frac{\hbar}{\Delta x}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{2 \pi(50 \mathrm{pm})}=2.1 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

60. (a) Using the fact that $h c=1240 \mathrm{~nm} \cdot \mathrm{eV}$, we have

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{10.0 \times 10^{-3} \mathrm{~nm}}=124 \mathrm{keV}
$$

(b) The kinetic energy gained by the electron is equal to the energy decrease of the photon:

$$
\begin{aligned}
\Delta E & =\Delta\left(\frac{h c}{\lambda}\right)=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda+\Delta \lambda}\right)=\left(\frac{h c}{\lambda}\right)\left(\frac{\Delta \lambda}{\lambda+\Delta \lambda}\right)=\frac{E}{1+\frac{\lambda}{\Delta \lambda}} \\
& =\frac{E}{1+\frac{\lambda}{\lambda_{C}(1-\cos \phi)}}=\frac{124 \mathrm{keV}}{1+\frac{10.0 \mathrm{pm}}{(2.43 \mathrm{pm})\left(1-\cos 180^{\circ}\right)}} \\
& =40.5 \mathrm{keV} .
\end{aligned}
$$

(c) It is impossible to "view" an atomic electron with such a high-energy photon, because with the energy imparted to the electron the photon would have knocked the electron out of its orbit.
61. We use the uncertainty relationship $\Delta x \Delta p \geq \hbar$. Letting $\Delta x=\lambda$, the de Broglie wavelength, we solve for the minimum uncertainty in p :

$$
\Delta p=\frac{\hbar}{\Delta x}=\frac{h}{2 \pi \lambda}=\frac{p}{2 \pi}
$$

where the de Broglie relationship $p=h / \lambda$ is used. We use $1 / 2 \pi=0.080$ to obtain $\Delta p=$ $0.080 p$. We would expect the measured value of the momentum to lie between $0.92 p$ and $1.08 p$. Measured values of zero, $0.5 p$, and $2 p$ would all be surprising.
62. With

$$
T \approx e^{-2 b L}=\exp \left(-2 L \sqrt{\frac{8 \pi^{2} m\left(U_{b}-E\right)}{h^{2}}}\right),
$$

we have

$$
\begin{aligned}
E & =U_{b}-\frac{1}{2 m}\left(\frac{h \ln T}{4 \pi L}\right)^{2}=6.0 \mathrm{eV}-\frac{1}{2(0.511 \mathrm{MeV})}\left[\frac{(1240 \mathrm{eV} \cdot \mathrm{~nm})(\ln 0.001)}{4 \pi(0.70 \mathrm{~nm})}\right]^{2} \\
& =5.1 \mathrm{eV}
\end{aligned}
$$

63. (a) The transmission coefficient T for a particle of mass m and energy E that is incident on a barrier of height U_{b} and width L is given by

$$
T=e^{-2 b L},
$$

where

$$
b=\sqrt{\frac{8 \pi^{2} m\left(U_{b}-E\right)}{h^{2}}} .
$$

For the proton, we have

$$
\begin{aligned}
b & =\sqrt{\frac{8 \pi^{2}\left(1.6726 \times 10^{-27} \mathrm{~kg}\right)(10 \mathrm{MeV}-3.0 \mathrm{MeV})\left(1.6022 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{\left(6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}} \\
& =5.8082 \times 10^{14} \mathrm{~m}^{-1} .
\end{aligned}
$$

This gives $b L=\left(5.8082 \times 10^{14} \mathrm{~m}^{-1}\right)\left(10 \times 10^{-15} \mathrm{~m}\right)=5.8082$, and

$$
T=e^{-2(5.8082)}=9.02 \times 10^{-6} .
$$

The value of b was computed to a greater number of significant digits than usual because an exponential is quite sensitive to the value of the exponent.
(b) Mechanical energy is conserved. Before the proton reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the proton again has a potential energy of zero, thus a kinetic energy of 3.0 MeV .
(c) Energy is also conserved for the reflection process. After reflection, the proton has a potential energy of zero, and thus a kinetic energy of 3.0 MeV .
(d) The mass of a deuteron is $2.0141 \mathrm{u}=3.3454 \times 10^{-27} \mathrm{~kg}$, so

$$
\begin{aligned}
b & =\sqrt{\frac{8 \pi^{2}\left(3.3454 \times 10^{-27} \mathrm{~kg}\right)(10 \mathrm{MeV}-3.0 \mathrm{MeV})\left(1.6022 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{\left(6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}} \\
& =8.2143 \times 10^{14} \mathrm{~m}^{-1} .
\end{aligned}
$$

This gives $b L=\left(8.2143 \times 10^{14} \mathrm{~m}^{-1}\right)\left(10 \times 10^{-15} \mathrm{~m}\right)=8.2143$, and

$$
T=e^{-2(8.2143)}=7.33 \times 10^{-8} .
$$

(e) As in the case of a proton, mechanical energy is conserved. Before the deuteron reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the deuteron again has a potential energy of zero, thus a kinetic energy of 3.0 MeV .
(f) Energy is also conserved for the reflection process. After reflection, the deuteron has a potential energy of zero, and thus a kinetic energy of 3.0 MeV .
64. (a) The rate at which incident protons arrive at the barrier is

$$
n=1.0 \mathrm{kA} / 1.60 \times 10^{-19} \mathrm{C}=6.25 \times 10^{23} / \mathrm{s} .
$$

Letting $n T t=1$, we find the waiting time t :

$$
\begin{aligned}
t & =(n T)^{-1}=\frac{1}{n} \exp \left(2 L \sqrt{\frac{8 \pi^{2} m_{p}\left(U_{b}-E\right)}{h^{2}}}\right) \\
& =\left(\frac{1}{6.25 \times 10^{23} / \mathrm{s}}\right) \exp \left(\frac{2 \pi(0.70 \mathrm{~nm})}{1240 \mathrm{eV} \cdot \mathrm{~nm}} \sqrt{8(938 \mathrm{MeV})(6.0 \mathrm{eV}-5.0 \mathrm{eV})}\right) \\
& =3.37 \times 10^{111} \mathrm{~s} \approx 10^{104} \mathrm{y}
\end{aligned}
$$

which is much longer than the age of the universe.
(b) Replacing the mass of the proton with that of the electron, we obtain the corresponding waiting time for an electron:

$$
\begin{aligned}
t & =(n T)^{-1}=\frac{1}{n} \exp \left[2 L \sqrt{\frac{8 \pi^{2} m_{e}\left(U_{b}-E\right)}{h^{2}}}\right] \\
& =\left(\frac{1}{6.25 \times 10^{23} / \mathrm{s}}\right) \exp \left[\frac{2 \pi(0.70 \mathrm{~nm})}{1240 \mathrm{eV} \cdot \mathrm{~nm}} \sqrt{8(0.511 \mathrm{MeV})(6.0 \mathrm{eV}-5.0 \mathrm{eV})}\right] \\
& =2.1 \times 10^{-9} \mathrm{~s}
\end{aligned}
$$

The enormous difference between the two waiting times is the result of the difference between the masses of the two kinds of particles.
65. (a) If m is the mass of the particle and E is its energy, then the transmission coefficient for a barrier of height U_{b} and width L is given by

$$
T=e^{-2 b L}
$$

where

$$
b=\sqrt{\frac{8 \pi^{2} m\left(U_{b}-E\right)}{h^{2}}} .
$$

If the change ΔU_{b} in U_{b} is small (as it is), the change in the transmission coefficient is given by

$$
\Delta T=\frac{d T}{d U_{b}} \Delta U_{b}=-2 L T \frac{d b}{d U_{b}} \Delta U_{b} .
$$

Now,

$$
\frac{d b}{d U_{b}}=\frac{1}{2 \sqrt{U_{b}-E}} \sqrt{\frac{8 \pi^{2} m}{h^{2}}}=\frac{1}{2\left(U_{b}-E\right)} \sqrt{\frac{8 \pi^{2} m\left(U_{b}-E\right)}{h^{2}}}=\frac{b}{2\left(U_{b}-E\right)} .
$$

Thus,

$$
\Delta T=-L T b \frac{\Delta U_{b}}{U_{b}-E}
$$

For the data of Sample Problem 38-7, $2 b L=10.0$, so $b L=5.0$ and

$$
\frac{\Delta T}{T}=-b L \frac{\Delta U_{b}}{U_{b}-E}=-(5.0) \frac{(0.010)(6.8 \mathrm{eV})}{6.8 \mathrm{eV}-5.1 \mathrm{eV}}=-0.20
$$

There is a 20% decrease in the transmission coefficient.
(b) The change in the transmission coefficient is given by

$$
\Delta T=\frac{d T}{d L} \Delta L=-2 b e^{-2 b L} \Delta L=-2 b T \Delta L
$$

and

$$
\frac{\Delta T}{T}=-2 b \Delta L=-2\left(6.67 \times 10^{9} \mathrm{~m}^{-1}\right)(0.010)\left(750 \times 10^{-12} \mathrm{~m}\right)=-0.10
$$

There is a 10% decrease in the transmission coefficient.
(c) The change in the transmission coefficient is given by

$$
\Delta T=\frac{d T}{d E} \Delta E=-2 L e^{-2 b L} \frac{d b}{d E} \Delta E=-2 L T \frac{d b}{d E} \Delta E .
$$

Now, $d b / d E=-d b / d U_{b}=-b / 2\left(U_{b}-E\right)$, so

$$
\frac{\Delta T}{T}=b L \frac{\Delta E}{U_{b}-E}=(5.0) \frac{(0.010)(5.1 \mathrm{eV})}{6.8 \mathrm{eV}-5.1 \mathrm{eV}}=0.15
$$

There is a 15% increase in the transmission coefficient.
66. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. $38-1$. Our plot of the points and the line which gives the least squares fit to the data is shown below. The vertical axis is in volts and the horizontal axis, when multiplied by 10^{14}, gives the frequencies in Hertz.

From our least squares fit procedure, we determine the slope to be $4.14 \times 10^{-15} \mathrm{~V} \cdot \mathrm{~s}$, which is in very good agreement with the value given in Eq. 38-3 (once it has been multiplied by e).

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y intercept is the negative of the photoelectric work function. In this way, we find $\Phi=$ 2.31 eV .
67. Using the fact that $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$, we obtain

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{21 \times 10^{7} \mathrm{~nm}}=5.9 \times 10^{-6} \mathrm{eV}=5.9 \mu \mathrm{eV}
$$

68. (a) Since $E_{\mathrm{ph}}=h / \lambda=1240 \mathrm{eV} \cdot \mathrm{nm} / 680 \mathrm{~nm}=1.82 \mathrm{eV}<\Phi=2.28 \mathrm{eV}$, there is no photoelectric emission.
(b) The cutoff wavelength is the longest wavelength of photons which will cause photoelectric emission. In sodium, this is given by $E_{\mathrm{ph}}=h c / \lambda_{\max }=\Phi$, or

$$
\lambda_{\max }=h c / \Phi=(1240 \mathrm{eV} \cdot \mathrm{~nm}) / 2.28 \mathrm{eV}=544 \mathrm{~nm}
$$

(c) This corresponds to the color green.
69. (a) The average de Broglie wavelength is

$$
\begin{aligned}
\lambda_{\text {avg }} & =\frac{h}{p_{\text {avg }}}=\frac{h}{\sqrt{2 m K_{\text {avg }}}}=\frac{h}{\sqrt{2 m(3 k T / 2)}}=\frac{h c}{\sqrt{2\left(m c^{2}\right) k T}} \\
& =\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{\sqrt{3(4)(938 \mathrm{MeV})\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})}} \\
& =7.3 \times 10^{-11} \mathrm{~m}=73 \mathrm{pm} .
\end{aligned}
$$

(b) The average separation is

$$
d_{\text {avg }}=\frac{1}{\sqrt[3]{n}}=\frac{1}{\sqrt[3]{p / k T}}=\sqrt[3]{\frac{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~Pa}}}=3.4 \mathrm{~nm} .
$$

(c) Yes, since $\lambda_{\text {avg }} \ll d_{\text {avg }}$.
70. (a) The average kinetic energy is

$$
K=\frac{3}{2} k T=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K})=6.21 \times 10^{-21} \mathrm{~J}=3.88 \times 10^{-2} \mathrm{eV}
$$

(b) The de Broglie wavelength is

$$
\lambda=\frac{h}{\sqrt{2 m_{n} K}}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(1.675 \times 10^{-27} \mathrm{~kg}\right)\left(6.21 \times 10^{-21} \mathrm{~J}\right)}}=1.46 \times 10^{-10} \mathrm{~m} .
$$

71. We rewrite Eq. 38-9 as

$$
\frac{h}{m \lambda}-\frac{h}{m \lambda^{\prime}} \cos \phi=\frac{v}{\sqrt{1-(v / c)^{2}}} \cos \theta
$$

and Eq. 38-10 as

$$
\frac{h}{m \lambda^{\prime}} \sin \phi=\frac{v}{\sqrt{1-(v / c)^{2}}} \sin \theta
$$

We square both equations and add up the two sides:

$$
\left(\frac{h}{m}\right)^{2}\left[\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(\frac{1}{\lambda^{\prime}} \sin \phi\right)^{2}\right]=\frac{v^{2}}{1-(v / c)^{2}},
$$

where we use $\sin ^{2} \theta+\cos ^{2} \theta=1$ to eliminate θ. Now the right-hand side can be written as

$$
\frac{v^{2}}{1-(v / c)^{2}}=-c^{2}\left[1-\frac{1}{1-(v / c)^{2}}\right],
$$

so

$$
\frac{1}{1-(v / c)^{2}}=\left(\frac{h}{m c}\right)^{2}\left[\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(\frac{1}{\lambda^{\prime}} \sin \phi\right)^{2}\right]+1 .
$$

Now we rewrite Eq. 38-8 as

$$
\frac{h}{m c}\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right)+1=\frac{1}{\sqrt{1-(v / c)^{2}}} .
$$

If we square this, then it can be directly compared with the previous equation we obtained for $\left[1-(v / c)^{2}\right]^{-1}$. This yields

$$
\left[\frac{h}{m c}\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right)+1\right]^{2}=\left(\frac{h}{m c}\right)^{2}\left[\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(\frac{1}{\lambda^{\prime}} \sin \phi\right)^{2}\right]+1
$$

We have so far eliminated θ and v. Working out the squares on both sides and noting that $\sin ^{2} \phi+\cos ^{2} \phi=1$, we get

$$
\lambda^{\prime}-\lambda=\Delta \lambda=\frac{h}{m c}(1-\cos \phi) .
$$

72. The kinetic energy of the car of mass m moving at speed v is given by $E=\frac{1}{2} m v^{2}$, while the potential barrier it has to tunnel through is $U_{b}=m g h$, where $h=24 \mathrm{~m}$. According to Eq. 38-21 and 38-22 the tunneling probability is given by $T \approx e^{-2 b L}$, where

$$
\begin{aligned}
b & =\sqrt{\frac{8 \pi^{2} m\left(U_{b}-E\right)}{h^{2}}}=\sqrt{\frac{8 \pi^{2} m\left(m g h-\frac{1}{2} m v^{2}\right)}{h^{2}}} \\
& =\frac{2 \pi(1500 \mathrm{~kg})}{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}} \sqrt{2\left[\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(24 \mathrm{~m})-\frac{1}{2}(20 \mathrm{~m} / \mathrm{s})^{2}\right]} \\
& =1.2 \times 10^{38} \mathrm{~m}^{-1} .
\end{aligned}
$$

Thus, $2 b L=2\left(1.2 \times 10^{38} \mathrm{~m}^{-1}\right)(30 \mathrm{~m})=7.2 \times 10^{39}$. One can see that $T \approx e^{-2 b L}$ is essentially zero.
73. The uncertainty in the momentum is

$$
\Delta p=m \Delta v=(0.50 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})=0.50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

where Δv is the uncertainty in the velocity. Solving the uncertainty relationship $\Delta x \Delta p \geq \hbar$ for the minimum uncertainty in the coordinate x, we obtain

$$
\Delta x=\frac{\hbar}{\Delta p}=\frac{0.60 \mathrm{~J} \cdot \mathrm{~s}}{2 \pi(0.50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})}=0.19 \mathrm{~m}
$$

74. (a) Since $p_{x}=p_{y}=0, \Delta p_{x}=\Delta p_{y}=0$. Thus from Eq. 38-20 both Δx and Δy are infinite. It is therefore impossible to assign a y or z coordinate to the position of an electron.
(b) Since it is independent of y and z the wave function $\Psi(x)$ should describe a plane wave that extends infinitely in both the y and z directions. Also from Fig. 38-12 we see that $|\Psi(x)|^{2}$ extends infinitely along the x axis. Thus the matter wave described by $\Psi(x)$ extends throughout the entire three-dimensional space.
75. The de Broglie wavelength for the bullet is

$$
\lambda=\frac{h}{p}=\frac{h}{m v}=\frac{6.63 \times 10^{-34} \mathrm{J.s}}{\left(40 \times 10^{-3} \mathrm{~kg}\right)(1000 \mathrm{~m} / \mathrm{s})}=1.7 \times 10^{-35} \mathrm{~m} .
$$

76. We substitute the classical relationship between momentum p and velocity $v, v=p / m$ into the classical definition of kinetic energy, $K=\frac{1}{2} m v^{2}$ to obtain $K=p^{2} / 2 m$. Here m is the mass of an electron. Thus $p=\sqrt{2 m K}$. The relationship between the momentum and the de Broglie wavelength λ is $\lambda=h / p$, where h is the Planck constant. Thus,

$$
\lambda=\frac{h}{\sqrt{2 m K}} .
$$

If K is given in electron volts, then

$$
\begin{aligned}
\lambda & =\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) K}}=\frac{1.226 \times 10^{-9} \mathrm{~m} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}} \\
& =\frac{1.226 \mathrm{~nm} \cdot \mathrm{eV}^{1 / 2}}{\sqrt{K}} .
\end{aligned}
$$

77. We note that

$$
\left|e^{i k x}\right|^{2}=\left(e^{i k x}\right)^{*}\left(e^{i k x}\right)=e^{-i k x} e^{i k x}=1 .
$$

Referring to Eq. 38-14, we see therefore that $|\psi|^{2}=|\Psi|^{2}$.
78. From Sample Problem 38-4, we have

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda+\Delta \lambda}=\frac{(h / m c)(1-\cos \phi)}{\lambda^{\prime}}=\frac{h f^{\prime}}{m c^{2}}(1-\cos \phi)
$$

where we use the fact that $\lambda+\Delta \lambda=\lambda^{\prime}=c / f^{\prime}$.
79. With no loss of generality, we assume the electron is initially at rest (which simply means we are analyzing the collision from its initial rest frame). If the photon gave all its momentum and energy to the (free) electron, then the momentum and the kinetic energy of the electron would become

$$
p=\frac{h f}{c} \quad \text { and } \quad K=h f,
$$

respectively. Plugging these expressions into Eq. 38-51 (with m referring to the mass of the electron) leads to

$$
\begin{aligned}
& (p c)^{2}=K^{2}+2 K m c^{2} \\
& (h f)^{2}=(h f)^{2}+2 h f m c^{2}
\end{aligned}
$$

which is clearly impossible, since the last term $\left(2 h f m c^{2}\right)$ is not zero. We have shown that considering total momentum and energy absorption of a photon by a free electron leads to an inconsistency in the mathematics, and thus cannot be expected to happen in nature.
80. The difference between the electron-photon scattering process in this problem and the one studied in the text (the Compton shift, see Eq. 38-11) is that the electron is in motion relative with speed v to the laboratory frame. To utilize the result in Eq. 38-11, shift to a new reference frame in which the electron is at rest before the scattering. Denote the quantities measured in this new frame with a prime (${ }^{\prime}$), and apply Eq. 38-11 to yield

$$
\Delta \lambda^{\prime}=\lambda^{\prime}-\lambda_{0}^{\prime}=\frac{h}{m_{e} c}(1-\cos \pi)=\frac{2 h}{m_{e} c},
$$

where we note that $\phi=\pi$ (since the photon is scattered back in the direction of incidence). Now, from the Doppler shift formula (Eq. 38-25) the frequency $f^{\prime} 0$ of the photon prior to the scattering in the new reference frame satisfies

$$
f_{0}^{\prime}=\frac{c}{\lambda_{0}^{\prime}}=f_{0} \sqrt{\frac{1+\beta}{1-\beta}}
$$

where $\beta=v / c$. Also, as we switch back from the new reference frame to the original one after the scattering

$$
f=f^{\prime} \sqrt{\frac{1-\beta}{1+\beta}}=\frac{c}{\lambda^{\prime}} \sqrt{\frac{1-\beta}{1+\beta}}
$$

We solve the two Doppler-shift equations above for λ^{\prime} and $\lambda^{\prime}{ }_{0}$ and substitute the results into the Compton shift formula for $\Delta \lambda^{\prime}$:

$$
\Delta \lambda^{\prime}=\frac{1}{f} \sqrt{\frac{1-\beta}{1+\beta}}-\frac{1}{f_{0}} \sqrt{\frac{1-\beta}{1+\beta}}=\frac{2 h}{m_{e} c^{2}}
$$

Some simple algebra then leads to

$$
E=h f=h f_{0}\left(1+\frac{2 h}{m_{e} c^{2}} \sqrt{\frac{1+\beta}{1-\beta}}\right)^{-1}
$$

81. (a) For $\lambda=565 \mathrm{~nm}$

$$
h f=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{565 \mathrm{~nm}}=2.20 \mathrm{eV} .
$$

Since $\Phi_{\text {potassium }}>h f>\Phi_{\text {cesium }}$, the photoelectric effect can occur in cesium but not in potassium at this wavelength. The result $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$ is used in our calculation.
(b) Now $\lambda=518 \mathrm{~nm}$ so

$$
h f=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{518 \mathrm{~m}}=2.40 \mathrm{eV}
$$

This is greater than both $\Phi_{\text {cesium }}$ and $\Phi_{\text {potassium }}$, so the photoelectric effect can now occur for both metals.
82. Eq. 38-3 gives $h=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$, but the metric prefix which stands for 10^{-15} is femto (f). Thus, $h=4.14 \mathrm{eV} \cdot \mathrm{fs}$.
83. The energy of a photon is given by $E=h f$, where h is the Planck constant and f is the frequency. The wavelength λ is related to the frequency by $\lambda f=c$, so $E=h c / \lambda$. Since $h=$ $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$,

$$
h c=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)\left(10^{-9} \mathrm{~m} / \mathrm{nm}\right)}=1240 \mathrm{eV} \cdot \mathrm{~nm} .
$$

Thus,

$$
E=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{\lambda}
$$

1. According to Eq. 39-4 $E_{n} \propto L^{-2}$. As a consequence, the new energy level E_{n}^{\prime} satisfies

$$
\frac{E_{n}^{\prime}}{E_{n}}=\left(\frac{L^{\prime}}{L}\right)^{-2}=\left(\frac{L}{L^{\prime}}\right)^{2}=\frac{1}{2}
$$

which gives $L^{\prime}=\sqrt{2} L$. Thus, the ratio is $L^{\prime} / L=\sqrt{2}=1.41$.
2. (a) The ground-state energy is

$$
E_{1}=\left(\frac{h^{2}}{8 m_{e} L^{2}}\right) n^{2}=\left(\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8 m_{e}\left(200 \times 10^{-12} \mathrm{~m}\right)^{2}}\right)(1)^{2}=1.51 \times 10^{-18} \mathrm{~J}=9.42 \mathrm{eV} .
$$

(b) With $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$, we obtain

$$
E_{1}=\left(\frac{h^{2}}{8 m_{p} L^{2}}\right) n^{2}=\left(\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8 m_{p}\left(200 \times 10^{-12} \mathrm{~m}\right)^{2}}\right)(1)^{2}=8.225 \times 10^{-22} \mathrm{~J}=5.13 \times 10^{-3} \mathrm{eV}
$$

3. To estimate the energy, we use Eq. 39-4, with $n=1, L$ equal to the atomic diameter, and m equal to the mass of an electron:

$$
E=n^{2} \frac{h^{2}}{8 m L^{2}}=\frac{(1)^{2}\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.4 \times 10^{-14} \mathrm{~m}\right)^{2}}=3.07 \times 10^{-10} \mathrm{~J}=1920 \mathrm{MeV} \approx 1.9 \mathrm{GeV}
$$

4. With $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$, we obtain

$$
E_{1}=\left(\frac{h^{2}}{8 m L^{2}}\right) n^{2}=\left(\frac{\left(6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)^{2}}{8 m_{p}\left(100 \times 10^{12} \mathrm{~m}\right)^{2}}\right)(1)^{2}=3.29 \times 10^{-21} \mathrm{~J}=0.0206 \mathrm{eV}
$$

Alternatively, we can use the $m c^{2}$ value for a proton from Table 37-3 $\left(938 \times 10^{6} \mathrm{eV}\right)$ and the $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2}(h c)^{2}}{8\left(m_{p} c^{2}\right) L^{2}} .
$$

This alternative approach is perhaps easier to plug into, but it is recommended that both approaches be tried to find which is most convenient.
5. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2}(h c)^{2}}{8\left(m c^{2}\right) L^{2}}
$$

For $n=3$, we set this expression equal to 4.7 eV and solve for L :

$$
L=\frac{n(h c)}{\sqrt{8\left(m c^{2}\right) E_{n}}}=\frac{3(1240 \mathrm{eV} \cdot \mathrm{~nm})}{\sqrt{8\left(511 \times 10^{3} \mathrm{eV}\right)(4.7 \mathrm{eV})}}=0.85 \mathrm{~nm} .
$$

6. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2}(h c)^{2}}{8\left(m c^{2}\right) L^{2}}
$$

The energy to be absorbed is therefore

$$
\Delta E=E_{4}-E_{1}=\frac{\left(4^{2}-1^{2}\right) h^{2}}{8 m_{e} L^{2}}=\frac{15(h c)^{2}}{8\left(m_{e} c^{2}\right) L^{2}}=\frac{15(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{8\left(511 \times 10^{3} \mathrm{eV}\right)(0.250 \mathrm{~nm})^{2}}=90.3 \mathrm{eV}
$$

7. Since $E_{n} \propto L^{-2}$ in Eq. 39-4, we see that if L is doubled, then E_{1} becomes $(2.6 \mathrm{eV})(2)^{-2}$ $=0.65 \mathrm{eV}$.
8. Let the quantum numbers of the pair in question be n and $n+1$, respectively. We note that

$$
E_{n+1}-E_{n}=\frac{(n+1)^{2} h^{2}}{8 m L^{2}}-\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{(2 n+1) h^{2}}{8 m L^{2}}
$$

Therefore, $E_{n+1}-E_{n}=(2 n+1) E_{1}$. Now

$$
E_{n+1}-E_{n}=E_{5}=5^{2} E_{1}=25 E_{1}=(2 n+1) E_{1},
$$

which leads to $2 n+1=25$, or $n=12$. Thus,
(a) the higher quantum number is $n+1=12+1=13$, and
(b) the lower quantum number is $n=12$.
(c) Now let

$$
E_{n+1}-E_{n}=E_{6}=6^{2} E_{1}=36 E_{1}=(2 n+1) E_{1},
$$

which gives $2 n+1=36$, or $n=17.5$. This is not an integer, so it is impossible to find the pair that fits the requirement.
9. The energy levels are given by $E_{n}=n^{2} h^{2} / 8 m L^{2}$, where h is the Planck constant, m is the mass of an electron, and L is the width of the well. The frequency of the light that will excite the electron from the state with quantum number n_{i} to the state with quantum number n_{f} is $f=\Delta E / h=\left(h / 8 m L^{2}\right)\left(n_{f}^{2}-n_{i}^{2}\right)$ and the wavelength of the light is

$$
\lambda=\frac{c}{f}=\frac{8 m L^{2} c}{h\left(n_{f}^{2}-n_{i}^{2}\right)} .
$$

We evaluate this expression for $n_{i}=1$ and $n_{f}=2,3,4$, and 5 , in turn. We use $h=6.626 \times$ $10^{-34} \mathrm{~J} \cdot \mathrm{~s}, m=9.109 \times 10^{-31} \mathrm{~kg}$, and $L=250 \times 10^{-12} \mathrm{~m}$, and obtain the following results:
(a) $6.87 \times 10^{-8} \mathrm{~m}$ for $n_{f}=2$, (the longest wavelength).
(b) $2.58 \times 10^{-8} \mathrm{~m}$ for $n_{f}=3$, (the second longest wavelength).
(c) $1.37 \times 10^{-8} \mathrm{~m}$ for $n_{f}=4$, (the third longest wavelength).
10. Let the quantum numbers of the pair in question be n and $n+1$, respectively. Then $E_{n+1}-E_{n}=E_{1}(n+1)^{2}-E_{1} n^{2}=(2 n+1) E_{1}$. Letting

$$
E_{n+1}-E_{n}=(2 n+1) E_{1}=3\left(E_{4}-E_{3}\right)=3\left(4^{2} E_{1}-3^{2} E_{1}\right)=21 E_{1},
$$

we get $2 n+1=21$, or $n=10$. Thus,
(a) the higher quantum number is $n+1=10+1=11$, and
(b) the lower quantum number is $n=10$.
(c) Now letting

$$
E_{n+1}-E_{n}=(2 n+1) E_{1}=2\left(E_{4}-E_{3}\right)=2\left(4^{2} E_{1}-3^{2} E_{1}\right)=14 E_{1},
$$

we get $2 n+1=14$, which does not have an integer-valued solution. So it is impossible to find the pair of energy levels that fits the requirement.
11. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by rewriting Eq. 39-4 as

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2}(h c)^{2}}{8\left(m c^{2}\right) L^{2}}
$$

(a) The first excited state is characterized by $n=2$, and the third by $n^{\prime}=4$. Thus,

$$
\Delta E=\frac{(h c)^{2}}{8\left(m c^{2}\right) L^{2}}\left(n^{\prime 2}-n^{2}\right)=\frac{(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{8\left(511 \times 10^{3} \mathrm{eV}\right)(0.250 \mathrm{~nm})^{2}}\left(4^{2}-2^{2}\right)=(6.02 \mathrm{eV})(16-4)
$$

which yields $\Delta E=72.2 \mathrm{eV}$.
Now that the electron is in the n ' $=4$ level, it can "drop" to a lower level (n ") in a variety of ways. Each of these drops is presumed to cause a photon to be emitted of wavelength

$$
\lambda=\frac{h c}{E_{n^{\prime}}-E_{n^{\prime \prime}}}=\frac{8\left(m c^{2}\right) L^{2}}{h c\left(n^{\prime 2}-n^{\prime \prime 2}\right)} .
$$

For example, for the transition $n^{\prime}=4$ to $n^{\prime \prime}=3$, the photon emitted would have wavelength

$$
\lambda=\frac{8\left(511 \times 10^{3} \mathrm{eV}\right)(0.250 \mathrm{~nm})^{2}}{(1240 \mathrm{eV} \cdot \mathrm{~nm})\left(4^{2}-3^{2}\right)}=29.4 \mathrm{~nm}
$$

and once it is then in level $n^{\prime \prime}=3$ it might fall to level $n^{\prime \prime \prime}=2$ emitting another photon. Calculating in this way all the possible photons emitted during the de-excitation of this system, we obtain the following results:
(b) The shortest wavelength that can be emitted is $\lambda_{4 \rightarrow 1}=13.7 \mathrm{~nm}$.
(c) The second shortest wavelength that can be emitted is $\lambda_{4 \rightarrow 2}=17.2 \mathrm{~nm}$.
(d) The longest wavelength that can be emitted is $\lambda_{2 \rightarrow 1}=68.7 \mathrm{~nm}$.
(e) The second longest wavelength that can be emitted is $\lambda_{3 \rightarrow 2}=41.2 \mathrm{~nm}$.
(f) The possible transitions are shown next. The energy levels are not drawn to scale.

(g) A wavelength of 29.4 nm corresponds to $4 \rightarrow 3$ transition. Thus, it could make either the $3 \rightarrow 1$ transition or the pair of transitions: $3 \rightarrow 2$ and $2 \rightarrow 1$. The longest wavelength that can be emitted is $\lambda_{2 \rightarrow 1}=68.7 \mathrm{~nm}$.
(h) The shortest wavelength that can next be emitted is $\lambda_{3 \rightarrow 1}=25.8 \mathrm{~nm}$.
12. The frequency of the light that will excite the electron from the state with quantum number n_{i} to the state with quantum number n_{f} is $f=\Delta E / h=\left(h / 8 m L^{2}\right)\left(n_{f}^{2}-n_{i}^{2}\right)$ and the wavelength of the light is

$$
\lambda=\frac{c}{f}=\frac{8 m L^{2} c}{h\left(n_{f}^{2}-n_{i}^{2}\right)} .
$$

The width of the well is

$$
L=\sqrt{\frac{\lambda h c\left(n_{f}^{2}-n_{i}^{2}\right)}{8 m c^{2}}}
$$

The longest wavelength shown in Figure $39-28$ is $\lambda=80.78 \mathrm{~nm}$ which corresponds to a jump from $n_{i}=2$ to $n_{f}=3$. Thus, the width of the well is

$$
L=\sqrt{\frac{(80.78 \mathrm{~nm})(1240 \mathrm{eV} \cdot \mathrm{~nm})\left(3^{2}-2^{2}\right)}{8\left(511 \times 10^{3} \mathrm{eV}\right)}}=0.350 \mathrm{~nm}=350 \mathrm{pm} .
$$

13. The probability that the electron is found in any interval is given by $P=\int|\psi|^{2} d x$, where the integral is over the interval. If the interval width Δx is small, the probability can be approximated by $P=|\psi|^{2} \Delta x$, where the wave function is evaluated for the center of the interval, say. For an electron trapped in an infinite well of width L, the ground state probability density is

$$
|\psi|^{2}=\frac{2}{L} \sin ^{2}\left(\frac{\pi x}{L}\right)
$$

so

$$
P=\left(\frac{2 \Delta x}{L}\right) \sin ^{2}\left(\frac{\pi x}{L}\right)
$$

(a) We take $L=100 \mathrm{pm}, x=25 \mathrm{pm}$, and $\Delta x=5.0 \mathrm{pm}$. Then,

$$
P=\left[\frac{2(5.0 \mathrm{pm})}{100 \mathrm{pm}}\right] \sin ^{2}\left[\frac{\pi(25 \mathrm{pm})}{100 \mathrm{pm}}\right]=0.050 .
$$

(b) We take $L=100 \mathrm{pm}, x=50 \mathrm{pm}$, and $\Delta x=5.0 \mathrm{pm}$. Then,

$$
P=\left[\frac{2(5.0 \mathrm{pm})}{100 \mathrm{pm}}\right] \sin ^{2}\left[\frac{\pi(50 \mathrm{pm})}{100 \mathrm{pm}}\right]=0.10 .
$$

(c) We take $L=100 \mathrm{pm}, x=90 \mathrm{pm}$, and $\Delta x=5.0 \mathrm{pm}$. Then,

$$
P=\left[\frac{2(5.0 \mathrm{pm})}{100 \mathrm{pm}}\right] \sin ^{2}\left[\frac{\pi(90 \mathrm{pm})}{100 \mathrm{pm}}\right]=0.0095 .
$$

14. We follow Sample Problem 39-3 in the presentation of this solution. The integration result quoted below is discussed in a little more detail in that Sample Problem. We note that the arguments of the sine functions used below are in radians.
(a) The probability of detecting the particle in the region $0 \leq x \leq \frac{L}{4}$ is

$$
\left(\frac{2}{L}\right)\left(\frac{L}{\pi}\right) \int_{0}^{\pi / 4} \sin ^{2} y d y=\frac{2}{\pi}\left(\frac{y}{2}-\frac{\sin 2 y}{4}\right)_{0}^{\pi / 4}=0.091
$$

(b) As expected from symmetry,

$$
\left(\frac{2}{L}\right)\left(\frac{L}{\pi}\right) \int_{\pi / 4}^{\pi} \sin ^{2} y d y=\frac{2}{\pi}\left(\frac{y}{2}-\frac{\sin 2 y}{4}\right)_{\pi / 4}^{\pi}=0.091 .
$$

(c) For the region $\frac{L}{4} \leq x \leq \frac{3 L}{4}$, we obtain

$$
\left(\frac{2}{L}\right)\left(\frac{L}{\pi}\right) \int_{\pi / 4}^{3 \pi / 4} \sin ^{2} y d y=\frac{2}{\pi}\left(\frac{y}{2}-\frac{\sin 2 y}{4}\right)_{\pi / 4}^{3 \pi / 4}=0.82
$$

which we could also have gotten by subtracting the results of part (a) and (b) from 1; that is, $1-2(0.091)=0.82$.
15. According to Fig. 39-9, the electron's initial energy is 109 eV . After the additional energy is absorbed, the total energy of the electron is $109 \mathrm{eV}+400 \mathrm{eV}=509 \mathrm{eV}$. Since it is in the region $x>L$, its potential energy is 450 eV (see Section 39-5), so its kinetic energy must be $509 \mathrm{eV}-450 \mathrm{eV}=59 \mathrm{eV}$.
16. From Fig. 39-9, we see that the sum of the kinetic and potential energies in that particular finite well is 280 eV . The potential energy is zero in the region $0<x<L$. If the kinetic energy of the electron is detected while it is in that region (which is the only region where this is likely to happen), we should find $K=280 \mathrm{eV}$.
17. Schrödinger's equation for the region $x>L$ is

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=0 .
$$

If $\psi=D e^{2 k x}$, then $d^{2} \psi \prime d x^{2}=4 k^{2} D e^{2 k x}=4 k^{2} \psi$ and

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=4 k^{2} \psi+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi
$$

This is zero provided

$$
k=\frac{\pi}{h} \sqrt{2 m\left(U_{0}-E\right)}
$$

The proposed function satisfies Schrödinger's equation provided k has this value. Since U_{0} is greater than E in the region $x>L$, the quantity under the radical is positive. This means k is real. If k is positive, however, the proposed function is physically unrealistic. It increases exponentially with x and becomes large without bound. The integral of the probability density over the entire x axis must be unity. This is impossible if ψ is the proposed function.
18. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-20 as

$$
E_{n x, n y}=\frac{2 h^{2}}{8 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right)=\frac{(h c)^{2}}{8\left(m c^{2}\right)}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right) .
$$

For $n_{x}=n_{y}=1$, we obtain

$$
E_{1,1}=\frac{(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{8\left(511 \times 10^{3} \mathrm{eV}\right)}\left(\frac{1}{(0.800 \mathrm{~nm})^{2}}+\frac{1}{(1.600 \mathrm{~nm})^{2}}\right)=0.734 \mathrm{eV}
$$

19. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-21 as

$$
E_{n x, n y, n z}=\frac{2 h^{2}}{8 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)=\frac{(h c)^{2}}{8\left(m c^{2}\right)}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right) .
$$

For $n_{x}=n_{y}=n_{z}=1$, we obtain

$$
E_{1,1}=\frac{(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{8\left(511 \times 10^{3} \mathrm{eV}\right)}\left(\frac{1}{(0.800 \mathrm{~nm})^{2}}+\frac{1}{(1.600 \mathrm{~nm})^{2}}+\frac{1}{(0.400 \mathrm{~nm})^{2}}\right)=3.08 \mathrm{eV}
$$

20. We are looking for the values of the ratio

$$
\frac{E_{n x, n y}}{h^{2} / 8 m L^{2}}=L^{2}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right)=\left(n_{x}^{2}+\frac{1}{4} n_{y}^{2}\right)
$$

and the corresponding differences.
(a) For $n_{x}=n_{y}=1$, the ratio becomes $1+\frac{1}{4}=1.25$.
(b) For $n_{x}=1$ and $n_{y}=2$, the ratio becomes $1+\frac{1}{4}(4)=2.00$. One can check (by computing other $\left(n_{x}, n_{y}\right)$ values) that this is the next to lowest energy in the system.
(c) The lowest set of states that are degenerate are $\left(n_{x}, n_{y}\right)=(1,4)$ and $(2,2)$. Both of these states have that ratio equal to $1+\frac{1}{4}(16)=5.00$.
(d) For $n_{x}=1$ and $n_{y}=3$, the ratio becomes $1+\frac{1}{4}(9)=3.25$. One can check (by computing other (n_{x}, n_{y}) values) that this is the lowest energy greater than that computed in part (b). The next higher energy comes from $\left(n_{x}, n_{y}\right)=(2,1)$ for which the ratio is $4+\frac{1}{4}(1)=4.25$. The difference between these two values is $4.25-3.25=1.00$.
21. The energy levels are given by

$$
E_{n_{x}, n_{y}}=\frac{h^{2}}{8 m}\left[\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right]=\frac{h^{2}}{8 m L^{2}}\left[n_{x}^{2}+\frac{n_{y}^{2}}{4}\right]
$$

where the substitutions $L_{x}=L$ and $L_{y}=2 L$ were made. In units of $h^{2} / 8 m L^{2}$, the energy levels are given by $n_{x}^{2}+n_{y}^{2} / 4$. The lowest five levels are $E_{1,1}=1.25, E_{1,2}=2.00, E_{1,3}=$ $3.25, E_{2,1}=4.25$, and $E_{2,2}=E_{1,4}=5.00$. It is clear that there are no other possible values for the energy less than 5 . The frequency of the light emitted or absorbed when the electron goes from an initial state i to a final state f is $f=\left(E_{f}-E_{i}\right) / h$, and in units of $h / 8 m L^{2}$ is simply the difference in the values of $n_{x}^{2}+n_{y}^{2} / 4$ for the two states. The possible frequencies are as follows: $0.75(1,2 \rightarrow 1,1), 2.00(1,3 \rightarrow 1,1), 3.00(2,1 \rightarrow 1,1)$, $3.75(2,2 \rightarrow 1,1), 1.25(1,3 \rightarrow 1,2), 2.25(2,1 \rightarrow 1,2), 3.00(2,2 \rightarrow 1,2), 1.00(2,1 \rightarrow 1,3)$, $1.75(2,2 \rightarrow 1,3), 0.75(2,2 \rightarrow 2,1)$, all in units of $h / 8 m L^{2}$.
(a) From the above, we see that there are 8 different frequencies.
(b) The lowest frequency is, in units of $h / 8 m L^{2}, 0.75(2,2 \rightarrow 2,1)$.
(c) The second lowest frequency is, in units of $h / 8 m L^{2}, 1.00(2,1 \rightarrow 1,3)$.
(d) The third lowest frequency is, in units of $h / 8 m L^{2}, 1.25(1,3 \rightarrow 1,2)$.
(e) The highest frequency is, in units of $h / 8 m L^{2}, 3.75(2,2 \rightarrow 1,1)$.
(f) The second highest frequency is, in units of $h / 8 m L^{2}, 3.00(2,2 \rightarrow 1,2)$ or $(2,1 \rightarrow 1,1)$.
(g) The third highest frequency is, in units of $h / 8 m L^{2}, 2.25(2,1 \rightarrow 1,2)$.
22. We are looking for the values of the ratio

$$
\frac{E_{n_{x}, n_{y}, n_{z}}}{h^{2} / 8 m L^{2}}=L^{2}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

and the corresponding differences.
(a) For $n_{x}=n_{y}=n_{z}=1$, the ratio becomes $1+1+1=3.00$.
(b) For $n_{x}=n_{y}=2$ and $n_{z}=1$, the ratio becomes $4+4+1=9.00$. One can check (by computing other (n_{x}, n_{y}, n_{z}) values) that this is the third lowest energy in the system. One can also check that this same ratio is obtained for $\left(n_{x}, n_{y}, n_{z}\right)=(2,1,2)$ and $(1,2,2)$.
(c) For $n_{x}=n_{y}=1$ and $n_{z}=3$, the ratio becomes $1+1+9=11.00$. One can check (by computing other (n_{x}, n_{y}, n_{z}) values) that this is three "steps" up from the lowest energy in the system. One can also check that this same ratio is obtained for $\left(n_{x}, n_{y}, n_{z}\right)=(1,3,1)$ and $(3,1,1)$. If we take the difference between this and the result of part (b), we obtain $11.0-9.00=2.00$.
(d) For $n_{x}=n_{y}=1$ and $n_{z}=2$, the ratio becomes $1+1+4=6.00$. One can check (by computing other (n_{x}, n_{y}, n_{z}) values) that this is the next to the lowest energy in the system. One can also check that this same ratio is obtained for $\left(n_{x}, n_{y}, n_{z}\right)=(2,1,1)$ and $(1,2,1)$. Thus, three states (three arrangements of (n_{x}, n_{y}, n_{z}) values) have this energy.
(e) For $n_{x}=1, n_{y}=2$ and $n_{z}=3$, the ratio becomes $1+4+9=14.0$. One can check (by computing other (n_{x}, n_{y}, n_{z}) values) that this is five "steps" up from the lowest energy in the system. One can also check that this same ratio is obtained for $\left(n_{x}, n_{y}, n_{z}\right)=(1,3,2)$, $(2,3,1),(2,1,3),(3,1,2)$ and $(3,2,1)$. Thus, six states (six arrangements of $\left(n_{x}, n_{y}, n_{z}\right)$ values) have this energy.
23. The ratios computed in problem 22 can be related to the frequencies emitted using $f=$ $\Delta E / h$, where each level E is equal to one of those ratios multiplied by $h^{2} / 8 m L^{2}$. This effectively involves no more than a cancellation of one of the factors of h. Thus, for a transition from the second excited state (see part (b) of problem 22) to the ground state (treated in part (a) of that problem), we find

$$
f=(9.00-3.00)\left(\frac{h}{8 m L^{2}}\right)=(6.00)\left(\frac{h}{8 m L^{2}}\right) .
$$

In the following, we omit the $h / 8 m L^{2}$ factors. For a transition between the fourth excited state and the ground state, we have $f=12.00-3.00=9.00$. For a transition between the third excited state and the ground state, we have $f=11.00-3.00=8.00$. For a transition between the third excited state and the first excited state, we have $f=11.00-6.00=5.00$. For a transition between the fourth excited state and the third excited state, we have $f=$ $12.00-11.00=1.00$. For a transition between the third excited state and the second excited state, we have $f=11.00-9.00=2.00$. For a transition between the second excited state and the first excited state, we have $f=9.00-6.00=3.00$, which also results from some other transitions.
(a) From the above, we see that there are 7 frequencies.
(b) The lowest frequency is, in units of $h / 8 m L^{2}, 1.00$.
(c) The second lowest frequency is, in units of $h / 8 m L^{2}, 2.00$.
(d) The third lowest frequency is, in units of $h / 8 m L^{2}, 3.00$.
(e) The highest frequency is, in units of $h / 8 m L^{2}, 9.00$.
(f) The second highest frequency is, in units of $h / 8 m L^{2}, 8.00$.
(g) The third highest frequency is, in units of $h / 8 m L^{2}, 6.00$.
24. The difference between the energy absorbed and the energy emitted is

$$
E_{\text {photon absorbed }}-E_{\text {photon emitted }}=\frac{h c}{\lambda_{\text {absorbed }}}-\frac{h c}{\lambda_{\text {emitted }}} .
$$

Thus, using the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, the net energy absorbed is

$$
h c \Delta\left(\frac{1}{\lambda}\right)=(1240 \mathrm{eV} \cdot \mathrm{~nm})\left(\frac{1}{375 \mathrm{~nm}}-\frac{1}{580 \mathrm{~nm}}\right)=1.17 \mathrm{eV}
$$

25. The energy E of the photon emitted when a hydrogen atom jumps from a state with principal quantum number u to a state with principal quantum number ℓ is given by

$$
E=A\left(\frac{1}{\ell^{2}}-\frac{1}{u^{2}}\right)
$$

where $A=13.6 \mathrm{eV}$. The frequency f of the electromagnetic wave is given by $f=E / h$ and the wavelength is given by $\lambda=c / f$. Thus,

$$
\frac{1}{\lambda}=\frac{f}{c}=\frac{E}{h c}=\frac{A}{h c}\left(\frac{1}{\ell^{2}}-\frac{1}{u^{2}}\right) .
$$

The shortest wavelength occurs at the series limit, for which $u=\infty$. For the Balmer series, $\ell=2$ and the shortest wavelength is $\lambda_{B}=4 h c / A$. For the Lyman series, $\ell=1$ and the shortest wavelength is $\lambda_{L}=h c / A$. The ratio is $\lambda_{B} / \lambda_{L}=4.0$.
26. From Eq. 39-6,

$$
\Delta E=h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(6.2 \times 10^{14} \mathrm{~Hz}\right)=2.6 \mathrm{eV}
$$

27. (a) Since energy is conserved, the energy E of the photon is given by $E=E_{i}-E_{f}$, where E_{i} is the initial energy of the hydrogen atom and E_{f} is the final energy. The electron energy is given by $(-13.6 \mathrm{eV}) / n^{2}$, where n is the principal quantum number. Thus,

$$
E=E_{i}-E_{f}=\frac{-13.6 \mathrm{eV}}{(3)^{2}}-\frac{-13.6 \mathrm{eV}}{(1)^{2}}=12.1 \mathrm{eV}
$$

(b) The photon momentum is given by

$$
p=\frac{E}{c}=\frac{(12.1 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=6.45 \times 10^{-27} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
$$

(c) Using the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, the wavelength is

$$
\lambda=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{12.1 \mathrm{eV}}=102 \mathrm{~nm} .
$$

28. (a) The energy level corresponding to the probability density distribution shown in Fig. 39-22 is the $n=2$ level. Its energy is given by

$$
E_{2}=-\frac{13.6 \mathrm{eV}}{2^{2}}=-3.4 \mathrm{eV}
$$

(b) As the electron is removed from the hydrogen atom the final energy of the protonelectron system is zero. Therefore, one needs to supply at least 3.4 eV of energy to the system in order to bring its energy up from $E_{2}=-3.4 \mathrm{eV}$ to zero. (If more energy is supplied, then the electron will retain some kinetic energy after it is removed from the atom.)
29. If kinetic energy is not conserved, some of the neutron's initial kinetic energy is used to excite the hydrogen atom. The least energy that the hydrogen atom can accept is the difference between the first excited state $(n=2)$ and the ground state $(n=1)$. Since the energy of a state with principal quantum number n is $-(13.6 \mathrm{eV}) / n^{2}$, the smallest excitation energy is $13.6 \mathrm{eV}-(13.6 \mathrm{eV}) /(2)^{2}=10.2 \mathrm{eV}$. The neutron does not have sufficient kinetic energy to excite the hydrogen atom, so the hydrogen atom is left in its ground state and all the initial kinetic energy of the neutron ends up as the final kinetic energies of the neutron and atom. The collision must be elastic.
30. (a) We use Eq. 39-44. At $r=0, P(r) \propto r^{2}=0$.
(b) At $r=a$

$$
P(r)=\frac{4}{a^{3}} a^{2} e^{-2 a / a}=\frac{4 e^{-2}}{a}=\frac{4 e^{-2}}{5.29 \times 10^{-2} \mathrm{~nm}}=10.2 \mathrm{~nm}^{-1}
$$

(c) At $r=2 a$

$$
P(r)=\frac{4}{a^{3}}(2 a)^{2} e^{-4 a / a}=\frac{16 e^{-4}}{a}=\frac{16 e^{-4}}{5.29 \times 10^{-2} \mathrm{~nm}}=5.54 \mathrm{~nm}^{-1} .
$$

31. (a) We use Eq. 39-39. At $r=a$

$$
\psi^{2}(r)=\left(\frac{1}{\sqrt{\pi} a^{3 / 2}} e^{-a / a}\right)^{2}=\frac{1}{\pi a^{3}} e^{-2}=\frac{1}{\pi\left(5.29 \times 10^{-2} \mathrm{~nm}\right)^{3}} e^{-2}=291 \mathrm{~nm}^{-3}
$$

(b) We use Eq. 39-44. At $r=a$

$$
P(r)=\frac{4}{a^{3}} a^{2} e^{-2 a / a}=\frac{4 e^{-2}}{a}=\frac{4 e^{-2}}{5.29 \times 10^{-2} \mathrm{~nm}}=10.2 \mathrm{~nm}^{-1}
$$

32. (a) $\Delta E=-(13.6 \mathrm{eV})\left(4^{-2}-1^{-2}\right)=12.8 \mathrm{eV}$.
(b) There are 6 possible energies associated with the transitions $4 \rightarrow 3,4 \rightarrow 2,4 \rightarrow 1,3$ $\rightarrow 2,3 \rightarrow 1$ and $2 \rightarrow 1$.
(c) The greatest energy is $E_{4 \rightarrow 1}=12.8 \mathrm{eV}$.
(d) The second greatest energy is $E_{3 \rightarrow 1}=-(13.6 \mathrm{eV})\left(3^{-2}-1^{-2}\right)=12.1 \mathrm{eV}$.
(e) The third greatest energy is $E_{2 \rightarrow 1}=-(13.6 \mathrm{eV})\left(2^{-2}-1^{-2}\right)=10.2 \mathrm{eV}$.
(f) The smallest energy is $E_{4 \rightarrow 3}=-(13.6 \mathrm{eV})\left(4^{-2}-3^{-2}\right)=0.661 \mathrm{eV}$.
(g) The second smallest energy is $E_{3 \rightarrow 2}=-(13.6 \mathrm{eV})\left(3^{-2}-2^{-2}\right)=1.89 \mathrm{eV}$.
(h) The third smallest energy is $E_{4 \rightarrow 2}=-(13.6 \mathrm{eV})\left(4^{-2}-2^{-2}\right)=2.55 \mathrm{eV}$.
33. (a) We take the electrostatic potential energy to be zero when the electron and proton are far removed from each other. Then, the final energy of the atom is zero and the work done in pulling it apart is $W=-E_{i}$, where E_{i} is the energy of the initial state. The energy of the initial state is given by $E_{i}=(-13.6 \mathrm{eV}) / n^{2}$, where n is the principal quantum number of the state. For the ground state, $n=1$ and $W=13.6 \mathrm{eV}$.
(b) For the state with $n=2, W=(13.6 \mathrm{eV}) /(2)^{2}=3.40 \mathrm{eV}$.
34. Conservation of linear momentum of the atom-photon system requires that

$$
p_{\text {recoil }}=p_{\text {photon }} \Rightarrow m_{p} v_{\text {recoil }}=\frac{h f}{c}
$$

where we use Eq. 39-7 for the photon and use the classical momentum formula for the atom (since we expect its speed to be much less than c). Thus, from Eq. 39-6 and Table 38-3,

$$
v_{\text {recoil }}=\frac{\Delta E}{m_{p} c}=\frac{E_{4}-E_{1}}{\left(m_{p} c^{2}\right) / c}=\frac{(-13.6 \mathrm{eV})\left(4^{-2}-1^{-2}\right)}{\left(938 \times 10^{6} \mathrm{eV}\right) /\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=4.1 \mathrm{~m} / \mathrm{s} .
$$

35. (a) and (b) Letting $a=5.292 \times 10^{-11} \mathrm{~m}$ be the Bohr radius, the potential energy becomes

$$
U=-\frac{e^{2}}{4 \pi \varepsilon_{0} a}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{5.292 \times 10^{-11} \mathrm{~m}}=-4.36 \times 10^{-18} \mathrm{~J}=-27.2 \mathrm{eV}
$$

The kinetic energy is $K=E-U=(-13.6 \mathrm{eV})-(-27.2 \mathrm{eV})=13.6 \mathrm{eV}$.
36. (a) The calculation is shown in Sample Problem 39-6. The difference in the values obtained in parts (a) and (b) of that Sample Problem is $122 \mathrm{~nm}-91.4 \mathrm{~nm} \approx 31 \mathrm{~nm}$.
(b) We use Eq. 39-1. For the Lyman series,

$$
\Delta f=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{91.4 \times 10^{-9} \mathrm{~m}}-\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{122 \times 10^{-9} \mathrm{~m}}=8.2 \times 10^{14} \mathrm{~Hz}
$$

(c) Fig. 39-19 shows that the width of the Balmer series is $656.3 \mathrm{~nm}-364.6 \mathrm{~nm} \approx$ $292 \mathrm{~nm} \approx 0.29 \mu \mathrm{~m}$.
(d) The series limit can be obtained from the $\infty \rightarrow 2$ transition:

$$
\Delta f=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{364.6 \times 10^{-9} \mathrm{~m}}-\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{656.3 \times 10^{-9} \mathrm{~m}}=3.65 \times 10^{14} \mathrm{~Hz} \approx 3.7 \times 10^{14} \mathrm{~Hz}
$$

37. The proposed wave function is

$$
\psi=\frac{1}{\sqrt{\pi} a^{3 / 2}} e^{-r / a}
$$

where a is the Bohr radius. Substituting this into the right side of Schrödinger's equation, our goal is to show that the result is zero. The derivative is

$$
\frac{d \psi}{d r}=-\frac{1}{\sqrt{\pi} a^{5 / 2}} e^{-r / a}
$$

so

$$
r^{2} \frac{d \psi}{d r}=-\frac{r^{2}}{\sqrt{\pi} a^{5 / 2}} e^{-r / a}
$$

and

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=\frac{1}{\sqrt{\pi} a^{5 / 2}}\left[-\frac{2}{r}+\frac{1}{a}\right] e^{-r / a}=\frac{1}{a}\left[-\frac{2}{r}+\frac{1}{a}\right] \psi
$$

The energy of the ground state is given by $E=-m e^{4} / 8 \varepsilon_{0}^{2} h^{2}$ and the Bohr radius is given by $a=h^{2} \varepsilon_{0} / \pi m e^{2}$, so $E=-e^{2} / 8 \pi \varepsilon_{0} a$. The potential energy is given by $U=-e^{2} / 4 \pi \varepsilon_{0} r$, so

$$
\begin{aligned}
\frac{8 \pi^{2} m}{h^{2}}[E-U] \psi & =\frac{8 \pi^{2} m}{h^{2}}\left[-\frac{e^{2}}{8 \pi \varepsilon_{0} a}+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] \psi=\frac{8 \pi^{2} m}{h^{2}} \frac{e^{2}}{8 \pi \varepsilon_{0}}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi \\
& =\frac{\pi m e^{2}}{h^{2} \varepsilon_{0}}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi=\frac{1}{a}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi
\end{aligned}
$$

The two terms in Schrödinger's equation cancel, and the proposed function ψ satisfies that equation.
38. Using Eq. 39-6 and the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, we find

$$
\Delta E=E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{121.6 \mathrm{~nm}}=10.2 \mathrm{eV}
$$

Therefore, $n_{\text {low }}=1$, but what precisely is $n_{\text {high }}$?

$$
E_{\text {high }}=E_{\text {low }}+\Delta E \Rightarrow-\frac{13.6 \mathrm{eV}}{n^{2}}=-\frac{13.6 \mathrm{eV}}{1^{2}}+10.2 \mathrm{eV}
$$

which yields $n=2$ (this is confirmed by the calculation found from Sample Problem 396). Thus, the transition is from the $n=2$ to the $n=1$ state.
(a) The higher quantum number is $n=2$.
(b) The lower quantum number is $n=1$.
(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions.
39. According to Sample Problem 39-8, the probability the electron in the ground state of a hydrogen atom can be found inside a sphere of radius r is given by

$$
p(r)=1-e^{-2 x}\left(1+2 x+2 x^{2}\right)
$$

where $x=r / a$ and a is the Bohr radius. We want $r=a$, so $x=1$ and

$$
p(a)=1-e^{-2}(1+2+2)=1-5 e^{-2}=0.323 .
$$

The probability that the electron can be found outside this sphere is $1-0.323=0.677$. It can be found outside about 68% of the time.
40. (a) Since $E_{2}=-0.85 \mathrm{eV}$ and $E_{1}=-13.6 \mathrm{eV}+10.2 \mathrm{eV}=-3.4 \mathrm{eV}$, the photon energy is $E_{\text {photon }}=E_{2}-E_{1}=-0.85 \mathrm{eV}-(-3.4 \mathrm{eV})=2.6 \mathrm{eV}$.
(b) From

$$
E_{2}-E_{1}=(-13.6 \mathrm{eV})\left(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right)=2.6 \mathrm{eV}
$$

we obtain

$$
\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}=\frac{2.6 \mathrm{eV}}{13.6 \mathrm{eV}} \approx-\frac{3}{16}=\frac{1}{4^{2}}-\frac{1}{2^{2}}
$$

Thus, $n_{2}=4$ and $n_{1}=2$. So the transition is from the $n=4$ state to the $n=2$ state. One can easily verify this by inspecting the energy level diagram of Fig. 39-18. Thus, the higher quantum number is $n_{2}=4$.
(c) The lower quantum number is $n_{1}=2$.
41. The radial probability function for the ground state of hydrogen is $P(r)=$ $\left(4 r^{2} / a^{3}\right) e^{-2 r / a}$, where a is the Bohr radius. (See Eq. 39-44). We want to evaluate the integral $\int_{0}^{\infty} P(r) d r$. Eq. 15 in the integral table of Appendix E is an integral of this form. We set $n=2$ and replace a in the given formula with $2 / a$ and x with r. Then

$$
\int_{0}^{\infty} P(r) d r=\frac{4}{a^{3}} \int_{0}^{\infty} r^{2} e^{-2 r / a} d r=\frac{4}{a^{3}} \frac{2}{(2 / a)^{3}}=1 .
$$

42. From Sample Problem 39-8, we know that the probability of finding the electron in the ground state of the hydrogen atom inside a sphere of radius r is given by

$$
p(r)=1-e^{-2 x}\left(1+2 x+2 x^{2}\right)
$$

where $x=r / a$. Thus the probability of finding the electron between the two shells indicated in this problem is given by

$$
\begin{aligned}
p(a<r<2 a) & =p(2 a)-p(a)=\left[1-e^{-2 x}\left(1+2 x+2 x^{2}\right)\right]_{x=2}-\left[1-e^{-2 x}\left(1+2 x+2 x^{2}\right)\right]_{x=1} \\
& =0.439 .
\end{aligned}
$$

43. (a) ψ_{210} is real. Squaring it, we obtain the probability density:

$$
P_{210}(r)=\left|\psi_{210}\right|^{2}\left(4 \pi r^{2}\right)=\left(\frac{r^{2}}{32 \pi a^{5}} e^{-r / a} \cos ^{2} \theta\right)\left(4 \pi r^{2}\right)=\frac{r^{4}}{8 a^{5}} e^{-r / a} \cos ^{2} \theta
$$

(b) Each of the other functions is multiplied by its complex conjugate, obtained by replacing i with $-i$ in the function. Since $e^{i \phi} e^{-i \phi}=e^{0}=1$, the result is the square of the function without the exponential factor:

$$
\left|\psi_{21+1}\right|^{2}=\frac{r^{2}}{64 \pi a^{5}} e^{-r / a} \sin ^{2} \theta
$$

and

$$
\left|\psi_{21-1}\right|^{2}=\frac{r^{2}}{64 \pi a^{5}} e^{-r / a} \sin ^{2} \theta
$$

The last two functions lead to the same probability density:

$$
P_{21 \pm 1}(r)=\left|\psi_{21 \pm 1}\right|^{2}\left(4 \pi r^{2}\right)=\left(\frac{r^{2}}{64 \pi a^{5}} e^{-r / a} \sin ^{2} \theta\right)\left(4 \pi r^{2}\right)=\frac{r^{4}}{16 a^{5}} e^{-r / a} \sin ^{2} \theta
$$

(c) The total probability density for the three states is the sum:

$$
\begin{aligned}
P_{210}(r)+P_{21+1}(r) & +P_{21-1}(r)=\left(\left|\psi_{210}\right|^{2}+\left|\psi_{21+1}\right|^{2}+\left|\psi_{21-1}\right|^{2}\right)\left(4 \pi r^{2}\right) \\
& =\frac{r^{4}}{8 a^{5}} e^{-r / a}\left[\cos ^{2} \theta+\frac{1}{2} \sin ^{2} \theta+\frac{1}{2} \sin ^{2} \theta\right]=\frac{r^{4}}{8 a^{5}} e^{-r / a} .
\end{aligned}
$$

The trigonometric identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ is used. We note that the total probability density does not depend on θ or ϕ; it is spherically symmetric.
44. Using Eq. 39-6 and the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, we find

$$
\Delta E=E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{106.6 \mathrm{~nm}}=12.09 \mathrm{eV} .
$$

Therefore, $n_{\text {low }}=1$, but what precisely is $n_{\text {high }}$?

$$
E_{\text {high }}=E_{\mathrm{low}}+\Delta E \Rightarrow-\frac{13.6 \mathrm{eV}}{n^{2}}=-\frac{13.6 \mathrm{eV}}{1^{2}}+12.09 \mathrm{eV}
$$

which yields $n=3$. Thus, the transition is from the $n=3$ to the $n=1$ state.
(a) The higher quantum number is $n=3$.
(b) The lower quantum number is $n=1$.
(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions.
45. Since Δr is small, we may calculate the probability using $p=P(r) \Delta r$, where $P(r)$ is the radial probability density. The radial probability density for the ground state of hydrogen is given by Eq. 39-44:

$$
P(r)=\left(\frac{4 r^{2}}{a^{3}}\right) e^{-2 r / a}
$$

where a is the Bohr radius.
(a) Here, $r=0.500 a$ and $\Delta r=0.010 a$. Then,

$$
P=\left(\frac{4 r^{2} \Delta r}{a^{3}}\right) e^{-2 r / a}=4(0.500)^{2}(0.010) e^{-1}=3.68 \times 10^{-3} \approx 3.7 \times 10^{-3} .
$$

(b) We set $r=1.00 a$ and $\Delta r=0.010 a$. Then,

$$
P=\left(\frac{4 r^{2} \Delta r}{a^{3}}\right) e^{-2 r / a}=4(1.00)^{2}(0.010) e^{-2}=5.41 \times 10^{-3} \approx 5.4 \times 10^{-3} .
$$

46. According to Fig. 39-25, the quantum number n in question satisfies $r=n^{2} a$. Letting r $=1.0 \mathrm{~mm}$, we solve for n :

$$
n=\sqrt{\frac{r}{a}}=\sqrt{\frac{1.0 \times 10^{-3} \mathrm{~m}}{5.29 \times 10^{-11} \mathrm{~m}}} \approx 4.3 \times 10^{3} .
$$

47. The radial probability function for the ground state of hydrogen is $P(r)=$ $\left(4 r^{2} / a^{3}\right) e^{-2 r / a}$, where a is the Bohr radius. (See Eq. 39-44.) The integral table of Appendix E may be used to evaluate the integral $r_{\text {avg }}=\int_{0}^{\infty} r P(r) d r$. Setting $n=3$ and replacing a in the given formula with $2 / a$ (and x with r), we obtain

$$
r_{\text {avg }}=\int_{0}^{\infty} r P(r) d r=\frac{4}{a^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a} d r=\frac{4}{a^{3}} \frac{6}{(2 / a)^{4}}=1.5 a .
$$

48. (a) The plot shown below for $\left|\psi_{200}(r)\right|^{2}$ is to be compared with the dot plot of Fig. 39-22. We note that the horizontal axis of our graph is labeled " r," but it is actually r / a (that is, it is in units of the parameter a). Now, in the plot below there is a high central peak between $r=0$ and $r \sim 2 a$, corresponding to the densely dotted region around the center of the dot plot of Fig. 39-22. Outside this peak is a region of near-zero values centered at $r=2 a$, where $\psi_{200}=0$. This is represented in the dot plot by the empty ring surrounding the central peak. Further outside is a broader, flatter, low peak which reaches its maximum value at $r=4 a$. This corresponds to the outer ring with near-uniform dot density which is lower than that of the central peak.

(b) The extrema of $\psi^{2}(r)$ for $0<r<\infty$ may be found by squaring the given function, differentiating with respect to r, and setting the result equal to zero:

$$
-\frac{1}{32} \frac{(r-2 a)(r-4 a)}{a^{6} \pi} e^{-r / a}=0
$$

which has roots at $r=2 a$ and $r=4 a$. We can verify directly from the plot above that $r=$ $4 a$ is indeed a local maximum of $\psi_{200}^{2}(r)$. As discussed in part (a), the other root $(r=2 a)$ is a local minimum.
(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is

$$
P_{200}(r)=4 \pi r^{2} \psi_{200}^{2}(r)=\frac{r^{2}}{8 a^{3}}\left(2-\frac{r}{a}\right)^{2} e^{-r / a} .
$$

(d) Let $x=r / a$. Then

$$
\begin{aligned}
\int_{0}^{\infty} P_{200}(r) d r & =\int_{0}^{\infty} \frac{r^{2}}{8 a^{3}}\left(2-\frac{r}{a}\right)^{2} e^{-r / a} d r=\frac{1}{8} \int_{0}^{\infty} x^{2}(2-x)^{2} e^{-x} d x=\int_{0}^{\infty}\left(x^{4}-4 x^{3}+4 x^{2}\right) e^{-x} d x \\
& =\frac{1}{8}[4!-4(3!)+4(2!)]=1
\end{aligned}
$$

where we have used the integral formula $\int_{0}^{\infty} x^{n} e^{-x} d x=n!$.
49. From Eq. 39-4,

$$
E_{n+2}-E_{n}=\left(\frac{h^{2}}{8 m L^{2}}\right)(n+2)^{2}-\left(\frac{h^{2}}{8 m L^{2}}\right) n^{2}=\left(\frac{h^{2}}{2 m L^{2}}\right)(n+1) .
$$

50. We can use the $m c^{2}$ value for an electron from Table $37-3\left(511 \times 10^{3} \mathrm{eV}\right)$ and the $h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}$ value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2}(h c)^{2}}{8\left(m c^{2}\right) L^{2}}
$$

(a) With $L=3.0 \times 10^{9} \mathrm{~nm}$, the energy difference is

$$
E_{2}-E_{1}=\frac{1240^{2}}{8\left(511 \times 10^{3}\right)\left(3.0 \times 10^{9}\right)^{2}}\left(2^{2}-1^{2}\right)=1.3 \times 10^{-19} \mathrm{eV}
$$

(b) Since $(n+1)^{2}-n^{2}=2 n+1$, we have

$$
\Delta E=E_{n+1}-E_{n}=\frac{h^{2}}{8 m L^{2}}(2 n+1)=\frac{(h c)^{2}}{8\left(m c^{2}\right) L^{2}}(2 n+1)
$$

Setting this equal to 1.0 eV , we solve for n :

$$
n=\frac{4\left(m c^{2}\right) L^{2} \Delta E}{(h c)^{2}}-\frac{1}{2}=\frac{4\left(511 \times 10^{3} \mathrm{eV}\right)\left(3.0 \times 10^{9} \mathrm{~nm}\right)^{2}(1.0 \mathrm{eV})}{(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}-\frac{1}{2} \approx 1.2 \times 10^{19}
$$

(c) At this value of n, the energy is

$$
E_{n}=\frac{1240^{2}}{8\left(511 \times 10^{3}\right)\left(3.0 \times 10^{9}\right)^{2}}\left(6 \times 10^{18}\right)^{2} \approx 6 \times 10^{18} \mathrm{eV}
$$

Thus

$$
\frac{E_{n}}{m c^{2}}=\frac{6 \times 10^{18} \mathrm{eV}}{511 \times 10^{3} \mathrm{eV}}=1.2 \times 10^{13}
$$

(d) Since $E_{n} / m c^{2} \gg 1$, the energy is indeed in the relativistic range.
51. (a) The allowed values of ℓ for a given n are $0,1,2, \ldots, n-1$. Thus there are n different values of ℓ.
(b) The allowed values of m_{ℓ} for a given ℓ are $-\ell,-\ell+1, \ldots, \ell$. Thus there are $2 \ell+1$ different values of m_{ℓ}.
(c) According to part (a) above, for a given n there are n different values of ℓ. Also, each of these ℓ 's can have $2 \ell+1$ different values of m_{ℓ} [see part (b) above]. Thus, the total number of m_{ℓ} 's is

$$
\sum_{\ell=0}^{n-1}(2 \ell+1)=n^{2} .
$$

52. (a) and (b) In the region $0<x<L, U_{0}=0$, so Schrödinger's equation for the region is

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}} E \psi=0
$$

where $E>0$. If $\psi^{2}(x)=B \sin ^{2} k x$, then $\psi(x)=B^{\prime} \sin k x$, where B^{\prime} is another constant satisfying $B^{\prime 2}=B$. Thus $d^{2} \psi / d x^{2}=-k^{2} B^{\prime} \sin k x=-k^{2} \psi(x)$ and

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}} E \psi=-k^{2} \psi+\frac{8 \pi^{2} m}{h^{2}} E \psi .
$$

This is zero provided that

$$
k^{2}=\frac{8 \pi^{2} m E}{h^{2}}
$$

The quantity on the right-hand side is positive, so k is real and the proposed function satisfies Schrödinger's equation. In this case, there exists no physical restriction as to the sign of k. It can assume either positive or negative values. Thus, $k= \pm \frac{2 \pi}{h} \sqrt{2 m E}$.
53. (a) and (b) Schrödinger's equation for the region $x>L$ is

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=0
$$

where $E-U_{0}<0$. If $\psi^{2}(x)=C e^{-2 k x}$, then $\psi(x)=C^{\prime} e^{-k x}$, where C^{\prime} is another constant satisfying $C^{\prime 2}=C$. Thus $d^{2} \psi I d x^{2}=4 k^{2} C^{\prime} e^{-k x}=4 k^{2} \psi$ and

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi=k^{2} \psi+\frac{8 \pi^{2} m}{h^{2}}\left[E-U_{0}\right] \psi .
$$

This is zero provided that $k^{2}=\frac{8 \pi^{2} m}{h^{2}}\left[U_{0}-E\right]$.
The quantity on the right-hand side is positive, so k is real and the proposed function satisfies Schrödinger's equation. If k is negative, however, the proposed function would be physically unrealistic. It would increase exponentially with x. Since the integral of the probability density over the entire x axis must be finite, ψ diverging as $x \rightarrow \infty$ would be unacceptable. Therefore, we choose

$$
k=\frac{2 \pi}{h} \sqrt{2 m\left(U_{0}-E\right)}>0 .
$$

54. (a) The allowed energy values are given by $E_{n}=n^{2} h^{2} / 8 m L^{2}$. The difference in energy between the state n and the state $n+1$ is

$$
\Delta E_{\mathrm{adj}}=E_{n+1}-E_{n}=\left[(n+1)^{2}-n^{2}\right] \frac{h^{2}}{8 m L^{2}}=\frac{(2 n+1) h^{2}}{8 m L^{2}}
$$

and

$$
\frac{\Delta E_{\mathrm{adj}}}{E}=\left[\frac{(2 n+1) h^{2}}{8 m L^{2}}\right]\left(\frac{8 m L^{2}}{n^{2} h^{2}}\right)=\frac{2 n+1}{n^{2}} .
$$

As n becomes large, $2 n+1 \rightarrow 2 n$ and $(2 n+1) / n^{2} \rightarrow 2 n / n^{2}=2 / n$.
(b) No. As $n \rightarrow \infty, \Delta E_{\text {adj }}$ and E do not approach 0 , but $\Delta E_{\text {adj }} / E$ does.
(c) No. See part (b).
(d) Yes. See part (b).
(e) $\Delta E_{\text {adj }} / E$ is a better measure than either $\Delta E_{\text {adj }}$ or E alone of the extent to which the quantum result is approximated by the classical result.
55. (a) We recall that a derivative with respect to a dimensional quantity carries the (reciprocal) units of that quantity. Thus, the first term in Eq. 39-18 has dimensions of ψ multiplied by dimensions of x^{-2}. The second term contains no derivatives, does contain ψ, and involves several other factors that turn out to have dimensions of x^{-2} :

$$
\frac{8 \pi^{2} m}{h^{2}}[E-U(x)] \Rightarrow \frac{\mathrm{kg}}{(\mathrm{~J} \cdot \mathrm{~s})^{2}}[\mathrm{~J}]
$$

assuming SI units. Recalling from Eq. $7-9$ that $J=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$, then we see the above is indeed in units of m^{-2} (which means dimensions of x^{-2}).
(b) In one-dimensional Quantum Physics, the wavefunction has units of $\mathrm{m}^{-1 / 2}$ as Sample Problem 39-2 shows. Thus, since each term in Eq. 39-18 has units of ψ multiplied by units of x^{-2}, then those units are $\mathrm{m}^{-1 / 2} \cdot \mathrm{~m}^{-2}=\mathrm{m}^{-2.5}$.
56. For $n=1$

$$
E_{1}=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}=-\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{4}}{8\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)^{2}\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=-13.6 \mathrm{eV}
$$

57. (a) and (b) Using Eq. 39-6 and the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot$ nm), we find

$$
\Delta E=E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{486.1 \mathrm{~nm}}=2.55 \mathrm{eV}
$$

Therefore, $n_{\text {low }}=2$, but what precisely is $n_{\text {high }}$?

$$
E_{\text {high }}=E_{\text {low }}+\Delta E \Rightarrow-\frac{13.6 \mathrm{eV}}{n^{2}}=-\frac{13.6 \mathrm{eV}}{2^{2}}+2.55 \mathrm{eV}
$$

which yields $n=4$. Thus, the transition is from the $n=4$ to the $n=2$ state.
(a) The higher quantum number is $n=4$.
(b) The lower quantum number is $n=2$.
(c) Referring to Fig. 39-18, we see that this must be one of the Balmer series transitions (this fact could also be found from Fig. 39-19).
58. (a) The "home-base" energy level for the Balmer series is $n=2$. Thus the transition with the least energetic photon is the one from the $n=3$ level to the $n=2$ level. The energy difference for this transition is

$$
\Delta E=E_{3}-E_{2}=-(13.6 \mathrm{eV})\left(\frac{1}{3^{2}}-\frac{1}{2^{2}}\right)=1.889 \mathrm{eV} .
$$

Using the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, the corresponding wavelength is

$$
\lambda=\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.889 \mathrm{eV}}=658 \mathrm{~nm} .
$$

(b) For the series limit, the energy difference is

$$
\Delta E=E_{\infty}-E_{2}=-(13.6 \mathrm{eV})\left(\frac{1}{\infty^{2}}-\frac{1}{2^{2}}\right)=3.40 \mathrm{eV}
$$

The corresponding wavelength is then $\lambda=\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{3.40 \mathrm{eV}}=366 \mathrm{~nm}$.
59. The wavelength λ of the photon emitted in a transition belonging to the Balmer series satisfies

$$
E_{\mathrm{ph}}=\frac{h c}{\lambda}=E_{n}-E_{2}=-(13.6 \mathrm{eV})\left(\frac{1}{n^{2}}-\frac{1}{2^{2}}\right) \text { where } n=3,4,5, \ldots
$$

Using the result of problem 83 in Chapter $38(h c=1240 \mathrm{eV} \cdot \mathrm{nm})$, we find

$$
\lambda=\frac{4 h c n^{2}}{(13.6 \mathrm{eV})\left(n^{2}-4\right)}=\frac{4(1240 \mathrm{eV} \cdot \mathrm{~nm})}{13.6 \mathrm{eV}}\left(\frac{n^{2}}{n^{2}-4}\right)
$$

Plugging in the various values of n, we obtain these values of the wavelength: $\lambda=656$ nm (for $n=3$), $\lambda=486 \mathrm{~nm}$ (for $n=4$), $\lambda=434 \mathrm{~nm}$ (for $n=5$), $\lambda=410 \mathrm{~nm}$ (for $n=6$), λ $=397 \mathrm{~nm}$ (for $n=7$), $\lambda=389 \mathrm{~nm}$ (for $n=8$), etc. Finally for $n=\infty, \lambda=365 \mathrm{~nm}$. These values agree well with the data found in Fig. 39-19. [One can also find λ beyond three significant figures by using the more accurate values for m_{e}, e and h listed in Appendix B when calculating E_{n} in Eq. 39-33. Another factor that contributes to the error is the motion of the atomic nucleus. It can be shown that this effect can be accounted for by replacing the mass of the electron m_{e} by $m_{e} m_{p} /\left(m_{p}+m_{e}\right)$ in Eq. 39-33, where m_{p} is the mass of the proton. Since $m_{p} \gg m_{e}$, this is not a major effect.]

1. (a) For a given value of the principal quantum number n, the orbital quantum number ℓ ranges from 0 to $n-1$. For $n=3$, there are three possible values: 0,1 , and 2 .
(b) For a given value of ℓ, the magnetic quantum number m_{ℓ} ranges from $-\ell$ to $+\ell$. For $\ell=1$, there are three possible values: $-1,0$, and +1 .
2. For a given quantum number ℓ there are $(2 \ell+1)$ different values of m_{ℓ}. For each given m_{ℓ} the electron can also have two different spin orientations. Thus, the total number of electron states for a given ℓ is given by $N_{\ell}=2(2 \ell+1)$.
(a) Now $\ell=3$, so $N_{\ell}=2(2 \times 3+1)=14$.
(b) In this case, $\ell=1$, which means $N_{\ell}=2(2 \times 1+1)=6$.
(c) Here $\ell=1$, so $N_{\ell}=2(2 \times 1+1)=6$.
(d) Now $\ell=0$, so $N_{\ell}=2(2 \times 0+1)=2$.
3. (a) We use Eq. 40-2:

$$
L=\sqrt{\ell(\ell+1)} \hbar=\sqrt{3(3+1)}\left(1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)=3.65 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} .
$$

(b) We use Eq. 40-7: $L_{z}=m_{\ell} \hbar$. For the maximum value of L_{z} set $m_{\ell}=\ell$. Thus

$$
\left[L_{z}\right]_{\max }=\ell \hbar=3\left(1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)=3.16 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

4. For a given quantum number n there are n possible values of ℓ, ranging from 0 to $n-1$. For each ℓ the number of possible electron states is $N_{\ell}=2(2 \ell+1)$. Thus, the total number of possible electron states for a given n is

$$
N_{n}=\sum_{l=0}^{n-1} N_{\ell}=2 \sum_{l=0}^{n-1}(2 \ell+1)=2 n^{2} .
$$

(a) In this case $n=4$, which implies $N_{n}=2\left(4^{2}\right)=32$.
(b) Now $n=1$, so $N_{n}=2\left(1^{2}\right)=2$.
(c) Here $n=3$, and we obtain $N_{n}=2\left(3^{2}\right)=18$.
(d) Finally, $n=2 \rightarrow N_{n}=2\left(2^{2}\right)=8$.
5. The magnitude L of the orbital angular momentum \vec{L} is given by Eq. 40-2: $L=\sqrt{\ell(\ell+1)} \hbar$. On the other hand, the components L_{z} are $L_{z}=m_{\ell} \hbar$, where $m_{\ell}=-\ell, \ldots+\ell$. Thus, the semi-classical angle is $\cos \theta=L_{z} / L$. The angle is the smallest when $m=\ell$, or

$$
\cos \theta=\frac{\ell \hbar}{\sqrt{\ell(\ell+1)} \hbar} \Rightarrow \theta=\cos ^{-1}\left(\frac{\ell}{\sqrt{\ell(\ell+1)}}\right)
$$

With $\ell=5$, we have $\theta=24.1^{\circ}$.
6. (a) For $\ell=3$, the greatest value of m_{ℓ} is $m_{\ell}=3$.
(b) Two states $\left(m_{s}= \pm \frac{1}{2}\right)$ are available for $m_{\ell}=3$.
(c) Since there are 7 possible values for $m_{\ell}:+3,+2,+1,0,-1,-2,-3$, and two possible values for m_{s}, the total number of state available in the subshell $\ell=3$ is 14 .
7. (a) Using Table $40-1$, we find $\ell=\left[m_{\ell}\right]_{\max }=4$.
(b) The smallest possible value of n is $n=\ell_{\max }+1 \geq \ell+1=5$.
(c) As usual, $m_{s}= \pm \frac{1}{2}$, so two possible values.
8. For a given quantum number n there are n possible values of ℓ, ranging from 0 to $n-1$. For each ℓ the number of possible electron states is $N_{\ell}=2(2 \ell+1)$. Thus the total number of possible electron states for a given n is

$$
N_{n}=\sum_{\ell=0}^{n-1} N_{\ell}=2 \sum_{\ell=0}^{n-1}(2 \ell+1)=2 n^{2} .
$$

Thus, in this problem, the total number of electron states is $N_{n}=2 n^{2}=2(5)^{2}=50$.
9. (a) For $\ell=3$, the magnitude of the orbital angular momentum is $L=\sqrt{\ell(\ell+1)} \hbar=$ $\sqrt{3(3+1)} \hbar=\sqrt{12} \hbar$. So the multiple is $\sqrt{12} \approx 3.46$.
(b) The magnitude of the orbital dipole moment is $\mu_{\text {orb }}=\sqrt{\ell(\ell+1)} \mu_{B}=\sqrt{12} \mu_{B}$. So the multiple is $\sqrt{12} \approx 3.46$.
(c) The largest possible value of m_{ℓ} is $m_{\ell}=\ell=3$.
(d) We use $L_{z}=m_{\ell} \hbar$ to calculate the z component of the orbital angular momentum. The multiple is $m_{\ell}=3$.
(e) We use $\mu_{z}=-m_{\ell} \mu_{B}$ to calculate the z component of the orbital magnetic dipole moment. The multiple is $-m_{\ell}=-3$.
(f) We use $\cos \theta=m_{\ell} / \sqrt{\ell(\ell+1)}$ to calculate the angle between the orbital angular momentum vector and the z axis. For $\ell=3$ and $m_{\ell}=3$, we have $\cos \theta=3 / \sqrt{12}=\sqrt{3} / 2$, or $\theta=30.0^{\circ}$.
(g) For $\ell=3$ and $m_{\ell}=2$, we have $\cos \theta=2 / \sqrt{12}=1 / \sqrt{3}$, or $\theta=54.7^{\circ}$.
(h) For $\ell=3$ and $m_{\ell}=-3, \cos \theta=-3 / \sqrt{12}=-\sqrt{3} / 2$, or $\theta=150^{\circ}$.
10. (a) For $n=3$ there are 3 possible values of $\ell: 0,1$, and 2 .
(b) We interpret this as asking for the number of distinct values for m_{ℓ} (this ignores the multiplicity of any particular value). For each ℓ there are $2 \ell+1$ possible values of m_{ℓ}. Thus the number of possible m_{ℓ}^{\prime} s for $\ell=2$ is $(2 \ell+1)=5$. Examining the $\ell=1$ and $\ell=0$ cases cannot lead to any new (distinct) values for m_{ℓ}, so the answer is 5 .
(c) Regardless of the values of n, ℓ and m_{ℓ}, for an electron there are always two possible values of $m_{s}: \pm \frac{1}{2}$.
(d) The population in the $n=3$ shell is equal to the number of electron states in the shell, or $2 n^{2}=2\left(3^{2}\right)=18$.
(e) Each subshell has its own value of ℓ. Since there are three different values of ℓ for n $=3$, there are three subshells in the $n=3$ shell.
11. Since $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}, \sqrt{L_{x}^{2}+L_{y}^{2}}=\sqrt{L^{2}-L_{z}^{2}}$. Replacing L^{2} with $\ell(\ell+1) \hbar^{2}$ and L_{z} with $m_{\ell} \hbar$, we obtain $\sqrt{L_{x}^{2}+L_{y}^{2}}=\hbar \sqrt{\ell(\ell+1)-m_{\ell}^{2}}$. For a given value of ℓ, the greatest that m_{ℓ} can be is ℓ, so the smallest that $\sqrt{L_{x}^{2}+L_{y}^{2}}$ can be is $\hbar \sqrt{\ell(\ell+1)-\ell^{2}}=\hbar \sqrt{\ell}$. The smallest possible magnitude of m_{ℓ} is zero, so the largest $\sqrt{L_{x}^{2}+L_{y}^{2}}$ can be is $\hbar \sqrt{\ell(\ell+1)}$. Thus,

$$
\hbar \sqrt{\ell} \leq \sqrt{L_{x}^{2}+L_{y}^{2}} \leq \hbar \sqrt{\ell(\ell+1)} .
$$

12. (a) From Fig. 40-10 and Eq. 40-18,

$$
\Delta E=2 \mu_{B} B=\frac{2\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.50 \mathrm{~T})}{1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=58 \mu \mathrm{eV} .
$$

(b) From $\Delta E=h f$ we get

$$
f=\frac{\Delta E}{h}=\frac{9.27 \times 10^{-24} \mathrm{~J}}{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}=1.4 \times 10^{10} \mathrm{~Hz}=14 \mathrm{GHz}
$$

(c) The wavelength is

$$
\lambda=\frac{c}{f}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.4 \times 10^{10} \mathrm{~Hz}}=2.1 \mathrm{~cm} .
$$

(d) The wave is in the short radio wave region.
13. The magnitude of the spin angular momentum is $S=\sqrt{s(s+1)} \hbar=(\sqrt{3} / 2) \hbar$, where $s=\frac{1}{2}$ is used. The z component is either $S_{z}=\hbar / 2$ or $-\hbar / 2$.
(a) If $S_{z}=+\hbar / 2$ the angle θ between the spin angular momentum vector and the positive z axis is

$$
\theta=\cos ^{-1}\left(\frac{S_{z}}{S}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=54.7^{\circ}
$$

(b) If $S_{z}=-\hbar / 2$, the angle is $\theta=180^{\circ}-54.7^{\circ}=125.3^{\circ} \approx 125^{\circ}$.
14. (a) From Eq. 40-19,

$$
F=\mu_{B}\left|\frac{d B}{d z}\right|=\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)\left(1.6 \times 10^{2} \mathrm{~T} / \mathrm{m}\right)=1.5 \times 10^{-21} \mathrm{~N}
$$

(b) The vertical displacement is

$$
\Delta x=\frac{1}{2} a t^{2}=\frac{1}{2}\left(\frac{F}{m}\right)\left(\frac{l}{v}\right)^{2}=\frac{1}{2}\left(\frac{1.5 \times 10^{-21} \mathrm{~N}}{1.67 \times 10^{-27} \mathrm{~kg}}\right)\left(\frac{0.80 \mathrm{~m}}{1.2 \times 10^{5} \mathrm{~m} / \mathrm{s}}\right)^{2}=2.0 \times 10^{-5} \mathrm{~m} .
$$

15. The acceleration is

$$
a=\frac{F}{M}=\frac{(\mu \cos \theta)(d B / d z)}{M},
$$

where M is the mass of a silver atom, μ is its magnetic dipole moment, B is the magnetic field, and θ is the angle between the dipole moment and the magnetic field. We take the moment and the field to be parallel $(\cos \theta=1)$ and use the data given in Sample Problem 40-1 to obtain

$$
a=\frac{\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)\left(1.4 \times 10^{3} \mathrm{~T} / \mathrm{m}\right)}{1.8 \times 10^{-25} \mathrm{~kg}}=7.2 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

16. We let $\Delta E=2 \mu_{B} B_{\text {eff }}$ (based on Fig. 40-10 and Eq. 40-18) and solve for $B_{\text {eff }}$:

$$
B_{\mathrm{eff}}=\frac{\Delta E}{2 \mu_{B}}=\frac{h c}{2 \lambda \mu_{B}}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{2\left(21 \times 10^{-7} \mathrm{~nm}\right)\left(5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}\right)}=51 \mathrm{mT} .
$$

17. The energy of a magnetic dipole in an external magnetic field \vec{B} is $U=-\vec{\mu} \cdot \vec{B}=-\mu_{z} B$, where $\vec{\mu}$ is the magnetic dipole moment and μ_{z} is its component along the field. The energy required to change the moment direction from parallel to antiparallel is $\Delta E=\Delta U=2 \mu_{z} B$. Since the z component of the spin magnetic moment of an electron is the Bohr magneton μ_{B},

$$
\Delta E=2 \mu_{B} B=2\left(9.274 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.200 \mathrm{~T})=3.71 \times 10^{-24} \mathrm{~J}
$$

The photon wavelength is

$$
\lambda=\frac{c}{f}=\frac{h c}{\Delta E}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{3.71 \times 10^{-24} \mathrm{~J}}=5.36 \times 10^{-2} \mathrm{~m}
$$

18. The total magnetic field, $B=B_{\text {local }}+B_{\text {ext }}$, satisfies $\Delta E=h f=2 \mu B$ (see Eq. 40-22). Thus,

$$
B_{\text {local }}=\frac{h f}{2 \mu}-B_{\text {ext }}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(34 \times 10^{6} \mathrm{~Hz}\right)}{2\left(1.41 \times 10^{-26} \mathrm{~J} / \mathrm{T}\right)}-0.78 \mathrm{~T}=19 \mathrm{mT} .
$$

19. Because of the Pauli principle (and the requirement that we construct a state of lowest possible total energy), two electrons fill the $n=1,2,3$ levels and one electron occupies the $n=4$ level. Thus, using Eq. 39-4,

$$
\begin{aligned}
E_{\text {ground }} & =2 E_{1}+2 E_{2}+2 E_{3}+E_{4} \\
& =2\left(\frac{h^{2}}{8 m L^{2}}\right)(1)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(2)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(3)^{2}+\left(\frac{h^{2}}{8 m L^{2}}\right)(4)^{2} \\
& =(2+8+18+16)\left(\frac{h^{2}}{8 m L^{2}}\right)=44\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 44 .
20. Using Eq. 39-20 we find that the lowest four levels of the rectangular corral (with this specific "aspect ratio") are non-degenerate, with energies $E_{1,1}=1.25, E_{1,2}=2.00, E_{1,3}=$ 3.25 , and $E_{2,1}=4.25$ (all of these understood to be in "units" of $h^{2} / 8 m L^{2}$). Therefore, obeying the Pauli principle, we have

$$
E_{\text {ground }}=2 E_{1,1}+2 E_{1,2}+2 E_{1,3}+E_{2,1}=2(1.25)+2(2.00)+2(3.25)+4.25
$$

which means (putting the "unit" factor back in) that the lowest possible energy of the system is $E_{\text {ground }}=17.25\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 17.25 .
21. (a) Promoting one of the electrons (described in problem 19) to a not-fully occupied higher level, we find that the configuration with the least total energy greater than that of the ground state has the $n=1$ and 2 levels still filled, but now has only one electron in the $n=3$ level; the remaining two electrons are in the $n=4$ level. Thus,

$$
\begin{aligned}
E_{\text {first excited }} & =2 E_{1}+2 E_{2}+E_{3}+2 E_{4} \\
& =2\left(\frac{h^{2}}{8 m L^{2}}\right)(1)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(2)^{2}+\left(\frac{h^{2}}{8 m L^{2}}\right)(3)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(4)^{2} \\
& =(2+8+9+32)\left(\frac{h^{2}}{8 m L^{2}}\right)=51\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 51 .
(b) Now, the configuration which provides the next higher total energy, above that found in part (a), has the bottom three levels filled (just as in the ground state configuration) and has the seventh electron occupying the $n=5$ level:

$$
\begin{aligned}
E_{\text {second excited }} & =2 E_{1}+2 E_{2}+2 E_{3}+E_{5} \\
& =2\left(\frac{h^{2}}{8 m L^{2}}\right)(1)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(2)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(3)^{2}+\left(\frac{h^{2}}{8 m L^{2}}\right)(5)^{2} \\
& =(2+8+18+25)\left(\frac{h^{2}}{8 m L^{2}}\right)=53\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 53 .
(c) The third excited state has the $n=1,3,4$ levels filled, and the $n=2$ level half-filled:

$$
\begin{aligned}
E_{\text {third excited }} & =2 E_{1}+E_{2}+2 E_{3}+2 E_{4} \\
& =2\left(\frac{h^{2}}{8 m L^{2}}\right)(1)^{2}+\left(\frac{h^{2}}{8 m L^{2}}\right)(2)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(3)^{2}+2\left(\frac{h^{2}}{8 m L^{2}}\right)(4)^{2} \\
& =(2+4+18+32)\left(\frac{h^{2}}{8 m L^{2}}\right)=56\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 56 .
(d) The energy states of this problem and problem 19 are suggested in the sketch below:
\qquad second excited $53\left(h^{2} / 8 m L^{2}\right)$
first excited $51\left(h^{2} / 8 m L^{2}\right)$
ground state $44\left(h^{2} / 8 m L^{2}\right)$
22. (a) Using Eq. 39-20 we find that the lowest five levels of the rectangular corral (with this specific "aspect ratio") have energies $E_{1,1}=1.25, E_{1,2}=2.00, E_{1,3}=3.25, E_{2,1}=4.25$, and $E_{2,2}=5.00$ (all of these understood to be in "units" of $h^{2} / 8 m L^{2}$). It should be noted that the energy level we denote $E_{2,2}$ actually corresponds to two energy levels ($E_{2,2}$ and $E_{1,4}$; they are degenerate), but that will not affect our calculations in this problem. The configuration which provides the lowest system energy higher than that of the ground state has the first three levels filled, the fourth one empty, and the fifth one half-filled:

$$
E_{\text {first excited }}=2 E_{1,1}+2 E_{1,2}+2 E_{1,3}+E_{2,2}=2(1.25)+2(2.00)+2(3.25)+5.00
$$

which means (putting the "unit" factor back in) the energy of the first excited state is $E_{\text {first excited }}=18.00\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 18.00 .
(b) The configuration which provides the next higher system energy has the first two levels filled, the third one half-filled, and the fourth one filled:

$$
E_{\text {second excited }}=2 E_{1,1}+2 E_{1,2}+E_{1,3}+2 E_{2,1}=2(1.25)+2(2.00)+3.25+2(4.25)
$$

which means (putting the "unit" factor back in) the energy of the second excited state is $E_{\text {second excited }}=18.25\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 18.25 .
(c) Now, the configuration which provides the next higher system energy has the first two levels filled, with the next three levels half-filled:

$$
E_{\text {dirid excied }}=2 E_{1,1}+2 E_{1,2}+E_{1,3}+E_{2,1}+E_{2,2}=2(1.25)+2(2.00)+3.25+4.25+5.00
$$

which means (putting the "unit" factor back in) the energy of the third excited state is $E_{\text {third excited }}=19.00\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 19.00 .
(d) The energy states of this problem and problem 20 are suggested in the sketch below:
\qquad third excited $19.00\left(h^{2} / 8 m L^{2}\right)$
\qquad second excited $18.25\left(h^{2} / 8 m L^{2}\right)$
\qquad first excited $18.00\left(h^{2} / 8 m L^{2}\right)$
23. In terms of the quantum numbers n_{x}, n_{y}, and n_{z}, the single-particle energy levels are given by

$$
E_{n_{x}, n_{y}, n_{z}}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) .
$$

The lowest single-particle level corresponds to $n_{x}=1, n_{y}=1$, and $n_{z}=1$ and is $E_{1,1,1}=$ $3\left(h^{2} / 8 m L^{2}\right)$. There are two electrons with this energy, one with spin up and one with spin down. The next lowest single-particle level is three-fold degenerate in the three integer quantum numbers. The energy is

$$
E_{1,1,2}=E_{1,2,1}=E_{2,1,1}=6\left(h^{2} / 8 m L^{2}\right) .
$$

Each of these states can be occupied by a spin up and a spin down electron, so six electrons in all can occupy the states. This completes the assignment of the eight electrons to single-particle states. The ground state energy of the system is

$$
E_{\mathrm{gr}}=(2)(3)\left(h^{2} / 8 m L^{2}\right)+(6)(6)\left(h^{2} / 8 m L^{2}\right)=42\left(h^{2} / 8 m L^{2}\right) .
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 42 .
24. We use the results of problem 22 in Chapter 39. The Pauli principle requires that no more than two electrons be in the lowest energy level (at $E_{1,1,1}=3\left(h^{2} / 8 m L^{2}\right)$), but - due to their degeneracies - as many as six electrons can be in the next three levels

$$
\begin{aligned}
& E^{\prime}=E_{1,1,2}=E_{1,2,1}=E_{2,1,1}=6\left(h^{2} / 8 m L^{2}\right) \\
& E^{\prime \prime}=E_{1,2,2}=E_{2,2,1}=E_{2,1,2}=9\left(h^{2} / 8 m L^{2}\right) \\
& E^{\prime \prime \prime}=E_{1,1,3}=E_{1,3,1}=E_{3,1,1}=11\left(h^{2} / 8 m L^{2}\right) .
\end{aligned}
$$

Using Eq. 39-21, the level above those can only hold two electrons:

$$
E_{2,2,2}=\left(2^{2}+2^{2}+2^{2}\right)\left(h^{2} / 8 m L^{2}\right)=12\left(h^{2} / 8 m L^{2}\right) .
$$

And the next higher level can hold as much as twelve electrons (see part (e) of problem 22 in Chapter 39) and has energy $E^{\prime \prime \prime \prime}=14\left(h^{2} / 8 m L^{2}\right)$.
(a) The configuration which provides the lowest system energy higher than that of the ground state has the first level filled, the second one with one vacancy, and the third one with one occupant:

$$
E_{\text {first excited }}=2 E_{1,1,1}+5 E^{\prime}+E^{\prime \prime}=2(3)+5(6)+9
$$

which means (putting the "unit" factor back in) the energy of the first excited state is $E_{\text {first excited }}=45\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 45 .
(b) The configuration which provides the next higher system energy has the first level filled, the second one with one vacancy, the third one empty, and the fourth one with one occupant:

$$
E_{\text {second excited }}=2 E_{1,1,1}+5 E^{\prime}+E^{\prime \prime}=2(3)+5(6)+11
$$

which means (putting the "unit" factor back in) the energy of the second excited state is $E_{\text {second excited }}=47\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 47 .
(c) Now, there are a couple of configurations which provide the next higher system energy. One has the first level filled, the second one with one vacancy, the third and fourth ones empty, and the fifth one with one occupant:

$$
E_{\text {third excited }}=2 E_{1,1,1}+5 E^{\prime}+E^{\prime \prime \prime}=2(3)+5(6)+12
$$

which means (putting the "unit" factor back in) the energy of the third excited state is $E_{\text {third excited }}=48\left(h^{2} / 8 m L^{2}\right)$. Thus, the multiple of $h^{2} / 8 m L^{2}$ is 48 . The other configuration
with this same total energy has the first level filled, the second one with two vacancies, and the third one with one occupant.
(d) The energy states of this problem and problem 23 are suggested in the following sketch:
\qquad third excited $48\left(h^{2} / 8 m L^{2}\right)$ second excited $47\left(h^{2} / 8 m L^{2}\right)$
\qquad first excited $45\left(h^{2} / 8 m L^{2}\right)$
\qquad ground state $42\left(h^{2} / 8 m L^{2}\right)$
25. The first three shells ($n=1$ through 3), which can accommodate a total of $2+8+18$ $=28$ electrons, are completely filled. For selenium $(Z=34)$ there are still $34-28=6$ electrons left. Two of them go to the $4 s$ subshell, leaving the remaining four in the highest occupied subshell, the $4 p$ subshell. Thus,
(a) the highest occupied subshell is $4 p$,
(b) and there are four electrons in the subshell.

For bromine $(Z=35)$ the highest occupied subshell is also the $4 p$ subshell, which contains five electrons.
(c) Thus, the highest occupied subshell is $4 p$, and
(d) there are five electrons in the subshell.

For krypton $(Z=36)$ the highest occupied subshell is also the $4 p$ subshell, which now accommodates six electrons.
(e) Thus, the highest occupied subshell is $4 p$, and
(f) there are six electrons in the subshell.
26. When a helium atom is in its ground state, both of its electrons are in the $1 s$ state. Thus, for each of the electrons, $n=1, \ell=0$, and $m_{\ell}=0$. One of the electrons is spin up $\left(m_{s}=+\frac{1}{2}\right)$ while the other is spin down $\left(m_{s}=-\frac{1}{2}\right)$. Thus,
(a) the quantum numbers $\left(n, \ell, m_{\ell}, m_{s}\right)$ for the spin-up electron is $(1,0,0,+1 / 2)$, and
(b) the quantum numbers $\left(n, \ell, m_{\ell}, m_{s}\right)$ for the spin-down electron is $(1,0,0,-1 / 2)$.
27. (a) All states with principal quantum number $n=1$ are filled. The next lowest states have $n=2$. The orbital quantum number can have the values $\ell=0$ or 1 and of these, the $\ell=0$ states have the lowest energy. The magnetic quantum number must be $m_{\ell}=0$ since this is the only possibility if $\ell=0$. The spin quantum number can have either of the values $m_{s}=-\frac{1}{2}$ or $+\frac{1}{2}$. Since there is no external magnetic field, the energies of these two states are the same. Therefore, in the ground state, the quantum numbers of the third electron are either $n=2, \ell=0, m_{\ell}=0, m_{s}=-\frac{1}{2}$ or $n=2, \ell=0, m_{\ell}=0, m_{s}=+\frac{1}{2}$. That is, $\left(n, \ell, m_{\ell}, m_{s}\right)=(2,0,0,+1 / 2)$ and $(2,0,0,-1 / 2)$.
(b) The next lowest state in energy is an $n=2, \ell=1$ state. All $n=3$ states are higher in energy. The magnetic quantum number can be $m_{\ell}=-1,0$, or +1 ; the spin quantum number can be $m_{s}=-\frac{1}{2}$ or $+\frac{1}{2}$. Thus, $\left(n, \ell, m_{\ell}, m_{s}\right)=(2,1,1,+1 / 2)$ and $(2,1,1,-1 / 2)$, $(2,1,0,+1 / 2),(2,1,0,-1 / 2),(2,1,-1,+1 / 2)$ and $(2,1,-1,-1 / 2)$.
28. (a) The number of different m_{ℓ} 's is $2 \ell+1=3,\left(m_{\ell}=1,0,-1\right)$ and the number of different m_{s} 's is 2 , which we denote as $+1 / 2$ and $-1 / 2$. The allowed states are $\left(m_{\ell 1}, m_{s 1}, m_{\ell 2}, m_{s 2}\right)=(1,+1 / 2,1,-1 / 2),(1,+1 / 2,0,+1 / 2),(1,+1 / 2,0,-1 / 2),(1,+1 / 2,-1,+$ $1 / 2), \quad(1,+1 / 2,-1,-1 / 2), \quad(1,-1 / 2,0,+\quad 1 / 2), \quad(1,-1 / 2,0,-1 / 2), \quad(1,-1 / 2,-1,+1 / 2)$, $(1,-1 / 2,-1,-1 / 2), \quad(0,+\quad 1 / 2,0,-1 / 2), \quad(0,+\quad 1 / 2,-1,+\quad 1 / 2), \quad(0,+\quad 1 / 2,-1,-1 / 2)$, $(0,-1 / 2,-1,+1 / 2),(0,-1 / 2,-1,-1 / 2),(-1,+1 / 2,-1,-1 / 2)$. So, there are 15 states.
(b) There are six states disallowed by the exclusion principle, in which both electrons share the quantum numbers: $\left(m_{\ell 1}, m_{s 1}, m_{\ell 2}, m_{s 2}\right)=(1,+1 / 2,1,+1 / 2),(1,-1 / 2,1,-1 / 2),(0,+$ $1 / 2,0,+1 / 2),(0,-1 / 2,0,-1 / 2),(-1,+1 / 2,-1,+1 / 2),(-1,-1 / 2,-1,-1 / 2)$. So, if Pauli exclusion principle is not applied, then there would be $15+6=21$ allowed states.
29. For a given value of the principal quantum number n, there are n possible values of the orbital quantum number ℓ, ranging from 0 to $n-1$. For any value of ℓ, there are $2 \ell+1$ possible values of the magnetic quantum number m_{ℓ}, ranging from $-\ell$ to $+\ell$. Finally, for each set of values of ℓ and m_{ℓ}, there are two states, one corresponding to the spin quantum number $m_{s}=-\frac{1}{2}$ and the other corresponding to $m_{s}=+\frac{1}{2}$. Hence, the total number of states with principal quantum number n is

$$
N=2 \sum_{0}^{n-1}(2 \ell+1) .
$$

Now

$$
\sum_{0}^{n-1} 2 \ell=2 \sum_{0}^{n-1} \ell=2 \frac{n}{2}(n-1)=n(n-1)
$$

since there are n terms in the sum and the average term is $(n-1) / 2$. Furthermore,

$$
\sum_{0}^{n-1} 1=n
$$

Thus $N=2[n(n-1)+n]=2 n^{2}$.
30. The kinetic energy gained by the electron is $e V$, where V is the accelerating potential difference. A photon with the minimum wavelength (which, because of $E=h c / \lambda$, corresponds to maximum photon energy) is produced when all of the electron's kinetic energy goes to a single photon in an event of the kind depicted in Fig. 40-15. Thus, using the result of problem 83 in Chapter 38,

$$
e V=\frac{h c}{\lambda_{\min }}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.10 \mathrm{~nm}}=1.24 \times 10^{4} \mathrm{eV}
$$

Therefore, the accelerating potential difference is $V=1.24 \times 10^{4} \mathrm{~V}=12.4 \mathrm{kV}$.
31. The initial kinetic energy of the electron is $K_{0}=50.0 \mathrm{keV}$. After the first collision, the kinetic energy is $K_{1}=25 \mathrm{keV}$; after the second, it is $K_{2}=12.5 \mathrm{keV}$; and after the third, it is zero.
(a) The energy of the photon produced in the first collision is $50.0 \mathrm{keV}-25.0 \mathrm{keV}=$ 25.0 keV . The wavelength associated with this photon is

$$
\lambda=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{25.0 \times 10^{3} \mathrm{eV}}=4.96 \times 10^{-2} \mathrm{~nm}=49.6 \mathrm{pm}
$$

where the result of problem 83 of Chapter 38 is used.
(b) The energies of the photons produced in the second and third collisions are each 12.5 keV and their wavelengths are

$$
\lambda=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{12.5 \times 10^{3} \mathrm{eV}}=9.92 \times 10^{-2} \mathrm{~nm}=99.2 \mathrm{pm}
$$

32. (a) and (b) Let the wavelength of the two photons be λ_{1} and $\lambda_{2}=\lambda_{1}+\Delta \lambda$. Then,

$$
e V=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{1}+\Delta \lambda} \Rightarrow \lambda_{1}=\frac{-\left(\Delta \lambda / \lambda_{0}-2\right) \pm \sqrt{\left(\Delta \lambda / \lambda_{0}\right)^{2}+4}}{2 / \Delta \lambda}
$$

Here, $\Delta \lambda=130 \mathrm{pm}$ and $\lambda_{0}=h c / e V=1240 \mathrm{keV} \cdot \mathrm{pm} / 20 \mathrm{keV}=62 \mathrm{pm}$. The result of problem 83 in Chapter 38 is adapted to these units ($h c=1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{keV} \cdot \mathrm{pm}$). We choose the plus sign in the expression for λ_{1} (since $\lambda_{1}>0$) and obtain

$$
\lambda_{1}=\frac{-(130 \mathrm{pm} / 62 \mathrm{pm}-2)+\sqrt{(130 \mathrm{pm} / 62 \mathrm{pm})^{2}+4}}{2 / 62 \mathrm{pm}}=87 \mathrm{pm}
$$

The energy of the electron after its first deceleration is

$$
K=K_{i}-\frac{h c}{\lambda_{1}}=20 \mathrm{keV}-\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{87 \mathrm{pm}}=5.7 \mathrm{keV}
$$

(c) The energy of the first photon is

$$
E_{1}=\frac{h c}{\lambda_{1}}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{87 \mathrm{pm}}=14 \mathrm{keV}
$$

(d) The wavelength associated with the second photon is

$$
\lambda_{2}=\lambda_{1}+\Delta \lambda=87 \mathrm{pm}+130 \mathrm{pm}=2.2 \times 10^{2} \mathrm{pm} .
$$

(e) The energy of the second photon is

$$
E_{2}=\frac{h c}{\lambda_{2}}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{2.2 \times 10^{2} \mathrm{pm}}=5.7 \mathrm{keV}
$$

33. (a) The cut-off wavelength $\lambda_{\min }$ is characteristic of the incident electrons, not of the target material. This wavelength is the wavelength of a photon with energy equal to the kinetic energy of an incident electron. According to the result of problem 83 of Chapter 38,

$$
\lambda_{\min }=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{35 \times 10^{3} \mathrm{eV}}=3.54 \times 10^{-2} \mathrm{~nm}=35.4 \mathrm{pm}
$$

(b) A K_{α} photon results when an electron in a target atom jumps from the L-shell to the K-shell. The energy of this photon is $25.51 \mathrm{keV}-3.56 \mathrm{keV}=21.95 \mathrm{keV}$ and its wavelength is

$$
\lambda_{\mathrm{K} \alpha}=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(21.95 \times 10^{3} \mathrm{eV}\right)=5.65 \times 10^{-2} \mathrm{~nm}=56.5 \mathrm{pm}
$$

(c) A K_{β} photon results when an electron in a target atom jumps from the M-shell to the K-shell. The energy of this photon is $25.51 \mathrm{keV}-0.53 \mathrm{keV}=24.98 \mathrm{keV}$ and its wavelength is

$$
\lambda_{\mathrm{K} \beta}=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(24.98 \times 10^{3} \mathrm{eV}\right)=4.96 \times 10^{-2} \mathrm{~nm}=49.6 \mathrm{pm}
$$

34. The result of problem 83 in Chapter 38 is adapted to these units $(h c=1240 \mathrm{eV} \cdot \mathrm{nm}=$ $1240 \mathrm{keV} \cdot \mathrm{pm}$). For the K_{α} line from iron

$$
\Delta E=\frac{h c}{\lambda}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{193 \mathrm{pm}}=6.42 \mathrm{keV}
$$

We remark that for the hydrogen atom the corresponding energy difference is

$$
\Delta E_{12}=-(13.6 \mathrm{eV})\left(\frac{1}{2^{2}}-\frac{1}{1^{1}}\right)=10 \mathrm{eV} .
$$

That this difference is much greater in iron is due to the fact that its atomic nucleus contains 26 protons, exerting a much greater force on the K - and L-shell electrons than that provided by the single proton in hydrogen.
35. Suppose an electron with total energy E and momentum \mathbf{p} spontaneously changes into a photon. If energy is conserved, the energy of the photon is E and its momentum has magnitude E / c. Now the energy and momentum of the electron are related by $E^{2}=(p c)^{2}+\left(m c^{2}\right)^{2}$, so $p c=\sqrt{E^{2}-\left(m c^{2}\right)^{2}}$. Since the electron has non-zero mass, E / c and p cannot have the same value. Hence, momentum cannot be conserved. A third particle must participate in the interaction, primarily to conserve momentum. It does, however, carry off some energy.
36. (a) We use $e V=h c / \lambda_{\text {min }}$ (see Eq. 40-23 and Eq. 38-4). The result of problem 83 in Chapter 38 is adapted to these units ($h c=1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{keV} \cdot \mathrm{pm}$).

$$
\lambda_{\min }=\frac{h c}{e V}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{50.0 \mathrm{keV}}=24.8 \mathrm{pm} .
$$

(b) The values of λ for the K_{α} and K_{β} lines do not depend on the external potential and are therefore unchanged.
37. Since the frequency of an x-ray emission is proportional to $(Z-1)^{2}$, where Z is the atomic number of the target atom, the ratio of the wavelength λ_{Nb} for the K_{α} line of niobium to the wavelength λ_{Ga} for the K_{α} line of gallium is given by $\lambda_{\mathrm{Nb}} / \lambda_{\mathrm{Ga}}=\left(Z_{\mathrm{Ga}}-1\right)^{2} /\left(Z_{\mathrm{Nb}}-1\right)^{2}$, where Z_{Nb} is the atomic number of niobium (41) and Z_{Ga} is the atomic number of gallium (31). Thus $\lambda_{\mathrm{Nb}} / \lambda_{\mathrm{Ga}}=(30)^{2} /(40)^{2}=9 / 16 \approx 0.563$.
38. The result of problem 83 in Chapter 38 is adapted to these units $(h c=1240 \mathrm{eV} \cdot \mathrm{nm}=$ $1240 \mathrm{keV} \cdot \mathrm{pm})$. The energy difference $E_{L}-E_{M}$ for the x-ray atomic energy levels of molybdenum is

$$
\Delta E=E_{L}-E_{M}=\frac{h c}{\lambda_{L}}-\frac{h c}{\lambda_{M}}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{63.0 \mathrm{pm}}-\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{71.0 \mathrm{pm}}=2.2 \mathrm{keV}
$$

39. (a) An electron must be removed from the K-shell, so that an electron from a higher energy shell can drop. This requires an energy of 69.5 keV . The accelerating potential must be at least 69.5 kV .
(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV . The energy of a photon associated with the minimum wavelength is 69.5 keV , so its wavelength is

$$
\lambda_{\min }=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{69.5 \times 10^{3} \mathrm{eV}}=1.78 \times 10^{-2} \mathrm{~nm}=17.8 \mathrm{pm}
$$

(c) The energy of a photon associated with the K_{α} line is $69.5 \mathrm{keV}-11.3 \mathrm{keV}=58.2 \mathrm{keV}$ and its wavelength is

$$
\lambda_{\mathrm{K} \alpha}=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(58.2 \times 10^{3} \mathrm{eV}\right)=2.13 \times 10^{-2} \mathrm{~nm}=21.3 \mathrm{pm} .
$$

(d) The energy of a photon associated with the K_{β} line is $69.5 \mathrm{keV}-2.30 \mathrm{keV}=67.2$ keV and its wavelength is

$$
\lambda_{\mathrm{K} \beta}=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(67.2 \times 10^{3} \mathrm{eV}\right)=1.85 \times 10^{-2} \mathrm{~nm}=18.5 \mathrm{pm}
$$

The result of problem 83 of Chapter 38 is used.
40. From the data given in the problem, we calculate frequencies (using Eq. 38-1), take their square roots, look up the atomic numbers (see Appendix F), and do a least-squares fit to find the slope: the result is 5.02×10^{7} with the odd-sounding unit of a square root of a Hertz. We remark that the least squares procedure also returns a value for the y intercept of this statistically determined "best-fit" line; that result is negative and would appear on a graph like Fig. 40-17 to be at about -0.06 on the vertical axis. Also, we can estimate the slope of the Moseley line shown in Fig. 40-17:

$$
\frac{(1.95-0.50) 10^{9} \mathrm{~Hz}^{1 / 2}}{40-11} \approx 5.0 \times 10^{7} \mathrm{~Hz}^{1 / 2} .
$$

These are in agreement with the discussion in § 40-10.
41. We use Eq. 36-31, Eq. 39-6, and the result of problem 83 in Chapter 38, adapted to these units $(h c=1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{keV} \cdot \mathrm{pm})$. Letting $2 d \sin \theta=m \lambda=m h c / \Delta E$, where $\theta=74.1^{\circ}$, we solve for d :

$$
d=\frac{m h c}{2 \Delta E \sin \theta}=\frac{(1)(1240 \mathrm{keV} \cdot \mathrm{~nm})}{2(8.979 \mathrm{keV}-0.951 \mathrm{keV})\left(\sin 74.1^{\circ}\right)}=80.3 \mathrm{pm}
$$

42. (a) According to Eq. 40-26, $f \propto(Z-1)^{2}$, so the ratio of energies is (using Eq. 38-2) $f / f^{\prime}=\left[(Z-1) /\left(Z^{\prime}-1\right)\right]^{2}$.
(b) We refer to Appendix F. Applying the formula from part (a) to $Z=92$ and $Z^{\prime}=13$, we obtain

$$
\frac{E}{E^{\prime}}=\frac{f}{f^{\prime}}=\left(\frac{Z-1}{Z^{\prime}-1}\right)^{2}=\left(\frac{92-1}{13-1}\right)^{2}=57.5 .
$$

(c) Applying this to $Z=92$ and $Z^{\prime}=3$, we obtain

$$
\frac{E}{E \mathrm{n}}=\left(\frac{92-1}{3-1}\right)^{2}=2.07 \times 10^{3}
$$

43. The transition is from $n=2$ to $n=1$, so Eq. 40-26 combined with Eq. $40-24$ yields

$$
f=\left(\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{3}}\right)\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)(Z-1)^{2}
$$

so that the constant in Eq. 40-27 is

$$
C=\sqrt{\frac{3 m_{e} e^{4}}{32 \varepsilon_{0}^{2} h^{3}}}=4.9673 \times 10^{7} \mathrm{~Hz}^{1 / 2}
$$

using the values in the next-to-last column in the Table in Appendix B (but note that the power of ten is given in the middle column).

We are asked to compare the results of Eq. 40-27 (squared, then multiplied by the accurate values of h / e found in Appendix B to convert to x-ray energies) with those in the table of K_{α} energies (in eV) given at the end of the problem. We look up the corresponding atomic numbers in Appendix F.
(a) For Li , with $Z=3$, we have

$$
E_{\text {theory }}=\frac{h}{e} C^{2}(Z-1)^{2}=\frac{6.6260688 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{1.6021765 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}\left(4.9673 \times 10^{7} \mathrm{~Hz}^{1 / 2}\right)^{2}(3-1)^{2}=40.817 \mathrm{eV} .
$$

The percentage deviation is

$$
\text { percentage deviation }=100\left(\frac{E_{\text {theory }}-E_{\text {exp }}}{E_{\text {exp }}}\right)=100\left(\frac{40.817-54.3}{54.3}\right)=-24.8 \% \approx-25 \% .
$$

(b) For Be, with $Z=4$, using the steps outlined in (b), the percentage deviation is -15%.
(c) For B, with $Z=5$, using the steps outlined in (b), the percentage deviation is -11%.
(d) For C , with $Z=6$, using the steps outlined in (b), the percentage deviation is -7.9%.
(e) For N , with $Z=7$, using the steps outlined in (b), the percentage deviation is -6.4%.
(f) For O , with $Z=8$, using the steps outlined in (b), the percentage deviation is -4.7%.
(g) For F , with $Z=9$, using the steps outlined in (b), the percentage deviation is -3.5%.
(h) For Ne , with $Z=10$, using the steps outlined in (b), the percentage deviation is -2.6%.
(i) For Na , with $Z=11$, using the steps outlined in (b), the percentage deviation is -2.0%. (j) For Mg , with $Z=12$, using the steps outlined in (b), the percentage deviation is -1.5%.

Note that the trend is clear from the list given above: the agreement between theory and experiment becomes better as Z increases. One might argue that the most questionable step in $\S 40-10$ is the replacement $e^{4} \rightarrow(Z-1)^{2} e^{4}$ and ask why this could not equally well be $e^{4} \rightarrow(Z-.9)^{2} e^{4}$ or $e^{4} \rightarrow(Z-.8)^{2} e^{4}$? For large Z, these subtleties would not matter so much as they do for small Z, since $Z-\xi \approx Z$ for $Z \gg \xi$.
44. According to Sample Problem 40-6, $N_{x} / N_{0}=1.3 \times 10^{-38}$. Let the number of moles of the lasing material needed be n; then $N_{0}=n N_{A}$, where N_{A} is the Avogadro constant. Also $N_{x}=10$. We solve for n :

$$
n=\frac{N_{x}}{\left(1.3 \times 10^{-38}\right) N_{A}}=\frac{10}{\left(1.3 \times 10^{-38}\right)\left(6.02 \times 10^{23}\right)}=1.3 \times 10^{15} \mathrm{~mol} .
$$

45. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is

$$
L=c t=\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.20 \times 10^{-11} \mathrm{~s}\right)=3.60 \times 10^{-3} \mathrm{~m} .
$$

(b) If E_{p} is the energy of the pulse, E is the energy of a single photon in the pulse, and N is the number of photons in the pulse, then $E_{p}=N E$. The energy of the pulse is

$$
E_{p}=(0.150 \mathrm{~J}) /\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=9.36 \times 10^{17} \mathrm{eV}
$$

and the energy of a single photon is $E=(1240 \mathrm{eV} \cdot \mathrm{nm}) /(694.4 \mathrm{~nm})=1.786 \mathrm{eV}$. Hence,

$$
N=\frac{E_{p}}{E}=\frac{9.36 \times 10^{17} \mathrm{eV}}{1.786 \mathrm{eV}}=5.24 \times 10^{17} \text { photons. }
$$

46. From Eq. 40-29, $N_{2} / N_{1}=e^{-\left(E_{2}-E_{1}\right) / k T}$. We solve for T :

$$
T=\frac{E_{2}-E_{1}}{k \ln \left(N_{1} / N_{2}\right)}=\frac{3.2 \mathrm{eV}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln \left(2.5 \times 10^{15} / 6.1 \times 10^{13}\right)}=1.0 \times 10^{4} \mathrm{~K}
$$

47. The number of atoms in a state with energy E is proportional to $e^{-E / k T}$, where T is the temperature on the Kelvin scale and k is the Boltzmann constant. Thus the ratio of the number of atoms in the thirteenth excited state to the number in the eleventh excited state is $n_{13} / n_{11}=e^{-\Delta E / k T}$, where ΔE is the difference in the energies: $\Delta E=E_{13}-E_{11}=2(1.2 \mathrm{eV})$ $=2.4 \mathrm{eV}$. For the given temperature, $k T=\left(8.62 \times 10^{-2} \mathrm{eV} / \mathrm{K}\right)(2000 \mathrm{~K})=0.1724 \mathrm{eV}$. Hence,

$$
\frac{n_{13}}{n_{11}}=e^{-2.4 / 0.1724}=9.0 \times 10^{-7} .
$$

48. Consider two levels, labeled 1 and 2, with $E_{2}>E_{1}$. Since $T=-|T|<0$,

$$
\frac{N_{2}}{N_{1}}=e^{-\left(E_{2}-E_{1}\right) / k T}=e^{-\left|E_{2}-E_{1}\right| /(-k|T|)}=e^{\left|E_{2}-E_{1}\right| / k|T|}>1 .
$$

Thus, $N_{2}>N_{1}$; this is population inversion. We solve for T :

$$
T=-|T|=-\frac{E_{2}-E_{1}}{k \ln \left(N_{2} / N_{1}\right)}=-\frac{2.26 \mathrm{eV}}{\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right) \ln (1+0.100)}=-2.75 \times 10^{5} \mathrm{~K} .
$$

49. Let the power of the laser beam be P and the energy of each photon emitted be E. Then, the rate of photon emission is

$$
R=\frac{P}{E}=\frac{P}{h c / \lambda}=\frac{P \lambda}{h c}=\frac{\left(2.3 \times 10^{-3} \mathrm{~W}\right)\left(632.8 \times 10^{-9} \mathrm{~m}\right)}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=7.3 \times 10^{15} \mathrm{~s}^{-1}
$$

50. The Moon is a distance $R=3.82 \times 10^{8} \mathrm{~m}$ from Earth (see Appendix C). We note that the "cone" of light has apex angle equal to 2θ. If we make the small angle approximation (equivalent to using Eq. 37-14), then the diameter D of the spot on the Moon is

$$
D=2 R \theta=2 R\left(\frac{1.22 \lambda}{d}\right)=\frac{2\left(3.82 \times 10^{8} \mathrm{~m}\right)(1.22)\left(600 \times 10^{-9} \mathrm{~m}\right)}{0.12 \mathrm{~m}}=4.7 \times 10^{3} \mathrm{~m}=4.7 \mathrm{~km}
$$

51. Let the range of frequency of the microwave be Δf. Then the number of channels that could be accommodated is

$$
N=\frac{\Delta f}{10 \mathrm{MHz}}=\frac{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left[(450 \mathrm{~nm})^{-1}-(650 \mathrm{~nm})^{-1}\right]}{10 \mathrm{MHz}}=2.1 \times 10^{7}
$$

The higher frequencies of visible light would allow many more channels to be carried compared with using the microwave.
52. Let the power of the laser beam be P and the energy of each photon emitted be E. Then, the rate of photon emission is

$$
R=\frac{P}{E}=\frac{P}{h c / \lambda}=\frac{P \lambda}{h c}=\frac{\left(5.0 \times 10^{-3} \mathrm{~W}\right)\left(0.80 \times 10^{-6} \mathrm{~m}\right)}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=2.0 \times 10^{16} \mathrm{~s}^{-1} .
$$

53. (a) If both mirrors are perfectly reflecting, there is a node at each end of the crystal. With one end partially silvered, there is a node very close to that end. We assume nodes at both ends, so there are an integer number of half-wavelengths in the length of the crystal. The wavelength in the crystal is $\lambda_{c}=\lambda / n$, where λ is the wavelength in a vacuum and n is the index of refraction of ruby. Thus $N(\lambda / 2 n)=L$, where N is the number of standing wave nodes, so

$$
N=\frac{2 n L}{\lambda}=\frac{2(1.75)(0.0600 \mathrm{~m})}{694 \times 10^{-9} \mathrm{~m}}=3.03 \times 10^{5}
$$

(b) Since $\lambda=c / f$, where f is the frequency, $N=2 n L f / c$ and $\Delta N=(2 n L / c) \Delta f$. Hence,

$$
\Delta f=\frac{c \Delta N}{2 n L}=\frac{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(1)}{2(1.75)(0.0600 \mathrm{~m})}=1.43 \times 10^{9} \mathrm{~Hz}
$$

(c) The speed of light in the crystal is c / n and the round-trip distance is $2 L$, so the roundtrip travel time is $2 n L / c$. This is the same as the reciprocal of the change in frequency.
(d) The frequency is $f=c / \lambda=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(694 \times 10^{-9} \mathrm{~m}\right)=4.32 \times 10^{14} \mathrm{~Hz}$ and the fractional change in the frequency is

$$
\Delta f / f=\left(1.43 \times 10^{9} \mathrm{~Hz}\right) /\left(4.32 \times 10^{14} \mathrm{~Hz}\right)=3.31 \times 10^{-6}
$$

54. For the nth harmonic of the standing wave of wavelength λ in the cavity of width L we have $n \lambda=2 L$, so $n \Delta \lambda+\lambda \Delta n=0$. Let $\Delta n= \pm 1$ and use $\lambda=2 L / n$ to obtain

$$
|\Delta \lambda|=\frac{\lambda|\Delta n|}{n}=\frac{\lambda}{n}=\lambda\left(\frac{\lambda}{2 L}\right)=\frac{(533 \mathrm{~nm})^{2}}{2\left(8.0 \times 10^{7} \mathrm{~nm}\right)}=1.8 \times 10^{-12} \mathrm{~m}=1.8 \mathrm{pm} .
$$

55. (a) We denote the upper level as level 1 and the lower one as level 2. From $N_{1} / N_{2}=$ $e^{-\left(E_{2}-E_{1}\right) / k T}$ we get (using the result of problem 83 in Chapter 38)

$$
\begin{aligned}
N_{1} & =N_{2} e^{-\left(E_{1}-E_{2}\right) / k T}=N_{2} e^{-h c / \lambda k T}=\left(4.0 \times 10^{20}\right) e^{-(1240 \mathrm{eV} \cdot \mathrm{~nm})\left[(580 \mathrm{~nm})\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})\right]} \\
& =5.0 \times 10^{-16} \ll 1,
\end{aligned}
$$

so practically no electron occupies the upper level.
(b) With $N_{1}=3.0 \times 10^{20}$ atoms emitting photons and $N_{2}=1.0 \times 10^{20}$ atoms absorbing photons, then the net energy output is

$$
\begin{aligned}
E & =\left(N_{1}-N_{2}\right) E_{\text {photon }}=\left(N_{1}-N_{2}\right) \frac{h c}{\lambda}=\left(2.0 \times 10^{20}\right) \frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{580 \times 10^{-9} \mathrm{~m}} \\
& =68 \mathrm{~J} .
\end{aligned}
$$

56. (a) The radius of the central disk is

$$
R=\frac{1.22 f \lambda}{d}=\frac{(1.22)(3.50 \mathrm{~cm})(515 \mathrm{~nm})}{3.00 \mathrm{~mm}}=7.33 \mu \mathrm{~m} .
$$

(b) The average power flux density in the incident beam is

$$
\frac{P}{\pi d^{2} / 4}=\frac{4(5.00 \mathrm{~W})}{\pi(3.00 \mathrm{~mm})^{2}}=7.07 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}
$$

(c) The average power flux density in the central disk is

$$
\frac{(0.84) P}{\pi R^{2}}=\frac{(0.84)(5.00 \mathrm{~W})}{\pi(7.33 \mu \mathrm{~m})^{2}}=2.49 \times 10^{10} \mathrm{~W} / \mathrm{m}^{2}
$$

57. (a) Using the result of problem 83 in Chapter 38,

$$
\Delta E=h c\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)=(1240 \mathrm{eV} \cdot \mathrm{~nm})\left(\frac{1}{588.995 \mathrm{~nm}}-\frac{1}{589.592 \mathrm{~nm}}\right)=2.13 \mathrm{meV} .
$$

(b) From $\Delta E=2 \mu_{B} B$ (see Fig. 40-10 and Eq. 40-18), we get

$$
B=\frac{\Delta E}{2 \mu_{B}}=\frac{2.13 \times 10^{-3} \mathrm{eV}}{2\left(5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}\right)}=18 \mathrm{~T}
$$

58. (a) In the lasing action the molecules are excited from energy level E_{0} to energy level E_{2}. Thus the wavelength λ of the sunlight that causes this excitation satisfies

$$
\Delta E=E_{2}-E_{0}=\frac{h c}{\lambda}
$$

which gives (using the result of problem 83 in Chapter 38)

$$
\lambda=\frac{h c}{E_{2}-E_{0}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.289 \mathrm{eV}-0}=4.29 \times 10^{3} \mathrm{~nm}=4.29 \mu \mathrm{~m} .
$$

(b) Lasing occurs as electrons jump down from the higher energy level E_{2} to the lower level E_{1}. Thus the lasing wavelength λ^{\prime} satisfies

$$
\Delta E^{\prime}=E_{2}-E_{1}=\frac{h c}{\lambda^{\prime}},
$$

which gives

$$
\lambda^{\prime}=\frac{h c}{E_{2}-E_{1}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.289 \mathrm{eV}-0.165 \mathrm{eV}}=1.00 \times 10^{4} \mathrm{~nm}=10.0 \mu \mathrm{~m}
$$

(c) Both λ and λ^{\prime} belong to the infrared region of the electromagnetic spectrum.
59. (a) The intensity at the target is given by $I=P / A$, where P is the power output of the source and A is the area of the beam at the target. We want to compute I and compare the result with $10^{8} \mathrm{~W} / \mathrm{m}^{2}$. The beam spreads because diffraction occurs at the aperture of the laser. Consider the part of the beam that is within the central diffraction maximum. The angular position of the edge is given by $\sin \theta=1.22 \lambda / d$, where λ is the wavelength and d is the diameter of the aperture (see Exercise 61). At the target, a distance D away, the radius of the beam is $r=D \tan \theta$. Since θ is small, we may approximate both $\sin \theta$ and $\tan \theta$ by θ in radians. Then, $r=D \theta=1.22 D \lambda / d$ and

$$
I=\frac{P}{\pi r^{2}}=\frac{P d^{2}}{\pi(1.22 D \lambda)^{2}}=\frac{\left(5.0 \times 10^{6} \mathrm{~W}\right)(4.0 \mathrm{~m})^{2}}{\pi\left[1.22\left(3000 \times 10^{3} \mathrm{~m}\right)\left(3.0 \times 10^{-6} \mathrm{~m}\right)\right]^{2}}=2.1 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}
$$

not great enough to destroy the missile.
(b) We solve for the wavelength in terms of the intensity and substitute $I=1.0 \times 10^{8}$ W/m ${ }^{2}$:

$$
\lambda=\frac{d}{1.22 D} \sqrt{\frac{P}{\pi I}}=\frac{4.0 \mathrm{~m}}{1.22\left(3000 \times 10^{3} \mathrm{~m}\right)} \sqrt{\frac{5.0 \times 10^{6} \mathrm{~W}}{\pi\left(1.0 \times 10^{8} \mathrm{~W} / \mathrm{m}^{2}\right)}}=1.40 \times 10^{-7} \mathrm{~m}=140 \mathrm{~nm}
$$

60. (a) The energy difference between the two states 1 and 2 was equal to the energy of the photon emitted. Since the photon frequency was $f=1666 \mathrm{MHz}$, its energy was given by $h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}\right)(1666 \mathrm{MHz})=6.90 \times 10^{-6} \mathrm{eV}$. Thus,

$$
E_{2}-E_{1}=h f=6.9 \times 10^{-6} \mathrm{eV}=6.9 \mu \mathrm{eV}
$$

(b) The emission was in the radio region of the electromagnetic spectrum.
61. Letting $e V=h c / \lambda_{\text {min }}$ (see Eq. 40-23 and Eq. 38-4), we get

$$
\lambda_{\min }=\frac{h c}{e V}=\frac{1240 \mathrm{~nm} \cdot \mathrm{eV}}{e V}=\frac{1240 \mathrm{pm} \cdot \mathrm{keV}}{e V}=\frac{1240 \mathrm{pm}}{V}
$$

where V is measured in kV .
62. (a) From Fig. 40-14 we estimate the wavelengths corresponding to the K_{β} line to be $\lambda_{\beta}=63.0 \mathrm{pm}$. Using the result of problem 83 in Chapter 38, adapted to these units ($h c=$ $1240 \mathrm{eV} \cdot \mathrm{nm}=1240 \mathrm{keV} \cdot \mathrm{pm}$),

$$
E_{\beta}=(1240 \mathrm{keV} \cdot \mathrm{~nm}) /(63.0 \mathrm{pm})=19.7 \mathrm{keV} \approx 20 \mathrm{keV} .
$$

(b) For $K_{\alpha,}$ with $\lambda_{\alpha}=70.0 \mathrm{pm}$,

$$
E_{\alpha}=\frac{h c}{\lambda_{\alpha}}=\frac{1240 \mathrm{keV} \cdot \mathrm{pm}}{70.0 \mathrm{pm}}=17.7 \mathrm{keV} \approx 18 \mathrm{keV}
$$

(c) Both Zr and Nb can be used, since $E_{\alpha}<18.00 \mathrm{eV}<E_{\beta}$ and $E_{\alpha}<18.99 \mathrm{eV}<E_{\beta}$. According to the hint given in the problem statement, Zr is the best choice.
(d) Nb is the second best choice.
63. (a) The length of the pulse's wave train is given by

$$
L=c \Delta t=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(10 \times 10^{-15} \mathrm{~s}\right)=3.0 \times 10^{-6} \mathrm{~m}
$$

Thus, the number of wavelengths contained in the pulse is

$$
N=\frac{L}{\lambda}=\frac{3.0 \times 10^{-6} \mathrm{~m}}{500 \times 10^{-9} \mathrm{~m}}=6.0 .
$$

(b) We solve for X from $10 \mathrm{fm} / 1 \mathrm{~m}=1 \mathrm{~s} / X$:

$$
X=\frac{(1 \mathrm{~s})(1 \mathrm{~m})}{10 \times 10^{-15} \mathrm{~m}}=\frac{1 \mathrm{~s}}{\left(10 \times 10^{-15}\right)\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}=3.2 \times 10^{6} \mathrm{y}
$$

64. (a) The distance from the Earth to the Moon is $d_{e m}=3.82 \times 10^{8} \mathrm{~m}$ (see Appendix C). Thus, the time required is given by

$$
t=\frac{2 d_{e m}}{c}=\frac{2\left(3.82 \times 10^{8} \mathrm{~m}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.55 \mathrm{~s} .
$$

(b) We denote the uncertainty in time measurement as δt and let $2 \delta d_{e s}=15 \mathrm{~cm}$. Then, since $d_{e m} \propto t, \delta t / t=\delta d_{e m} / d_{e m}$. We solve for δt :

$$
\delta t=\frac{t \delta d_{e m}}{d_{e m}}=\frac{(2.55 \mathrm{~s})(0.15 \mathrm{~m})}{2\left(3.82 \times 10^{8} \mathrm{~m}\right)}=5.0 \times 10^{-10} \mathrm{~s}
$$

(c) The angular divergence of the beam is

$$
\theta=2 \tan ^{-1}\left(\frac{1.5 \times 10^{3}}{d_{e m}}\right)=2 \tan ^{-1}\left(\frac{1.5 \times 10^{3}}{3.82 \times 10^{8}}\right)=\left(4.5 \times 10^{-4}\right)^{\circ}
$$

65. We use $e V=h c / \lambda_{\text {min }}$ (see Eq. 40-23 and Eq. 38-4):

$$
h=\frac{e V \lambda_{\min }}{c}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(40.0 \times 10^{3} \mathrm{eV}\right)\left(31.1 \times 10^{-12} \mathrm{~m}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

66. For a given shell with quantum number n the total number of available electron states is $2 n^{2}$. Thus, for the first four shells ($n=1$ through 4) the number of available states are 2 , 8, 18, and 32 (see Appendix G). Since $2+8+18+32=60<63$, according to the "logical" sequence the first four shells would be completely filled in an europium atom, leaving $63-60=3$ electrons to partially occupy the $n=5$ shell. Two of these three electrons would fill up the $5 s$ subshell, leaving only one remaining electron in the only partially filled subshell (the $5 p$ subshell). In chemical reactions this electron would have the tendency to be transferred to another element, leaving the remaining 62 electrons in chemically stable, completely filled subshells. This situation is very similar to the case of sodium, which also has only one electron in a partially filled shell (the $3 s$ shell).
67. Without the spin degree of freedom the number of available electron states for each shell would be reduced by half. So the values of Z for the noble gas elements would become half of what they are now: $Z=1,5,9,18,27$, and 43 . Of this set of numbers, the only one which coincides with one of the familiar noble gas atomic numbers $(Z=2,10$, $18,36,54$, and 86) is 18 . Thus, argon would be the only one that would remain "noble."
68. (a) The value of ℓ satisfies $\sqrt{\ell(\ell+1)} \hbar \approx \sqrt{\ell^{2}} \hbar=\ell \hbar=L$, so $\ell \simeq L / \hbar \simeq 3 \times 10^{74}$.
(b) The number is $2 \ell+1 \approx 2\left(3 \times 10^{74}\right)=6 \times 10^{74}$.
(c) Since

$$
\cos \theta_{\min }=\frac{m_{\ell \max } \hbar}{\sqrt{\ell(\ell+1) \hbar}}=\frac{1}{\sqrt{\ell(\ell+1)}} \approx 1-\frac{1}{2 \ell}=1-\frac{1}{2\left(3 \times 10^{74}\right)}
$$

or $\cos \theta_{\min } \simeq 1-\theta_{\min }^{2} / 2 \approx 1-10^{-74} / 6$, we have $\theta_{\min } \simeq \sqrt{10^{-74} / 3}=6 \times 10^{-38} \mathrm{rad}$. The correspondence principle requires that all the quantum effects vanish as $\hbar \rightarrow 0$. In this case \hbar / L is extremely small so the quantization effects are barely existent, with $\theta_{\text {min }} \simeq 10^{-38} \mathrm{rad} \simeq 0$.
69. The principal quantum number n must be greater than 3 . The magnetic quantum number m_{ℓ} can have any of the values $-3,-2,-1,0,+1,+2$, or +3 . The spin quantum number can have either of the values $-\frac{1}{2}$ or $+\frac{1}{2}$.
70. One way to think of the units of h is that, because of the equation $E=h f$ and the fact that f is in cycles/second, then the "explicit" units for h should be $\mathrm{J} \cdot \mathrm{s} /$ cycle. Then, since $2 \pi \mathrm{rad} /$ cycle is a conversion factor for cycles \rightarrow radians, $\hbar=h / 2 \pi$ can be thought of as the Planck constant expressed in terms of radians instead of cycles. Using the precise values stated in Appendix B,

$$
\begin{aligned}
\hbar & =\frac{h}{2 \pi}=\frac{6.62606876 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{2 \pi}=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=\frac{1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{1.6021765 \times 10^{-19} \mathrm{~J} / \mathrm{eV}} \\
& =6.582 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s} .
\end{aligned}
$$

1. The number of atoms per unit volume is given by $n=d / M$, where d is the mass density of copper and M is the mass of a single copper atom. Since each atom contributes one conduction electron, n is also the number of conduction electrons per unit volume. Since the molar mass of copper is $A=63.54 \mathrm{~g} / \mathrm{mol}$,

$$
M=A / N_{A}=(63.54 \mathrm{~g} / \mathrm{mol}) /\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=1.055 \times 10^{-22} \mathrm{~g} .
$$

Thus,

$$
n=\frac{8.96 \mathrm{~g} / \mathrm{cm}^{3}}{1.055 \times 10^{-22} \mathrm{~g}}=8.49 \times 10^{22} \mathrm{~cm}^{-3}=8.49 \times 10^{28} \mathrm{~m}^{-3} .
$$

2. We note that $n=8.43 \times 10^{28} \mathrm{~m}^{-3}=84.3 \mathrm{~nm}^{-3}$. From Eq. 41-9,

$$
E_{F}=\frac{0.121(h c)^{2}}{m_{e} c^{2}} n^{2 / 3}=\frac{0.121(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{511 \times 10^{3} \mathrm{eV}}\left(84.3 \mathrm{~nm}^{-3}\right)^{2 / 3}=7.0 \mathrm{eV}
$$

where the result of problem 83 in Chapter 38 is used.
3. (a) Eq. 41-5 gives

$$
N(E)=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} E^{1 / 2}
$$

for the density of states associated with the conduction electrons of a metal. This can be written

$$
n(E)=C E^{1 / 2}
$$

where

$$
C=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}}=\frac{8 \sqrt{2} \pi\left(9.109 \times 10^{-31} \mathrm{~kg}\right)^{3 / 2}}{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{3}}=1.062 \times 10^{56} \mathrm{~kg}^{3 / 2} / \mathrm{J}^{3} \cdot \mathrm{~s}^{3}
$$

(b) Now, $1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$ (think of the equation for kinetic energy $K=\frac{1}{2} m v^{2}$), so $1 \mathrm{~kg}=$ $1 \mathrm{~J} \cdot \mathrm{~s}^{2} \cdot \mathrm{~m}^{-2}$. Thus, the units of C can be written $\left(\mathrm{J} \cdot \mathrm{s}^{2}\right)^{3 / 2} \cdot\left(\mathrm{~m}^{-2}\right)^{3 / 2} \cdot \mathrm{~J}^{-3} \cdot \mathrm{~s}^{-3}=\mathrm{J}^{-3 / 2} \cdot \mathrm{~m}^{-3}$. This means

$$
C=\left(1.062 \times 10^{56} \mathrm{~J}^{-3 / 2} \cdot \mathrm{~m}^{-3}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)^{3 / 2}=6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-3 / 2}
$$

(c) If $E=5.00 \mathrm{eV}$, then

$$
n(E)=\left(6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-3 / 2}\right)(5.00 \mathrm{eV})^{1 / 2}=1.52 \times 10^{28} \mathrm{eV}^{-1} \cdot \mathrm{~m}^{-3}
$$

4. We note that there is one conduction electron per atom and that the molar mass of gold is $197 \mathrm{~g} / \mathrm{mol}$. Therefore, combining Eqs. 41-2, 41-3 and 41-4 leads to

$$
n=\frac{\left(19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3}\right)}{(197 \mathrm{~g} / \mathrm{mol}) /\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)}=5.90 \times 10^{28} \mathrm{~m}^{-3}
$$

5. (a) At absolute temperature $T=0$, the probability is zero that any state with energy above the Fermi energy is occupied.
(b) The probability that a state with energy E is occupied at temperature T is given by

$$
P(E)=\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}
$$

where k is the Boltzmann constant and E_{F} is the Fermi energy. Now, $E-E_{F}=0.0620 \mathrm{eV}$ and

$$
\left(E-E_{F}\right) / k T=(0.0620 \mathrm{eV}) /\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(320 \mathrm{~K})=2.248
$$

so

$$
P(E)=\frac{1}{e^{2.248}+1}=0.0955 .
$$

See Appendix B or Sample Problem 41-1 for the value of k.
6. We use the result of problem 3:

$$
n(E)=C E^{1 / 2}=\left[6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot(\mathrm{eV})^{-2 / 3}\right](8.0 \mathrm{eV})^{1 / 2}=1.9 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}
$$

This is consistent with Fig. 41-5.
7. According to Eq. 41-9, the Fermi energy is given by

$$
E_{F}=\left(\frac{3}{16 \sqrt{2} \pi}\right)^{2 / 3} \frac{h^{2}}{m} n^{2 / 3}
$$

where n is the number of conduction electrons per unit volume, m is the mass of an electron, and h is the Planck constant. This can be written $E_{F}=A n^{2 / 3}$, where

$$
A=\left(\frac{3}{16 \sqrt{2} \pi}\right)^{2 / 3} \frac{h^{2}}{m}=\left(\frac{3}{16 \sqrt{2} \pi}\right)^{2 / 3} \frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{9.109 \times 10^{-31} \mathrm{~kg}}=5.842 \times 10^{-38} \mathrm{~J}^{2} \cdot \mathrm{~s}^{2} / \mathrm{kg}
$$

Since $1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$, the units of A can be taken to be $\mathrm{m}^{2} \cdot \mathrm{~J}$. Dividing by $1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}$, we obtain $A=3.65 \times 10^{-19} \mathrm{~m}^{2} \cdot \mathrm{eV}$.
8. Let $E_{1}=63 \mathrm{meV}+E_{\mathrm{F}}$ and $E_{2}=-63 \mathrm{meV}+E_{\mathrm{F}}$. Then according to Eq. 41-6,

$$
P_{1}=\frac{1}{e^{\left(E_{1}-E_{F}\right) / k T}+1}=\frac{1}{e^{x}+1}
$$

where $x=\left(E_{1}-E_{F}\right) / k T$. We solve for e^{x} :

$$
e^{x}=\frac{1}{P_{1}}-1=\frac{1}{0.090}-1=\frac{91}{9} .
$$

Thus,

$$
P_{2}=\frac{1}{e^{\left(E_{2}-E_{F}\right) / k T}+1}=\frac{1}{e^{-\left(E_{1}-E_{F}\right) / k T}+1}=\frac{1}{e^{-x}+1}=\frac{1}{(91 / 9)^{-1}+1}=0.91,
$$

where we use $E_{2}-E_{\mathrm{F}}=-63 \mathrm{meV}=E_{F}-E_{1}=-\left(E_{1}-E_{\mathrm{F}}\right)$.
9. The Fermi-Dirac occupation probability is given by $P_{\mathrm{FD}}=1 /\left(e^{\Delta E / k T}+1\right)$, and the Boltzmann occupation probability is given by $P_{B}=e^{-\Delta E / k T}$. Let f be the fractional difference. Then

$$
f=\frac{P_{\mathrm{B}}-P_{\mathrm{FD}}}{P_{\mathrm{B}}}=\frac{e^{-\Delta E / k T}-\frac{1}{e^{\Delta E k T}+1}}{e^{-\Delta E / k T}} .
$$

Using a common denominator and a little algebra yields

$$
f=\frac{e^{-\Delta E / k T}}{e^{-\Delta E / k T}+1} .
$$

The solution for $e^{-\Delta E / k T}$ is

$$
e^{-\Delta E / k T}=\frac{f}{1-f}
$$

We take the natural logarithm of both sides and solve for T. The result is

$$
T=\frac{\Delta E}{k \ln \left(\frac{f}{1-f}\right)}
$$

(a) Letting f equal 0.01 , we evaluate the expression for T :

$$
T=\frac{(1.00 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln \left(\frac{0.010}{1-0.010}\right)}=2.50 \times 10^{3} \mathrm{~K}
$$

(b) We set f equal to 0.10 and evaluate the expression for T :

$$
T=\frac{(1.00 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln \left(\frac{0.10}{1-0.10}\right)}=5.30 \times 10^{3} \mathrm{~K}
$$

10. We reproduce the calculation of Problem 4: Combining Eqs. 41-2, 41-3 and 41-4, the number density of conduction electrons in gold is

$$
n=\frac{\left(19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)}{(197 \mathrm{~g} / \mathrm{mol})}=5.90 \times 10^{22} \mathrm{~cm}^{-3}=59.0 \mathrm{~nm}^{-3}
$$

Now, using the result of Problem 83 in Chapter 38, Eq. 41-9 leads to

$$
E_{F}=\frac{0.121(h c)^{2}}{\left(m_{e} c^{2}\right)} n^{2 / 3}=\frac{0.121(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}}{511 \times 10^{3} \mathrm{eV}}\left(59.0 \mathrm{~nm}^{-3}\right)^{2 / 3}=5.52 \mathrm{eV}
$$

11. (a) Eq. 41-6 leads to

$$
\begin{aligned}
E & =E_{F}+k T \ln \left(P^{-1}-1\right)=7.00 \mathrm{eV}+\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(1000 \mathrm{~K}) \ln \left(\frac{1}{0.900}-1\right) \\
& =6.81 \mathrm{eV}
\end{aligned}
$$

(b) $n(E)=C E^{1 / 2}=\left(6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-3 / 2}\right)(6.81 \mathrm{eV})^{1 / 2}=1.77 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}$.
(c) $n_{0}(E)=P(E) n(E)=(0.900)\left(1.77 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}\right)=1.59 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}$.
12. (a) The volume per cubic meter of sodium occupied by the sodium ions is

$$
V_{\mathrm{Na}}=\frac{(971 \mathrm{~kg})\left(6.022 \times 10^{23} / \mathrm{mol}\right)(4 \pi / 3)\left(98.0 \times 10^{-12} \mathrm{~m}\right)^{3}}{(23.0 \mathrm{~g} / \mathrm{mol})}=0.100 \mathrm{~m}^{3},
$$

so the fraction available for conduction electrons is $1-\left(V_{\mathrm{Na}} / 1.00 \mathrm{~m}^{3}\right)=1-0.100=0.900$, or 90.0%.
(b) For copper,

$$
V_{\mathrm{Cu}}=\frac{(8960 \mathrm{~kg})\left(6.022 \times 10^{23} / \mathrm{mol}\right)(4 \pi / 3)\left(135 \times 10^{-12} \mathrm{~m}\right)^{3}}{(63.5 \mathrm{~g} / \mathrm{mol})}=0.1876 \mathrm{~m}^{-3}
$$

Thus, the fraction is $1-\left(V_{\mathrm{Cu}} / 1.00 \mathrm{~m}^{3}\right)=1-0.876=0.124$, or 12.4%.
(c) Sodium, because the electrons occupy a greater portion of the space available.
13. We use

$$
N_{0}=N(E) P(E)=C E^{1 / 2}\left[e^{\left(E-E_{F}\right) / k T}+1\right]^{-1},
$$

where C is given in problem 3(b).
(a) At $E=4.00 \mathrm{eV}$,

$$
n_{0}=\frac{\left(6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot(\mathrm{eV})^{-3 / 2}\right)(4.00 \mathrm{eV})^{1 / 2}}{e^{(4.00 \mathrm{eV}-7.00 \mathrm{eV}) /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(1000 \mathrm{~K})\right]}+1}=1.36 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}
$$

(b) At $E=6.75 \mathrm{eV}$,

$$
n_{0}=\frac{\left(6.81 \times 10^{27} \mathrm{~m}^{-3} \cdot(\mathrm{eV})^{-3 / 2}\right)(6.75 \mathrm{eV})^{1 / 2}}{e^{\left.(6.75 \mathrm{eV}-7.00 \mathrm{eV}) /\left[8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(1000 \mathrm{~K})\right]}+1}=1.68 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}
$$

(c) Similarly, at $E=7.00 \mathrm{eV}$, the value of $n_{0}(E)$ is $9.01 \times 10^{27} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}$.
(d) At $E=7.25 \mathrm{eV}$, the value of $n_{0}(E)$ is $9.56 \times 10^{26} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}$.
(e) At $E=9.00 \mathrm{eV}$, the value of $n_{0}(E)$ is $1.71 \times 10^{18} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}$.
14. The probability P_{h} that a state is occupied by a hole is the same as the probability the state is unoccupied by an electron. Since the total probability that a state is either occupied or unoccupied is 1 , we have $P_{h}+P=1$. Thus,

$$
P_{h}=1-\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}=\frac{e^{\left(E-E_{F}\right) / k T}}{1+e^{\left(E-E_{F}\right) / k T}}=\frac{1}{e^{-\left(E-E_{F}\right) / k T}+1} .
$$

15. (a) We evaluate $P(E)=1 /\left(e^{\left(E-E_{F}\right) / k T}+1\right)$ for the given value of E, using

$$
k T=\frac{\left(1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273 \mathrm{~K})}{1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=0.02353 \mathrm{eV}
$$

For $E=4.4 \mathrm{eV},\left(E-E_{F}\right) / k T=(4.4 \mathrm{eV}-5.5 \mathrm{eV}) /(0.02353 \mathrm{eV})=-46.25$ and

$$
P(E)=\frac{1}{e^{-46.25}+1}=1.0
$$

(b) Similarly, for $E=5.4 \mathrm{eV}, P(E)=0.986 \approx 0.99$.
(c) For $E=5.5 \mathrm{eV}, P(E)=0.50$.
(d) For $E=5.6 \mathrm{eV}, P(E)=0.014$.
(e) For $E=6.4 \mathrm{eV}, P(E)=2.447 \times 10^{-17} \approx 2.4 \times 10^{-17}$.
(f) Solving $P=1 /\left(e^{\Delta E / k T}+1\right)$ for $e^{\Delta E / k T}$, we get

$$
e^{\Delta E / k T}=\frac{1}{P}-1
$$

Now, we take the natural logarithm of both sides and solve for T. The result is

$$
T=\frac{\Delta E}{k \ln \left(\frac{1}{P}-1\right)}=\frac{(5.6 \mathrm{eV}-5.5 \mathrm{eV})\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{\left(1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln \left(\frac{1}{0.16}-1\right)}=699 \mathrm{~K} \approx 7.0 \times 10^{2} \mathrm{~K}
$$

16. The molar mass of carbon is $m=12.01115 \mathrm{~g} / \mathrm{mol}$ and the mass of the Earth is $M_{e}=$ $5.98 \times 10^{24} \mathrm{~kg}$. Thus, the number of carbon atoms in a diamond as massive as the Earth is $N=\left(M_{e} / m\right) N_{\mathrm{A}}$, where N_{A} is the Avogadro constant. From the result of Sample Problem 41-1, the probability in question is given by

$$
\begin{aligned}
P & =N_{e}^{-E_{g} / k T}=\left(\frac{M_{e}}{m}\right) N_{\mathrm{A}} e^{-E_{g} / k T}=\left(\frac{5.98 \times 10^{24} \mathrm{~kg}}{12.01115 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)\left(3 \times 10^{-93}\right) \\
& =9 \times 10^{-43} \approx 10^{-42}
\end{aligned}
$$

17. Let N be the number of atoms per unit volume and n be the number of free electrons per unit volume. Then, the number of free electrons per atom is n / N. We use the result of Exercise 11 to find $n: E_{F}=A n^{2 / 3}$, where $A=3.65 \times 10^{-19} \mathrm{~m}^{2} \cdot \mathrm{eV}$. Thus,

$$
n=\left(\frac{E_{F}}{A}\right)^{3 / 2}=\left(\frac{11.6 \mathrm{eV}}{3.65 \times 10^{-19} \mathrm{~m}^{2} \cdot \mathrm{eV}}\right)^{3 / 2}=1.79 \times 10^{29} \mathrm{~m}^{-3}
$$

If M is the mass of a single aluminum atom and d is the mass density of aluminum, then $N=d / M$. Now,

$$
M=(27.0 \mathrm{~g} / \mathrm{mol}) /\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=4.48 \times 10^{-23} \mathrm{~g},
$$

so

$$
N=\left(2.70 \mathrm{~g} / \mathrm{cm}^{3}\right) /\left(4.48 \times 10^{-23} \mathrm{~g}\right)=6.03 \times 10^{22} \mathrm{~cm}^{-3}=6.03 \times 10^{28} \mathrm{~m}^{-3}
$$

Thus, the number of free electrons per atom is

$$
\frac{n}{N}=\frac{1.79 \times 10^{29} \mathrm{~m}^{-3}}{6.03 \times 10^{28} \mathrm{~m}^{-3}}=2.97 \approx 3
$$

18. (a) The ideal gas law in the form of Eq. 20-9 leads to $p=N k T / V=n k T$. Thus, we solve for the molecules per cubic meter:

$$
n=\frac{p}{k T}=\frac{(1.0 \mathrm{~atm})\left(1.0 \times 10^{5} \mathrm{~Pa} / \mathrm{atm}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273 \mathrm{~K})}=2.7 \times 10^{25} \mathrm{~m}^{-3} .
$$

(b) Combining Eqs. 41-2, 41-3 and 41-4 leads to the conduction electrons per cubic meter in copper:

$$
n=\frac{8.96 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{(63.54)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=8.43 \times 10^{28} \mathrm{~m}^{-3}
$$

(c) The ratio is $\left(8.43 \times 10^{28} \mathrm{~m}^{-3}\right) /\left(2.7 \times 10^{25} \mathrm{~m}^{-3}\right)=3.1 \times 10^{3}$.
(d) We use $d_{\text {avg }}=n^{-1 / 3}$. For case (a), $d_{\mathrm{avg}}=\left(2.7 \times 10^{25} \mathrm{~m}^{-3}\right)^{-1 / 3}$ which equals 3.3 nm .
(e) For case (b), $d_{\text {avg }}=\left(8.43 \times 10^{28} \mathrm{~m}^{-3}\right)^{-1 / 3}=0.23 \mathrm{~nm}$.
19. (a) According to Appendix F the molar mass of silver is $107.870 \mathrm{~g} / \mathrm{mol}$ and the density is $10.49 \mathrm{~g} / \mathrm{cm}^{3}$. The mass of a silver atom is

$$
\frac{107.870 \times 10^{-3} \mathrm{~kg}^{2} \mathrm{~mol}}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=1.791 \times 10^{-25} \mathrm{~kg} .
$$

We note that silver is monovalent, so there is one valence electron per atom (see Eq. 41-2). Thus, Eqs. 41-4 and 41-3 lead to

$$
n=\frac{\rho}{M}=\frac{10.49 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}}{1.791 \times 10^{25} \mathrm{~kg}}=5.86 \times 10^{28} \mathrm{~m}^{-3}
$$

(b) The Fermi energy is

$$
\begin{aligned}
E_{F} & =\frac{0.121 h^{2}}{m} n^{2 / 3}=\frac{(0.121)\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{9.109 \times 10^{-31} \mathrm{~kg}}=\left(5.86 \times 10^{28} \mathrm{~m}^{-3}\right)^{2 / 3} \\
& =8.80 \times 10^{-19} \mathrm{~J}=5.49 \mathrm{eV} .
\end{aligned}
$$

(c) Since $E_{F}=\frac{1}{2} m v_{F}^{2}$,

$$
v_{F}=\sqrt{\frac{2 E_{F}}{m}}=\sqrt{\frac{2\left(8.80 \times 10^{-19} \mathrm{~J}\right)}{9.109 \times 10^{-31} \mathrm{~kg}}}=1.39 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(d) The de Broglie wavelength is

$$
\lambda=\frac{h}{m v_{F}}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.39 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)}=5.22 \times 10^{-10} \mathrm{~m} .
$$

20. Let the energy of the state in question be an amount ΔE above the Fermi energy E_{F}. Then, Eq. 41-6 gives the occupancy probability of the state as

$$
P=\frac{1}{e^{\left(E_{\mathrm{F}}+\Delta E-E_{\mathrm{F}}\right) / k T}+1}=\frac{1}{e^{\Delta E / k T}+1} .
$$

We solve for ΔE to obtain

$$
\Delta E=k T \ln \left(\frac{1}{P}-1\right)=\left(1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K}) \ln \left(\frac{1}{0.10}-1\right)=9.1 \times 10^{-21} \mathrm{~J},
$$

which is equivalent to $5.7 \times 10^{-2} \mathrm{eV}=57 \mathrm{meV}$.
21. The average energy of the conduction electrons is given by

$$
E_{\text {avg }}=\frac{1}{n} \int_{0}^{\infty} E N(E) P(E) d E
$$

where n is the number of free electrons per unit volume, $N(E)$ is the density of states, and $P(E)$ is the occupation probability. The density of states is proportional to $E^{1 / 2}$, so we may write $N(E)=C E^{1 / 2}$, where C is a constant of proportionality. The occupation probability is one for energies below the Fermi energy and zero for energies above. Thus,

$$
E_{\mathrm{avg}}=\frac{C}{n} \int_{0}^{E_{F}} E^{3 / 2} d E=\frac{2 C}{5 n} E_{F}^{5 / 2} .
$$

Now

$$
n=\int_{0}^{\infty} N(E) P(E) d E=C \int_{0}^{E_{F}} E^{1 / 2} d E=\frac{2 C}{3} E_{F}^{3 / 2} .
$$

We substitute this expression into the formula for the average energy and obtain

$$
E_{\mathrm{avg}}=\left(\frac{2 C}{5}\right) E_{F}^{5 / 2}\left(\frac{3}{2 C E_{F}^{3 / 2}}\right)=\frac{3}{5} E_{F} .
$$

22. (a) Combining Eqs. 41-2, 41-3 and 41-4 leads to the conduction electrons per cubic meter in zinc:

$$
n=\frac{2\left(7.133 \mathrm{~g} / \mathrm{cm}^{3}\right)}{(65.37 \mathrm{~g} / \mathrm{mol}) /\left(6.02 \times 10^{23} \mathrm{~mol}\right)}=1.31 \times 10^{23} \mathrm{~cm}^{-3}=1.31 \times 10^{29} \mathrm{~m}^{-3} .
$$

(b) From Eq. 41-9,

$$
E_{F}=\frac{0.121 h^{2}}{m_{e}} n^{2 / 3}=\frac{0.121\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}\left(1.31 \times 10^{29} \mathrm{~m}^{-3}\right)^{2 / 3}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=9.43 \mathrm{eV}
$$

(c) Equating the Fermi energy to $\frac{1}{2} m_{e} v_{F}^{2}$ we find (using the $m_{e} c^{2}$ value in Table 37-3)

$$
v_{F}=\sqrt{\frac{2 E_{F} c^{2}}{m_{e} c^{2}}}=\sqrt{\frac{2(9.43 \mathrm{eV})\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{511 \times 10^{3} \mathrm{eV}}}=1.82 \times 10^{6} \mathrm{~m} / \mathrm{s} .
$$

(d) The de Broglie wavelength is

$$
\lambda=\frac{h}{m_{e} v_{F}}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.82 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)}=0.40 \mathrm{~nm}
$$

23. Let the volume be $v=1.00 \times 10^{-6} \mathrm{~m}^{3}$. Then,

$$
\begin{aligned}
K_{\text {total }} & =N E_{\text {avg }}=n \nu E_{\text {avg }}=\left(8.43 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.00 \times 10^{-6} \mathrm{~m}^{3}\right)\left(\frac{3}{5}\right)(7.00 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) \\
& =5.71 \times 10^{4} \mathrm{~J}=57.1 \mathrm{~kJ}
\end{aligned}
$$

24. (a) At $T=300 \mathrm{~K}$

$$
f=\frac{3 k T}{2 E_{F}}=\frac{3\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})}{2(7.0 \mathrm{eV})}=5.5 \times 10^{-3}
$$

(b) At $T=1000 \mathrm{~K}$,

$$
f=\frac{3 k T}{2 E_{F}}=\frac{3\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(1000 \mathrm{~K})}{2(7.0 \mathrm{eV})}=1.8 \times 10^{-2}
$$

(c) Many calculators and most math software packages (here we use MAPLE) have builtin numerical integration routines. Setting up ratios of integrals of Eq. 41-7 and canceling common factors, we obtain

$$
\text { frac }=\frac{\int_{E_{F}}^{\infty} \sqrt{E} /\left(e^{\left(E-E_{F}\right) / k T}+1\right) d E}{\int_{0}^{\infty} \sqrt{E} /\left(e^{\left(E-E_{F}\right) / k T}+1\right) d E}
$$

where $k=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$. We use the Fermi energy value for copper ($E_{F}=7.0 \mathrm{eV}$) and evaluate this for $T=300 \mathrm{~K}$ and $T=1000 \mathrm{~K}$; we find frac $=0.00385$ and $\mathrm{frac}=0.0129$, respectively.
25. The fraction f of electrons with energies greater than the Fermi energy is (approximately) given in Problem 41-24:

$$
f=\frac{3 k T / 2}{E_{F}}
$$

where T is the temperature on the Kelvin scale, k is the Boltzmann constant, and E_{F} is the Fermi energy. We solve for T :

$$
T=\frac{2 f E_{F}}{3 k}=\frac{2(0.013)(4.70 \mathrm{eV})}{3\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)}=472 \mathrm{~K}
$$

26. (a) Using Eq. 41-4, the energy released would be

$$
\begin{aligned}
E & =N E_{\text {avg }}=\frac{(3.1 \mathrm{~g})}{(63.54 \mathrm{~g} / \mathrm{mol}) /\left(6.02 \times 10^{23} / \mathrm{mol}\right)}\left(\frac{3}{5}\right)(7.0 \mathrm{eV})\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right) \\
& =1.97 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

(b) Keeping in mind that a Watt is a Joule per second, we have

$$
\frac{1.97 \times 10^{4} \mathrm{~J}}{100 \mathrm{~J} / \mathrm{s}}=197 \mathrm{~s}
$$

27. (a) Since the electron jumps from the conduction band to the valence band, the energy of the photon equals the energy gap between those two bands. The photon energy is given by $h f=h c / \lambda$, where f is the frequency of the electromagnetic wave and λ is its wavelength. Thus, $E_{g}=h c / \lambda$ and

$$
\lambda=\frac{h c}{E_{g}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(5.5 \mathrm{eV})\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=2.26 \times 10^{-7} \mathrm{~m}=226 \mathrm{~nm}
$$

Photons from other transitions have a greater energy, so their waves have shorter wavelengths.
(b) These photons are in the ultraviolet portion of the electromagnetic spectrum.
28. Each Arsenic atom is connected (by covalent bonding) to four Gallium atoms, and each Gallium atom is similarly connected to four Arsenic atoms.

The "depth" of their very non-trivial lattice structure is, of course, not evident in a flattened-out representation such as shown for Silicon in Fig. 41-9. Still we try to convey some sense of this (in the $[1,0,0]$ view shown - for those who might be familiar with Miller indices) by using letters to indicate the depth: A for the closest atoms (to the observer), b for the next layer deep, C for further into the page, d for the last layer seen, and E (not shown) for the atoms that are at the deepest layer (and are behind the A's) needed for our description of the structure. The capital letters are used for the Gallium atoms, and the small letters for the Arsenic.

Consider the Arsenic atom (with the letter b) near the upper left; it has covalent bonds with the two A's and the two C's near it. Now consider the Arsenic atom (with the letter d) near the upper right; it has covalent bonds with the two C's which are near it and with the two E's (which are behind the A's which are near :+).
(a) The 3p, 3d and 4s subshells of both Arsenic and Gallium are filled. They both have partially filled 4 p subshells. An isolated, neutral Arsenic atom has three electrons in the $4 p$ subshell, and an isolated, neutral Gallium atom has one electron in the $4 p$ subshell. To supply the total of eight shared electrons (for the four bonds connected to each ion in the lattice), not only the electrons from 4 p must be shared but also the electrons from 4 s . The core of the Gallium ion has charge $q=+3 e$ (due to the "loss" of its single 4 p and two 4 s electrons).
(b) The core of the Arsenic ion has charge $q=+5 e$ (due to the "loss" of the three 4 p and two 4 s electrons).
(c) As remarked in part (a), there are two electrons shared in each of the covalent bonds. This is the same situation that one finds for Silicon (see Fig. 41-9).
29. (a) At the bottom of the conduction band $E=0.67 \mathrm{eV}$. Also $E_{F}=0.67 \mathrm{eV} / 2=$ 0.335 eV . So the probability that the bottom of the conduction band is occupied is

$$
P(E)=\frac{1}{e^{\left(E-E_{\mathrm{F}}\right) / k T}+1}=\frac{1}{e^{(0.67 \mathrm{eV}-0.335 \mathrm{eV}) /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(290 \mathrm{~K})\right]}+1}=1.5 \times 10^{-6}
$$

(b) At the top of the valence band $E=0$, so the probability that the state is unoccupied is given by

$$
\begin{aligned}
1-P(E) & =1-\frac{1}{e^{\left(E-E_{\mathrm{F}}\right) / k T}+1}=\frac{1}{e^{-\left(E-E_{\mathrm{F}}\right) / k T}+1}=\frac{1}{e^{-(0-0.335 \mathrm{eV}) /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(290 \mathrm{~K})\right]}+1} \\
& =1.5 \times 10^{-6} .
\end{aligned}
$$

30. (a) The number of electrons in the valence band is

$$
N_{\mathrm{ev}}=N_{v} P\left(E_{v}\right)=\frac{N_{v}}{e^{\left(E_{v}-E_{\mathrm{F}}\right) / k T}+1} .
$$

Since there are a total of N_{v} states in the valence band, the number of holes in the valence band is

$$
N_{\mathrm{hv}}=N_{v}-N_{\mathrm{ev}}=N_{v}\left[1-\frac{1}{e^{\left(E_{v}-E_{\mathrm{F}}\right) / k T}+1}\right]=\frac{N_{v}}{e^{-\left(E_{v}-E_{\mathrm{F}}\right) / k T}+1} .
$$

Now, the number of electrons in the conduction band is

$$
N_{\mathrm{ec}}=N_{c} P\left(E_{c}\right)=\frac{N_{c}}{e^{\left(E_{c}-E_{\mathrm{F}}\right) / k T}+1},
$$

Hence, from $N_{\mathrm{ev}}=N_{\mathrm{hc}}$, we get

$$
\frac{N_{v}}{e^{-\left(E_{v}-E_{\mathrm{F}}\right) / k T}+1}=\frac{N_{c}}{e^{\left(E_{c}-E_{\mathrm{F}}\right) / k T}+1} .
$$

(b) In this case, $e^{\left(E_{\mathrm{c}}-E_{\mathrm{F}}\right) / k T} \gg 1$ and $e^{-\left(E_{v}-E_{\mathrm{F}}\right) / k T} \gg 1$. Thus, from the result of part (a),

$$
\frac{N_{c}}{e^{\left(E_{c} c E_{F}\right) / k T}} \approx \frac{N_{v}}{e^{-\left(E_{v}-E_{F}\right) / k T}},
$$

or $e^{\left(E_{v}-E_{c}+2 E_{F}\right) / k T} \approx N_{v} / N_{c}$. We solve for E_{F} :

$$
E_{F} \approx \frac{1}{2}\left(E_{c}+E_{v}\right)+\frac{1}{2} k T \ln \left(\frac{N_{v}}{N_{c}}\right) .
$$

31. Sample Problem 41-6 gives the fraction of silicon atoms that must be replaced by phosphorus atoms. We find the number the silicon atoms in 1.0 g , then the number that must be replaced, and finally the mass of the replacement phosphorus atoms. The molar mass of silicon is $28.086 \mathrm{~g} / \mathrm{mol}$, so the mass of one silicon atom is

$$
(28.086 \mathrm{~g} / \mathrm{mol}) /\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=4.66 \times 10^{-23} \mathrm{~g}
$$

and the number of atoms in 1.0 g is $(1.0 \mathrm{~g}) /\left(4.66 \times 10^{-23} \mathrm{~g}\right)=2.14 \times 10^{22}$. According to Sample Problem 41-6 one of every 5×10^{6} silicon atoms is replaced with a phosphorus atom. This means there will be $\left(2.14 \times 10^{22}\right) /\left(5 \times 10^{6}\right)=4.29 \times 10^{15}$ phosphorus atoms in 1.0 g of silicon. The molar mass of phosphorus is $30.9758 \mathrm{~g} / \mathrm{mol}$ so the mass of a phosphorus atom is

$$
(30.9758 \mathrm{~g} / \mathrm{mol}) /\left(6.022 \times 10^{-23} \mathrm{~mol}^{-1}\right)=5.14 \times 10^{-23} \mathrm{~g} .
$$

The mass of phosphorus that must be added to 1.0 g of silicon is

$$
\left(4.29 \times 10^{15}\right)\left(5.14 \times 10^{-23} \mathrm{~g}\right)=2.2 \times 10^{-7} \mathrm{~g}
$$

32. (a) n-type, since each phosphorus atom has one more valence electron than a silicon atom.
(b) The added charge carrier density is

$$
n_{\mathrm{P}}=10^{-7} n_{\mathrm{Si}}=10^{-7}\left(5 \times 10^{28} \mathrm{~m}^{-3}\right)=5 \times 10^{21} \mathrm{~m}^{-3} .
$$

(c) The ratio is $\left(5 \times 10^{21} \mathrm{~m}^{-3}\right) /\left[2\left(5 \times 10^{15} \mathrm{~m}^{-3}\right)\right]=5 \times 10^{5}$. Here the factor of 2 in the denominator reflects the contribution to the charge carrier density from both the electrons in the conduction band and the holes in the valence band.
33. (a) The probability that a state with energy E is occupied is given by

$$
P(E)=\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}
$$

where E_{F} is the Fermi energy, T is the temperature on the Kelvin scale, and k is the Boltzmann constant. If energies are measured from the top of the valence band, then the energy associated with a state at the bottom of the conduction band is $E=1.11 \mathrm{eV}$. Furthermore,

$$
k T=\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})=0.02586 \mathrm{eV}
$$

For pure silicon,

$$
E_{F}=0.555 \mathrm{eV} \text { and }\left(E-E_{F}\right) / k T=(0.555 \mathrm{eV}) /(0.02586 \mathrm{eV})=21.46
$$

Thus,

$$
P(E)=\frac{1}{e^{21.46}+1}=4.79 \times 10^{-10}
$$

(b) For the doped semiconductor, $\left(E-E_{F}\right) / k T=(0.11 \mathrm{eV}) /(0.02586 \mathrm{eV})=4.254$ and

$$
P(E)=\frac{1}{e^{4.254}+1}=1.40 \times 10^{-2}
$$

(c) The energy of the donor state, relative to the top of the valence band, is $1.11 \mathrm{eV}-0.15$ $\mathrm{eV}=0.96 \mathrm{eV}$. The Fermi energy is $1.11 \mathrm{eV}-0.11 \mathrm{eV}=1.00 \mathrm{eV}$. Hence,

$$
\left(E-E_{F}\right) / k T=(0.96 \mathrm{eV}-1.00 \mathrm{eV}) /(0.02586 \mathrm{eV})=-1.547
$$

and

$$
P(E)=\frac{1}{e^{-1.547}+1}=0.824
$$

34. (a) Measured from the top of the valence band, the energy of the donor state is $E=$ $1.11 \mathrm{eV}-0.11 \mathrm{eV}=1.0 \mathrm{eV}$. We solve E_{F} from Eq. 41-6:

$$
\begin{aligned}
E_{F} & =E-k T \ln \left[P^{-1}-1\right]=1.0 \mathrm{eV}-\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K}) \ln \left[\left(5.00 \times 10^{-5}\right)^{-1}-1\right] \\
& =0.744 \mathrm{eV} .
\end{aligned}
$$

(b) Now $E=1.11 \mathrm{eV}$, so

$$
P(E)=\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}=\frac{1}{e^{(1.11 \mathrm{eV}-0.744 \mathrm{eV}) /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})\right]}+1}=7.13 \times 10^{-7}
$$

35. The energy received by each electron is exactly the difference in energy between the bottom of the conduction band and the top of the valence band $(1.1 \mathrm{eV})$. The number of electrons that can be excited across the gap by a single $662-\mathrm{keV}$ photon is

$$
N=\left(662 \times 10^{3} \mathrm{eV}\right) /(1.1 \mathrm{eV})=6.0 \times 10^{5}
$$

Since each electron that jumps the gap leaves a hole behind, this is also the number of electron-hole pairs that can be created.
36. (a) The vertical axis in the graph below is the current in nanoamperes:

(b) The ratio is

$$
\frac{\left.i\right|_{v=+0.50 \mathrm{~V}}}{\left.i\right|_{v=-0.50 \mathrm{~V}}}=\frac{i_{0}\left[e^{+0.50 \mathrm{eV} /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})\right]}-1\right]}{i_{0}\left[e^{-0.50 \mathrm{eV} /\left[\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K})\right]}-1\right]}=2.5 \times 10^{8} .
$$

37. The valence band is essentially filled and the conduction band is essentially empty. If an electron in the valence band is to absorb a photon, the energy it receives must be sufficient to excite it across the band gap. Photons with energies less than the gap width are not absorbed and the semiconductor is transparent to this radiation. Photons with energies greater than the gap width are absorbed and the semiconductor is opaque to this radiation. Thus, the width of the band gap is the same as the energy of a photon associated with a wavelength of 295 nm . We use the result of Problem 83 of Chapter 38 to obtain

$$
E_{\text {gap }}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{295 \mathrm{~nm}}=4.20 \mathrm{eV}
$$

38. Since (using the result of problem 83 in Chapter 38)

$$
E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{140 \mathrm{~nm}}=8.86 \mathrm{eV}>7.6 \mathrm{eV}
$$

the light will be absorbed by the KCI crystal. Thus, the crystal is opaque to this light.
39. We denote the maximum dimension (side length) of each transistor as $\ell_{\max }$, the size of the chip as A, and the number of transistors on the chip as N. Then $A=N \ell_{\max }^{2}$. Therefore,

$$
\ell_{\max }=\sqrt{\frac{A}{N}}=\sqrt{\frac{(1.0 \mathrm{in} . \times 0.875 \mathrm{in} .)\left(2.54 \times 10^{-2} \mathrm{~m} / \mathrm{in} .\right)^{2}}{3.5 \times 10^{6}}}=1.3 \times 10^{-5} \mathrm{~m}=13 \mu \mathrm{~m} .
$$

40. (a) According to Chapter 25, the capacitance is $C=\kappa \varepsilon_{0} A / d$. In our case $\kappa=4.5, A=$ $(0.50 \mu \mathrm{~m})^{2}$, and $d=0.20 \mu \mathrm{~m}$, so

$$
C=\frac{\kappa \varepsilon_{0} A}{d}=\frac{(4.5)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)(0.50 \mu \mathrm{~m})^{2}}{0.20 \mu \mathrm{~m}}=5.0 \times 10^{-17} \mathrm{~F}
$$

(b) Let the number of elementary charges in question be N. Then, the total amount of charges that appear in the gate is $q=N e$. Thus, $q=N e=C V$, which gives

$$
N=\frac{C V}{e}=\frac{\left(5.0 \times 10^{-17} \mathrm{~F}\right)(1.0 \mathrm{~V})}{1.6 \times 10^{-19} \mathrm{C}}=3.1 \times 10^{2}
$$

41. (a) Setting $E=E_{F}$ (see Eq. 41-9), Eq. 41-5 becomes

$$
N\left(E_{F}\right)=\frac{8 \pi m \sqrt{2 m}}{h^{3}}\left(\frac{3}{16 \pi \sqrt{2}}\right)^{1 / 3} \frac{h}{\sqrt{m}} n^{1 / 3} .
$$

Noting that $16 \sqrt{2}=2^{4} 2^{1 / 2}=2^{9 / 2}$ so that the cube root of this is $2^{3 / 2}=2 \sqrt{2}$, we are able to simplify the above expression and obtain

$$
N\left(E_{F}\right)=\frac{4 m}{h^{2}} \sqrt[3]{3 \pi^{2} n}
$$

which is equivalent to the result shown in the problem statement. Since the desired numerical answer uses eV units, we multiply numerator and denominator of our result by c^{2} and make use of the $m c^{2}$ value for an electron in Table 38-3 as well as the $h c$ value found in problem 83 of Chapter 38:

$$
N\left(E_{F}\right)=\left(\frac{4 m c^{2}}{(h c)^{2}} \sqrt[3]{3 \pi^{2}}\right) n^{1 / 3}=\left(\frac{4\left(511 \times 10^{3} \mathrm{eV}\right)}{(1240 \mathrm{eV} \cdot \mathrm{~nm})^{2}} \sqrt[3]{3 \pi^{2}}\right) n^{1 / 3}=\left(4.11 \mathrm{~nm}^{-2} \cdot \mathrm{eV}^{-1}\right) n^{1 / 3}
$$

which is equivalent to the value indicated in the problem statement.
(b) Since there are 10^{27} cubic nanometers in a cubic meter, then the result of problem 1 may be written

$$
n=8.49 \times 10^{28} \mathrm{~m}^{-3}=84.9 \mathrm{~nm}^{-3} .
$$

The cube root of this is $n^{1 / 3} \approx 4.4 / \mathrm{nm}$. Hence, the expression in part (a) leads to

$$
N\left(E_{F}\right)=\left(4.11 \mathrm{~nm}^{-2} \cdot \mathrm{eV}^{-1}\right)\left(4.4 \mathrm{~nm}^{-1}\right)=18 \mathrm{~nm}^{-3} \cdot \mathrm{eV}^{-1}=1.8 \times 10^{28} \mathrm{~m}^{-3} \cdot \mathrm{eV}^{-1}
$$

If we multiply this by $10^{27} \mathrm{~m}^{3} / \mathrm{nm}^{3}$, we see this compares very well with the curve in Fig. $41-5$ evaluated at 7.0 eV .
42. If we use the approximate formula discussed in problem 41-24, we obtain

$$
\text { frac }=\frac{3\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(961+273 \mathrm{~K})}{2(5.5 \mathrm{eV})} \approx 0.03 .
$$

The numerical approach is briefly discussed in part (c) of problem 32. Although the problem does not ask for it here, we remark that numerical integration leads to a fraction closer to 0.02 .
43. The description in the problem statement implies that an atom is at the center point C of the regular tetrahedron, since its four neighbors are at the four vertices. The side length for the tetrahedron is given as $a=388 \mathrm{pm}$. Since each face is an equilateral triangle, the "altitude" of each of those triangles (which is not to be confused with the altitude of the tetrahedron itself) is $\quad h^{\prime}=\frac{1}{2} a \sqrt{3}$ (this is generally referred to as the "slant height" in the solid geometry literature). At a certain location along the line segment representing "slant height" of each face is the center C^{\prime} of the face. Imagine this line segment starting at atom A and ending at the midpoint of one of the sides. Knowing that this line segment bisects the 60° angle of the equilateral face, then it is easy to see that C^{\prime} is a distance $A C^{\prime}=a / \sqrt{3}$. If we draw a line from C^{\prime} all the way to the farthest point on the tetrahedron (this will land on an atom we label B), then this new line is the altitude h of the tetrahedron. Using the Pythagorean theorem,

$$
h=\sqrt{a^{2}-\left(A C^{\prime}\right)^{2}}=\sqrt{a^{2}-\left(\frac{a}{\sqrt{3}}\right)^{2}}=a \sqrt{\frac{2}{3}} .
$$

Now we include coordinates: imagine atom B is on the $+y$ axis at $y_{b}=h=a \sqrt{2 / 3}$, and atom A is on the $+x$ axis at $x_{a}=A C^{\prime}=a / \sqrt{3}$. Then point C^{\prime} is the origin. The tetrahedron center point C is on the y axis at some value y_{c} which we find as follows: C must be equidistant from A and B, so

$$
\begin{aligned}
y_{b}-y_{c} & =\sqrt{x_{a}^{2}+y_{c}^{2}} \\
a \sqrt{\frac{2}{3}}-y_{c} & =\sqrt{\left(\frac{a}{\sqrt{3}}\right)^{2}+y_{c}^{2}}
\end{aligned}
$$

which yields $y_{c}=a / 2 \sqrt{6}$.
(a) In unit vector notation, using the information found above, we express the vector starting at C and going to A as

$$
\vec{r}_{a c}=x_{a} \hat{\mathrm{i}}+\left(-y_{c}\right) \hat{\mathrm{j}}=\frac{\mathrm{a}}{\sqrt{3}} \hat{\mathrm{i}}-\frac{a}{2 \sqrt{6}} \hat{\mathrm{j}} .
$$

Similarly, the vector starting at C and going to B is

$$
\vec{r}_{b c}=\left(y_{b}-y_{c}\right) \hat{\mathrm{j}}=\frac{a}{2} \sqrt{3 / 2} \hat{\mathbf{j}} .
$$

Therefore, using Eq. 3-20,

$$
\theta=\cos ^{-1}\left(\frac{\vec{r}_{a c} \cdot \vec{r}_{b c}}{\left|\vec{r}_{a c}\right|\left|\vec{r}_{b c}\right|}\right)=\cos ^{-1}\left(-\frac{1}{3}\right)
$$

which yields $\theta=109.5^{\circ}$ for the angle between adjacent bonds.
(b) The length of vector $\vec{r}_{b c}$ (which is, of course, the same as the length of $\vec{r}_{a c}$) is

$$
\left|\vec{r}_{b c}\right|=\frac{a}{2} \sqrt{\frac{3}{2}}=\frac{388 \mathrm{pm}}{2} \sqrt{\frac{3}{2}}=237.6 \mathrm{pm} \approx 238 \mathrm{pm} .
$$

We note that in the solid geometry literature, the distance $\frac{a}{2} \sqrt{\frac{3}{2}}$ is known as the circumradius of the regular tetrahedron.
44. According to Eq. 41-6,

$$
P\left(E_{F}+\Delta E\right)=\frac{1}{e^{\left(E_{F}+\Delta E-E_{F}\right) / k T}+1}=\frac{1}{e^{\Delta E / k T}+1}=\frac{1}{e^{x}+1}
$$

where $x=\Delta E / k T$. Also,

$$
P\left(E_{F}+\Delta E\right)=\frac{1}{e^{\left(E_{F}-\Delta E-E_{F}\right) / k T}+1}=\frac{1}{e^{-\Delta E / k T}+1}=\frac{1}{e^{-x}+1} .
$$

Thus,

$$
P\left(E_{F}+\Delta E\right)+P\left(E_{F}-\Delta E\right)=\frac{1}{e^{x}+1}+\frac{1}{e^{-x}+1}=\frac{e^{x}+1+e^{-x}+1}{\left(e^{-x}+1\right)\left(e^{x}+1\right)}=1 .
$$

A special case of this general result can be found in problem 13 , where $\Delta E=63 \mathrm{meV}$ and

$$
P\left(E_{\mathrm{F}}+63 \mathrm{meV}\right)+P\left(E_{\mathrm{F}}-63 \mathrm{meV}\right)=0.090+0.91=1.0 .
$$

45. (a) The derivative of $P(E)$ is

$$
\left(\frac{-1}{\left(e^{\left(E-E_{F}\right) / k T}+1\right)^{2}}\right) \frac{d}{d E} e^{\left(E-E_{F}\right) / k T}=\left(\frac{-1}{\left(e^{\left(E-E_{F}\right) / k T}+1\right)^{2}}\right) \frac{1}{k T} e^{\left(E-E_{F}\right) / k T} .
$$

Evaluating this at $E=E_{F}$ we readily obtain the desired result.
(b) The equation of a line may be written $y=m\left(x-x_{0}\right)$ where m is the slope (here: equal to $-1 / k T$, from part (a)) and x_{0} is the x-intercept (which is what we are asked to solve for). It is clear that $P\left(E_{F}\right)=2$, so our equation of the line, evaluated at $x=E_{F}$, becomes

$$
2=(-1 / k T)\left(E_{F}-x_{\mathrm{o}}\right),
$$

which leads to $x_{0}=E_{F}+2 k T$.
46. (a) For copper, Eq. 41-10 leads to

$$
\frac{d \rho}{d T}=[\rho \alpha]_{\mathrm{Cu}}=\left(2 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(4 \times 10^{-3} \mathrm{~K}^{-1}\right)=8 \times 10^{-11} \Omega \cdot \mathrm{~m} / \mathrm{K}
$$

(b) For silicon,

$$
\frac{d \rho}{d T}=[\rho \alpha]_{\mathrm{Si}}=\left(3 \times 10^{3} \Omega \cdot \mathrm{~m}\right)\left(-70 \times 10^{-3} \mathrm{~K}^{-1}\right)=-2.1 \times 10^{2} \Omega \cdot \mathrm{~m} / \mathrm{K}
$$

47. We use the ideal gas law in the form of Eq. 20-9:

$$
p=n k T=\left(8.43 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K})=3.49 \times 10^{8} \mathrm{~Pa}=3.49 \times 10^{3} \mathrm{~atm} .
$$

48. We equate E_{F} with $\frac{1}{2} m_{e} v_{F}^{2}$ and write our expressions in such a way that we can make use of the electron $m c^{2}$ value found in Table 37-3:

$$
v_{F}=\sqrt{\frac{2 E_{F}}{m}}=c \sqrt{\frac{2 E_{F}}{m c^{2}}}=\left(3.0 \times 10^{5} \mathrm{~km} / \mathrm{s}\right) \sqrt{\frac{2(7.0 \mathrm{eV})}{5.11 \times 10^{5} \mathrm{eV}}}=1.6 \times 10^{3} \mathrm{~km} / \mathrm{s} \mathrm{.}
$$

49. We compute $\left(\frac{3}{16 \sqrt{2 \pi}}\right)^{2 / 3} \approx 0.121$.
50. Our calculation is similar to that shown in Sample Problem 42-1. We set $K=5.30 \mathrm{MeV}=U=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{\alpha} q_{\mathrm{Cu}} / r_{\text {min }}\right)$ and solve for the closest separation, $r_{\text {min }}$:

$$
\begin{aligned}
r_{\min } & =\frac{q_{\alpha} q_{\mathrm{Cu}}}{4 \pi \varepsilon_{0} K}=\frac{k q_{\alpha} q_{\mathrm{Cu}}}{4 \pi \varepsilon_{0} K}=\frac{(2 e)(29)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right)}{5.30 \times 10^{6} \mathrm{eV}} \\
& =1.58 \times 10^{-14} \mathrm{~m}=15.8 \mathrm{fm} .
\end{aligned}
$$

We note that the factor of e in $q_{\alpha}=2 e$ was not set equal to $1.60 \times 10^{-19} \mathrm{C}$, but was instead allowed to cancel the "e" in the non-SI energy unit, electronvolt.
2. Kinetic energy (we use the classical formula since v is much less than c) is converted into potential energy (see Eq. 24-43). From Appendix F or G, we find $Z=3$ for Lithium and $Z=90$ for Thorium; the charges on those nuclei are therefore $3 e$ and $90 e$, respectively. We manipulate the terms so that one of the factors of e cancels the "e" in the kinetic energy unit MeV , and the other factor of e is set equal to its SI value $1.6 \times$ $10^{-19} \mathrm{C}$. We note that $k=1 / 4 \pi \varepsilon_{0}$ can be written as $8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}$. Thus, from energy conservation, we have

$$
K=U \Rightarrow r=\frac{k_{q 1 q 2}}{K}=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~V} \cdot \mathrm{~m}}{\mathrm{C}}\right)\left(3 \times 1.6 \times 10^{-19} \mathrm{C}\right)(90 e)}{3.00 \times 10^{6} \mathrm{eV}}
$$

which yields $r=1.3 \times 10^{-13} \mathrm{~m}$ (or about 130 fm).
3. The conservation laws of (classical kinetic) energy and (linear) momentum determine the outcome of the collision (see Chapter 9). The final speed of the α particle is

$$
v_{o f}=\frac{m_{\alpha}-m_{\mathrm{Au}}}{m_{\alpha}+m_{\mathrm{Au}}} v_{\alpha i},
$$

and that of the recoiling gold nucleus is

$$
v_{\mathrm{Au}, f}=\frac{2 m_{\alpha}}{m_{\alpha}+m_{\mathrm{Au}}} v_{\alpha i} .
$$

(a) Therefore, the kinetic energy of the recoiling nucleus is

$$
\begin{aligned}
K_{\mathrm{Au}, f} & =\frac{1}{2} m_{\mathrm{Au}} v_{\mathrm{Au} . f}^{2}=\frac{1}{2} m_{\mathrm{Au}}\left(\frac{2 m_{\alpha}}{m_{\alpha}+m_{\mathrm{Au}}}\right)^{2} v_{\alpha i}^{2}=K_{\alpha i} \frac{4 m_{\mathrm{Au}} m_{\alpha}}{\left(m_{\alpha}+m_{\mathrm{Au}}\right)^{2}} \\
& =(5.00 \mathrm{MeV}) \frac{4(197 \mathrm{u})(4.00 \mathrm{u})}{(4.00 \mathrm{u}+197 \mathrm{u})^{2}} \\
& =0.390 \mathrm{MeV} .
\end{aligned}
$$

(b) The final kinetic energy of the alpha particle is

$$
\begin{aligned}
K_{\alpha f} & =\frac{1}{2} m_{\alpha} v_{\alpha f}^{2}=\frac{1}{2} m_{\alpha}\left(\frac{m_{\alpha}-m_{\mathrm{Au}}}{m_{\alpha}+m_{\mathrm{Au}}}\right)^{2} v_{\alpha i}^{2}=K_{\alpha i}\left(\frac{m_{\alpha}-m_{\mathrm{Au}}}{m_{\alpha}+m_{\mathrm{Au}}}\right)^{2} \\
& =(5.00 \mathrm{MeV})\left(\frac{4.00 \mathrm{u}-197 \mathrm{u}}{4.00 \mathrm{u}+197 \mathrm{u}}\right)^{2} \\
& =4.61 \mathrm{MeV} .
\end{aligned}
$$

We note that $K_{a f}+K_{\mathrm{Au}, f}=K_{o i}$ is indeed satisfied.
4. (a) 6 protons, since $Z=6$ for carbon (see Appendix F).
(b) 8 neutrons, since $A-Z=14-6=8$ (see Eq. 42-1).
5. (a) Table 42-1 gives the atomic mass of ${ }^{1} \mathrm{H}$ as $m=1.007825 \mathrm{u}$. Therefore, the mass excess for ${ }^{1} \mathrm{H}$ is $\Delta=(1.007825 \mathrm{u}-1.000000 \mathrm{u})=0.007825 u$.
(b) In the unit $\mathrm{MeV} / c^{2}, \Delta=(1.007825 \mathrm{u}-1.000000 \mathrm{u})\left(931.5 \mathrm{MeV} / c^{2} \cdot \mathrm{u}\right)=+7.290 \mathrm{MeV} / c^{2}$.
(c) The mass of the neutron is given in Sample Problem 42-3. Thus, for the neutron,

$$
\Delta=(1.008665 \mathrm{u}-1.000000 \mathrm{u})=0.008665 \mathrm{u} .
$$

(d) In the unit $\mathrm{MeV} / c^{2}, \Delta=(1.008665 \mathrm{u}-1.000000 \mathrm{u})\left(931.5 \mathrm{MeV} / c^{2} \cdot \mathrm{u}\right)=+8.071$ MeV / c^{2}.
(e) Appealing again to Table 42-1, we obtain, for ${ }^{120} \mathrm{Sn}$,

$$
\Delta=(119.902199 \mathrm{u}-120.000000 \mathrm{u})=-0.09780 \mathrm{u} .
$$

(f) In the unit MeV / c^{2},

$$
\Delta=(119.902199 \mathrm{u}-120.000000 \mathrm{u})\left(931.5 \mathrm{MeV} / c^{2} \cdot \mathrm{u}\right)=-91.10 \mathrm{MeV} / c^{2}
$$

6. (a) The atomic number $Z=39$ corresponds to the element Yttrium (see Appendix F and/or Appendix G).
(b) The atomic number $Z=53$ corresponds to Iodine.
(c) A detailed listing of stable nuclides (such as the website http://nucleardata. nuclear.lu.se/nucleardata) shows that the stable isotope of Yttrium has 50 neutrons (this can also be inferred from the Molar Mass values listed in Appendix F).
(d) Similarly, the stable isotope of Iodine has 74 neutrons
(e) The number of neutrons left over is $235-127-89=19$.
7. We note that the mean density and mean radius for the Sun are given in Appendix C. Since $\rho=M / V$ where $V \propto r^{3}$, we get $r \propto \rho^{-1 / 3}$. Thus, the new radius would be

$$
r=R_{s}\left(\frac{\rho_{s}}{\rho}\right)^{1 / 3}=\left(6.96 \times 10^{8} \mathrm{~m}\right)\left(\frac{1410 \mathrm{~kg} / \mathrm{m}^{3}}{2 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}}\right)^{1 / 3}=1.3 \times 10^{4} \mathrm{~m} .
$$

8. (a) Since $U>0$, the energy represents a tendency for the sphere to blow apart.
(b) For ${ }^{239} \mathrm{Pu}, Q=94 e$ and $R=6.64 \mathrm{fm}$. Including a conversion factor for $J \rightarrow \mathrm{eV}$ we obtain

$$
\begin{aligned}
U & =\frac{3 Q^{2}}{20 \pi \varepsilon_{0} r}=\frac{3\left[94\left(1.60 \times 10^{-19} \mathrm{C}\right)\right]^{2}\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)}{5\left(6.64 \times 10^{-15} \mathrm{~m}\right)}\left(\frac{1 \mathrm{eV}}{1.60 \times 10^{-19} \mathrm{~J}}\right) \\
& =1.15 \times 10^{9} \mathrm{eV}=1.15 \mathrm{GeV}
\end{aligned}
$$

(c) Since $Z=94$, the electrostatic potential per proton is $1.15 \mathrm{GeV} / 94=12.2 \mathrm{MeV} /$ proton.
(d) Since $A=239$, the electrostatic potential per nucleon is $1.15 \mathrm{GeV} / 239=4.81$ $\mathrm{MeV} /$ nucleon.
(e) The strong force that binds the nucleus is very strong.
9. (a) For ${ }^{55} \mathrm{Mn}$ the mass density is

$$
\rho_{m}=\frac{M}{V}=\frac{0.055 \mathrm{~kg} / \mathrm{mol}}{(4 \pi / 3)\left[\left(1.2 \times 10^{-15} \mathrm{~m}\right)(55)^{1 / 3}\right]^{3}\left(6.02 \times 10^{23} / \mathrm{mol}\right)}=2.3 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}
$$

(b) For ${ }^{209} \mathrm{Bi}$,

$$
\rho_{m}=\frac{M}{V}=\frac{0.209 \mathrm{~kg} / \mathrm{mol}}{(4 \pi / 3)\left[\left(1.2 \times 10^{-15} \mathrm{~m}\right)(209)^{1 / 3}\right]^{3}\left(6.02 \times 10^{23} / \mathrm{mol}\right)}=2.3 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3} .
$$

(c) Since $V \propto r^{3}=\left(r_{0} A^{1 / 3}\right)^{3} \propto A$, we expect $\rho_{m} \propto A / V \propto A / A \approx$ const. for all nuclides.
(d) For ${ }^{55} \mathrm{Mn}$ the charge density is

$$
\rho_{q}=\frac{Z e}{V}=\frac{(25)\left(1.6 \times 10^{-19} \mathrm{C}\right)}{(4 \pi / 3)\left[\left(1.2 \times 10^{-15} \mathrm{~m}\right)(55)^{1 / 3}\right]^{3}}=1.0 \times 10^{25} \mathrm{C} / \mathrm{m}^{3}
$$

(e) For ${ }^{209} \mathrm{Bi}$

$$
\rho_{q}=\frac{Z e}{V}=\frac{(83)\left(1.6 \times 10^{-19} \mathrm{C}\right)}{(4 \pi / 3)\left[\left(1.2 \times 10^{-15} \mathrm{~m}\right)(209)^{1 / 3}\right]^{3}}=8.8 \times 10^{24} \mathrm{C} / \mathrm{m}^{3} .
$$

Note that $\rho_{q} \propto Z / V \propto Z / A$ should gradually decrease since $A>2 Z$ for large nuclides.
10. (a) The mass number A is the number of nucleons in an atomic nucleus. Since $m_{p} \approx m_{n}$ the mass of the nucleus is approximately $A m_{p}$. Also, the mass of the electrons is negligible since it is much less than that of the nucleus. So $M \approx A m_{p}$.
(b) For ${ }^{1} \mathrm{H}$, the approximate formula gives

$$
M \approx A m_{p}=(1)(1.007276 \mathrm{u})=1.007276 \mathrm{u}
$$

The actual mass is (see Table 42-1) 1.007825 u . The percentage deviation committed is then

$$
\delta=(1.007825 \mathrm{u}-1.007276 \mathrm{u}) / 1.007825 \mathrm{u}=0.054 \% \approx 0.05 \% .
$$

(c) Similarly, for ${ }^{31} \mathrm{P}, \delta=0.81 \%$.
(d) For ${ }^{120} \mathrm{Sn}, \delta=0.81 \%$.
(e) For ${ }^{197} \mathrm{Au}, \delta=0.74 \%$.
(f) For ${ }^{239} \mathrm{Pu}, \delta=0.71 \%$.
(g) No. In a typical nucleus the binding energy per nucleon is several MeV , which is a bit less than 1% of the nucleon mass times c^{2}. This is comparable with the percent error calculated in parts (b) - (f), so we need to use a more accurate method to calculate the nuclear mass.
11. (a) The de Broglie wavelength is given by $\lambda=h / p$, where p is the magnitude of the momentum. The kinetic energy K and momentum are related by Eq. 38-51, which yields

$$
p c=\sqrt{K^{2}+2 K m c^{2}}=\sqrt{(200 \mathrm{MeV})^{2}+2(200 \mathrm{MeV})(0.511 \mathrm{MeV})}=200.5 \mathrm{MeV}
$$

Thus,

$$
\lambda=\frac{h c}{p c}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{200.5 \times 10^{6} \mathrm{eV}}=6.18 \times 10^{-6} \mathrm{~nm} \approx 6.2 \mathrm{fm}
$$

(b) The diameter of a copper nucleus, for example, is about 8.6 fm , just a little larger than the de Broglie wavelength of a $200-\mathrm{MeV}$ electron. To resolve detail, the wavelength should be smaller than the target, ideally a tenth of the diameter or less. $200-\mathrm{MeV}$ electrons are perhaps at the lower limit in energy for useful probes.
12. From Appendix F and/or G, we find $Z=107$ for Bohrium, so this isotope has $N=$ $A-Z=262-107=155$ neutrons. Thus,

$$
\begin{aligned}
\Delta E_{\mathrm{ben}} & =\frac{\left(Z m_{\mathrm{H}}+N m_{n}-m_{\mathrm{Bh}}\right) c^{2}}{A} \\
& =\frac{((107)(1.007825 \mathrm{u})+(155)(1.008665 \mathrm{u})-262.1231 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})}{262}
\end{aligned}
$$

which yields 7.31 MeV per nucleon.
13. Let f_{24} be the abundance of ${ }^{24} \mathrm{Mg}$, let f_{25} be the abundance of ${ }^{25} \mathrm{Mg}$, and let f_{26} be the abundance of ${ }^{26} \mathrm{Mg}$. Then, the entry in the periodic table for Mg is

$$
24.312=23.98504 f_{24}+24.98584 f_{25}+25.98259 f_{26}
$$

Since there are only three isotopes, $f_{24}+f_{25}+f_{26}=1$. We solve for f_{25} and f_{26}. The second equation gives $f_{26}=1-f_{24}-f_{25}$. We substitute this expression and $f_{24}=0.7899$ into the first equation to obtain
$24.312=(23.98504)(0.7899)+24.98584 f_{25}+25.98259-(25.98259)(0.7899)-25.98259 f_{25}$.
The solution is $f_{25}=0.09303$. Then,

$$
f_{26}=1-0.7899-0.09303=0.1171 .78 .99 \%
$$

of naturally occurring magnesium is ${ }^{24} \mathrm{Mg}$.
(a) Thus, 9.303% is ${ }^{25} \mathrm{Mg}$.
(b) 11.71% is ${ }^{26} \mathrm{Mg}$.
14. (a) The first step is to add energy to produce ${ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{H}$, which — to make the electrons "balance" - may be rewritten as ${ }^{4} \mathrm{He} \rightarrow{ }^{1} \mathrm{H}+{ }^{3} \mathrm{H}$. The energy needed is

$$
\begin{aligned}
\Delta E_{1} & =\left(m_{3_{\mathrm{H}}}+m_{1_{\mathrm{H}}}-m_{4_{\mathrm{He}}}\right) c^{2}=(3.01605 \mathrm{u}+1.00783 \mathrm{u}-4.00260 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =19.8 \mathrm{MeV} .
\end{aligned}
$$

(b) The second step is to add energy to produce ${ }^{3} \mathrm{H} \rightarrow n+{ }^{2} \mathrm{H}$. The energy needed is

$$
\begin{aligned}
\Delta E_{2} & =\left(m_{2_{\mathrm{H}}}+m_{n}-m_{3_{\mathrm{H}}}\right) c^{2}=(2.01410 \mathrm{u}+1.00867 \mathrm{u}-3.01605 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =6.26 \mathrm{MeV} .
\end{aligned}
$$

(c) The third step: ${ }^{2} \mathrm{H} \rightarrow p+n$, which - to make the electrons "balance" - may be rewritten as ${ }^{2} \mathrm{H} \rightarrow{ }^{1} \mathrm{H}+n$. The work required is

$$
\begin{aligned}
\Delta E_{3} & =\left(m_{1_{\mathrm{H}}}+m_{n}-m_{2_{\mathrm{H}}}\right) c^{2}=(1.00783 \mathrm{u}+1.00867 \mathrm{u}-2.01410 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =2.23 \mathrm{MeV} .
\end{aligned}
$$

(d) The total binding energy is

$$
\Delta E_{\mathrm{be}}=\Delta E_{1}+\Delta E_{2}+\Delta E_{3}=19.8 \mathrm{MeV}+6.26 \mathrm{MeV}+2.23 \mathrm{MeV}=28.3 \mathrm{MeV}
$$

(e) The binding energy per nucleon is $\Delta E_{\text {ben }}=\Delta E_{\mathrm{be}} / A=28.3 \mathrm{MeV} / 4=7.07 \mathrm{MeV}$.
(f) No, the answers do not match.
15. The binding energy is given by $\Delta E_{\mathrm{be}}=\left[Z m_{H}+(A-Z) m_{n}-M_{\mathrm{Pu}}\right] c^{2}$, where Z is the atomic number (number of protons), A is the mass number (number of nucleons), m_{H} is the mass of a hydrogen atom, m_{n} is the mass of a neutron, and M_{Pu} is the mass of a ${ }_{94}^{239} \mathrm{Pu}$ atom. In principle, nuclear masses should be used, but the mass of the Z electrons included in $Z M_{H}$ is canceled by the mass of the Z electrons included in M_{Pu}, so the result is the same. First, we calculate the mass difference in atomic mass units:

$$
\Delta m=(94)(1.00783 \mathrm{u})+(239-94)(1.00867 \mathrm{u})-(239.05216 \mathrm{u})=1.94101 \mathrm{u}
$$

Since 1 u is equivalent to 931.5 MeV ,

$$
\Delta E_{\mathrm{be}}=(1.94101 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=1808 \mathrm{MeV} .
$$

Since there are 239 nucleons, the binding energy per nucleon is

$$
\Delta E_{\mathrm{ben}}=E / A=(1808 \mathrm{MeV}) / 239=7.56 \mathrm{MeV}
$$

16. We first "separate" all the nucleons in one copper nucleus (which amounts to simply calculating the nuclear binding energy) and then figure the number of nuclei in the penny (so that we can multiply the two numbers and obtain the result). To begin, we note that (using Eq. 42-1 with Appendix F and/or G) the copper-63 nucleus has 29 protons and 34 neutrons. We use the more accurate values given in Sample Problem 42-3:

$$
\Delta E_{\mathrm{be}}=(29(1.007825 \mathrm{u})+34(1.008665 \mathrm{u})-62.92960 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=551.4 \mathrm{MeV}
$$

To figure the number of nuclei (or, equivalently, the number of atoms), we adapt Eq. 42-21:

$$
N_{\mathrm{Cu}}=\left(\frac{3.0 \mathrm{~g}}{62.92960 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} \text { atoms } / \mathrm{mol}\right) \approx 2.9 \times 10^{22} \text { atoms. }
$$

Therefore, the total energy needed is

$$
N_{\mathrm{Cu}} \Delta E_{\mathrm{be}}=(551.4 \mathrm{MeV})\left(2.9 \times 10^{22}\right)=1.6 \times 10^{25} \mathrm{MeV} .
$$

17. (a) Since the nuclear force has a short range, any nucleon interacts only with its nearest neighbors, not with more distant nucleons in the nucleus. Let N be the number of neighbors that interact with any nucleon. It is independent of the number A of nucleons in the nucleus. The number of interactions in a nucleus is approximately $N A$, so the energy associated with the strong nuclear force is proportional to $N A$ and, therefore, proportional to A itself.
(b) Each proton in a nucleus interacts electrically with every other proton. The number of pairs of protons is $Z(Z-1) / 2$, where Z is the number of protons. The Coulomb energy is, therefore, proportional to $Z(Z-1)$.
(c) As A increases, Z increases at a slightly slower rate but Z^{2} increases at a faster rate than A and the energy associated with Coulomb interactions increases faster than the energy associated with strong nuclear interactions.
18. It should be noted that when the problem statement says the "masses of the proton and the deuteron are ..." they are actually referring to the corresponding atomic masses (given to very high precision). That is, the given masses include the "orbital" electrons. As in many computations in this chapter, this circumstance (of implicitly including electron masses in what should be a purely nuclear calculation) does not cause extra difficulty in the calculation (see remarks in Sample Problems 42-4, 42-6, and 42-7). Setting the gamma ray energy equal to ΔE_{be}, we solve for the neutron mass (with each term understood to be in u units):

$$
\begin{aligned}
m_{\mathrm{n}} & =M_{\mathrm{d}}-m_{\mathrm{H}}+\frac{E_{\gamma}}{c^{2}} \\
& =2.013553212-1.007276467+\frac{2.2233}{931.502} \\
& =1.0062769+0.0023868
\end{aligned}
$$

which yields $m_{\mathrm{n}}=1.0086637 \mathrm{u} \approx 1.0087 \mathrm{u}$.
19. If a nucleus contains Z protons and N neutrons, its binding energy is $\Delta E_{\mathrm{be}}=\left(Z m_{H}+N m_{n}-m\right) c^{2}$, where m_{H} is the mass of a hydrogen atom, m_{n} is the mass of a neutron, and m is the mass of the atom containing the nucleus of interest. If the masses are given in atomic mass units, then mass excesses are defined by $\Delta_{H}=\left(m_{H}-1\right) c^{2}, \Delta_{n}=$ $\left(m_{n}-1\right) c^{2}$, and $\Delta=(m-A) c^{2}$. This means $m_{H} c^{2}=\Delta_{H}+c^{2}, m_{n} c^{2}=\Delta_{n}+c^{2}$, and $m c^{2}=$ $\Delta+A c^{2}$. Thus,

$$
E=\left(Z \Delta_{H}+N \Delta_{n}-\Delta\right)+(Z+N-A) c^{2}=Z \Delta_{H}+N \Delta_{n}-\Delta,
$$

where $A=Z+N$ is used. For ${ }_{79}^{197} \mathrm{Au}, Z=79$ and $N=197-79=118$. Hence,

$$
\Delta E_{\mathrm{be}}=(79)(7.29 \mathrm{MeV})+(118)(8.07 \mathrm{MeV})-(-31.2 \mathrm{MeV})=1560 \mathrm{MeV}
$$

This means the binding energy per nucleon is $\Delta E_{\text {ben }}=(1560 \mathrm{MeV}) / 197=7.92 \mathrm{MeV}$.
20. Using Eq. 42-15 with Eq. 42-18, we find the fraction remaining:

$$
\frac{N}{N_{0}}=e^{-t \ln 2 / T_{1} / 2}=e^{-30 \ln 2 / 29}=0.49
$$

21. (a) Since $60 \mathrm{y}=2(30 \mathrm{y})=2 T_{1 / 2}$, the fraction left is $2^{-2}=1 / 4=0.250$.
(b) Since $90 \mathrm{y}=3(30 \mathrm{y})=3 T_{1 / 2}$, the fraction that remains is $2^{-3}=1 / 8=0.125$.
22. By the definition of half-life, the same has reduced to $\frac{1}{2}$ its initial amount after 140 d . Thus, reducing it to $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$ of its initial number requires that two half-lives have passed: $t=2 T_{1 / 2}=280 \mathrm{~d}$.
23. (a) The decay rate is given by $R=\lambda N$, where λ is the disintegration constant and N is the number of undecayed nuclei. Initially, $R=R_{0}=\lambda N_{0}$, where N_{0} is the number of undecayed nuclei at that time. One must find values for both N_{0} and λ. The disintegration constant is related to the half-life $T_{1 / 2}$ by

$$
\lambda=(\ln 2) / T_{1 / 2}=(\ln 2) /(78 \mathrm{~h})=8.89 \times 10^{-3} \mathrm{~h}^{-1} .
$$

If M is the mass of the sample and m is the mass of a single atom of gallium, then $N_{0}=$ M / m. Now, $m=(67 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)=1.113 \times 10^{-22} \mathrm{~g}$ and

$$
N_{0}=(3.4 \mathrm{~g}) /\left(1.113 \times 10^{-22} \mathrm{~g}\right)=3.05 \times 10^{22}
$$

Thus

$$
R_{0}=\left(8.89 \times 10^{-3} \mathrm{~h}^{-1}\right)\left(3.05 \times 10^{22}\right)=2.71 \times 10^{20} \mathrm{~h}^{-1}=7.53 \times 10^{16} \mathrm{~s}^{-1}
$$

(b) The decay rate at any time t is given by

$$
R=R_{0} e^{-\lambda t}
$$

where R_{0} is the decay rate at $t=0$. At $t=48 \mathrm{~h}, \lambda t=\left(8.89 \times 10^{-3} \mathrm{~h}^{-1}\right)(48 \mathrm{~h})=0.427$ and

$$
R=\left(7.53 \times 10^{16} \mathrm{~s}^{-1}\right) e^{-0.427}=4.91 \times 10^{16} \mathrm{~s}^{-1}
$$

24. We note that $t=24 \mathrm{~h}$ is four times $T_{1 / 2}=6.5 \mathrm{~h}$. Thus, it has reduced by half, four-fold:

$$
\left(\frac{1}{2}\right)^{4}\left(48 \times 10^{19}\right)=3.0 \times 10^{19} .
$$

25. (a) The half-life $T_{1 / 2}$ and the disintegration constant are related by $T_{1 / 2}=(\ln 2) / \lambda$, so $T_{1 / 2}=(\ln 2) /\left(0.0108 \mathrm{~h}^{-1}\right)=64.2 \mathrm{~h}$.
(b) At time t, the number of undecayed nuclei remaining is given by

$$
N=N_{0} e^{-\lambda t}=N_{0} e^{-(\ln 2) t / T_{1 / 2}} .
$$

We substitute $t=3 T_{1 / 2}$ to obtain

$$
\frac{N}{N_{0}}=e^{-3 \ln 2}=0.125
$$

In each half-life, the number of undecayed nuclei is reduced by half. At the end of one half-life, $N=N_{0} / 2$, at the end of two half-lives, $N=N_{0} / 4$, and at the end of three half-lives, $N=N_{0} / 8=0.125 N_{0}$.
(c) We use

$$
N=N_{0} e^{-\lambda t} .
$$

$10.0 d$ is 240 h , so $\lambda t=\left(0.0108 \mathrm{~h}^{-1}\right)(240 \mathrm{~h})=2.592$ and

$$
\frac{N}{N_{0}}=e^{-2.592}=0.0749
$$

26. (a) We adapt Eq. 42-21:

$$
N_{\mathrm{Pu}}=\left(\frac{0.002 \mathrm{~g}}{239 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} \text { nuclei } / \mathrm{mol}\right) \approx 5.04 \times 10^{18} \text { nuclei. }
$$

(b) Eq. 42-20 leads to

$$
R=\frac{N \ln 2}{T_{1 / 2}}=\frac{5 \times 10^{18} \ln 2}{2.41 \times 10^{4} \mathrm{y}}=1.4 \times 10^{14} / \mathrm{y}
$$

which is equivalent to $4.60 \times 10^{6} / \mathrm{s}=4.60 \times 10^{6} \mathrm{~Bq}$ (the unit becquerel is defined in §42$3)$.
27. The rate of decay is given by $R=\lambda N$, where λ is the disintegration constant and N is the number of undecayed nuclei. In terms of the half-life $T_{1 / 2}$, the disintegration constant is $\lambda=(\ln 2) / T_{1 / 2}$, so

$$
\begin{aligned}
N & =\frac{R}{\lambda}=\frac{R T_{1 / 2}}{\ln 2}=\frac{(6000 \mathrm{Ci})\left(3.7 \times 10^{10} \mathrm{~s}^{-1} / \mathrm{Ci}\right)(5.27 \mathrm{y})\left(3.16 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}{\ln 2} \\
& =5.33 \times 10^{22} \text { nuclei. }
\end{aligned}
$$

28. We note that 3.82 days is 330048 s , and that a becquerel is a disintegration per second (see §42-3). From Eq. 34-19, we have

$$
\frac{N}{\mathcal{V}}=\frac{R}{\mathcal{V}} \frac{T_{1 / 2}}{\ln 2}=\left(1.55 \times 10^{5} \frac{\mathrm{~Bq}}{\mathrm{~m}^{3}}\right) \frac{330048 \mathrm{~s}}{\ln 2}=7.4 \times 10^{10} \frac{\text { atoms }}{\mathrm{m}^{3}}
$$

where we have divided by volume v. We estimate v (the volume breathed in $48 \mathrm{~h}=$ 2880 min) as follows:

$$
\left(2 \frac{\text { Liters }}{\text { breath }}\right)\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right)\left(40 \frac{\text { breaths }}{\min }\right)(2880 \mathrm{~min})
$$

which yields $v \approx 200 \mathrm{~m}^{3}$. Thus, the order of magnitude of N is

$$
\left(\frac{N}{v}\right)(v) \approx\left(7 \times 10^{10} \frac{\text { atoms }}{\mathrm{m}^{3}}\right)\left(200 \mathrm{~m}^{3}\right) \approx 1 \times 10^{13} \text { atoms. }
$$

29. Using Eq. 42-16 with Eq. 42-18, we find the initial activity:

$$
R_{0}=R e^{t \ln 2 / T_{1 / 2}}=\left(7.4 \times 10^{8} \mathrm{~Bq}\right) e^{24 \ln 2 / 83.61}=9.0 \times 10^{8} \mathrm{~Bq} .
$$

30. (a) Eq. 42-20 leads to

$$
\begin{aligned}
R & =\frac{\ln 2}{T_{1 / 2}} N=\frac{\ln 2}{30.2 \mathrm{y}}\left(\frac{M_{\text {sam }}}{m_{\text {atom }}}\right)=\frac{\ln 2}{9.53 \times 10^{8} \mathrm{~s}}\left(\frac{0.0010 \mathrm{~kg}}{137 \times 1.661 \times 10^{-27} \mathrm{~kg}}\right) \\
& =3.2 \times 10^{12} \mathrm{~Bq} .
\end{aligned}
$$

(b) Using the conversion factor $1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}, R=3.2 \times 10^{12} \mathrm{~Bq} .=86 \mathrm{Ci}$.
31. (a) We assume that the chlorine in the sample had the naturally occurring isotopic mixture, so the average mass number was 35.453 , as given in Appendix F. Then, the mass of ${ }^{226}$ Ra was

$$
m=\frac{226}{226+2(35.453)}(0.10 \mathrm{~g})=76.1 \times 10^{-3} \mathrm{~g} .
$$

The mass of a ${ }^{226} \mathrm{Ra}$ nucleus is $(226 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)=3.75 \times 10^{-22} \mathrm{~g}$, so the number of ${ }^{226} \mathrm{Ra}$ nuclei present was

$$
N=\left(76.1 \times 10^{-3} \mathrm{~g}\right) /\left(3.75 \times 10^{-22} \mathrm{~g}\right)=2.03 \times 10^{20}
$$

(b) The decay rate is given by $R=N \lambda=(N \ln 2) / T_{1 / 2}$, where λ is the disintegration constant, $T_{1 / 2}$ is the half-life, and N is the number of nuclei. The relationship $\lambda=$ $(\ln 2) / T_{1 / 2}$ is used. Thus,

$$
R=\frac{\left(2.03 \times 10^{20}\right) \ln 2}{(1600 \mathrm{y})\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}=2.79 \times 10^{9} \mathrm{~s}^{-1} .
$$

32. (a) Molybdenum beta decays into Technetium:

$$
{ }_{42}^{99} \mathrm{Mo} \rightarrow{ }_{43}^{99} \mathrm{Tc}+e^{-}+v
$$

(b) Each decay corresponds to a photon produced when the Technetium nucleus deexcites [note that the de-excitation half-life is much less than the beta decay half-life]. Thus, the gamma rate is the same as the decay rate: $8.2 \times 10^{7} / \mathrm{s}$.
(c) Eq. 42-20 leads to

$$
N=\frac{R T_{1 / 2}}{\ln 2}=\frac{(38 / \mathrm{s})(6.0 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})}{\ln 2}=1.2 \times 10^{6} .
$$

33. Using Eq. 42-15 and Eq. 42-18 (and the fact that mass is proportional to the number of atoms), the amount decayed is

$$
\begin{aligned}
\mid \Delta m & =\left.m\right|_{t_{f}=16.0 \mathrm{~h}}-\left.m\right|_{t_{f}=14.0 \mathrm{~h}}=m_{0}\left(1-e^{-t_{i} \ln 2 / T_{1 / 2}}\right)-m_{0}\left(1-e^{-t_{f} \ln 2 / T_{1 / 2}}\right) \\
& =m_{0}\left(e^{-t_{f} \ln 2 / T_{1 / 2}}-e^{-t_{i} \ln 2 / T_{1 / 2}}\right)=(5.50 \mathrm{~g})\left[e^{-(16.0 \mathrm{~h} / 12.7 \mathrm{~h}) \ln 2}-e^{-(14.0 \mathrm{~h} / 12.7 \mathrm{~h}) \ln 2}\right] \\
& =0.265 \mathrm{~g} .
\end{aligned}
$$

34. We label the two isotopes with subscripts 1 (for ${ }^{32} \mathrm{P}$) and 2 (for ${ }^{33} \mathrm{P}$). Initially, 10% of the decays come from ${ }^{33} \mathrm{P}$, which implies that the initial rate $R_{02}=9 R_{01}$. Using Eq. 42-17, this means

$$
R_{01}=\lambda_{1} N_{01}=\frac{1}{9} R_{02}=\frac{1}{9} \lambda_{2} N_{02} .
$$

At time t, we have $R_{1}=R_{01} e^{-\lambda_{1} t}$ and $R_{2}=R_{02} e^{-\lambda_{2} t}$. We seek the value of t for which $R_{1}=$ $9 R_{2}$ (which means 90% of the decays arise from ${ }^{33} \mathrm{P}$). We divide equations to obtain $\left(R_{01} / R_{02}\right) e^{-\left(\lambda_{1}-\lambda_{2}\right) t}=9$, and solve for t :

$$
\begin{aligned}
t & =\frac{1}{\lambda_{1}-\lambda_{2}} \ln \left(\frac{R_{01}}{9 R_{02}}\right)=\frac{\ln \left(R_{01} / 9 R_{02}\right)}{\ln 2 / T_{1 / 2_{1}}-\ln 2 / T_{1 / 2_{2}}}=\frac{\ln \left[(1 / 9)^{2}\right]}{\ln 2\left[(14.3 \mathrm{~d})^{-1}-(25.3 \mathrm{~d})^{-1}\right]} \\
& =209 \mathrm{~d} .
\end{aligned}
$$

35. The number N of undecayed nuclei present at any time and the rate of decay R at that time are related by $R=\lambda N$, where λ is the disintegration constant. The disintegration constant is related to the half-life $T_{1 / 2}$ by $\lambda=(\ln 2) / T_{1 / 2}$, so $R=(N \ln 2) / T_{1 / 2}$ and $T_{1 / 2}=$ $(N \ln 2) / R$. Since 15.0% by mass of the sample is ${ }^{147} \mathrm{Sm}$, the number of ${ }^{147} \mathrm{Sm}$ nuclei present in the sample is

$$
N=\frac{(0.150)(1.00 \mathrm{~g})}{(147 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)}=6.143 \times 10^{20}
$$

Thus

$$
T_{1 / 2}=\frac{\left(6.143 \times 10^{20}\right) \ln 2}{120 \mathrm{~s}^{-1}}=3.55 \times 10^{18} \mathrm{~s}=1.12 \times 10^{11} \mathrm{y}
$$

36. We have one alpha particle (helium nucleus) produced for every plutonium nucleus that decays. To find the number that have decayed, we use Eq. 42-15, Eq. 42-18, and adapt Eq. 42-21:

$$
N_{0}-N=N_{0}\left(1-e^{-t \ln 2 / T_{1 / 2}}\right)=N_{A} \frac{12.0 \mathrm{~g} / \mathrm{mol}}{239 \mathrm{~g} / \mathrm{mol}}\left(1-e^{-20000 \mathrm{ln} 2 / 24100}\right)
$$

where N_{A} is the Avogadro constant. This yields 1.32×10^{22} alpha particles produced. In terms of the amount of helium gas produced (assuming the α particles slow down and capture the appropriate number of electrons), this corresponds to

$$
m_{\mathrm{He}}=\left(\frac{1.32 \times 10^{22}}{6.02 \times 10^{23} / \mathrm{mol}}\right)(4.0 \mathrm{~g} / \mathrm{mol})=87.9 \times 10^{-3} \mathrm{~g} .
$$

37. If N is the number of undecayed nuclei present at time t, then

$$
\frac{d N}{d t}=R-\lambda N
$$

where R is the rate of production by the cyclotron and λ is the disintegration constant. The second term gives the rate of decay. Rearrange the equation slightly and integrate:

$$
\int_{N_{0}}^{N} \frac{d N}{R-\lambda N}=\int_{0}^{t} d t
$$

where N_{0} is the number of undecayed nuclei present at time $t=0$. This yields

$$
-\frac{1}{\lambda} \ln \frac{R-\lambda N}{R-\lambda N_{0}}=t
$$

We solve for N :

$$
N=\frac{R}{\lambda}+\left(N_{0}-\frac{R}{\lambda}\right) e^{-\lambda t} .
$$

After many half-lives, the exponential is small and the second term can be neglected. Then, $N=R / \lambda$, regardless of the initial value N_{0}. At times that are long compared to the half-life, the rate of production equals the rate of decay and N is a constant.
38. Combining Eqs. 42-20 and 42-21, we obtain

$$
M_{\mathrm{sam}}=N \frac{M_{\mathrm{K}}}{M_{\mathrm{A}}}=\left(\frac{R T_{1 / 2}}{\ln 2}\right)\left(\frac{40 \mathrm{~g} / \mathrm{mol}}{6.02 \times 10^{23} / \mathrm{mol}}\right)
$$

which gives 0.66 g for the mass of the sample once we plug in $1.7 \times 10^{5} / \mathrm{s}$ for the decay rate and $1.28 \times 10^{9} \mathrm{y}=4.04 \times 10^{16} \mathrm{~s}$ for the half-life.
39. (a) The sample is in secular equilibrium with the source and the decay rate equals the production rate. Let R be the rate of production of ${ }^{56} \mathrm{Mn}$ and let λ be the disintegration constant. According to the result of problem $41, R=\lambda N$ after a long time has passed. Now, $\lambda N=8.88 \times 10^{10} \mathrm{~s}^{-1}$, so $R=8.88 \times 10^{10} \mathrm{~s}^{-1}$.
(b) We use $N=R / \lambda$. If $T_{1 / 2}$ is the half-life, then the disintegration constant is

$$
\lambda=(\ln 2) / T_{1 / 2}=(\ln 2) /(2.58 \mathrm{~h})=0.269 \mathrm{~h}^{-1}=7.46 \times 10^{-5} \mathrm{~s}^{-1},
$$

so $N=\left(8.88 \times 10^{10} \mathrm{~s}^{-1}\right) /\left(7.46 \times 10^{-5} \mathrm{~s}^{-1}\right)=1.19 \times 10^{15}$.
(c) The mass of a ${ }^{56} \mathrm{Mn}$ nucleus is $(56 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)=9.30 \times 10^{-23} \mathrm{~g}$ and the total mass of ${ }^{56} \mathrm{Mn}$ in the sample at the end of the bombardment is

$$
N m=\left(1.19 \times 10^{15}\right)\left(9.30 \times 10^{-23} \mathrm{~g}\right)=1.11 \times 10^{-7} \mathrm{~g}
$$

40. (a) The nuclear reaction is written as ${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+{ }^{4} \mathrm{He}$. The energy released is

$$
\begin{aligned}
\Delta E_{1} & =\left(m_{\mathrm{U}}-m_{\mathrm{He}}-m_{\mathrm{Th}}\right) c^{2} \\
& =(238.05079 \mathrm{u}-4.00260 \mathrm{u}-234.04363 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =4.25 \mathrm{MeV} .
\end{aligned}
$$

(b) The reaction series consists of ${ }^{238} \mathrm{U} \rightarrow{ }^{237} \mathrm{U}+n$, followed by

$$
\begin{aligned}
&{ }^{237} \mathrm{U} \rightarrow{ }^{236} \mathrm{~Pa}+p \\
&{ }^{236} \mathrm{~Pa} \rightarrow{ }^{235} \mathrm{~Pa}+\mathrm{n} \\
&{ }^{235} \mathrm{~Pa} \rightarrow{ }^{234} \mathrm{Th}+p
\end{aligned}
$$

The net energy released is then

$$
\begin{aligned}
\Delta E_{2}= & \left(m_{238 \mathrm{U}}-m_{237}-m_{n}\right) c^{2}+\left(m_{237}-m_{236 \mathrm{~Pa}}-m_{p}\right) c^{2} \\
& \quad+\left(m_{236} \mathrm{~Pa}-m_{235}-m_{n}\right) c^{2}+\left(m_{235}-m_{234}-m_{p}\right) c^{2} \\
= & \left(m_{238 \mathrm{U}}-2 m_{n}-2 m_{p}-m_{234}\right) c^{2} \\
= & {[238.05079 \mathrm{u}-2(1.00867 \mathrm{u})-2(1.00783 \mathrm{u})-234.04363 \mathrm{u}](931.5 \mathrm{MeV} / \mathrm{u}) } \\
= & -24.1 \mathrm{MeV} .
\end{aligned}
$$

(c) This leads us to conclude that the binding energy of the α particle is

$$
\left|\left(2 m_{n}+2 m_{p}-m_{\mathrm{He}}\right) c^{2}\right|=|-24.1 \mathrm{MeV}-4.25 \mathrm{MeV}|=28.3 \mathrm{MeV} .
$$

41. The fraction of undecayed nuclei remaining after time t is given by

$$
\frac{N}{N_{0}}=e^{-\lambda t}=e^{-(\ln 2) t / T_{1 / 2}}
$$

where λ is the disintegration constant and $T_{1 / 2}(=(\ln 2) / \lambda)$ is the half-life. The time for half the original ${ }^{238} \mathrm{U}$ nuclei to decay is $4.5 \times 10^{9} \mathrm{y}$.
(a) For ${ }^{244} \mathrm{Pu}$ at that time,

$$
\frac{(\ln 2) t}{T_{1 / 2}}=\frac{(\ln 2)\left(4.5 \times 10^{9} \mathrm{y}\right)}{8.0 \times 10^{7} \mathrm{y}}=39
$$

and

$$
\frac{N}{N_{0}}=e^{-39.0} \approx 1.2 \times 10^{-17}
$$

(b) For ${ }^{248} \mathrm{Cm}$ at that time,

$$
\frac{(\ln 2) t}{T_{1 / 2}}=\frac{(\ln 2)\left(4.5 \times 10^{9} \mathrm{y}\right)}{3.4 \times 10^{5} \mathrm{y}}=9170
$$

and

$$
\frac{N}{N_{0}}=e^{-9170}=3.31 \times 10^{-3983}
$$

For any reasonably sized sample this is less than one nucleus and may be taken to be zero. A standard calculator probably cannot evaluate e^{-9170} directly. Our recommendation is to treat it as $\left(e^{-91.70}\right)^{100}$.
42. (a) The disintegration energy for uranium- 235 "decaying" into thorium- 232 is

$$
\begin{aligned}
Q_{3} & =\left(m_{235}-m_{232}-m_{3_{\mathrm{He}}}\right) c^{2} \\
& =(235.0439 \mathrm{u}-232.0381 \mathrm{u}-3.0160 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =-9.50 \mathrm{MeV} .
\end{aligned}
$$

(b) Similarly, the disintegration energy for uranium-235 decaying into thorium-231 is

$$
\begin{aligned}
Q_{4} & =\left(m_{235 \mathrm{U}}-m_{231}-m_{4_{\mathrm{He}}}\right) c^{2} \\
& =(235.0439 \mathrm{u}-231.0363 \mathrm{u}-4.0026 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =4.66 \mathrm{MeV} .
\end{aligned}
$$

(c) Finally, the considered transmutation of uranium-235 into thorium-230 has a Q-value of

$$
\begin{aligned}
Q_{5} & =\left(m_{235}-m_{230}-m_{5_{\mathrm{He}}}\right) c^{2} \\
& =(235.0439 \mathrm{u}-230.0331 \mathrm{u}-5.0122 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =-1.30 \mathrm{MeV} .
\end{aligned}
$$

Only the second decay process (the α decay) is spontaneous, as it releases energy.
43. Energy and momentum are conserved. We assume the residual thorium nucleus is in its ground state. Let K_{α} be the kinetic energy of the alpha particle and K_{Th} be the kinetic energy of the thorium nucleus. Then, $Q=K_{\alpha}+K_{\mathrm{Th}}$. We assume the uranium nucleus is initially at rest. Then, conservation of momentum yields $0=p_{\alpha}+p_{\mathrm{Th}}$, where p_{α} is the momentum of the alpha particle and p_{Th} is the momentum of the thorium nucleus. Both particles travel slowly enough that the classical relationship between momentum and energy can be used. Thus $K_{\mathrm{Th}}=p_{\mathrm{Th}}^{2} / 2 m_{\mathrm{Th}}$, where m_{Th} is the mass of the thorium nucleus. We substitute $p_{\mathrm{Th}}=-p_{\alpha}$ and use $K_{\alpha}=p_{\alpha}^{2} / 2 m_{\alpha}$ to obtain $K_{\mathrm{Th}}=\left(m_{\alpha} / m_{\mathrm{Th}}\right) K_{\alpha}$. Consequently,

$$
Q=K_{\alpha}+\frac{m_{\alpha}}{m_{\mathrm{Th}}} K_{\alpha}=\left(1+\frac{m_{\alpha}}{m_{\mathrm{Th}}}\right) K_{\alpha}=\left(1+\frac{4.00 \mathrm{u}}{234 \mathrm{u}}\right)(4.196 \mathrm{MeV})=4.269 \mathrm{MeV} .
$$

44. (a) For the first reaction

$$
\begin{aligned}
Q_{1} & =\left(m_{\mathrm{Ra}}-m_{\mathrm{Pb}}-m_{\mathrm{C}}\right) c^{2}=(223.01850 \mathrm{u}-208.98107 \mathrm{u}-14.00324 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =31.8 \mathrm{MeV} .
\end{aligned}
$$

(b) For the second one

$$
\begin{aligned}
Q_{2} & =\left(m_{\text {Ra }}-m_{\text {Rn }}-m_{\text {He }}\right) c^{2}=(223.01850 \mathrm{u}-219.00948 \mathrm{u}-4.00260 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =5.98 \mathrm{MeV} .
\end{aligned}
$$

(c) From $U \propto q_{1} q_{2} / r$, we get

$$
U_{1} \approx U_{2}\left(\frac{q_{\mathrm{Pb}} q_{C}}{q_{\mathrm{Rn}} q_{\mathrm{He}}}\right)=(30.0 \mathrm{MeV}) \frac{(82 e)(6.0 e)}{(86 e)(2.0 e)}=86 \mathrm{MeV} .
$$

45. Let $M_{\text {Cs }}$ be the mass of one atom of ${ }_{55}^{137} \mathrm{Cs}$ and M_{Ba} be the mass of one atom of ${ }_{56}^{137} \mathrm{Ba}$. To obtain the nuclear masses, we must subtract the mass of 55 electrons from M_{Cs} and the mass of 56 electrons from M_{Ba}. The energy released is

$$
Q=\left[\left(M_{\mathrm{Cs}}-55 m\right)-\left(M_{\mathrm{Ba}}-56 m\right)-m\right] c^{2},
$$

where m is the mass of an electron. Once cancellations have been made, $Q=\left(M_{\mathrm{Cs}}-\right.$ $\left.M_{\mathrm{Ba}}\right) c^{2}$ is obtained. Therefore,

$$
Q=[136.9071 \mathrm{u}-136.9058 \mathrm{u}] c^{2}=(0.0013 \mathrm{u}) c^{2}=(0.0013 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=1.21 \mathrm{MeV} .
$$

46. (a) We recall that $m c^{2}=0.511 \mathrm{MeV}$ from Table $38-3$, and note that the result of problem 3 in Chapter 39 can be written as $h c=1240 \mathrm{MeV} \cdot \mathrm{fm}$. Using Eq. 38-51 and Eq. 39-13, we obtain

$$
\begin{aligned}
\lambda & =\frac{h}{p}=\frac{h c}{\sqrt{K^{2}+2 K m c^{2}}} \\
& =\frac{1240 \mathrm{MeV} \cdot \mathrm{fm}}{\sqrt{(1.0 \mathrm{MeV})^{2}+2(1.0 \mathrm{MeV})(0.511 \mathrm{MeV})}}=9.0 \times 10^{2} \mathrm{fm} .
\end{aligned}
$$

(b) $r=r_{0} A^{1 / 3}=(1.2 \mathrm{fm})(150)^{1 / 3}=6.4 \mathrm{fm}$.
(c) Since $\lambda \gg r$ the electron cannot be confined in the nuclide. We recall from Chapters 40 and 41 that at least $\lambda / 2$ was needed in any particular direction, to support a standing wave in an "infinite well." A finite well is able to support slightly less than $\lambda / 2$ (as one can infer from the ground state wavefunction in Fig. 40-8), but in the present case λ / r is far too big to be supported.
(d) A strong case can be made on the basis of the remarks in part (c), above.
47. The decay scheme is $\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+v$. The electron kinetic energy is a maximum if no neutrino is emitted. Then,

$$
K_{\max }=\left(m_{n}-m_{p}-m_{e}\right) c^{2},
$$

where m_{n} is the mass of a neutron, m_{p} is the mass of a proton, and m_{e} is the mass of an electron. Since $m_{p}+m_{e}=m_{H}$, where m_{H} is the mass of a hydrogen atom, this can be written $K_{\max }=\left(m_{n}-m_{H}\right) c^{2}$. Hence,

$$
K_{\max }=\left(840 \times 10^{-6} \mathrm{u}\right) c^{2}=\left(840 \times 10^{-6} \mathrm{u}\right)(931.5 \mathrm{MeV} / \mathrm{u})=0.783 \mathrm{MeV}
$$

48. Assuming the neutrino has negligible mass, then

$$
\Delta m c^{2}=\left(\mathbf{m}_{\mathrm{Ti}}-\mathbf{m}_{\mathrm{V}}-m_{e}\right) c^{2} .
$$

Now, since Vanadium has 23 electrons (see Appendix F and/or G) and Titanium has 22 electrons, we can add and subtract $22 m_{e}$ to the above expression and obtain

$$
\Delta m c^{2}=\left(\mathbf{m}_{\mathrm{Ti}}+22 m_{e}-\mathbf{m}_{\mathrm{V}}-23 m_{e}\right) c^{2}=\left(m_{\mathrm{Ti}}-m_{\mathrm{V}}\right) c^{2} .
$$

We note that our final expression for $\Delta m c^{2}$ involves the atomic masses, and that this assumes (due to the way they are usually tabulated) the atoms are in the ground states (which is certainly not the case here, as we discuss below). The question now is: do we set $Q=-\Delta m c^{2}$ as in Sample Problem 42-7? The answer is "no." The atom is left in an excited (high energy) state due to the fact that an electron was captured from the lowest shell (where the absolute value of the energy, E_{K}, is quite large for large Z - see Eq. 39-25). To a very good approximation, the energy of the K-shell electron in Vanadium is equal to that in Titanium (where there is now a "vacancy" that must be filled by a readjustment of the whole electron cloud), and we write $Q=-\Delta m c^{2}-E_{K}$ so that Eq. 42-26 still holds. Thus,

$$
Q=\left(m_{\mathrm{V}}-m_{\mathrm{Ti}}\right) c^{2}-E_{K .} .
$$

49. (a) Since the positron has the same mass as an electron, and the neutrino has negligible mass, then

$$
\Delta m c^{2}=\left(\mathbf{m}_{\mathrm{B}}+m_{e}-\mathbf{m}_{\mathrm{C}}\right) c^{2} .
$$

Now, since Carbon has 6 electrons (see Appendix F and/or G) and Boron has 5 electrons, we can add and subtract $6 m_{e}$ to the above expression and obtain

$$
\Delta m c^{2}=\left(\mathbf{m}_{\mathrm{B}}+7 m_{e}-\mathbf{m}_{\mathrm{C}}-6 m_{e}\right) c^{2}=\left(m_{\mathrm{B}}+2 m_{e}-m_{\mathrm{C}}\right) c^{2} .
$$

We note that our final expression for $\Delta m c^{2}$ involves the atomic masses, as well an "extra" term corresponding to two electron masses. From Eq. 38-47 and Table 38-3, we obtain

$$
Q=\left(m_{\mathrm{C}}-m_{\mathrm{B}}-2 m_{e}\right) c^{2}=\left(m_{\mathrm{C}}-m_{\mathrm{B}}\right) c^{2}-2(0.511 \mathrm{MeV}) .
$$

(b) The disintegration energy for the positron decay of Carbon-11 is

$$
Q=(11.011434 \mathrm{u}-11.009305 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})-1.022 \mathrm{MeV}=0.961 \mathrm{MeV}
$$

50. (a) The rate of heat production is

$$
\begin{aligned}
\frac{d E}{d t}= & \sum_{i=1}^{3} R_{i} Q_{i}=\sum_{i=1}^{3} \lambda_{1} N_{i} Q_{i}=\sum_{i=1}^{3}\left(\frac{\ln 2}{T_{1 / 2_{i}}}\right) \frac{(1.00 \mathrm{~kg}) f_{i}}{m_{i}} Q_{i} \\
= & \frac{(1.00 \mathrm{~kg})(\ln 2)\left(1.60 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}\left[\frac{\left(4 \times 10^{-6}\right)(51.7 \mathrm{MeV})}{(238 \mathrm{u})\left(4.47 \times 10^{9} \mathrm{y}\right)}\right. \\
& \left.\quad+\frac{\left(13 \times 10^{-6}\right)(42.7 \mathrm{MeV})}{(232 \mathrm{u})\left(1.41 \times 10^{10} \mathrm{y}\right)}+\frac{\left(4 \times 10^{-6}\right)(1.31 \mathrm{MeV})}{(40 \mathrm{u})\left(1.28 \times 10^{9} \mathrm{y}\right)}\right] \\
= & 1.0 \times 10^{-9} \mathrm{~W} .
\end{aligned}
$$

(b) The contribution to heating, due to radioactivity, is

$$
P=\left(2.7 \times 10^{22} \mathrm{~kg}\right)\left(1.0 \times 10^{-9} \mathrm{~W} / \mathrm{kg}\right)=2.7 \times 10^{13} \mathrm{~W}
$$

which is very small compared to what is received from the Sun.
51. Since the electron has the maximum possible kinetic energy, no neutrino is emitted. Since momentum is conserved, the momentum of the electron and the momentum of the residual sulfur nucleus are equal in magnitude and opposite in direction. If p_{e} is the momentum of the electron and p_{S} is the momentum of the sulfur nucleus, then $p_{S}=-p_{e}$. The kinetic energy K_{S} of the sulfur nucleus is $K_{S}=p_{S}^{2} / 2 M_{S}=p_{e}^{2} / 2 M_{S}$, where M_{S} is the mass of the sulfur nucleus. Now, the electron's kinetic energy K_{e} is related to its momentum by the relativistic equation $\left(p_{e} c\right)^{2}=K_{e}^{2}+2 K_{e} m c^{2}$, where m is the mass of an electron. See Eq. 38-51. Thus,

$$
\begin{aligned}
K_{S} & =\frac{\left(p_{e} c\right)^{2}}{2 M_{S} c^{2}}=\frac{K_{e}^{2}+2 K_{e} m c^{2}}{2 M_{S} c^{2}}=\frac{(1.71 \mathrm{MeV})^{2}+2(1.71 \mathrm{MeV})(0.511 \mathrm{MeV})}{2(32 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})} \\
& =7.83 \times 10^{-5} \mathrm{MeV}=78.3 \mathrm{eV}
\end{aligned}
$$

where $m c^{2}=0.511 \mathrm{MeV}$ is used (see Table 38-3).
52. We solve for t from $R=R_{0} e^{-\lambda t}$:

$$
t=\frac{1}{\lambda} \ln \frac{R_{0}}{R}=\left(\frac{5730 \mathrm{y}}{\ln 2}\right) \ln \left[\left(\frac{15.3}{63.0}\right)\left(\frac{5.00}{1.00}\right)\right]=1.61 \times 10^{3} \mathrm{y} .
$$

53. (a) The mass of a ${ }^{238} \mathrm{U}$ atom is $(238 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)=3.95 \times 10^{-22} \mathrm{~g}$, so the number of uranium atoms in the rock is

$$
N_{U}=\left(4.20 \times 10^{-3} \mathrm{~g}\right) /\left(3.95 \times 10^{-22} \mathrm{~g}\right)=1.06 \times 10^{19}
$$

(b) The mass of a ${ }^{206} \mathrm{~Pb}$ atom is $(206 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g}\right)=3.42 \times 10^{-22} \mathrm{~g}$, so the number of lead atoms in the rock is

$$
N_{\mathrm{Pb}}=\left(2.135 \times 10^{-3} \mathrm{~g}\right) /\left(3.42 \times 10^{-22} \mathrm{~g}\right)=6.24 \times 10^{18}
$$

(c) If no lead was lost, there was originally one uranium atom for each lead atom formed by decay, in addition to the uranium atoms that did not yet decay. Thus, the original number of uranium atoms was

$$
N_{U 0}=N_{U}+N_{\mathrm{Pb}}=1.06 \times 10^{19}+6.24 \times 10^{18}=1.68 \times 10^{19} .
$$

(d) We use

$$
N_{U}=N_{U 0} e^{-\lambda t}
$$

where λ is the disintegration constant for the decay. It is related to the half-life $T_{1 / 2}$ by $\lambda=(\ln 2) / T_{1 / 2}$. Thus

$$
t=-\frac{1}{\lambda} \ln \left(\frac{N_{U}}{N_{U 0}}\right)=-\frac{T_{1 / 2}}{\ln 2} \ln \left(\frac{N_{U}}{N_{U 0}}\right)=-\frac{4.47 \times 10^{9} \mathrm{y}}{\ln 2} \ln \left(\frac{1.06 \times 10^{19}}{1.68 \times 10^{19}}\right)=2.97 \times 10^{9} \mathrm{y} .
$$

54. The original amount of ${ }^{238} \mathrm{U}$ the rock contains is given by

$$
m_{0}=m e^{\lambda t}=(3.70 \mathrm{mg}) e^{(\ln 2)\left(260 \times 10^{6} \mathrm{y}\right)\left(4.47 \times 10^{9} \mathrm{y}\right)}=3.85 \mathrm{mg} .
$$

Thus, the amount of lead produced is

$$
m^{\prime}=\left(m_{0}-m\right)\left(\frac{m_{206}}{m_{238}}\right)=(3.85 \mathrm{mg}-3.70 \mathrm{mg})\left(\frac{206}{238}\right)=0.132 \mathrm{mg} .
$$

55. We can find the age t of the rock from the masses of ${ }^{238} \mathrm{U}$ and ${ }^{206} \mathrm{~Pb}$. The initial mass of ${ }^{238} \mathrm{U}$ is

$$
m_{\mathrm{U}_{0}}=m_{\mathrm{U}}+\frac{238}{206} m_{\mathrm{Pb}} .
$$

Therefore, $m_{\mathrm{U}}=m_{\mathrm{U}_{0}} e^{-\lambda_{\mathrm{U} t}}=\left(m_{\mathrm{U}}+m_{238} / 206\right) e^{-(t \ln 2) / T_{1 / 2} \mathrm{U}}$. We solve for t :

$$
\begin{aligned}
t & =\frac{T_{1 / 2_{\mathrm{U}}}}{\ln 2} \ln \left(\frac{m_{\mathrm{U}}+(238 / 206) m_{\mathrm{Pb}}}{m_{\mathrm{U}}}\right)=\frac{4.47 \times 10^{9} \mathrm{y}}{\ln 2} \ln \left[1+\left(\frac{238}{206}\right)\left(\frac{0.15 \mathrm{mg}}{0.86 \mathrm{mg}}\right)\right] \\
& =1.18 \times 10^{9} \mathrm{y} .
\end{aligned}
$$

For the β decay of ${ }^{40} \mathrm{~K}$, the initial mass of ${ }^{40} \mathrm{~K}$ is

$$
m_{\mathrm{K}_{0}}=m_{\mathrm{K}}+(40 / 40) m_{\mathrm{Ar}}=m_{\mathrm{K}}+m_{\mathrm{Ar}},
$$

so

$$
m_{\mathrm{K}}=m_{\mathrm{K}_{0}} e^{-\lambda_{\mathrm{K}^{t}}}=\left(m_{\mathrm{K}}+m_{\mathrm{Ar}}\right) e^{-\lambda_{\mathrm{K}^{t}}} .
$$

We solve for m_{K} :

$$
m_{\mathrm{K}}=\frac{m_{\mathrm{Ar}} e^{-\lambda_{\mathrm{K}} t}}{1-e^{-\lambda_{\mathrm{K} t}}}=\frac{m_{\mathrm{Ar}}}{e^{\lambda_{\mathrm{K} t}}-1}=\frac{1.6 \mathrm{mg}}{e^{(\ln 2)\left(1.18 \times 10^{9} \mathrm{y}\right)\left(1.25 \times 10^{9} \mathrm{y}\right)}-1}=1.7 \mathrm{mg} .
$$

56. We note that every Calcium- 40 atom and Krypton- 40 atom found now in the sample was once one of the original number of Potassium atoms. Thus, using Eq. 42-14 and Eq. 42-18, we find

$$
\ln \left(\frac{N_{\mathrm{K}}}{N_{\mathrm{K}}+N_{\mathrm{Ar}}+N_{\mathrm{Ca}}}\right)=-\lambda t \Rightarrow \ln \left(\frac{1}{1+1+8.54}\right)=-\frac{\ln 2}{T_{1 / 2}} t
$$

which (with $T_{1 / 2}=1.26 \times 10^{9} \mathrm{y}$) yields $t=4.28 \times 10^{9} \mathrm{y}$.
57. The decay rate R is related to the number of nuclei N by $R=\lambda N$, where λ is the disintegration constant. The disintegration constant is related to the half-life $T_{1 / 2}$ by $\lambda=(\ln 2) / T_{1 / 2}$, so $N=R / \lambda=R T_{1 / 2} / \ln 2$. Since $1 \mathrm{Ci}=3.7 \times 10^{10}$ disintegrations/s,

$$
N=\frac{(250 \mathrm{Ci})\left(3.7 \times 10^{10} \mathrm{~s}^{-1} / \mathrm{Ci}\right)(2.7 \mathrm{~d})\left(8.64 \times 10^{4} \mathrm{~s} / \mathrm{d}\right)}{\ln 2}=3.11 \times 10^{18} .
$$

The mass of a ${ }^{198} \mathrm{Au}$ atom is $M=(198 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right)=3.29 \times 10^{-22} \mathrm{~g}$, so the mass required is

$$
N M=\left(3.11 \times 10^{18}\right)\left(3.29 \times 10^{-22} \mathrm{~g}\right)=1.02 \times 10^{-3} \mathrm{~g}=1.02 \mathrm{mg} .
$$

58. The becquerel (Bq) and curie (Ci) are defined in $\S 42-3$.
(a) $R=8700 / 60=145 \mathrm{~Bq}$.
(b) $R=\frac{145 \mathrm{~Bq}}{3.7 \times 10^{10} \mathrm{~Bq} / \mathrm{Ci}}=3.92 \times 10^{-9} \mathrm{Ci}$.
59. The dose equivalent is the product of the absorbed dose and the RBE factor, so the absorbed dose is

$$
(\text { dose equivalent }) /(\mathrm{RBE})=\left(250 \times 10^{-6} \mathrm{~Sv}\right) /(0.85)=2.94 \times 10^{-4} \mathrm{~Gy} .
$$

But $1 \mathrm{~Gy}=1 \mathrm{~J} / \mathrm{kg}$, so the absorbed dose is

$$
\left(2.94 \times 10^{-4} \mathrm{~Gy}\right)\left(1 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~Gy}}\right)=2.94 \times 10^{-4} \mathrm{~J} / \mathrm{kg} .
$$

To obtain the total energy received, we multiply this by the mass receiving the energy:

$$
E=\left(2.94 \times 10^{-4} \mathrm{~J} / \mathrm{kg}\right)(44 \mathrm{~kg})=1.29 \times 10^{-2} \mathrm{~J} \approx 1.3 \times 10^{-2} \mathrm{~J} .
$$

60. (a) Using Eq. 42-32, the energy absorbed is

$$
\left(2.4 \times 10^{-4} \mathrm{~Gy}\right)(75 \mathrm{~kg})=18 \mathrm{~mJ} .
$$

(b) The dose equivalent is

$$
\left(2.4 \times 10^{-4} \mathrm{~Gy}\right)(12)=2.9 \times 10^{-3} \mathrm{~Sv} .
$$

(c) Using Eq. $42-33$, we have $2.9 \times 10^{-3} \mathrm{~Sv}=0.29 \mathrm{rem}$
61. (a) Adapting Eq. 42-21, we find

$$
N_{0}=\frac{\left(2.5 \times 10^{-3} \mathrm{~g}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)}{239 \mathrm{~g} / \mathrm{mol}}=6.3 \times 10^{18}
$$

(b) From Eq. 42-15 and Eq. 42-18,

$$
|\Delta N|=N_{0}\left[1-e^{-t \ln 2 / T_{1 / 2}}\right]=\left(6.3 \times 10^{18}\right)\left[1-e^{-(12 \mathrm{~h}) \ln 2 /(24,100 \mathrm{y})(8760 \mathrm{~h} / \mathrm{y})}\right]=2.5 \times 10^{11} .
$$

(c) The energy absorbed by the body is

$$
(0.95) E_{\alpha}|\Delta N|=(0.95)(5.2 \mathrm{MeV})\left(2.5 \times 10^{11}\right)\left(1.6 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)=0.20 \mathrm{~J}
$$

(d) On a per unit mass basis, the previous result becomes (according to Eq. 42-32)

$$
\frac{0.20 \mathrm{~mJ}}{85 \mathrm{~kg}}=2.3 \times 10^{-3} \mathrm{~J} / \mathrm{kg}=2.3 \mathrm{mGy}
$$

(e) Using Eq. 42-31, $(2.3 \mathrm{mGy})(13)=30 \mathrm{mSv}$.
62. From Eq. 19-24, we obtain

$$
T=\frac{2}{3}\left(\frac{K_{\mathrm{avg}}}{\mathrm{k}}\right)=\frac{2}{3}\left(\frac{5.00 \times 10^{6} \mathrm{eV}}{8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}}\right)=3.87 \times 10^{10} \mathrm{~K}
$$

63. (a) Following Sample Problem 42-10, we compute

$$
\Delta E \approx \frac{\hbar}{t_{\mathrm{avg}}}=\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{fs}\right) / 2 \pi}{1.0 \times 10^{-22} \mathrm{~s}}=6.6 \times 10^{6} \mathrm{eV}
$$

(b) In order to fully distribute the energy in a fairly large nucleus, and create a "compound nucleus" equilibrium configuration, about $10^{-15} \mathrm{~s}$ is typically required. A reaction state that exists no more than about $10^{-22} \mathrm{~s}$ does not qualify as a compound nucleus.
64. (a) We compare both the proton numbers (atomic numbers, which can be found in Appendix F and/or G) and the neutron numbers (see Eq. 42-1) with the magic nucleon numbers (special values of either Z or N) listed in $\S 42-8$. We find that ${ }^{18} \mathrm{O},{ }^{60} \mathrm{Ni},{ }^{92} \mathrm{Mo}$, ${ }^{144} \mathrm{Sm}$, and ${ }^{207} \mathrm{~Pb}$ each have a filled shell for either the protons or the neutrons (two of these, ${ }^{18} \mathrm{O}$ and ${ }^{92} \mathrm{Mo}$, are explicitly discussed in that section).
(b) Consider ${ }^{40} \mathrm{~K}$, which has $Z=19$ protons (which is one less than the magic number 20). It has $N=21$ neutrons, so it has one neutron outside a closed shell for neutrons, and thus qualifies for this list. Others in this list include ${ }^{91} \mathrm{Zr},{ }^{121} \mathrm{Sb}$, and ${ }^{143} \mathrm{Nd}$.
(c) Consider ${ }^{13} \mathrm{C}$, which has $Z=6$ and $N=13-6=7$ neutrons. Since 8 is a magic number, then ${ }^{13} \mathrm{C}$ has a vacancy in an otherwise filled shell for neutrons. Similar arguments lead to inclusion of ${ }^{40} \mathrm{~K},{ }^{49} \mathrm{Ti},{ }^{205} \mathrm{Tl}$, and ${ }^{207} \mathrm{~Pb}$ in this list.
65. A generalized formation reaction can be written $X+x \rightarrow Y$, where X is the target nucleus, x is the incident light particle, and Y is the excited compound nucleus $\left({ }^{20} \mathrm{Ne}\right)$. We assume X is initially at rest. Then, conservation of energy yields

$$
m_{X} c^{2}+m_{x} c^{2}+K_{x}=m_{Y} c^{2}+K_{Y}+E_{Y}
$$

where m_{X}, m_{x}, and m_{Y} are masses, K_{x} and K_{Y} are kinetic energies, and E_{Y} is the excitation energy of Y. Conservation of momentum yields

$$
p_{x}=p_{Y} .
$$

Now, $K_{Y}=p_{Y}^{2} / 2 m_{Y}=p_{x}^{2} / 2 m_{Y}=\left(m_{x} / m_{Y}\right) K_{x}$, so

$$
m_{X} c^{2}+m_{x} c^{2}+K_{x}=m_{Y} c^{2}+\left(m_{x} / m_{Y}\right) K_{x}+E_{Y}
$$

and

$$
K_{x}=\frac{m_{Y}}{m_{Y}-m_{x}}\left[\left(m_{Y}-m_{X}-m_{x}\right) c^{2}+E_{Y}\right] .
$$

(a) Let x represent the alpha particle and X represent the ${ }^{16} \mathrm{O}$ nucleus. Then,

$$
\left(m_{Y}-m_{X}-m_{x}\right) c^{2}=(19.99244 \mathrm{u}-15.99491 \mathrm{u}-4.00260 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=-4.722 \mathrm{MeV}
$$

and

$$
K_{\alpha}=\frac{19.99244 \mathrm{u}}{19.99244 \mathrm{u}-4.00260 \mathrm{u}}(-4.722 \mathrm{MeV}+25.0 \mathrm{MeV})=25.35 \mathrm{MeV} \approx 25.4 \mathrm{MeV}
$$

(b) Let x represent the proton and X represent the ${ }^{19} \mathrm{~F}$ nucleus. Then,

$$
\left(m_{Y}-m_{X}-m_{x}\right) c^{2}=(19.99244 \mathrm{u}-18.99841 \mathrm{u}-1.00783 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=-12.85 \mathrm{MeV}
$$

and

$$
K_{\alpha}=\frac{19.99244 \mathrm{u}}{19.99244 \mathrm{u}-1.00783 \mathrm{u}}(-12.85 \mathrm{MeV}+25.0 \mathrm{MeV})=12.80 \mathrm{MeV} .
$$

(c) Let x represent the photon and X represent the ${ }^{20} \mathrm{Ne}$ nucleus. Since the mass of the photon is zero, we must rewrite the conservation of energy equation: if E_{γ} is the energy of the photon, then $E_{\gamma}+m_{X} c^{2}=m_{Y} c^{2}+K_{Y}+E_{Y}$. Since $m_{X}=m_{Y}$, this equation becomes $E_{\gamma}=$ $K_{Y}+E_{Y}$. Since the momentum and energy of a photon are related by $p_{\gamma}=E_{\gamma} / c$, the
conservation of momentum equation becomes $E_{\gamma} / c=p_{Y}$. The kinetic energy of the compound nucleus is $K_{Y}=p_{Y}^{2} / 2 m_{Y}=E_{\gamma}^{2} / 2 m_{Y} c^{2}$. We substitute this result into the conservation of energy equation to obtain

$$
E_{\gamma}=\frac{E_{\gamma}^{2}}{2 m_{Y} c^{2}}+E_{Y} .
$$

This quadratic equation has the solutions

$$
E_{\gamma}=m_{Y} c^{2} \pm \sqrt{\left(m_{Y} c^{2}\right)^{2}-2 m_{Y} c^{2} E_{Y}}
$$

If the problem is solved using the relativistic relationship between the energy and momentum of the compound nucleus, only one solution would be obtained, the one corresponding to the negative sign above. Since

$$
m_{Y} c^{2}=(19.99244 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=1.862 \times 10^{4} \mathrm{MeV}
$$

we have

$$
\begin{aligned}
E_{\gamma} & =\left(1.862 \times 10^{4} \mathrm{MeV}\right)-\sqrt{\left(1.862 \times 10^{4} \mathrm{MeV}\right)^{2}-2\left(1.862 \times 10^{4} \mathrm{MeV}\right)(25.0 \mathrm{MeV})} \\
& =25.0 \mathrm{MeV}
\end{aligned}
$$

The kinetic energy of the compound nucleus is very small; essentially all of the photon energy goes to excite the nucleus.
66. (a) From the decay series, we know that N_{210}, the amount of ${ }^{210} \mathrm{~Pb}$ nuclei, changes because of two decays: the decay from ${ }^{226} \mathrm{Ra}$ into ${ }^{210} \mathrm{~Pb}$ at the rate $R_{226}=\lambda_{226} N_{226}$, and the decay from ${ }^{210} \mathrm{~Pb}$ into ${ }^{206} \mathrm{~Pb}$ at the rate $R_{210}=\lambda_{210} N_{210}$. The first of these decays causes N_{210} to increase while the second one causes it to decrease. Thus,

$$
\frac{d N_{210}}{d t}=R_{226}-R_{210}=\lambda_{226} N_{226}-\lambda_{210} N_{210} .
$$

(b) We set $d N_{210} / d t=R_{226}-R_{210}=0$ to obtain $R_{226} / R_{210}=1.00$.
(c) From $R_{226}=\lambda_{226} N_{226}=R_{210}=\lambda_{210} N_{210}$, we obtain

$$
\frac{N_{226}}{N_{210}}=\frac{\lambda_{210}}{\lambda_{226}}=\frac{T_{1 / 226}}{T_{1 / 2210}}=\frac{1.60 \times 10^{3} \mathrm{y}}{22.6 \mathrm{y}}=70.8
$$

(d) Since only 1.00% of the ${ }^{226} \mathrm{Ra}$ remains, the ratio R_{226} / R_{210} is 0.00100 of that of the equilibrium state computed in part (b). Thus the ratio is $(0.0100)(1)=0.0100$.
(e) This is similar to part (d) above. Since only 1.00% of the ${ }^{226} \mathrm{Ra}$ remains, the ratio N_{226} / N_{210} is 1.00% of that of the equilibrium state computed in part (c), or (0.0100)(70.8) $=0.708$.
(f) Since the actual value of N_{226} / N_{210} is 0.09 , which much closer to 0.0100 than to 1 , the sample of the lead pigment cannot be 300 years old. So Emmaus is not a Vermeer.
67. (a) We use $R=R_{0} e^{-\lambda t}$ to find t :

$$
t=\frac{1}{\lambda} \ln \frac{R_{0}}{R}=\frac{T_{1 / 2}}{\ln 2} \ln \frac{R_{0}}{R}=\frac{14.28 \mathrm{~d}}{\ln 2} \ln \frac{3050}{170}=59.5 \mathrm{~d} .
$$

(b) The required factor is

$$
\frac{R_{0}}{R}=e^{\lambda t}=e^{t \ln 2 / T_{1 / 2}}=e^{(3.48 \mathrm{~d} / 14.28 \mathrm{~d}) \ln 2}=1.18
$$

68. (a) Assuming a "target" area of one square meter, we establish a ratio:

$$
\frac{\text { rate through you }}{\text { total rate upward }}=\frac{1 \mathrm{~m}^{2}}{\left(2.6 \times 10^{5} \mathrm{~km}^{2}\right)(1000 \mathrm{~m} / \mathrm{km})^{2}}=3.8 \times 10^{-12}
$$

The SI unit becquerel is equivalent to a disintegration per second. With half the betadecay electrons moving upward, we find

$$
\text { rate through you }=\frac{1}{2}\left(1 \times 10^{16} / \mathrm{s}\right)\left(3.8 \times 10^{-12}\right)=1.9 \times 10^{4} / \mathrm{s}
$$

which implies (converting $\mathrm{s} \rightarrow \mathrm{h}$) the rate of electrons you would intercept is $R_{0}=7 \times$ $10^{7} / \mathrm{h}$. So in one hour, 7×10^{7} electrons would be intercepted.
(b) Let D indicate the current year (2003, 2004, etc). Combining Eq. 42-16 and Eq. 42-18, we find

$$
R=R_{0} e^{-t \ln 2 / T_{1 / 2}}=\left(7 \times 10^{7} / \mathrm{h}\right) e^{-(D-1996) \ln 2 /(30.2 \mathrm{y})}
$$

69. Since the spreading is assumed uniform, the count rate $R=74,000 / \mathrm{s}$ is given by $R=$ $\lambda N=\lambda(M / m)(a / A)$, where $M=400 \mathrm{~g}, m$ is the mass of the ${ }^{90} \mathrm{Sr}$ nucleus, $A=2000 \mathrm{~km}^{2}$, and a is the area in question. We solve for a :

$$
\begin{aligned}
& a=A\left(\frac{m}{M}\right)\left(\frac{R}{\lambda}\right)=\frac{A m R T_{1 / 2}}{M \ln 2} \\
& =\frac{\left(2000 \times 10^{6} \mathrm{~m}^{2}\right)(90 \mathrm{~g} / \mathrm{mol})(29 \mathrm{y})\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)(74,000 / \mathrm{s})}{(400 \mathrm{~g})\left(6.02 \times 10^{23} / \mathrm{mol}\right)(\ln 2)} \\
& =7.3 \times 10^{-2} \mathrm{~m}^{-2}=730 \mathrm{~cm}^{2} .
\end{aligned}
$$

70. (a) The rate at which Radium-226 is decaying is

$$
R=\lambda N=\left(\frac{\ln 2}{T_{1 / 2}}\right)\left(\frac{M}{m}\right)=\frac{(\ln 2)(1.00 \mathrm{mg})\left(6.02 \times 10^{23} / \mathrm{mol}\right)}{(1600 \mathrm{y})\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)(226 \mathrm{~g} / \mathrm{mol})}=3.66 \times 10^{7} \mathrm{~s}^{-1} .
$$

The activity is $3.66 \times 10^{7} \mathrm{~Bq}$.
(b) The activity of ${ }^{222} \mathrm{Rn}$ is also $3.66 \times 10^{7} \mathrm{~Bq}$.
(c) From $R_{\mathrm{Ra}}=R_{\mathrm{Rn}}$ and $R=\lambda N=\left(\ln 2 / T_{1 / 2}\right)(M / m)$, we get

$$
M_{\mathrm{Rn}}=\left(\frac{T_{1 / 2_{\mathrm{Rn}}}}{T_{1 / 2_{\mathrm{Ra}}}}\right)\left(\frac{m_{\mathrm{Rn}}}{m_{\mathrm{Ra}}}\right) M_{\mathrm{Ra}}=\frac{(3.82 \mathrm{~d})\left(1.00 \times 10^{-3} \mathrm{~g}\right)(222 \mathrm{u})}{(1600 \mathrm{y})(365 \mathrm{~d} / \mathrm{y})(226 \mathrm{u})}=6.42 \times 10^{-9} \mathrm{~g} .
$$

71. We obtain

$$
\begin{aligned}
Q & =\left(m_{\mathrm{v}}-m_{\mathrm{Ti}}\right) c^{2}-E_{K} \\
& =(48.94852 \mathrm{u}-48.94787 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})-0.00547 \mathrm{MeV} \\
& =0.600 \mathrm{MeV} .
\end{aligned}
$$

72. In order for the α particle to penetrate the gold nucleus, the separation between the centers of mass of the two particles must be no greater than

$$
r=r_{\mathrm{Cu}}+r_{\alpha}=6.23 \mathrm{fm}+1.80 \mathrm{fm}=8.03 \mathrm{fm} .
$$

Thus, the minimum energy K_{α} is given by

$$
\begin{aligned}
K_{\alpha} & =U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\alpha} q_{\mathrm{Au}}}{r}=\frac{k q_{\alpha} q_{\mathrm{Au}}}{r} \\
& =\frac{\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right)(2 e)(79)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{8.03 \times 10^{-15} \mathrm{~m}}=28.3 \times 10^{6} \mathrm{eV}
\end{aligned}
$$

We note that the factor of e in $q_{\alpha}=2 e$ was not set equal to $1.60 \times 10^{-19} \mathrm{C}$, but was instead carried through to become part of the final units.
73. We note that $h c=1240 \mathrm{MeV} \cdot \mathrm{fm}$ (see problem 83 of Chapter 38), and that the classical kinetic energy $\frac{1}{2} m v^{2}$ can be written directly in terms of the classical momentum $p=m v$ (see below). Letting $p \simeq \Delta p \simeq \Delta h / \Delta x \simeq h / r$, we get

$$
E=\frac{p^{2}}{2 m} \simeq \frac{(h c)^{2}}{2\left(m c^{2}\right) r^{2}}=\frac{(1240 \mathrm{MeV} \cdot \mathrm{fm})^{2}}{2(938 \mathrm{MeV})\left[(1.2 \mathrm{fm})(100)^{1 / 3}\right]^{2}} \simeq 30 \mathrm{MeV}
$$

74. Adapting Eq. 42-21, we have

$$
N_{\mathrm{Kr}}=\frac{M_{\mathrm{sam}}}{M_{\mathrm{Kr}}} N_{A}=\left(\frac{20 \times 10^{-9} \mathrm{~g}}{92 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} \text { atoms } / \mathrm{mol}\right)=1.3 \times 10^{14} \text { atoms }
$$

Consequently, Eq. 42-20 leads to

$$
R=\frac{N \ln 2}{T_{1 / 2}}=\frac{\left(1.3 \times 10^{14}\right) \ln 2}{1.84 \mathrm{~s}}=4.9 \times 10^{13} \mathrm{~Bq} .
$$

75. Since R is proportional to N (see Eq. 42-17) then $N / N_{0}=R / R_{0}$. Combining Eq. 42-14 and Eq. 42-18 leads to

$$
t=-\frac{T_{1 / 2}}{\ln 2} \ln \left(\frac{R}{R_{0}}\right)=-\frac{5730 \mathrm{y}}{\ln 2} \ln (0.020)=3.2 \times 10^{4} \mathrm{y}
$$

76. (a) The mass number A of a radionuclide changes by 4 in an α decay and is unchanged in a β decay. If the mass numbers of two radionuclides are given by $4 n+k$ and $4 n^{\prime}+k$ (where $k=0,1,2,3$), then the heavier one can decay into the lighter one by a series of α (and β) decays, as their mass numbers differ by only an integer times 4 . If $A=$ $4 n+k$, then after α-decaying for m times, its mass number becomes

$$
A=4 n+k-4 m=4(n-m)+k,
$$

still in the same chain.
(b) For ${ }^{235} U, 235=58 \times 4+3=4 n+3$.
(c) For ${ }^{236}$ U, $236=59 \times 4=4 n$.
(d) For ${ }^{238} U, 238=59 \times 4+2=4 n+2$.
(e) For ${ }^{239} \mathrm{Pu}, 239=59 \times 4+3=4 n+3$.
(f) For ${ }^{240} \mathrm{Pu}, 240=60 \times 4=4 n$.
(g) For ${ }^{245} \mathrm{Cm}, 245=61 \times 4+1=4 n+1$.
(h) For ${ }^{246} \mathrm{Cm}, 246=61 \times 4+2=4 n+2$.
(i) For ${ }^{249} \mathrm{Cf}, 249=62 \times 4+1=4 n+1$.
(j) For ${ }^{253} \mathrm{Fm}, 253=63 \times 4+1=4 n+1$.
77. Let ${ }_{Z}^{A} X$ represent the unknown nuclide. The reaction equation is

$$
{ }_{Z}^{A} X+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{-1}^{0} \mathrm{e}+2{ }_{2}^{4} \mathrm{He}
$$

Conservation of charge yields $Z+0=-1+4$ or $Z=3$. Conservation of mass number yields $A+1=0+8$ or $A=7$. According to the periodic table in Appendix G (also see Appendix F), lithium has atomic number 3 , so the nuclide must be ${ }_{3}^{7} \mathrm{Li}$.
78. We note that $2.42 \mathrm{~min}=145.2 \mathrm{~s}$. We are asked to plot (with SI units understood)

$$
\ln R=\ln \left(R_{0} e^{-\lambda t}+R_{0}^{\prime} e^{-\lambda^{\prime} t}\right)
$$

where $R_{0}=3.1 \times 10^{5}, R_{0}{ }^{\prime}=4.1 \times 10^{6}, \lambda=\ln 2 / 145.2$ and $\lambda^{\prime}=\ln 2 / 24.6$. Our plot is shown below.

We note that the magnitude of the slope for small t is λ^{\prime} (the disintegration constant for ${ }^{110} \mathrm{Ag}$), and for large t is λ (the disintegration constant for ${ }^{108} \mathrm{Ag}$).
79. The lines that lead toward the lower left are alpha decays, involving an atomic number change of $\Delta Z_{\alpha}=-2$ and a mass number change of $\Delta A_{\alpha}=-4$. The short horizontal lines toward the right are beta decays (involving electrons, not positrons) in which case A stays the same but the change in atomic number is $\Delta Z_{\beta}=+1$. Fig. 42-16 shows three alpha decays and two beta decays; thus,

$$
Z_{f}=Z_{i}+3 \Delta Z_{\alpha}+2 \Delta Z_{\beta} \text { and } A_{f}=A_{i}+3 \Delta A_{\alpha}
$$

Referring to Appendix F or G, we find $Z_{i}=93$ for Neptunium, so

$$
Z_{f}=93+3(-2)+2(1)=89,
$$

which indicates the element Actinium. We are given $A_{i}=237$, so $A_{f}=237+3(-4)=225$. Therefore, the final isotope is ${ }^{225} \mathrm{Ac}$.
80. (a) Replacing differentials with deltas in Eq. 42-12, we use the fact that $\Delta N=-12$ during $\Delta t=1.0 \mathrm{~s}$ to obtain

$$
\frac{\Delta N}{N}=-\lambda \Delta t \Rightarrow \lambda=4.8 \times 10^{-18} / \mathrm{s}
$$

where $N=2.5 \times 10^{18}$, mentioned at the second paragraph of $\S 42-3$, is used.
(b) Eq. 42-18 yields $T_{1 / 2}=\ln 2 / \lambda=1.4 \times 10^{17} \mathrm{~s}$, or about 4.6 billion years.
81. Eq. 24-43 gives the electrostatic potential energy between two uniformly charged spherical charges (in this case $q_{1}=2 e$ and $q_{2}=90 e$) with r being the distance between their centers. Assuming the "uniformly charged spheres" condition is met in this instance, we write the equation in such a way that we can make use of $k=1 / 4 \pi \varepsilon_{0}$ and the electronvolt unit:

$$
U=k \frac{(2 e)(90 e)}{r}=\left(8.99 \times 10^{9} \frac{\mathrm{~V} \cdot \mathrm{~m}}{\mathrm{C}}\right) \frac{\left(3.2 \times 10^{-19} \mathrm{C}\right)(90 e)}{r}=\frac{2.59 \times 10^{-7}}{r} \mathrm{eV}
$$

with r understood to be in meters. It is convenient to write this for r in femtometers, in which case $U=259 / r \mathrm{MeV}$. This is shown plotted below.

82. We locate a nuclide from Table 42-1 by finding the coordinate (N, Z) of the corresponding point in Fig. 42-4. It is clear that all the nuclides listed in Table 42-1 are stable except the last two, ${ }^{227} \mathrm{Ac}$ and ${ }^{239} \mathrm{Pu}$.
83. Although we haven't drawn the requested lines in the following table, we can indicate their slopes: lines of constant A would have -45° slopes, and those of constant $N-Z$ would have 45°. As an example of the latter, the $N-Z=20$ line (which is one of "eighteen-neutron excess") would pass through Cd-114 at the lower left corner up through Te-122 at the upper right corner. The first column corresponds to $N=66$, and the bottom row to $Z=48$. The last column corresponds to $N=70$, and the top row to $Z=52$. Much of the information below (regarding values of $T_{1 / 2}$ particularly) was obtained from the websites http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/ nndc/ensdf (we refer the reader to the remarks we made in the solution to problem 8).

${ }^{118} \mathrm{Te}$	${ }^{119} \mathrm{Te}$	${ }^{120} \mathrm{Te}$	${ }^{121} \mathrm{Te}$	${ }^{122} \mathrm{Te}$
6.0 days	16.0 h	0.1%	19.4 days	2.6%
${ }^{117} \mathrm{Sb}$	${ }^{118} \mathrm{Sb}$	${ }^{119} \mathrm{Sb}$	${ }^{120} \mathrm{Sb}$	${ }^{121} \mathrm{Sb}$
2.8 h	3.6 min	38.2 s	15.9 min	57.2%
${ }^{116} \mathrm{Sn}$	${ }^{117} \mathrm{Sn}$	${ }^{118} \mathrm{Sn}$	${ }^{119} \mathrm{Sn}$	${ }^{120} \mathrm{Sn}$
14.5%	7.7%	24.2%	8.6%	32.6%
${ }^{115} \mathrm{In}$	${ }^{116} \mathrm{In}$	${ }^{117} \mathrm{In}$	${ }^{118} \mathrm{In}$	${ }^{119} \mathrm{In}$
95.7%	${ }^{14.1 \mathrm{~s}}$	${ }^{43.2 \mathrm{~min}}$	5.0 s	2.4 min
${ }^{114} \mathrm{Cd}$	${ }^{115} \mathrm{Cd}$	${ }^{116} \mathrm{Cd}$	${ }^{117} \mathrm{Cd}$	${ }^{118} \mathrm{Cd}$
28.7%	53.5 h	${ }^{7.5 \%}$	2.5 h	50.3 min

84. The problem with Web-based services is that there are no guarantees of accuracy or that the webpage addresses will not change from the time this solution is written to the time someone reads this. Still, it is worth mentioning that a very accessible website for a wide variety of periodic table and isotope-related information is http://www.webelements.com. Two websites aimed more towards the nuclear professional are http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/nndc/ensdf, which are where some of the information mentioned below was obtained.
(a) According to Appendix F , the atomic number 60 corresponds to the element Neodymium (Nd). The first website mentioned above gives ${ }^{142} \mathrm{Nd},{ }^{143} \mathrm{Nd},{ }^{144} \mathrm{Nd},{ }^{145} \mathrm{Nd}$, ${ }^{146} \mathrm{Nd},{ }^{148} \mathrm{Nd}$, and ${ }^{150} \mathrm{Nd}$ in its list of naturally occurring isotopes. Two of these, ${ }^{144} \mathrm{Nd}$ and ${ }^{150} \mathrm{Nd}$, are not perfectly stable, but their half-lives are much longer than the age of the universe (detailed information on their half-lives, modes of decay, etc are available at the last two websites referred to, above).
(b) In this list, we are asked to put the nuclides which contain 60 neutrons and which are recognized to exist but not stable nuclei (this is why, for example, ${ }^{108} \mathrm{Cd}$ is not included here). Although the problem does not ask for it, we include the half-lives of the nuclides in our list, though it must be admitted that not all reference sources agree on those values (we picked ones we regarded as "most reliable"). Thus, we have ${ }^{97} \mathrm{Rb}(0.2 \mathrm{~s}),{ }^{98} \mathrm{Sr}(0.7 \mathrm{~s})$, ${ }^{99} \mathrm{Y}(2 \mathrm{~s}),{ }^{100} \mathrm{Zr}(7 \mathrm{~s}),{ }^{101} \mathrm{Nb}(7 \mathrm{~s}),{ }^{102} \mathrm{Mo}(11$ minutes $),{ }^{103} \mathrm{Tc}(54 \mathrm{~s}),{ }^{105} \mathrm{Rh}(35$ hours $),{ }^{109} \mathrm{In}$ (4 hours), ${ }^{110} \mathrm{Sn}$ (4 hours), ${ }^{111} \mathrm{Sb}(75 \mathrm{~s}),{ }^{112} \mathrm{Te}\left(2\right.$ minutes), ${ }^{113} \mathrm{I}$ (7 s), ${ }^{114} \mathrm{Xe}(10 \mathrm{~s}),{ }^{115} \mathrm{Cs}$ (1.4 s), and ${ }^{116} \mathrm{Ba}(1.4 \mathrm{~s})$.
(c) We would include in this list: ${ }^{60} \mathrm{Zn},{ }^{60} \mathrm{Cu},{ }^{60} \mathrm{Ni},{ }^{60} \mathrm{Co},{ }^{60} \mathrm{Fe},{ }^{60} \mathrm{Mn},{ }^{60} \mathrm{Cr}$, and ${ }^{60} \mathrm{~V}$.
85. (a) In terms of the original value of u, the newly defined u is greater by a factor of 1.007825 . So the mass of ${ }^{1} \mathrm{H}$ would be 1.000000 u , the mass of ${ }^{12} \mathrm{C}$ would be $(12.000000 / 1.007825) u=11.90683 u$.
(b) The mass of ${ }^{238} \mathrm{U}$ would be $(238.050785 / 1.007825) \mathrm{u}=236.2025 \mathrm{u}$.
86. We take the speed to be constant, and apply the classical kinetic energy formula:

$$
\begin{aligned}
t & =\frac{d}{v}=\frac{d}{\sqrt{2 K / m}}=2 r \sqrt{\frac{m_{n}}{2 K}}=\frac{r}{c} \sqrt{\frac{2 m c^{2}}{K}} \\
& \approx \frac{\left(1.2 \times 10^{-15} \mathrm{~m}\right)(100)^{1 / 3}}{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}} \sqrt{\frac{2(938 \mathrm{MeV})}{5 \mathrm{MeV}}} \\
& \approx 4 \times 10^{-22} \mathrm{~s} .
\end{aligned}
$$

87. We solve for A from Eq. 42-3:

$$
A=\left(\frac{r}{r_{0}}\right)^{3}=\left(\frac{3.6 \mathrm{fm}}{1.2 \mathrm{fm}}\right)^{3}=27
$$

1. If R is the fission rate, then the power output is $P=R Q$, where Q is the energy released in each fission event. Hence,

$$
R=P / Q=(1.0 \mathrm{~W}) /\left(200 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=3.1 \times 10^{10} \text { fissions } / \mathrm{s}
$$

2. We note that the sum of superscripts (mass numbers A) must balance, as well as the sum of Z values (where reference to Appendix F or G is helpful). A neutron has $Z=0$ and $A=1$. Uranium has $Z=92$.
(a) Since xenon has $Z=54$, then " Y " must have $Z=92-54=38$, which indicates the element Strontium. The mass number of " Y " is $235+1-140-1=95$, so " Y " is ${ }^{95} \mathrm{Sr}$.
(b) Iodine has $Z=53$, so " Y " has $Z=92-53=39$, corresponding to the element Yttrium (the symbol for which, coincidentally, is Y). Since $235+1-139-2=95$, then the unknown isotope is ${ }^{95} \mathrm{Y}$.
(c) The atomic number of Zirconium is $Z=40$. Thus, $92-40-2=52$, which means that " X " has $Z=52$ (Tellurium). The mass number of " X " is $235+1-100-2=134$, so we obtain ${ }^{134} \mathrm{Te}$.
(d) Examining the mass numbers, we find $b=235+1-141-92=3$.
3. (a) The mass of a single atom of ${ }^{235} \mathrm{U}$ is $(235 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=3.90 \times 10^{-25} \mathrm{~kg}$, so the number of atoms in 1.0 kg is

$$
(1.0 \mathrm{~kg}) /\left(3.90 \times 10^{-25} \mathrm{~kg}\right)=2.56 \times 10^{24} \approx 2.6 \times 10^{24}
$$

An alternate approach (but essentially the same once the connection between the " u " unit and N_{A} is made) would be to adapt Eq. 42-21.
(b) The energy released by N fission events is given by $E=N Q$, where Q is the energy released in each event. For 1.0 kg of ${ }^{235} \mathrm{U}$,

$$
E=\left(2.56 \times 10^{24}\right)\left(200 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=8.19 \times 10^{13} \mathrm{~J} \approx 8.2 \times 10^{13} \mathrm{~J}
$$

(c) If P is the power requirement of the lamp, then

$$
t=E / P=\left(8.19 \times 10^{13} \mathrm{~J}\right) /(100 \mathrm{~W})=8.19 \times 10^{11} \mathrm{~s}=2.6 \times 10^{4} \mathrm{y}
$$

The conversion factor $3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}$ is used to obtain the last result.
4. Adapting Eq. 42-21, there are

$$
N_{\mathrm{Pu}}=\frac{M_{\mathrm{sam}}}{M_{\mathrm{Pu}}} N A=\left(\frac{1000 \mathrm{~g}}{239 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)=2.5 \times 10^{24}
$$

plutonium nuclei in the sample. If they all fission (each releasing 180 MeV), then the total energy release is $4.54 \times 10^{26} \mathrm{MeV}$.
5. If M_{Cr} is the mass of a ${ }^{52} \mathrm{Cr}$ nucleus and M_{Mg} is the mass of a ${ }^{26} \mathrm{Mg}$ nucleus, then the disintegration energy is

$$
Q=\left(M_{\mathrm{Cr}}-2 M_{\mathrm{Mg}}\right) c^{2}=[51.94051 \mathrm{u}-2(25.98259 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u})=-23.0 \mathrm{MeV} .
$$

6. (a) We consider the process ${ }^{98} \mathrm{Mo} \rightarrow{ }^{49} \mathrm{Sc}+{ }^{49} \mathrm{Sc}$. The disintegration energy is

$$
Q=\left(m_{\mathrm{Mo}}-2 m_{\mathrm{Sc}}\right) c^{2}=[97.90541 \mathrm{u}-2(48.95002 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u})=+5.00 \mathrm{MeV} .
$$

(b) The fact that it is positive does not necessarily mean we should expect to find a great deal of Molybdenum nuclei spontaneously fissioning; the energy barrier (see Fig. 43-3) is presumably higher and/or broader for Molybdenum than for Uranium.
7. (a) Using Eq. 42-20 and adapting Eq. 42-21 to this sample, the number of fissionevents per second is

$$
\begin{aligned}
R_{\text {fission }} & =\frac{N \ln 2}{T_{1 / 2_{\text {fision }}}}=\frac{M_{\text {sam }} N_{A} \ln 2}{M_{\mathrm{U}} T_{1 / 2 \text { fsision }}} \\
& =\frac{(1.0 \mathrm{~g})\left(6.02 \times 10^{23} / \mathrm{mol}\right) \ln 2}{(235 \mathrm{~g} / \mathrm{mol})\left(3.0 \times 10^{17} \mathrm{y}\right)(365 \mathrm{~d} / \mathrm{y})}=16 \text { fissions } / \text { day } .
\end{aligned}
$$

(b) Since $R \propto \frac{1}{T_{1 / 2}}$ (see Eq. 42-20), the ratio of rates is

$$
\frac{R_{\alpha}}{R_{\text {fission }}}=\frac{T_{1 / 2_{\text {fision }}}}{\mathrm{T}_{1 / 2_{\alpha}}}=\frac{3.0 \times 10^{17} \mathrm{y}}{7.0 \times 10^{8} \mathrm{y}}=4.3 \times 10^{8} .
$$

8. The energy released is

$$
\begin{aligned}
Q & =\left(m_{\mathrm{U}}+m_{n}-m_{\mathrm{Cs}}-m_{\mathrm{Rb}}-2 m_{n}\right) c^{2} \\
& =(235.04392 \mathrm{u}-1.00867 \mathrm{u}-140.91963 \mathrm{u}-92.92157 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =181 \mathrm{MeV} .
\end{aligned}
$$

9. (a) If X represents the unknown fragment, then the reaction can be written

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{32}^{82} \mathrm{Ge}+{ }_{Z}^{A} X
$$

where A is the mass number and Z is the atomic number of the fragment. Conservation of charge yields $92+0=32+Z$, so $Z=60$. Conservation of mass number yields $235+1=$ $83+A$, so $A=153$. Looking in Appendix F or G for nuclides with $Z=60$, we find that the unknown fragment is ${ }_{60}^{153} \mathrm{Nd}$.
(b) We neglect the small kinetic energy and momentum carried by the neutron that triggers the fission event. Then, $Q=K_{\mathrm{Ge}}+K_{\mathrm{Nd}}$, where K_{Ge} is the kinetic energy of the germanium nucleus and K_{Nd} is the kinetic energy of the neodymium nucleus. Conservation of momentum yields $\vec{p}_{\mathrm{Ge}}+\vec{p}_{\mathrm{Nd}}=0$. Now, we can write the classical formula for kinetic energy in terms of the magnitude of the momentum vector:

$$
K=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}
$$

which implies that $K_{\mathrm{Nd}}=\left(m_{\mathrm{Ge}} / m_{\mathrm{Nd}}\right) K_{\mathrm{Ge}}$. Thus, the energy equation becomes

$$
Q=K_{\mathrm{Ge}}+\frac{M_{\mathrm{Ge}}}{M_{\mathrm{Nd}}} K_{\mathrm{Ge}}=\frac{M_{\mathrm{Nd}}+M_{\mathrm{Ge}}}{M_{\mathrm{Nd}}} K \mathrm{Ge}
$$

and

$$
K_{\mathrm{Ge}}=\frac{M_{\mathrm{Nd}}}{M_{\mathrm{Nd}}+M_{\mathrm{Ge}}} Q=\frac{153 \mathrm{u}}{153 \mathrm{u}+83 \mathrm{u}}(170 \mathrm{MeV})=110 \mathrm{MeV} .
$$

(c) Similarly,

$$
K_{\mathrm{Nd}}=\frac{M_{\mathrm{Ge}}}{M_{\mathrm{Nd}}+M_{\mathrm{Ge}}} Q=\frac{83 \mathrm{u}}{153 \mathrm{u}+83 \mathrm{u}}(170 \mathrm{MeV})=60 \mathrm{MeV} .
$$

(d) The initial speed of the germanium nucleus is

$$
v_{\mathrm{Ge}}=\sqrt{\frac{2 K_{\mathrm{Ge}}}{M_{\mathrm{Ge}}}}=\sqrt{\frac{2\left(110 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{(83 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}}=1.60 \times 10^{7} \mathrm{~m} / \mathrm{s} .
$$

(e) The initial speed of the neodymium nucleus is

$$
v_{\mathrm{Nd}}=\sqrt{\frac{2 K_{\mathrm{Nd}}}{M_{\mathrm{ND}}}}=\sqrt{\frac{2\left(60 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{(153 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}}=8.69 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

10. (a) The surface area a of a nucleus is given by

$$
a \simeq 4 \pi R^{2} \simeq 4 \pi\left[R_{0} A^{1 / 3}\right]^{2} \propto A^{2 / 3} .
$$

Thus, the fractional change in surface area is

$$
\frac{\Delta a}{a_{i}}=\frac{a_{f}-a_{i}}{a_{i}}=\frac{(140)^{2 / 3}+(96)^{2 / 3}}{(236)^{2 / 3}}-1=+0.25
$$

(b) Since $V \propto R^{3} \propto\left(A^{1 / 3}\right)^{3}=A$, we have

$$
\frac{\Delta V}{V}=\frac{V_{f}}{V_{i}}-1=\frac{140+96}{236}-1=0
$$

(c) The fractional change in potential energy is

$$
\begin{aligned}
\frac{\Delta U}{U} & =\frac{U_{f}}{U_{i}}-1=\frac{Q_{\mathrm{Xe}}^{2} / R_{\mathrm{Xe}}+Q_{\mathrm{Sr}}^{2} / R_{\mathrm{Sr}}}{Q_{\mathrm{U}}^{2} / R_{\mathrm{U}}}-1=\frac{(54)^{2}(140)^{-1 / 3}+(38)^{2}(96)^{-1 / 3}}{(92)^{2}(236)^{-1 / 3}}-1 \\
& =-0.36
\end{aligned}
$$

11. (a) The electrostatic potential energy is given by

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z_{\mathrm{Xe}} Z_{\mathrm{Sr}} e^{2}}{r_{\mathrm{Xe}}+r_{\mathrm{Sr}}}
$$

where Z_{Xe} is the atomic number of xenon, Z_{Sr} is the atomic number of strontium, r_{Xe} is the radius of a xenon nucleus, and r_{Sr} is the radius of a strontium nucleus. Atomic numbers can be found either in Appendix F or Appendix G. The radii are given by $r=$ $(1.2 \mathrm{fm}) A^{1 / 3}$, where A is the mass number, also found in Appendix F. Thus,

$$
r_{\mathrm{Xe}}=(1.2 \mathrm{fm})(140)^{1 / 3}=6.23 \mathrm{fm}=6.23 \times 10^{-15} \mathrm{~m}
$$

and

$$
r_{\mathrm{Sr}}=(1.2 \mathrm{fm})(96)^{1 / 3}=5.49 \mathrm{fm}=5.49 \times 10^{-15} \mathrm{~m}
$$

Hence, the potential energy is

$$
U=\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right) \frac{(54)(38)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{6.23 \times 10^{-15} \mathrm{~m}+5.49 \times 10^{-15} \mathrm{~m}}=4.08 \times 10^{-11} \mathrm{~J}=251 \mathrm{MeV}
$$

(b) The energy released in a typical fission event is about 200 MeV , roughly the same as the electrostatic potential energy when the fragments are touching. The energy appears as kinetic energy of the fragments and neutrons produced by fission.
12. (a) Consider the process ${ }^{239} \mathrm{U}+\mathrm{n} \rightarrow{ }^{140} \mathrm{Ce}+{ }^{99} \mathrm{Ru}+\mathrm{Ne}$. We have

$$
Z_{f}-Z_{i}=Z_{\mathrm{Ce}}+Z_{\mathrm{Ru}}-Z_{\mathrm{U}}=58+44-92=10 .
$$

Thus the number of beta-decay events is 10 .
(b) Using Table 37-3, the energy released in this fission process is

$$
\begin{aligned}
Q & =\left(m_{\mathrm{U}}+m_{n}-m_{\mathrm{Ce}}-m_{\mathrm{Ru}}-10 m_{e}\right) c^{2} \\
& =(238.05079 \mathrm{u}+1.00867 \mathrm{u}-139.90543 \mathrm{u}-98.90594 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})-10(0.511 \mathrm{MeV}) \\
& =226 \mathrm{MeV}
\end{aligned}
$$

13. If P is the power output, then the energy E produced in the time interval $\Delta t(=3 \mathrm{y})$ is

$$
\begin{aligned}
E & =P \Delta t=\left(200 \times 10^{6} \mathrm{~W}\right)(3 \mathrm{y})\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)=1.89 \times 10^{16} \mathrm{~J} \\
& =\left(1.89 \times 10^{16} \mathrm{~J}\right) /\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=1.18 \times 10^{35} \mathrm{eV} \\
& =1.18 \times 10^{29} \mathrm{MeV}
\end{aligned}
$$

At 200 MeV per event, this means $\left(1.18 \times 10^{29}\right) / 200=5.90 \times 10^{26}$ fission events occurred. This must be half the number of fissionable nuclei originally available. Thus, there were $2\left(5.90 \times 10^{26}\right)=1.18 \times 10^{27}$ nuclei. The mass of a ${ }^{235} \mathrm{U}$ nucleus is

$$
(235 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=3.90 \times 10^{-25} \mathrm{~kg},
$$

so the total mass of ${ }^{235} \mathrm{U}$ originally present was $\left(1.18 \times 10^{27}\right)\left(3.90 \times 10^{-25} \mathrm{~kg}\right)=462 \mathrm{~kg}$.
14. When a neutron is captured by ${ }^{237} \mathrm{~Np}$ it gains 5.0 MeV , more than enough to offset the 4.2 MeV required for ${ }^{238} \mathrm{~Np}$ to fission. Consequently, ${ }^{237} \mathrm{~Np}$ is fissionable by thermal neutrons.
15. If R is the decay rate then the power output is $P=R Q$, where Q is the energy produced by each alpha decay. Now $R=\lambda N=N \ln 2 / T_{1 / 2}$, where λ is the disintegration constant and $T_{1 / 2}$ is the half-life. The relationship $\lambda=(\ln 2) / T_{1 / 2}$ is used. If M is the total mass of material and m is the mass of a single ${ }^{238} \mathrm{Pu}$ nucleus, then

$$
N=\frac{M}{m}=\frac{1.00 \mathrm{~kg}}{(238 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}=2.53 \times 10^{24}
$$

Thus,

$$
P=\frac{N Q \ln 2}{T_{1 / 2}}=\frac{\left(2.53 \times 10^{24}\right)\left(5.50 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)(\ln 2)}{(87.7 \mathrm{y})\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}=557 \mathrm{~W}
$$

16. (a) Using the result of problem 4 , the TNT equivalent is

$$
\frac{(2.50 \mathrm{~kg})\left(4.54 \times 10^{26} \mathrm{MeV} / \mathrm{kg}\right)}{2.6 \times 10^{28} \mathrm{MeV} / 10^{6} \mathrm{ton}}=4.4 \times 10^{4} \text { ton }=44 \mathrm{kton} .
$$

(b) Assuming that this is a fairly inefficiently designed bomb, then much of the remaining 92.5 kg is probably "wasted" and was included perhaps to make sure the bomb did not "fizzle." There is also an argument for having more than just the critical mass based on the short assembly-time of the material during the implosion, but this so-called "supercritical mass," as generally quoted, is much less than 92.5 kg , and does not necessarily have to be purely Plutonium.
17. (a) We solve $Q_{\text {eff }}$ from $P=R Q_{\text {eff: }}$:

$$
\begin{aligned}
Q_{\text {eff }} & =\frac{P}{R}=\frac{P}{N \lambda}=\frac{m P T_{1 / 2}}{M \ln 2} \\
& =\frac{(90.0 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)(0.93 \mathrm{~W})(29 \mathrm{y})\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}{\left(1.00 \times 10^{-3} \mathrm{~kg}\right)(\ln 2)\left(1.60 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)} \\
& =1.2 \mathrm{MeV} .
\end{aligned}
$$

(b) The amount of ${ }^{90} \mathrm{Sr}$ needed is

$$
M=\frac{150 \mathrm{~W}}{(0.050)(0.93 \mathrm{~W} / \mathrm{g})}=3.2 \mathrm{~kg} .
$$

18. After each time interval $t_{\text {gen }}$ the number of nuclides in the chain reaction gets multiplied by k. The number of such time intervals that has gone by at time t is $t / t_{\text {gen }}$. For example, if the multiplication factor is 5 and there were 12 nuclei involved in the reaction to start with, then after one interval 60 nuclei are involved. And after another interval 300 nuclei are involved. Thus, the number of nuclides engaged in the chain reaction at time t is $N(t)=N_{0} k^{t / t_{\mathrm{gn}}}$. Since $P \propto N$ we have

$$
P(t)=P_{0} k^{t / t_{\mathrm{gen}}} .
$$

19. (a) The energy yield of the bomb is

$$
E=\left(66 \times 10^{-3} \text { megaton }\right)\left(2.6 \times 10^{28} \mathrm{MeV} / \text { megaton }\right)=1.72 \times 10^{27} \mathrm{MeV}
$$

At 200 MeV per fission event,

$$
\left(1.72 \times 10^{27} \mathrm{MeV}\right) /(200 \mathrm{MeV})=8.58 \times 10^{24}
$$

fission events take place. Since only 4.0% of the ${ }^{235} \mathrm{U}$ nuclei originally present undergo fission, there must have been $\left(8.58 \times 10^{24}\right) /(0.040)=2.14 \times 10^{26}$ nuclei originally present. The mass of ${ }^{235} \mathrm{U}$ originally present was

$$
\left(2.14 \times 10^{26}\right)(235 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=83.7 \mathrm{~kg} \approx 84 \mathrm{~kg} .
$$

(b) Two fragments are produced in each fission event, so the total number of fragments is

$$
2\left(8.58 \times 10^{24}\right)=1.72 \times 10^{25} \approx 1.7 \times 10^{25}
$$

(c) One neutron produced in a fission event is used to trigger the next fission event, so the average number of neutrons released to the environment in each event is 1.5. The total number released is

$$
\left(8.58 \times 10^{24}\right)(1.5)=1.29 \times 10^{25} \approx 1.3 \times 10^{25} .
$$

20. We use the formula from problem 22:

$$
P(t)=P_{0} k^{t / t_{\mathrm{gen}}}=(400 \mathrm{MW})(1.0003)^{(5.00 \mathrm{~min})(60 \mathrm{~s} \min) /(0.00300 \mathrm{~s})}=8.03 \times 10^{3} \mathrm{MW} .
$$

21. (a) Let $v_{n i}$ be the initial velocity of the neutron, $v_{n f}$ be its final velocity, and v_{f} be the final velocity of the target nucleus. Then, since the target nucleus is initially at rest, conservation of momentum yields $m_{n} v_{n i}=m_{n} v_{n f}+m v_{f}$ and conservation of energy yields $\frac{1}{2} m_{n} v_{n i}^{2}=\frac{1}{2} m_{n} v_{n f}^{2}+\frac{1}{2} m v_{f}^{2}$. We solve these two equations simultaneously for v_{f}. This can be done, for example, by using the conservation of momentum equation to obtain an expression for $v_{n f}$ in terms of v_{f} and substituting the expression into the conservation of energy equation. We solve the resulting equation for v_{f}. We obtain $v_{f}=2 m_{n} v_{n i} /\left(m+m_{n}\right)$. The energy lost by the neutron is the same as the energy gained by the target nucleus, so

$$
\Delta K=\frac{1}{2} m v_{f}^{2}=\frac{1}{2} \frac{4 m_{n}^{2} m}{\left(m+m_{n}\right)^{2}} v_{n i}^{2} .
$$

The initial kinetic energy of the neutron is $K=\frac{1}{2} m_{n} v_{n i}^{2}$, so

$$
\frac{\Delta K}{K}=\frac{4 m_{n} m}{\left(m+m_{n}\right)_{2}} .
$$

(b) The mass of a neutron is 1.0 u and the mass of a hydrogen atom is also 1.0 u . (Atomic masses can be found in Appendix G.) Thus,

$$
\frac{\Delta K}{K}=\frac{4(1.0 \mathrm{u})(1.0 \mathrm{u})}{(1.0 \mathrm{u}+1.0 \mathrm{u})^{2}}=1.0 .
$$

(c) Similarly, the mass of a deuterium atom is 2.0 u , so

$$
(\Delta K) / K=4(1.0 \mathrm{u})(2.0 \mathrm{u}) /(2.0 \mathrm{u}+1.0 \mathrm{u})^{2}=0.89
$$

(d) The mass of a carbon atom is 12 u , so $(\Delta K) / K=4(1.0 \mathrm{u})(12 \mathrm{u}) /(12 \mathrm{u}+1.0 \mathrm{u})^{2}=0.28$.
(e) The mass of a lead atom is 207 u , so

$$
(\Delta K) / K=4(1.0 \mathrm{u})(207 \mathrm{u}) /(207 \mathrm{u}+1.0 \mathrm{u})^{2}=0.019
$$

(f) During each collision, the energy of the neutron is reduced by the factor $1-0.89=$ 0.11 . If E_{i} is the initial energy, then the energy after n collisions is given by $E=(0.11)^{n} E_{i}$. We take the natural logarithm of both sides and solve for n. The result is

$$
n=\frac{\ln \left(E / E_{i}\right)}{\ln 0.11}=\frac{\ln (0.025 \mathrm{eV} / 1.00 \mathrm{eV})}{\ln 0.11}=7.9
$$

The energy first falls below 0.025 eV on the eighth collision.
22. We recall Eq. 43-6: $Q \approx 200 \mathrm{MeV}=3.2 \times 10^{-11} \mathrm{~J}$. It is important to bear in mind that Watts multiplied by seconds give Joules. From $E=P t_{\text {gen }}=N Q$ we get the number of free neutrons:

$$
N=\frac{P t_{\mathrm{gen}}}{Q}=\frac{\left(500 \times 10^{6} \mathrm{~W}\right)\left(1.0 \times 10^{-3} \mathrm{~s}\right)}{3.2 \times 10^{-11} \mathrm{~J}}=1.6 \times 10^{16}
$$

23. Let P_{0} be the initial power output, P be the final power output, k be the multiplication factor, t be the time for the power reduction, and t_{gen} be the neutron generation time. Then, according to the result of Problem 22,

$$
P=P_{0} k^{t / t_{\mathrm{gn}}}
$$

We divide by P_{0}, take the natural logarithm of both sides of the equation and solve for $\ln k$:

$$
\ln k=\frac{t_{\mathrm{gen}}}{t} \ln \frac{P}{P_{0}}=\frac{1.3 \times 10^{-3} \mathrm{~s}}{2.6 \mathrm{~s}} \ln \frac{350 \mathrm{MW}}{1200 \mathrm{MW}}=-0.0006161 .
$$

Hence, $k=e^{-0.0006161}=0.99938$.
24. (a) $P_{\text {avg }}=\left(15 \times 10^{9} \mathrm{~W} \cdot \mathrm{y}\right) /(200,000 \mathrm{y})=7.5 \times 10^{4} \mathrm{~W}=75 \mathrm{~kW}$.
(b) Using the result of Eq. 43-6, we obtain

$$
\begin{aligned}
M & =\frac{m_{\mathrm{U}} E_{\text {total }}}{Q}=\frac{(235 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)\left(15 \times 10^{9} \mathrm{~W} \cdot \mathrm{y}\right)\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}{(200 \mathrm{MeV})\left(1.6 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)} \\
& =5.8 \times 10^{3} \mathrm{~kg} .
\end{aligned}
$$

25. Our approach is the same as that shown in Sample Problem 43-3. We have

$$
\frac{N_{5}(t)}{N_{8}(t)}=\frac{N_{5}(0)}{N_{8}(0)} e^{-\left(\lambda_{5}-\lambda_{8}\right) t},
$$

or

$$
\begin{aligned}
t & =\frac{1}{\lambda_{8}-\lambda_{5}} \ln \left[\left(\frac{N_{5}(t)}{N_{8}(t)}\right)\left(\frac{N_{8}(0)}{N_{5}(0)}\right)\right]=\frac{1}{(1.55-9.85) 10^{-10} \mathrm{y}^{-1}} \ln \left[(0.0072)(0.15)^{-1}\right] \\
& =3.6 \times 10^{9} \mathrm{y}
\end{aligned}
$$

26. The nuclei of ${ }^{238} \mathrm{U}$ can capture neutrons and beta-decay. With a large amount of neutrons available due to the fission of ${ }^{235} \mathrm{U}$, the probability for this process is substantially increased, resulting in a much higher decay rate for ${ }^{238} \mathrm{U}$ and causing the depletion of ${ }^{238} \mathrm{U}$ (and relative enrichment of ${ }^{235} \mathrm{U}$).
27. Let t be the present time and $t=0$ be the time when the ratio of ${ }^{235} \mathrm{U}$ to ${ }^{238} \mathrm{U}$ was 3.0%. Let N_{235} be the number of ${ }^{235} \mathrm{U}$ nuclei present in a sample now and $N_{235,0}$ be the number present at $t=0$. Let N_{238} be the number of ${ }^{238} \mathrm{U}$ nuclei present in the sample now and N_{238}, ${ }_{0}$ be the number present at $t=0$. The law of radioactive decay holds for each specie, so

$$
N_{235}=N_{235,0} e^{-\lambda_{235} t}
$$

and

$$
N_{238}=N_{238,0} e^{-\lambda_{238^{t}}} .
$$

Dividing the first equation by the second, we obtain

$$
r=r_{0} e^{-\left(\lambda_{235}-\lambda_{238}\right) t}
$$

where $r=N_{235} / N_{238}(=0.0072)$ and $r_{0}=N_{235,0} / N_{238,0}(=0.030)$. We solve for t :

$$
t=-\frac{1}{\lambda_{235}-\lambda_{238}} \ln \frac{r}{r_{0}} .
$$

Now we use $\lambda_{235}=(\ln 2) / T_{1 / 2_{235}}$ and $\lambda_{238}=(\ln 2) / T_{1 / 2238}$ to obtain

$$
\begin{aligned}
t & =\frac{T_{1 / 2_{235}} T_{1 / 2_{238}}}{\left(T_{1 / 2_{238}}-T_{1 / 2_{235}}\right) \ln 2} \ln \frac{r}{r_{0}}=-\frac{\left(7.0 \times 10^{8} \mathrm{y}\right)\left(4.5 \times 10^{9} \mathrm{y}\right)}{\left(4.5 \times 10^{9} \mathrm{y}-7.0 \times 10^{8} \mathrm{y}\right) \ln 2} \ln \frac{0.0072}{0.030} \\
& =1.7 \times 10^{9} \mathrm{y} .
\end{aligned}
$$

28. We are given the energy release per fusion $\left(Q=3.27 \mathrm{MeV}=5.24 \times 10^{-13} \mathrm{~J}\right)$ and that a pair of deuterium atoms are consumed in each fusion event. To find how many pairs of deuterium atoms are in the sample, we adapt Eq. 42-21:

$$
N_{d \text { pairs }}=\frac{M_{\mathrm{sam}}}{2 M_{d}} N_{\mathrm{A}}=\left(\frac{1000 \mathrm{~g}}{2(2.0 \mathrm{~g} / \mathrm{mol})}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)=1.5 \times 10^{26}
$$

Multiplying this by Q gives the total energy released: $7.9 \times 10^{13} \mathrm{~J}$. Keeping in mind that a Watt is a Joule per second, we have

$$
t=\frac{7.9 \times 10^{13} \mathrm{~J}}{100 \mathrm{~W}}=7.9 \times 10^{11} \mathrm{~s}=2.5 \times 10^{4} \mathrm{y}
$$

29. The height of the Coulomb barrier is taken to be the value of the kinetic energy K each deuteron must initially have if they are to come to rest when their surfaces touch (see Sample Problem 43-4). If r is the radius of a deuteron, conservation of energy yields

$$
2 K=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{2 r}
$$

so

$$
K=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{4 r}=\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right) \frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{4\left(2.1 \times 10^{-15} \mathrm{~m}\right)}=2.74 \times 10^{-14} \mathrm{~J}=170 \mathrm{keV}
$$

30. (a) Our calculation is identical to that in Sample Problem 43-4 except that we are now using R appropriate to two deuterons coming into "contact," as opposed to the $R=1.0 \mathrm{fm}$ value used in the Sample Problem. If we use $R=2.1 \mathrm{fm}$ for the deuterons (this is the value given in problem 33), then our K is simply the K calculated in Sample Problem 43-4, divided by 2.1:

$$
K_{d+d}=\frac{K_{p+p}}{2.1}=\frac{360 \mathrm{keV}}{2.1} \approx 170 \mathrm{keV}
$$

Consequently, the voltage needed to accelerate each deuteron from rest to that value of K is 170 kV .
(b) Not all deuterons that are accelerated towards each other will come into "contact" and not all of those that do so will undergo nuclear fusion. Thus, a great many deuterons must be repeatedly encountering other deuterons in order to produce a macroscopic energy release. An accelerator needs a fairly good vacuum in its beam pipe, and a very large number flux is either impractical and/or very expensive. Regarding expense, there are other factors that have dissuaded researchers from using accelerators to build a controlled fusion "reactor," but those factors may become less important in the future - making the feasibility of accelerator "add-on's" to magnetic and inertial confinement schemes more cost-effective.
31. Our calculation is very similar to that in Sample Problem 43-4 except that we are now using R appropriate to two Lithium- 7 nuclei coming into "contact," as opposed to the $R=$ 1.0 fm value used in the Sample Problem. If we use

$$
R=r=r_{0} A^{1 / 3}=(1.2 \mathrm{fm}) \sqrt[3]{7}=2.3 \mathrm{fm}
$$

and $q=Z e=3 e$, then our K is given by (see Sample Problem 43-4)

$$
K=\frac{Z^{2} e^{2}}{16 \pi \varepsilon_{0} r}=\frac{3^{2}\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{16 \pi\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(2.3 \times 10^{15} \mathrm{~m}\right)}
$$

which yields $2.25 \times 10^{-13} \mathrm{~J}=1.41 \mathrm{MeV}$. We interpret this as the answer to the problem, though the term "Coulomb barrier height" as used here may be open to other interpretations.
32. From the expression for $n(K)$ given we may write $n(K) \propto K^{1 / 2} e^{-K / k T}$. Thus, with

$$
k=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}=8.62 \times 10^{-8} \mathrm{keV} / \mathrm{K}
$$

we have

$$
\begin{aligned}
\frac{n(K)}{n\left(K_{\text {avg }}\right)} & =\left(\frac{K}{K_{\text {avg }}}\right)^{1 / 2} e^{-\left(K-K_{\text {avg }}\right) / k T}=\left(\frac{5.00 \mathrm{keV}}{1.94 \mathrm{keV}}\right)^{1 / 2} e^{-(5.00 \mathrm{keV}-1.94 \mathrm{keV})\left[\left(8.62 \times 10^{-8} \mathrm{KeV}\right)\left(1.50 \times 10^{7} \mathrm{~K}\right)\right]} \\
& =0.151
\end{aligned}
$$

33. If M_{He} is the mass of an atom of helium and M_{C} is the mass of an atom of carbon, then the energy released in a single fusion event is

$$
Q=\left[3 M_{\mathrm{He}}-M_{\mathrm{C}}\right] c^{2}=[3(4.0026 \mathrm{u})-(12.0000 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u})=7.27 \mathrm{MeV}
$$

Note that $3 M_{\text {He }}$ contains the mass of six electrons and so does M_{C}. The electron masses cancel and the mass difference calculated is the same as the mass difference of the nuclei.
34. In Fig. 43-11, let $Q_{1}=0.42 \mathrm{MeV}, Q_{2}=1.02 \mathrm{MeV}, Q_{3}=5.49 \mathrm{MeV}$ and $Q_{4}=$ 12.86 MeV . For the overall proton-proton cycle

$$
\begin{aligned}
Q & =2 Q_{1}+2 Q_{2}+2 Q_{3}+Q_{4} \\
& =2(0.42 \mathrm{MeV}+1.02 \mathrm{MeV}+5.49 \mathrm{MeV})+12.86 \mathrm{MeV}=26.7 \mathrm{MeV} .
\end{aligned}
$$

35. (a) Let M be the mass of the Sun at time t and E be the energy radiated to that time. Then, the power output is $P=d E / d t=(d M / d t) c^{2}$, where $E=M c^{2}$ is used. At the present time,

$$
\frac{d M}{d t}=\frac{P}{c^{2}}=\frac{3.9 \times 10^{26} \mathrm{~W}}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=4.3 \times 10^{9} \mathrm{~kg} / \mathrm{s}
$$

(b) We assume the rate of mass loss remained constant. Then, the total mass loss is

$$
\Delta M=(d M / d t) \Delta t=\left(4.33 \times 10^{9} \mathrm{~kg} / \mathrm{s}\right)\left(4.5 \times 10^{9} \mathrm{y}\right)\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)=6.15 \times 10^{26} \mathrm{~kg} .
$$

The fraction lost is

$$
\frac{\Delta M}{M+\Delta M}=\frac{6.15 \times 10^{26} \mathrm{~kg}}{2.0 \times 10^{30} \mathrm{~kg}+6.15 \times 10^{26} \mathrm{~kg}}=3.1 \times 10^{-4}
$$

36. We assume the neutrino has negligible mass. The photons, of course, are also taken to have zero mass.

$$
\begin{aligned}
Q_{1} & =\left(2 m_{p}-m_{2}-m_{e}\right) c^{2}=\left[2\left(m_{1}-m_{e}\right)-\left(m_{2}-m_{e}\right)-m_{e}\right] c^{2} \\
& =[2(1.007825 \mathrm{u})-2.014102 \mathrm{u}-2(0.0005486 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =0.42 \mathrm{MeV} \\
Q_{2} & =\left(m_{2}+m_{p}-m_{3}\right) c^{2}=\left(m_{2}+m_{p}-m_{3}\right) c^{2} \\
& =(2.014102 \mathrm{u})+1.007825 \mathrm{u}-3.016029 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =5.49 \mathrm{MeV} \\
Q_{3} & =\left(2 m_{3}-m_{4}-2 m_{p}\right) c^{2}=\left(2 m_{3}-m_{4}-2 m_{p}\right) c^{2} \\
& =[2(3.016029 \mathrm{u})-4.002603 \mathrm{u}-2(1.007825 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =12.86 \mathrm{MeV} .
\end{aligned}
$$

37. (a) Since two neutrinos are produced per proton-proton cycle (see Eq. 43-10 or Fig. 43-11), the rate of neutrino production R_{V} satisfies

$$
R_{v}=\frac{2 P}{Q}=\frac{2\left(3.9 \times 10^{26} \mathrm{~W}\right)}{(26.7 \mathrm{MeV})\left(1.6 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}=1.8 \times 10^{38} \mathrm{~s}^{-1}
$$

(b) Let $d_{e s}$ be the Earth to Sun distance, and R be the radius of Earth (see Appendix C). Earth represents a small cross section in the "sky" as viewed by a fictitious observer on the Sun. The rate of neutrinos intercepted by that area (very small, relative to the area of the full "sky") is

$$
R_{v, \text { Earth }}=R_{v}\left(\frac{\pi R_{e}^{2}}{4 \pi d_{e s}^{2}}\right)=\frac{\left(1.8 \times 10^{38} \mathrm{~s}^{-1}\right)}{4}\left(\frac{6.4 \times 10^{6} \mathrm{~m}}{1.5 \times 10^{11} \mathrm{~m}}\right)^{2}=8.2 \times 10^{28} \mathrm{~s}^{-1}
$$

38. (a) We are given the energy release per fusion (calculated in $\S 43-7$: $Q=26.7 \mathrm{MeV}=$ $4.28 \times 10^{-12} \mathrm{~J}$) and that four protons are consumed in each fusion event. To find how many sets of four protons are in the sample, we adapt Eq. 42-21:

$$
N_{4 p}=\frac{M_{\mathrm{sam}}}{4 M_{H}} N_{\mathrm{A}}=\left(\frac{1000 \mathrm{~g}}{4(1.0 \mathrm{~g} / \mathrm{mol})}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)=1.5 \times 10^{26} .
$$

Multiplying this by Q gives the total energy released: $6.4 \times 10^{14} \mathrm{~J}$. It is not required that the answer be in SI units; we could have used MeV throughout (in which case the answer is $4.0 \times 10^{27} \mathrm{MeV}$).
(b) The number of ${ }^{235} \mathrm{U}$ nuclei is

$$
N_{235}=\left(\frac{1000 \mathrm{~g}}{235 \mathrm{~g} / \mathrm{mol}}\right)\left(6.02 \times 10^{23} / \mathrm{mol}\right)=2.56 \times 10^{24}
$$

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is

$$
N_{235} Q_{\text {fission }}=\left(2.56 \times 10^{22}\right)(200 \mathrm{MeV})=5.1 \times 10^{26} \mathrm{MeV}=8.2 \times 10^{13} \mathrm{~J}
$$

We see that the fusion process (with regard to a unit mass of fuel) produces a larger amount of energy (despite the fact that the Q value per event is smaller).
39. (a) The mass of a carbon atom is $(12.0 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=1.99 \times 10^{-26} \mathrm{~kg}$, so the number of carbon atoms in 1.00 kg of carbon is

$$
(1.00 \mathrm{~kg}) /\left(1.99 \times 10^{-26} \mathrm{~kg}\right)=5.02 \times 10^{25}
$$

The heat of combustion per atom is

$$
\left(3.3 \times 10^{7} \mathrm{~J} / \mathrm{kg}\right) /\left(5.02 \times 10^{25} \text { atom } / \mathrm{kg}\right)=6.58 \times 10^{-19} \mathrm{~J} / \text { atom }
$$

This is $4.11 \mathrm{eV} /$ atom.
(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the total mass involved is $2(16.0 u)+(12.0 u)=44 u$. This is

$$
(44 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=7.31 \times 10^{-26} \mathrm{~kg} .
$$

Each combustion event produces $6.58 \times 10^{-19} \mathrm{~J}$ so the energy produced per unit mass of reactants is $\left(6.58 \times 10^{-19} \mathrm{~J}\right) /\left(7.31 \times 10^{-26} \mathrm{~kg}\right)=9.00 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the number of combustion events that could occur before the Sun burns out would be

$$
\left(2.0 \times 10^{30} \mathrm{~kg}\right) /\left(7.31 \times 10^{-26} \mathrm{~kg}\right)=2.74 \times 10^{55}
$$

The total energy released would be

$$
E=\left(2.74 \times 10^{55}\right)\left(6.58 \times 10^{-19} \mathrm{~J}\right)=1.80 \times 10^{37} \mathrm{~J}
$$

If P is the power output of the Sun, the burn time would be

$$
t=\frac{E}{P}=\frac{1.80 \times 10^{37} \mathrm{~J}}{3.9 \times 10^{26} \mathrm{~W}}=4.62 \times 10^{10} \mathrm{~s}=1.46 \times 10^{3} \mathrm{y}
$$

$1.5 \times 10^{3} \mathrm{y}$, to two significant figures.
40. (a) The products of the carbon cycle are $2 e^{+}+2 v+{ }^{4} \mathrm{He}$, the same as that of the proton-proton cycle (see Eq. 43-10). The difference in the number of photons is not significant.
(b) $Q_{\text {carbon }}=Q_{1}+Q_{2}+\cdots+Q_{6}=(1.95 \times 1.19+7.55+7.30+1.73+4.97) \mathrm{MeV}=24.7 \mathrm{MeV}$, which is the same as that for the proton-proton cycle (once we subtract out the electronpositron annihilations; see Fig. 43-11):

$$
Q_{p-p}=26.7 \mathrm{MeV}-2(1.02 \mathrm{MeV})=24.7 \mathrm{MeV}
$$

41. Since the mass of a helium atom is $(4.00 \mathrm{u})\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=6.64 \times 10^{-27} \mathrm{~kg}$, the number of helium nuclei originally in the star is

$$
\left(4.6 \times 10^{32} \mathrm{~kg}\right) /\left(6.64 \times 10^{-27} \mathrm{~kg}\right)=6.92 \times 10^{58}
$$

Since each fusion event requires three helium nuclei, the number of fusion events that can take place is $N=6.92 \times 10^{58} / 3=2.31 \times 10^{58}$. If Q is the energy released in each event and t is the conversion time, then the power output is $P=N Q / t$ and

$$
t=\frac{N Q}{P}=\frac{\left(2.31 \times 10^{58}\right)\left(7.27 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{5.3 \times 10^{30} \mathrm{~W}}=5.07 \times 10^{15} \mathrm{~s}=1.6 \times 10^{8} \mathrm{y}
$$

42. The mass of the hydrogen in the Sun's core is $m_{\mathrm{H}}=0.35\left(\frac{1}{8} M_{\text {Sun }}\right)$. The time it takes for the hydrogen to be entirely consumed is

$$
t=\frac{M_{\mathrm{H}}}{d m / d t}=\frac{(0.35)\left(\frac{1}{8}\right)\left(2.0 \times 10^{30} \mathrm{~kg}\right)}{\left(6.2 \times 10^{11} \mathrm{~kg} / \mathrm{s}\right)\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}=5 \times 10^{9} \mathrm{y} .
$$

43. (a)

$$
\begin{aligned}
Q & =\left(5 m_{2_{\mathrm{H}}}-m_{3_{\mathrm{He}}}-m_{4_{\mathrm{He}}}-m_{1_{\mathrm{H}}}-2 m_{n}\right) c^{2} \\
& =[5(2.014102 \mathrm{u})-3.016029 \mathrm{u}-4.002603 \mathrm{u}-1.007825 \mathrm{u}-2(1.008665 \mathrm{u})](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =24.9 \mathrm{MeV} .
\end{aligned}
$$

(b) Assuming 30.0% of the deuterium undergoes fusion, the total energy released is

$$
E=N Q=\left(\frac{0.300 M}{5 m_{2_{\mathrm{H}}}}\right) Q .
$$

Thus, the rating is

$$
\begin{aligned}
R & =\frac{E}{2.6 \times 10^{28} \mathrm{MeV} / \text { megaton TNT }} \\
& =\frac{(0.300)(500 \mathrm{~kg})(24.9 \mathrm{MeV})}{5(2.0 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)\left(2.6 \times 10^{28} \mathrm{MeV} / \text { megaton TNT }\right)} \\
& =8.65 \text { megaton TNT } .
\end{aligned}
$$

44. In Eq. 43-13,

$$
\begin{aligned}
Q & =\left(2 m_{2_{\mathrm{H}}}-m_{3_{\mathrm{He}}}-m_{n}\right) c^{2} \\
& =[2(2.014102 \mathrm{u})-3.016049 \mathrm{u}-1.008665 \mathrm{u}](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =3.27 \mathrm{MeV}
\end{aligned}
$$

In Eq. 43-14,

$$
\begin{aligned}
Q & =\left(2 m_{2_{\mathrm{H}}}-m_{3_{\mathrm{H}}}-m_{1_{\mathrm{H}}}\right) c^{2} \\
& =[2(2.014102 \mathrm{u})-3.016049 \mathrm{u}-1.007825 \mathrm{u}](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =4.03 \mathrm{MeV} .
\end{aligned}
$$

Finally, in Eq. 43-15,

$$
\begin{aligned}
Q & =\left(m_{2_{\mathrm{H}}}+m_{3_{\mathrm{H}}}-m_{4_{\mathrm{He}}}-m_{n}\right) c^{2} \\
& =[2.014102 \mathrm{u}+3.016049 \mathrm{u}-4.002603 \mathrm{u}-1.008665 \mathrm{u}](931.5 \mathrm{MeV} / \mathrm{u}) \\
& =17.59 \mathrm{MeV} .
\end{aligned}
$$

45. Since 1.00 L of water has a mass of 1.00 kg , the mass of the heavy water in 1.00 L is $0.0150 \times 10^{-2} \mathrm{~kg}=1.50 \times 10^{-4} \mathrm{~kg}$. Since a heavy water molecule contains one oxygen atom, one hydrogen atom and one deuterium atom, its mass is

$$
(16.0 u+1.00 u+2.00 u)=19.0 u=(19.0 u)\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=3.16 \times 10^{-26} \mathrm{~kg} .
$$

The number of heavy water molecules in a liter of water is

$$
\left(1.50 \times 10^{-4} \mathrm{~kg}\right) /\left(3.16 \times 10^{-26} \mathrm{~kg}\right)=4.75 \times 10^{21}
$$

Since each fusion event requires two deuterium nuclei, the number of fusion events that can occur is $N=4.75 \times 10^{21} / 2=2.38 \times 10^{21}$. Each event releases energy

$$
Q=\left(3.27 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=5.23 \times 10^{-13} \mathrm{~J}
$$

Since all events take place in a day, which is $8.64 \times 10^{4} \mathrm{~s}$, the power output is

$$
P=\frac{N Q}{t}=\frac{\left(2.38 \times 10^{21}\right)\left(5.23 \times 10^{-13} \mathrm{~J}\right)}{8.64 \times 10^{4} \mathrm{~s}}=1.44 \times 10^{4} \mathrm{~W}=14.4 \mathrm{~kW} .
$$

46. (a) From $E=N Q=\left(M_{\text {sam }} / 4 m_{p}\right) Q$ we get the energy per kilogram of hydrogen consumed:

$$
\frac{E}{M_{\text {sam }}}=\frac{Q}{4 m_{p}}=\frac{(26.2 \mathrm{MeV})\left(1.60 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{4\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=6.3 \times 10^{14} \mathrm{~J} / \mathrm{kg}
$$

(b) Keeping in mind that a Watt is a Joule per second, the rate is

$$
\frac{d m}{d t}=\frac{3.9 \times 10^{26} \mathrm{~W}}{6.3 \times 10^{14} \mathrm{~J} / \mathrm{kg}}=6.2 \times 10^{11} \mathrm{~kg} / \mathrm{s}
$$

This agrees with the computation shown in Sample Problem 43-5.
(c) From the Einstein relation $E=M c^{2}$ we get $P=d E / d t=c^{2} d M / d t$, or

$$
\frac{d M}{d t}=\frac{P}{c^{2}}=\frac{3.9 \times 10^{26} \mathrm{~W}}{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=4.3 \times 10^{9} \mathrm{~kg} / \mathrm{s} .
$$

(d) This finding, that $d m / d t>d M / d t$, is in large part due to the fact that, as the protons are consumed, their mass is mostly turned into alpha particles (helium), which remain in the Sun.
(e) The time to lose 0.10% of its total mass is

$$
t=\frac{0.0010 M}{d M / d t}=\frac{(0.0010)\left(2.0 \times 10^{30} \mathrm{~kg}\right)}{\left(4.3 \times 10^{9} \mathrm{~kg} / \mathrm{s}\right)\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)}=1.5 \times 10^{10} \mathrm{y} .
$$

47. (a) From $\rho_{\mathrm{H}}=0.35 \rho=n_{p} m_{p}$, we get the proton number density n_{p} :

$$
n_{p}=\frac{0.35 \rho}{m_{p}}=\frac{(0.35)\left(1.5 \times 10^{5} \mathrm{~kg} / \mathrm{m}^{3}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}=3.1 \times 10^{31} \mathrm{~m}^{-3}
$$

(b) From Chapter 19 (see Eq. 19-9), we have

$$
\frac{N}{V}=\frac{p}{k T}=\frac{1.01 \times 10^{5} \mathrm{~Pa}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273 \mathrm{~K})}=2.68 \times 10^{25} \mathrm{~m}^{-3}
$$

for an ideal gas under "standard conditions." Thus,

$$
\frac{n_{p}}{(N / V)}=\frac{3.14 \times 10^{31} \mathrm{~m}^{-3}}{2.44 \times 10^{25} \mathrm{~m}^{-3}}=1.2 \times 10^{6} .
$$

48. Conservation of energy gives $Q=K_{\alpha}+K_{\mathrm{n}}$, and conservation of linear momentum (due to the assumption of negligible initial velocities) gives $\left|p_{\alpha}\right|=\left|p_{\mathrm{n}}\right|$. We can write the classical formula for kinetic energy in terms of momentum:

$$
K=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}
$$

which implies that $K_{\mathrm{n}}=\left(m_{\alpha} / m_{\mathrm{n}}\right) K_{\alpha}$.
(a) Consequently, conservation of energy and momentum allows us to solve for kinetic energy of the alpha particle which results from the fusion:

$$
K_{\alpha}=\frac{Q}{1+\frac{m_{\alpha}}{m_{\mathrm{n}}}}=\frac{17.59 \mathrm{MeV}}{1+\frac{4.0015 \mathrm{u}}{1.008665 \mathrm{u}}}=3.541 \mathrm{MeV}
$$

where we have found the mass of the alpha particle by subtracting two electron masses from the ${ }^{4} \mathrm{He}$ mass (quoted several times in this and the previous chapter).
(b) Then, $K_{\mathrm{n}}=Q-K_{\alpha}$ yields 14.05 MeV for the neutron kinetic energy.
49. Since Plutonium has $Z=94$ and Uranium has $Z=92$, we see that (to conserve charge) two electrons must be emitted so that the nucleus can gain a $+2 e$ charge. In the beta decay processes described in Chapter 42, electrons and neutrinos are emitted. The reaction series is as follows:

$$
\begin{aligned}
{ }^{238} \mathrm{U}+\mathrm{n} \rightarrow & { }^{239} \mathrm{~Np}+{ }^{239} \mathrm{U}+e+v \\
& { }^{239} \mathrm{~Np} \rightarrow{ }^{239} \mathrm{Pu}+e+v
\end{aligned}
$$

50. (a) Rather than use $P(v)$ as it is written in Eq. 19-27, we use the more convenient $n K$ expression given in problem 32 of this chapter [43]. The $n(K)$ expression can be derived from Eq. 19-27, but we do not show that derivation here. To find the most probable energy, we take the derivative of $n(K)$ and set the result equal to zero:

$$
\left.\frac{d n(K)}{d K}\right|_{K=K_{p}}=\left.\frac{1.13 n}{(k T)^{3 / 2}}\left(\frac{1}{2 K^{1 / 2}}-\frac{K^{3 / 2}}{k T}\right) e^{-K / k T}\right|_{K=K_{p}}=0
$$

which gives $K_{p}=\frac{1}{2} k T$. Specifically, for $T=1.5 \times 10^{7} \mathrm{~K}$ we find

$$
K_{p}=\frac{1}{2} k T=\frac{1}{2}\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)\left(1.5 \times 10^{7} \mathrm{~K}\right)=6.5 \times 10^{2} \mathrm{eV}
$$

or 0.65 keV , in good agreement with Fig. 43-10.
(b) Eq. 19-35 gives the most probable speed in terms of the molar mass M, and indicates its derivation (see also Sample Problem 19-6). Since the mass m of the particle is related to M by the Avogadro constant, then using Eq. 19-7,

$$
v_{p}=\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 R T}{m N_{A}}}=\sqrt{\frac{2 k T}{m}} .
$$

With $T=1.5 \times 10^{7} \mathrm{~K}$ and $m=1.67 \times 10^{-27} \mathrm{~kg}$, this yields $v_{p}=5.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$.
(c) The corresponding kinetic energy is

$$
K_{v, p}=\frac{1}{2} m v_{p}^{2}=\frac{1}{2} m\left(\sqrt{\frac{2 k T}{m}}\right)^{2}=k T
$$

which is twice as large as that found in part (a). Thus, at $T=1.5 \times 10^{7} \mathrm{~K}$ we have $K_{v, p}=$ 1.3 keV , which is indicated in Fig. 43-10 by a single vertical line.
51. In Sample Problem 43-2, it is noted that the rate of consumption of U-235 by (nonfission) neutron capture is one-fourth as big as the rate of neutron-induced fission events. Consequently, the mass of ${ }^{235} \mathrm{U}$ should be larger than that computed in problem 15 by $25 \%:(1.25)(462 \mathrm{~kg})=5.8 \times 10^{2} \mathrm{~kg} \approx 6 \times 10^{2} \mathrm{~kg}$. If appeal is to made to other sources (other than Sample Problem 43-2), then it might be possible to argue for a factor other than 1.25 (we found others in our brief search) and thus to a somewhat different result.
52. First, we figure out the mass of U-235 in the sample (assuming " 3.0% " refers to the proportion by weight as opposed to proportion by number of atoms):

$$
\begin{aligned}
M_{\mathrm{U}-235} & =(3.0 \%) M_{\text {sam }}\left(\frac{(97 \%) m_{238}+(3.0 \%) m_{235}}{(97 \%) m_{238}+(3.0 \%) m_{235}+2 m_{16}}\right) \\
& =(0.030)(1000 \mathrm{~g})\left(\frac{0.97(238)+0.030(235)}{0.97(238)+0.030(235)+2(16.0)}\right) \\
& =26.4 \mathrm{~g} .
\end{aligned}
$$

Next, this uses some of the ideas illustrated in Sample Problem 42-5; our notation is similar to that used in that example. The number of ${ }^{235} \mathrm{U}$ nuclei is

$$
N_{235}=\frac{(26.4 \mathrm{~g})\left(6.02 \times 10^{23} / \mathrm{mol}\right)}{235 \mathrm{~g} / \mathrm{mol}}=6.77 \times 10^{22}
$$

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is

$$
N_{235} Q_{\text {fission }}=\left(6.77 \times 10^{22}\right)(200 \mathrm{MeV})=1.35 \times 10^{25} \mathrm{MeV}=2.17 \times 10^{12} \mathrm{~J}
$$

Keeping in mind that a Watt is a Joule per second, the time that this much energy can keep a $100-\mathrm{W}$ lamp burning is found to be

$$
t=\frac{2.17 \times 10^{12} \mathrm{~J}}{100 \mathrm{~W}}=2.17 \times 10^{10} \mathrm{~s} \approx 690 \mathrm{y}
$$

If we had instead used the $Q=208 \mathrm{MeV}$ value from Sample Problem 43-1, then our result would have been 715 y , which perhaps suggests that our result is meaningful to just one significant figure ("roughly 700 years").
53. At $T=300 \mathrm{~K}$, the average kinetic energy of the neutrons is (using Eq. 20-24)

$$
K_{\text {avg }}=\frac{3}{2} K T=\frac{3}{2}\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(300 \mathrm{~K}) \approx 0.04 \mathrm{eV} .
$$

54. (a) Fig. 42-9 shows the barrier height to be about 30 MeV .
(b) The potential barrier height listed in Table $43-2$ is roughly 5 MeV . There is some model-dependence involved in arriving at this estimate, and other values can be found in the literature (6 MeV is frequently cited).
55. Conservation of momentum requires that the gamma ray particles move in opposite directions with momenta of the same magnitude. Since the magnitude p of the momentum of a gamma ray particle is related to its energy by $p=E / c$, the particles have the same energy E. Conservation of energy yields $m_{\pi} c^{2}=2 E$, where m_{π} is the mass of a neutral pion. The rest energy of a neutral pion is $m_{\pi} c^{2}=135.0 \mathrm{MeV}$, according to Table 44-4. Hence, $E=(135.0 \mathrm{MeV}) / 2=67.5 \mathrm{MeV}$. We use the result of Problem 83 of Chapter 38 to obtain the wavelength of the gamma rays:

$$
\lambda=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{67.5 \times 10^{6} \mathrm{eV}}=1.84 \times 10^{-5} \mathrm{~nm}=18.4 \mathrm{fm}
$$

2. We establish a ratio, using Eq. 22-4 and Eq. 14-1:

$$
\begin{aligned}
\frac{F_{\text {gravity }}}{F_{\text {electric }}} & =\frac{G m_{e}^{2} / r^{2}}{k e^{2} / r^{2}}=\frac{4 \pi \varepsilon_{0} G m_{e}^{2}}{e^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)^{2}}{\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}} \\
& =2.4 \times 10^{-43} .
\end{aligned}
$$

Since $F_{\text {gravity }} \ll F_{\text {electric }}$, we can neglect the gravitational force acting between particles in a bubble chamber.
3. Since the density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{L}$, then the total mass of the pool is $\rho \boldsymbol{V}=4.32 \times 10^{5} \mathrm{~kg}$, where \mathcal{V} is the given volume. Now, the fraction of that mass made up by the protons is $10 / 18$ (by counting the protons versus total nucleons in a water molecule). Consequently, if we ignore the effects of neutron decay (neutrons can beta decay into protons) in the interest of making an order-of-magnitude calculation, then the number of particles susceptible to decay via this $T_{1 / 2}=10^{32} \mathrm{y}$ half-life is

$$
N=\frac{\frac{10}{18} M_{\text {pool }}}{m_{p}}=\frac{\frac{10}{18}\left(4.32 \times 10^{5} \mathrm{~kg}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}=1.44 \times 10^{32}
$$

Using Eq. 42-20, we obtain

$$
R=\frac{N \ln 2}{T_{1 / 2}}=\frac{\left(1.44 \times 10^{32}\right) \ln 2}{10^{32} \mathrm{y}} \approx 1 \text { decay } / \mathrm{y}
$$

4. By charge conservation, it is clear that reversing the sign of the pion means we must reverse the sign of the muon. In effect, we are replacing the charged particles by their antiparticles. Less obvious is the fact that we should now put a "bar" over the neutrino (something we should also have done for some of the reactions and decays discussed in the previous two chapters, except that we had not yet learned about antiparticles). To understand the "bar" we refer the reader to the discussion in §44-4. The decay of the negative pion is $\pi^{-} \rightarrow \mu^{-}+\bar{v}$. A subscript can be added to the antineutrino to clarify what "type" it is, as discussed in §44-4.
5. From Eq. 37-45, the Lorentz factor would be

$$
\gamma=\frac{E}{m c^{2}}=\frac{1.5 \times 10^{6} \mathrm{eV}}{20 \mathrm{eV}}=75000
$$

Solving Eq. 37-8 for the speed, we find

$$
\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}} \Rightarrow v=c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

which implies that the difference between v and c is

$$
c-v=c\left(1-\sqrt{1-\frac{1}{\gamma^{2}}}\right) \approx c\left(1-\left(1-\frac{1}{2 \gamma^{2}}+\cdots\right)\right)
$$

where we use the binomial expansion (see Appendix E) in the last step. Therefore,

$$
c-v \approx c\left(\frac{1}{2 \gamma^{2}}\right)=(299792458 \mathrm{~m} / \mathrm{s})\left(\frac{1}{2(75000)^{2}}\right)=0.0266 \mathrm{~m} / \mathrm{s} \approx 2.7 \mathrm{~cm} / \mathrm{s}
$$

6. (a) In SI units,

$$
K=(2200 \mathrm{MeV})\left(1.6 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)=3.52 \times 10^{-10} \mathrm{~J}
$$

Similarly, $m c^{2}=2.85 \times 10^{-10} \mathrm{~J}$ for the positive tau. Eq. 37-51 leads to the relativistic momentum:

$$
p=\frac{1}{c} \sqrt{K^{2}+2 K m c^{2}}=\frac{1}{2.998 \times 10^{8}} \sqrt{\left(3.52 \times 10^{-10}\right)^{2}+2\left(3.52 \times 10^{-10}\right)\left(2.85 \times 10^{-10}\right)}
$$

which yields $p=1.90 \times 10^{-18} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
(b) According to problem 57 in Chapter 37, the radius should be calculated with the relativistic momentum:

$$
r=\frac{\gamma m v}{|q| B}=\frac{p}{e B}
$$

where we use the fact that the positive tau has charge $e=1.6 \times 10^{-19} \mathrm{C}$. With $B=1.20 \mathrm{~T}$, this yields $r=9.90 \mathrm{~m}$.
7. Table 44-4 gives the rest energy of each pion as 139.6 MeV . The magnitude of the momentum of each pion is $p_{\pi}=(358.3 \mathrm{MeV}) / c$. We use the relativistic relationship between energy and momentum (Eq. 37-52) to find the total energy of each pion:

$$
E_{\pi}=\sqrt{\left(p_{\pi} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}=\sqrt{(358.3 \mathrm{MeV})^{2}+(139.6 \mathrm{Mev})}=384.5 \mathrm{MeV}
$$

Conservation of energy yields

$$
m_{\rho} c^{2}=2 E_{\pi}=2(384.5 \mathrm{MeV})=769 \mathrm{MeV}
$$

8. From Eq. 37-49, the Lorentz factor is

$$
\gamma=1+\frac{K}{m c^{2}}=1+\frac{80 \mathrm{MeV}}{135 \mathrm{MeV}}=1.59 .
$$

Solving Eq. 37-8 for the speed, we find

$$
\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}} \Rightarrow v=c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

which yields $v=0.778 c$ or $v=2.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Now, in the reference frame of the laboratory, the lifetime of the pion is not the given τ value but is "dilated." Using Eq. $37-9$, the time in the lab is

$$
t=\gamma \tau=(1.59)\left(8.3 \times 10^{-17} \mathrm{~s}\right)=1.3 \times 10^{-16} \mathrm{~s} .
$$

Finally, using Eq. 37-10, we find the distance in the lab to be

$$
x=v t=\left(2.33 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.3 \times 10^{-16} \mathrm{~s}\right)=3.1 \times 10^{-8} \mathrm{~m}
$$

9. (a) Conservation of energy gives

$$
Q=K_{2}+K_{3}=E_{1}-E_{2}-E_{3}
$$

where E refers here to the rest energies $\left(m c^{2}\right)$ instead of the total energies of the particles. Writing this as $K_{2}+E_{2}-E_{1}=-\left(K_{3}+E_{3}\right)$ and squaring both sides yields

$$
K_{2}^{2}+2 K_{2} E_{2}-2 K_{2} E_{1}+\left(E_{1}-E_{2}\right)^{2}=K_{3}^{2}+2 K_{3} E_{3}+E_{3}^{2}
$$

Next, conservation of linear momentum (in a reference frame where particle 1 was at rest) gives $\left|p_{2}\right|=\left|p_{3}\right|$ (which implies $\left.\left(p_{2} c\right)^{2}=\left(p_{3} c\right)^{2}\right)$. Therefore, Eq. 37-54 leads to

$$
K_{2}^{2}+2 K_{2} E_{2}=K_{3}^{2}+2 K_{3} E_{3}
$$

which we subtract from the above expression to obtain

$$
-2 K_{2} E_{1}+\left(E_{1}-E_{2}\right)^{2}=E_{3}^{2}
$$

This is now straightforward to solve for K_{2} and yields the result stated in the problem.
(b) Setting $E_{3}=0$ in

$$
K_{2}=\frac{1}{2 E_{1}}\left[\left(E_{1}-E_{2}\right)^{2}-E_{3}^{2}\right]
$$

and using the rest energy values given in Table 44-1 readily gives the same result for K_{μ} as computed in Sample Problem 44-1.
10. (a) Noting that there are two positive pions created (so, in effect, its decay products are doubled), then we count up the electrons, positrons and neutrinos: $2 \mathrm{e}^{+}+\mathrm{e}^{-}+5 v+4 \bar{v}$.
(b) The final products are all leptons, so the baryon number of A_{2}^{+}is zero. Both the pion and rho meson have integer-valued spins, so A_{2}^{+}is a boson.
(c) A_{2}^{+}is also a meson.
(d) As stated in (b), the baryon number of A_{2}^{+}is zero.
11. (a) The conservation laws considered so far are associated with energy, momentum, angular momentum, charge, baryon number, and the three lepton numbers. The rest energy of the muon is 105.7 MeV , the rest energy of the electron is 0.511 MeV , and the rest energy of the neutrino is zero. Thus, the total rest energy before the decay is greater than the total rest energy after. The excess energy can be carried away as the kinetic energies of the decay products and energy can be conserved. Momentum is conserved if the electron and neutrino move away from the decay in opposite directions with equal magnitudes of momenta. Since the orbital angular momentum is zero, we consider only spin angular momentum. All the particles have spin $\hbar / 2$. The total angular momentum after the decay must be either \hbar (if the spins are aligned) or zero (if the spins are antialigned). Since the spin before the decay is $\hbar / 2$ angular momentum cannot be conserved. The muon has charge $-e$, the electron has charge $-e$, and the neutrino has charge zero, so the total charge before the decay is $-e$ and the total charge after is $-e$. Charge is conserved. All particles have baryon number zero, so baryon number is conserved. The muon lepton number of the muon is +1 , the muon lepton number of the muon neutrino is +1 , and the muon lepton number of the electron is 0 . Muon lepton number is conserved. The electron lepton numbers of the muon and muon neutrino are 0 and the electron lepton number of the electron is +1 . Electron lepton number is not conserved. The laws of conservation of angular momentum and electron lepton number are not obeyed and this decay does not occur.
(b) We analyze the decay in the same way. We find that charge and the muon lepton number L_{μ} are not conserved.
(c) Here we find that energy and muon lepton number L_{μ} cannot be conserved.
12. (a) Referring to Tables 44-3 and 44-4, we find the strangeness of K^{0} is +1 , while it is zero for both π^{+}and π^{-}. Consequently, strangeness is not conserved in this decay; $\mathrm{K}^{0} \rightarrow \pi^{+}+\pi^{-}$does not proceed via the strong interaction.
(b) The strangeness of each side is -1 , which implies that the decay is governed by the strong interaction.
(c) The strangeness or Λ^{0} is -1 while that of $\mathrm{p}+\pi^{-}$is zero, so the decay is not via the strong interaction.
(d) The strangeness of each side is -1 ; it proceeds via the strong interaction.
13. For purposes of deducing the properties of the antineutron, one may cancel a proton from each side of the reaction and write the equivalent reaction as

$$
\pi^{+} \rightarrow p=\overline{\mathrm{n}} .
$$

Particle properties can be found in Tables 44-3 and 44-4. The pion and proton each have charge $+e$, so the antineutron must be neutral. The pion has baryon number zero (it is a meson) and the proton has baryon number +1 , so the baryon number of the antineutron must be -1 . The pion and the proton each have strangeness zero, so the strangeness of the antineutron must also be zero. In summary, for the antineutron,
(a) $q=0$,
(b) $B=-1$,
(c) and $S=0$.
14. (a) From Eq. 37-50,

$$
\begin{aligned}
Q & =-\Delta m c^{2}=\left(m_{\Sigma^{+}}+m_{K^{+}}-m_{\pi^{+}}-m_{p}\right) c^{2} \\
& =1189.4 \mathrm{MeV}+493.7 \mathrm{MeV}-139.6 \mathrm{MeV}-938.3 \mathrm{MeV} \\
& =605 \mathrm{MeV}
\end{aligned}
$$

(b) Similarly,

$$
\begin{aligned}
Q & =-\Delta m c^{2}=\left(m_{\Lambda^{0}}+m_{\pi^{0}}-m_{K^{-}}-m_{p}\right) c^{2} \\
& =1115.6 \mathrm{MeV}+135.0 \mathrm{MeV}-493.7 \mathrm{MeV}-938.3 \mathrm{MeV} \\
& =-181 \mathrm{MeV} .
\end{aligned}
$$

15. (a) See the solution to Problem 11 for the quantities to be considered, adding strangeness to the list. The lambda has a rest energy of 1115.6 MeV , the proton has a rest energy of 938.3 MeV , and the kaon has a rest energy of 493.7 MeV . The rest energy before the decay is less than the total rest energy after, so energy cannot be conserved. Momentum can be conserved. The lambda and proton each have spin $\hbar / 2$ and the kaon has spin zero, so angular momentum can be conserved. The lambda has charge zero, the proton has charge $+e$, and the kaon has charge $-e$, so charge is conserved. The lambda and proton each have baryon number +1 , and the kaon has baryon number zero, so baryon number is conserved. The lambda and kaon each have strangeness -1 and the proton has strangeness zero, so strangeness is conserved. Only energy cannot be conserved.
(b) The omega has a rest energy of 1680 MeV , the sigma has a rest energy of 1197.3 MeV , and the pion has a rest energy of 135 MeV . The rest energy before the decay is greater than the total rest energy after, so energy can be conserved. Momentum can be conserved. The omega and sigma each have spin $\hbar / 2$ and the pion has spin zero, so angular momentum can be conserved. The omega has charge $-e$, the sigma has charge $-e$, and the pion has charge zero, so charge is conserved. The omega and sigma have baryon number +1 and the pion has baryon number 0 , so baryon number is conserved. The omega has strangeness -3 , the sigma has strangeness -1 , and the pion has strangeness zero, so strangeness is not conserved.
(c) The kaon and proton can bring kinetic energy to the reaction, so energy can be conserved even though the total rest energy after the collision is greater than the total rest energy before. Momentum can be conserved. The proton and lambda each have spin $\hbar / 2$ and the kaon and pion each have spin zero, so angular momentum can be conserved. The kaon has charge $-e$, the proton has charge $+e$, the lambda has charge zero, and the pion has charge $+e$, so charge is not conserved. The proton and lambda each have baryon number +1 , and the kaon and pion each have baryon number zero; baryon number is conserved. The kaon has strangeness -1 , the proton and pion each have strangeness zero, and the lambda has strangeness -1 , so strangeness is conserved. Only charge is not conserved.
16. The formula for T_{z} as it is usually written to include strange baryons is $T_{z}=q-(S+$ $B) / 2$. Also, we interpret the symbol q in the T_{z} formula in terms of elementary charge units; this is how q is listed in Table 44-3. In terms of charge q as we have used it in previous chapters, the formula is

$$
T_{z}=\frac{q}{e}-\frac{1}{2}(B+S)
$$

For instance, $T_{z}=+\frac{1}{2}$ for the proton (and the neutral Xi) and $T_{z}=-\frac{1}{2}$ for the neutron (and the negative Xi). The baryon number B is +1 for all the particles in Fig. 44-4(a). Rather than use a sloping axis as in Fig. 44-4 (there it is done for the q values), one reproduces (if one uses the "corrected" formula for T_{z} mentioned above) exactly the same pattern using regular rectangular axes (T_{z} values along the horizontal axis and Y values along the vertical) with the neutral lambda and sigma particles situated at the origin.
17. (a) As far as the conservation laws are concerned, we may cancel a proton from each side of the reaction equation and write the reaction as $p \rightarrow \Lambda^{0}+x$. Since the proton and the lambda each have a spin angular momentum of $\hbar / 2$, the spin angular momentum of x must be either zero or \hbar. Since the proton has charge $+e$ and the lambda is neutral, x must have charge $+e$. Since the proton and the lambda each have a baryon number of +1 , the baryon number of x is zero. Since the strangeness of the proton is zero and the strangeness of the lambda is -1 , the strangeness of x is +1 . We take the unknown particle to be a spin zero meson with a charge of $+e$ and a strangeness of +1 . Look at Table 44-4 to identify it as a K^{+}particle.
(b) Similar analysis tells us that x is a spin $-\frac{1}{2}$ antibaryon $(B=-1)$ with charge and strangeness both zero. Inspection of Table 44-3 reveals it is an antineutron.
(c) Here x is a spin-0 (or spin-1) meson with charge zero and strangeness -1 . According to Table 44-4, it could be a \bar{K}^{0} particle.
18. Conservation of energy (see Eq. 37-47) leads to

$$
\begin{aligned}
K_{f} & =-\Delta m c^{2}+K_{i}=\left(m_{\Sigma^{-}}-m_{\pi^{-}}-m_{n}\right) c^{2}+K_{i} \\
& =1197.3 \mathrm{MeV}-139.6 \mathrm{MeV}-939.6 \mathrm{MeV}+220 \mathrm{MeV} \\
& =338 \mathrm{MeV} .
\end{aligned}
$$

19. (a) From Eq. 37-50,

$$
\begin{aligned}
Q & =-\Delta m c^{2}=\left(m_{\Lambda^{0}}-m_{p}-m_{\pi^{-}}\right) c^{2} \\
& =1115.6 \mathrm{MeV}-938.3 \mathrm{MeV}-139.6 \mathrm{MeV}=37.7 \mathrm{MeV}
\end{aligned}
$$

(b) We use the formula obtained in problem 44-9 (where it should be emphasized that E is used to mean the rest energy, not the total energy):

$$
\begin{aligned}
K_{p} & =\frac{1}{2 E_{\Lambda}}\left[\left(E_{\Lambda}-E_{p}\right)^{2}-E_{\pi}^{2}\right] \\
& =\frac{(1115.6 \mathrm{MeV}-938.3 \mathrm{MeV})^{2}-(139.6 \mathrm{MeV})^{2}}{2(1115.6 \mathrm{MeV})}=5.35 \mathrm{MeV} .
\end{aligned}
$$

(c) By conservation of energy,

$$
K_{\pi^{-}}=Q-K_{p}=37.7 \mathrm{MeV}-5.35 \mathrm{MeV}=32.4 \mathrm{MeV}
$$

20. (a) The combination ddu has a total charge of $\left(-\frac{1}{3}-\frac{1}{3}+\frac{2}{3}\right)=0$, and a total strangeness of zero. From Table 44-3, we find it to be a neutron (n).
(b) For the combination uus, we have $Q=+\frac{2}{3}+\frac{2}{3}-\frac{1}{3}=1$ and $S=0+0-1=1$. This is the Σ^{+}particle.
(c) For the quark composition ssd, we have $Q=-\frac{1}{3}-\frac{1}{3}-\frac{1}{3}=-1$ and $S=-1-1+0=-2$. This is a Ξ^{-}.
21. (a) We indicate the antiparticle nature of each quark with a "bar" over it. Thus, $\bar{u} \bar{u} \bar{d}$ represents an antiproton.
(b) Similarly, $\overline{\mathrm{u}} \overline{\mathrm{d}} \overline{\mathrm{d}}$ represents an antineutron.
22. (a) Using Table 44-3, we find $q=0$ and $S=-1$ for this particle (also, $B=1$, since that is true for all particles in that table). From Table 44-5, we see it must therefore contain a strange quark (which has charge $-1 / 3$), so the other two quarks must have charges to add to zero. Assuming the others are among the lighter quarks (none of them being an antiquark, since $B=1$), then the quark composition is $\overline{\mathrm{s}} \overline{\mathrm{u}} \overline{\mathrm{d}}$.
(b) The reasoning is very similar to that of part (a). The main difference is that this particle must have two strange quarks. Its quark combination turns out to be $\bar{u} \bar{s} \bar{s}$.
23. (a) Looking at the first three lines of Table 44-5, since the particle is a baryon, we determine that it must consist of three quarks. To obtain a strangeness of -2 , two of them must be s quarks. Each of these has a charge of $-e / 3$, so the sum of their charges is $-2 e / 3$. To obtain a total charge of e, the charge on the third quark must be $5 e / 3$. There is no quark with this charge, so the particle cannot be constructed. In fact, such a particle has never been observed.
(b) Again the particle consists of three quarks (and no antiquarks). To obtain a strangeness of zero, none of them may be s quarks. We must find a combination of three u and d quarks with a total charge of $2 e$. The only such combination consists of three u quarks.
24. If we were to use regular rectangular axes, then this would appear as a right triangle. Using the sloping q axis as the problem suggests, it is similar to an "upside down" equilateral triangle as we show below.

The leftmost slanted line is for the -1 charge, and the rightmost slanted line is for the +2 charge.
25. From $\gamma=1+K / m c^{2}$ (see Eq. 37-52) and $v=\beta c=c \sqrt{1-\gamma^{-2}}$ (see Eq. 37-8), we get

$$
v=c \sqrt{1-\left(1+\frac{K}{m c^{2}}\right)^{-2}}
$$

(a) Therefore, for the $\Sigma^{*} 0$ particle,

$$
v=\left(2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1385 \mathrm{MeV}}\right)^{-2}}=2.4406 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

For Σ^{0},

$$
v^{\prime}=\left(2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1192.5 \mathrm{MeV}}\right)^{-2}}=2.5157 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Thus Σ^{0} moves faster than $\Sigma^{*}{ }^{0}$.
(b) The speed difference is

$$
\Delta v=v^{\prime}-v=(2.5157-2.4406)\left(10^{8} \mathrm{~m} / \mathrm{s}\right)=7.51 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

26. Letting $v=H r=c$, we obtain

$$
r=\frac{c}{H}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly}}=1.376 \times 10^{10} \mathrm{ly} \approx 1.4 \times 10^{10} \mathrm{ly} .
$$

27. We apply Eq. 37-36 for the Doppler shift in wavelength:

$$
\frac{\Delta \lambda}{\lambda}=\frac{v}{c}
$$

where v is the recessional speed of the galaxy. We use Hubble's law to find the recessional speed: $v=H r$, where r is the distance to the galaxy and H is the Hubble constant $\left(21.8 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s} \cdot \mathrm{y}}\right)$. Thus,

$$
v=\left[21.8 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s} \cdot \mathrm{ly}}\right]\left(2.40 \times 10^{8} \mathrm{ly}\right)=5.23 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

and

$$
\Delta \lambda=\frac{v}{c} \lambda=\left(\frac{5.23 \times 10^{6} \mathrm{~m} / \mathrm{s}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}\right)(656.3 \mathrm{~nm})=11.4 \mathrm{~nm} .
$$

Since the galaxy is receding, the observed wavelength is longer than the wavelength in the rest frame of the galaxy. Its value is $656.3 \mathrm{~nm}+11.4 \mathrm{~nm}=667.7 \mathrm{~nm} \approx 668 \mathrm{~nm}$.
28. First, we find the speed of the receding galaxy from Eq. 37-31:

$$
\begin{aligned}
\beta & =\frac{1-\left(f / f_{0}\right)^{2}}{1+\left(f / f_{0}\right)^{2}}=\frac{1-\left(\lambda_{0} / \lambda\right)^{2}}{1+\left(\lambda_{0} / \lambda\right)^{2}} \\
& =\frac{1-(590.0 \mathrm{~nm} / 602.0 \mathrm{~nm})^{2}}{1+(590.0 \mathrm{~nm} / 602.0 \mathrm{~nm})^{2}}=0.02013
\end{aligned}
$$

where we use $f=c / \lambda$ and $f_{0}=c / \lambda_{0}$. Then from Eq. 44-19,

$$
r=\frac{v}{H}=\frac{\beta c}{H}=\frac{(0.02013)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly}}=2.77 \times 10^{8} \mathrm{ly} .
$$

29. (a) From $f=c / \lambda$ and Eq. 37-31, we get

$$
\lambda_{0}=\lambda \sqrt{\frac{1-\beta}{1+\beta}}=\left(\lambda_{0}+\Delta \lambda\right) \sqrt{\frac{1-\beta}{1+\beta}} .
$$

Dividing both sides by λ_{0} leads to

$$
1=(1+z) \sqrt{\frac{1-\beta}{1+\beta}}
$$

We solve for β :

$$
\beta=\frac{(1+z)^{2}-1}{(1+z)^{2}+1}=\frac{z^{2}+2 z}{z^{2}+2 z+2} .
$$

(b) Now $z=4.43$, so

$$
\beta=\frac{(4.43)^{2}+2(4.43)}{(4.43)^{2}+2(4.43)+2}=0.934
$$

(c) From Eq. 44-19,

$$
r=\frac{v}{H}=\frac{\beta c}{H}=\frac{(0.934)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{0.0218 \mathrm{~m} / \mathrm{s} \cdot 1 \mathrm{y}}=1.28 \times 10^{10} \mathrm{ly}
$$

30. (a) Letting $v(r)=H r \leq v_{e}=\sqrt{2 G M / r}$, we get $M / r^{3} \geq H^{2} / 2 G$. Thus,

$$
\rho=\frac{M}{4 \pi r^{2} / 3}=\frac{3}{4 \pi} \frac{M}{r^{3}} \geq \frac{3 H^{2}}{8 \pi G} .
$$

(b) The density being expressed in H -atoms $/ \mathrm{m}^{3}$ is equivalent to expressing it in terms of $\rho_{0}=m_{\mathrm{H}} / \mathrm{m}^{3}=1.67 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}$. Thus,

$$
\begin{aligned}
\rho & =\frac{3 H^{2}}{8 \pi G \rho_{0}}\left(\mathrm{H} \text { atoms } / \mathrm{m}^{3}\right)=\frac{3(0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly})^{2}\left(1.00 \mathrm{ly} / 9.460 \times 10^{15} \mathrm{~m}\right)^{2}\left(\mathrm{H} \text { atoms } / \mathrm{m}^{3}\right)}{8 \pi\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(1.67 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =5.7 \mathrm{H} \text { atoms } / \mathrm{m}^{3} .
\end{aligned}
$$

31. (a) From Eq. 41-29, we know that $N_{2} / N_{1}=e^{-\Delta E / k T}$. We solve for ΔE :

$$
\begin{aligned}
\Delta E & =k T \ln \frac{N_{1}}{N_{2}}=\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(2.7 \mathrm{~K}) \ln \left(\frac{1-0.25}{0.25}\right) \\
& =2.56 \times 10^{-4} \mathrm{eV} \approx 0.26 \mathrm{meV}
\end{aligned}
$$

(b) Using the result of problem 83 in Chapter 38,

$$
\lambda=\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{2.56 \times 10^{-4} \mathrm{eV}}=4.84 \times 10^{6} \mathrm{~nm} \approx 4.8 \mathrm{~mm}
$$

32. From $F_{\text {grav }}=G M m / r^{2}=m v^{2} / r$ we find $M \infty v^{2}$. Thus, the mass of the Sun would be

$$
M_{s}^{\prime}=\left(\frac{v_{\text {Mercury }}}{v_{\text {Pluto }}}\right)^{2} M_{s}=\left(\frac{47.9 \mathrm{~km} / \mathrm{s}}{4.74 \mathrm{~km} / \mathrm{s}}\right)^{2} M_{s}=102 M_{s}
$$

33. (a) The mass M within Earth's orbit is used to calculate the gravitational force on Earth. If r is the radius of the orbit, R is the radius of the new Sun, and M_{S} is the mass of the Sun, then

$$
M=\left(\frac{r}{R}\right)^{3} M_{s}=\left(\frac{1.50 \times 10^{11} \mathrm{~m}}{5.90 \times 10^{12} \mathrm{~m}}\right)^{3}\left(1.99 \times 10^{30} \mathrm{~kg}\right)=3.27 \times 10^{25} \mathrm{~kg}
$$

The gravitational force on Earth is given by $G M m / r^{2}$, where m is the mass of Earth and G is the universal gravitational constant. Since the centripetal acceleration is given by v^{2} / r, where v is the speed of Earth, $G M m / r^{2}=m v^{2} / r$ and

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)\left(3.27 \times 10^{25} \mathrm{~kg}\right)}{1.50 \times 10^{11} \mathrm{~m}}}=1.21 \times 10^{2} \mathrm{~m} / \mathrm{s} .
$$

(b) The ratio is

$$
\frac{1.21 \times 10^{2} \mathrm{~m} / \mathrm{s}}{2.98 \times 10^{4} \mathrm{~m} / \mathrm{s}}=0.00406
$$

(c) The period of revolution is

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi\left(1.50 \times 10^{11} \mathrm{~m}\right)}{1.21 \times 10^{2} \mathrm{~m} / \mathrm{s}}=7.82 \times 10^{9} \mathrm{~s}=248 \mathrm{y}
$$

34. (a) The mass of the portion of the galaxy within the radius r from its center is given by $M^{\prime}=(r / R)^{3} M$. Thus, from $G M^{\prime} m / r^{2}=m v^{2} / r$ (where m is the mass of the star) we get

$$
\nu=\sqrt{\frac{G M^{\prime}}{r}}=\sqrt{\frac{G M}{r}\left(\frac{r}{R}\right)^{3}}=r \sqrt{\frac{G M}{R^{3}}} .
$$

(b) In the case where $M^{\prime}=M$, we have

$$
T=\frac{2 \pi r}{v}=2 \pi r \sqrt{\frac{r}{G M}}=\frac{2 \pi r^{3 / 2}}{\sqrt{G M}} .
$$

35. (a) We substitute $\lambda=(2898 \mu \mathrm{~m} \cdot \mathrm{~K}) / T$ into the result of Problem 83 of Chapter 38: $E=$ $(1240 \mathrm{eV} \cdot \mathrm{nm}) / \lambda$. First, we convert units: $2898 \mu \mathrm{~m} \cdot \mathrm{~K}=2.898 \times 10^{6} \mathrm{~nm} \cdot \mathrm{~K}$ and 1240 $\mathrm{eV} \cdot \mathrm{nm}=1.240 \times 10^{-3} \mathrm{MeV} \cdot \mathrm{nm}$. Hence,

$$
E=\frac{\left(1.240 \times 10^{-3} \mathrm{MeV} \cdot \mathrm{~nm}\right) T}{2.898 \times 10^{6} \mathrm{~nm} \cdot \mathrm{~K}}=\left(4.28 \times 10^{-10} \mathrm{MeV} / \mathrm{K}\right) T
$$

(b) The minimum energy required to create an electron-positron pair is twice the rest energy of an electron, or $2(0.511 \mathrm{MeV})=1.022 \mathrm{MeV}$. Hence,

$$
T=\frac{E}{4.28 \times 10^{-10} \mathrm{MeV} / \mathrm{K}}=\frac{1.022 \mathrm{MeV}}{4.28 \times 10^{-10} \mathrm{MeV} / \mathrm{K}}=2.39 \times 10^{9} \mathrm{~K} .
$$

36. (a) For the universal microwave background, Wien's law leads to

$$
T=\frac{2898 \mu \mathrm{~m} \cdot \mathrm{~K}}{\lambda_{\max }}=\frac{2898 \mathrm{~mm} \cdot \mathrm{~K}}{1.1 \mathrm{~mm}}=2.6 \mathrm{~K}
$$

(b) At "decoupling" (when the universe became approximately "transparent"),

$$
\lambda_{\max }=\frac{2898 \mu \mathrm{~m} \cdot \mathrm{~K}}{T}=\frac{2898 \mu \mathrm{~m} \cdot \mathrm{~K}}{2970 \mathrm{~K}}=0.976 \mu \mathrm{~m}=976 \mathrm{~nm} .
$$

37. The energy released would be twice the rest energy of Earth, or

$$
E=2 m c^{2}=2\left(5.98 \times 10^{24} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=1.08 \times 10^{42} \mathrm{~J}
$$

The mass of Earth can be found in Appendix C.
38. We note from track 1 , and the quantum numbers of the original particle (A), that positively charged particles move in counterclockwise curved paths, and - by inference - negatively charged ones move along clockwise arcs. This immediately shows that tracks $1,2,4,6$, and 7 belong to positively charged particles, and tracks 5,8 and 9 belong to negatively charged ones. Looking at the fictitious particles in the table (and noting that each appears in the cloud chamber once [or not at all]), we see that this observation (about charged particle motion) greatly narrows the possibilities:

$$
\begin{aligned}
\operatorname{tracks} 2,4,6,7, & \leftrightarrow \text { particles } C, F, H, J \\
\text { tracks } 5,8,9 & \leftrightarrow \text { particles } D, E, G
\end{aligned}
$$

This tells us, too, that the particle that does not appear at all is either B or I (since only one neutral particle "appears"). By charge conservation, tracks 2, 4 and 6 are made by particles with a single unit of positive charge (note that track 5 is made by one with a single unit of negative charge), which implies (by elimination) that track 7 is made by particle H. This is confirmed by examining charge conservation at the end-point of track 6. Having exhausted the charge-related information, we turn now to the fictitious quantum numbers. Consider the vertex where tracks 2,3 and 4 meet (the Whimsy number is listed here as a subscript):

$$
\begin{aligned}
\text { tracks } 2,4 & \leftrightarrow \text { particles } C_{2}, F_{0}, J_{-6} \\
\text { tracks } 3 & \leftrightarrow \text { particle } B_{4} \text { or } I_{6}
\end{aligned}
$$

The requirement that the Whimsy quantum number of the particle making track 4 must equal the sum of the Whimsy values for the particles making tracks 2 and 3 places a powerful constraint (see the subscripts above). A fairly quick trial and error procedure leads to the assignments: particle F makes track 4, and particles J and I make tracks 2 and 3, respectively. Particle B, then, is irrelevant to this set of events. By elimination, the particle making track 6 (the only positively charged particle not yet assigned) must be C. At the vertex defined by

$$
A \rightarrow F+C+(\operatorname{track} 5)_{-},
$$

where the charge of that particle is indicated by the subscript, we see that Cuteness number conservation requires that the particle making track 5 has Cuteness $=-1$, so this must be particle G. We have only one decision remaining:

$$
\text { tracks } 8,9, \leftrightarrow \text { particles } D, E
$$

Re-reading the problem, one finds that the particle making track 8 must be particle D since it is the one with seriousness $=0$. Consequently, the particle making track 9 must be E.

Thus, we have the following:
(a) Particle A for track 1 .
(b) Particle J for track 2.
(c) Particle I for track 3 .
(d) Particle F for track 4.
(e) Particle G for track 5.
(f) Particle C for track 6 .
(g) Particle H for track 7 .
(h) Particle D for track 8 .
(i) Particle E for track 9 .
39. Since only the strange quark (s) has non-zero strangeness, in order to obtain $S=-1$ we need to combine s with some non-strange anti-quark (which would have the negative of the quantum numbers listed in Table 44-5). The difficulty is that the charge of the strange quark is $-1 / 3$, which means that (to obtain a total charge of +1) the anti-quark would have to have a charge of $+\frac{4}{3}$. Clearly, there are no such anti-quarks in our list. Thus, a meson with $S=-1$ and $q=+1$ cannot be formed with the quarks/anti-quarks of Table 44-5. Similarly, one can show that, since no quark has $q=-\frac{4}{3}$, there cannot be a meson with $S=+1$ and $q=-1$.
40. Assuming the line passes through the origin, its slope is $0.40 c /\left(5.3 \times 10^{9} \mathrm{ly}\right)$. Then,

$$
T=\frac{1}{H}=\frac{1}{\text { slope }}=\frac{5.3 \times 10^{9} \mathrm{ly}}{0.40 c}=\frac{5.3 \times 10^{9} \mathrm{y}}{0.40} \approx 13 \times 10^{9} \mathrm{y} .
$$

41. (a) We use the relativistic relationship between speed and momentum:

$$
p=\gamma m v=\frac{m v}{\sqrt{1-(v / c)^{2}}},
$$

which we solve for the speed v :

$$
\frac{v}{c}=\sqrt{1-\frac{1}{\left(\frac{p c}{m c^{2}}\right)^{2}+1}}
$$

For an antiproton $m c^{2}=938.3 \mathrm{MeV}$ and $p c=1.19 \mathrm{GeV}=1190 \mathrm{MeV}$, so

$$
v=c \sqrt{1-\frac{1}{(1190 \mathrm{MeV} / 938.3 \mathrm{MeV})^{2}+1}}=0.785 c .
$$

(b) For the negative pion $m c^{2}=193.6 \mathrm{MeV}$, and $p c$ is the same. Therefore,

$$
v=c \sqrt{1-\frac{1}{(1190 \mathrm{MeV} / 193.6 \mathrm{MeV})^{2}+1}}=0.993 c
$$

(c) Since the speed of the antiprotons is about $0.78 c$ but not over $0.79 c$, an antiproton will trigger C2.
(d) Since the speed of the negative pions exceeds $0.79 c$, a negative pion will trigger C 1 .
(e) We use $\Delta t=d / v$, where $d=12 \mathrm{~m}$. For an antiproton

$$
\Delta t=\frac{1}{0.785\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=5.1 \times 10^{-8} \mathrm{~s}=51 \mathrm{~ns}
$$

(f) For a negative pion

$$
\Delta t=\frac{12 \mathrm{~m}}{0.993\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=4.0 \times 10^{-8} \mathrm{~s}=40 \mathrm{~ns}
$$

42. (a) Eq. 44-14 conserves charge since both the proton and the positron have $q=+e$ (and the neutrino is uncharged).
(b) Energy conservation is not violated since $m_{p} c^{2}>m_{e} c^{2}+m_{v} c^{2}$.
(c) We are free to view the decay from the rest frame of the proton. Both the positron and the neutrino are able to carry momentum, and so long as they travel in opposite directions with appropriate values of p (so that $\sum \vec{p}=0$) then linear momentum is conserved.
(d) If we examine the spin angular momenta, there does seem to be a violation of angular momentum conservation (Eq. 44-14 shows a spin-one-half particle decaying into two spin-one-half particles).
43. (a) During the time interval Δt, the light emitted from galaxy A has traveled a distance $c \Delta t$. Meanwhile, the distance between Earth and the galaxy has expanded from r to $r^{\prime}=r+r \alpha \Delta t$. Let $c \Delta t=r^{\prime}=r+r a \Delta t$, which leads to

$$
\Delta t=\frac{r}{c-r \alpha} .
$$

(b) The detected wavelength λ^{\prime} is longer than λ by $\lambda \alpha \Delta t$ due to the expansion of the universe: $\lambda^{\prime}=\lambda+\lambda \alpha \Delta t$. Thus,

$$
\frac{\Delta \lambda}{\lambda}=\frac{\lambda^{\prime}-\lambda}{\lambda}=\alpha \Delta t=\frac{\alpha r}{c-\alpha r} .
$$

(c) We use the binomial expansion formula (see Appendix E):

$$
(1 \pm x)^{n}=1 \pm \frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots \quad\left(x^{2}<1\right)
$$

to obtain

$$
\begin{aligned}
\frac{\Delta \lambda}{\lambda} & =\frac{\alpha r}{c-\alpha r}=\frac{\alpha r}{c}\left(1-\frac{\alpha r}{c}\right)^{-1}=\frac{\alpha r}{c}\left[1+\frac{-1}{1!}\left(-\frac{\alpha r}{c}\right)+\frac{(-1)(-2)}{2!}\left(-\frac{\alpha r}{c}\right)^{2}+\cdots\right] \\
& \approx \frac{\alpha r}{c}+\left(\frac{\alpha r}{c}\right)^{2}+\left(\frac{\alpha r}{c}\right)^{3} .
\end{aligned}
$$

(d) When only the first term in the expansion for $\Delta \lambda / \lambda$ is retained we have

$$
\frac{\Delta \lambda}{\lambda} \approx \frac{\alpha r}{c} .
$$

(e) We set

$$
\frac{\Delta \lambda}{\lambda}=\frac{v}{c}=\frac{H r}{c}
$$

and compare with the result of part (d) to obtain $\alpha=H$.
(f) We use the formula $\Delta \lambda / \lambda=\alpha r /(c-\alpha r)$ to solve for r :

$$
r=\frac{c(\Delta \lambda / \lambda)}{\alpha(1+\Delta \lambda / \lambda)}=\frac{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(0.050)}{(0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly})(1+0.050)}=6.548 \times 10^{8} \mathrm{ly} \approx 6.5 \times 10^{8} \mathrm{ly} .
$$

(g) From the result of part (a),

$$
\Delta t=\frac{r}{c-\alpha r}=\frac{\left(6.5 \times 10^{8} \mathrm{ly}\right)\left(9.46 \times 10^{15} \mathrm{~m} / \mathrm{ly}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}-(0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly})\left(6.5 \times 10^{8} \mathrm{ly}\right)}=2.17 \times 10^{16} \mathrm{~s},
$$

which is equivalent to $6.9 \times 10^{8} y$.
(h) Letting $r=c \Delta t$, we solve for Δt :

$$
\Delta t=\frac{r}{c}=\frac{6.5 \times 10^{8} \mathrm{ly}}{c}=6.5 \times 10^{8} \mathrm{y}
$$

(i) The distance is given by

$$
r=c \Delta t=c\left(6.9 \times 10^{8} \mathrm{y}\right)=6.9 \times 10^{8} \mathrm{ly} .
$$

(j) From the result of part (f),

$$
r_{B}=\frac{c(\Delta \lambda / \lambda)}{\alpha(1+\Delta \lambda / \lambda)}=\frac{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(0.080)}{(0.0218 \mathrm{~mm} / \mathrm{s} \cdot \mathrm{ly})(1+0.080)}=1.018 \times 10^{9} \mathrm{ly} \approx 1.0 \times 10^{9} \mathrm{ly}
$$

(k) From the formula obtained in part (a),

$$
\Delta t_{\mathrm{B}}=\frac{r_{\mathrm{B}}}{c-r_{\mathrm{B}} \alpha}=\frac{\left(1.0 \times 10^{9} \mathrm{ly}\right)\left(9.46 \times 10^{15} \mathrm{~m} / \mathrm{ly}\right)}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}-\left(1.0 \times 10^{9} \mathrm{ly}\right)(0.0218 \mathrm{~m} / \mathrm{s} \cdot \mathrm{ly})}=3.4 \times 10^{16} \mathrm{~s},
$$

which is equivalent to $1.1 \times 10^{9} \mathrm{y}$.
(l) At the present time, the separation between the two galaxies A and B is given by $r_{\text {now }}=c \Delta t_{\mathrm{B}}-c \Delta t_{\mathrm{A}}$. Since $r_{\text {now }}=r_{\text {then }}+r_{\text {then }} \alpha \Delta t$, we get

$$
r_{\text {then }}=\frac{r_{\text {now }}}{1+\alpha \Delta t}=3.9 \times 10^{8} \mathrm{ly} .
$$

44. Using Table 44-1, the difference in mass between the muon and the pion is

$$
\Delta m=\left(139.6 \frac{\mathrm{Mev}}{c^{2}}-105.7 \frac{\mathrm{Mev}}{c^{2}}\right)=\frac{(33.9 \mathrm{MeV})\left(1.60 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=6.03 \times 10^{-29} \mathrm{~kg} .
$$

